Green kiwifruit: effects on plasma lipids and APOE interactions

<u>Cheryl S Gammon¹</u>, Rozanne Kruger¹, Anne M Minihane², Cathryn A Conlon¹, Pamela R von Hurst¹, Welma Stonehouse¹

¹ Institute of Food, Nutrition and Human Health, Massey University, Auckland, New Zealand ² Diet and Health Group, School of Medicine, University of East Anglia, Norwich, United Kingdom

Background:

Diet and other lifestyle modifications are crucial elements in the reduction of cardiovascular disease (CVD) risk¹. Furthermore, response to dietary change may be influenced by genotype². Inclusion of various dietary components, including soluble fibre and selected vitamins and phytochemicals, has been shown to improve dyslipidaemia and lower CVD incidence³. Kiwifruit are a good source of several of these dietary components⁴.

Objectives:

•To investigate the effect of consuming two green kiwifruit daily in conjunction with a healthy diet on plasma lipids.

• To examine response according to apolipoprotein E (APOE) genotype.

Method/Design:

Eighty-seven men (age: 48±9.47 years, range 27 to 73 years) were recruited from around Auckland, NZ, for an 8-week randomised controlled cross-over study (**Figure 1**).

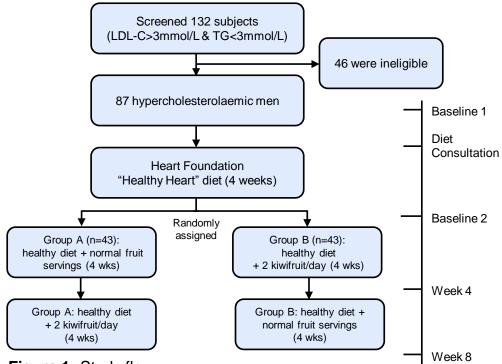


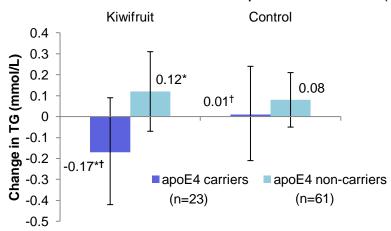
Figure 1: Study flow

Results:

Two subjects were excluded (poor compliance). The 4-week healthy diet run-in period resulted in significant improvements of lipid profiles and decreases in body weight. Regardless of treatment no further changes in body weight were seen.

Kiwifruit intervention

Compared to control treatment, kiwifruit treatment (**Table 1**) resulted in significantly higher plasma HDL-C, and lower TC/HDL-C ratio.


Table 1: Plasma lipid and apolipoprotein concentrations (n=85)

	Baseline 2	End-kiwifruit	End-control	<i>P</i> value
TC (mmol/L)	6.04 (5.85, 6.23)	6.10 (5.93, 6.29)	6.11 (5.92, 6.30)	0.96
LDL-C (mmol/L)	3.91 (3.76, 4.06)	3.92 (3.77, 4.08)	3.95 (3.80, 4.12)	0.50
HDL-C (mmol/L)	1.38 (1.31, 1.44)	1.39 (1.33, 1.46)	1.35 (1.29, 1.41)	0.004*
TG (mmol/L)	1.52 (1.39, 1.65)	1.55 (1.42, 1.70)	1.58 (1.45, 1.72)	0.71
TC/HDL-C ratio	4.46 (4.29, 4.63)	4.46 (4.28, 4.63)	4.60 (4.41, 4.79)†	0.002*
ApoA1 (g/L)	1.36 (1.31, 1.41)	1.39 (1.34, 1.44)†	1.37 (1.32, 1.42)	0.19
ApoB (g/L)	1.11 (1.07, 1.16)	1.12 (1.07, 1.16)	1.12 (1.08, 1.17)	0.60
ApoB/A1 ratio	0.83 (0.78, 0.87)	0.82 (0.77, 0.86)	0.83 (0.79, 0.88)	0.05

No interaction effects were seen between order of treatment and treatment (2-way ANOVA) *Significant differences between kiwifruit versus control (P<0.05) (Dependent Student *t*-test) †Significant change from baseline 2 to end (P<0.05) (Dependent Student *t*-test)

Apolipoprotein E interactions

APOE4 carriers had a significant decrease in TG concentration with the kiwifruit intervention compared to control (**Figure 2**).

Figure 2: Mean (95% CI) changes in TG concentration from baseline *Significant differences between *APOE4* carriers and non-E4 carriers for the kiwifruit intervention (*P*=0.01) (Independent Student *t*-test)

[†]Significant differences between kiwifruit and control treatments for APOE4 carriers (P=0.03) (Dependent Student *t*-test)

A fasting blood sample for plasma lipid profile and *APOE* genotype analysis, anthropometric measures and dietary data were collected at baselines 1 and 2, and weeks 4 and 8.

, ,

Conclusions:

The small but significant increase in HDL-C and decrease in TC/HDL ratio and TG (in *APOE4* carriers) suggests that the regular inclusion of green kiwifruit as part of a healthy diet may be beneficial in improving the lipid profiles of men with high cholesterol.

References:

Lichtenstein, A.H., et al., Diet and lifestyle recommendations revision 2006: a scientific statement from the AHA Nutrition Committee. Circulation, 2006. 114(1): p. 82-96.
Minihane, A.M., et al., ApoE genotype, cardiovascular risk and responsiveness to dietary fat manipulation. Proceedings of the Nutrition Society, 2007. 66(2): p. 183-97.
Badimon, L., G. Vilahur, and T. Padro, Nutraceuticals and atherosclerosis: human trials. Cardiovasc Ther, 2010. 28(4): p. 202-15.
Ferguson, A.R. and L.R. Ferguson, Are kiwifruit really good for you? Acta Horticulturae, 2003. 610: p. 131-35.
Acknowledgements: ZESPRI[®] International Trial Number: ACTRN12610000213044

Te Kunenga ki Purehuroa

Forever discovering