Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

CITRIC ACID PRODUCTION BY IMMOBILIZED CELLS OF THE YEAST CANDIDA GUILLIERMONDII.

A thesis presented in partial fulfilment of

5

the requirements for the degree of

Master of Technology

in Biotechnology and Bioprocess Engineering

at Massey University

DJADJAT TISNADJAJA

1995

ABSTRACT

The feasibility of using cells of *Candida guilliermondii* immobilized onto sawdust particles for production of citric acid was investigated.

C. guilliermondii IMK1 from a stock culture (Department of Process and Environmental Technology, Massey University, Palmerston North, New Zealand) was reisolated for further study including strain improvement work by induced mutation using UV light. A mutant strain DT2 was isolated which produced a citric acid concentration of 9.2 g/l (yield 25 % (w/w)) in shake flask culture, using a defined medium containing 36 (g/l) glucose, compared with 4.9 (g/l) citric acid produced (yield 14 % (w/w)) by the parent strain. Experiments in a laboratory scale batch fermenter, in which a higher concentration of citric acid (11.7 g/l) was achieved, proved that citric acid production using the mutant strain *C. guilliermondii* DT2, could be scaled up successfully from shake flask to a 2 l fermenter. This mutant was used throughout subsequent experiments.

Sawdust was selected, as the most appropriate support material to immobilize the mutant strain *C. guilliermondii* DT2 via the adsorption method.

Experiments using different concentrations of nitrogen nutrient in defined medium using cells of *C. guilliermondii* DT2 immobilized onto sawdust particles, in repeated batch shake flask culture, demonstrated a marked effect of the nitrogen concentration on citric acid production. Thus, an overall productivity of 0.11 (g/l.h) was obtained using a defined medium containing 0.53 (g/l) ammonium chloride, compared to overall productivities of 0.04 (g/l.h) and 0.01 (g/l.h) using defined media containing 0.1 (g/l) and no ammonium chloride, respectively. No significant effect of nitrogen concentration on citric acid yield was observed in this investigation. In contrast, similar experiments, in repeated batch shake flask culture, for the effect of phosphate concentration on citric acid production showed no effect of phosphate on either the production rate or yield of citric acid.

In bubble column culture experiments, using cells of *C. guilliermondii* DT2 immobilized onto sawdust, the importance of pH control in citric acid production was demonstrated. In addition, it was demonstrated that the activity of immobilized cells which have lost the ability to produce citric acid can be revived by supplying medium containing sufficient concentrations of nitrogen and phosphate. Reduction of the nitrogen concentration in the medium from 0.53 (g/l) to 0.05 (g/l), provided that the reactor was well established, showed no significant influence on citric acid productivity, but significantly improved the citric acid yield. The highest productivity of around 0.21 - 0.24 (g/l.h) at a dilution rate of 0.21 h⁻¹, accompanied by a citric acid yield of about 10 - 11% (w/w), was reached and maintained for more than 140 hours of stable operation.

Overall, it was concluded that cells of *C. guilliermondii* were succesfully immobilized onto sawdust particles, and the immobilized cell reactor produced

citric acid at a higher rate compared to a free cell system. In particular, a high rate of citric acid production in a bubble column reactor, operated in continuous mode, was achieved.

ACKNOWLEDGEMENT

I sincerely thank my supervisor, Associate Professor Ian Maddox, for his remarkable guidance, and supervision. His encouragement, patience and enthusiasm for this work was deeply appreciated.

I also wish to thank my co-supervisor, Dr Noemi Gutierrez, for her excellent guidance and supervision. Her encouragement and friendship is extremely appreciated.

I am thankful to Professor R.L. Earle, Head of the Department of Process and Environmental Technology, for his encouragement.

I am also thankful to the New Zealand Ministry of Foreign Affairs and Trade for providing a scholarship during the period of study.

I would also like to express my appreciation and thank to the following people: Dr G. Manderson and Assoc. Prof. R. Bhamidimary for their willingness to answer questions.
Mrs A. Jackson, Mr J. Sykes, Mr M. Sahayam, Mrs J. Collins, Mr M. Stevens, Mr J. Alger, Mr B. Collins and Mr D. McLean for their excellent technical and laboratory assistance.
Finally to my wife for her understanding, patience, love and encouragement.

TABLE OF CONTENTS

Abstract	i
Acknowledgements	iv
Table of Contents	v
List of Figures	ix
List of Tables	xii
CHAPTER 1 Introduction	1
CHAPTER 2 Literature Review	3
2.1 Citric Acid	3
2.2 Uses of Citric Acid	3
2.3 Production of Citric Acid	5
2.3.1 History of Production	6
2.3.2 Production Using Aspergillus niger	7
2.3.3 Production Using Yeasts	8
2.4 The Yeasts	9
2.5 Factors Affecting Citric Acid Production by Yeasts	11
2.5.1 Strain Selection and Improvement	11
2.5.2 Growth Conditions	12
2.5.2.1 Carbon Sources	12
2.5.2.2 Oxygen	15
2.5.2.3 Nitrogen	16
2.5.2.4 Phosphate	18
2.5.2.5 Metal Ions	19
2.5.2.6 pH	19
2.5.2.7 Temperature	20

		2.5.3 Cell Immobilization Methods	20
		2.5.3.1 Immobilization Without Support	21
		2.5.3.2 Covalent Binding	22
		2.5.3.3 Adsorption	22
1		2.5.3.4 Entrapment	24
		2.5.4 Immobilized Cell Bioreactors	25
		2.5.4.1 General	25
		2.5.4.2 Citric Acid Production	25
	2.6	Objective of Present Work	27
	CH	APTER 3 Materials and Methods	28
	3.1	Materials	28
		3.1.1 Microbiological Media	28
		3.1.2 Gases	28
		3.1.3 Chemical	29
		3.1.4 Organism	31
		3.1.5 Support Materials For Immobilization	32
	3.2	Media Sterilization	32
	3.3	Cleaning of Glassware	32
	3.4	Analytical Methods	33
		3.4.1 pH Measurement	33
		3.4.2 Determination of Cell Biomass	33
		3.4.3 Citric Acid Determination	34
		3.4.4 Glucose Determination	35
		3.4.5 Microscopic Observation	35
	3.5	Mutation Procedure	35
		3.5.1 Preparation of Cell	35
		3.5.2 Mutation	35

3.6	Isola	tion of Mutant	36
3.7	Ртера	aration of Samples	36
	3.7.1	Sample Preparation for HPLC Analysis	36
	3.7.2	Sample Preparation for Glucose Analysis	37
	3.7.3	Sample Preparation for Count of Immobilized Cells	37
3.8	Cell	Immobilization	37
	3.8.1	Preparation of Support Materials for Immobilization	37
	3.8.2	Cell Immobilization for Shake flask Culture	38
	3.8.3	Cell Immobilization for Bubble Column Cultures	38
3.9	Cult	are Conditions	39
	3.9.1	Inoculum Preparation	39
	3.9.2	Shake flask Culture Using Freely Suspended Cells	39
	3.9.3	Batch Fermenter Culture Using Freely Suspended	39
		Cells	
	3.9.4	Repeated Batch Culture Using Immobilized Cells	43
	3.9.5	Bubble Column Culture Using Immobilized Cells	43
	3.9.6	Sterilization of Fermentation Equipment	45
CH	APTEI	R 4 Strain Improvement Studies Using UV light	46
		Mutation	
4.1	Intro	duction	46
4.2	Reis	olation and Mutation of Candida guilliermondii IMK1	46
4.3		ies of Mutant in Shake flask Fermentation	47
4.4	Stud	ies of Mutant in Batch Fermenter	51
4.5	Disc	ussion	59
4.6	Con	clusion	60

vii

CH	APTER 5 Use of Immobilized Cells of Strain DT2 in Shake flask Cultures	62
-		
5.1	Introduction	62
5.2	Selection of Support Material	63
5.3	Effect of Nitrogen Concentration	69
5.4	Effect of Phosphate Concentration	73
5.5	Discussion	78
5.6	Conclusion	80
CH	APTER 6 Use of Immobilized Cells of Strain DT2 in a Bubble Column Reactor	81
6.1	Introduction	81
6.2	Effect of Phosphate Concentration	81
6.3	Effect of Nitrogen Concentration	85
6.4	Discussion	93
6.5	Conclusion	95
CH	APTER 7 Final Discussion and Conclusion	96
Ref	erences	101

44

3.1	Two photographs of the batch fermenter, and	42
	its ancillary equipment.	
3.2	A photograph of the bubble column reactor,	44
	and its ancillary equipment.	
4.1	Growth curves of IMK1, DT1 and DT2 in	48
	shake flask cultures.	
4.2	Comparison of citric acid production in shake	49
	flask culture.	
4.3	Comparison of glucose consumption in shake	50
	flask cultures.	
4.4	Growth curve of strain DT2 in batch culture	52
	(glucose 50 g/l).	
4.5	Growth curve of strain DT2 in batch culture	53
	(glucose 70 g/l).	
4.6	Citric acid production and glucose utilization	54
	by strain DT2 in batch culture with an initial	
	glucose concentration of 50 g/l.	
4.7	Citric acid production and glucose utilization	55
	by strain DT2 in batch culture with an initial	
	glucose concentration of 70 g/l.	
4.8	Citric acid production rate during batch	57
	fermentation with an initial glucose	
	concentration of 50 g/l.	
4.9	Citric acid production rate during batch	58
	culture with an initial glucose concentration	
	of 70 g/l.	

X

5.1	Evolution of citric acid and glucose	65
	concentration during repeated batch shake	
	flask cultures using defined medium	
	containing 0.53 (g/l) ammonium chloride.	
5.2	Concentration of citric acid and glucose	67
	during repeated batch shake flask cultivation	
	using lower N medium (0.1 g/l).	
5.3	Comparison of citric acid production in	70
	repeated batch shake flask using different N	
	concentrations.	
5.4	Evolution of glucose and citric acid	72
	concentrations in repeated batch shake flask	
	cultures by changing the nitrogen	
	concentration.	
5.5	Comparison of citric acid production in	74
	repeated batch shake flask using different P	
	concentrations.	
5.6	Evolution of citric acid and glucose	76
	concentrations in repeated batch shake flask	
	culture.	
5.7	Evolution of citric acid and glucose	77
	concentrations in repeated batch shake flask	
	cultures by increasing the P concentration of	
	the medium.	
6.1	Evolution of citric acid productivity during	84
	the first experiment of bubble column culture	
	using immobilized cells of strain DT2.	

.

X

6.2	Evolution of citric acid productivity in the	86
	second experiment of bubble column culture	
	using immobilized cells of strain DT2.	
6.3	Evolution of citric acid productivity in the	92
	third experiment of bubble column culture	

using immobilized cells of strain DT2.

LIST OF TABLES

PAGE

2.1	Uses of citric acid.	5
2.2	Citric acid and isocitric acid production from	13
	various n-paraffins using C. citrica.	
2.3	Effect of carbon sources on citric acid	14
	fermentation using C. zeylanoides.	
2.4	Effect of inorganic nitrogen sources on	17
	growth and citric acid production using C .	
	citrica.	
2.5	Effect of phosphate concentration on the ratio	18
	of citric acid to total acid.	
2.6	Methods of immobilizing cells.	21
2.7	Materials used for cell immobilization by	23
	adsorption.	
2.8	Summary of published works of citric acid	27
	production using immobilized cell of C .	
	lipolytica.	
3.1	Medium for agar plates used in strain	29
	isolation.	
3.2	Medium for inoculum preparation, shake flask	30
	culture and initial medium for bubble column	
	culture.	
3.3	Medium for batch fermentation.	30
4.1	Comparison between shake flask and batch	59
	fermenter cultures.	

xii

5.1	Comparison of the productivities and yields of cells of DT2 immobilized onto various support materials, with an initial ammonium chloride	66
,	concentration of 0.53 (g/l) (based on Figure 5.1).	
5.2	Comparison of the productivities and yields of cells of DT2 immobilized onto various support materials, with an initial ammonium chloride concentration of 0.1 (g/l) (based on Figure 5.2).	68
5.3	Comparison of the productivities and yields of immobilized cells of DT2 in media with various N concentrations (based on Figure 5.3).	71
5.4	Comparison of the productivities and yields of immobilized cells of DT2 in media with various P concentrations (based on Figure 5.5).	75
6.1	Effect of dilution rate and phosphate content of the medium on citric acid yield.	83
6.2	Effect of dilution rate and nitrogen content in the medium, on pH and citric acid yield.	88
6.3	Effect of dilution rate and nitrogen content of the medium on pH and citric acid yield, during the third experiment of bubble column culture.	91
7.1	Comparison of citric acid productivity achieved using immobilized yeast cell by several authors.	100

xiii

CHAPTER 1

INTRODUCTION

Citric acid is produced commercially through a fermentation process, and selected strains of *Aspergillus niger* are usually applied in this process. However, several species of yeasts, especially from the genus *Candida*, have proved their potential as citric acid producers.

Yeasts have several advantages compared to fungal species, including ease of growth and ease of handling in a fermenter since they do not block ports or grow on probes, and they grow as a homogeneous suspension rather than as pellets or large aggregates. Moreover, yeasts can be grown on various kinds of carbon source including n-alkanes and sugars. Due to their ease of assimilation and lower formation of the by-product, isocitric acid, sugars , particularly glucose, are auspicious carbon sources for the production of citric acid (Rohr *et al*, 1983; McKay *et al*, 1990).

Recently, with respect to the optimization of the process, mutation of strains (Furukawa *et al*, 1977, 1982; McKay *et al*, 1990; Gutierrez and Maddox, 1993) and immobilization of cells (Maddox and Kingston, 1983; Kautola *et al*, 1991; Rymowicz *et al*, 1993; Forster *et al*, 1994) have become of central interest to workers to improve reactor productivity. Hence, it seemed appropriate to investigate the use of immobilized cells of *C. guilliermondii* for

the production of citric acid.

The present work aimed to examine the performance of immobilized cells of *C. guilliermondii* for citric acid production from glucose in repeated batch shake-flask culture and in a continuous bubble column reactor. Attempts to accelerate the process by means of manipulation of limiting nutrient concentrations, i.e. nitrogen and phosphate, were also examined in this work.