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Abstract

In this thesis two different models, that is levels of abstraction, are used to
explore specific classes of molecular structures and their properties.

In part I, fullerenes and other all-carbon cages are investigated using
graphs as a representation of their molecular structure. By this means
the large isomer space, simple molecular properties as well as pure graph
theoretical aspects of the underlying graphs are explored. Although chemical
graphs are used to represent other classes of molecules, cavernous carbon
molecules are particularly well suited for this level of abstraction due to their
large number of isomers with only one atom type and uniform hybridisation
throughout the molecule.

In part II, a force field for molecular dynamics, that is the step wise
propagation of a molecular structure in time using Newtonian mechanics,
is complemented by an additional term that takes into account residual
dipolar couplings that are experimentally measured in NMR experiments.
Adding this force term leads to more accurate simulated dynamics which is
especially important for proteins whose functionality in many cases crucially
depends on their dynamics. Large biomolecules are an example of chemical
systems that are too large for treatment with quantum chemical methods
but at the same time have an electronic structure that is simple enough for
accurate simulations with a forcefield.





