
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Improving Centru�ow Using Semantic Web Technologies

A thesis presented in partial ful�llment of the requirements for

the degree of Master of Science in Computer Science at

Massey University, Palmerston North, New Zealand.

Jonathan Andrew Giles

2007

Abstract

Centru�ow is an application that can be used to visualise structured data. It does this by

drawing graphs, allowing for users to explore information relationships that may not be

visible or easily understood otherwise. This helps users to gain a better understanding of

their organisation and to communicate more e�ectively. In earlier versions of Centru�ow,

it was di�cult to develop new functionality as it was built using a relatively unsupported

and proprietary visualisation toolkit. In addition, there were major issues surrounding

information currency and trust. Something had to be done, and this was a sub-project of

this thesis.

The main purpose of this thesis however was to research and develop a set of mathematical

algorithms to infer implicit relationships in Centru�ow data sources. Once these implicit

relationships were found, we could make them explicit by showing them within Centru�ow.

To enable this, relationships were to be calculated based on providing users with the

ability to `tag' resources with metadata. We believed that by using this tagging metadata,

Centru�ow could o�er users far more insight into their own data.

Implementing this was not a straight-forward task, as it required a considerable amount

of research and development to be undertaken to understand and appreciate technologies

that could help us in our goal. Our focus was primarily on technologies and approaches

common in the semantic web and `Web 2.0' areas. By pursuing semantic web technologies,

we ensured that Centru�ow would be considerably more standards-compliant than it was

previously. At the conclusion of our development period, Centru�ow had been rather sub-

stantially `retro�tted', with all proprietary technologies replaced with equivalent semantic

web technologies. The result of this is that Centru�ow is now positioned on the forefront

of the semantic web wave, allowing for far more comprehensive and rapid visualisation of

a far larger set of readily-available data than what was possible previously.

Having implemented all necessary functionality, we validated our approach and were pleased

to �nd that our improvements led to a considerably more intelligent and useful Centru�ow

application than was previously available. This functionality is now available as part of

`Centru�ow 3.0', which will be publicly released in March 2008. Finally, we conclude this

thesis with a discussion on the future work that should be undertaken to improve on the

current release.

i

ii

Acknowledgements

�I would have written a shorter letter, but I did not have the time.�

- Blaise Pascal

It is my pleasure to thank the people and institutions that made this thesis possible.

Firstly I want to thank my wife Julia, who has supported me throughout the year. Under-

taking this thesis required considerable time, and I thank her for allowing me to work as

hard as I needed to to complete this thesis.

Thanks to my parents Ian and Sue who have always supported me in whatever endeavour I

set out on, and for buying me that Apple IIe back in the late 80's for $5000. It introduced

me to the wonderful world of computing, and got me my �rst (unpaid) job teaching my

friends and teachers at my local kindergarten (at the age of four).

I wish to acknowledge my supervisor Dr. Jens Dietrich from Massey University for his time,

support, and ideas during this project. Without Jens, this project would not have been as

successful as it was, particularly in terms of the formulation of the necessary mathematical

functions. I am by no means a mathematician.

The Foundation for Research Science & Technology �nancially supported this project

through the provision of a Technology in Industry Fellowship (TIF). Additionally, I appre-

ciate the support of Massey University, through their provision of both the Massey Scholar

scholarship and the Massey Masterate scholarship.

This project could not have been implemented without the support of a large number of

open source projects, of which there are too many to mention. The key projects I want to

thank include:

• The Jena semantic web framework by Hewlett-Packard Laboratories Bristol

• Chris Bizer for his D2R Server, and D2RQ mapping language.

Finally, thank you for taking the time to read this thesis. I appreciate any thoughts you

may have on this research, and invite you to contact me via email at Jo@JoGiles.co.nz.

iii

iv

Contents

1 Introduction 1

1.1 The Big Picture . 1

1.2 Research Overview . 2

1.2.1 The Internet . 2

1.2.2 Web 2.0 And Social Networking . 4

1.2.3 The Semantic Web . 5

1.2.4 Visualisation Technology . 5

1.3 Centru�ow . 6

1.3.1 Templates . 7

1.3.2 Centru�ow Release Timeline . 7

1.3.3 Con�guring Centru�ow . 8

1.4 Project Objective and Scope . 9

1.5 Business Requirements . 10

1.6 Overview of Thesis . 11

2 Background 13

2.1 Semantic Web . 13

2.1.1 XML . 15

2.1.2 RDF . 16

v

2.1.3 Ontology Languages . 16

2.1.4 SPARQL . 17

2.1.5 SWRL . 21

2.1.6 What Is The Semantic Web? . 22

2.1.7 Open and Closed-World Assumptions 23

2.2 Trust Systems . 24

2.3 Semantic Similarity . 25

2.4 Representation State Transfer (REST) . 26

2.5 Tagging Systems . 26

2.5.1 Tagging . 26

2.5.2 Folksonomy . 27

2.5.3 Tagging Architectures . 29

2.5.4 Tagging User Interface . 31

2.5.5 Inferred Relationships . 35

2.5.6 Public and Private Tags . 35

2.6 Re�ections . 37

3 Algorithm Theory And Implementation 39

3.1 Introduction . 39

3.2 User Trust . 39

3.2.1 User Pro�les . 40

3.2.2 User Pro�le Findings . 43

3.2.3 Algorithm Implementation . 43

3.2.4 Algorithm Summary . 51

3.3 Resource Distance . 52

vi

3.3.1 Metrics . 53

3.3.2 Distance . 54

3.3.3 Metric Algorithm Basics . 54

3.3.4 Trust Similarity and Distance . 56

3.3.5 Tag Similarity and Distance . 56

3.3.6 Resource Distance Algorithm Conclusion 59

3.4 Relation Disagreement . 59

4 Software Implementation 61

4.1 Implementation of Similarity and Trust Functions 61

4.1.1 Brute-Force Computation . 61

4.1.2 On-Demand Calculation . 62

4.1.3 Our Approach . 62

4.2 Tagging Architecture . 63

4.2.1 Taggings Relational Database . 63

4.2.2 Tags as OWL Classes . 65

4.2.3 The Tagging Pipeline . 66

4.2.4 Querying The Tagging System . 68

4.3 Centru�ow Server . 69

4.3.1 Requirements of a Centru�ow Server 69

4.3.2 Alternative Software . 70

4.3.3 Handling Graph-Based Data . 73

4.3.4 Handling Non-Graph-Based Data . 77

4.3.5 Features Overview . 78

4.4 Centru�ow Client . 79

vii

4.4.1 Important Centru�ow Concepts . 79

4.4.2 Data Retrieval Using SPARQL . 80

4.4.3 Data Translation . 81

4.4.4 Data Integration . 82

4.4.5 Search . 83

4.4.6 Tagging User Interface . 84

4.5 Centru�ow Standalone Version . 88

4.6 Centru�ow Boot Loader . 90

4.6.1 Short-Term Solution . 90

5 Validation 93

5.1 Validation Process . 93

5.2 Validation Results . 96

5.3 Thoughts . 97

5.4 Stress and Performance Test . 98

6 Conclusion 103

6.1 Introduction . 103

6.2 Conclusion . 103

6.3 Future Work . 104

6.3.1 Further Research . 104

6.3.2 Algorithm Improvements . 104

6.3.3 Software Improvements . 105

6.4 Summary . 106

References 107

Glossary 113

viii

A Use Cases 115

A.1 Use Cases . 115

A.1.1 Tagging Entities (Bookmarking) . 115

A.1.2 Tag Searching . 117

A.1.3 Tag Untagging . 118

A.1.4 Browsing Related Entities . 119

B Resource Distance Examples 121

B.1 Tagging Distance Examples . 121

B.1.1 Example Set One . 121

B.1.2 Example Set Two . 124

B.1.3 Example Set Three . 126

B.1.4 Example Set Four . 129

ix

x

List of Figures

1.1 A screenshot of Centru�ow 3.0's main visualisation perspective. 6

2.1 The semantic web layer cake [29]. 14

2.2 The `MySQLicious' tag database schema. 29

2.3 The `Scuttle' tag database schema. 29

2.4 The `Toxi' tag database schema. 29

2.5 The Del.icio.us `add bookmark' screen. 32

2.6 The main Del.icio.us page . 33

2.7 Viewing tags as a tag cloud. 33

2.8 Del.icio.us can infer relationships between tags based on peoples taggings. . 34

3.1 An example resource with the tags that belong to it (as well as the associated

users and the timestamps at which they were applied). 45

3.2 An example of three resources with some tagging overlap (but with the

timestamps stripped to reduce the number of taggings shown). 55

4.1 The tag transformation pipeline. 66

4.2 The tag preferences dialog. 68

4.3 The Centru�ow Server SPARQL Architecture. 74

4.4 The Centru�ow Server implementation using open standards and open source

components. 75

4.5 The Centru�ow Server REST Architecture. 78

xi

4.6 How the Centru�ow client and server communicate. 81

4.7 The search dialog. 84

4.8 The add tags dialog. 85

4.9 The dialog shown to users when they select a tag they wish to untag. A

similar dialog is shown when a user disagrees or wishes to delete a tag. . . 86

4.10 A tag as it is shown to the user inside Centru�ow 3.0. It has the text

`SemanticWeb', and has been applied to the `Semantic Web' topic, and to a

person called `Sonia'. 88

4.11 A number of inferred relationships shown inside Centru�ow 3.0 (all dashed

lines are inferred). The inferred relationships are the visible result of the

algorithms developed in chapter 3. 89

4.12 Centru�ow Boot Loader Dialog shown to users who are not presently running

Centru�ow, and who do not already have an already installed Centru�ow

client. 92

5.1 Results of the performance/stress tests. 100

xii

List of Tables

3.1 Summary of prototypical users. 44

3.2 Examples of the user consensus function. Note that the maximum user

consensus value is 20. 47

3.3 Algorithm evaluation table for user consensus metric 48

3.4 Examples of the tagging activity algorithm. 51

3.5 Algorithm evaluation table for user tagging activity metric 51

3.6 The result of calling taggings(r) on the resources shown in �gure 3.2. 55

3.7 Example tagCount based on �gure 3.2 and table 3.6. 57

5.1 User groups and the number of users in each 94

5.2 Tags input by our prototypical users. 95

5.3 Untags input by our prototypical users. 96

5.4 The calculated trust values for our prototypical users. 96

5.5 Results from resource distance algorithm (distances closer to zero represent

more highly related resources). 97

5.7 Results from a performance and stress test. 99

xiii

xiv

List of Listings

2.1 An example SPARQL SELECT query used by Centru�ow to request all

information for one speci�c URI. 18

2.2 An example SPARQL CONSTRUCT query. 18

2.3 An example SPARQL ASK query asking if there is any user with a foaf:name

of "Alice". 19

2.4 The simplest SPARQL DESCRIBE query. 19

2.5 Another SPARQL DESCRIBE query asking for all information on a person

with the email address "alice@org". 19

2.6 A SPARQL query using an order modi�er. 20

2.7 A SPARQL query using an o�set modi�er a limit modi�er and an order

modi�er. 20

2.8 An example SPARQL/Update query �xing a spelling mistake. 21

2.9 An example SPARQL/Update query deleting all books with a date before

the year 2000. 21

2.10 A human readable SWRL rule. 21

2.11 The XML form of the human-readable SWRL rule. 22

4.1 The default SPARQL query used by Centru�ow to request all information

for one speci�c URI. 80

xv

4.2 An example of the SPARQL query used to search the Centru�ow Server. The

<search-token-n> �elds should be replaced with a single search paramter. . 84

xvi

Chapter 1

Introduction

1.1 The Big Picture

�The dream behind the Web is of a common information space in which we

communicate by sharing information. Its universality is essential: the fact that

a hypertext link can point to anything, be it personal, local or global, be it

draft or highly polished. There was a second part of the dream, too, dependent

on the Web being so generally used that it became a realistic mirror (or in fact

the primary embodiment) of the ways in which we work and play and socialize.

That was that once the state of our interactions was on line, we could then use

computers to help us analyse it, make sense of what we are doing, where we

individually �t in, and how we can better work together.�

- Tim Berners-Lee [1]

This thesis explores the research and development of a new version of Centru�ow [2], an

application used to visualise data sources inside large organisations. Like Tim Berners-Lee

in the quote above, Centru�ow has been and continues to be a dream for us. The �rst

two versions of Centru�ow very much helped turn our dream into a reality and create a

sturdy base framework, but it is the topic of this masters thesis that, it is hoped, will turn

Centru�ow into a tool that large companies will need to have. The goal of Centru�ow

3.0 (and in part this thesis) is to enable the visualisation of more varied data sources,

using standards and recommendations proposed by bodies such as the World Wide Web

Consortium [3] (or W3C as it is more commonly known). On top of this, our goal is to

enable increased socialisation and communication within Centru�ow through the use of

`web 2.0' concepts such as tagging.

As with any research thesis, the overall goal is to publish an account of the creation of

new knowledge and intellectual property. This thesis is no di�erent, but its focus is split

1

between the creation of a set of algorithms to calculate trust, and the development of

Centru�ow 3.0, which uses these algorithms in a corporate sense. The reason for the

second area of focus is due to the fact that this thesis is funded by both industry and the

New Zealand Government, so a large emphasis has been placed on achieving results that

lead to increased business value.

How do we plan to extend knowledge and understanding? For starters, Centru�ow will be

a proof that viable software applications can be built atop the semantic web vision. This

has been a recurring question online, where people question the viability of the semantic

web [4], and whether it is merely an academic pursuit in the same vein as the topic of

arti�cial intelligence once was (and still largely is). In addition to this, Centru�ow will

make extensive use of very early1 open source software libraries, and will be well-placed to

test and develop these in conjunction with the open source community. From a business

perspective, it is hoped that Centru�ow will be able to visualise far more sources of data,

and in far better ways, helping organisations to be more informed and able to make better

decisions using the pictures generated by Centru�ow.

What follows in the remainder of this chapter is an overview into the areas that this

research was involved in (this is expanded in much more detail in chapter 2). Following

this, section 1.4 outlines the goals and the scope of this thesis. We then discuss the business

requirements of the software that were developed as part of this thesis. At the end of this

chapter (section 1.6) is an outline for the remainder of this thesis.

1.2 Research Overview

1.2.1 The Internet

The Internet, as it stands today, is a huge mass of data (with educated guesses suggesting

that there are a 100 trillion words on the Internet [5]). A subset of the Internet, the

World Wide Web (WWW), is a human-browsable series of hyperlinked pages, and is the

primary medium used by most users of the Internet. Up until recently, there was very

little standardisation of the web, except for the use of HTML for presenting information

to the user. It should be noted however that standardisation is a loaded word, as it merely

means each vendor has adopted their own variation of each others standards [6].

There is presently very little scope for any more advanced use of the data on the Internet,

for example for intelligent agents to use this information to assist human users. The most

advanced technologies that support this kind of dream are `screen scrapers' (which depend

on the HTML output remaining largely constant) and, more recently, the proliferation

1Early in the sense that many of these software components are built to enable semantic web function-
ality, and are in alpha and beta stages of release.

2

of web services. This makes any ambition to create `software agents', that is, intelligent

software applications that may help users, far more di�cult than necessary. Additionally,

the integration and reuse of data from multiple sources is near-impossible without custom

software development occurring for each unique scenario.

Despite this, the Internet has been an undeniably huge success for human users to connect

and communicate in areas where Internet connectivity is available. This is evidenced in

the World Internet Usage and Population Statistics website [7], which states that of the

approximately 6,574,666,417 people in the world, 1,244,449,601 people have access to the

Internet. This represents 18.9% of the worlds population. Notable by their lack of Internet

penetration are Asia (at 12.4%) and Africa (at 4.7%). This represents a far larger social

problem that must be resolved, but falls far outside the scope of this thesis.

Whilst the Internet has succeeded in connecting 18.9% of the world to each other, it has

largely failed in supporting computer software agents to in turn support their users. This is

because the Internet is simply too di�cult to be understood by computers. One of the key

goals of the semantic web is to improve on this situation by providing more metadata about

information, allowing for software agents to become more informed and more connected.

One of the goals of this thesis was to learn more about the semantic web and how it intends

to improve upon this situation.

1.2.1.1 Standardisation and Web Services

Standardisation in the IT world is often fraught with di�culties. The range and number

of standards is overwhelming, which leads to a situation where no one is really any better

o� than they were prior to the standards being developed. As the saying goes, the good

thing about standards is that there are plenty to choose from - and if you don't like any,

there is always next year's lot!

Early e�orts to standardise on a means to allow software to remotely communicate has in

particular been rather fractured, and in many circumstances, over-engineered. At any one

time there have been multiple frameworks designed to support this requirement, but no

one framework has gained the critical mass necessary to accelerate its rate of adoption to

become a de facto or industry standard approach. This has lead to the situation where

application developers are forced to carefully consider their design decisions, such that their

software can interact with other important software. It has also lead to an increased number

of enterprise messaging systems, whose job it is to route messages between applications

safely and securely.

The most popular approach has always been the concept of a `Remote Procedure Call'

(RPC) in software, whereby an application may communicate with another through some

form of previously agreed upon protocol. There have been attempts to standardise such

3

protocols, with prominent examples being the `Common Object Request Broker Architec-

ture' (CORBA)[?] and Java's Remote Method Invocation (RMI)[8]. These technologies

have struggled to gain market acceptance, and the primary reason behind this is their

complexity and limitations [9].

More recently the SOAP standard [10] has taken the headlines. SOAP uses the common

and highly supported XML syntax, but still has a rather `enterprise' feel to it, requiring

the developer to jump through a number of hoops to deploy such services on the Internet

[11].

A simpler alternative to SOAP called Representational State Transfer (REST)[12], whilst

not a standard, has also captured a lot of attention from developers. REST simply uses

the basic Internet infrastructure (the HTTP protocol) with no complex messaging layer

atop it (as is the case with SOAP). The most important HTTP methods are PUT, GET,

POST and DELETE, which are often compared to the CREATE, READ, UPDATE and

DELETE (CRUD) methods used by databases. An important point of REST is that it

is stateless, meaning that neither client or server needs to remember the interactions that

have occurred. Using this de�nition, the web itself is mostly RESTful, with things like

cookies and sessions introducing some statefulness.

1.2.2 Web 2.0 And Social Networking

The term `Web 2.0', coined by Tim O'Reilly [13], is a confused term, insofar that it has no

real de�nition. We deem the term to mean the proliferation of rapidly developed websites

that make use of technologies such as asynchronous Javascript and XML (or `AJAX', as

it is commonly known - not to be mistaken for the cleaning liquid however). With Web

2.0 websites, interactions started becoming more social, as websites could be more �uid

and user friendly, and communities could be more easily built. This is in part thanks to

AJAX, but also due to the in�ux of big business (and thus money and venture capital),

and at the same time, the increasing importance of web design, not just web development.

`Social networking' is the term applied to the recent development of websites that allow

for its users to easily communicate, post pictures, form groups around shared ideals and

promote themselves or their ideals. There are a number of well-known social network sites,

each catering to a particular demographic, with examples including MySpace, Facebook,

Bebo, and LinkedIn [14, 15, 16, 17]. In addition, the concept and subsequent adoption of

web diaries (or `blogs') has exploded. To sum up what social networking is, one could say

that it is the enabling of people on the Internet to more easily communicate with those

people who share common interests or friends.

A common attribute of social networking is that it is based around user pro�les. This leads

to users building up a form of `public trust' based on, for example, the amount of positive

4

feedback they have received from other users (versus the amount of negative feedback).

This is the common scenario used by most online auction sites, such as TradeMe [18] and

eBay [19]. The important thing to note is that users are directly reviewing other users,

which can lead to malicious abuse of the system. We consider this a weakness, which is

something that we endeavoured to work around in this research.

1.2.3 The Semantic Web

�I have a dream for the Web [in which computers] become capable of analyzing

all the data on the Web � the content, links, and transactions between people

and computers. A `Semantic Web', which should make this possible, has yet

to emerge, but when it does, the day-to-day mechanisms of trade, bureaucracy

and our daily lives will be handled by machines talking to machines. The

`intelligent agents' people have touted for ages will �nally materialize.�

- Tim Berners-Lee [20]

The semantic web is a vision backed by the World Wide Web Consortium (W3C)[3]. It

essentially tries to pick up where the Internet left o�, in relation to improving the ability

to make information more machine-understandable. It has struggled to gain traction, as

people outside academia have objected to the scale of the work involved, but it is gaining

momentum in the academic realm. It is hoped that through improved tools, academia

will eventually allow for the automatic generation and extraction of much of the metadata

required by the semantic web. Projects such as GRDDL [21, 22] and RDFa [23] are evolving

to help �ll this hole.

The semantic web vision has existed for quite some time [24], and has been driven by the

World Wide Web Consortium, who have been diligently developing the necessary standards

to support this. The W3C is led by Sir Tim Berners-Lee, who is the original author of the

HTTP protocol, which is used to link web pages together.

We cover the semantic web in much more detail in section 2.1, where we outline the research

we undertook on a number of the key technologies.

1.2.4 Visualisation Technology

Whilst not within the scope of this thesis, we pride ourselves on providing the latest

visualisation technology to our customers. As we identi�ed that a replacement of the

visualisation engine would be necessary to achieve our goals for this thesis, we had to

identify how a new visualisation engine would integrate with the rest of the work that was

within the scope of this masters.

5

Figure 1.1: A screenshot of Centru�ow 3.0's main visualisation perspective.

In summary, the chosen technology to replace our current visualisation technology is called

prefuse [25], with the job of integration falling to Graham Jenson, a honours student within

the College of Sciences at Massey University, New Zealand. The split between Graham's

work and the work done as part of this thesis is essentially that we were responsible for

getting the data all the way from the relevant data sources into the replacement visuali-

sation engine, therefore requiring very little of the visualisation. To aid in understanding

what Centru�ow is, �gure 1.1 is a screenshot of Centru�ow 3.0 in action.

1.3 Centru�ow

Centru�ow [2] is a software application that is tasked with providing clarity to `information

over�ow' inside companies. It does this by providing a visualisation that draws all informa-

tion inside a company as a single graph, that can be navigated around by the user. In this

regard, Centru�ow allows for users to �nd information that may have been hidden inside

their organisation. In addition to this, Centru�ow allows for users to edit the information

shown to them, ensuring that data is always up to date.

Centru�ow works by connecting to an organisations databases directly, and visualises the

information contained within these databases as a graph that may be navigated graph-

ically. Centru�ow was born from the experience of people in the IT industry, as there

was a growing realisation that static images (such as those drawn in Microsoft Visio) and

6

spreadsheets were not a viable long-term communication medium. This problem is only

exacerbated by the frequent changes that are necessary to this kind of document, and the

ease in which data can be duplicated, leading to a loss in data currency, and thus, trust in

the data. As Centru�ow technology advanced through its �rst two versions, it became clear

that there were some inherent weaknesses in the architecture, outlined in the remainder of

this section.

1.3.1 Templates

To ensure that Centru�ow provides users with a rich user experience, it is necessary that

the client understand the data that it is visualising as much as possible. This is the role

of `templates' within Centru�ow. A template is a collection of XML �les that provide

the client with all necessary con�guration data relevant to the current graph. Template

�les include �les that describe the metadata of each node and edge, the kinds of elements

within a form to present to the user when they edit an entity, how to cluster and sort data,

among other template �les. A graph without a template lacks considerable functionality

and presents only a minimal user interface.

1.3.2 Centru�ow Release Timeline

1.3.2.1 Centru�ow 1.0

Centru�ow was conceived by Abstract Engineering Ltd [26] in mid-2004, with development

of Centru�ow starting in late 2004. Centru�ow is structured using a client/server archi-

tecture. Development of Centru�ow 1.0 largely led to a `software island' - it depended on

proprietary technologies and database schemas. In particular, the entire server-side com-

ponent, and the visualisation software within the client, both belonged to a third-party

software company called `Thinkmap'. This meant that the cost of deploying a Centru�ow-

based solution was larger than it should have been, for two key reasons:

1. For every sale, a considerable proportion of our earnings were being paid to the

third-party to allow us to license their visualisation and server software.

2. For every customer, there was need for considerable consultancy time to transfer the

companies data to appropriate data structures. Many companies would not even

consider the software until the consultancy work had been completed. This led to a

number of occurrences where considerable time was spent on customers who did not

then proceed to purchase licenses to use Centru�ow.

7

In addition to these problems, the approach we took with Centru�ow 1.0 was too prohibitive

to enable the kind of software we wanted - we were too forced into a particular development

methodology. For the Centru�ow 1.x series, the primary weakness was that Centru�ow

was being developed within the proprietary Thinkmap SDK, which meant that should the

1.x series continue to exist and be developed, Centru�ow would forever be dependent on

Thinkmap software. Given the risks that this introduced to the business (not to mention

the costs), it was decided that a major redevelopment e�ort would be necessary.

1.3.2.2 Centru�ow 2.0

This redevelopment process took place throughout 2006 as an honours project at Massey

University undertaken by Jonathan Giles [27]. It almost entirely rewrote Centru�ow to

be far more �exible (it become plugin-based), and far less dependent on any one software

vendor. This resulted in the Centru�ow 2.x series of releases. Centru�ow 2.0 still made use

of the Thinkmap visualisation technology however, as this provided the easiest means of

visualising enterprise data sources. In addition, the Centru�ow 2.x work did not attempt

to resolve any issues with the server-side components, so we were still largely dependent

on Thinkmap.

1.3.2.3 Centru�ow 3.0

Once Centru�ow 2.0 was completed, we were still faced with the same issues as previously

mentioned: we were constrained by third party visualisation software, and the need to

duplicate information. This situation simply could not last in the long-term, as many

customers would balk at having to duplicate their data unnecessarily. This led to an inher-

ent lack of trustability in the very system designed to improve trust and communications.

Fortunately, at this time Centru�ow was only lightly deployed to the public, and stopgap

solutions (including editing Microsoft Excel spreadsheets which would then do a bulk dump

into an empty database) were developed. With businesses beginning to take Centru�ow

more seriously, a better solution was needed, with this need prompting the beginning of

the Centru�ow 3.x series of releases.

Because of the improved software abstractions in Centru�ow 2.0, it become far more fea-

sible to consider improving Centru�ow by replacing the visualisation software. These

opportunities were carefully reviewed, and this was the driving force behind Centru�ow

3.0, as well as a small portion of this thesis.

1.3.3 Con�guring Centru�ow

Setting up Centru�ow to visualise a new data source is a two-step process, which is outlined

below. It is hoped that by outlining this, the reader gets a better understanding of how

8

Centru�ow operates.

The �rst step prior to being able to use Centru�ow is to correctly con�gure a server-

side component to understand the architecture of the databases, and the relationships

inherent within them. In Centru�ow 1.x and 2.x releases the server-side component was

the `Thinkmap Server', but in Centru�ow 3.0 this was the `Centru�ow Server', which is

outlined in more detail later in this thesis. In terms of Centru�ow Server, this con�guration

is largely a form-�lling exercise - the server is able to automatically scan and create the

necessary con�guration �les for most properly con�gured databases.

The second step it to make available (either through creating or downloading) templates.

If being developed afresh, this can be an iterative process, with the template becoming

more re�ned through a number of iterations. This is possible as Centru�ow does not need

a template to display data visually.

1.4 Project Objective and Scope

The primary objective of this thesis was to develop the necessary algorithms and software

to enable users to productively use tagging functionality as both a bookmarking and com-

munication mechanism, as well as a means to improve the value of the data being shown

to users by inferring new relationships. As mentioned, this required a lot of software de-

velopment work, much of it on the cutting edge of computer science research, particularly

in relation to the �elds of the semantic web and social networking.

This project was not about developing a new visualisation technology, although it should

make use of and extend available visualisation technology to convey tagging information to

the user. Our plan was `bottom-up' in nature, meaning that we focused on the fundamental

issues prior to enabling access to this data in Centru�ow. This meant that at whatever

point of time we had to stop development due to time constraints, we would have a useful

technology `stack'.

To enable this tagging research, a number of sub-components to this objective were also

considered to be within the scope of this masters. These are now outlined below.

Understand Business Use Cases: We needed to understand and develop the business

use cases for enterprise social networking, in particular tagging. This includes understand-

ing the limitations of the current Centru�ow technology, in particular with reference to

business requirements for improved datasource handling.

9

Algorithm Development: Explore, design and develop algorithms to calculate user

trust, entity similarity and distance. These calculations are rather time consuming, as

they must operate on a large amount of data. Identifying a means of performing these

calculations e�ciently was the goal of this stage.

User Interface Design: Prior to commencing coding, a short amount of time was to

be dedicated to creating `low-� prototypes' of the user interface components that will be

used to allow the use cases outlined in appendix A to be met. The purpose of this was to

identify any unconsidered issues that may a�ect development.

Datasource Creation: Suitable data sources were created to be used by Centru�ow

(and accessed by a `Centru�ow Server'). Appropriate data sources include two disjointed

graph databases (one Centru�ow database and a `graph-based' data set) and a tag database.

Design and Development of a `Centru�ow Server': This server acts as the single

means for a Centru�ow application to read information from remote data sources. This

server operates using both SPARQL and REST, and is discussed in considerably more

detail in chapter 4.

Development of Centru�ow 3.0: This stage had two primary goals:

1. To develop the necessary functionality to allow for Centru�ow to communicate with

the Centru�ow Server.

2. To develop the necessary functionality and user interface components to allow for

users to tag inside Centru�ow.

1.5 Business Requirements

Centru�ow 3.0 was not directly the focus of this thesis, but it formed a necessary founda-

tion to the tagging research. The scope for Centru�ow 3.0 was based on the development

of a replacement Centru�ow visualisation engine. In almost all other regards, Centru�ow

3.0 was no di�erent to Centru�ow 2.0, and as such it was not overly important to do a

fully-�edged requirements analysis process, as this had been undertaken during the de-

velopment of Centru�ow 2.0. However, developing Centru�ow 3.0 required a considerable

development e�ort, and so to gain the maximum value from any redevelopment e�ort, a

brief requirements gathering exercise was undertaken.

10

A number of key people were interviewed during the early stages of this thesis to ascertain

what considerations should be included in Centru�ow 3.0. In general, companies expressed

interest in the following areas:

1. Allowing sta� to easily add metadata to resources.

2. Being able to easily modify data within the graph.

3. Being able to build graphs from an initially blank state from within Centru�ow (see

section 4.5 for more on this).

4. Being able to visualise non-structured data.

We used these requirements in guiding our research and development e�ort whilst planning

for Centru�ow 3.0.

1.6 Overview of Thesis

This chapter has brie�y introduced the areas of research behind this thesis, and has in-

troduced the business requirements and problem statement. These clearly detail what is

both inside, and outside, of the scope of this thesis.

Researching the key areas relevant to this thesis are the topic of chapter 2. This chapter

includes topics ranging from semantic similarity and trust systems through to semantic

web technologies and even touches on user interface design.

Having identi�ed our goals we move into chapter 3 where we explore the requirements

for our mathematical algorithms. Following this, we proceed to develop the mathematical

functions that meet these requirements.

Chapter 4 discusses the work we undertook to implement our mathematical algorithms in

software. Following this, we discuss the implementation of both Centru�ow 3.0 and our

new Centru�ow Server software.

Having implemented the software required for this thesis, we proceed to validate our ap-

proach in chapter 5. This validation tests the value gained by tagging resources within

Centru�ow by some prototypical user pro�les, and checking what trust values we receive

for each user. In addition, we look at what inferred relationships are created.

Finally, chapter 6 summarises the results of this thesis and recommends future work.

11

12

Chapter 2

Background

In undertaking this thesis, there was a number of areas that we felt we needed to research

and appreciate in a greater depth. The range of topics that we researched was varied,

ranging from data retrieval to user interface design. This chapter attempts to highlight

and discuss these areas.

2.1 Semantic Web

�Any enterprise CEO really ought to be able to ask a question that involves
connecting data across the organization, be able to run a company e�ectively,
and especially to be able to respond to unexpected events. Most organizations
are missing this ability to connect all the data together.�

- Tim Berners-Lee [28]

The semantic web is a vision driven by the W3C, who have tasked themselves with the

development of the necessary standards and technologies to enable this vision. These

standards and technologies are all in various stages of their life cycles ranging from being

the de-facto standard to being emerging recommendations. To indicate the relationships

between these technologies, the W3C has developed a `layer cake' diagram, which is shown

in �gure 2.1. This diagram has gone through a number of permutations since its inception,

but in general they all portray the same concept, that being the inter-relatedness of a

number of key technologies related to the semantic web. In terms of this thesis, our

interests lie in a number of these layers, including XML, RDF, RDF-S, OWL, SPARQL,

trust and user interfaces/applications. Of course, the user interface/applications layer is

Centru�ow itself, and our approach to the trust layer is implemented using our user trust

calculations in section 3.2. The remainder of this section is dedicated to detailing the

standards that we are most interested in based on the W3C layer cake diagram.

13

Figure 2.1: The semantic web layer cake [29].

14

2.1.1 XML

Extensible Markup Language (XML [30]) has been around since 1996, and is essentially

a text format for representing data using tags that allows for hierarchical structures to

be easily built. This allows for applications to exchange data in a syntactically common

format, as opposed to each application creating its own syntax. This means that there is no

need to write complex XML parsers, as these are no common `library' functions provided

by most programming languages. Despite this, it is still necessary to write the far more

simpler `importers' and `exporters' for the speci�c XML syntax relevant to the application.

XML has a number of bene�ts, including:

• It can be easily generated by a web server and pass through proxies (due to being

plain text).

• It can easily be parsed as most programming languages now natively support XML.

• It can be easily transformed from one XML syntax to another using XSLT, which is

essentially a `stylesheet' for XML that can completely transform it.

• It can be easily queried using XPath, which is a specially designed query language

able to retrieve data from an XML �le using simple queries.

XML is shown near the bottom of the layer cake in �gure 2.1, symbolising the fact that

XML is critical to the semantic web as it provides a means of data interchange. To be fair,

XML is not the only data interchange format, as RDF is a general purpose language for

representing information. This is discussed in more detail shortly.

The minimum requirement for a �le to be considered an XML �le is that it be `well-formed',

which includes requirements [30, 31] such as:

• proper ordering of tags (i.e. closing a child tag before closing its parent tag),

• closing all tags (for example, <tagName /> or <tagName>text</tagName>),

• using quotes around all attributes (for example, use <tagName attr="north"/>, not

<tagName attr=north />).

A well-formed XML document can be sent between systems and parsed, but it can not

be guaranteed that the contents of the XML �le conforms to any particular syntax or

structure. To enforce these requirements, it is necessary for an XML �le to move to being

a `valid' �le, the next step above well-formed XML. This means that the XML can be

validated against an associated document type de�nition (DTD) or schema �le. By being

validated, it is possible to be certain that the data being provided in the XML meets the

requirements of the parsing application.

15

2.1.2 RDF

The Resource Description Format (RDF [32]) is a �language for representing information

about resources in the World Wide Web� [33]. It is commonly expressed using an XML

syntax, but other formats do exist (such as Notation3 and Turtle [34, 35]). RDF represents

knowledge by using triples, which consist of a subject, predicate, and an object (this is

known as `SPO form'). A set of triples results in a graph, where each triple is a single arc

in the graph. There is a link between RDF and rule interchange formats (such as SWRL

which is discussed in section 2.1.5), as whenever a triple is satis�ed, the corresponding rule

formula s'[p' -> o'] is also satis�ed.

A good description of RDF, taken from [33], is quoted below:

�RDF is intended for situations in which this information needs to be processed

by applications, rather than being only displayed to people. RDF provides a

common framework for expressing this information so it can be exchanged be-

tween applications without loss of meaning. Since it is a common framework,

application designers can leverage the availability of common RDF parsers and

processing tools. The ability to exchange information between di�erent ap-

plications means that the information may be made available to applications

other than those for which it was originally created.�

As shown in �gure 2.1, RDF forms a critical building block of the semantic web, given its

ability to express relationships between resources (or knowledge) which is so fundamental

to the semantic web. The reason for this is that the triples can be understood by software

agents perhaps more easily than by humans, and this for the �rst time allows for software

agents to intelligently use information found on the semantic web.

In developing Centru�ow 3.0, we wanted a means to join together multiple data sources,

and it is through RDF that we found the best possible means. Using RDF, we have a

common format to express links between data, irrespective of its source.

2.1.3 Ontology Languages

While RDF allows for the expression of relationships between resources, it does not allow

for the de�nition of classes and their related properties and instances. This is the role of

ontology languages such as RDF Schema and the web ontology language (OWL). Ontol-

ogy sits in the middle of the semantic web layer cake, and makes use of both RDF and

(optionally) XML.

RDF Schema is the simplest ontology language developed by the W3C. RDF Schema (and

all ontology languages) can be di�cult to comprehend at �rst, which is highlighted in [36]:

16

�If RDF is a way of describing data, then the RDF Schema can be considered

a domain-neutral way of describing the metadata that can then be used to

describe the data for a domain-speci�c vocabulary.�

To try to draw a comparison, this is similar in concept to what happens in relational

databases, in that the database schema is built to describe what information it can contain,

and what relationships can exist between this information. As noted in [37], �RDF Schema

de�nes classes and properties that may be used to describe classes, properties and other

resources�. Whilst RDF Schema appears to have been largely eclipsed by OWL, it is

important to highlight RDF Schema as it does provide the �rst, and most minimal, ontology

language for RDF. This can be very useful in many circumstances where a fully-�edged

OWL ontology is overkill.

There are three versions of OWL, known as OWL-Lite, OWL-DL, and OWL-Full, where

each of these versions is an extension of its predecessor, meaning that all valid OWL-Lite

ontologies are also OWL-DL ontologies, and so on. In addition, OWL is an extension to

RDF Schema. Because of this, each version o�ers an increasingly expressive language and

more functionality which in turn leads to improved machine interpretation, but increases

the potential for increased complexity and decreased decidability. In places where RDF

Schema already has functionality, OWL tends not to implement it (as it is possible to

use RDF Schema statements within an OWL ontology), but this is not always true (for

example, both languages o�er a separate means of de�ning classes, instead of OWL simply

using RDF Schemas rdfs:Class).

We use OWL-Lite as a means to describe relationships between di�erent tags, which we

can then use to infer new tags based on the tags input by users. This is discussed in more

detail in section 4.2.2.

2.1.4 SPARQL

SPARQL [38] is a recursive acronym for `SPARQL Protocol And RDF Query Language'.

SPARQL is a query language used to query RDF graphs, much in the same fashion that

SQL is used to query relational databases. SPARQL has had a rocky start to life, and is

still not yet a W3C standard for querying RDF graphs, but it is nearing this stage. It was

released as a candidate recommendation in April 2006, but then was returned to being a

working draft in October 2006 due to two unresolved issues [39]. As of June 2007 it has

returned to being a candidate recommendation. As noted in [38]:

�The SPARQL query language is based on matching graph patterns. Graph

patterns contain triple patterns. Triple patterns are like RDF triples, but with

the option of a query variables in place of RDF terms in the subject, predicate

17

or object positions. Combining triple patterns gives a basic graph pattern,

where an exact match to a graph is needed.�

SPARQL is a new addition to the semantic web layer cake, having been omitted from

earlier versions. This suggests that SPARQL is about to take on the role of being the

standard

2.1.4.1 SPARQL Query Forms

SPARQL has several query forms, unlike SQL with its SELECT query, which means the

user is provided with a greater variety of means for querying data sources and, if necessary,

transforming the results. The most analogous query in SPARQL to SQL is SPARQL's

SELECT query, which returns all variables in a result set exactly how a SQL SELECT

query returns a result set. SPARQL SELECT queries do look somewhat like SQL queries,

so they can be read by a newcomer, but are di�erent enough to be quite di�cult to write.

An example query is shown in listing 2.1, which is one of the main queries presently used

by a Centru�ow client as a result of the research undertaken in this thesis (except that the

URI is not hardcoded as in this example, but is a variable that refers to a single resource

in the visualisation).

SELECT ?property ?hasValue ?isValueOf

WHERE {

{ <http://www.centruflow.com/resource/1/2> ?property ?hasValue }

UNION

{ ?isValueOf ?property <http://www.centruflow.com/resource/1/2> }

}

Listing 2.1: An example SPARQL SELECT query used by Centru�ow to request all

information for one speci�c URI.

Another SPARQL query form is the CONSTRUCT query form, which returns a single

RDF graph based on a speci�ed graph template. As noted in [38], �The result is an RDF

graph formed by taking each query solution in the solution sequence, substituting for the

variables in the graph template, and combining the triples into a single RDF graph by set

union�. This allows for queries to be performed, and the results transformed into a suitable

graph structure prior to the client receiving the data, reducing the amount of overhead

needed by the client. An example CONSTRUCT query, from [38], is shown in listing 2.2.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>

CONSTRUCT { <http://example.org/person#Alice> vcard:FN ?name }

18

WHERE { ?x foaf:name ?name }

Listing 2.2: An example SPARQL CONSTRUCT query.

The SPARQL ASK query form allows for the caller to test if the provided query pattern has

any solutions. This is a simple query form, simply returning a boolean value to represent

whether any solutions exist. An example ASK query is shown in listing 2.3, once again

taken from [38].

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

ASK { ?x foaf:name "Alice" }

Listing 2.3: An example SPARQL ASK query asking if there is any user with a foaf:name

of "Alice".

The �nal query form available in SPARQL is the DESCRIBE query form, which returns

�a single result RDF graph containing RDF data about resources� [38]. Two examples of

DESCRIBE queries are shown below in listings 2.4 and 2.5.

DESCRIBE <http://example.org/>

Listing 2.4: The simplest SPARQL DESCRIBE query.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

DESCRIBE ?x WHERE

{ ?x foaf:mbox <mailto:alice@org> }

Listing 2.5: Another SPARQL DESCRIBE query asking for all information on a person

with the email address "alice@org".

In developing Centru�ow 3.0 as part of this thesis research, we only made use of the

SELECT query, but we believe that for future development, these additional query forms

could become incredibly useful, particularly CONSTRUCT.

2.1.4.2 SPARQL Query Functionality

SPARQL queries o�er a considerable amount of expressiveness in terms of being able to

easily retrieve desired information. SPARQL provides a large number of useful functions

to modify the structure of results, known as solution sequence modi�ers. If a SPARQL

query has more than one modi�er, then they are applied in the order shown below. Each

modi�er belongs to one of the following types:

19

Order modi�ers The order modi�er is the ORDER BY clause, and it operates in a

fashion similar to that of SQLs ORDER BY clause. The order modi�er changes the order

of results returned to a SELECT query only - it does not have any e�ect on CONSTRUCT

or DESCRIBE queries, as SELECT is the only query form to return a sequence of results.

As with SQL, it is possible to adjust the ordering to be either ascending or descending

(using ASC() and DESC() order modi�ers), as well as modify the order by more than one

variable. An example order modi�er SPARQL query is shown in listing 2.6.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name

WHERE { ?x foaf:name ?name }

ORDER BY DESC(?name)

Listing 2.6: A SPARQL query using an order modi�er.

Projection modi�ers Projection modi�ers simply retrieve a subset of the variables

returned in a query, ignoring all other variables. This is shown in listing 2.6 where only

?name is requested, despite ?x also being available.

Distinct modi�ers As with the DISTINCT operator in SQL, the distinct modi�er in

SPARQL simply eliminates duplicate results from a solution.

O�set modi�ers The o�set modi�er works in the same fashion as the SQL variety,

causing the result set to start a speci�ed number of rows after the �rst result of the result

set. The o�set modi�er will not be useful unless an order modi�er is used to make the

order of results predictable. This is shown in listing 2.7.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name

WHERE { ?x foaf:name ?name }

ORDER BY ?name

LIMIT 5

OFFSET 10

Listing 2.7: A SPARQL query using an o�set modi�er a limit modi�er and an order

modi�er.

Limit modi�ers As shown in listing 2.7 above, the limit modi�er sets an upper limit

on the number of results returned in a query.

20

2.1.4.3 SPARQL/Update

At this point in time, SPARQL is a read-only query language, that is, it does not o�er an

equivalent to the SQL INSERT, UPDATE and DELETE statements. This is set to change

in the near future with a new language extension known as SPARQL/Update designed to

support this requirement [40]. It should be noted that RDF is more commonly used to

view read-only data, so lacking these language features is not as critical as SQL lacking

this functionality.

SPARQL/Update is a language based on SPARQL that can be used to update data sources.

Two example statements (taken from [40]), are shown in listings 2.8 and 2.9.

PREFIX dc: <http://purl.org/dc/elements/1.1/>

MODIFY <http://example/bookStore>

DELETE

{ <http://example/book3> dc:title "Fundamentals of Compiler Desing" }

INSERT

{ <http://example/book3> dc:title "Fundamentals of Compiler Design" }

Listing 2.8: An example SPARQL/Update query �xing a spelling mistake.

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

DELETE

{ ?book ?p ?v }

WHERE

{ ?book dc:date ?date .

FILTER (?date < "2000-01-01T00:00:00"^^xsd:dateTime)

}

Listing 2.9: An example SPARQL/Update query deleting all books with a date before the
year 2000.

2.1.5 SWRL

To the right of the semantic web layer cake is `rules', which presently is dominated by

SWRL, or the Semantic Web Rule Language [41]. SWRL was proposed in May 2004,

and is still in the proposal stage. It is based on OWL-Lite and OWL-DL as well as some

parts of RuleML [42]. It has a rather convoluted XML syntax but an easily understood

human-readable form. The human-readable form is shown below in listing 2.10.

hasParent(?x1,?x2) ∧ hasBrother(?x2,?x3) ⇒ hasUncle(?x1,?x3)

Listing 2.10: A human readable SWRL rule.

The XML form of this rule is shown in listing 2.11.

21

<ruleml:imp>

<ruleml:_rlab ruleml:href="#example1"/>

<ruleml:_body>

<swrlx:individualPropertyAtom swrlx:property="hasParent">

<ruleml:var>x1</ruleml:var>

<ruleml:var>x2</ruleml:var>

</swrlx:individualPropertyAtom>

<swrlx:individualPropertyAtom swrlx:property="hasBrother">

<ruleml:var>x2</ruleml:var>

<ruleml:var>x3</ruleml:var>

</swrlx:individualPropertyAtom>

</ruleml:_body>

<ruleml:_head>

<swrlx:individualPropertyAtom swrlx:property="hasUncle">

<ruleml:var>x1</ruleml:var>

<ruleml:var>x3</ruleml:var>

</swrlx:individualPropertyAtom>

</ruleml:_head>

</ruleml:imp>

Listing 2.11: The XML form of the human-readable SWRL rule.

In this thesis we do not make use of SWRL, but it certainly is interesting in the longer

term as a means of inferring additional information. The fact that we can consider SWRL

at all is one of the major achievements of this thesis research, as prior to this it would

have been considerably more di�cult to make use of a rules engine, whereas SWRL almost

comes `for free' simply by including a semantic web framework in both Centru�ow client

and server software.

2.1.6 What Is The Semantic Web?

In our opinion and understanding of the semantic web, the goal of the semantic web is

simple to describe, but complex to successfully implement. We believe the semantic web

enables the intelligent and automated reuse of the masses of data that is available on our

computers and networks for our bene�t. Data is not valuable in and of itself, and it is

through the conversion to information that we as humans can actually proceed to be better

informed as to the availability of options and the consequences of our actions.

Before this is possible, the groundwork must be put into place, and that is the current

state of the semantic web. RDF and OWL are slowly becoming more stable as standards

de�nitions for the means of semantically marking up data, SPARQL is becoming the de

facto means to query such data, and more frequently we are encountering situations where,

visibly or not, applications (and this includes web applications) are using a solid semantic

web foundation to not only give themselves a `foot up', but to also be more interoperable

in the long term.

Once this groundwork is in place, the varied ideas that have been �oated by the visionaries

behind the semantic web (notably Tim Berners-Lee) become a lot more realistic. We are of

22

the belief that this is no longer a matter of `if', but `when', and perhaps most importantly,

depends now only on the uptake of the W3C standards by the large software vendors such

as Microsoft, IBM, Oracle, and SAP. This has already begun.

To be clear, the semantic web will not make websites any prettier than they are now

(thanks to the Web 2.0 emphasis on design), but it will allow them to be smarter, and

more connected. People have reserved the term `Web 3.0' for many things (including the

semantic web faction), so we will avoid confusing this any further, but su�ce to say, the

semantic web will be the next (or the next next) big thing for the Internet.

Behind the scenes of the semantic web, there is a general trend towards enabling systems

to use metadata to dynamically connect services and to syndicate new services. This will

enable smart agents to more easily communicate between systems, but what is lacking

presently is the standards that will enable this. The work on such standards will surely

happen, but as with the work so far, it is important for researchers and the W3C to not

get too far ahead of themselves.

2.1.7 Open and Closed-World Assumptions

The concept of open and closed worlds is based in the domain of logic: can we assume

that by not knowing something, that it is true (or at least not false), or should it always

de�nitely be false? The closed world assumption is the presumption that what is not

currently known to be true must be false, whereas the open world assumption assumes

that if something can not be proven to be true, then it does not automatically become

false. In other words, knowledge that is unknown (i.e. not explicitly stated or that can

not be inferred) is declared to be unknown, rather than false (i.e. wrong). Finally, the

inverse of the closed world assumption is the concept of `negation as failure', which states

that every predicate that can not be proven to be false must be true.

Some examples include:

• Databases are open world, as they can not give de�nitive false answers should infor-

mation not be present in the database.

• Similarly, RDF and OWL are also open world as it is not possible to include every

bit of information in a RDF graph, and as such, tuples not explicitly de�ned in an

ontology are assumed to represent a fact that is unknown, rather than false.

Therefore, we can say that closed-world assumptions make sense when we know that the

information we have is complete (obviously in a small domain such as an employee database

or product catalogue). The open world assumption makes more sense when dealing with

incomplete datasets, such as those found in big databases and in the semantic web. For the

23

purposes of this research, we must assume then that our data belongs to an open world,

and as such we can never be certain about a negation statement as we, in most cases, will

not have a full set of data.

2.2 Trust Systems

Trust systems have been researched for a long time, with an array of approaches being

taken by researchers. Early on in the project scoping phase of this masters project, it was

identi�ed that a trust system would need to be developed to enable Centru�ow to e�ectively

deal with user taggings, such that poor tags could be �ltered out and popular tags `�oat'

to the top of any tag suggestions. Not only was this important in terms of displaying

useful tags to the user, it was important also as a means of improving the quality of our

resource distance algorithm. To understand our options, we reviewed a large amount of

prior research, and summarise some of the more valuable �ndings in the remainder of this

section.

In terms of the semantic web, trust is shown to be incredibly important by its frequent

placement at the top of any 'layer cake' diagram, such as that shown earlier in �gure

2.1. Despite this, the issue of trust on the semantic web has yet to have been thoroughly

researched, with only minor progress as of the time of this thesis [43]. In one interesting

discussion, [44] discusses how the semantic web could become more trusted without the

�existence of a complex public key infrastructure�. Outside of the semantic web, trust

systems have been researched for a considerably longer time, and it is these systems which

we brie�y review now.

In [45], Matthew et al decide to not use a subjective approach, which would require users

to be responsible for ranking other users. Instead, they rely on each user creating a `web

of trust', where each user only inputs trust details about a small number of people closest

to them. Instead of calculating a single trust value for each user, they suggest using these

trust values to create a personalised set of trusts allocated to each user. In this way, a

users trust value is in fact a set of trust values (which presumably can then be averaged

out to �nd a single value).

In [46, 47], Golbeck et al extend the FOAF1 RDF schema to include the ability for users

to specify the level of trust that a person holds in other people. They then develop

algorithms that can infer the trust relationships between people and the trust ranking for

individuals. This allows them to rank email based on the trust ranking of the sender, and

their relationship to the recipient.

The term `web of trust' originated in the IT industry with the introduction of `Pretty Good

Privacy' (PGP), a computer program that allows for people to encrypt and decrypt their

1FOAF, or Friend Of A Friend, is a means of describing your friends and their relationships to you
using RDF. People commonly talk about having a FOAF �le on their website, for example.

24

�les/communications, and also authenticate themselves [48]. PGP is based on public-key

encryption technology. PGP allowed for people to encrypt and sign their emails prior to

submission, and required the email recipient to have the senders public key to decrypt the

message. This approach was not perfect [49], but it did begin to place emphasis on the

issue of trust. Unlike the papers discussed above, PGP has no choice but to be based on

people manually maintaining their `keyring' of trusted friends, as realistically this is the

only approach applicable in this situation.

In these papers we feel that there is an inherent weakness in the system, in that users are

forced to rate their belief of other peoples trustworthiness, which is always open for abuse.

This could potentially be compounded in corporate environments where factors such as

hierarchies and o�ce politics play a greater role in interpersonal relationships. This issue

will be especially prevalent in the bootstrapping phase of any trust system, where the

number of user trust rankings is relatively small, providing more emphasis towards the

malicious trust rankings.

2.3 Semantic Similarity

Semantic similarity is the concept of being able to measure the distance between two

terms based on a metric which determines the likeness/similarity of the terms. Being able

to easily and e�ciently calculate the similarity of two objects has long been a topic of

research. Modules exist in many languages to enable easy reuse of these metrics [50], and

there are web-based systems that are available to perform these calculations [51].

What we found when researching semantic similarity is that the most commonly used

approach is to use tools such as WordNet and GeneOntology [52, 53]. With these tools,

it is possible to calculate the shortest distance between two words by performing edge

counting [54, 55]. This works by counting the number of edges that exist in the shortest

path between two words in a hierarchical taxonomy. This count of edges is often referred to

as the `distance' between the terms, but is prone to errors such as synonyms and homonyms

confusing the algorithm.

Whilst semantic similarity is incredibly useful in many circumstances, it quickly become

apparent that it would not be feasible to use research in this area to help our cause. This

is because, from the perspective of user tagging, we are not interested in the single tag-

tag relationships and their respective distances, but rather the degree of similarity of one

resources set of tags with another resources set of tags. In e�ect, we are interested in the

degree of overlap between the tag sets of two resources. This was our goal in this thesis, as

it allows us to calculate the similarity between two resources based on the tags they have

each received.

25

2.4 Representation State Transfer (REST)

Representational State Transfer (REST) is the name given by Roy Fielding in his PhD

thesis [12] to describe an architectural style of networked systems. Roy Fieldings comments

on REST are:

�Representational State Transfer is intended to evoke an image of how a well-

designed Web application behaves: a network of web pages (a virtual state-

machine), where the user progresses through an application by selecting links

(state transitions), resulting in the next page (representing the next state of

the application) being transferred to the user and rendered for their use.�

As mentioned, REST is an architectural style, and as such does not have a standard, in a

similar fashion to the client/server architectural style. Despite not being a standard, REST

does indeed use standards, including HTTP, URL's, and XML/HTML. In fact, many web

services that have existed on the web have been REST-based without being aware of this

fact - in this way, REST is a series of `best-practices' that many developers have for a

long time known about and used. In addition to this, there are projects attempting to

standardise how REST works in particular programming languages, for example the Java

Community Process (JCP) is presently working on JSR-311 which is titled `JAX-RS: The

Java API for RESTful Web Services'. This Java Speci�cation Request (JSR) also has a

reference implementation called Jersey [56].

REST can be considered to be very lightweight and more readily implementable than other

web service architectures such as SOAP. This makes REST interesting to us as it o�ers a

simple means to expose the tags database (which as mentioned in section 4.2.1 contains a

considerable amount of useful information).

This trend towards more lightweight frameworks has increased in recent years. This can

be put down to the increasingly complex and heavyweight frameworks that are being

developed. Examples of such frameworks include the previously mentioned SOAP, the

Java enterprise edition (Java EE) and enterprise Java beans (EJB) frameworks, the Open

Management Groups CORBA, among many other complex frameworks. From a developers

perspective, lightweight approaches allow for more rapid development with less hurdles to

jump.

2.5 Tagging Systems

2.5.1 Tagging

Tagging allows for users to label a resource with a short textual `tag'. Commonly, a tag is a

single word, or a few words joined to remove any spaces, alternatively using the underscore

26

character or `camel case'2. Any discrete chunk of information can be tagged. Tagging

in this (digital) sense has been around since at least 1988, where it was used in Lotus

Magellan to allow annotations of documents on a persons hard drive [57]. This made it

easier for users to subsequently �nd their documents, but it lacked the social aspect that

tagging has now.

Tagging really exploded along with the web 2.0 movement. Two examples of web 2.0

tagging include Del.icio.us and Flickr [58, 59]. Del.icio.us is an online bookmarking site

for websites, allowing users to tag their bookmarks for easy retrieval, whereas Flickr is an

online picture sharing site where people may tag pictures to make them part of a group,

allowing other people to browse using their interested tags. The bene�ts of tagging in these

instances include:

• Tags can be used as a means of bookmarking information for later retrieval.

• Communities can form around a set of tags.

• `Tag clouds' can be generated through the linking of all user tags. This allows for

people to browse from one tag to the next, discovering potentially useful information.

Tagging is explored in much more depth in subsequent chapters, as it forms the fundamental

basis of this thesis.

2.5.2 Folksonomy

�Part of the allure of classifying things by assigning tags to them is that the

user can give free reign to sloppiness. There is no authority - human or com-

putational - passing judgment on the appropriateness or validity of tags, be-

cause tags have to make sense �rst and foremost to the individual who assigns

and uses them. And yet, the whole point of distributed classi�cation systems

(DCSs) such as Del.icio.us and Flickr is that the aggregation of inherently pri-

vate goods (tags and what they describe) has public value: When people use

the same tag to point to di�erent resources they are organizing knowledge in a

manner, commonly referred to as a folksonomy, that makes sense to them and

to others like them. In other words, the tag is the object that brings a resource

and a social group together via the shared meaning of a word.�

- Ulises Ali Mejías [60]

2Camel case is the compounding of words with each word having its �rst letter capitalised. It is very
common in programming as it enables for easier reading of code.

27

The term folksonomy comes from the merging of `folks' and `taxonomy', and is commonly

attributed to Thomas Vander Wal [57]. Folksonomy is the concept otherwise known as

socialised tagging, where individuals are free to tag resources in whatever means they see

�t - there is no rigid taxonomy which is required to be used. Folksonomies become popular

with the advent of the web 2.0 movement, as it enabled users to far more easily and rapidly

add tags. Both Del.icio.us and Flickr are examples of folksonomies, as they both enable

users to tag information, and as more tagging data is added, it makes the tagged data

more easy to search, discover and navigate over time.

Applications built around folksonomies often allow users to explore other users tags, to

allow for people to understand the interests of these users. This is very useful when there

is no trust model in place, as when a trust model exists, knowing who has created tags

can be an avenue for abuse. In the case of Centru�ow and this thesis, we had to carefully

weigh up the bene�ts of exposing the people behind the tags versus the viability of our

trust model.

Despite the bene�ts of folksonomies, they are not the solution to the meta-classi�cation

problem for everyone, but they certainly can help in a number of circumstances. There

are a number of areas where folksonomies are criticised [61], including:

• Their lack of control for synonyms and homonyms [62]. We propose a partial solution

to this problem later in section 4.2.3.

• Users being uninformed in how best to apply tags (i.e. through lack of a set of

`best practices'). This includes issues such as the use of lower case and upper case

characters, singular versus plural terms, and how to group multiple words (i.e. camel

case or underscores).

• Lack of any spell checking prevents useful but misspelt tags from being found again.

• Personal tags that have no value to other users. These are known as subjective

tags, and are discussed in more detail in section 2.5.6. In addition, we developed

a prototypical user type that exhibits this behaviour in section 3.2.1; we call them

`bookmarkers'.

A folksonomy that does not have solutions to these problems is not actively engaging in the

process of folksonomy minimisation, and as such the value of the folksonomy to all users

decreases, as more `noise' enters users search results. We tried our best to minimise these

problems, and others, such that we could claim to be actively minimising our folksonomy.

This is detailed in later sections.

28

Figure 2.2: The `MySQLicious' tag database schema.

Figure 2.3: The `Scuttle' tag database schema.

2.5.3 Tagging Architectures

With the advent of the `Web 2.0' movement, tagging exploded onto a number of well-

established websites, leading to tagging becoming available to a large number of web

users. Unfortunately, whilst the tags were indeed useful for users as a means of bookmark-

ing and aggregating information, each tagging system was a proprietary implementation.

This meant that tags were unable to transition between di�erent systems (such as using

Del.icio.us tags in Flickr). This means that no single tagging folksonomy exists - each

website is e�ectively a tagging island. As of the time this thesis was being written, this

was still sadly the case. There is however growing interest in de�ning a common means

for sharing tag data. This is the subject of this section.

2.5.3.1 Early and Most Common Tag Database Schemas

Much discussion exists on the Internet regarding proper database structures to enable

tagging functions [63, 64]. The three most common database schemas are shown in �gures

2.2, 2.3 and 2.4 (all taken from [63]). What these �gures show are three of the more

common tag database schemas as of 2005.

Figure 2.4: The `Toxi' tag database schema.

29

The database schema suggestions put forth by these websites vary in query complexity,

memory requirements, and degree of normalisation. We did not particularly agree with

any of the solutions o�ered, as they o�ered more functionality than was necessary in our

situation, and this extra functionality would have the cost of extra database query time.

We did however take the discussions into account when we were developing our own tags

database schema in section 4.2.1. We now discuss the three main schemas outlined.

The �rst schema, shown in �gure 2.2, is known as the MySQLicious schema as it is the

schema used by MySQLicious [65] to import Del.icio.us bookmarks into a MySQL database.

Our main issue with this database schema is that it is fully denormalised, requiring all tags

that a user inputs about a particular URL to all be in one `tags' �eld. This means that

there is increased processing requirements as the tags �eld will need to be tokenised in

order to deal with individual tags. In addition, the number of tags able to be stored in

the tags �eld is constrained to either the size of a varchar (256 bytes), or is hobbled by

the overhead of a text data type. Despite this, the MySQLicious database schema is the

closest to our �nal design, with the exception that each tagging only contains one tag - in

other words the users input is tokenised once prior to submitting to the database. In this

way, we are substituting memory requirements for processing requirements.

The second schema, known as the Scuttle tag database schema (�gure 2.3) uses two tables

to organise its tags. The `scCategories' table is used to hold the tags, with all the other

metadata contained in the `scBookmarks' table. This is a far more normalised database

schema compared to the MySQLicious schema, and becomes increasingly more valuable as

the amount of metadata recorded increases. Another bene�t is that this schema does not

impose any kind of limit on the number of tags that can be applied to a resource. The

downside to this schema is that it requires a join for any useful query to be performed. We

would consider moving to this schema should our schema begin to gain more metadata,

and once tests regarding the e�ciency of joins were performed.

The Toxi schema, shown in �gure 2.4, is simply a more normalised version of the Scuttle

schema, trading processing requirements for more e�cient memory use.

2.5.3.2 Ontologies

The next step after storing tag data is to be able to map the tagging information to

resources, which is where projects such as the TagCommons project and the Tag Ontology

project come in [66?]. These projects are the leading projects in the area of sharing tag

data over multiple web applications. They both attempt to de�ne a common ontology to

share tagging information between systems, and in the case of the TagCommons project,

investigate the wider needs of such a solution. The goal is to mitigate the issue of di�ering

database schemas discussed above by providing an abstraction layer using ontologies. What

30

this means is that these projects are trying to come up with ways for tags to be used between

tagging systems, linked together over the Internet.

Unfortunately, both projects have not seen updates in at least six months. For this reason

unfortunately neither project was pursued any further, and instead we de�ned our own,

simpler architecture. The downside to this is that the Centru�ow approach also lacks the

ability to connect with external tagging systems. We hope that in the future such projects

can successfully develop ontologies to allow for the easy interchange of tagging metadata.

2.5.4 Tagging User Interface

Tagging is a very social mechanism, and is something that should be simple and fast

to perform: there should be minimal hurdles for the user. Because tagging is generally

used on the Internet3, it made sense to try and emulate the user experience of the web

within Centru�ow. To fully understand how to approach a tagging user interface, we

therefore turned to Del.icio.us as a source of inspiration. This section discusses the main

user interface components of Del.icio.us. The results of this research can be seen in section

4.4.6, where we implement a solution.

As mentioned earlier, Del.icio.us is a web-based website bookmarking tool. It allows for

people to easily add new website URLs by categorising them with zero or more tags. By

tagging a URL, the user aggregates their bookmarks into a number of subcategories. These

subcategories can be browsed by both the user and any other user. Del.icio.us uses all user

tags to create related tag lists, allowing users to �nd other potentially interesting URLs by

browsing these suggested tags. Del.icio.us requires users to sign up for a free account prior

to allowing them to store any information, but any user can browse Del.icio.us. Finally,

Del.icio.us allows users to mark a bookmark as private, meaning that no other users can

see the URL that the user has bookmarked.

2.5.4.1 Adding a Bookmark

Figure 2.5 shows the popup window that allows users to add bookmarks to their pro�le.

The most interesting aspect from a Centru�ow perspective is the `recommended tags'

and `popular tags' list at the bottom. Clicking on any of these tags automatically adds

them to the `tags' text �eld, allowing for users to easily copy and use other users tags

for this particular URL. The primary advantage behind this is the ability to keep the

tagging folksonomy small, which as mentioned earlier helps to increase the quality of the

folksonomy when searched or browsed by users. In particular, this helps with the resource

distance calculations (see section 3.3).

3Despite this statement, tagging is beginning to make inroads into the desktop, see for example Microsoft
Windows Vista and Microsoft O�ce 2007. Also, Lotus Magellan, mentioned earlier, was a DOS-based
application.

31

Figure 2.5: The Del.icio.us `add bookmark' screen.

2.5.4.2 Browsing Bookmarks

Having enabled users to input their bookmarks and to categorise them into any number of

categories using tags, the next obvious step is to provide the user with a means to easily

�nd their bookmarks at a later date. This functionality is shown in �gures 2.6 and 2.7.

This approach di�ers from our approach in this thesis, as we do not want to simply use

a list to represent tags when we have a powerful visualisation engine available to us. For

this reason, our approach was to instead visualise the tags as a separate `data layer' that

a user may switch on to see the tags as related to the presently visible resources. This is

described in more detail in section 4.4.6.4.

2.5.4.3 Inferring Tag Relationships

Based on the combinations of tags that users input into Del.icio.us, Del.icio.us is able

to infer relationships between tags, as shown in �gure 2.8. This is a useful function of

Del.icio.us, as it provides a means to discover other relevant web pages related to a par-

ticular topic. This is where the value of tag suggestion comes into play: the smaller the

number of unique tags within the tag folksonomy, the tighter the inferred relationships

between tags can be.

2.5.4.4 Browsing Other Peoples Bookmarks

It is possible to look at anyones bookmarks with Del.icio.us. This has considerable use in

the context of social networking (including within Centru�ow), but as discussed, we actively

32

Figure 2.6: The main Del.icio.us page

Figure 2.7: Viewing tags as a tag cloud.

33

Figure 2.8: Del.icio.us can infer relationships between tags based on peoples taggings.

discouraged introducing any form of personality into our system for fear of abuse of the

trust system. This meant that users were only able to review information based on the

relationships inferred by Centru�ow, and not based on the people behind the information.

We felt that this was both important and novel, but once again, this will be discussed in

more detail later on.

2.5.4.5 Tag Recommendation

Recommending tags to the user helps in reducing the size of the folksonomy, as users are

carefully guided to use particular tags. There are two approaches that must be pursued to

reach this goal, which are:

Popular tag suggestion When a user selects a resource that they wish to tag, they

should ideally be presented with a list of other tags that have been applied to this particular

resource already. This encourages the user to reuse tags, rather than create their own. The

user is however not forced to use these suggestions if they do not wish. This means that

the user should feel empowered to tag as they wish.

The implementation of this approach is rather simple, as it simply equates to a SQL query

against the tags database (see section 4.2.1 for more information).

34

On-the-�y tag suggestion As the user types tags into the text area, they would ideally

be presented with tags that match (i.e. begin with) the text that the user has already typed.

This would rank the tags so that the more popular tags are shown at the top of the list.

Once again implementing this feature is essentially an SQL query, but the user interface

for this is much more di�cult.

2.5.5 Inferred Relationships

Over and above the �rst-order bene�ts of tagging such as ease of bookmarking, collab-

oration and aggregation of information, a second-order bene�t exists that we wanted to

expose in Centru�ow. This bene�t has to do with the linking and recommending of infor-

mation based on the co-occurrence of tags in the tag sets belonging to each resource. This

is partially adopted by Del.icio.us (as shown in �gure 2.8), in that a user may �nd addi-

tional interesting information by browsing the related tags, as calculated by the Del.icio.us

algorithms.

Our intention was to take this one step further, by visually showing inferred relationships

between resources as part of our visualisation (for clarity we di�erentiate inferred edges

with dashed lines). This would allow people to directly explore to other areas of information

where an explicit datasource relationship may not exist, but where an implicit relationship

may actually exist. This is the focus of our resource distance algorithm, detailed in far

more depth in section 3.3.

2.5.6 Public and Private Tags

A very early consideration when developing this system was whether all taggings in Cen-

tru�ow would be public, or whether a user could choose to mark some of their tags as

private. Initially we dismissed this need to di�erentiate tags as not necessary due to the

increased development complexity, but in hindsight, and after reading considerable litera-

ture, we deemed that such a piece of functionality would be incredibly useful for a number

of reasons, including:

• The folksonomy of public tags can be minimised to only those tags that people deem

most valuable to share.

• The `bookmarker' user type (discussed later in section 3.2.1) would not be unfairly

penalised for creating what others deemed to be poor quality tags.

• The amount of computation time required for calculating user trust and resource

distance will decrease, as these calculations would only need to be run on the public

tags.

35

• Personal tags will not interfere with the resource distance algorithm, for example, if

many people tag di�erent resources as `mine', then inferred relationships would be

created where no such inference should be made.

Once these bene�ts were identi�ed, we made the necessary modi�cations to our plan to

incorporate the concept of public and private tags. Ideally, personal tags would be the

only tags that users would mark as private, with subjective tags (e.g. `cool') and factual

tags (e.g. `tutorial') being marked as public, so that they may be seen and used by others.

In [67, 68], folksonomies are analysed using three classi�cation categories (personal, factual,

and subjective). They claim that

�Users have their own perspective when describing web resources. They may

describe a resource by its type, discipline, content or they may even add new

contextual dimensions to it to visualize its application or relation to other

neighboring domains.�

In [67], they extend the work done previously by adding some additional heuristics, which

include:

• Filtering out all tags that are misspelt.

• Counting the number of tag occurrences to indicate the agreed meaning of it (which

is what we do). In addition to this, they suggest that lower tag occurrence indicates

personal use.

� As a subset of this point, they say that �compound tags and vague abbreviations

are considered personal, since no one knows what they mean, or why they were

formed in this way�. Because of this, the tag counts of these tags will be at a

minimum, meaning that they will be made private automatically. Of course,

one point not mentioned in this paper is that should other people begin to use

this tag, then the tag should become public.

From the analysis of a very large folksonomy retrieved from Del.icio.us, their �ndings were

that 34% of all tags were personal, 62% were factual, and 4% were subjective. What this

suggests is that there will be a large amount of potential `noise' in any inferred relationships

should personal tags be allowed to in�uence the resource distance calculations. For this

reason we included the concept of private tags in our tagging system.

36

2.6 Re�ections

In conducting this background research, we read a considerable number of papers in the

areas discussed above. We also joined a number of communities involved in particular

research areas, so that we may directly ask the leaders of these projects particular ques-

tions. Whilst the research is summarised relatively succinctly above, there is a considerable

amount of research underway in these areas. We can only report on our �ndings at the

current time (early to mid 2007), with some understanding of what the future will hold.

Looking at older papers we note that they were trapped by the same reality, meaning

that they now are outdated and incorrect, as they based their approaches on the likely

standards of the time. This is particularly the case in relation to languages used to query

RDF data sources. When reviewing these papers, it was important for us to separate the

concept from any implementation speci�ed.

Despite the previous statement (and we are tempting Murphy's Law here), we identi�ed

that standards are �nally starting to fall into place (such as RDF, OWL, SPARQL, and

SWRL). The only gap where no standard (and only minimal discussion) exists is in the

area of updating RDF stores, which was covered earlier in section 2.1.4. This is de�nitely a

critical issue for Centru�ow, as it is always a goal to o�er to the user a means to update a

subset of the data. Whilst this is important for Centru�ow, it does fortunately fall outside

the scope of this thesis.

Another issue is in �nding software libraries that are still actively being developed: a large

amount of useful code exists for embedding into Centru�ow, but a lot of it is e�ectively

`abandonware'. Additionally, some of the more interesting technologies are in licenses not

viable for use in Centru�ow, such as the GPL. By the end of this research however we did

�nd a suitable collection of libraries to aid us during development, these included Jena,

Joseki, Jetty, D2R Server and D2RQ, all of which are discussed later.

37

38

Chapter 3

Algorithm Theory And

Implementation

In this chapter, we develop a set of algorithms that allow us to calculate the relationship

between resources in our visualisation. This calculation is not based on explicit links

between these resources, but rather based only on the tag metadata provided by the user.

In addition to this, we develop algorithms to calculate the trustworthiness of a user based

on their taggings. Finally, we introduce the novel concept of untaggings, whereby users

can disagree with a tag, with such a disagreement being recorded and used in subsequent

calculations.

Based on our background research, we believe we are introducing a novel approach for

these algorithms based around the concept of the inherent value in the co-occurrence of

taggings between resource pairs in an RDF graph.

3.1 Introduction

To allow for the requirements outlined in chapter 1.4, we identi�ed two core algorithms that

would need to be developed. These algorithms were what would ultimately be responsible

for the calculation of the inferred relationship between any two resources. In this chapter

we examine the requirements for each of these algorithms, and then proceed to formally

de�ne them.

3.2 User Trust

Centru�ow users have the ability to tag resources, but not all tags are created equal:

many are unsuited to the resource for which they have been applied. There needs to be a

39

mechanism that can identify the less valuable tags, and to �lter them out. This helps to

minimise the size of the tags folksonomy, as users will not be given these tags as suggestions.

On the other hand, when it is apparent that a tag is largely popular with regard to a single

resource, we should multiply the tag to give it added strength, and to once again work

towards the minimisation of a tags folksonomy. It is the user trust algorithm, the topic of

this section, that attempts to achieve this goal.

In this thesis we have approached this problem in a di�erent fashion than those discussed

in section 2.2, by instead requesting that users rate the information presented to them

without the knowledge of which other users have also been involved with it, either in

creating, agreeing, or disagreeing with it. We do this as we believe humans can not always

be truthful about their thoughts on another person, particularly when o�ce politics and

personalities come into play. We therefore choose to work around this issue by separating

the personalities from the information being presented on screen. With users only able to

rate information based on its quality, we can deduce which users are more trustworthy than

others based on how they dealt with this information. In e�ect, we are simply reversing

the direction of traditional user trust systems, whilst still ensuring users receive the most

useful information with as little `noise' as possible.

3.2.1 User Pro�les

When using a program that allows for users to tag and untag information, it is important

to consider the stereotypical types of users that could exist within a company, and to

ensure that any trust algorithm can deal with the e�ect of these people. To create our

user trust algorithm, we must take into consideration all of the user pro�les and identify

means through which we can mitigate any negative e�ects to user trust values. We will

tackle this issue for each prototypical user below.

3.2.1.1 The Guru

The guru is someone in a company that has expert knowledge which may not be widely

known by other users. Because of this, the guru is in the position of applying tags that

may not necessarily be understood by other users, and at the same time, may �nd the tags

applied by some people to be incorrect due to his advanced understanding. Other users,

not understanding the tags applied by the guru, and not knowing that they were applied

by a guru, will either choose to ignore or untag the tag. This leaves the guru in a bad

position, as he can not possibly get a good trust ranking if users do not understand his tags.

If his trust does not increase, then he is likely to �nd his tags �ltered out from being used

in relevancy calculations, meaning that overall the system does not appear to be learning

from the guru. This could demotivate the guru from inputting further information, and

this of course is to the detriment of all users. In summary, the guru tends to apply a lot of

40

taggings that may or may not be agreed with, and occasionally untags taggings that are

not accurate in his opinion.

To help the guru receive the trust value that he deserves, we can either encourage new

and unique taggings to be applied, or instead focus on supporting users who engage in

the critical process of untagging. Realistically there is only one option that can be taken,

and that is the second option, as encouraging users to create new and unique tags will

simply lead to an explosion in the size of the folksonomy, and the subsequent relatedness

calculations becoming largely worthless. This is one of the main reasons why we wish

to restrict the size of a folksonomy (and why the Centru�ow application provides tag

suggestions to users).

Therefore we can identify the fact that gurus will tend to receive agreement from other

users for their taggings and untaggings in the long term. This suggests that recording

the time a user performs a tagging may be useful, as we may then delay the use of such

taggings in relatedness calculations until such a time that there has been the ability for

people to see these taggings, and agree or disagree with them. Additionally, to reward

gurus, we should ensure that our trust algorithm pays attention to untagging.

3.2.1.2 The Hypercritical

The hypercritical is a user who �nds fault with most information in a system, and therefore

spends the vast majority of his time untagging information. Because the hypercritical �nds

fault in most tags, he ends up applying his own tags, and so in this way the hypercritical

resembles the guru. Because the hypercritical does not put in many tags that other people

agree with, his tags largely languish as ignored by users, or more accordingly, they are likely

to be untagged by other users. In summary, the hypercritical applies many untaggings,

and his taggings are more often than not untagged or simply not agreed with.

Because of the note above regarding rewarding gurus based on their untaggings, we have a

situation where hypercritical users can abuse this fact, to arti�cially in�ate their own trust

value. To negate this abuse, we can identify the fact that hypercritical users tend to create

a vast number more untaggings than they would taggings, and that their untaggings and

taggings would likely have a small amount of agreement from other users. This di�ers from

a guru in that they would likely have a relatively even number of taggings and untaggings,

and also would more likely have a larger number of people agreeing with their untaggings

and taggings.

3.2.1.3 The Consensus Seeker

The consensus seeker is someone who tries to reinforce already created taggings, by simply

applying taggings that already exist within the system. This means that the consensus

41

seeker very rarely creates new taggings. This user therefore does not bother to apply

untaggings very frequently, as he does not have enough information to know which tags

are `popular to untag'. He may however untag whenever a tag is obviously incorrect.

The consensus seeker is a largely `untapped' resource for knowledge sharing within an

organisation, and somehow needs to be motivated to share any knowledge he may have

by applying appropriate taggings. The consensus seeker is not a negative in�uence on any

trust or relatedness calculations by any means, so we do not need to negate their in�uence.

3.2.1.4 The Bookmarker

The bookmarker is a person who does not care about the social aspect of tagging, and

instead simply uses tags to bookmark and easily �nd information that is pertinent to him.

For this reason, the bookmarker creates tags that may not make sense to anyone else -

they are comprised of cryptic alphanumeric combinations and shortened words. Because

the bookmarker does not care for any social aspects of tagging, he never tags or untags

other tags in the system. However, because other users can see the bookmarkers tags, and

they make no sense to anyone but the bookmarker, users are likely to untag the tags.

The bookmarker is perhaps the most special case, and as discussed in section 2.5.6, re-

ally requires the concept of private tags. This is important for bookmarkers when their

tags clearly do not, and never will, allow for increased knowledge within the companies

knowledge domain.

3.2.1.5 The Inactive

The inactive is a person who does not choose to partake in the tagging that Centru�ow

supports. An inactive user that does not contribute anything will not even be considered

as part of any relevancy calculations, so this user pro�le is of no concern.

3.2.1.6 The Common User

The common user is simply the user that uses tagging in the intended way, that is, they

seek to either create useful `bookmarks' for themselves and their coworkers or they wish

to improve the companies shared knowledge. In either case, they wish to tag with under-

standable tags. The common user has no alternative motive to undermine the system and

arti�cially improve their trust value. It is hoped that most users will fall into this category.

Users in this category simply need to be rewarded when they interact with the tagging

system, and particularly when they reuse tags already in the system (i.e. when they are

42

part of the consensus rather than creating their own tags) and when they untag other tags.

Of course, they should not be harshly treated for creating new tags at all, but neither can

we assume that they are more trustworthy simply by inputting new tags.

3.2.2 User Pro�le Findings

Based on these user pro�les, we have identi�ed some useful criteria that can be used in

de�ning our user trust algorithm. This is shown in table 3.1. Based on our prototypical

users, the two most valuable �ndings were:

1. Untagging should be valued more so than tagging, as it is more of a `critical review'

process than tagging is.

2. We should expect that a user that has created a lot of untaggings to also tend to

agree with other taggings, and not simply creating their own taggings (otherwise

they are likely a hypercritical).

With these key �ndings, as well as the prototypical user pro�les developed here, we can

now proceed to implement our user trust algorithm.

3.2.3 Algorithm Implementation

The input to our algorithm is the `raw tags' database (discussed in section 4.2.1), where

each row is a `tagging', consisting of a unique combination of a resource (a URI), a user ID,

and a tag, as well as other useful metadata. In the case of our user trust algorithm, one of

these metadata values is particularly useful, that being the timestamp in which the tagging

or untagging was actually applied. In implementing the concept of tags, we treated each

tag as an OWL class, as discussed later in section 4.2.2. This approach is based on Peter

Mika's paper [69], which de�nes actors (users), concepts (tags), and objects (resources) as

a tripartite graph with hyperedges.

Formally, let R, T, U and D be disjoint sets. R is the set of all resources, T is the set of all

tags, U is the set of all users, and D is the set of all timestamps for which a tagging occurs.

This is of course an in�nite number of values, but we are bound by limited memory and

space issues in implementation, so by default we treat this as �nite, where timestamps are

no earlier than January 1st, 1970 and in fact only exist on days for which a tagging has

been applied.

We de�ne the term taggings to represent the set R× T ×U ×D. A tagging is a single tag

(t ∈ T) applied by a single user (u ∈ U) belonging to a single resource (r ∈ R) applied with

43

Q
u
al
it
y
T
ag
s

T
ag
s
O
ft
en

U
n
ta
gs

O
ft
en

T
ag
s
A
gr
ee
d
W
it
h

T
ag
s
D
is
ag
re
ed

W
it
h

G
u
ru

Y
es

Y
es

Y
es

U
n
ce
rt
ai
n

M
o
d
er
at
el
y

H
y
p
er
cr
it
ic
al

N
o

Y
es

Y
es

N
o

In
fr
eq
u
en
tl
y

C
on
se
n
su
s
S
ee
ke
r

Y
es

U
n
ce
rt
ai
n

N
o

Y
es

Y
es

B
o
ok
m
ar
ke
r

N
o
(i
f
p
u
b
li
c)

U
n
ce
rt
ai
n

N
o

N
o
(i
f
p
u
b
li
c)

N
o

In
ac
ti
ve

U
n
ce
rt
ai
n

N
o

N
o

N
/A

N
/A

C
om

m
on

U
se
r

Y
es

U
n
ce
rt
ai
n

U
n
ce
rt
ai
n

Y
es

Y
es

Table 3.1: Summary of prototypical users.

44

Figure 3.1: An example resource with the tags that belong to it (as well as the associated
users and the timestamps at which they were applied).

a particular timestamp (d ∈ D). A tagging is unique. Figure 3.1 shows a single resource

with all the taggings that are associated with it. We use this venn diagram metaphor

throughout this chapter to more clearly explain the purpose of our mathematics. Our goal

is to calculate a value between zero and one for each user who has applied at least one

tagging. A trust of zero represents a completely untrustworthy user, whereas a trust of

one represents a completely trustworthy person.

We de�ne the term untaggings to represent a subset of R × T × U × D. An untagging is

a single untag (ut ∈ T) applied by a single user (u ∈ U) belonging to a single resource

(r ∈ R) applied with a particular timestamp (d ∈ D). Additionally, the set of untaggings

belongs to the subset of all taggings, as an untag can only be applied against an existing

tag (t ∈ T).

The complete user trust algorithm pulls together two equations which are de�ned below,

and it uses di�erent weightings to emphasise/deemphasise the output from these equations.

The actual values of α and β will be determined later, once testing has been undertaken,

and so for now α and β are de�ned to be equal to 0.5.

trust(u) : U → [0, 1]

α, β ∈ [0, 1]

α + β = 1

trust(u) = α × normalisedUserConsensus(u) + β × normalisedTaggingActivity(u)

With this function de�ned, we now delve into the explanation and development of nor-

malisedUserConsensus and normalisedTaggingActivity.

45

3.2.3.1 User Consensus

The user consensus function tackles the question of how often a user is part of the overall

consensus, i.e. how often does the user agree with the popular tags and not have their

tags untagged by other users. We approach this problem by �rstly creating some useful

sub-functions prior to creating the actual user consensus function.

Tag agreement is calculated for each user, and is the sum of the number of instances where

people have applied the same tag as the user on the same resource. To calculate tag

agreement we must iterate over all tags that a user has applied, and for each tag, collect

all other equivalent tags that exist for the same resource. The result is therefore a sum of

all such `equivalent taggings' (i.e. where only the user or timestamp di�ers). This number

represents the number of people who have `agreed with the user'1.

taggingAgreement : R × T × U × D → N

taggingAgreement(r, t, u, d) =
∣∣{u′ | ∃u′∈U∧u′ 6=u ∃d′∈D : (r, t, u′, d′) ∈ Taggings

}∣∣
tagAgreement : U → N

tagAgreement(u) =
∑

∃r∈R ∃t∈T ∃d∈D : (r,t,u,d)∈Taggings

taggingAgreement(r, t, u, d)

In summary, tagAgreement(u) is the number of people who have agreed with user u by

tagging a resource that user u has also tagged, with a tag that user u has used. taggin-

gAgreement(r,t,u,d) is the number of people who have applied the same tag t to the same

resource r.

Dealing with tag disagreement is equivalent to the above two functions, replacing the

Taggings set with the Untaggings set in all instances. We will therefore not formally

de�ne the tagDisagreement(u) and tagDisagreement(r,t,u,d) functions. In summary, the

tagDisagreement(u) function is the number of people who have disagreed with this user

by applying an untag to a tag on a resource that user u has created or agreed with.

TaggingDisagreement(r,t,u,d) is the number of people who have applied the same untag t

to the same resource r.

We now proceed to de�ne the normalisedUserConsensus function, one of the two functions

used to determine a users trust value. The user consensus function calculates how good

the user is at agreeing with other users (or being agreed with), versus how often they are

1Note that this is despite the fact that the user may not have been the tag originator and in reality
other users are only agreeing/disagreeing with the tag, not the user behind the tag

46

tagAgreement tagDisagreement userConsensus normalisedUserConsensus

0 0 0 0

0 1 0 0

1 0 0 0

1 2 0.5 0.025

2 1 2 0.1

1 20 0.05 0.0025

20 1 20 1

Table 3.2: Examples of the user consensus function. Note that the maximum user consensus
value is 20.

disagreed with.

userConsensus(u) : U → R

userConsensus(u) =

if tagDisagreement(u) = 0 0

otherwise tagAgreement(u)
tagDisagreement(u)

Finally, we normalise the user consensus values for each user to enable us to easily compare

the consensus values for each user.

maximumUserConsensus : R

maximumUserConsensus = max({userConsensus(u) | ∃r∈R ∃t∈T ∃u∈U ∃d∈D :
(r, t, u, d) ∈ (Untaggings ∪ Taggings)})

normalisedUserConsensus(u) : U → [0, 1]

normalisedUserConsensus(u) =
userConsensus(u)

maximumUserConsensus

In tables 3.2 and 3.3 we review the results of the user consensus function in a few scenarios,

as well as our consideration as to how this function relates to the user pro�les developed

earlier in this chapter.

3.2.3.2 User Tagging Activity

The user tagging activity sub-component of the trust algorithm allows for us to see how

active a particular user has been during a particular time period. We can use this func-

tionality to reward frequent contributors with a greater trust value over those people who

do not contribute as much. In addition to this, we can encourage frequent contribution by

`expiring' old taggings2, and we can help the guru personality type by giving their taggings

`time to breath' by ignoring taggings and untaggings until they reach a certain age.

2This should not be confused with deletion however. All taggings are kept for historical purposes.

47

User Pro�le Treated
Correctly?

Comments

Guru No
(possibly
yes)

Could be unfairly penalised as their taggings may not be
obvious to other users. This may lead to other users
untagging the tags, reducing the gurus user consensus
value. Over time however, the gurus user consensus value
should improve as other users begin to understand the
information input by the guru.

Hypercritical No A hypercritical user can tarnish other users trust values by
disagreeing with their tags, however, other users are also
likely to untag a hypercritical users tags. This means that
a hypercritical user does not increase their own trust, but
they can still damage other users trust values.

Consensus
Seeker

No A smart consensus seeker will receive a very high trust
value.

Bookmarker Yes A bookmarker will �nd that they receive a large amount of
tag disagreement if they don't mark their tags as private.
This will result in their trust tending towards zero.

Inactive Yes

Common Yes

Table 3.3: Algorithm evaluation table for user consensus metric

We have to de�ne a number of equations that we can shortly pull together to calculate the

users tagging activity.

withinTimeWindow(d) This function tests whether a timestamp falls within a certain

date range. To de�ne the valid date range, we take the current date (hereafter referred to

as now). We then modify this date with a natural number that represents a number of

weeks.

earliestAllowableDate, latestAllowableDate : Date

σ ≥ τ

σ, τ ≥ 0

earliestAllowableDate = now − σ

latestAllowableDate = now − τ

The withinTimeWindow function then simply tests whether the given timestamp is within

these bounds.

withinT imeWindow(d) : Date → Boolean

withinT imeWindow(d) = d ≥ earliestAllowableDate ∧ d ≤ latestAllowableDate

48

numberOfTags(u) This is the total number of tags input into the system by user u,

where tags are only used if they were created within the valid time window. There is an

equivalent function for numberOfUntags where the only di�erence is that Untaggings is

used in place of Taggings. We de�ne the functions isValidTag and isValidUntag here, as

they will be reused later on also.

isV alidTag : R × T × U × D → bool

isV alidTag(r, t, u, d) = (r, t, u, d) ∈ Taggings ∧ withinT imeWindow(d)

isV alidUntag : R × T × U × D → bool

isV alidUntag(r, t, u, d) = (r, t, u, d) ∈ Untaggings ∧ withinT imeWindow(d)

numberOfTags : U → N

numberOfTags(u) = |{r | ∃r∈R ∃t∈T ∃d∈D : isV alidTag(r, t, u, d)}|

numberOfUntags : U → N

numberOfUntags(u) = |{r | ∃r∈R ∃t∈T ∃d∈D : isV alidUntag(r, t, u, d)}|

averageUserTagCount and averageUserUntagCount AverageUserTagCount divides

the sum of all tags applied within a certain time window by the number of users who have

applied one or more tags within this time window. AverageUseUntagCount is the equiva-

lent function for untaggings. Both functions are shown below.

averageUserTagCount : R

averageUserTagCount =

∑
(r,t,u,d)∈Taggings numberOfTags(u)

|{t | ∃r∈R ∃t∈T ∃d∈D : isV alidTag(r, t, u, d)}|

averageUserUntagCount : R

averageUserUntagCount =

∑
(r,t,u,d)∈Untaggings numberOfUntags(u)

|{t | ∃r∈R ∃t∈T ∃d∈D : isV alidUntag(r, t, u, d)}|

Tagging and Untagging Averages The next two equations compare an individual user

to the averages calculated in the last step. This can show us how the user relates to other

users. It is preferable for a user to be above one in both of the equations below, as this

49

indicates that they are more active than most users.

userTaggingAverage(u) : U → R

userTaggingAverage(u) =
numberOfTags(u)

averageUserTagCount

userUntaggingAverage(u) : U → R

userUntaggingAverage(u) =
numberOfUntags(u)

averageUserUntagCount

3.2.3.3 Tagging Activity

Pulling together the above functions, we get the taggingActivity function which returns a

value that, if it exceeds one, represents a person who tends to be more active than normal.

Conversely a value of less than one represents a less trust worthy person, as they are less

active than normal. Whilst this is not necessarily true, it is a good indicator of a users

trustworthiness. As noted in table 3.5, the prototypical user pro�le that is treated most

incorrectly in this instance is the hypercritical, who is likely to be rewarded even though

their taggings and untaggings are of less value than those belonging to other user pro�les.

taggingActivity(u) : U → R

taggingActivity(u) = userTaggingAverage(u) + userUntaggingAverage(u)

Finally, we normalise the tagging activity values for each user to enable us to easily com-

pare the tagging activity for each user. We do this simply by getting the maximum tag-

gingActivity value for all users, and use this to divide the results of each taggingActivity

calculation. This means that we get a nice normalised set of values ranging between zero

and one.

maximumTaggingActivity : R

maximumTaggingActivity = max({taggingActivity(u) | ∃r∈R ∃t∈T ∃d∈D∃u∈U :
(r, t, u, d) ∈ (Untaggings ∪ Taggings)})

normalisedTaggingActivity(u) : U → [0, 1]

normalisedTaggingActivity(u) =

if maximumTaggingActivity = 0 0

otherwise taggingActivity(u)
maximumTaggingActivity

50

userTaggingAvg userUntaggingAvg taggingActivity normalisedTaggingActivity

0 0 0 0

1 0 1 0.1

10 0 10 1

0 1 1 0.1

0 10 10 1

5 2 7 0.7

Table 3.4: Examples of the tagging activity algorithm.

User Pro�le Treated
Correctly?

Comments

Guru Yes

Hypercritical No A hypercritical user will do very well on this equation.

Consensus
Seeker

Mostly yes A consensus seeker will score well in userTaggingAverage,
but will not in userUntaggingsAverage.

Bookmarker Yes

Inactive Yes

Common Yes

Table 3.5: Algorithm evaluation table for user tagging activity metric

3.2.4 Algorithm Summary

What we have successfully developed (as validated later in chapter 5) is a function that

determines the trustworthiness of a person, not based on their personal relationships with

other people, but based solely on the quality of the information they input into the system.

This removes any potential abuse of the system to arti�cially in�ate or de�ate a persons

trust value. In addition to this, our system treats fairly all types of users, as we identi�ed

in section 3.2.1.

Where the tagging activity function falters is in its inability to calculate the quality of the

tags and untags input by the user. This is fortunately the area in which the user consensus

function helps, and thus by merging these two functions we get a good measure of both

the activity of a user (which is constantly decreasing due to the reliance on a speci�c time

window) and the agreeability of the user.

We de�ned the user trust algorithm formally in section 3.2.3, but as a brief reminder, it

was formally de�ned as the following:

trust(u) : U → [0, 1]

α, β ∈ [0, 1]

α + β = 1

trust(u) = α × normalisedUserConsensus(u) + β × normalisedTaggingActivity(u)

51

We now proceed to use this user trust functionality as a component of the resource distance

algorithm, de�ned in the next section.

3.3 Resource Distance

Using the tagging information that users input into Centru�ow, we want to extract as much

value as possible. Of course, there is a number of �rst-order bene�ts to tagging, discussed

in section 2.5.4, but what about second-order bene�ts? One potentially valuable bene�t

is inferring relationships between resources where an explicit relationship does not exist.

Our hypothesis was that in business environments there exists much implicit information

that is not recorded due to various reasons, and ideally there would be a mechanism to

record this information within Centru�ow, with any inferred knowledge being shown within

the Centru�ow visualisation. We believe that tagging is an ideal way of attaching small

bits of information to a resource, but we could not identify any algorithm to determine

relationships between resources. We therefore decided to develop an algorithm to support

this.

Our approach is primarily based around the concept of taggings and untaggings, where a

single tag is applied to a single resource by a single user. For each resource we take into

account all such taggings and untaggings and calculate relationships to all other resources.

Including all this information into a calculation allows for Centru�ow to give users a display

of `related resources'.

As with the user trust algorithm, let R, T and U be disjoint sets. R is the set of all

resources, T is the set of all `tag concepts', and U is the set of all users. For the resource

distance algorithm, we do not concern ourselves with the timestamp of a tagging, therefore

taggings is de�ned to represent the set R × T × U .

We de�ne the term tag concepts to refer to the potential amalgamation of tags based on

the fact that they are assumed to be synonyms. This is done in a preprocessing stage prior

to this resource algorithm being run, where essentially each tag is checked to see if it has a

`preferred synonym', and if it does, we simply replace the tag with its preferred tag. This

has the e�ect of increasing the count of the preferred tag, at the cost of completely removing

all synonyms that are not preferred. It should be noted that this data is not removed from

the database - it remains in the `raw tags' taggings database table for historical purposes

(for example, should the synonyms change). The updated taggings are stored in a `re�ned

tags' taggings database table, and it is these that are used within Centru�ow for all tagging

related functionality.

Prior to developing our resource distance algorithm, we brie�y introduce the Jaccard dis-

tance metric which we loosely based our own metrics on. Following this, we develop a

series of functions that, used together, allow us to calculate one measure of the distance

between any two resources, based solely on tagging and untagging information.

52

3.3.1 Metrics

A metric is a mathematical function that de�nes a distance between any two elements

of a set. In creating our algorithms in this section, we were e�ectively attempting to

create suitable metric functions such that we may measure the distance between any two

resources. We could then use this distance to determine which relationships to infer and

show to the user. In summary, the four requirements for a function to be considered a

metric are:

1. d(x, y) ≥ 0

2. d(x, y) = 0 if and only if x = y

3. d(x, y) = d(y, x)

4. d(x, z) ≤ d(x, y) + d(y, z) (triangular inequality)

In our algorithms below, the �rst three requirements can be proven trivially, with the fourth

requirement proving di�cult. To help with this, we researched a number of distance metrics

that have been proven, and whilst we couldn't �nd one that fully met our requirements,

we did come across the Jaccard distance metric, which is by far the closest metric to our

needs.

3.3.1.1 Jaccard Distance Metric

The `Jaccard Index', also known as the `Jaccard similarity coe�cient', is a metric used to

measure the similarity between two sets of items. It is de�ned as the size of the intersection

of the two sets divided by the size of the union of the two sets:

JS(A,B) =
|A ∩ B|
|A ∪ B|

In the case of our calculations, we want to know the distance `between' two sets, which is

de�ned simply as distance(A, B) = 1 − similarity(A,B). Therefore, to get the Jaccard

Distance metric, we simply do the following:

JD(A,B) = 1 − JS(A,B) = 1 − |A ∩ B|
|A ∪ B|

A point of di�erence between our approach above and the Jaccard distance metric is that

instead of taking the cardinality of the number of elements in the intersection and union

sets, we instead take the sum of these two sets. This is because then we may sum the

trust/tag values, as opposed to simply counting the number of instances. This means that

the algorithms de�ned in the next section can not be claimed to be proven by the Jaccard

distance proofs [70, 71], but we believe that these proofs could potentially be adapted to

prove that our algorithms are also metrics.

53

3.3.2 Distance

Using a similar approach to the user trust algorithm, our distance metric pulls together

the tag distance and trust distance functions de�ned in the following sections. We once

again use unde�ned parameters to specify the strength of each of these metric functions

(γ, δ), but have not yet speci�ed what values these parameters should have. For now it is

assumed that they are both 0.5.

distance : R × R → [0, 1]

γ + δ = 1

distance(r1, r2) = γ × tagDistance(r1, r2) + δ × trustDistance(r1, r2)

We now proceed to implement the tagDistance and trustDistance metrics, starting with

the trustDistance metric below. Whilst these two metrics become increasingly complex,

it must be remembered that all we are trying to do is develop a means to measure how

related two resources are, and that this is being achieved solely through the comparison of

the tags belonging to each resource. If you don't have the stomach for maths, please skip

through to chapter 4.

3.3.3 Metric Algorithm Basics

To aid in the explanation of these metrics, we introduce �gure 3.2 which shows three

resources, which between them have a number of taggings. We can see that there is

some amount of `overlap' between these resources, and hence there is also some amount of

similarity. We will refer back to this �gure throughout the following sections.

In addition to this, we introduce two functions that return the set of all taggings and all

untaggings for a given resource. We do not care what tag or user is associated with the

resource, as long as it is a unique tagging/untagging. These two functions are used in our

two metrics, hence their introduction here.

taggings(r) : R → 2R×T×U

taggings(r) = {(t, u) | (r, t, u) ∈ Taggings}

untaggings(r) : R → 2R×T×U

untaggings(r) = {(t, u) | (r, t, u) ∈ Untaggings}

Based on �gure 3.2, we would get the results shown in table 3.6. As there are no untaggings

shown in �gure 3.2, the result of calling untaggings(r) will be the empty set.

54

Figure 3.2: An example of three resources with some tagging overlap (but with the times-
tamps stripped to reduce the number of taggings shown).

taggings

resource 1 {(r1, t1, u1) , (r1, t1, u2) , (r1, t1, u4) , (r1, t2, u2) , (r1, t3, u1) , (r1, t3, u2) , (r1, t4, u3)}
resource 2 {(r2, t1, u4) , (r2, t2, u2) , (r2, t7, u3) , (r2, t7, u7)}
resource 3 {(r3, t1, u2) , (r3, t1, u4) , (r3, t5, u1) , (r3, t6, u7)}

Table 3.6: The result of calling taggings(r) on the resources shown in �gure 3.2.

55

3.3.4 Trust Similarity and Distance

The �rst metric we implement as part of our resource distance metric makes use of our

trust function developed earlier in this chapter. We divide the sum of the trust of all

users for each tagging belonging to both resources by the sum of the trust for all taggings

belonging to either resource. As a special case, we state that if there are no taggings for

r1and r2, that the trustSimilarity is simply one. This makes sense as if two resources

both have no resources, then they are completely similar, which means that their distance

should be zero.

The trustSimilarity function essentially takes the `overlap' between two resources tag sets

and sums the trust value for all given users. It then divides this by the summed trust

values for all users who have tagged either resource. This results in a number between 0

and 1, as the denominator is always greater than the numerator.

trustSimilarityFraction : R × R → [0, 1]

trustSimilarityFraction(r1, r2) =

∑
(r,t,u)∈(taggings(r1)∩taggings(r2)) trust(u)∑
(r,t,u)∈(taggings(r1)∪taggings(r2)) trust(u)

trustSimilarity : R × R → [0, 1]

trustSimilarity(r1, r2) =

if taggings(r1) = taggings(r2) = Ø 1

otherwise trustSimilarityFraction(r1, r2)

trustDistance : R × R → [0, 1]

trustDistance(r1, r2) = 1 − trustSimilarity(r1, r2)

3.3.5 Tag Similarity and Distance

The second and more complex metric that we implement is the tag distance metric. Con-

ceptually the tag distance metric is similar to the trust distance metric above, as they are

both based on the Jaccard distance. What follows is a number of functions that build up

into the tagDistance metric function.

Tag and Untag Count We now de�ne two functions that, given a tag and a resource,

will tell us how many people have applied the same tag to the same resource. This makes

56

tag 1 tag 2 tag 3 tag 4 tag 5 tag 6 tag 7

resource 1 3 1 2 1 0 0 0

resource 2 1 1 0 0 0 0 2

resource 3 2 0 0 0 1 1 0

Table 3.7: Example tagCount based on �gure 3.2 and table 3.6.

use of the taggings function de�ned above.

tagCount : R → N

tagCount(t, r) = |{u | ∃u∈U : (r, t, u) ∈ taggings(r)}|

untagCount : R → N

untagCount(t, r) = |{u | ∃u∈U : (r, t, u) ∈ untaggings(r)}|

Continuing the example shown in �gure 3.2, the result of the tagCount function is shown in

table 3.7. It should be noted that from this point on we dismiss the concept of a user from

our calculations, instead we aggregate simply the number of each unique tag belonging to

a particular resource, and refer to it as the tagCount(t,r).

E�ective Tag Count We treat untags as `subtractive tags', meaning that the e�ective

tag count for a given tag is a value less than the tagCount. We de�ne the following

function to calculate the e�ective tag count for a tag on a given resource, and we introduce

a parameter γ that we can use to tweak the strength of untags. Additionally, we limit

the minimum value of the e�ective tag count to zero, such that we do not end up with a

negative number.

effectiveTagCount : T × R → R

γ ∈ [0, 1]

effectiveTagCount(t, r) = max(0, tagCount(t, r) − γ × untagCount(t, r))

In �gure 3.2 we do not have any untaggings, so the e�ective tag count is unmodi�ed.

Overlap Ratio The overlap ratio calculates the amount of overlap there is between the

tag sets of two resources. As an example, imagine two resources a and b, each with the

same tag t. If a has 50 taggings of t, and b has 25, then the overlap is 25
50 . In other words,

it is the minimum of the two tagCounts divided by the maximum value. To make the

overlapRatio more readable, we have split it into a number of sub-functions below.

57

overlapDenominator : T × R × R → [0, 1]

overlapDenominator(t, r1, r2) = max(effectiveTagCount(t, r1), effectiveTagCount(t, r2))

overlapRatioFraction : T × R × R → [0, 1]

overlapFraction(t, r1, r2) =
max(1, min(effectiveTagCount(t, r1), effectiveTagCount(t, r2)))

overlapDenominator(t, r1, r2)

overlapRatio : T × R × R → [0, 1]

overlapRatio(t, r1, r2) =

if overlapDenominator(t, r1, r2) = 0 0

otherwise overlapFraction(r1, r2)

As an example of the overlap function, take just `tag 1' from table 3.7. The overlap ratio

for resource 1 and resource 3 is then calculated as follows:

overlapRatio(t, r1, r3) =
max(1, min(effectiveTagCount(t, r1), effectiveTagCount(t, r3)))

max(effectiveTagCount(t, r1), effectiveTagCount(t, r3))

=
max(1, min(3, 2))

max(3, 2)

=
2
3

Tag Sum The tag sum function is used to calculate the number of e�ective taggings

belonging to two resources (r1, r2) where the tag (t) is �xed. In addition to summing the

e�ective tag count of the two resources, we also multiply by the overlap ratio, as then we

can encourage tag similarity to be greatest when the two resources have a relatively equal

number of taggings for the tag t. Should one resource have a signi�cantly di�erent number

of taggings of the tag t than the other, we should actually reduce the similarity, and this

is what this part of tagSum does.

tagSum : T × R × R → R

tagSum(t, r1, r2) = effectiveTagCount(t, r1) + effectiveTagCount(t, r2)

overlapTagSum : T × R × R → R

overlapTagSum(t, r1, r2) = tagSum(t, r1, r2) × overlapRatio(t, r1, r2)2

58

Tag Similarity Pulling together all the functionality above, we get the tag similarity

function which can tell us how similar two resources are based on the tags that they have.

tagSimilarityFraction : R × R → [0, 1]

tagSimilarityFraction(r1, r2) =
Σ(r,t,u)∈(taggings(r1)∩taggings(r2))overlapTagSum(t, r1, r2)

Σ(r,t,u)∈(taggings(r1)∪taggings(r2))tagSum(t, r1, r2)

tagSimilarity : R × R → [0, 1]

tagSimilarity(r1, r2) =

if taggings(r1) = taggings(r2) = ∅ 1

otherwise tagSimilarityFraction(r1, r2)

Tag Distance The distance between two resources is simply one minus the similarity.

tagDistance : R × R → [0, 1]

tagDistance(r1, r2) = 1 − tagSimilarity(r1, r2)

3.3.6 Resource Distance Algorithm Conclusion

The previous sections in this chapter have outlined a distance function that meets all

criteria of a metric (as proven in [70, 71]. We provide examples of this algorithm in

appendix B.

3.4 Relation Disagreement

Having created an algorithm for inferring relationships, we of course allow for such rela-

tionships to be shown within Centru�ow. It would be remiss of us however if we did not

o�er some mechanism to allow for users to disagree with an inferred relationship, as with-

out such a mechanism, there would be no easy means to `manually correct' the system.

This section therefore develops an additional function that we use to take into account the

users input that they disagree with an inferred relationship. We have not integrated this

function with our distance metric as it is not presently a metric itself, meaning that the

distance metric would no longer be a metric either.

Relation disagreement deals with the number of times an inferred relationship is disagreed

with. The greater this number, the more the distance should be decreased, as the inferred

relationship is deemed incorrect. More formally, let R and U be disjoint sets. R is the

set of all resources, and U is the set of all users. We de�ne the term relationshipDisagree-

ment to represent the subset R × R × U . A relationship disagreement is between two

resources(r1,r2∈R and r1 6= r2) applied by a single user (u∈U).

59

MaximumDisagreement can be de�ned as the largest disagreementCount value for all com-

binations of (r1,r2∈R).

maximumDisagreement : N

maximumDisagreement = max({disagreementCount(r1, r2) | r1 ∈ R ∧ r2 ∈ R})

disagreementCount(r1, r2) : R × R → N

disagreementCount(r1, r2) = |{u | ∃u∈U : (r1, r2, u) ∈ RelationshipDisagreements}|

relationDisagreement(r1, r2) : R × R → [0, 1]

relationDisagreement(r1, r2) =
disagreementCount(r1, r2)
maximumDisagreement

The value calculated by this function therefore is based solely on the number of disagree-

ments input by users. A user may only disagree with each edge once, so this may not be

abused by users.

When a company is only bootstrapping its tagging system, this relationDisagreement func-

tion is likely to be rather unfair, but over time it should become fairer.

60

Chapter 4

Software Implementation

As previously discussed, this thesis was focused on the development of algorithms to cal-

culate user trust and the inferred distance between nodes. Having just developed these

algorithms in the previous chapter, we were then required to implement these in our pro-

gramming language of choice, Java.

Once these algorithms were implemented, our focus shifted to the extension of the Cen-

tru�ow framework, as well as the development of a Centru�ow Server. In addition to this,

there was of course the tagging architecture to implement, which spans both client and

server. The remainder of this chapter discusses the implementation details at a relatively

high-level.

4.1 Implementation of Similarity and Trust Functions

With the mathematical algorithms developed in chapter 3, it was time to implement these

in code. Our plan was to embed this functionality inside the Centru�ow Server, as our

primary goal was to quickly enable a Centru�ow client to �nd out which nodes have the

strongest inferred relationships with other nodes. The two main approaches put forth as

to how these functions could be developed were brute-force calculation and on-demand

calculation, which are discussed below.

4.1.1 Brute-Force Computation

The brute-force approach simply suggests that all trust and resource distance (similarity)

functions operate at a set schedule - perhaps once a day at 3:00am. All possible calculations

should be run at this time, with the calculated data exported to a relational database.

This would allow for queries from the Centru�ow client related to user trust and inferred

61

relationships to be handled by simple SQL queries to a relational database (and cached in

memory within the Centru�ow Server).

This is only a good approach for small tagging systems, as the downside of such a solution

is its lack of scalability. Centru�ow is primarily aimed at enterprises, and there is no cap

on the number of potential users (and hence tags). In particular, there are companies

wanting to expose their Centru�ow installations over the Internet, which could potentially

lead to an explosion of users and taggings. We do not believe that this brute-force approach

can handle these scenarios, and as such we would only recommend our tagging system to

small enterprises. To enable universal use of the tagging system, an alternative approach

is needed, such as that explained in the next section.

4.1.2 On-Demand Calculation

The on-demand solution attempts to allow for more `up to date' trust and resource distance

values by calculating the necessary information only when relevant. This does not mean

however that this approach does not perform any caching/pre-computation - it is simply

that the data expires more frequently and is not calculated in a batch process that runs

nightly.

There is however a problem with this approach also: the resource distance algorithm makes

use of the user trust calculation as part of its calculation, meaning that to calculate resource

distance, the server must know the trust values for all users who have tagged the resources

in question. Depending on the number of users who have tagged a particular resource, this

could be a limiting factor in ensuring a good response time.

One way around this issue is to pre-compute the user trust values as part of a nightly

batch process, and then to calculate resource distances on-demand. This approach helps

when considering that our ultimate goal is to respond to the Centru�ow client request in

a minimal amount of time.

4.1.3 Our Approach

We chose to design our software such that we could easily switch implementations should a

better idea be suggested, but for the purpose of this thesis, we implemented the brute-force

implementation. This choice was made primarily due to its simplicity of implementation,

but as noted in section 6.3, we need to more thoroughly plan and implement an on-demand

approach in the future. In addition, implementing the weaker brute-force approach had

no in�uence on any of our results, as both approaches would be expected to produce the

same result for any given query.

62

In terms of implementation, our approach would not cause a 'nightly calculation downtime',

as all calculations would be performed in memory or in a temporary database, with only

the last action being to overwrite all data in the production re�ned tags database table.

This would limit the possibility of users not retrieving useful tagging data, but to be fair,

does expose a time window where such a problem will be possibly encountered by users.

4.2 Tagging Architecture

The tagging architecture spans both the client and the server, as the client allows for the

input and visualisation of tags, and it is up to the server to handle storage and querying of

tags. As discussed in section 2.5.3, there is an overwhelming number of ways to approach

the tagging issue, and for a long time much consideration was spent on deciding the correct

approach to take. Our architecture was by no means unique, it consisted of the need to

apply a tagging t to a resource r, by one user u. In addition to this, we were interested in

recording a small amount of metadata, such as the timestamp of the tagging, the template

the tagging was applied to1, and whether the tagging was public or private. In the future,

additional metadata may be deemed valuable and be collected.

4.2.1 Taggings Relational Database

All tagging information is stored in a simple relational database, consisting of seven main

tables, and a number of tables with lesser importance. There are no relationships between

the tables, which considerably simpli�es the queries (in terms of the required SQL, and

more importantly the complexity of the data operations performed within the database).

We will very brie�y detail each of the most important tables below.

4.2.1.1 Raw Tags Table

The raw tags database table stores every tag ever input by a user, including when a tag has

been untagged by users. The only exception is when the user has deleted a tag that they

themselves have created. The raw tags table records the users ID, the resources URI, the

tag, and the important metadata such as the template ID and the timestamp of creation.

4.2.1.2 Re�ned Tags Table

The re�ned tags database table is where all tags progress should they be deemed valuable.

This table is only temporary however, as it is completely emptied as part of the resource

1In Centru�ow, each template represents a di�erent visualisation, and a separate graph of data.

63

distance algorithm. The means through which tags progress from the raw tags database

to the re�ned tags database is detailed in section 4.2.3. This table is somewhat simpler

than the raw tags table, as it does not bother to record timestamp metadata, as it is not

yet useful to have this information available to the Centru�ow client, however this may

change in the future.

4.2.1.3 Untaggings Table

All untaggings are recorded in this table, in much the same fashion as the raw tags table.

4.2.1.4 Tag Synonyms Table

This records a mapping of words to their synonyms. This informs the resource distance

algorithm that should it come across a word that is not the preferred synonym, that it

should change it to the preferred synonym. This happens as part of the transformation

process when raw tags are transformed into re�ned tags. More information on this process

can be found in section 4.2.3.

4.2.1.5 Relation Disagreements Table

This table is used to hold any disagreement information submitted by users related to

inferred relationships between nodes. This information is used as part of the resource

distance algorithm.

4.2.1.6 Resource Distances Table

This table holds the precomputed distances between resources. This enables quick query

times for the Centru�ow client.

4.2.1.7 User Trust

This table simply records the trust of each user, on a per-template basis2. Trust is recorded

as a value between zero and one, where zero is completely untrustworthy, and one com-

pletely trustworthy.

2As noted earlier, a template is simply a collection of XML descriptors that allow for the decoration
and advanced visualisation tools o�ered by Centru�ow for one particular data source/graph.

64

4.2.2 Tags as OWL Classes

In implementing our tagging architecture, and as brie�y discussed in section 2.5.3.2, we

treated each unique tag string in our system as if it were its own class. This is somewhat

similar to the approach proposed in other projects [72]. This meant that, for example,

the tag `Actor' would be an OWL class, and as such could exist in a formal taxonomy (as

opposed to the folksonomies discussed earlier). The bene�t of having tags exist within a

formal taxonomy is that then we may infer increased knowledge by using other tags in the

taxonomy. Examples include:

• Making use of all super classes (i.e. classes from which a tag class inherits - and

in OWL multiple inheritance is allowed). What is meant by this is that, given a

tag class, we can �nd all `more-generic' terms. An example may be the tag `Dog',

which may have the super classes `canine' and `mammal'. By using this hierarchical

information, we enrich our data with further metadata, facilitating the realisation of

further inferred relationships.

• Retrieving all equivalent classes for a given tag (i.e. synonyms). In other words, our

ontology can de�ne equivalent terms, for example the terms `theatre', `movie theatre'

and `cinema' all represent the same concept, but di�erent people will choose to use

di�erent terms. If there isn't a means to suggest synonyms, the implicit relationships

that exist with these words will not be understood by the algorithms.

• Measuring distances between tag classes based on the number of edges between classes

in an OWL ontology.

The important issue to resolve in this situation is to choose which ontology language to

use that is expressive enough to allow for the representation of tags. At the same time, we

do not simply want to choose OWL-Full, as this provides us with too much functionality,

and the possibility of undecidability if misused. In our case, we want to declare inheritance

and equivalence. Inheritance is a feature of the lowest ontology language RDF-Schema,

but equivalence is introduced in OWL-Lite. For this reason, we chose to use OWL-Lite for

representing tags.

It should be noted however that despite tags being represented as OWL classes, it is not

necessary that they belong in a formal taxonomy - this just provides additional bene�ts. If

no OWL ontology is provided, then it is assumed that each tag class is completely unrelated

to any other tag class, and so by default no additional inferencing can be performed.

4.2.2.1 Untaggings and OWL classes

In our current implementation of untagging, we do not treat untags as their own class. In

fact (as noted earlier), untaggings are treated merely as subtractive tags, meaning that they

65

Figure 4.1: The tag transformation pipeline.

simply reduce the count for the given tag. We do this as it is a computationally simpler

approach than the alternatives, which allows for our brute-force algorithm implementation

to proceed more rapidly.

An alternative approach is to create untags as classes also, and to add these to the resource

class with `disjointWith' statements. This creates a more realistic representation of the

user perspective of the taggings applied to the resources, and provides the ability for

more reasoning to be applied on a higher level (i.e. developed in SWRL, for example).

This approach requires considerable more research into the area of representing negative

information, which was discussed earlier in section 2.1.7.

4.2.3 The Tagging Pipeline

Whenever a user inputs a tag into their Centru�ow client, it is submitted via a RESTful

protocol (see sections 2.4 and 4.3.4) to the Centru�ow Server, where it is immediately

inserted into the raw taggings database table. The raw taggings table holds every tag

ever input by users (apart from those which have been deleted by their owner). We have

developed a transformation pipeline prior to the running of the resource distance algorithm

to `clean up' the raw tags database. The end result of this transformation is the re�ned

tags database. This is shown in �gure 4.1.

66

The transformation pipeline is a series of chained iterators that operate on the output of

the previous iterator. In the case of the �rst iterator, it retrieves the data from the raw

tags database. We have implemented a few `transformers', as they have come to be known,

but the architecture has been left open such that future requirements can easily include

more (or less) of these transformers. The transformers have the ability to add and remove

information from the iterator (which means that they change the data going to the re�ned

tags table - they do not modify the raw tags table). Some of the transformers developed

so far include:

1. A user trust transformer, which removes the tags of users who are deemed untrust-

worthy (i.e. their trust value is less than a predetermined value), and duplicates the

tags of those users who are deemed overly trustworthy. This enables Centru�ow to

encourage users to use the tags believed to be most valuable, and hide from users

the tags deemed to be least valuable.

2. A tag count transformer, which requires there to be a minimum number of taggings

for a particular tag in the raw tags database before it is allowed to graduate into

the re�ned tags database. This encourages only the most popular tags, and �lters

out tags that are likely to be personal or subjective, and not factual, as discussed in

section 2.5.6.

3. A tag synonym transformer. As mentioned above, we have a table that administrators

can load with synonyms that they wish to replace with a preferred synonym. This

enables the system to minimise the folksonomy such that the suggestions that users

are presented with are of the highest quality. This transformer replaces any synonym

with its preferred synonym. We achieve this by using the OWL equivalentClass

feature, and as mentioned in section 4.2.2, this is the reason why we chose to use

OWL-Lite.

4. A tag inferencing transformer. This plugin loads an OWL ontology which describes a

hierarchy of terms. Each tag string is treated as if it were an OWL class, and should

an OWL class exist in the provided ontology, we can infer that other terms in this

ontology should also belong in the re�ned tags database. This transformer helps to

make connections between tags, strengthening the folksonomy.

4.2.3.1 Weakness Of The Tagging Pipeline

Unfortunately, there is one serious weakness to using such an architecture, and that is

related to the user experience of Centru�ow. The problem is that a user expects to instantly

see their tags appear when they add them to a resource within Centru�ow. Of course, there

is a problem with this, as any tag added to the system will only be shown to the user when

it graduates to the re�ned tags table (and even then, there is absolutely no guarantee that

67

Figure 4.2: The tag preferences dialog.

the tagging will forever remain in the re�ned tags table). This means that, if Centru�ow

acted properly, the user may never see the tags that they have input into Centru�ow!

In implementing the tagging system, we considered this problem and decided the best

approach would be to o�er to the user a con�guration dialog that would enable them to

specify how they wish to see the tags. This dialog is shown in �gure 4.2. The three options

the user has are for the user to just see their tags, to just see the most popular tags, or

to see both. Based on this selection, the tagging plugin can choose to request information

from either the raw taggings table (speci�c to one user), from the re�ned taggings table,

or from both.

4.2.4 Querying The Tagging System

The Centru�ow Server provides a number of access options to the tags database, all of which

are exposed through RESTful functions3. What this means is that all queries and updates

to the database are handled using the HTTP protocol, and in particular its GET and

POST methods. Almost all responses for GET queries are encoded as RSS 2.0 formatted

3There is more information on REST and the Centru�ow Server in section 4.3.4.

68

XML4, meaning that queries can be subscribed to in RSS feed readers. The bene�t of

this is that people do not need to be constantly running Centru�ow to receive information

relevant to them. It is hoped that in the near future these RSS feeds will provide links

to users to instantly load their Centru�ow application and go directly to the information

outlined in the RSS feed.

4.3 Centru�ow Server

Whilst Centru�ow is a client-side application, it necessarily requires some form of server-

side component to enable easy access to relevant data sources. In removing Thinkmap's

visualisation toolkit, we also had to remove the Thinkmap Server component. Replacing

Thinkmap's visualisation toolkit was necessary to enable our goal of visually supporting

tagging functions. Unfortunately, these two Thinkmap components are tightly bound

to one-another, and being proprietary meant that it was not overly feasible to build a

visualisation that used the Thinkmap Server. This meant that to replace the Thinkmap

visualisation, we also needed to develop a Centru�ow Server component that would act as

an adapter onto data sources.

The role of the Thinkmap Server is to receive requests from the Thinkmap client, and to

provide the client with information pertaining to the visualisation. This provided a layer

of caching above the database server, and may have simpli�ed the coding required within

the Thinkmap client (we can not be certain due to it being closed source). The Thinkmap

server was a simple server, leaving the majority of the `heavy lifting' to the administrator,

as it was necessary to develop a complex con�guration �le for each data source. It was our

intention to attempt to minimise this headache in our Centru�ow Server.

Prior to this software being developed, considerable research was necessary to understand

the problems that businesses face, and what technological solutions presently exist to help

achieve these requirements.

4.3.1 Requirements of a Centru�ow Server

A key distinction from the outset of this thesis was the focus on `data sources', and not only

`databases' (i.e. relational databases). We thought that companies would be keen to be

able to easily visualise all their information within Centru�ow, including their databases,

LDAP directories, Intranet documents (Microsoft Word and Excel �les), XML �les, RDF

�les, etc. After meeting with companies, it turned out that instead they had an alternative

feature that they would like to see: the ability to easily browse interlinked data that exists

4There are however one or two GET queries that simply return a plain text response, where this is
appropriate.

69

within multiple databases, all within one visualisation. We added this request to the list

of desired functionality.

What follows is some of the core requirements that we found would be necessary for a Cen-

tru�ow Server product. These requirements were elicited from companies that Centru�ow

deals with, from our research of the current state of the market, and our own personal

feelings having been involved in the development of previous versions of Centru�ow.

4.3.1.1 Graph-like Data Retrieval

On a fundamental level, a Centru�ow Server needed to o�er a means to access graph-like

data. This necessitated a means to query the server, which would then in turn handle

the querying of the underlying data sources. Following the W3C standards at the time,

SPARQL was the most attractive query language, given that it was inherently graph-based.

In addition to this, there really was no alternative to SPARQL that made sense (and this

is still the case now).

4.3.1.2 Server Management

Another major requirement was the ability to easily control the server through a web

interface, as opposed to the more common approach of servers requiring manual editing of

con�guration �les. Functionality that was highly desired included:

1. The ability to easily add and remove data sources.

2. The ability to `browse' data sources within the web browser (not necessarily using a

Centru�ow visualisation to achieve this).

3. The ability to link together data sources to create combined graphs.

By the time this thesis was complete, points one and two were both implemented, with

the �nal point being delayed until further development could be performed.

4.3.2 Alternative Software

Prior to developing this server, we set about researching the competitive landscape for

such a product. This was necessary as there was no point creating this server if a better

server application existed that could perform the necessary functions. As should be clear,

a server component was not within the key business plans of Centru�ow Ltd. Finding an

alternative server application to handle this task would relieve the small development team

70

from having to develop such a complex piece of software, allowing them to instead focus

on the Centru�ow client.

Of course, an alternative point of view is to begin to argue that the development of a

powerful server such as the one proposed in this thesis could instead become a new revenue

stream for Centru�ow Ltd, with or without the added value of the Centru�ow client. Such

a point of view has yet to be discussed within Centru�ow Ltd, and as such the Centru�ow

Server is simply perceived as a necessary component for Centru�ow client installations.

OpenLink Universal Server [73], and its open source version, OpenLink Virtuoso, are mid-

dleware applications capable of connecting to a number of di�erent data sources. It is

developed in C++, and appears to be actively developed (although as of October 2007,

the last release was a year ago). It supports a large number of query protocols, including

our preferred query language of SPARQL. It appears to be the closest match to what the

Centru�ow Server proposes to be, except that the OpenLink software is far more compre-

hensive, supporting a far wider array of functionality than is intended for the medium-

term future of Centru�ow Server. In this respect, the OpenLink software goes against the

`lightweight' ambitions of the Centru�ow Server. Finally, and no doubt due to being so

comprehensive, the OpenLink software is prohibitively expensive, insofar that Centru�ow

would need to double its cost to integrate such a solution. Integrating the open source

version of OpenLink would not be an option either, given the requirement that Centru�ow

Server be a privately owned application.

Aduna Software provide a commercial and open source version of their Auto-Focus product

[74]. This product provides a client and server side component, where the server component

acts as an information `crawler'. It e�ectively scans all data and metadata that it is

permitted to see, allowing for the Auto-Focus client to visualise the relationships between

information in much the same fashion as Centru�ow does presently. The key di�erence

between the Aduna Software product and the proposed Centru�ow Server is that the Aduna

Software Auto-Focus server is primarily focused on crawling data on the �le system, as

opposed to providing access to data sources such as relational databases, which is the main

goal of the Centru�ow Server. The Auto-Focus server uses the Aperture library [75], which

is an open source framework for �extracting and querying full-text content and metadata

from various information systems (e.g. �le systems, web sites, mail boxes) and the �le

formats (e.g. documents, images) occurring in these systems�. This unfortunately does

not include databases. Despite this, Auto-Focus server and/or Aperture are interesting

projects that may be used in future versions of the Centru�ow Server.

Finally, Thetus Publisher, developed by Thetus Corporation [76] is a system that appears

to follow the same approach as the software above, but it also has much more focus on

the client-side visualisation of data sources. Unfortunately, their website does a very poor

job at communicating the main goals of the application, and we failed in our attempts at

communicating with the company to �nd out more about their software. Regardless, their

71

software does deserve a mention, as it does appear to quite closely resemble the goals of

the Centru�ow Server.

None of this software matches our requirements fully, with the biggest obstacles being cost

and complexity. These software applications are designed to be run on powerful servers

with much memory and processing speed. In addition, to require such software to operate

Centru�ow would price Centru�ow out of the market, which is something the company

management want to avoid. Therefore, a case exists for a simple and lightweight server

component to be developed. This will initially be speci�cally for Centru�ow 3.0 and later

releases, but may gain traction as a separate product in the long-term.

Based on this research, there was a niche appearing for a software product that would be a

lightweight middleware server that could handle the necessary querying and virtual merging

of data sources. All other technical solutions on the market were far too `heavyweight',

in that their feature set (and hence their price) was far too considerable to be used as a

sub-component to the Centru�ow solution. We did not require these features, and so we

decided to investigate the development of our own server, with three clear goals:

1. Keep it simple and lightweight.

2. Use open source components where feasible (ignoring components that were GPL'ed

however).

3. Use open standards where feasible.

The purpose of the Centru�ow Server was to replace the Thinkmap Server used in Centru-

�ow versions 1.x and 2.x, which was the server-side component used to adapt a database

to be visualised within Centru�ow. How Thinkmap implemented this functionality is un-

known, as their system is proprietary, but it in general receives requests from a Thinkmap

client, and converts these requests to SQL before submitting them to the database. This

is the same approach taken in the development of the Centru�ow Server, but instead we

used semantic web technologies such as RDF, OWL and SPARQL. It should be noted that

the Centru�ow Server did not exist prior to this masters thesis at all, and as such was

designed from the ground up to work speci�cally for the needs of this research.

The justi�cation for using these semantic web technologies is that they are standards (or

soon to be in the case of SPARQL). This ensures increased interoperability with other

systems in the future, assuming that other software applications come to standardise on

these standards (which is obviously very apprehensive at this early stage of the semantic

web lifecycle [77]).

The server is split into two functional subunits, those being graph-based data handling and

non-graph-based data handling. Each unit is handled through a separate server interface

(i.e. accessed using di�erent URLs), and will be discussed separately below.

72

4.3.3 Handling Graph-Based Data

Graph-based data is the lifeblood of a Centru�ow visualisation, and as such providing this

functionality was the main goal of Centru�ow Server. Unsurprisingly, most data inside

companies is stored in relational databases, where relationships are declared through the

use of primary and foreign keys. Despite this, it would be rather short-sighted to only

consider relational databases as the sole repository for graph-based data, with other ex-

amples including LDAP directories, RDF �les, SPARQL endpoints, and other proprietary

systems.

4.3.3.1 High-Level Architecture

The graph-based aspect of the Centru�ow Server application is a combination of Java

servlet and Java Server Pages (JSP), backed with a considerable semantic web framework

(making use of the Jena semantic web framework [78]). It exposes each distinct data

source as a distinct SPARQL endpoint, allowing for any data source to be queried using

the SPARQL query language. Whenever a SPARQL query is received by an endpoint,

Centru�ow Server converts it into the appropriate SQL queries5, that can then be di-

rectly submitted to the necessary databases. When information is returned back from the

database, it is converted into an RDF graph prior to being returned to the Centru�ow

client.

In this way, all data sources are treated as RDF graphs with a SPARQL endpoint. What

this means is that the Centru�ow Client can now talk to the Centru�ow Server using

the SPARQL query language, as opposed to the Centru�ow Client using the proprietary

Thinkmap protocol (and the necessary database duplication). This bodes well for future

connectivity to systems that begin to expose data as RDF. The architecture for this aspect

of the server is shown in �gure 4.3. The diagram on the left shows the logical architecture,

and the diagram on the right the physical architecture. In particular, the diagram on the

right correctly shows that each data source adapter has its own SPARQL endpoint that

forwards the SPARQL query directly to the data source adapter. This means that each

Centru�ow client query is speci�cally targeted at one SPARQL endpoint.

4.3.3.2 Implementation-Level Architecture

As noted earlier, we wanted to build the Centru�ow server using open standards and open

source components, and as shown in �gure 4.4, we largely succeeded. The Centru�ow

Server product encompasses the entire top rectangle, but only a small portion is custom

5Whilst in theory the Centru�ow Server can query any data source, we have only implemented support
for databases at this stage. This was because businesses expressed little interest in connecting other data
sources. Instead, as mentioned in section 4.3.1, other requirements were deemed more important.

73

Figure 4.3: The Centru�ow Server SPARQL Architecture.

74

Figure 4.4: The Centru�ow Server implementation using open standards and open source
components.

75

code, with the vast majority of code belonging to open source projects. There are only two

rectangles inside the bold Centru�ow Server rectangle that we even touched with our own

code, those of course being the Centru�ow Server box, as well as the D2R Server box. Most

of our e�ort was spent in con�guring these software components to work appropriately,

and providing the necessary `glue' code between them.

To put this into context, Centru�ow Server requires 35 Java `JAR' �les, totaling 13.9MB.

The custom Centru�ow Server code is itself a separate JAR �le, that weighs in at 0.44MB.

This is the reason why, in the acknowledgements at the start of this thesis, we say we owe

a great deal of gratitude to the open source developers of the world.

What follows is a quick overview of what the other components shown in �gure 4.4 are

used for.

Jetty

Jetty [79] is an �open-source, standards-based, full-featured web server implemented en-

tirely in Java�. Jetty is used to provide the necessary HTTP protocol handling to allow

for incoming and outgoing communications. In addition, Jetty acts as a fully capable Java

servlet container, meaning that it can compile Java Server Pages (JSP) and servlets. We

use Jetty to deploy Joseki.

Joseki

Joseki is deployed as a web application within the Jetty server and provides the ability to

handle incoming SPARQL queries by accessing pluggable data sources. In our case, we

have adapted Joseki to instead pass all SPARQL queries on to the D2R Server.

D2R Server

D2R Server is an application developed by Dr Christian Bizer which makes use of D2RQ

to translate SPARQL queries into SQL, and in addition D2R Server provides a SPARQL

endpoint that allows for SPARQL queries to be received. This is accomplished by pulling

together Joseki and Jetty. We have adapted D2R Server considerably, to allow it to handle

multiple data sources at once, as opposed to its original architecture of only supporting

one data source.

Importantly, we have embedded the D2R Server within our Centru�ow Server, despite

it being released under the GPL. We were able to receive a commercial contract from

Dr Christian Bizer that allowed for Centru�ow Server to not be treated as a GPL'ed

application. This also applies to D2RQ discussed below.

76

D2RQ

D2RQ is a library, also developed by Dr Christian Bizer, that translates SPARQL into

SQL. It is no longer developed, but is still immensely useful in the context of Centru�ow

Server. As quoted from [80]:

�As Semantic Web technologies are getting mature, there is a growing need for

RDF applications to access the content of non-RDF, legacy databases with-

out having to replicate the whole database into RDF. D2RQ is a declara-

tive language to describe mappings between relational database schemata and

OWL/RDFS ontologies. The mappings allow RDF applications to access the

content of huge, non-RDF databases using Semantic Web query languages like

SPARQL.�

4.3.4 Handling Non-Graph-Based Data

To treat all data as an RDF graph does however make life di�cult in some circumstances,

in particular when the data is not graph-based or where there is a need for a more complex

two-way communication between client and server. For this reason, we decided not to place

all our eggs in one basket, and to instead o�er an alternative means of retrieving data from

the Centru�ow Server. The primary driver for this requirement was the tagging system, as

we needed a means for taggings to be submitted to the server, and for the server to send

various information to the client related to taggings. Integrating this requirement into

the SPARQL queries was feasible, but represented considerable overhead (both in terms

of development and CPU time for each query). In addition to this, it was imagined that

in the future there would need to be more functionality where communication would be

two-way, and not graph-based (for example, allowing users to modify information from

Centru�ow client).

As discussed in section 2.4, in the area of two-way client-server communication, there are

a number of technical possibilities as to how this may be implemented. Two popular ap-

proaches these days are using SOAP and REST. For the purposes of developing this server

functionality, it was determined that REST was the better option because of its low over-

heads and ease of extension. REST essentially works by using standard HTTP requests

to submit information to the server (primarily using the GET and POST protocols). In

RESTful software approaches, the accepted approach is to use GET for retrieving informa-

tion, and POST for modifying information. This is the approach followed in Centru�ow.

To more succinctly explain the REST architecture of our server, we have created �gure

4.5. In essence, we have created a servlet that receives all incoming REST queries, and

then passes control to the relevant REST function based on the information it may parse

77

Figure 4.5: The Centru�ow Server REST Architecture.

from the URL, using a de�ned syntax for communications between client and server. The

diagram on the left shows the logical architecture, and the diagram on the right the physical

architecture. In particular, the diagram on the right correctly shows that each REST

function is its own plugin, with the server determining which plugin to call based on the

URL received.

4.3.5 Features Overview

There are a few nice features of the Centru�ow Server that have not been detailed, so this

section will brie�y highlight these features.

4.3.5.1 Database Installation Tool

With the Centru�ow Server, it is possible in many circumstances to simply �ll in and

submit a form to have the Centru�ow Server discover the database, analyse it and create all

necessary con�guration �les. The server then only needs to be rebooted to make available

all the data contained in the database. There is still plenty of improvements that can

be done in this area, for example, making it easy for administrators to con�gure which

database tables and columns should be made available, and how to link tables where a

foreign key does not exist.

78

4.3.5.2 RDF Dump Tool

Users can dump a database out into an RDF �le such that it may then be visualised by

the standalone version of Centru�ow or shared with people who do not have access to a

Centru�ow Server. Once again this could be improved in the future by allowing users to

specify which data they wish to export to the RDF �le.

4.4 Centru�ow Client

Development of version 3.0 of the Centru�ow Client was rather involved, requiring a number

of di�erent layers of focus. These included:

• An e�cient means of retrieving data from the Centru�ow Server.

• An e�cient means to translate retrieved data into the internal data structures used

by Centru�ow (which are visualisation independent).

• Developing additional layers on `top' of the Centru�ow client through the devel-

opment of plugins related to user tagging. This development e�ort was sped up

through the use of Centru�ows plugin architecture, the result of our research in 2006

on software plugin architectures [27].

The remainder of this section will now proceed to discuss the implementation details at a

high-level.

4.4.1 Important Centru�ow Concepts

There are two concepts that are very important within Centru�ow, and to help in the

understanding of the remainder of this section, will be discussed now. As mentioned earlier,

Centru�ow 2.0 was developed to help abstract away the underlying visualisation technology

such that it could be more easily replaced. Two important concepts were developed during

this time, those being the concept of a `Centru�owEntity' and the `EntityManager'.

The Centru�owEntity interface is essentially a wrapper around an underlying graph entity

(node or edge), and it therefore provides a consistent interface that may be used throughout

Centru�ow. It wraps all important functionality without exposing any implementation

details, making it an ideal abstraction for any underlying visualisation. Centru�ow is

hugely dependent on the Centru�owEntity, so it was paramount that any RDF data could

be easily transformed into Centru�owEntity objects prior to the rest of Centru�ow having

to deal with any data. In Centru�ow 2.0 the Centru�owEntity wrapped �ve distinct entity

79

types belonging to Thinkmap, and in Centru�ow 3.0 stores all information from one RDF

entity. We did have to extend the Centru�owEntity interface as part of Centru�ow 3.0,

but this was simply to improve functionality.

The EntityManager interface is the manager of all Centru�owEntity's within Centru�ow,

and should be implemented by the visualisation engine. The EntityManager can be com-

municated with by any other part of Centru�ow, and provides a consistent interface to the

underlying visualisation engine. This EntityManager interface allows for other aspects of

Centru�ow to get data such as the current `centre' node, all the selected nodes, a node

with a particular distinct identi�er, and various other aspects of functionality. Once again,

this interface was extended in Centru�ow 3.0 to o�er more functionality to the rest of

Centru�ow.

4.4.2 Data Retrieval Using SPARQL

We use SPARQL to query the Centru�ow Server which in turn queries our remote data

sources. The data returned is an RDF result set represented in XML. To reduce our

development time we used Jena [78], a Java-based semantic web framework, to connect to

Centru�ow Server, send our SPARQL queries, and to handle the parsing of the responses.

This left us with three key areas of focus:

1. Crafting relevant SPARQL queries to request the required information.

2. Transforming the RDF result sets into useful Centru�owEntity's.

3. E�ciently performing our queries without creating too much overhead on either the

client or the server.

After making sense of SPARQL, we developed the query shown in listing 4.1. This query

returns all information about a single URI (which represents a single resource), as well

as details of all other resources that the requested resource connects to. It is still used

by Centru�ow to query remote data sources via the Centru�ow Server, but its days are

limited, as this query retrieves all information related to the node, even if it is not desired

by Centru�ow immediately (e.g. it is only shown if the user selects a `show details' button).

It makes sense to only retrieve this information on demand, as it would considerably lighten

the amount of data being retrieved for each query. It is our belief that by doing this the

Centru�ow client will start up considerably faster, and be considerably more responsive,

as currently there is an obvious slowdown as the initial set of data is being downloaded

and parsed.

SELECT ?property ?hasValue ?isValueOf

80

Figure 4.6: How the Centru�ow client and server communicate.

WHERE {

{ <uri> ?property ?hasValue } UNION { ?isValueOf ?property <uri> }

}

Listing 4.1: The default SPARQL query used by Centru�ow to request all information for
one speci�c URI.

The architecture that we �nally developed is shown in �gure 4.6. We once again integrated

the entity manager with the visualisation engine, and made it such that the visualisation

controls the entity manager (e.g. based on user interaction). When the visualisation needs

more data, it asks the entity manager to either return it from its cache, or retrieve it

from the Centru�ow Server. Therefore, the visualisation has no concept of SPARQL or

semantic web technologies - it simply submits URIs for which it wants to visualise, and

receives Centru�owEntity objects.

4.4.3 Data Translation

Directly after receiving the graph data from Centru�ow Server, it is stored internally as

RDF triples. Whilst this would have been an ideal means to store such data, Centru�ow has

a legacy which required for the data to be represented by the Centru�owEntity interface.

This interface, as well as the EntityManager interface, was introduced in the Centru�ow 2.0

81

release based on an improved understanding of the underlying technologies from building

Centru�ow 1.0. Initially it was considered to simply provide an adapter such that internally

the triples be used, but this turned out to be relatively slow due to the way in which Jena

works.

The alternative approach, which is the one we �nally took, was to simply strip all relevant

data from the triples as they are retrieved, and manually build Centru�owEntity objects.

This approach works well, as it reduces the query time when Centru�ow wants to retrieve

data from the entity, and also slightly reduces memory requirements as all data retrieved

from the server had a number of super�uous triples.

4.4.4 Data Integration

There are two important aspects to retrieving data from the Centru�ow Server to show

within a Centru�ow client, these being:

1. Retrieving required information as close to `Just In Time' as possible.

2. Minimising the memory requirements once the data is retrieved (including expiring

old data).

4.4.4.1 Just In Time Querying

Centru�ow is user-driven, in the same fashion as the world wide web (and pretty much

every application ever made). It makes no sense for the application (be it Centru�ow or

the web browser) to begin to retrieve too much data `o� in the distance', as it becomes

less likely that the user will actively browse to this information. On the other hand, pre-

caching information prior to the user requesting it improves the perceived performance of

the application.

In developing Centru�ow 3.0, it took us a considerable amount of time to develop an

approach that worked well, however we still believe that there is scope in the future to

more properly handle this (see section 6.3). What we eventually settled on was requesting

two times the depth setting that the user can see. In other words, if the user has the depth

set to two (meaning that from the `centre node' they can see at most all nodes that have

two or less edges between them and the centre node), then we will download all nodes to

a depth of four. Whenever the nodes on screen change (due to a user interaction), the

appropriate data will be queried for. This provides for a good middle-ground between

responsiveness and memory requirements.

82

4.4.4.2 Memory Management

Whilst the trivial data sets we used to develop Centru�ow 3.0 with are useful, and act in a

similar fashion to real data sets, customers have inquired about the feasibility of visualising

considerably larger data sets (consisting of more than 800,000 nodes). It is this kind of

situation that proper memory management becomes an issue.

Our approach to representing data in Centru�ow 3.0 continues to revolve around the con-

cept of a Centru�owEntity, which contains all information about a single resource. Data

retrieved from the Centru�ow Server is immediately converted into a Centru�owEntity,

and given to the visualisation system to manage. This means that within Centru�ow there

is one authoritative repository for in-memory resources.

There are two problems that have not yet been addressed, which are:

1. All data about a single resource is requested, even if the user can not immediately

see or use it. This links back to improved `just in time' querying as mentioned above.

2. No data is expired after it does not seem valuable to the user anymore, meaning that

continued browsing increases the memory requirements of Centru�ow with no chance

of the memory usage decreasing.

These two problems will be addressed further in section 6.3 as future work.

4.4.5 Search

For most users, a search component embedded within Centru�ow is absolutely critical.

In previous versions of Centru�ow, search was handled by the Thinkmap visualisation

components, and so for this reason alone, a replacement was needed for Centru�ow 3.0.

What was developed was a search user interface, shown in �gure 4.7, as well as an extension-

point6 for search providers to interface with the search user interface. Two such search

providers were then developed:

1. A datasource searcher, where the data source is queried using a SPARQL query. The

query used is shown in listing 4.2.

2. A taggings searcher, which searches for taggings that have the desired search text

contained within them.

6An extension-point is basically a slot for extensions to insert additional functionality. Centru�ow
consists entirely of plugins, where a plugin is simply zero or more extension points and zero or more
extensions.

83

Figure 4.7: The search dialog.

prefix fn:<http://www.w3.org/2005/xpath-functions#>

SELECT DISTINCT ?subject ?predicate ?property

WHERE {

?subject ?predicate ?property .

FILTER fn:contains(fn:upper-case(str(?property)),fn:upper-case("<search- ←↩

token-1>") .

FILTER fn:contains(fn:upper-case(str(?property)),fn:upper-case("<search- ←↩

token-2>") .

...

FILTER fn:contains(fn:upper-case(str(?property)),fn:upper-case("<search- ←↩

token-N>") .

}

Listing 4.2: An example of the SPARQL query used to search the Centru�ow Server. The

<search-token-n> �elds should be replaced with a single search paramter.

4.4.6 Tagging User Interface

Built as a traditional plugin for Centru�ow 3.0, the tagging functionality provides users

with a number of features related to user tagging. These are detailed in the next few

sections of this report.

4.4.6.1 Main Tags Dialog

The main tags dialog went through a number of user interface implementations prior to

the current design. Shown in �gure 4.8 is the user interface as of late September 2007. It

84

Figure 4.8: The add tags dialog.

provides a lot of functionality, some of which is not clearly visible. This functionality is

outlined below.

Adding Tags The user may enter new tags by typing into the text �eld. Internally,

these tags are tokenised based on where the user inserts commas or spaces (as tags can

not contain these characters).

Tag Suggestion There are two forms of tag suggestion:

1. Node-based Popular Tags: This is when the user �rst loads the dialog, and is pre-

sented with a list of hyperlinked tags at the bottom of the dialog. These tags are the

most popular tags belonging to the selected node, that have not already been added

by the user to this particular node. Clicking any of these tags will have the e�ect of

automatically adding them to the text �eld (the tag will be added only once, unless

the user clears the text �eld).

2. Text-based Popular Tags: As the user types, a popup appears directly beneath their

cursor, suggesting tags that start with the text that have already been typed by the

user. The user may select these tags, and upon doing so, will see the tag text added

to the text �eld.

Creating Private Tags As discussed in section 2.5.6, users may make tags private to

prevent other users (and the trust and resource distance algorithms) from seeing them.

Checking the checkbox in the dialog will force all tags entered into the text �eld to be

85

Figure 4.9: The dialog shown to users when they select a tag they wish to untag. A similar
dialog is shown when a user disagrees or wishes to delete a tag.

marked as private. Unfortunately, there is not yet any means to be more granular than

this, to specify individual tags as either public or private, but this is something that will

be resolved at some point in the future. The main hurdle in attempting this is to conceive

of a user interaction that did not overly complicate the dialog or confuse the user.

Deleting Tags It is possible for a user to delete their own tags from a resource from

within this dialog by simply selecting the `Show my tags' link, and then editing them in

the text box. Clicking `OK' then has the e�ect of adding and deleting tags as necessary.

4.4.6.2 Untagging, Deleting and Agreeing With Tags

When users select a tag inside the visualisation, what they are really selecting is the set of

all taggings where the tag is equal to the selected tag. This means that when a user wishes

to untag, delete or agree with a tag, they must specify for which resources they want this

action to occur on. This functionality is shown in �gure 4.9 for untagging. This dialog

lets the user select the resources for which they wish to apply the desired action to (in this

case untagging, but equivalent dialogs exist for deleting and agreeing with tags).

86

4.4.6.3 Tag Preferences

The tag preferences dialog is the area for users to change persistent settings for the tagging

plugin. It was deemed the least important of the new functionality to actually implement,

and as it turned out, there was unfortunately not enough time to �nalise this piece of

functionality. The only section implemented is the top-most, that is, the section pertaining

to users controlling what tags they want to see.

The controls shown in �gure 4.2 allow the user to change what tags they see, how many

they see, and also how many inferred relationships to show. Each of these sections is

discussed below.

Tag Display As has been discussed in section 2.5.6, there is a re�ning process before

tags are actually able to be seen by Centru�ow. This means that in reality, a tagging

added by a user should not be instantly visible within Centru�ow, and in fact may never

be visible7. This is somewhat of a tradeo�, as we do not want all taggings, regardless of

their quality, to be visible in the visualisation, but nor do we want to hide users tags from

themselves, especially as tags can act as a users personal bookmarks also. For this reason,

we allow the user to make an informed decision on which tags they see, as shown in the

�rst box in �gure 4.2. The three options a user is given is to only see their tags, to see all

their tags and the most popular tags, or just the most popular tags. In almost all cases,

it is anticipated that the user will choose either the �rst or second options, but we leave

that choice to the user, providing them with the default choice being option two.

Relationship Inference Threshold The relationship inference threshold slider allows

the user to specify how many inferred relationships to display (assuming they have the data

layer visible - see the next section). The way this slider controls the number of inferred

relationships is simply by sending to the Centru�ow Server the percentage of inferred

relationships it is interested in receiving. The Centru�ow Server will then only return the

required percentage, ranked in order of distance, such that the closest inferred relationships

are to be returned.

Tag Popularity Threshold The tag popularity threshold works in much the same

way as the relationship inference threshold described above: it limits the number of tags

displayed to the user such that only the desired percentage of total tags are returned.

4.4.6.4 Data Layers

Data layers is a new concept that was introduced in Centru�ow 3.0 after we went to see a

particular Governmental department and observed how they use their information systems.

7Visible in the sense that the tag is visible on screen, but also that it appears in searches.

87

Figure 4.10: A tag as it is shown to the user inside Centru�ow 3.0. It has the text
`SemanticWeb', and has been applied to the `Semantic Web' topic, and to a person called
`Sonia'.

In one particular system, they had huge amounts of information, and the only way they

could use it was to look at subsets of the information at any one time. This closely

resembles the functionality presently o�ered in Centru�ow called �lters, where node types

(computer, person,etc) can be shown or hidden, but is slightly di�erent as data layers could

consist of a number of di�erent node types and/or be inferred (i.e. not actual data).

In the long term, we developed the concept of data layers under this premise, but it was

actually a short term need that prompted this feature to be developed. The particular

need was based on the desire to somehow show to the user two things:

1. How tags relate to nodes.

2. How nodes are inferred to be related, based on our resource distance algorithm.

In other words, it was through data layers that we made available tagging and inferred

relationship information to users. Figures 4.10 and 4.11 show the result of enabling these

data layers. Note that in both cases, the dashed lines or boxes represent the information

contained within that data layer. In general, the `nodes' represent a node coming from

the database, and the `edges' are the links between the data in the database. Clicking on

a node shows the connections coming from the node. In this way, users can navigate the

data in their database graphically and more intuitively.

4.5 Centru�ow Standalone Version

As has been discussed, Centru�ow follows the traditional client/server software model,

where all data is stored on a remote server, and is merely downloaded by the client on an

88

Figure 4.11: A number of inferred relationships shown inside Centru�ow 3.0 (all dashed
lines are inferred). The inferred relationships are the visible result of the algorithms devel-
oped in chapter 3.

`as-needed' basis. One of the �ndings from our research with customers and consultants us-

ing Centru�ow was that there would be immense value in being able to model information

within Centru�ow when consultants are out in customer engagements. This recommenda-

tion comes despite the availability of tools such as Microsoft's Visio. The main reasoning

behind this is that Centru�ow allows for information to be more easily understood due to

the ability to �lter, cluster, and browse around information.

We identi�ed two possible versions of a standalone client: a free viewer version and an

`editor' version. The free viewer version could be downloaded by anyone from the Cen-

tru�ow website, and could be used to visualise RDF graphs (such as those generated by

Centru�ow). The `editor' version provided all functionality of the free viewer version, but

also allowed for users to modify the data by creating, editing, and deleting resources. This

data could be saved as RDF and shared with other interested parties.

Because this customer requirement was not discovered until August 2007, our initial soft-

ware architecture had been developed and implemented. This meant additional research

had to be undertaken to investigate the means through which a standalone Centru�ow

client could be developed and integrated without sacri�cing the integrity of the Centru�ow

architecture. We believe that we have found a solution that continues to maintain the

cleanliness of the Centru�ow architecture, whilst also providing end-users with a powerful

application that meets their requirements.

Our approach is to simply separate the `remote' client/server functionality out into a new

plugin, and to then create a new `standalone' plugin to handle the above system. The

major di�erence is that the `remote' plugin will send the SPARQL query to a Centru�ow

Server instance, whereas the `standalone' plugin will send the same SPARQL query to a

local, in-memory graph that has been built by parsing the RDF �le.

Whilst this project is not within the scope of this thesis, it is notable that it is only

because of the research performed this year in semantic web technologies that we are able

89

to relatively quickly and easily develop such a major product variation. Had we been

using Centru�ow 2.0, our approach would have been fraught with proprietary technologies

belonging to Thinkmap, and had licensing issues surrounding a free version of our software.

4.6 Centru�ow Boot Loader

One major weakness of Centru�ow in recent versions (versions 2.0 and 3.0) has been the

fact that it is a standalone application, in a time where most people are becoming more

familiar with the web 2.0 style of application. This has led to some `force-back' from the

customers of Centru�ow, wishing that they may get a web-based version. The primary

reason for this is simply due to user convenience, and to be frank, buzz-word bingo.

Whilst we have discussed a long-term solution of developing a web-based Centru�ow release

based on one of the popular rich Internet application frameworks, we have also developed a

short-term solution that considerably eases the deployment and initialisation of Centru�ow

to employees within a company. This short-term solution is interesting in how it improves

the ease of deployment and installation for users. Whilst this solution was not in the

scope per se, we feel it was a valuable development that we made this year to improve

Centru�ow, as it makes Centru�ow far more readily usable. The remainder of this section

outlines the implementation details of our short-term solution to addressing this important

customer concern. We do not bother to discuss the long-term plan, due to the uncertainties

associated with it.

4.6.1 Short-Term Solution

Java Web Start [81] is a technology developed by Sun Microsystems that is distributed

with the Java Runtime Environment (JRE). It allows for standalone Java applications to

be loaded over the web by users clicking on hyperlinks within web pages. We saw this as

a means of performing the following:

• Controlling the initial boot process of Centru�ow, including:

� Validating user licenses.

� Installing Centru�ow.

� Starting an already installed Centru�ow.

• Keeping Centru�ow plugin �les up to date with those stored on the companies Cen-

tru�ow Server.

• Communicating with an already running instance of Centru�ow.

90

� Passing in parameters into Centru�ow.

To enable these requirements, we developed a small application with a Swing-based fron-

tend. It essentially works as a boot loader for Centru�ow, following a rather complex set of

actions in a well-prescribed process. The following section outlines each of the key actions

mentioned above.

4.6.1.1 Installing Centru�ow

Up until the development of this boot loader, installation of Centru�ow was a manual task

consisting of unzipping a zip �le. There were numerous �aws with this, as we could not

easily control which plugins the customer was using (and whether they had paid for them),

and we could not easily and automatically maintain an employees installation such that

they are always using the most recent releases of the plugin �les.

For an employee who has never run Centru�ow before, we developed the boot loader

software to automatically scan in common installation positions, and if Centru�ow was

not found, present the dialog shown in �gure 4.12. This dialog allows the user to either

install Centru�ow, or specify the location as to where Centru�ow is installed. If the user

speci�es a valid location, this location is remembered for future boots so that they are not

repeatedly pestered by this dialog. Regardless of which action the user selects, the next

action is for the boot loader to communicate with the Centru�ow Server to retrieve details

on the versions of all available software (including plugins) on the server. These versions

are then compared to the local versions. Any necessary changes are made to the local

installation (up to a full installation of Centru�ow on the local computer).

4.6.1.2 Starting an Installed Centru�ow

Prior to showing the installation dialog, the boot loader attempts to �nd an already in-

stalled instance of Centru�ow. If it is found, the user is never presented with the dialog

shown in �gure 4.12, and instead Centru�ow is directly started. Prior to this starting how-

ever, we can perform the same plugin version check, to once again enable users to remain

up to date.

4.6.1.3 Communicating with a Running Centru�ow Instance

The other important use case is when there is already an instance of Centru�ow running

when a user clicks on a hyperlink to start up Centru�ow. In this circumstance it would be

preferable for the boot loader to check if there is already a Centru�ow instance running,

91

Figure 4.12: Centru�ow Boot Loader Dialog shown to users who are not presently running
Centru�ow, and who do not already have an already installed Centru�ow client.

and if so, pass any special parameters along to the Centru�ow instance. This operation

is similar in nature to how web browsers operate, where a new browser tab is opened if a

browser is already running.

Users wishing to start Centru�ow via Java Web Start are already browsing the web, and

in many circumstances, they have identi�ed some information external to Centru�ow that

they wish to browse within Centru�ow. To allow for this, we don't use a static Java Web

Start �le (a JNLP �le), but instead we dynamically generate this using a Java Server Page

(JSP) that acts as if it were a JNLP �le. We can then embed the query string given to the

JSP into the JNLP, which is downloaded by Java and given to the boot loader. The boot

loader can then send this to the Centru�ow client so that the client may act appropriately.

We achieved this by embedding a small socket-based server into the Centru�ow client that

can be communicated with by the boot loader. This allows the boot loader to ask on a

speci�c port if Centru�ow is running, and if so, it can pass along the parameters to the

Centru�ow client. The parameters passed along are the query string provided as part of

the Java Web Start URL.

92

Chapter 5

Validation

5.1 Validation Process

Having developed and implemented algorithms to enable user trust and resource distance

calculations, it was important to develop a simple scenario that would validate how well

our algorithms work. Our approach was to create a number of user pro�les (as outlined

in section 3.2.1), and proceed to use them within Centru�ow to create tags we believed

these users would create. We could then manually run our algorithms using this data and

ascertain whether the data is appropriately understood based on the results.

For this test we disabled the time-delay functionality of our algorithm, which �ltered out

all taggings that did not occur within a certain time window. For this reason, all taggings

and untaggings were used to calculate the user trust and inferred distance values. This

would not impact the algorithm, and we decided to do this for two reasons:

1. We as yet do not have a de�nite time window that we believe is appropriate.

2. Disabling the time window functionality allowed us to use Centru�ow to input tags,

as there was no need to manually edit dates to enable them to be within the relevant

time window. This allowed us to test and improve the tagging functionality developed

as part of this thesis.

To create a worst-case validation scenario we disabled some functionality within our algo-

rithms, including:

• We chose not to test our relationship disagreement functionality (detailed in section

3.4). What this means is that we did not allow any of our users to disagree with

inferred relationships by right-clicking on an inferred relationship and selecting the

93

User Pro�le Number of users

Guru 1

Hypercritical 1

Consensus Seeker 2

Bookmarker 1

Inactive 1

Common 2

Table 5.1: User groups and the number of users in each

disagree option. The reasoning for this is that disagreeing with inferred relationships

is a means of correcting incorrect relationships, whilst we were interested in the

results where no such correction was provided.

• We disabled the tagging pipeline, so we did not have any transformations such as an

OWL ontology to o�er additional inferred tags or user trust �ltering. This meant

that all raw tags were kept and treated as re�ned tags, meaning no tags were added

or removed.

Creating Users

We created a small number of user pro�les based on the prototypical users outlined in

section 3.2.1. We determined the number of users to create for each user group based on

our judgement of the likelihood of each of the user groups. The numbers of each user

pro�le are shown in table 5.1.

What this table shows is that we believe that most users will be consensus seekers (i.e.

they will tend to agree with pre-existing tags) or they will be common users (i.e. they will

vary, having attributes of all the other prototypical user pro�les). Having decided on this

distribution of users, we proceeded to create these accounts within Centru�ow, ready for

the next step.

Adding Taggings And Untaggings

For each user above (there were eight in total), we would log into Centru�ow and proceed to

act as if we were them. This included adding taggings and a varying number of untaggings.

The data we used for the graph was based on the International Semantic Web Conference

graph that we used as a test database. This graph provided us with the ability to have

gurus using semantic web knowledge that would seem unintelligible to other users. In

addition to this, it allowed for all other user pro�les to be easily used.

Table 5.2 shows the taggings that were input into the taggings database table by the users.

Similarly, table 5.3 shows the untaggings input into the untaggings database table. The

resource ID �eld is simply a unique identi�er given to each resource.

94

Resource ID Tag User ID Is Public

conferences/23541 Conference common-user-1 Yes

conferences/23541 ISWC common-user-1 Yes

papers/4 SquishQL hypercritical Yes

persons/10 SemanticWeb common-user-1 Yes

persons/11 F.Guerra bookmarker No

persons/2 V.Ratnakar bookmarker No

persons/5 B.Omelayenko bookmarker No

persons/6 HP-labs common-user-1 Yes

persons/6 Jena common-user-1 Yes

persons/6 HP-labs guru Yes

persons/6 SemanticWeb guru Yes

topics/10 DB common-user-1 Yes

topics/10 DB common-user-2 Yes

topics/10 RDBMS common-user-2 Yes

topics/10 DB consensus-seeker-1 Yes

topics/10 DB hypercritical Yes

topics/11 SemanticWeb common-user-2 Yes

topics/11 SemanticWeb consensus-seeker-1 Yes

topics/11 Internet consensus-seeker-2 Yes

topics/11 OWL consensus-seeker-2 Yes

topics/11 RDF consensus-seeker-2 Yes

topics/11 SPARQL consensus-seeker-2 Yes

topics/11 SWRL consensus-seeker-2 Yes

topics/11 OWL guru Yes

topics/11 RDF guru Yes

topics/11 SemanticWeb guru Yes

topics/11 SPARQL guru Yes

topics/11 SWRL guru Yes

topics/11 Internet hypercritical Yes

topics/15 KM common-user-1 Yes

topics/4 SemanticWeb common-user-2 Yes

topics/4 SemanticWeb consensus-seeker-1 Yes

topics/4 SemanticWeb guru Yes

topics/5 SemanticWeb common-user-2 Yes

topics/5 SemanticWeb consensus-seeker-1 Yes

topics/5 SemanticWeb guru Yes

topics/6 SemanticWeb common-user-2 Yes

topics/6 SemanticWeb consensus-seeker-1 Yes

topics/6 SemanticWeb guru Yes

Table 5.2: Tags input by our prototypical users.

95

Resource ID Tag User ID

papers/4 common-user-2 SquishQL

persons/6 hypercritical SemanticWeb

topics/11 hypercritical OWL

topics/11 hypercritical RDF

topics/11 hypercritical SWRL

Table 5.3: Untags input by our prototypical users.

Username Trust Value

guru 0.679

hypercritical 0.875

consensus-seeker-1 0.667

consensus-seeker-2 0.367

bookmarker 0.500 (By default)

inactive 0.500 (By default)

common-user-1 0.733

common-user-2 0.800

Table 5.4: The calculated trust values for our prototypical users.

5.2 Validation Results

User Trust Calculations

We were pleased with the results of our user trust validation calculations, as they re�ected

trust values that we believed were representative of our prototypical user pro�les. Table

5.4 shows the �nal trust values calculated for our prototypical user accounts. What this

table shows is that based on the taggings and untaggings input in this validation run, we

see that the most trustworthy user is actually the hypercritical. It is likely that this is

the case because the amount of tag agreement for the terms that the hypercritical user

untagged was low, leading the algorithm to place little value in these taggings. Following

this is the common-user-2 user, who we should note was the only other user to input

an untagging, which explains his increased trust value. Common-user-1 was next, with

the likely explanation being that the taggings that were used were not untagged, which

placed him above the guru. The guru was next, but as mentioned, he su�ered from the

untaggings placed against him. Both the consensus seekers fall to the bottom (ignoring the

bookmarker and inactive users for now), and particularly consensus-seeker-2. We believe

that this is once again due to the in�uence of the hypercritical user, as the untaggings act

to cancel out the taggings input by the consensus-seeker-2 user.

We have two points that need to be raised:

1. We believe that over time the in�uence of the hypercritical will drop o� considerably,

as more people add additional tags and agree with the tags already in the system.

This will lend itself to all user types apart from the hypercritical.

96

Resource ID 1 Resource ID 2 Distance

topics/11 topics/6 0.0648

topics/11 topics/5 0.0648

topics/11 topics/4 0.0648

persons/10 topics/4 0.0693

persons/10 topics/6 0.0693

persons/10 topics/5 0.0693

persons/6 topics/4 0.523

persons/6 topics/6 0.523

persons/6 topics/5 0.523

persons/6 persons/10 0.559

topics/11 persons/10 0.707

persons/6 topics/11 0.777

Table 5.5: Results from resource distance algorithm (distances closer to zero represent
more highly related resources).

2. Both the inactive user and the bookmarker are invisible to the algorithms, as the

inactive has input no tags, and the bookmarker has only input private tags. Should

the bookmarker input some public tags now, only these tags will be used to calculate

that users trust value.

Inferred Distance Calculations

With the taggings and untaggings input through Centru�ow, 12 inferred relationships were

calculated where the distance value was less than one (i.e. there was some relationship).

These results are shown in table 5.5. What we found was once again encouraging - re-

sources were, we believe, appropriately related. In testing the results of this algorithm

within Centru�ow (by enabling the inferred relationships data layer) we found that the

relationships presented could be perceived as helpful to the user.

5.3 Thoughts

We found that overall our approach works very well, with trust values being calculated

appropriately considering the user pro�le, and the subsequent bene�ts available to the

user are considerable. In particular, we found the inferred relationships, as well as the

visualisation of popular tags, seemed to add value to the visualisation. This was backed

up by other users who were aware of the research and Centru�ow.

Two important points to remember about these results are:

1. This was a worst-case test scenario - we removed our tagging pipeline and disabled

access to the relationship disagreement function.

97

2. We validated using our default parameters that were de�ned in our algorithm. These

calibration parameters are designed to �ne tune the system, but require considerably

more real-world usage before we can con�dently adjust them. In particular, we do

not know to what extent users will use the untagging functionality.

Based on the results of this validation, we feel con�dent enough in our technology to make

it publicly available as part of the next release of Centru�ow.

5.4 Stress and Performance Test

We performed a number of stress and performance tests as part of the testing of our

algorithm. We found that our brute-force algorithm varies quite dramatically in speed

of calculation based on not just changes to the the number of taggings, but also to the

number of URI's, users and tags used.

To test our brute-force algorithm, we created a simple Java application to create a certain

number of records in our raw tags database. The con�guration parameter consisted of

the total number of taggings required, the number of URI's, the number of users, and the

number of tags. We varied these numbers, and ranged the number of taggings required

between 10 and 10,000. The results from this test are shown in table 5.7.

As background, this test was performed on a Dell Inspiron 6000 laptop with two gigabytes

of RAM and a 1.5GHz Intel Centrino CPU (with 2 megabytes of cache). The test was run

whilst the computer was being used for general purpose work such as writing this thesis

and programming. It should be noted that this laptop is woefully underpowered when

compared to the target hardware that would normally run the Centru�ow Server (and

hence the brute force algorithms being tested here).

What the tests show is that the total time is actually not largely dependent on the number

of taggings, but rather the number of possible combinations of URI's, users and tags. This

can be seen in the the last two rows of table 5.7, where the �rst of the last two rows

takes about 20% of the time of the second test. This is due to the increase in the number

of potential combinations between the URI's, users and tags. There is however some

randomness in these results, for example take the four rows where the number of taggings

is 2000. The data that was created in the second run where there were 1000 URI's, 1000

users and 1000 tags actually resulted in a longer running time than when there were 2000

URI's, users and tags. This can be seen in the graph shown in �gure 5.1.

From what is shown in these results, we can quickly see that the brute force algorithm will

not scale to a situation where there are tens of thousands of taggings, but works adequately

well for systems where the number of taggings is less than 10,000. It is likely that in almost

98

N
u
m
b
er

of
T
ag
gi
n
gs

N
u
m
b
er

of
U
n
iq
u
e

U
R
I'
s,
U
se
rs
,
an
d

T
ag
s

T
im

e
to

ca
lc
u
la
te

D
is
ta
n
ce
s

T
im

e
to

W
ri
te

D
is
ta
n
ce
s
to

D
at
ab
as
e

T
im

e
to

w
ri
te

R
e�
n
ed

T
ag
s

to
D
at
ab
as
e

T
ot
al

T
im

e
(M

il
li
se
co
n
d
s)

10
10

19
7

13
8

39
3

72
8

10
1

0
30

56
3

59
3

10
10
0

48
64

38
9

50
1

50
10

34
3

1,
28
3

1,
44
4

3,
05
0

50
25

50
7

88
4

1,
41
1

2,
80
2

50
50

49
5

1,
16
4

1,
34
3

3,
00
2

10
0

10
45
6

1,
21
1

2,
94
4

4,
61
1

10
0

25
70
6

3,
27
3

2,
36
3

6,
34
2

10
0

50
1,
12
4

3,
61
1

3,
51
9

8,
25
4

10
0

10
0

1,
56
9

1,
24
6

3,
66
4

6,
47
9

10
0

50
0

2,
31
9

36
1

3,
73
1

6,
41
1

25
0

10
2,
15
6

1,
62
1

9,
80
1

13
,5
78

25
0

50
3,
46
0

11
,5
47

7,
30
6

22
,3
13

25
0

10
0

5,
73
6

9,
93
9

8,
59
3

24
,2
68

25
0

25
0

10
,9
53

3,
32
1

8,
91
6

23
,1
90

50
0

50
7,
71
7

28
,9
34

17
,2
05

53
,8
56

50
0

25
0

28
,6
89

15
,2
54

18
,0
20

61
,9
63

10
00

50
20
,5
68

42
,4
09

28
,3
77

91
,3
54

10
00

25
0

66
,5
83

83
,7
44

30
,1
67

18
0,
49
4

10
00

50
0

11
6,
47
3

33
,0
49

39
,3
10

18
8,
83
2

10
00

10
00

17
5,
97
0

21
,6
73

41
,8
23

23
9,
46
6

20
00

50
0

32
5,
60
3

16
8,
16
0

64
,6
70

55
8,
43
3

20
00

10
00

60
1,
31
0

14
8,
17
2

10
6,
31
1

85
5,
79
3

20
00

20
00

69
5,
45
3

28
,6
53

62
,1
58

78
6,
26
4

20
00

50
00

1,
17
4,
10
1

16
,9
76

82
,3
93

1,
27
3,
47
0

50
00

10
00

2,
30
5,
59
9

39
1,
93
1

15
3,
04
1

2,
85
0,
57
1

10
00
0

10
0

75
0,
94
2

16
1,
36
3

31
4,
73
8

1,
22
7,
04
3

10
00
0

10
00

1,
42
5,
79
0

1,
42
5,
79
0

30
8,
31
0

5,
15
4,
51
8

T
ab
le
5.
7:

R
es
u
lt
s
fr
om

a
p
er
fo
rm

an
ce

an
d
st
re
ss

te
st
.

99

F
igu

re
5.1:

R
esu

lts
of

th
e
p
erform

an
ce/stress

tests.

100

every use case for Centru�ow, this will be the case given that most customers only provide

Centru�ow access to a small subset of their entire organisation. Therefore, we are quite

happy with these results.

It should be noted that the algorithm used is a precise copy of the algorithm developed

earlier in this thesis, and that performance could potentially be improved quite considerably

by paying better regard to the requirements of a computer, in particular memory and

database connection requirements. In testing our algorithm, both of these areas proved to

have considerable cost to the system, and so more work will be needed in the future to

ensure that the algorithm is e�ciently using the systems resources.

101

102

Chapter 6

Conclusion

6.1 Introduction

Having implemented our algorithms and software, and validated our approach, this chapter

looks back on the project goals outlined in chapter 1.4, to assess the e�ectiveness of this

masters thesis. Following this we conclude with recommendations for future work.

6.2 Conclusion

In this thesis we set forth to infuse Centru�ow with the ability to reason about tagging

information using mathematical algorithms. Prior to attempting this, we had to invest a

signi�cant portion of our time into three important areas:

1. Researching and understanding the technologies surrounding the semantic web.

2. Undertaking considerable development work to upgrade Centru�ow to version 3.0,

which contained the necessary frameworks required for this thesis.

3. Developing the Centru�ow Server product that enables Centru�ow to query data

sources using semantic web technology.

Having undertaken the above work, and with our new algorithms in place and functioning

on our tagging data, we were very pleased with the quality of the inferred relationships be-

tween nodes within Centru�ow. To see Centru�ow o�ering advanced insight into data using

this inferred knowledge is impressive, and potentially very valuable. In our demonstrations

to key people involved with the Centru�ow product, they were similarly impressed. Up

until Centru�ow 3.0, Centru�ow was simply a `viewer' into a custom database. With the

103

developments that occurred during this thesis, we now have a framework to enable con-

siderable intelligence within Centru�ow, both through semantic web inferencing rules, as

well as our tagging technology. In addition, we can far more easily and rapidly visualise a

considerably larger amount of a companies information.

We must now release the tagging functionality publicly to allow for real-world testing and

gathering of feedback. We can then use this information to improve future versions of

Centru�ow and the tagging plugin. This is not the end for Centru�ow - there is still much

more work that can be done to further increase the value to users, as noted in the future

work section below. By improving Centru�ow through semantic web technologies, we have

moved it into a considerably larger playing �eld - the entire semantic web. As noted in

chapter one, we stand on the shoulders of giants, and in return, Centru�ow o�ers clarity

and understanding to the future of interconnected information on the semantic web.

6.3 Future Work

There is a considerable amount of work that could be continued on from this thesis that

was simply not feasible due to time constraints. We conclude this thesis by exploring the

areas of work that should be pursued in the future.

6.3.1 Further Research

Bootstrapping The Taggings System There needs to be greater investigation into

the means through which users can be encouraged to participate in the bootstrapping of

the tagging system. This is important as without this we can envisage a situation where

users of Centru�ow derive no value from the tagging system, as there is minimal acceptance

of the tagging functionality.

6.3.2 Algorithm Improvements

On-Demand Algorithm Implementation As discussed in section 4.1 we implemented

a brute-force implementation for calculating user trust and resource distance. We stated

that this approach would only be feasible for small tagging databases, and that an on-

demand approach would need to be adopted before long.

Improving The User Trust Algorithm At present the user trust algorithm only uses

the taggings that users create to calculate trust. We believe that the user trust algorithm

should grow as new social functionality becomes available. In particular, future versions

of Centru�ow will allow for users to modify information that they deem incorrect. The

104

user trust algorithm should track these changes to �nd any user traits that may infer a

particularly knowledgeable or malicious user.

6.3.3 Software Improvements

Improved `Just In Time' Querying To ensure that Centru�ow is as e�cient as can

be, we should continue to improve the algorithms used to query the Centru�ow Server such

that data is retrieved at the last possible moment.

Improved Memory Management When locally cached data is unlikely to be visited

by the Centru�ow client, it should be removed from memory so that it does not waste

memory. This is very important when dealing with a million or more nodes.

Support For Reasoning (Centru�ow Client) Now that Centru�ow 3.0 is built on

top of the Jena semantic web framework, it is possible for far more advanced reasoning to

be introduced easily, for example using SWRL rules.

Multiple Datasource Merging (Centru�ow Server) An important function that

needs to be developed is the ability to e�ectively merge multiple data sources such that they

can be visualised in one Centru�ow visualisation. This requires a great deal of consideration

to ensure that all major requirements are e�ectively met, and exposed in such a way that

it can be easily con�gured by an administrator. Due to the size of the scope for this

requirement and the complexity of implementing a solution, this unfortunately could not

be a part of this masters thesis. Some of the key requirements and considerations for this

include:

• The ability to merge nodes such that one node is composed of information from

multiple data sources.

• The ability to easily link information in one graph to information in another graph.

• The ability to support the editing and deleting of information in these scenarios from

within the Centru�ow client.

General Server Improvements There is a large list of improvements, including:

• Improving the REST architecture with a more powerful implementation, perhaps

based on a framework such as Jersey [56].

105

• Making it far more feasible for the server to retrieve useful information and reason

on it than it is now.

• Support for non-database data sources, such as RDF �les, and `spidered' �les on a

local intranet.

6.4 Summary

This chapter has summarised the results of this thesis, and presented work that may be

continued in the future to extend this thesis. The remainder of this thesis contains a

106

References

[1] T. Berners-Lee, �The World Wide Web: A very short personal history,� Last visited

10/10/07. [Online]. Available: http://www.w3.org/People/Berners-Lee/ShortHistory

[2] �Centru�ow,� Last Visited 04/10/07. [Online]. Available: http://www.centru�ow.com

[3] �World Wide Web Consortium (W3C).� [Online]. Available: http://www.w3.org/

[4] K. Cheruvettolil, �Does anybody know of a practical implementation of Semantic

Web Technologies?� [Online]. Available: http://tinyurl.com/youxu5

[5] D. Takahashi, �A 100 Trillion Words On The Internet; An Afternoon At Google

Developer Day.� [Online]. Available: http://tinyurl.com/ywaldl

[6] �The Web Standards Project,� Last visited 23/08/07. [Online]. Available:

http://www.webstandards.org/about/mission/

[7] �Internet World Stats,� Last visited 17/06/07. [Online]. Available:

http://www.internetworldstats.com/stats.htm

[8] �Remote Method Invocation (RMI),� Last visited 27/10/07. [Online]. Available:

http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp

[9] M. Henning, �The Rise and Fall of

CORBA,� Last visited 23/08/07. [Online]. Available:

http://acmqueue.com/modules.php?name=Content&pa=showpage&pid=396&page=1

[10] �SOAP Version 1.2 Part 0: Primer (Second Edition),� Last visited 17/06/07.

[Online]. Available: http://www.w3.org/TR/2007/REC-soap12-part0-20070427/

[11] S. Loughran and E. Smith, �Rethinking the Java SOAP Stack,� Hewlett-Packard

Bristol Laboratories, Tech. Rep., May 2005.

[12] R. T. Fielding, �Architectural Styles and the Design of Network-based Software Ar-

chitectures�� Ph.D. dissertation.

[13] T. O'Reilly, �What Is Web 2.0,� Last visited 17/06/07. [Online]. Avail-

able: http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-

20.html

107

[14] �MySpace.� [Online]. Available: http://www.myspace.com

[15] �Facebook.� [Online]. Available: http://www.facebook.com

[16] �Bebo.� [Online]. Available: http://www.bebo.com

[17] �LinkedIn.� [Online]. Available: http://www.linkedin.com

[18] �TradeMe.� [Online]. Available: http://www.trademe.co.nz

[19] �eBay.� [Online]. Available: http://www.ebay.com

[20] T. Berners-Lee, Weaving the Web : The Original Design and Ultimate Destiny of the

World Wide Web by its inventor. HarperCollins, 1999.

[21] W3C, �Gleaning Resource Descriptions from Dialects of Languages (GRDDL),�

Last visited 05/10/07. [Online]. Available: http://www.w3.org/TR/2007/REC-grddl-

20070911/

[22] J. Daly, M. Forgue, and Y. Hirakawa, �W3C Completes Bridge Between

HTML/Microformats and Semantic Web,� Last visited 05/10/07. [Online]. Available:

http://www.w3.org/2007/07/grddl-pressrelease

[23] B. Adida and M. Birbeck, �RDFa Primer 1.0,� Last visited 05/10/07. [Online].

Available: http://www.w3.org/TR/xhtml-rdfa-primer/

[24] T. Berners-Lee, �Semantic Web Road map,� September 1998. [Online]. Available:

http://www.w3.org/DesignIssues/Semantic.html

[25] �prefuse visualisation toolkit.� [Online]. Available: http://prefuse.org

[26] �Abstract Engineering Limited,� Last visited 04/10/07. [Online]. Available:

http://www.aeiou.co.nz

[27] J. Giles and J. Dietrich, �Refactoring Centru�ow Using Plugins,� Projects, vol. 15,

2007.

[28] BusinessWeek, �Q&A with Tim Berners-

Lee,� Last visited 28/07/07. [Online]. Available:

http://www.businessweek.com/technology/content/apr2007/tc20070409_961951.htm

[29] S. Bratt, �Semantic Web, and other technologies to watch,� Last vis-

ited 16/11/07 2007. [Online]. Available: http://www.w3.org/2007/Talks/0130-sb-

W3CTechSemWeb/

[30] W3C, �Extensible Markup Language (XML) 1.0 (Fourth Edition).� [Online].

Available: http://www.w3.org/TR/2006/REC-xml-20060816/

[31] K. Sall, �Well-Formed vs. Valid Docu-

ments,� Last visited 18/10/07. [Online]. Available:

http://wdvl.internet.com/Authoring/Languages/XML/XMLFamily/XMLSyntax/sall3_1.html

108

[32] �Resource Description Framework (RDF),� Last visited 07/10/07. [Online]. Available:

http://www.w3.org/RDF/

[33] F. Manola and E. Miller, �RDF Primer,� Last visited 18/10/07. [Online]. Available:

http://www.w3.org/TR/REC-rdf-syntax/

[34] �Notation 3 (N3): A readable RDF syntax,� Last visited 07/10/07. [Online].

Available: http://www.w3.org/DesignIssues/Notation3.HTML

[35] D. Beckett, �Turtle - Terse RDF Triple Language,� Last visited 14/11/07. [Online].

Available: http://www.dajobe.org/2004/01/turtle/

[36] S. Powers, Practical RDF. Beijing, Cambridge: O'Reilly, 2003.

[37] D. Brickley and R. Guha, �RDF Vocabulary Description Language 1.0: RDF Schema,�

Last visited 18/10/07. [Online]. Available: http://www.w3.org/TR/rdf-schema/

[38] E. Prud'hommeaux and A. Seaborne, �SPARQL Query Language for RDF,� Last

visited 1/10/07. [Online]. Available: http://www.w3.org/TR/rdf-sparql-query/

[39] E. Prud�hommeaux and A. Seaborne, �SPARQL Query Language for RDF

(W3C Working Draft 4 October 2006),� Last visited. [Online]. Available:

http://www.w3.org/TR/2006/WD-rdf-sparql-query-20061004/

[40] A. Seaborne and G. Manjunath, �SPARQL/Update: A language

for updating RDF graphs,� Last visited 1/10/07. [Online]. Available:

http://jena.hpl.hp.com/ afs/SPARQL-Update.html

[41] W3C, �SWRL: A Semantic Web Rule Language Combining OWL and RuleML,�

Last visited 14/11/07. [Online]. Available: http://www.w3.org/Submission/SWRL/

[42] �RuleML.� [Online]. Available: http://www.ruleml.org/

[43] C. Bizer, �Semantic Web Trust and Security Resource Guide,� Last visited 14/10/07.

[Online]. Available: http://sites.wiwiss.fu-berlin.de/suhl/bizer/SWTSGuide/

[44] J. M. R. Jr., �Finding Bacon's Key: Does Google Show How the Semantic Web

Could Replace Public Key Infrastructure?� Last visited 14/10/07 2002. [Online].

Available: http://www.w3.org/2002/03/key-free-trust.html

[45] R. Matthew, R. Agrawal, and P. Domingos, �Trust Management for the Semantic

Web,� 2003. [Online]. Available: citeseer.i�.uzh.ch/matthew03trust.html

[46] J. Golbeck, B. Parsia, and J. Hendler, �Trust Networks on the Semantic Web,� in

Proceedings of Cooperative Intelligent Agents, 2003.

[47] J. Golbeck and J. Hendler, �Reputation Network Analysis for Email Filtering,� 2004.

[Online]. Available: citeseer.ist.psu.edu/golbeck04reputation.html

109

[48] A. Abdul-Rahman, �The PGP Trust Model,� Department of Computer Science, Uni-

versity College London, Tech. Rep.

[49] W. Stallings, �The PGP Web of Trust,� Last visited 14/10/07 1995. [Online].

Available: http://www.byte.com/art/9502/sec13/art4.htm

[50] �WordNet::Similarity,� Last visited 14/10/07. [Online]. Available:

http://www.d.umn.edu/ tpederse/similarity.html

[51] R. P. I. Cognitive Science, �Measures of Semantic Relatedness (MSR).� [Online].

Available: http://cwl-projects.cogsci.rpi.edu/msr/

[52] �WordNet.� [Online]. Available: http://wordnet.princeton.edu/

[53] �GeneOntology.� [Online]. Available: http://www.geneontology.org/

[54] P. Resnik, �Using Information Content to Evaluate Semantic Similarity in

a Taxonomy,� in IJCAI, 1995, pp. 448�453. [Online]. Available: cite-

seer.ist.psu.edu/resnik95using.html

[55] G. Varelas, E. Voutsakis, P. Raftopoulou, E. G. M. Petrakis, and E. E. Milios,

�Semantic similarity methods in wordNet and their application to information retrieval

on the web,� inWIDM '05: Proceedings of the 7th annual ACM international workshop

on Web information and data management. New York, NY, USA: ACM Press, 2005,

pp. 10�16. [Online]. Available: http://portal.acm.org/citation.cfm?id=1097051

[56] �Jersey: RESTful Web Services made easy in Java.� [Online]. Available:

http://jersey.dev.java.net/

[57] T. V. Wal, �Folksonomy Coinage and De�nition,� Last visited 16/10/07. [Online].

Available: http://vanderwal.net/folksonomy.html

[58] �Del.icio.us.� [Online]. Available: http://del.icio.us

[59] �Flickr.� [Online]. Available: http://�ickr.com

[60] U. A. Mejias, �Tag Literacy,� Last visited 16/10/07. [Online]. Available:

http://ideant.typepad.com/ideant/2005/04/tag_literacy.html

[61] M. Guy and E. Tonkin, �Folksonomies: Tidying up Tags?� D-

Lib Magazine, vol. 12, no. 1, January 2006. [Online]. Available:

http://www.dlib.org/dlib/january06/guy/01guy.html

[62] A. Mathes, �Folksonomies - Cooperative Classi�cation and Commu-

nication Through Shared Metadata,� Last visited 16/10/07. [On-

line]. Available: http://www.adammathes.com/academic/computer-mediated-

communication/folksonomies.html

110

[63] P. Keller, �Tags: Database schemas,� Last visited 1/10/07 2005. [Online]. Available:

http://www.pui.ch/phred/archives/2005/04/tags-database-schemas.html

[64] N. Borwankar, �TagSchema,� Last visited 21/10/07. [Online]. Available:

http://tagschema.com/blogs/tagschema/

[65] A. Nolley, �MySQLicious - del.icio.us to MySQL Mirroring,� Last visited 21/10/07.

[Online]. Available: http://nanovivid.com/projects/mysqlicious/

[66] �TagCommons.� [Online]. Available: http://tagcommons.org/

[67] H. S. Al-Khalifa and H. C. Davis, �Towards better understanding of folksonomic

patterns,� in HT '07: Proceedings of the 18th conference on Hypertext and hypermedia,.

[68] S. Golder and B. A. Huberman, �The Structure of Collaborative Tagging Systems,�

Aug 2005. [Online]. Available: http://arxiv.org/abs/cs.DL/0508082

[69] P. Mika, �Ontologies Are Us: A Uni�ed Model of Social Networks and Semantics.� in

The Semantic Web - ISWC 2005, Proceedings of the 4th International Semantic Web

Conference, ISWC 2005, Galway, Ireland, November 6-10,.

[70] D. Levandowsky, Michael; Winter, �Distance between Sets,� Nature, no. 234, pp. 34�

35, November 1971.

[71] G. Gilbert, �Distance between Sets,� Nature, no. 239, p. 174, September 1972.

[72] Richard Newman, �Tag ontology design.� [Online]. Available:

http://www.holygoat.co.uk/projects/tags/

[73] �OpenLink Software,� Last visited 2/10/07. [Online]. Available:

http://www.openlinksw.com/virtuoso/

[74] �Aduna Software,� Last visited 2/10/07. [Online]. Available: http://www.aduna-

software.com

[75] �Aperture Framework,� Last visited 2/10/07. [Online]. Available:

http://aperture.sourceforge.net/

[76] �Thetus Corporation,� Last visited 02/10/07. [Online]. Available:

http://www.thetus.com/

[77] G. Goth, �Data-Driven Enterprise: Slouching toward the Semantic Web,� IEEE Dis-

tributed Systems Online, vol. 7, 2006.

[78] �Jena.� [Online]. Available: http://jena.sourceforge.net

[79] �Jetty.� [Online]. Available: http://www.mortbay.org/

[80] C. Bizer and R. Cyganiak, �D2RQ - Treating Non-RDF Databases as Virtual

RDF Graphs,� Last visited 03/10/07. [Online]. Available: http://sites.wiwiss.fu-

berlin.de/suhl/bizer/d2rq/index.htm

111

[81] �Java Web Start.� [Online]. Available: http://java.sun.com/products/javawebstart/

112

Glossary

API Stands for 'Application Programming Interface', it is a collection of source code

interfaces that allow an application to interact with a code library.

Centru�ow Centru�ow is a Java-based application that is used to visualise structured data,

particularly data found in corporate databases. It visualises the information as a

connected, bidirectional graph.

Data source A data source is any collection of information, including database, XML �le,

RDF �le, SPARQL endpoint, Microsoft Word or Excel �le, etc.

FOAF Friend of a friend, is a OWL ontology used to describe information about a person,

and the relationships between people.

GPL The General Public License is often referred to as a 'viral' license, in that any public

software project that makes use of GPL'ed code must also release its source code

under the GPL to the public. This is not very business-friendly, and so it is often

avoided by businesses.

HTML HyperText Markup Language. HTML is the language used to de�ne the structure

of webpages. Recently a new version has been released that is well-de�ned XML,

known as XHTML.

HTTP HyperText Transport Protocol is a communications protocol used on the Internet

to transfer information between computers.

Metadata Metadata is simply data about data. In the case of taggings, metadata includes

the date the tagging was applied, which template it belongs to, etc.

OWL Web Ontology Language. OWL is used to de�ne new classes of resources, and

specify how they relate.

RDF Schema RDF Schema is the simplest ontology language developed by the W3C. It

does not have the complexity/expressiveness of OWL, and so is useful in circum-

stances where the needs of the ontology are basic.

RPC Remote Procedure Call. RPC is a technology used to allow for applications to

communicate with each other through a network.

113

SPARQL Stands for 'Sparql Protocol and RDF Query Language'. Is a query language

somewhat resembling SQL queries, but is inherently graph-based and is therefore

used to query RDF graphs.

SWRL Semantic Web Rule Language. This is a language that allows for rules to be

inferred based on data in an RDF graph.

Thinkmap Thinkmap is a New York based software company specialising in the develop-

ment of visualisation technology. Centru�ow 1.x and 2.x made use of Thinkmap

technology.

WWW World Wide Web. This is perhaps the most popular aspect of the Internet. The

world wide web is the series of interconnected pages, generally developed in HTML

and retrieved using HTTP.

XPath XPath is a language for querying portions of an XML document. It can also

compute values. XPath is based on a tree representation of the XML document.

XPath is used extensively in XSLT.

XSLT Extensible Stylesheet Language Transformation is an XML language used to trans-

form XML documents into other documents (not necessarily XML). XSLT does not

change the original document but rather creates a new document.

RDF The Resource Description Format is a simple ontology language used to express

knowledge on the internet.

XML Extensible Markup Language is essentially a text format for representing data using

tags.

114

Appendix A

Use Cases

Whenever we develop for Centru�ow, it is important to relate back to use cases, as use

cases directly re�ect the needs of end users. This appendix outlines all use cases that

should be made available to users as part of Centru�ow 3.0 over and above those in Cen-

tru�ow 2.0. Despite this document being an attempt to outline use cases, it does also

o�er thoughts on how implementation and/or interface design may be done, and what

constraints/requirements must be considered. We consider this to be a valuable exercise

as it provides a single point of reference for all thoughts relating to the features that are

planned for the next major Centru�ow release.

A.1 Use Cases

A.1.1 Tagging Entities (Bookmarking)

A.1.1.1 Summary

A user tags an entity to e�ectively impart implicit knowledge against an explicit data

model. Tagging is e�ectively equivalent to bookmarking in the usual sense, insofar that

a user may later return to their tagged entities by searching based on a tag (see use case

A.1.2). Where tagging extends bookmarking includes the following:

• The same tags can be applied to multiple entities by the same user (and by any other

user).

• An entity can have multiple tags applied to it.

There is also the underlying bene�t to tagging - it allows for the identi�cation of related

entities through tagging similarities. This is outlined in use case A.1.4. A user should be

115

made aware that through proper use of tagging that this `second-order bene�t' will make

itself apparent. In e�ect, the act of tagging therefore o�ers two bene�ts to the user: a

means to bookmark entities, and a means to �nd implicit relationships between entities.

A.1.1.2 Basic Course of Events

To tag an entity, the user must work through the following steps:

1. The user must select the entity that they wish to tag.

2. The user must select the option to tag the entity.

3. The user should enter the tags that they wish to give to the entity.

(a) As the user inputs tags, they should be prompted by the system with suggested

tags. This includes both the users own tags as well as popular tags that have

been applied to the entity.

4. After inputting all tags, the user should select the option to submit all tags.

5. The system should store these tags in a persistent data store.

A.1.1.3 Implementation Thoughts

The major limitation to getting the second-order bene�ts of tagging is one of `bootstrapping

the system' - users must be actively encouraged to tag proli�cally, and also encouraged

to use common and sensible tags. `Common and sensible tags' refers to many things,

including:

1. Using a particular tagging syntax (i.e. do we allow spaces in tags, or does that mean

two separate tags have been applied? Do we use camel type or underscores to conjoin

words?)

2. A system of proposing tags that have already been applied to the current entity.

3. A system of `auto-completing' the tag that the user is typing by looking up the other

tags in the system.

By doing this, the user is not restricted in the terms that they may use for a tag (allowing

complete freedom - in other words a `folksonomy'). This strengthens the ability for Cen-

tru�ow to o�er better insight into implicit relationships within Centru�ow (i.e see use case

A.1.4).

116

A.1.2 Tag Searching

A.1.2.1 Summary

A user, having input tags into Centru�ow, will want to later return to the entities they

tagged. To enable this the user should be able to input their desired tag and see all

entities that have been given this tag. The search could be using just the users tags, or

alternatively, the entire tag database (i.e. all tags contributed by all users). The user will

be given all entities that have this particular tag applied to them. To further re�ne their

search the user may proceed to enter additional tags. The user may sort the results based

on criteria such as the number of times the particular tag has been applied, or the recency

with which the tag has been applied.

A.1.2.2 Basic Course of Events

To search for entities based on tags, the following steps should be followed:

1. The user should bring up the `tag search' dialog.

2. The user should type into the dialog the tags that they are wanting to search for.

(a) The system, as the user types, should re�ne the results dialog to show only tags

that have the tag.

(b) The system should suggest related tags to the user if the number of results is

small.

3. The user may optionally:

(a) Select a node from the dialog to make it the current `selected node' onscreen.

(b) Filter the results dialog based on the available criteria.

A.1.2.3 Implementation Thoughts

An important question is how to handle multiple tags being used as search criteria, in

other words, are they joined using conjunction or disjunction? The use of conjunctions

between terms would return results that only have all tags, whereas disjunction will return

any entity with one or more of the tags input by the user. Of course, one approach could

be to ask the user whether they want to use conjunction or disjunction.

To display the search results to the user could be implemented in one of two ways: visually

(as an extension to the graph) or as a list to the side of the graph. Which implementation

is used will need to be researched in terms of end-user understanding.

117

A.1.3 Tag Untagging

A.1.3.1 Summary

When the user is using Centru�ow, they will frequently be shown tags associated with

entities. In some circumstances, the user may see a tag that they believe to be so ludicrous

or wrong that they may wish to do something about it - they may want to say `I do not

believe that this tag fairly represents the entity for which it is associated with in this

particular case'. Allowing the user to do this allows them to impact the `related entities'

output in use case A.1.4. It e�ectively provides two pieces of important information:

1. The tag in this instance does not seem overly valid to a particular user.

2. The user who applied the tag is likely to be less trustworthy.

The concept of tag untagging is a novel one - it seemingly has not yet been pursued in any

of the popular online tagging services (in particular del.icio.us). This will therefore be one

of the more novel bits of research that is being undertaken as part of this masters research.

A.1.3.2 Basic Course of Events

Whenever the user is presented with a tag, they should be able to easily interact with it.

Given this assumption, the basic course of events is:

1. The user selects the tag that they disagree with.

2. The user selects the `untag' option related to the tag.

3. The system takes this and submits it to a persistent data store.

A.1.3.3 Implementation Thoughts

One important consideration is the di�erence between public and private tags. Private

tags should be discouraged as they can not be shown to other users or used in similarity

calculations. The one place where private tags should be used is when they will clearly not

make sense to other users, and in making them public could result in other users untagging

the tag.

118

A.1.4 Browsing Related Entities

A.1.4.1 Summary

This use case allows a user to be referred to other entities that may not be explicitly shown

in any graph, but instead be the result of inferring relationships based on the similarity of

entities using a distance function. The bene�t to a user is that such implicit relationships

(that were invisible in previous versions of Centru�ow unless made explicit through the

physical addition of an edge to the graph) can be clearly viewed and interacted with.

A.1.4.2 Basic Course of Events

This assumes that there is always a `selected node'. In the case of Centru�ow, this can be

considered to be the `centre node', i.e. the node that was last clicked on. Assuming that

there is always a clear centre node, the basic course of events is:

1. The user selects a node on screen, which proceeds to become the centre node.

2. The system submits this node and calculates related nodes..

3. The system returns a short list of related entities.

4. Optionally, the user may:

(a) Shorten or lengthen the list to see more or less results.

(b) Choose to see `next results', i.e. the next page of results like on a search engine.

(c) Select a node in this list to make it the centre node.

A.1.4.3 Implementation Thoughts

Related entities are entities related to a `central node' based on the similarity of tags.

Therefore, providing this information to the user is a second-order e�ect of the tagging

entities use case (use case A.1.1). To calculate the similarity of two entities will involve

a novel approach based on the similarity of their tag sets, taking into account user trust

and `cleansing of the tags database'. This should allow for high quality suggestions to

be provided to the user, and these suggestions should be frequently updated to take into

account the current state of the tags database as well as the user trust calculations.

It is important to take into account user trust, as it provides a means of placing more value

to tags that have been input by trustworthy users. Once again, to calculate trust we will

use a novel approach that recursively de�nes trust based on the trust of other users who

119

have tagged and untagged resources that the user has tagged. These trust calculations are

one of the criteria that can be used to cleanse the tags database prior to calculating related

nodes; there are many more that could be used in addition to this based on user testing

(i.e. �nding what criteria provides users with the best suggestions).

120

Appendix B

Resource Distance Examples

B.1 Tagging Distance Examples

B.1.1 Example Set One

Scenario One Consider two resources r1 and r2, which have the following tags:

• r1 has three tags (t1,t2,t3). Each tag has only been applied once.

• Similarly, r2 has three tags (t1,t4,t5). Each tag has only been applied once here also.

Notice that both resources have a single instance of the t1 tag. This means that they are

somewhat related. Firstly, we calculate the tagSum for these two resources, and then we

121

may use this in our similarity and distance calculations:

tagSum(t1, r1, r2) = ((1 + 1) × 1
1
) = 2

overlapTagSum(t1, r1, r2) = 2 × 1
1

= 2

tagSum(t2, r1, r2) = ((1 + 0) × 1
1
) = 1

tagSum(t3, r1, r2) = ((1 + 0) × 1
1
) = 1

tagSum(t4, r1, r2) = ((1 + 0) × 1
1
) = 1

tagSum(t5, r1, r2) = ((1 + 0) × 1
1
) = 1

As should be obvious from the above, where there is zero instances of a tag in one resource,

regardless of the number of tags belonging to the other resource, the tagSum will always

be one. Therefore, from here on out, we will only show tagSum calculations where there

is something non-trivial.

tagSimilarity(r1, r2) =
Σt∈taggings(r1)∩taggings(r2)tagSum(t,r1,r2)×overlapRatio(t,r1,r2)

Σt∈taggings(r1)∪taggings(r2)tagSum(t,r1,r2) = 2×1
6

tagDistance(r1, r2) = 1 − 2
6 = 4

6 = 0.667

The end result is that resources r1 and r2 are related, but only weakly.

Scenario Two Consider two resources r1 and r2, which have the following tags:

• r1 has three tags (t1,t2,t3). t1 has been applied 100 times (by di�erent users), whilst

t2 and t3 have been applied only once.

• Similarly, r2 has three tags (t1,t4,t5). Each tag has only been applied once here also.

122

Notice that both resources still have overlap due to the t1 tag, however now the number

of instances is di�erent.

tagSum(t1, r1, r2) = ((100 + 1) × 1
100

) = 1.01

overlapTagSum(t1, r1, r2) = 1.01 × 1
100

= 0.0101

All other tagSum calculations (i.e. for t2, t3, t4, and t5) are equal to two.

tagSimilarity(r1, r2) =
0.0101
9.01

tagDistance(r1, r2) = 1 − 0.0101
9.01

= 0.999

What this shows is that the distance between two resources actually increases the greater

the di�erence between the number of instances of an overlapped tag. The resources in

scenario two are actually further apart than in scenario one.

Scenario Three Consider two resources r1 and r2, which have the following tags:

• r1 has three tags (t1,t2,t3). t1 has been applied 100 times (by di�erent users), whilst

t2 and t3 have been applied only once.

• Similarly, r2 has three tags (t1,t4,t5). t1 has been applied 90 times (by di�erent

users), whilst t4 and t5 have been applied only once.

123

Notice that both resources still have overlap due to the t1 tag, however now the number

of instances is closer than in previous scenarios.

tagSum(t1, r1, r2) = ((100 + 90) × 90
100

) = 171

overlapTagSum(t1, r1, r2) = 171 × 90
100

= 153.9

All other tagSum calculations (i.e. for t2, t3, t4, and t5) are equal to one.

tagSimilarity(r1, r2) =
153.9
175

tagDistance(r1, r2) = 1 − 153.9
175

= 0.1206

Notice now that the distance between r1 and r2 is the closest of all three scenarios. This

is because the number of t1 tags that have been applied to r1 and r2 is rather large, so we

take this into account, and value it more than the scenarios where one or both resources

was only tagged with a tag once.

B.1.2 Example Set Two

Scenario One Consider two resources r1 and r2, which have the following tags:

• r1 has two tags. t1 has been applied 50 times, whilst t2 has been applied 100 times.

• Similarly, r2 has two tags. t1 has been applied 50 times, whilst t3 has been applied

100 times.

124

Notice that both resources have a 50 instances of the t1 tag, but each has a unique tag (t2

and t3). This means that they should only be very, very weakly related, as both t2 and t3

have been applied a lot.

tagSum(t1, r1, r2) = ((50 + 50) × 50
50

) = 100

overlapTagSum(t1, r1, r2) = 100 × 100
100

= 100

tagSum(t2, r1, r2) = ((100 + 0) × 1
100

) = 1

tagSum(t3, r1, r2) = ((0 + 1000) × 1
100

) = 1

tagSimilarity(r1, r2) =
100
102

tagDistance(r1, r2) = 1 − 100
102

= 0.0196

Scenario Two Scenario two is simply a reverse of the previous scenario: r1 and r2 have

a unique tag t1 and t2 that have been applied 50 times, and they share t3, which has been

applied 100 times for r1 and 100 times for r2.

tagSum(t1, r1, r2) = ((50 + 0) × 1
50

) = 1

tagSum(t2, r1, r2) = ((0 + 50) × 1
50

) = 1

tagSum(t3, r1, r2) = ((100 + 100) × 100
100

) = 200

overlapTagSum(t3, r1, r2) = 200 × 100
100

= 200

tagSimilarity(r1, r2) =
200
202

tagDistance(r1, r2) = 1 − 200
202

= 0.0099

125

The end result is that resources r1 and r2 are very related, as the distance between them

is very tiny.

Scenario Three Scenario three is simply a merge of the previous two scenarios, in

other words r1 and r2 share all tags.

tagSum(t1, r1, r2) = ((50 + 50) × 50
50

) = 100

overlapTagSum(t1, r1, r2) = 100 × 50
50

= 100

tagSum(t2, r1, r2) = ((100 + 100) × 100
100

) = 200

overlapTagSum(t2, r1, r2) = 200 × 100
100

= 200

tagSimilarity(r1, r2) =
300
300

= 1

tagDistance(r1, r2) = 1 − 1 = 0

The end result is that resources r1 and r2 are completely related, as the distance between

them is now 0.

B.1.3 Example Set Three

Scenario One Consider two resources r1 and r2, which have the following tags:

• r1 has two tags (t1,t2). t1 has been tagged 25 times and t2 has been tagged 10 times.

• r2 has the same two tags, but with di�erent values: t1 has been tagged 50 times, and

t2 has been tagged 5 times.

126

tagSum(t1, r1, r2) = ((25 + 50) × 25
50

) = 37.5

overlapTagSum(t1, r1, r2) = 37.5 × 25
50

= 18.75

tagSum(t2, r1, r2) = ((10 + 5) × 5
10

) = 7.5

overlapTagSum(t2, r1, r2) = 7.5 × 5
10

= 3.75

tagSimilarity(r1, r2) =
22.5
45

tagDistance(r1, r2) = 1 − 22.5
45

= 0.5

The end result is that resources r1 and r2 are related, but as expected, only by a distance

of 0.5.

Scenario Two This scenario alters the tag values from the previous scenario. They are

now:

• For r1, t1 has been tagged 40 times and t2 has been tagged 10 times.

• For r2, t1 has been tagged 50 times, and t2 has been tagged 8 times.

The key point in this scenario is that the tag values have come closer together than in the

previous scenario.

127

tagSum(t1, r1, r2) = ((40 + 50) × 40
50

) = 72

overlapTagSum(t1, r1, r2) = 72 × 40
50

= 57.75

tagSum(t2, r1, r2) = ((10 + 8) × 8
10

) = 14.4

overlapTagSum(t2, r1, r2) = 14.4 × 8
10

= 11.52

tagSimilarity(r1, r2) =
69.27
86.4

= 0.802

tagDistance(r1, r2) = 1 − 69.27
86.4

= 0.198

By bringing the tag values closer together, the distance between the two resources has

decreased, as one would expect.

Scenario Three This scenario alters the previous scenario by simply adding t3 to r1.

t3 is a tag that has been applied 1000 times. All other values are the same as scenario

two. This therefore does not modify the overlap value whatsoever, but of course the

sharedTagSet is increased signi�cantly.

128

tagSum(t1, r1, r2) = ((40 + 50) × 40
50

) = 72

overlapTagSum(t1, r1, r2) = 72 × 40
50

= 57.75

tagSum(t2, r1, r2) = ((10 + 8) × 8
10

) = 14.4

overlapTagSum(t2, r1, r2) = 14.4 × 8
10

= 11.52

tagSum(t3, r1, r2) = ((1000 + 0) × 1
1000

) = 1

tagSimilarity(r1, r2) =
69.27
87.4

= 0.802

tagDistance(r1, r2) = 1 − 69.27
87.4

= 0.207

By adding in this extra tag, we have shown that the calculation acts as we expect - r1 and

r2 can not be overly related if 1000 people have tagged r1 with t3, but no one has tagged

r2 with t3. Still, there is considerable overlap of the other two tags, so overall the distance

between the two resources is relatively low.

B.1.4 Example Set Four

To calculate the e�ect that untaggings have on the e�ective tag count, we must de�ne

what the γvalue is. For now, we will test each of our scenarios below with 4 values of γ,

those being 0.25, 0.5, 0.75 and 1.

Scenario One Consider two resources r1 and r2, which have the following tags:

• r1 has three tags (t1,t2,t3), with the following tag counts: t1: 25, t2: 42, t3: 10. In

129

addition to this, they all have some untags applied to them. The untag counts are:

t1: 12, t2: 0, t3: 15.

• r2 has four tags (t1,t2,t4,t5), with the following tag counts: t1: 7, t2: 15, t4: 20,

t5: 23. In addition to this, they all have some untags applied to them. The untag

counts are: t1: 2, t2: 10, t4: 1, t5: 3.

E�ective Tag Counts

effectiveTagCount(t, r) = max(0, tagCount(t, r) − γ × untagCount(t, r))

effectiveTagCount(t1, r1) = max(0, 25 − γ × 12) = {22, 19, 16, 13}

effectiveTagCount(t2, r1) = max(0, 42 − γ × 0) = {42, 42, 42, 42}

effectiveTagCount(t3, r1) = max(0, 10 − γ × 15) = {6.25, 2.5, 0, 0}

effectiveTagCount(t1, r2) = max(0, 7 − γ × 2) = {6.5, 6, 5.5, 5}

effectiveTagCount(t2, r2) = max(0, 15 − γ × 10) = {12.5, 10, 7.5, 5}

effectiveTagCount(t4, r2) = max(0, 20 − γ × 1) = {19.75, 19.5, 19.25, 19}

effectiveTagCount(t5, r2) = max(0, 23 − γ × 3) = {22.25, 21.5, 20.75, 20}

Tag Similarity/Distance What follows is the tag distance calculations for all four

gamma parameters. Unless noted below, the tag sums for t3, t4, and t5 are as follows:

tagSum(t3, r1, r2) = tagSum(t4, r1, r2) = tagSum(t5, r1, r2) = 1

Tag Distance forγ = 0.25

tagSum(t1, r1, r2) = ((22 + 6.5) × 6.5
22

) = 8.42

overlapTagSum(t1, r1, r2) = 8.42 × 6.5
22

= 2.49

tagSum(t2, r1, r2) = ((42 + 12.5) × 12.5
42

) = 16.22

overlapTagSum(t2, r1, r2) = 16.22 × 12.5
42

= 4.83

tagSimilarity(r1, r2) =
2.49 + 4.83

8.42 + 16.22 + 1 + 1 + 1
=

7.32
27.64

tagDistance(r1, r2) = 1 − 7.32
27.64

= 0.735166425

Tag Distance forγ = 0.50

tagSum(t1, r1, r2) = ((19 + 6) × 6
19) = 7.89

130

overlapTagSum(t1, r1, r2) = 7.89 × 6
19 = 2.49

tagSum(t2, r1, r2) = ((42 + 10) × 10
42) = 12.38

overlapTagSum(t2, r1, r2) = 12.38 × 1
10 = 2.95

tagSimilarity(r1, r2) = 2.49+2.95
7.89+12.38+1+1+1 = 5.43

23.27

tagDistance(r1, r2) = 1 − 5.43
23.27 = 0.766652342

Tag Distance forγ = 0.75

tagSum(t1, r1, r2) = ((16 + 5.5) × 5.5
16

) = 7.39

overlapTagSum(t1, r1, r2) = 7.39 × 5.5
16

= 2.54

tagSum(t2, r1, r2) = ((42 + 7.5) × 7.5
42

) = 8.83

overlapTagSum(t2, r1, r2) = 8.83 × 7.5
742

= 1.58

tagSum(t3, r1, r2) = ((0 + 0) × 1
0
) = 0

tagSimilarity(r1, r2) =
2.54 + 1.58

7.39 + 8.83 + 1 + 1
=

4.12
18.12

tagDistance(r1, r2) = 1 − 4.12
18.12

= 0.772626931

Tag Distance forγ = 1

tagSum(t1, r1, r2) = ((13 + 5) × 5
13

) = 6.92

overlapTagSum(t1, r1, r2) = 6.92 × 5
13

= 2.66

tagSum(t2, r1, r2) = ((42 + 5) × 5
42

) = 5.60

overlapTagSum(t2, r1, r2) = 5.60 × 5
42

= 0.667

tagSum(t3, r1, r2) = ((0 + 0) × 1
0
) = 0

tagSimilarity(r1, r2) =
2.66 + 0.667

6.92 + 5.60 + 1 + 1
=

3.327
14.52

tagDistance(r1, r2) = 1 − 3.327
14.52

= 0.770867768

Summary We see that by varying the gamma value we can get a varied tagDistance,

with the four results being roughly in the same area of 0.77.

131

