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Abstract

We present a model that describes growth, division and death of cells struc-
tured by size. Here, size can be interpreted as DNA content or physical
size. The model is an extension of that studied by Hall and Wake [24] and
incorporates the symmetric as well as the asymmetric division of cells.

We first consider the case of symmetric cell division. This leads to an
initial boundary value problem that involves a first-order linear PDE with a
functional term. We study the separable solution to this problem which plays
an important role in the long term behaviour of solutions. We also derive a
solution to the problem for arbitrary initial cell distributions. The method
employed exploits the hyperbolic character of the underlying differential op-
erator, and the advanced nature of the functional argument to reduce the
problem to a sequence of simple Cauchy problems. The existence of solu-
tions for arbitrary initial distributions is established along with uniqueness.
The asymptotic relationship with the separable solution is established, and
because the solution is known explicitly, higher order terms in the asymp-
totics can be obtained. Adding variability to the growth rate of cells leads
to a modified Fokker-Planck equation with a functional term. We find the
steady size distribution solution to this equation. We also obtain a construc-
tive existence and uniqueness theorem for this equation with an arbitrary
initial size-distribution and with a no-flux condition.

We then proceed to study the binary asymmetric division of cells. This
leads to an initial boundary value problem that involves a first-order linear
PDE with two functional terms. We find and prove the unimodality of the
steady size distribution solution to this equation. The existence of higher
eigenfunctions is also discussed. Adding stochasticity to the growth rate of
cells yields a second-order functional differential equation with two non-local
terms.

These problems, being a particular kind of functional differential equa-
tions exhibit unusual characteristics. Although the associated boundary
value problems are well-posed, the spectral problems that arise by separating
the variables, cannot be easily shown to have a complete set of eigenfunctions
or the usual orthogonality properties.
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Chapter 1

Introduction

1.1 Cell Biology

A cell is usually considered a basic “structural” and “functional” unit of
a living organism. A “large” number of individual cells constitutes a “cell
population”. Individual cells within a cell population increase their numbers
by means of cell growth and division, a property referred to as the “cell
proliferation”. In this thesis, we use cell growth in the context of an increase
in the “physical” size of a cell. This size could be the mass, radius or volume
of a cell. More generally, DNA content can also be used as a proxy for size.
The measurement of the DNA content in a cell is usually done through a
scientific process known as “flow cytometry” [5, 41, 65, 66, 67].

It was generally believed that cells divide in a symmetrical way, i.e., one
mother cell divides to give two daughter cells of equal sizes. However, it
has been observed over the years that many cell divisions are asymmetric
[49, 10, 22]. An asymmetric cell division generally means the following:

1. A mother cell divides into two daughter cells of different sizes.

2. Cellular constituents are preferentially segregated into only one of the
two daughter cells.

3. The two daughter cells are endowed with different potentials to differ-
entiate into a particular cell type.

[49, 30]. Neumüller and Knoblich [49], Chant [11], Thorpe et al. [69] observed
that the division of yeast is highly asymmetric. Gromley et al. [23] and
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Neumüller and Knoblich [49] noted that even in cultured cells, only one of
the daughter cells often inherits the midbody. Piel et al. [54], Spradling
and Zheng [64], Neumüller and Knoblich [49] mentioned that the protein
composition of the two centrosomes may be different. Rando [56], found that
the chromatin in the two daughter cells could be different. In the nematode
C. elegans and the fruitfly Drosophila, cell division is asymmetric.

Morrison and Kimble [48], Gönczy [22] discuss an example of symmetric
and asymmetric cell division and the coordination of these division mech-
anisms in stem cells. These stem cells can divide asymmetrically and give
rise to one stem cell (a property referred to as “self renewal”) and another
daughter cell that can differentiate into a more specialized cell. Stem cells
can also divide symmetrically giving rise to either two stem cells or to two
daughter cells that can differentiate into more specialized cells. Most stem
cells switch between these two modes of division according to the needs of
the body. For instance, stem cells increase in number during development
[48, 35], or after an injury [48, 83] by virtue of symmetric cell division.

A connection between the sizes of the daughter cells and their fates was
discussed by Gönczy [22]. This paper suggests that in animal cells, when the
anaphase 1 spindle is positioned asymmetrically in the mother cell, daughter
cells differ not only in fate but also in cell size. This asymmetric division can
be observed in C. elegans and the Drosophila. Similarly, It has been observed
that in animal cells, the size of the two daughter cells depends upon the the
position of the mitotic spindle [49, 21]. A centrally located mitotic spindle
will result in two daughter cells of the same size, whereas any displacement of
the spindle toward one pole will generate one larger and one smaller daughter
cell [49]. For a detailed account on the asymmetric cell division in the C.
elegans and the Drosophila, see Neumüller and Knoblich [49], Gönczy [22].

In this thesis, we use asymmetric cell division in the context of a mother
cell dividing into two daughter cells of different sizes. This asymmetric cell
division conserves mass.

Asymmetry is extreme in case of certain diploid cells. Diploid cells have
two homologous copies of each chromosome and certain diploid cells divide so
unevenly that most of the cytoplasm is inherited by one of the two daughter
cells called egg, and the other daughter cell called a polar body inherits
much less and dies. In somatic divisions, asymmetry is mild and rarely one

1anaphase: One of the stages of mitosis or meiosis in which chromosomes divide and
move towards opposite poles of a cell.
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daughter cell is more than double the size of the other [49].
A cell passes through four phases in order to divide and reproduce. These

are the G1, S, G2 and M phases. These four phases are preceded by the G0

phase (also referred to as the quiescent/senescent phase) which is a rest-
ing phase and cells stop dividing in G0. Spencer et al. [63] noted that in
metazoans, cells decide at the end of mitosis to either start the next cycle
immediately or to enter G0. Begg [5] observed that a cell may remain in
the G0 phase for years before returning to the cell division cycle. A single-
compartment model does not distinguish between the various phases of the
cell cycle whereas a multi-compartment model has a separate cell growth
model for each of the cell cycle phase. Begg [5] suggested that if DNA is
considered as the measure of the cell size, then a multi-compartment model
is more appropriate. On the other hand, single-compartment model is more
suited to modeling the actual physical size of a cell since physical size changes
in the G1, G2 and the S phase. Begg [5] also noted that the mathematical
ideas used in the study of single-compartment models may be useful in the
study of multi-compartment models. In this thesis, we deal only with single-
compartment models.

Tzur et al. [73] studied intrinsic mechanisms for coordinating growth and
cell cycle in metazoan cells. They examined cell size distributions in popu-
lations of lymphoblasts and showed that the growth rate is size dependent
through out the cell cycle. This motivates us to write the growth rate g of a
cell as a function of its size x i.e., g = g(x). In our general cell growth model
(chapter 4), we have used g(x) to denote the growth rate of a cell of size x,
however, in subsequent analysis (except chapter 9, section 9.2) we have taken
the growth rate g to be a constant for simplicity.

Rouzaire-Dubois et al. [57] studied the connection between cell size
and division in rat glioma cells and found that the rate of cell proliferation
changed with cell volume in a bell shaped manner, so that it is optimal within
a cell volume window and is controlled by low and high cell size checkpoints.
They observed that glioma cell proliferation is controlled predominantly but
not exclusively by cell size-dependent mechanisms. This provides us with
a rationale for making the frequency of division b size dependent. In our
generic model (chapter 4), we have used the frequency of division, or the
rate of cell division b as b(x), where x is the size of a cell. However, in
subsequent analysis (except chapter 9, section 9.2) again we have taken the
splitting rate of cells b as a constant for simplicity.
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1.2 Outline of thesis

Chapter 2

In this chapter we review the mathematical literature and the work done
previously in this subject area. We introduce some basic size-structured
cell growth models used and formulated hitherto by various mathematicians.
These models usually involve functional differential equations. We note the
paucity, and the development, of solution techniques to solve these functional
differential equations.

Chapter 3

Chapter 3 deals with some of the basic concepts, definitions and notations
we use through out the thesis. These provide the basic building blocks to
the subsequent development of theory and analysis. We define the concepts
of cell number density and the steady size distributions. We also introduce
notations for the growth rates and the splitting rates of cells and discuss their
nature.

Chapter 4

Here we present a model that describes the growth, division and death of
a cell population structured by size. The model is an extension of that
studied by Hall and Wake [24] and incorporates the asymmetric division of
cells. Initially, we consider deterministic growth and splitting rates. We then
extend this cell growth model to include stochasticity in the growth rate of
cells. This extension results in a “dispersion-like” model and yields a second
order partial integro-differential equation.

Chapter 5

In this chapter we study the symmetric cell division problem with determin-
istic growth rate and focus on separable solutions to the cell growth equation.
The motivation for the study of such solutions came from experimental re-
sults for certain plant cells that suggested solutions of this type, at least
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as a long term approximation [27]. We find “the steady size distribution”
(SSD) and show that it is unique. We discuss the existence and uniqueness of
higher eigenfunctions. The question of whether the set of the eigenfunctions
we obtain are complete is still open.

Chapter 6

Here we study the symmetric division of cells. A model for cells structured
by size undergoing growth and division leads to an initial boundary value
problem that involves a first-order linear partial differential equation with a
functional term. Here, size can be interpreted as DNA content or physical
size. The separable solution to this problem has been studied extensively and
plays an important role in the long term behaviour of solutions. It has been
observed experimentally and shown analytically that solutions for arbitrary
initial cell distributions are asymptotic to the separable solution as time goes
to infinity. The solution to the problem for arbitrary initial distributions,
however, is elusive owing to the presence of the functional term and the
paucity of solution techniques for such problems.

In this chapter we derive a solution to the problem for arbitrary initial cell
distributions. The method employed exploits the hyperbolic character of the
underlying differential operator, and the advanced nature of the functional
argument to reduce the problem to a sequence of simple Cauchy problems.
The existence of solutions for arbitrary initial distributions is established
along with uniqueness. The asymptotic relationship with the separable solu-
tion is established, and because the solution is known explicitly, higher order
terms in the asymptotics can be readily obtained.

Chapter 7

In this chapter, we study a cell growth equation with dispersion. This involves
a second order functional partial differential equation. We obtain steady
size distributions corresponding to the separable solutions of the functional
equation and establish the existence and uniqueness of higher eigenfunctions
ym for m ≥ 2. It remains elusive to determine the eigenvalue λ1 owing to the
indeterminate nature of the value of the eigenfunction at the origin. This
value of λ1 leads to a non-linear functional differential equation. We expose
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the problem. It is still an open question as to whether or not the solutions
obtained by separation of variables form a complete spanning set

We then obtain a constructive existence theorem for the linear, non-local
dispersion growth equation with an arbitrary initial size distribution and
with a no-flux boundary condition. We show that this solution is unique.

Chapter 8

Here, we study the case of binary asymmetrical splitting in which a cell of
size ξ divides into two daughter cells of different sizes and find the steady size
distribution (SSD) solution to the non-local differential equation. We then
discuss the shape of the SSD solution and show that it is unimodal. The
existence and uniqueness of higher eigenfunctions is also discussed.

Chapter 9

In chapter 9 we consider the case of binary asymmetrical splitting and vari-
able cell growth. We investigate the cell growth equation with dispersion,
first for the constant coefficients case (Section 9.1) and then for a certain
choice of non constant coefficients that correspond to dispersion, growth and
splitting rates (Section 9.2).

For the constant coefficients case, we find the steady size distribution
(SSD) solution to the cell growth equation with dispersion and show that
the solution is unique and positive. We then discuss the shape of the SSD
solution and establish that the SSD solution is unimodal.

Our choice of non-constant coefficients corresponding to the dispersion,
growth and splitting rates leads to a Bessel type operator, and it is shown that
there is a unique probability distribution function that solves the equation.
The solution is constructed using the Mellin transform and is given in terms
of an infinite series of modified Bessel functions.

12



Chapter 2

Literature review

Mathematical models use mathematical concepts and language to describe
and analyze information about a natural, biological, social or any other phe-
nomena. Population models are those mathematical models which deal with
populations. These models have long been used to analyze various biolog-
ical and physical processes. Population models can be classified as either
structured or unstructured. The first to appear were the unstructured pop-
ulation models. Such models are based on the total number of individuals
in a population. This means that individuals within a population cannot be
distinguished on the basis of either their age, size or any other property. The
human population growth was analyzed by Malthus in 1798 ([40]) through
an unstructured population model which can be written as

dN

dt
= βN − μN = γN,

where N is the number of individuals in a population, β is the per capita
birth rate, μ is the per capita death rate and γ = β−μ is called the Malthu-
sian parameter or the intrinsic rate of natural increase. The model, however,
ignores many relevant facts, including the age of individuals. For instance,
a newborn individual cannot reproduce. This shortcoming lead to the use
of structured population models, which are useful when individuals within
a population could be distinguished from one another on the basis of some
attribute. For instance, Mckendrick [43] in 1926 structured cell population
models on age. Age structured population models were also used and dis-
cussed by various mathematicians including Bailey [2], Lewis [38], Leslie [37],
Lotka [39], Sharpe and Lotka [60], Feller [19], Scherbaum and Rasch [59], von
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Foerster [79], Oster [51], Trucco [70, 71] and Rubinow [58]. The book by Metz
and Diekmann [44] and Hall’s PhD thesis [25] provide detailed accounts on
age structured population models.

Living cell populations which simultaneously grow and divide are usually
structured on size. This requires us to focus our attention to the size struc-
tured cell population models. In this case, cells with in a population are
distinguishable on the basis of their size, where the size could be the mass,
volume, DNA content or any other attribute that quantifies the physical di-
mension of a cell. The measurement of the DNA content is done through a
scientific process.

Various researchers structured cell populations on size during the 1960s.
These include Collins and Richmond [12] who described a method to deter-
mine the growth rate of “Bacillus cereus” at any given length; Koch and
Schaechter [34] who proposed a model for statistics of the cell division pro-
cess; Powell [55] who discussed the consequences of the hypothesis given by
Koch and Schaechter; and Painter and Marr [52] who studied microbial pop-
ulations. In 1971, Sinko and Streifer [62] formulated a deterministic, size
structured model for the dynamics of single species populations of organisms
reproducing by fission. They discussed the case of planarian worms in which
the original organism breaks into a parent organism and an offspring. This
gives the evolution equation as

∂ρ(t,m)

∂t
+

∂[g(t,m)ρ(t,m)]

∂m
= −b(t,m)ρ(t,m)+

1

1−H
b

[
t,

m

(1−H)

]
ρ

[
t,

m

(1−H)

]
+

1

hH
b

[
t− τ,

m

(hH)

]
ρ

[
t− τ,

m

(hH)

]
where ρ(t,m) is the mass density function which depends on mass m and
time t. The mass of the offspring just after fission is denoted by Hm, where
H is a parameter, and so the mass retained by the parent organism just after
fission is (1 − H)m. Here, the time required by the offspring after fission
to attain the capability of growth is denoted by τ after which the mass of
the offspring is given by hHm, where h is the fraction of the mass retained
after τ . The function b(t,m) is defined as “the rate at which an organism of
mass m at time t divides” and g(t,m) is the “average rate of growth for an
organism of mass m at time t”. The left hand side of the above continuity
equation accounts for the continuous changes in mass. Sinko and Streifer
noted that “the first term on the right hand side accounts for animals of mass
m which give birth and fall to a lower mass, the second term for animals of
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higher mass which give birth and fall to mass m, and the last term accounts
for the number of neonates (offspring which have just developed into viable
individuals) of mass m.

O. Diekmann et al. [18] analyzed a related linear problem during the
1980s. Heijmans [29] formulated a nonlinear size structured model to describe
the dynamics of cell populations in which cells divide asymmetrically (into
two unequal parts) by fission. Heijmans [29] also observed that cell size is
generally accepted by cell biologists as one of the most decisive parameters
and that it is attractive to structure cell population models on size because
cell size can be measured with relative ease and precision. Following Sinko
and Streifer [62], O. Diekmann et al. [18] and others, Hall and Wake [24]
formulated a size structured cell population model and considered the case
where a cell of size x divides into α daughter cells of the same size x

α
. This

leads to an advanced first order functional partial differential equation of the
form

∂

∂t
(n(x, t)) +

∂

∂x
(g(x)n(x, t)) = −b(x)n(x, t) + α2b(αx, t)n(αx, t). (2.1)

where n(x, t) denotes the number of cells of size x at time t, g(x) > 0 is the
growth rate of these cells, and b(x) > 0 is the rate at which cells of size x
divide to create α daughter cells. Here α > 1 is a constant (in applications it
is usually 2). The first term on the left hand side of equation (2.1) accounts
for the net rate of change while the second term accounts for the growth
rate in size. The first term on the right hand side of equation (2.1) denotes
the loss of cells through division while the second term on the right hand
side gives the cells from division at size αx. Hall and Wake [24] noted the
interest of biologists in the steady size distributions (SSDs) which can arise
in an exponentially increasing population with proportion of any given size
of cells remaining constant. This interest is also observed in Collins and
Richmond [12] and Tyson and Diekmann [72]. An SSD solution to equation
(2.1) corresponds to a separable solution,

n(x, t) = N(t)y(x), (2.2)

where y is a probability density function (pdf). Assuming that the growth
and division rates are functions of size alone and substituting the solution
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form (2.2) into equation (2.1) yields

1

N(t)

d

dt
N(t) =

1

y(x)

(
− d

dx
(g(x)y(x))− b(x)y(x) + α2b(αx)y(αx)

)
= Λ,

(2.3)

where Λ is a constant of separation. Equation (2.3) gives

N(t) = AeΛt,

for some constant A, and the functional differential equation

∂

∂x
(g(x)y(x)) + (b(x) + Λ)y(x) = α2b(αx)y(αx). (2.4)

The boundary conditions for this problem are

y(0) = 0, lim
x→∞

y(x) = 0, (2.5)

and since y must be a pdf, it is required that y ∈ L1[0,∞), y(x) ≥ 0 for all
x ≥ 0, and

∞∫
0

y(x)dx = 1. (2.6)

The constant Λ is elusive except in certain cases. Integrating equation (2.1)
from 0 to ∞, using the boundary conditions (2.5) along with the normalizing
condition (2.6), yields

Λ = (α− 1)

∞∫
0

b(x)y(x)dx. (2.7)

Here, it is assumed that b(x)y(x) ∈ L1[0,∞). The first case studied by Hall
and Wake [24] concerned constant growth and division rates. Let g(x) = g
and b(x) = b, where g and b are positive constants. Equation (2.7) and
condition (2.6) imply

Λ = (α− 1)b. (2.8)
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For this case, equation (2.4) reduces to the pantograph equation

gy′(x) + bαy(x) = bα2y(αx). (2.9)

The pantograph equation, as van-Brunt and Wake [75] observe, appears in
many applications such as light absorption in the Milky Way [1], a ruin
problem [20], and the collection of current in an electric train [50]. A de-
tailed analysis of the equation is given by Kato and McLeod [32] (see also
[31]). The cell growth application differs, however, because it is a boundary
value problem involving an eigenvalue. In this sense the problem can be re-
garded as a singular “Sturm Liouville” problem. Indeed, one can find higher
eigenvalues, but the corresponding eigenfunctions are not pdfs (see [77] and
[78]). Hall and Wake [24] showed that there exists a unique pdf solution to
equation (2.9). It is of interest to note that they did not need to impose a
positivity condition on y. It turns out that the eigenvalue Λ corresponds to
the first eigenvalue for the “Sturm-Liouville” problem and the corresponding
eigenfunction y has no positive zeros (cf. [77]).

In some applications such as the aforementioned light absorption prob-
lem [1], a ruin problem [20] and a cell growth model [24], equation (2.9) is
advanced and the solution is required to be a probability density function
(pdf). The strong connection with problems in probability, in hindsight, is
not surprising given that it can be derived as a consequence of a first order
Markov process. The relationship has been explored by Derfel [15].

Another relation for Λ can be gleaned by multiplying both sides of equa-
tion (2.4) by x and then integrating from 0 to ∞. Assuming g(x)y(x) and
xy(x) are in L1[0,∞), this approach yields

Λ =

∞∫
0

g(x)y(x)dx

∞∫
0

xy(x)dx

. (2.10)

In particular, if g(x) = gx, where g is a constant, then Λ = g. This case was
explored by Hall and Wake [26] for b(x) = bxn, where n is a positive number
and b is a constant. They showed that there is a unique pdf solution to
the boundary-value problem (2.4) subject to condition (2.5). Van-Brunt and
Vlieg-Hulstman [77] then showed that this boundary value problem leads
to a family of eigenvalues and corresponding eigenfunctions with the first
eigenfunction being the probability density function. The existence of such
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eigenvalues and eigenfunctions was established through the use of Mellin
transforms. The Mellin transform of a function h(x) is given by

M [h, s] =

∞∫
0

xs−1h(x)dx. (2.11)

The eigenvalues are given by the discrete spectrum

λm = bαm(n+1)+1, (2.12)

for m = 0, 1, 2, . . . . The corresponding eigenfunctions are in terms of Dirich-
let series of the form

ym(x) = Km

(
e−bxn+1/(n+1) +

∞∑
k=1

pk(λm)e
−bαk(n+1)xn+1/(n+1)

)
, (2.13)

where

Km = (n+ 1)

(
b

n+ 1

)1/(n+1)(
Γ

(
1

n+ 1

))−1 ∞∏
k=0

(
1− 1

bα(k−m)(n+1)+1

)−1

,

(2.14)

and

pk(λm) =
(−1)kαkm(n+1)

α(n+1)k(k−1)/2
k∏

j=1

(1− α−(n+1)j)

. (2.15)

Notice that the pdf solutions obtained by Hall and Wake [24] are recovered
when m = 0 in equation (2.13). The use of Mellin transforms to solve the
problem was a notable feature of van-Brunt and Vlieg-Hulstman’s work. It
provides a powerful tool for the construction of eigenvalues and eigenfunc-
tions. The question whether these eigenfunctions are complete, i.e., whether
they form a basis of some space, is not answered by van-Brunt and Vlieg-
Hulstman [77]. In this thesis (see chapter 5), we will use the Mellin transforms
to construct eigenfunctions that arise in cell growth models. We also discuss
the “completeness” of eigenfunctions.
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DaCosta et al. [13] revisited the two cases (the constant coefficient case
and the variable coefficient case) of equation (2.4) and showed that the dis-
tributions must be unimodal. They further showed that, for more general
choices of growth and division rates, at least one eigenvalue exists. Note that
the case where the growth rate is linear g(x) = gx, and the division rate is
constant, b(x) = b, is special. For this case, equations (2.7) and (2.10) imply

Λ = (α− 1)b = g,

so that the parameters α, b and g cannot be specified independently.
The pantograph equation has been generalized in many ways. For in-

stance, it has been studied in the complex plane by Derfel and Iserles [16].
They considered two generalizations of the pantograph equation to the com-
plex plane, first a “pantograph equation with involution”, i.e., an equation of
the form

y′(z) =
m−1∑
k=0

aky(ω
kz) +

m−1∑
k=0

bky(rω
kz) +

m−1∑
k=0

cky
′(rωkz), z ∈ C, (2.16)

where ak, bk, ck ∈ C, k = 0, 1, . . . ,m − 1, are given, r ∈ (0, 1), and “ω is
the m-th primitive root of unity, i.e., ω = e2πi/m”. They also considered a
“pantograph equation of the second type”, i.e., an equation of the form

y(z) =
l∑

j=0

n∑
k=1

aj,ky
(k)(ωjz), z ∈ C,

where aj,k, ωj ∈ C, together with appropriate initial conditions at the ori-
gin. Another generalization of the pantograph equation has been to replace
the simple functional argument with a nonlinear argument (Heard [28], van-
Brunt et al. [74]). Second order versions have been studied in relation to a
cell-growth model by Basse et al. [4], Wake et al. [80], as a singular “Sturm
Liouville” problem by van-Brunt et al. [76], and in the context of complex
dynamics by Marshall et al. [42]. Matrix versions, among numerous other
variations, have also been considered by Carr and Dyson [7].

Hall and Wake’s model [24] was used by Basse et al. [4], Begg et al. [6]
and Hall et al. [27] to describe cell growth in plants. Basse et al. [3] used
the same model for tumor cell growth. Suebcharoen et al. [68] extended
the model to include the asymmetric division of cells where a cell of size βix
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divides into βi > 1 daughter cells of different sizes at a rate ai for i = 1, 2.
The resulting model is a first order partial integro-differential equation

∂n(x, t)

∂t
= −g

∂n(x, t)

∂x
− B(x)n(x, t) +

∞∫
x

W (x, ξ)n(ξ, t)dξ − μn(x, t),

(2.17)

where B(x) is the rate at which cells of size x divide. Also, n(x, t), g > 0 and
μ ≥ 0 are the number density, growth rate and mortality of cells respectively.
The integral term denotes the increase in cell number of size x due to the
division of cells of size greater than x and W (ξ, x) is the “rate at which cells
of size x further subdivide into cells of size x

βi
”. Mathematically, W (ξ, x) is

given by

W (ξ, x) = a1β1δ

(
ξ − x

β1

)
+ a2β2δ

(
ξ − x

β2

)
.

Equation (2.17) is supplemented with an arbitrary initial condition

n(x, 0) = n0(x), x ≥ 0, (2.18)

the boundary condition

n(0, t) = 0, t ≥ 0, (2.19)

and the condition

lim
x→∞

n(x, t) = 0. (2.20)

Suebcharoen at al. [68] noted the occurrence of such an asymmetric division
in the embryos of C. elegans (worms) and Drosophila (flies). They considered
an SSD solution of the form

n(x, t) = N(t)y(x),

where y(x) is a pdf. This approach yields a functional differential equation
with two non-local terms and is given by

y′(x) +
(
a1β1 + a2β2

g(β1 + β2)
+

μ− Λ

g

)
y(x) =

a1β
2
1

g
y(β1x) +

a2β
2
1

g
y(β2x), (2.21)
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where the pdf eigenvalue is

Λ = μ−
(
a1β1 + a2β2 − a1β1 + a2β2

β1 + β2

)
, (2.22)

which reduces equation (2.21) to

y′(x) +Ky(x) =
a1β

2
1

g
y(β1x) +

a2β
2
1

g
y(β2x). (2.23)

The boundary conditions for this problem are

y(0) = 0, lim
x→∞

y(x) = 0, (2.24)

where K = a1β1+a2β2

g
. Suebcharoen et al. [68] showed that the solution to

equation (2.23) subject to the conditions in (2.24) is in terms of a double
Dirichlet series. The uniqueness and positivity of solutions were also shown.
However, the proof of the SSD solution being unimodal remained elusive.

Hall and Wake’s model [24], however, did not cover the asymmetric divi-
sion of cells and Suebcharoen et al.’s model [68] did not focus on the biological
interpretation of the splitting kernel. In this thesis (see chapter 4), we ex-
tend Hall and Wake’s model to cater for the asymmetric division of cells and
establish the model directly from a biological interpretation of the splitting
kernel.

The model given by Suebcharoen et al. [68] and the model given by Hall
and wake [24] were deterministic in nature and there was no randomness in
the number density, growth and division of cells. Wake et al. [80] extended
the model given by Hall and Wake [24] to allow for the number density of
cells over a size variable to disperse over size. Their model was, however,
for symmetric cell division and considered the scenario of a cell of size αx,
where x > 0 dividing into α daughter cells of equal sizes x and so α > 1. The
resulting model was in accordance with the modified Fokker-Plank equation

nt(x, t) = −(gn)x + (Dn)xx + bα2n(αx, t)− bn(x, t), (2.25)

where D is the dispersion coefficient for the growth of cells and is given by

D =
variance

2
,
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and n(x, t) is the number density. The model is supplemented with the no
flux condition

Dnx(0, t)− gn(0, t) = 0, (2.26)

an arbitrary initial condition

n(x, 0) = n0(x), (2.27)

and the conditions

lim
x→∞

n(x, t) = 0, lim
x→∞

nx(x, t) = 0. (2.28)

Here g is the growth rate and b is the frequency of splitting. Hall and Wake
[80] considered growth rate g(x) = g and frequency of division b(x) = b.
They obtained an SSD solution to equation (2.25) on a pattern similar to that
used by Hall and Wake [24] (discussed earlier) for the deterministic case. It
is interesting to note that the eigenvalue corresponding to a pdf solution y in
both these cases (the deterministic case and the dispersion case) remains the
same (given by equation (2.8)). However, the functional differential equation
associated with the eigenvalue in the dispersion case involves a second order
derivative and is given by

D

g
y′′(x)− y′(x)− bα

g
y(x) +

bα

g
αy(αx) = 0, (2.29)

where D
g

> 0 has dimensions of length and bα
g

> 0 has dimensions of

length−1.The “no-flux” condition given by equation (2.26) becomes

D

g
y′(0)− y(0) = 0, (2.30)

and condition (2.28) gives

lim
x→∞

y(x) = 0. (2.31)

The solution to equation (2.29) is in the form of a Dirichlet series.
In this thesis (chapters 7, 9), we also extend ‘variability in growth rates

of cells’ to the case of asymmetric cell division and consider certain choices
of growth rates, splitting rates and dispersion coefficients.
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Another second order analogue of the pantograph equation is given by a
functional differential equation of the form

y′′(x)− ay′(x)− by(x) + λy(αx) = 0. (2.32)

subject to the normalizing condition (2.6), the boundary conditions (2.5) and

lim
x→∞

y′(x) = 0.

Here α, a and b are constants such that α > 1, a > 0, and b > 0. This second
order analogue was studied by van-Brunt et al. [76].

Perthame and Ryzhik [53] discussed a fragmentation equation

∂

∂t
n(t, x) +

∂

∂x
n(t, x) + b(x)n(t, x) = 4b(2x)n(t, 2x), t > 0, x ≥ 0,

n(t, x = 0) = 0, t > 0,

n(0, x) = n0(x) ∈ L1(R+),

(2.33)

and mentioned its occurrence as a “basic model for size-structured popula-
tions”. Here n(t, x) denotes the population density of cells of size x at time
t. This equation arises when the rate of cell growth is constant and a cell di-
vides into two identical daughter cells at a rate b(x). The same equation also
models problems in physics including degradation in polymers and droplets
and in internet protocols. For the constant coefficient case i.e., b(x) = B,
Perthame and Ryzhik [53] obtained the first eigenvalue

λ = B, (2.34)

and the eigenfunction N(x), corresponding to the pdf condition

∞∫
0

N(x)dx = 1, (2.35)

in the form of a Dirichlet series.
Michel et al. [45] considered the general scattering equation and the age,

size and maturity structured population models and showed a common rel-
ative entropy structure using the “first eigenelements” of the problem . A
binary fragmentation of cell division was considered by Michel et al. [46].
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Laurençot and Perthame [36] described the growth-fragmentation equation
which allowed for cell division into any number of pieces. The rate of con-
vergence of fragmentation equations was studied by Cáceres et al. [8, 9].

Withers and Nadarajah [82] extended the results of Hall and Wake [24, 26]
and of van-Brunt and Vlieg-Hulstman [77, 78]. They obtained solutions for
generalizations of the steady size functional differential equation

y′(x) + c(x)y(x) = g(x)−1

I∑
i=1

pib(αix)y(αix). (2.36)

where pi is the probability of a cell of size x dividing and creating αi new cells
of size x

αi
at the rate b(x). The function c(x) is determined by b(x) and the

growth rate of a cell g(x). The solutions for y(0) �= 0 were also considered.
Withers and Nadarajah [82] considered the generalization when the daughter
cells are given by a discrete valued probability distribution, i.e.,

α = αi with probability pi, i = 1, . . . , I and
I∑

i=1

pi = 1.

This was also analyzed for continuous pdf’s by Hall et al. [27].
The second order cell growth model was studied by Wake et al. [80] and

Kim [33] for the case of constant coefficients with one non-local term. A
symmetric cell division model for plankton was studied by Basse et al. [4].
In their model, the dispersion and growth rates are constant, but b(x) is a
generalized function. The second order asymmetric model with non-constant
coefficients has received little attention owing primarily to the difficulty in
obtaining explicit solutions. Kim [33] studied a simpler related symmetric
problem involving a second order pantograph equation with certain choices
of non-constant coefficients. The role and placement of the eigenvalue pa-
rameter, however, is different. An interpretation of a related boundary-value
problem as a singular Sturm Liouville problem is given by van-Brunt et al.
[76]. In this study, the coefficients are constants and the eigenvalue parameter
appears with the functional term.

More recently, van-Brunt and Wake [75] studied the second order sym-
metric cell growth problem given by

(D(x)y(x))′′ − (g(x)y(x))′ + α2B(αx)y(αx)− (B(x) + Λ)y(x) = 0, (2.37)
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where D = σ2

2
is the dispersion, σ is the variance, g(x) is the growth rate,

B is the frequency of division, α corresponds to the number of daughter
cells and Λ is a constant that arises from separation of variables. The second
order cell growth functional equation (2.37) is supplemented with a boundary
condition

lim
x→∞

y(x) = 0, (2.38)

and the zero flux conditions

lim
x→∞

{(D(x)y(x))′ − g(x)y(x)} = 0, (2.39)

lim
x→0+

{(D(x)y(x))′ − g(x)y(x)} = 0. (2.40)

Van-Brunt and Wake [75] considered the case in which the dispersion is
linear, i.e., D(x) = Dx but the growth and the splitting rates are constant,
i.e., g(x) = g and B(x) = B respectively. Here D, g and B are positive
constants. This reduces the functional differential equation (2.37) to

xy′′(x)− ay′(x)− by(x) = −bαy(αx), (2.41)

where

a =
( g

D
− 2
)
,

and

b =
Bα

D
.

It was shown that if a solution to the above problem, subject to the nor-

malizing condition
∞∫
0

y(x)dx = 1, exists in L1[0,∞), then that solution is

unique and positive. They further showed that the probability density func-
tion (pdf) solutions to the second order cell growth equation (2.37) subject

to conditions (2.38)-(2.40) and the normalizing condition
∞∫
0

y(x)dx = 1 is in

terms of the modified Bessel functions. A key aspect in this study was the
use of the Mellin transform to solve the functional equation and study the
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asymptotics of the solution as x → ∞ and x → 0+. These techniques can
also be exploited if the growth rate is linear, provided the Mellin transform
can be determined. In chapter 9, we extend these results for the asymmetric
division of cells in which dispersion is quadratic, growth rate is linear and
frequency of division is quadratic.
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Chapter 3

Basic Concepts, Assumptions
and Notations

3.1 The nature of W (x, ξ)

The division event of a cell splitting into daughter cells of either equal or
different sizes is captured by a function W . Here we define W (x, ξ), where
ξ > x, as the number density of cells of size x produced when one cell of size
ξ divides. The function W (x, ξ) is deterministic in nature and depends not
only on the size ξ of the cell which divides (the mother cell) but also on the
size x of the daughter cell. If the dimension of W is denoted by [W ], then
[W ] = M−1, where M denotes size.

3.2 Rate of cell division b(ξ)

The rate at which the cells of a particular size ξ divide at a given time is
determined by b(ξ). This frequency depends on the size ξ of the mother
cell. Its dimension is [T−1], where T denotes time. In general b could be
either probabilistic or deterministic. We, however, restrict ourselves to a
deterministic b.
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3.3 Number density n(x, t)

The concept of number density has been used extensively in structured popu-
lation models by various mathematicians. We consider a continuous number
density n(x, t) such that at time t, the total number of cells N(t) between
size a and size b is given by

N(t) =

b∫
a

n(x, t)dx. (3.1)

The dimension of n(x, t) is [M−1], where M denotes size. There are other
notations for number density which have been used in the literature. For in-
stance, Sinko and Streifer [62] used ρ(t,m) to denote a mass density function
which depends on time t and mass m. In another paper [61], they presented
an age-size structure of a population and used η(t, a,m) to denote a density
function which depends on time t, age a, and size m.

3.4 Growth rate g(x)

We use g(x) to denote the growth rate of cells of size x at time t. The
dimension of the growth rate g is [MT−1], where M denotes size and T
denotes time. Initially, the growth rate is taken to be deterministic i.e.,
void of any randomness but later in the thesis we consider a probabilistic
growth rate. A deterministic growth rate leads to a first order partial inetgro-
differential equation while a probabilistic growth rate results in a second order
partial integro-differential equation with dispersion i.e., a modified Fokker-
Planck equation (as we shall see later).

3.5 Steady Size Distributions (SSDs)

“Steady size-distributions, or SSDs, occur when the size distribution of a
cell population retains a constant shape while the overall number of cells in
the population may be growing or decaying” (Begg [25]). The evolution of
the number density n(x, t) of cells by size x, in an unperturbed situation,
is observed experimentally to exhibit the attribute of that of an asymptotic
SSD. That is, n(x, t) ∼ scaled (by time t) multiple of a constant shape y(x)
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as t → ∞, and y(x) is then the SSD distribution, with constant shape for
large time (see Figure 3.1).

Figure 3.1: A figure showing the SSD behavior for binary symmetric division of
cells. This graph plots the number density of cells n(x, t) against the
cell size x (with units [x] = M , where M is the mass) for large times
t1 and t2.
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Chapter 4

Model derivation

In this chapter, we present a model that describes growth, division and death
of cells structured by size. The model is an extension of that studied by
Hall and Wake [24] and incorporates the asymmetric division of cells. As
discussed in the literature review (chapter 2), Hall and Wake’s original model
[24] only allowed for the symmetric division of cells and the model given
by Suebcharoen et al. [68] did not focus on the biological interpretation
of the splitting kernel. Here, we extend Hall and Wake’s model to cater
for the asymmetric division of cells and establish the model directly from
a biological interpretation of the splitting kernel. We first assume that the
system is deterministic and derive a model for such a system. We then add
stochasticity to the growth rate of cells.

Let the horizontal axis represent the size and let n(x, t) be the number
density of cells of size x at time t. If the units of x, [x] = M then [n] = M−1.
Consider the interval (x, x + dx) (as shown in Figure 4.1). In the absence
of division or death, the rate of change of the cell number density in the
size-interval dx equals the rate of the cell number density “convected” into
dx minus the rate of the cell number density “convected” out of dx. This
gives

∂n

∂t
= − ∂

∂x
(gn), (4.1)

where g(x) is the per capita growth rate, [g] = MT−1, and T = [t]. The
incoming rate of change of cell density in the interval (x, x+ dx) (because of
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Figure 4.1: Cell growth and division for the cohort

the splitting of cells of larger size) is

∞∫
x

b(ξ)W (x, ξ)n(ξ, t)dξ, (4.2)

where W (x, ξ) is the number density of cells of size x produced when one cell
of size ξ divides ([W ] = M−1) and b(ξ) ([b] = T−1) is the frequency at which
the cells of size ξ divide to give the cells of size x. The term τW (τ, x)dτ is
the biomass of the cells that arrive in the interval (τ, τ +dτ) when one cell of
size x divides. Thus, τ

x
W (τ, x)dτ gives the fraction of the cell of size x used

to form this biomass. The out going cell density rate due to the splitting of
cells of size x is therefore

−
⎛
⎝ x∫

0

b(x)
τ

x
W (τ, x)dτ

⎞
⎠n(x, t), (4.3)

where the minus sign indicates that the cells are leaving the point x. Also,
the contribution due to the death rate of cells of size x is −μn(x, t) where
μ(x) is the specific death rate ([μ] = T−1). Incorporating the cell division
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and death, equation (4.1) becomes

∂n

∂t
+

∂

∂x
(gn) =

∞∫
x

b(ξ)W (x, ξ)n(ξ, t)dξ

−
⎛
⎝ x∫

0

b(x)
τ

x
W (τ, x)dτ

⎞
⎠n(x, t)− μn(x, t). (4.4)

At any time t, it is biologically reasonable to expect the number density of
cells of size zero to be zero, i.e., for all t ≥ 0

n(0, t) = 0. (4.5)

Although no size limit is placed on cells in this model, it is also reasonable
to impose the condition

lim
x→∞

n(x, t) = 0, (4.6)

for all t ≥ 0. The cell population model is studied from an initial number
density distribution,

n(x, 0) = n0(x), (4.7)

where n0 is a given non-negative function satisfying equations (4.5)-(4.6).
The problem is thus an initial-boundary value problem that consists of solv-
ing the integro-differential equation (4.4) subject to conditions (4.5)-(4.7).
As noted the size x of a cell can be volume, mass, DNA content etc. Here,
we shall make the choice that the size corresponds to a quantity that is con-
served during the division, e.g. DNA content or biomass. We simply refer to
this as “biomass”. Since τW (τ, x)dτ is the biomass of the cells that arrive
in the interval (τ, τ + dτ) when one cell of size x divides, the mass balance
requires the equation

x =

x∫
0

τW (τ, x)dτ, (4.8)

which is a Volterra integral equation with many solutions. Further, for binary
division (two daughter cells) we need

ξ∫
0

W (x, ξ)dx = 2. (4.9)
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Equations (4.8) and (4.9) together provide restrictions on the admissible
functions possible for W . We introduce the most feasible W in the next
section. Using the mass balance equation (4.8), equation (4.4) then simplifies
to

∂n

∂t
+

∂

∂x
(gn) =

∞∫
x

b(ξ)W (x, ξ)n(ξ, t)dξ − (b(x) + μ)n(x, t), (4.10)

This, together with appropriate boundary and initial conditions is a problem
to be addressed in chapters 5, 6 and 8.

The deterministic cell growth model (4.4)-(4.7) can be refined to include
stochasticity in the growth rate of cells. As Hall [25] notes that there may be
an “experimental evidence showing significant variation in the growth rates
of individuals all with the same measured properties”. In such a scenario,
the deterministic cell growth model discussed above would be inappropriate.
To cater for this, we add stochasticity to the growth rate of cells, i.e.,

dx = gdt+ σdS,

where S is a Wiener process with dS2 = dt. This leads to a (modified)
Fokker-Planck equation. For a detailed derivation of such an equation, see
the book by Cox and Miller [14] and Hall’s thesis [25]. The resulting modified
Fokker-Planck equation is a partial integro-differential equation of the form

∂

∂t
n(x, t) +

∂

∂x
(g(x)n(x, t)) =

∂2

∂x2
(D(x)n(x, t))

+

∞∫
x

b(ξ)W (x, ξ)n(ξ, t)dξ −
⎛
⎝ x∫

0

b(x)
τ

x
W (τ, x)dτ

⎞
⎠n(x, t)− μn(x, t),

(4.11)

where D(x) = σ2

2
≥ 0 is the dispersion coefficient (the units are [D] = M2T−1

and σ is the standard deviation. The partial integro-differential equation
(4.11) is supplemented with the no-flux condition

∂

∂x
(D(x)n(x, t))− g(x)n(x, t)

∣∣∣∣
x=0

= 0, (4.12)

together with an initial number density distribution

n(x, 0) = n0(x). (4.13)
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We also impose the conditions

lim
x→∞

n(x, t) = 0, (4.14)

and

lim
x→∞

∂

∂x
n(x, t) = 0. (4.15)

The mass balance equation (4.8) remains valid in this case and simplifies
equation (4.11) to

∂

∂t
n(x, t) +

∂

∂x
(g(x)n(x, t)) =

∂2

∂x2
(D(x)n(x, t))

+

∞∫
x

b(ξ)W (x, ξ)n(ξ, t)dξ − (b(x) + μ)n(x, t).

(4.16)

This, together with appropriate boundary and initial conditions is also a
problem to be addressed in chapters 7 and 9.
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Chapter 5

Symmetrical cell division and
steady size distributions

Symmetric cell division occurs when a cell divides into daughter cells of equal
sizes. Here, we study the case in which a cell of size ξ = αx divides into α > 1
daughter cells each of size x. The biology compels α to be identically equal
to 2, since a mother cell divides exactly into two daughter cells. Although
α �= 2 is biologically unrealistic, it may be of mathematical interest. The
model we have developed is generic and allows values of α to be different
from 2. Since a cell divides only when it is a multiple of α, W (x, ξ) in this
case becomes

W (x, ξ) = αδ

(
ξ

α
− x

)
, (5.1)

where δ denotes the Dirac delta function. A straightforward calculation
shows that W (x, ξ) given by equation (5.1) satisfies the mass balance equa-
tion (4.8) as well as equation (4.9) (for α = 2). The above choice of W and
the mass balance equation simplify equation (4.4) to

nt(x, t)︸ ︷︷ ︸
net rate of change

+ gnx(x, t)︸ ︷︷ ︸
growth rate in size

= α2bn(αx, t)︸ ︷︷ ︸
cells from division

at size αx

− bn(x, t)︸ ︷︷ ︸
loss of cells

through division

−μn(x, t)︸ ︷︷ ︸
cell-death

,

(5.2)

Here we took for simplicity g and b as specified constants. Equation (5.2) is
supplemented by conditions (4.5)-(4.7). This model, without the mortality
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term, was considered by Hall and Wake [24] as a basic model for size struc-
tured cell populations. Here we have derived Hall and Wake’s model from
our generic model (4.4) that also has mortality incorporated into it. Hall
and Wake focused on the solutions to equation (5.2) that correspond to the
steady size distribution (SSD) (of constant shape). Perthame and Ryzhik [53]
proved the existence of a stable steady distribution (first positive eigenfunc-
tion) and exponential convergence of solutions toward such a steady state for
large times. Hall and Wake [24] considered separable solutions of the form

n(x, t) = y(x)N(t), where N(t) =
∞∫
0

n(x, t)dx is the total population at time

t and y(x) (i.e., y is time invariant) is a probability density function with
∞∫
0

y(x)dx = 1. They called such solutions “steady size distributions” (SSDs).

SSD solutions are thus separable solutions of the form n(x, t) = N(t)y(x)
which upon substitution into equation (5.2) gives

N ′(t)
N(t)

= −g
y′(x)
y(x)

+
α2by(αx)

y(x)
− (b+ μ)

= −λ,

where λ is a separation constant (to be found). This leads to solutions of the
form

n(x, t) = e−λty(x), (5.3)

where y satisfies

gy′ = α2by(αx)− (μ+ b− λ)y(x), (5.4)

along with the conditions

y(0) = 0 = lim
x→∞

y(x). (5.5)

Hall and Wake required y(x) to be greater than or equal to zero for all x
greater than or equal to zero. They further required y to be integrable on
[0,∞) and without loss of generality they assumed y to be a probability
density function (pdf) so that

∞∫
0

y(x)dx = 1. (5.6)
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The value of λ can be determined by first integrating equation (5.4) with
respect to x from 0 to ∞, i.e.,

g

∞∫
0

y′(x)dx = α2b

∞∫
0

y(αx)dx− (μ+ b− λ)

∞∫
0

y(x)dx,

and then using conditions (5.5) and (5.6). This yields

λ = μ− b(α− 1).

Equation (5.4) thus reduces to

gy′ = α2by(αx)− bαy(x). (5.7)

Hall and Wake [24] then solved equation (5.7) along with conditions (5.5) and
(5.6) by the use of Laplace transforms. The resulting solution is a Dirichlet
series of the form

y(x) =
a

K

∞∑
n=0

(−1)nαne−aαnx

(α− 1)(α2 − 1) . . . (αn − 1)
, (5.8)

where

K =
∞∏
n=1

(1− α−n), (5.9)

and

a =
bα

g
. (5.10)

SSD solutions are of central interest in this model since they can be easily
matched to data for the size distribution of cells for large time. They are
special solutions to the nonlocal partial differential equation (5.2). In par-
ticular, given an initial distribution n(x, 0) = n0(x), the SSD solution does
not give the complete solution (unless n0(x) = y(x)) and this prompts one
to consider other techniques to solve the more general problem.

This means that there is a set of solutions to equation (5.4) with ho-
mogeneous boundary conditions, that is, λ has the role of an eigenvalue as
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discussed by van-Brunt et al. [76]. It may be possible that a class of solu-
tions ym for m = 0, 1, . . . , can be obtained using an eigenfunction expansion.
Specifically, we can use the conditions given by the successive moments (that
is, the Mellin transform),

∞∫
0

xm−1ym(x)dx = 0,

∞∫
0

xmym(x)dx �= 0 (5.11)

to calculate some further solutions to equation (5.4). These conditions give
rise to a class of eigenfunctions and are sufficient in this respect. At this stage
it is not clear whether there are other eigenfunctions. The idea mimics that
used by van-Brunt and Vlieg-Hulstman [77]. Equation (5.4) is first multiplied
by x and then the resulting equation is integrated with respect to x from 0
to ∞, i.e.,

g

∞∫
0

xy′(x)dx =α2b

∞∫
0

xy(αx)dx− (μ+ b− λ)

∞∫
0

xy(x)dx.

This gives,

g[xy]|∞0 −
∞∫
0

y(x)dx = (b− μ− b+ λ)

∞∫
0

xy(x)dx,

which by using condition (5.11) with m = 1 yields

λ = μ. (5.12)

Similarly, multiplying equation (5.4) by increasing powers of x and then
integrating the resulting equations from 0 to ∞ with respect to x leads to
the spectrum (see Figure 5.1),

λm = μ+ b− bα−(m−1), (5.13)

for m = 0, 1, 2, . . . . These eigenvalues lead to equations of the form

gy′m(x) = α2bym(αx)− bα−(m−1)ym(x). (5.14)
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Figure 5.1: Spectrum of Eigenvalues

Of course, there may be other eigenvalues and eigenfunctions. These eigen-
functions ym are the solutions to equation (5.14) subject to conditions given
by (5.11) and

ym(0) = 0 = lim
x→∞

ym(x), (5.15)

The first eigenfunction is the pdf solution y0 given by equation (5.8). The
higher eigenfunctions can be found by following the procedure used by van-
Brunt and Vlieg-Hulstman [77], who considered an equation of the form

y′(x) + bxny(x) = λαnxny(αx). (5.16)

subject to conditions (5.5) and (5.6). Here, we solve equation (5.14) subject
to condition (5.15) using the same technique. Let M(s) denote the Mellin
transform of y. Applying the Mellin transform to equation (5.14), i.e.,

g

∞∫
0

xs−1y′m(x)dx = α2b

∞∫
0

xs−1ym(αx)dx− bα−(m−1)

∞∫
0

xs−1ym(x)dx,

where m = 0, 1, 2, . . . , gives

−(s− 1)gM(s− 1) + bα−(m−1)M(s) =
bα2

αs
M(s), (5.17)

where M(s) is the Mellin transform of ym(x) and is given by

M(s) =

∞∫
0

xs−1ym(x)dx.
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The homogeneous equation associated with (5.14) is

gy′m(x) + bα−(m−1)ym(x) = 0. (5.18)

Applying the Mellin transform to the homogeneous equation (5.18), i.e.,

g

∞∫
0

xs−1y′m(x)dx+ bα−(m−1)

∞∫
0

xs−1ym(x)dx = 0,

gives

− (s− 1)gF (s− 1) + bα−(m−1)F (s) = 0. (5.19)

where F (s) is the Mellin transform of ym(x) for the associated homogeneous
equation (5.18).

We seek solutions to equation (5.17) of the form

M(s) = KmF (s)Q(s), (5.20)

where Km �= 0 is a normalization constant so that

∞∫
0

xmymdx = 1, (5.21)

for m = 0, 1, 2, . . . , and the factor Q contains all the influence of the func-
tional term. Substituting the expression for M(s) from equation (5.20) to
equation (5.17) gives

−(s− 1)gKmF (s− 1)Q(s− 1) + bα−(m−1)KmF (s)Q(s) =
bα2

αs
KmF (s)Q(s),

which by using equation (5.19) yields the recurrence relation

Q(s− 1) =
(
1− αm−s+1

)
Q(s),
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so that

Q(s) =
∞∏
r=0

(1− αm−s−r). (5.22)

The associated homogeneous equation (5.18) can be solved by elementary
means. This gives

ym ∼ e−
b
g
α−(m−1)x. (5.23)

The Mellin transform of equation (5.23) is

∞∫
0

xs−1ym(x)dx =

∞∫
0

xs−1e−
b
g
α−(m−1)xdx,

which can be written as

F (s) =
( g

αb

)s
αsmΓ(s), (5.24)

where Γ(s) is the gamma function. Equation (5.20) along with equations
(5.22) and (5.24) give

M(s) = Km

( g

αb

)s
αsmΓ(s)

∞∏
r=0

(1− αm−s−r). (5.25)

Also, condition (5.11) implies that

M(1) =

∞∫
0

ym(x)dx =

{
1 if m = 0

0 if m �= 0.
(5.26)

The expression for M in equation (5.25) is defined for all s > 0. However,
the gamma function in equation (5.25) has simple poles at s = −l, where l
is a non-negative integer. This is balanced by the fact that the Q term (the
infinite product) in equation (5.25) has simple zeros at precisely these points
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and hence M(s) is defined for all s ≤ 0. The infinite product in equation
(5.25) can be converted into an infinite sum by the use of Euler’s identity,

∞∏
r=0

(1 + zqr) = 1 +
∞∑
r=1

q
r(r−1)

2 zr∏r
j=1(1− qj)

,

which is valid for |q| < 1 and z ∈ C. Here, q = α−1 and z = −α(m−s), and so

Q(s) =
∞∏
r=0

(1 + zqr) = 1 +
∞∑
r=1

Pr(Λm), (5.27)

where

Pr(Λm) =
(−1)rαrm

α
r(r−1)

2

∏r
j=1(1− α−j)

. (5.28)

The Mellin transform equation (5.25) can thus be written as

M(s) = Km

(
F (s) +

∞∑
r=1

Pr(Λm)F (s)

αrs

)
.

The use of Euler’s identity to convert an infinite product into an infinite sum
allows us to find the inverse transform of M(s), i.e., we can find ym(x). Since

the inverse transform of F (s) is f(x) = e−
b
g
α−(m−1)x, so the inverse transform

of F (s)α−rs is e−
b
g
α−(m−1)+rx. Thus,

ym(x) = Km

(
e−

b
g
α−(m−1)x +

∞∑
r=1

Pr(Λm)e
− b

g
α−(m−1)+rx

)
, (5.29)

where Pr(Λm) is given by equation (5.28) and Km is given by equation (5.21).

5.1 Uniqueness

It could be shown that the Dirichlet series solutions (5.29) are unique under
certain rapid decay conditions. Clearly, the Dirichlet series solutions decay
rapidly as x → ∞. We establish the uniqueness of the Dirichlet series solu-
tions by following the analysis used by van-Brunt and Vlieg Hulstman [77].
This approach also allows us to show directly from equation (5.14) that y0 is
a probability density function.
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Lemma 5.1.1. Let v be a differentiable function on [0,∞) such that v(x) →
0 as x → ∞, and

v′(x) =
αb

g
(v(αx)− v(x)). (5.30)

If v′(x0) = 0 for some x0 ∈ (0,∞), then v(x) = 0, for all x ∈ [0,∞).

Proof. We first show that v cannot have an extremum in (0,∞). Suppose
that v has a positive local maximum in (0,∞), then v will have a positive
global maximum at P1 ∈ (0,∞). Equation (5.30) then implies that

v(αP1) = v(P1),

and since v(x) → 0 as x → ∞ there must exist another global maximum
at point P2 = αP1 at which v(P2) = v(P1). This argument can be re-
peated ad infinitum to show that there must be a sequence of global maxima
{Pj} = {αjP1} such that Pj → ∞ as j → ∞ and for all j ∈ N,

v(Pj) = v(P1) > 0.

This contradicts the assumption that v(x) → 0 as x → ∞ and so v cannot
have a positive global maximum. A similar argument applied to −v shows
that v cannot have a negative global minimum. If v has a negative global
maximum then the condition v(x) → 0 as x → ∞ implies that v must have
a negative global minimum. Similarly, if v has a positive global minimum, v
must have a positive global maximum. So,we conclude that v cannot have
extrema in (0,∞).

Suppose that v′(x0) = 0 for some x0 ∈ (0,∞). Then equation (5.30) im-
plies that v(x0) = v(αx0), and since v cannot have an extrema it follows that
v(x) = v(x0) for all x ∈ [x0, αx0]. Therefore v′(x) = 0 for all x ∈ [x0, αx0].
Repeating this argument ad infinitum yields v′(x) = 0 for all x ∈ [x0,∞).
Since v(x) → 0 as x → ∞, v(x) = 0 for all x ∈ [x0,∞) and equation (5.30)
implies that

v′(x) +
αb

g
v(x) = 0 for x ∈

[x0

α
,∞
)
,

which is an ordinary differential equation for v. This equation must satisfy
the initial condition v(x0) = 0. Picard’s theorem guarantees a unique trivial
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solution to this equation. Hence v(x) = 0 for all x ∈ [x0

α
,∞). This argument

can be repeated any number of times and so v(x) = 0 for all x > 0. The
continuity of v shows that v(0) = 0.

Theorem 5.1.2 (The first eigenfunction). The function y0 defined by equa-
tion (5.29) is a solution to the boundary value problem with λ = μ−b(α−1).
This solution is unique among functions y such that

∞∫
0

xny(x)dx < ∞ (5.31)

Moreover, y0(x) > 0 for all x > 0.

Proof. We have already established that y0 is a solution to the boundary
value problem. Suppose y and w satisfy condition (5.31) and are solutions to
the boundary value problem, and let z = y − w. Then z satisfies condition
(5.31), the equation

gz′ = α2bz(αx)− bαz(x), (5.32)

and also the relation

∞∫
0

z(x)dx = 0. (5.33)

Since z satisfies condition (5.31), the function

δ(x) =

∞∫
x

z(ξ)dξ. (5.34)

is defined for all x ≥ 0. Integrating equation (5.32) from x to ∞ yields

−gz(x) = αb (δ(αx)− δ(x)) , (5.35)

and since differentiating equation (5.34) yields

δ′(x) = −z(x), (5.36)
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we thus have

δ′(x) =
αb

g
(δ(αx)− δ(x)).

Equation (5.33) implies that either z ≡ 0 or z changes sign in (0,∞). Conse-
quently, there is an x0 ∈ (0,∞) such that z(x0) = 0. Equation (5.36) implies
that δ′(x0) = 0 and from Lemma 5.1.1 δ(x) = 0 and thus δ′(x) = 0 for all
x ≥ 0. Equation (5.36) shows that z(x) = 0 for all x ≥ 0 and so the solution
y0 is unique.

The above argument can also be used to show that y0 is positive. We can
replace z with y0 in the above arguments. Condition (5.6) does not require y0
to change sign. Indeed, the above arguments show that if y0 did change sign,
then y0 would be identically zero. Condition (5.6) shows that y0 must be
positive somewhere in (0,∞), and since y0 cannot change sign we conclude
that y0(x) > 0 for all x > 0.

To establish the uniqueness of higher eigenfunctions we define a sequence
{δj} of operators by

δ0y(x) = y(x), that is δ0 is identity, and

δjy(x) =

∞∫
x

δj−1y(ξ)dξ, (5.37)

where j ∈ N. Let Rj denote the set of functions y ∈ C0[0,∞) such that

lim
x→∞

xnδky(x) = 0. (5.38)

and

δky(0) < ∞ (5.39)

where k = 1, 2, ..., j. The Dirichlet series solutions {ym} are evidently in Rj

for any j ∈ N. Theorem 5.1.2 shows that y0 is the unique solution to the
boundary value problem in R1.

Lemma 5.1.3. Let zm ∈ Rm+1 be a solution to (5.14) with λ = λm. Then
for j = 0, 1, ...,m

δ′j+1(x) =
α(1−j)b

g
δj+1(αx)− α−(m−1)b

g
δj+1(x), (5.40)

where δj(x) = δjzm(x).
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Proof. Equation (5.14) implies that

gz′m = α2bzm(αx)− bα−(m−1)zm(x),

and integrating the above equation from x to ∞ gives

− zm(x) =
b

g

(
α(δ1(αx)− α−(m−1)δ1(x)

)
. (5.41)

For any 0 ≤ j ≤ m, equation (5.37) gives

δ′j+1(x) = −δj(x), (5.42)

and hence,

δ′1(x) =
αb

g
δ1(αx)− α−(m−1)b

g
δ1(x).

Given that zm ∈ Rm+1, the functions δj are well defined and xnδj(x) → ∞ as
x → ∞ for 0 ≤ j ≤ m+ 1. Repeating the argument m-times gives equation
(5.40).

Theorem 5.1.4 (Higher eigenfunctions). The function ym defined by equa-
tion (5.29) is a solution to the boundary value problem with λ = λm. This
solution is unique among functions in Rm+1.

Proof. Let wm ∈ Rm+1 be another solution to the boundary value problem
with λ = λm and let zm = ym −wm. Then zm ∈ Rm+1, zm satisfies (5.4) and

∞∫
0

zm(x)dx = 0. (5.43)

The function zm satisfies the conditions of Lemma 5.1.3 and therefore

δ′m+1(x) =
α(1−m)b

g
δm+1(αx)− bα−(m−1)

g
δm+1(x), (5.44)

We show that δ′m+1(x0) = 0 for some x0 > 0 and apply Lemma 5.1.1 to
equation (5.44). From equation (5.41) we have

−
∞∫
0

zm(x)dx =
b

g
(1− α−(m−1))

∞∫
0

δ1(x)dx;
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which by using equation (5.43)

0 = (1− α−(m−1))

∞∫
0

δ1(x)dx.

Since α > 1, the above equation implies that

∞∫
0

δ1(x)dx = 0.

Repeating this argument and using equations (5.40) and (5.42) with j = 1
gives

−
∞∫
0

δ1(x)dx =
α−1b

g

∞∫
0

δ2(αx)αdx− α−(m−1)b

g

∞∫
0

δ2(x)dx;

hence,

0 =
b

g
(α−1 − α−(m−1))

∞∫
0

δ2(x)dx,

so that,

∞∫
0

δ2(x)dx = 0. (5.45)

Repeating the process gives

∞∫
0

δj(x)dx = 0; 0 ≤ j ≤ m (5.46)

For j = m, the equation above implies that there is an x0 > 0 such that
δm(x0) = 0 and so δ′m+1(x0) = 0 and by Lemma 5.1.1 we have δm+1(x) = 0 for
all x ≥ 0. Equation (5.44) gives δ′m(x) = 0 and since δm(x0) = 0, δm(x) = 0
for all x ≥ 0. Continuing the argument gives δj(x) = 0 for 0 ≤ j ≤ m and
x ≥ 0. In particular zm(x) = 0 for all x ≥ 0. The solution is thus unique in
Rm+1.
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The unimodality of y0 can be established on a pattern similar to that
used by da Costa et al. [13], and by van-Brunt and Vlieg-Hulstman [78].

5.2 Nested Zeros of eigenfunctions

In this section we study the zeros of higher eigenfunctions (see Figure 5.2)
and follow the analysis used by van-Brunt and Vlieg Hulstman [78].
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Figure 5.2: Eigenfunctions y0(x) and y1(x) given by the Dirichlet series (5.29) for
m = 0, 1, g = 2, b = 1, α = 2.

Lemma 5.2.1. The equation y′1(x) = 0 has a finite number of solutions in
[z1,1,∞) where z1,1 is the zero of y1.

Proof. It can be shown (see Appendix A) that

y′m−1(x) = Amym(αx),

for some constant Am. This shows that the eigenfunction y1(x) has only one
(non-trivial) zero (since y0 is unimodal [13, 78]). Let z1,1 denote the zero
of y1. Let y1(x) < 0 for (0, z1,1) and y1(x) > 0 for (z1,1,∞). The Dirichlet
series that defines y1(z) is uniformly convergent in any compact subset of the
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half plane Π1 = {z : Re(z) > z1,1}. Weierstrass theorem shows that y1 is
holomorphic in Π1; consequently y′1 is holomorphic in Π1. The function y1 is
not a constant function on (z1,1,∞) otherwise it would be identically zero and
this would mean that y1 has more than one zero. so y′1 is not identically zero
in Π1. The identity theorem implies that the zeros of y′1 must be isolated, so
that in particular the zeros of y′1 that occur on (z1,1,∞) must be isolated.
The above argument does not include z1,1 since y′1 need not be holomorphic
there. To eliminate the possibilty of z1,1 being a limit point of zeros of y′1,
we note that y1(x) > 0 for all x > z1,1 and y1(z1,1) = 0. The function y′1 is
continuous on [z1,1,∞) and hence there must be a number x1 > 0 such that
y′1(x) > 0 for all x ∈ (z1,1, x1). All the zeros of y

′
1 on [z1,1,∞) must therefore

be isolated. Taking the derivative of equation (5.29) (for m = 1), we get

y′1(x) = − b

g
K1

(
e−

b
g
x +

∞∑
r=1

Pr(Λ1)α
re−

b
g
αrx

)
, (5.47)

where b > 0, g > 0, and as x → ∞, y′1(x) ∼ − b
g
K1e

− b
g
x, where K1 =

∞∫
0

xy1(x)dx = 1. This means that there is a w > z1,1 such that y′1(x) < 0 for

all x > w. The zeros of y′1 must therefore lie in the interval [z1,1, w]. There
are no limit points for zeros in [z1,1, w]. By Bolzano-Weierstrass theorem,
the number of zeros must be finite. The function y1 is smooth and does not
change sign on (z1,1,∞) and condition y1(z1,1) = 0 = limx→∞ y1(x) implies
that y1 must have at least one local maximum in this interval. Therefore,
there is at least one solution to equation y′1(x) = 0 in [z1,1,∞).

Lemma 5.2.2. Suppose that y′1(x) = 0 has at least two solutions in (z1,1,∞).
Then there is a solution ξ to y′1(x) = 0 such that ξ > M1, where M1 denotes
the smallest value in (z1,1,∞) at which y1 has a local maximum.

Proof. Lemma 5.2.1 shows that solutions to y′1(x) = 0 in (z1,1,∞) are isolated
and y1 has at least one local maximum. Thus there exists M1, a smallest
value in (z1,1,∞) at which y1 has a local maximum. If x > z1,1 and y′1(x) = 0,
equation (5.14) for m = 1 becomes

gy′1(x) = α2by1(αx)− by1(x), (5.48)

i.e.,
y1(x) = α2y1(αx). (5.49)
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Differentiating equation (5.48) gives,

gy′′1(x) = α3by′1(αx)− by′1(x),

i.e.,

y′′1(x) =
α3b

g
y′1(αx). (5.50)

suppose that y′1(x) has two solutions in (z1,1,∞). Then there is an η �= M1

such that y′1(η) = 0. If η > M1, then let ξ = η. Suppose that 0 < η < M1. By
definition of M1, there can be no local maximum in (z1,1,M1). So y′′1(η) = 0.
Equation (5.50) gives y′1(αη) = 0. Equation (5.49) then gives y1(η) > y1(αη)
since y1 does not change sign for all x ∈ (z1,1, η). consequently a local
maximum exists between η and αη. Given that η < M1, we have αη > M1,
so that we can choose ξ = αη.

Lemma 5.2.3. Suppose that y1 has a local maximum at M and that there
is a solution ξ to y′1(x) = 0 such that ξ > M . Then there is an m > M at
which y1 has a local minimum.

Proof. We first show that there is a τ > M such that y′1(τ) = 0 and y′′1(τ) �= 0.
Suppose that there is no such point. Then y′1(ξ) = y′′1(ξ) = 0 and equation
(5.50) implies that y′1(αξ) = 0. Therefore y′1(αξ) = y′′1(αξ) = 0 so that
y′1(α

2ξ) = 0. It is clear that this argument can be repeated to establish
an infinite sequence {αkξ} of points that are solutions to y′1(x) = 0. This
however contradicts Lemma 5.2.1. So there must be a τ > M such that
y′0(τ) = 0 and y′′0(τ) �= 0.
If y′′0(τ) > 0 then we can take m = τ . If y′′0(τ) < 0 then τ corresponds to a
local maximum and hence there must be a local minimum at some point m
between M and τ .

Theorem 5.2.4. There exists a unique solution to y′1(x) = 0 in (z1,1,∞).
In particular y1 is unimodal in (z1,1,∞).

Proof. Suppose that y′1(x) = 0 has at least two solutions in (z1,1,∞). Lemma
5.2.2 implies that there is an ξ > M1 that solves y′1(x) = 0. Lemma 5.2.3
thus implies that y1 has a local minimum at some point m1 > M1. Since y1
does not change sign and goes to zero as x tends to infinity, there must be
another local maximum beyond m1. Let M2 denote the closest point beyond
m1 at which y1 has a local maximum. Then y′′1(m1) ≥ 0 and y′′1(M2) ≤ 0.
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Equation (5.50) implies that y′1(αm1) ≥ 0 and y′1(αM2) ≤ 0. The continuity
of y′1 thus indicates that there is a solution ξ2 to y′1(x) = 0 in the interval
[αm1, αm2]. Equation (5.49) however gives y1(m1) > y1(αm1) and therefore
y1 must have a local maximum between m1 and αm1. The definition of M2

implies M2 < αm1 and consequently ξ2 > M2. Lemma 5.2.3 can now be
applied to M2 and ξ2 to establish the existence of another local minimum at
some point m2 > M2 and the argument used above can be applied to show
that there is another local maximum at some point M3 > m2 and a point
ξ3 > M3 that solves y

′
1(x) = 0. It is clear that we can repeat this argument to

establish the existence of an infinite sequence {ξk} of points that are solutions
to y′1(x) = 0 such that ξk → ∞ as k → ∞. The existence of such a sequence
however contradicts Lemma 5.2.1. We thus conclude that y′1(x) = 0 has a
unique positive solution.

Theorem 5.2.5. There exist precisely two positive solutions to y2(x) = 0.
Let z2,1 and z2,2 denote these solutions with z2,1 < z2,2. Then 0 < z2,1 <
z1,1
α

< z1,1 < z2,2.

Proof. We have already shown that y′1(x) = 0 has only one solution in
(z1,1,∞). We now focus on the zeros of y′1(x) in (0, z1,1). Let ỹ1(x) = −y1(x)
so that ỹ1(x) > 0 for x ∈ (0, z1,1), and ỹ1(x) < 0 for x ∈ (z1,1,∞). For
simplicity and without loss of generality, we drop the tilde. Since y1(0) = 0,
y1(z1,1) = 0 and y is not identically zero on (0, z1,1), the function y1 has at
least one local maximum in (0, z1,1). Let M1,1 be the smallest value in this
interval at which y1 has a local maximum. Suppose that there is a point
w �= M1,1 in this interval such that y′1(w) = 0. Since y1(w) > 0, therefore by
equation (5.49) y1(αw) > 0. We thus have αw < z1,1. The arguments used
to establish Lemma 5.2.2 can be used to show that there is an ξ > M1,1 such
that y′1(ξ) = 0, and the construction in the proof of Lemma 5.2.3 can then
be used to establish the existence of a local minimum between M1,1 and z1,1.

Without loss of generality, we can assume that w corresponds to the
largest value in (0, z1,1) such that y1 has a local minimum. Equation (5.49)
implies y1(w) > y1(αw) > 0. Hence there is a local maximum at some
point σ ∈ (w, αw). The definition of w implies that σ must correspond
to the largest value in (0, z1,1) at which y1 has a local maximum. since w
corresponds to a local minimum, equation (5.50) implies that y′1(αw) ≥ 0.
Similarly y′1(ασ) ≤ 0 so that y′1 must have a zero at some point τ ∈ (αw, ασ).
There are no local extrema in this interval and therefore y′′1(τ) = 0 so that
by equation (5.50) y′1(ατ) = 0. We can repeat this argument any number
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of times to get a sequence {αkτ} such that y′1(α
kτ) = 0 and αkτ < z1,1.

For k sufficiently large, however αkτ > z1,1. This contradiction shows that
y′1(x) has only one zero z2,1 = M1,1 in (0, z1,1). Since αz2,1 < z1,1 we have
z2,1 < z1,1

α
. Finally, note that if y′1(z1,1) = 0, then equation (5.48) implies

that y1(αz1,1) = 0 which contradicts theorem 5.2.4.

Theorem 5.2.6. The function ym where m ≥ 1 has precisely m positive
zeros. These zeros correspond to local extrema for ym−1. The zeros of
two consecutive eigenfunctions are nested: if zm−1,1, zm−1,2, ..., zm−1,m−1, and
zm,1, zm,2, ..., zm,m, denote the zeros of ym−1 and ym respectively, each ar-
ranged in ascending magnitude, then zm,1 < zm−1,1 < zm,2 < zm−1,2, ..., <
zm,m−1 < zm−1,m−1 < zm,m. Moreover for j = 1, 2, ...,m− 1, zm,j <

zm−1,j

α
.

Proof. Theorem 5.2.5 ensures the existence of precisely two zeros, z2,1 and
z2,2, of the eigenfunction y2. It is clear that the above arguments in Lemmas
5.2.1, 5.2.2, 5.2.3 and Theorems 5.2.4 and 5.2.5 can be modified to show
for example, that y3 has precisely three positive zeros z3,1, z3,2, z3,3, and if
z3,1 < z3,2 < z3,3, then z3,1 < z2,1

α
< z2,1 < z3,2 < z2,2

α
< z2,2 < z3,3, and the

pattern continues through the higher eigenfunctions.

The above theorem shows that the position of the jth zero decreases
rapidly as m increases. In particular, for m > 1, the position of the first
zero of ym satisfies zm,1 <

z1,1
αm−1 .

5.3 Conclusions

In this chapter we studied the symmetrical cell division problem. The focus
of our study was on separable solutions to equation (5.2). The motivation for
the study of such solutions came from experimental results for certain plant
cells that suggested solutions of this type, at least as a long term approxima-
tion [27]. We found “the steady size distribution” (SSD) and showed that it
was unique. We discussed the existence and uniqueness of higher eigenfunc-
tions. The question of whether the set of the above solutions (eigenfunctions)
are complete is still open. Suppose that n is a function of the form

n(x, t) =
∞∑

m=0

cmym(x)e
−λmt, (5.51)
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where the above series is uniformly convergent for x ≥ 0. Then it is straight-
forward to show that such a function is a solution to equation (5.2). The
problem, however, is that in order to satisfy condition (4.7), the coefficients
cm must satisfy

n0(x) =
∞∑

m=0

cmym(x), (5.52)

and this brings to the fore the crucial question about what function space is
spanned by the eigenfunctions. This question and other properties of these
eigenfunctions remain to be explored, and this will be the subject of future
work.

If, as we conjecture that, equation (5.51) is the full solution to equation
(5.2), then clearly n(x, t) ∼ c0y0e

−λ0t for large time, showing the steady size
distribution is propotional to y0(x). This is given in equation (5.29) form = 0
and is shown below in Figure 5.3 and in Figure 5.2. The latter also includes
y1(x), the second eigenfunction.
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Figure 5.3: Eigenfunction y0(x) given by the Dirichlet series (5.29) for m = 0,
g = 2, b = 1, α = 2.

Now we have the means, through equation (5.51), to calculate the evo-
lutionary path of the cell population cohort. Although ym(x) is not mono-
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signed for m > 0, we expect that n(x, t) remain positive for all x, t > 0 but
we have not proved this here. It is to be addressed in a future paper.
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Chapter 6

Solutions to an advanced
functional partial differential
equation of the
pantograph-type

6.1 Introduction

In chapter 5 we discussed the cell growth equation

nt(x, t)︸ ︷︷ ︸
net rate of change

+ gnx(x, t)︸ ︷︷ ︸
growth rate in size

= α2bn(αx, t)︸ ︷︷ ︸
cells from division

at size αx

− bn(x, t)︸ ︷︷ ︸
loss of cells

through division

−μn(x, t)︸ ︷︷ ︸
cell-death

,

(6.1)

subject to an initial condition

n0(x, 0) = n0(x), (6.2)

and a boundary condition

n(0, t) = 0. (6.3)

The cell division problem was also studied by Hall and Wake [24]. The focus
of their study was on a separable solution to equation (6.1). The motivation
for the study of such solutions came from experimental results for certain
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plant cells that suggested solutions of this type, at least as a long term
approximation [27]. They called this solution “the steady size distribution”
(SSD) and showed that it was unique.

The separable solution brings to the fore a connection with the well-known
pantograph equation. Briefly, let

n(x, t) = w(t)y(x),

where y is a probability density function. Substituting this solution form
into equation (6.1) yields

w(t) = ke(λ−μ)t,

where k is a constant and λ is an eigenvalue arising from the separation of
variables. The function y must satisfy

gy′(x) + (b+ λ)y(x) = bα2y(αx), (6.4)

and the condition ∫ ∞

0

y(x) dx = 1

leads to
λ = b(α− 1).

Equation (6.4) is an example of the pantograph equation, which arises in
a number of applications including the collection of current in an electric
train [50], light absorption in the Milky Way [1] and a ruin problem [20]. A
detailed analysis of the equation is given in [32] and [31], and the equation
has been studied in the complex plane [16], [42], [74]. We note also that
the equation has been studied in the context of probability [15] and the cell
growth problem has been interpreted in this framework [17].

The cell division problem has been generalized to include dispersion [80],
[4] and this led to the study of second order pantograph equations [76]. The
problem has also been studied for certain non constant coefficients [26], [75],
and a multi-compartment model has been developed for an application to
the treatment of cancer [3].

All the studies focused exclusively on SSD solutions for cases where the
eigenvalue can be determined explicitly. In general, the separation constant
λ can not be determined explicitly for given functions b(x) and g(x), and
this prompts questions concerning the existence of an eigenvalue and cor-
responding positive eigenfunction. Some results for more general choices of
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b and g were obtained by da Costa et al. [13] and also by Perthame and
Ryzhik [53]. In particular, Perthame and Ryzhik proved the existence of a
positive eigenfunction for a class of division rate functions that are positive,
bounded, and bounded away from zero. Under suitable decay conditions they
also showed that any solution to the cell division problem is asymptotic to
this eigenfunction as t → ∞.

Although much is known about SSD solutions to the cell division prob-
lem, little is known about the solution to the problem for a given initial
distribution, except that it is asymptotic to the SSD solution. In this chap-
ter we develop a solution technique to solve the problem for general initial
distributions. We obtain a solution valid for the quadrant x ≥ 0, t ≥ 0. This
solution is then used to determine the asymptotic behaviour of the solution
explicitly. The general solution allows us to easily get higher order terms in
the asymptotic expressions for the number density.

6.2 The existence of a solution for x ≥ gt

We begin the construction of a general solution to the cell division problem
by first constructing a solution that is valid for x ≥ gt ≥ 0. The hyperbolic
character of the differential equation and the nature of the initial data prompt
the study of solutions in this region, which after a simple transformation is
the domain of definition for the data. In the absence of the functional term
n(αx, t), equation (6.1) is a classical Cauchy problem that can be solved
readily by the method of characteristics. The functional term complicates
matters, but since α > 1, the domain of definition remains the same. The
strategy is to define the solution as a series of functions each of which satisfies
a simple Cauchy problem that can be readily solved.

We establish the existence of a non negative solution n to equation (6.1)
that satisfies equation (6.2) under moderate conditions for the initial data.
Specifically, we assume that n0 is a bounded probability density function.

Before we embark on constructing the solution we make some simplifica-
tions to the differential equation (6.1). Let

n(x, t) = e−(b+μ)tñ(x, t).

Then,

ñt + gñx = bα2ñ(αx, t),
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and this can be further simplified using the transformation x = gx̂, to obtain

n̂t(x̂, t) + n̂x̂(x̂, t) = α2bn̂(αx̂, t),

where

n̂(x̂, t) = ñ(gx̂, t).

Dropping circumflexes and tildes, it is clear that we can reduce the functional
differential equation problem to

nt(x, t) + nx(x, t) = bα2n(αx, t), (6.5)

and retain the conditions (6.2) and (6.3).
If we restrict our attention to solutions of (6.5) that are integrable with

respect to x on [0,∞) for any fixed t > 0, then the transformation

m(x, t) =

∞∫
x

n(ξ, t)dξ, (6.6)

yields

mt(x, t) +mx(x, t) = bαm(αx, t). (6.7)

Integrating equation (6.5) from 0 to ∞ w.r.t x and applying condition (6.3)
gives

mt(0, t) = bαm(0, t),

here, we have assumed that m → 0 as x → ∞ for any t ≥ 0; hence, for some
constant k,

m(0, t) = kebαt.

The initial distribution n0 can be regarded as a probability density function
so that m(0, 0) = 1; therefore,

m(0, t) = ebαt. (6.8)
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The initial condition for equation (6.7) is

m(x, 0) = m0(x) =

∞∫
x

n0(ξ)dξ. (6.9)

It turns out that it is easier to work with the “cumulative density func-
tion” m for the extension to 0 ≤ x ≤ t. We construct a solution n and it is
clear that the same construction will work for equation (6.7).

Theorem 6.2.1 (Existence of solution for x ≥ t). Let W0 ⊆ R2 denote the
set {(x, t) : x ≥ t ≥ 0}. There exists a non-negative solution Q to equation
(6.5) that satisfies condition (6.2) and is valid for (x, t) ∈ W0.

Proof. We construct a sequence of functions {Nk(x, t)}, defined by a sequence
of partial differential equations such that

Q(x, t) =
∞∑
k=0

Nk(x, t) (6.10)

is a solution to equation (6.5) that satisfies the initial condition (6.2) and is
valid for x ≥ t. The functional differential equation problem can be converted
to a sequence of Cauchy problems by defining the following sequence

N0(x, t) = n0(x− t),

and for k ≥ 1,

Nkt +Nkx(x, t) = bα2Nk−1(αx, t), (6.11)

with

Nk(x, 0) = 0. (6.12)

Note that N0 satisfies the Cauchy problem

nx(x, t) + nt(x, t) = 0, n(x, 0) = n0(x),
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Figure 6.1: Characteristic Projections

and each problem given by equation (6.11) and condition (6.12) is a Cauchy
problem that can be solved by the method of characteristics. The character-
istic projections (see Figure 6.1) ξ and η are given by

ξ = t,

η = x− t.

In terms of ξ and η, let

Nk(x, t) = Nk(ξ + η, ξ) = N̂k(ξ, η),

Nk(αx, t) = Nk(αξ + αη, ξ) = Nk(ξ, η).

For simplicity we drop the circumflex when there is no danger of confusion,
but retain the bar to denote an advanced argument. Now,

∂

∂ξ
Nk(ξ, η) = Nkξ(ξ, η) = bα2Nk−1(ξ, η),

so that the solution to (6.11) that satisfies (6.12) is

Nk(ξ, η) = bα2

ξ∫
0

Nk−1(σ, η)dσ. (6.13)
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To illustrate, we look at the first few terms of the sequence. We have
N0(x, t) = n0(η), and therefore

N1(ξ, η) = bα2

ξ∫
0

N0(σ, η)dσ

= bα2

ξ∫
0

n0((α− 1)σ + αη)dσ.

=
bα2

α− 1

(α−1)ξ+αη∫
αη

n0(w)dw. (6.14)

In terms of x and t,

N1(x, t) =
bα2

(α− 1)

αx−t∫
α(x−t)

n0(w)dw

=
bα2

(α− 1)
{T1(αx− t)− T1(α(x− t))}, (6.15)

where T1 is an antiderivative of n0. Similarly,

N2(x, t) =
(bα2)2

(α− 1)(α2 − 1)
T2(α

2x− t)− (bα2)2

α(α− 1)2
T2(α

2x− αt)

−
{

(bα2)2

(α− 1)(α2 − 1)
− (bα2)2

α(α− 1)2

}
T2(α

2(x− t))

where T2 is an antiderivative of T1.

It is straightforward to show that

Nk(x, t) =
k∑

j=0

dk,jTk(wk,j(x, t)), (6.16)
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where

T0(w) = n0(w),

T ′
k+1(w) = Tk(w);

and d0,0 = 1,

dk,j =
bα2dk−1,j−1

αk−j(αj − 1)
,

dk,0 = −
k∑

j=1

dk,j,

Here,

wk,j(x, t) = αk−j(αjx− t),

for k = 1, 2, ..., and j = 1, ..., k. We also note that

wk,j = wk,j(αx, t)

= wk+1,j+1(x, t).

We first show that each Nk is non-negative in W0 and then that the series
defining q0 converges uniformly in any set of W0 of the form {(x, t) ∈ W0 :
t ≤ D}, where D is any fixed positive number. Since n0(w) ≥ 0, for all
w ≥ 0,

N1(x, t) =
bα2

α− 1

αx−t∫
α(x−t)

n0(w)dw

≥ 0

for all (x, t) ∈ W0. If Nk−1(ξ, η) ≥ 0, then

Nk(ξ, η) = bα2

ξ∫
0

Nk−1(σ, η)dσ

≥ 0,
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and hence by induction Nk(x, t) ≥ 0 in W0. Let M be an upper bound for
n0. Then N0(x, t) ≤ M ; hence, equation (6.14) implies,

N1(x, t) ≤ bα2M

α− 1

αx−t∫
α(x−t)

dw = bα2Mt,

i.e., N1(ξ, η) ≤ bα2Mξ.

Now,

N2(ξ, η) = bα2

ξ∫
0

N1(σ, η)dσ

≤ (bα2)2M

ξ∫
0

σdσ =
M(bα2)2ξ2

2
,

so that

N2(x, t) ≤ M(bα2t)2

2

for all x ≥ t. We can continue in this fashion to show that

Nk(x, t) ≤ M(bα2t)k

k!

for all x ≥ t, and this leads to

∞∑
k=0

Nk(x, t) ≤ M
∞∑
k=0

(bα2t)k

k!
= Mebα

2t.

The series thus converges uniformly in any set {(x, t) ∈ W0 : 0 ≤ t ≤ D}.
Evidently, Q(x, t) ≥ 0 for all (x, t) ∈ W0 and is a solution to equation (6.5)
that satisfies condition (6.2).
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Although a solution to equation (6.7) can be gleaned fromQ, this equation
could also be solved directly using the same approach. In particular, the
solution found by integrating Q is also given by a solution to equation (6.7)
for x ≥ t that satisfies condition (6.9) and is of the form

P0(x, t) =
∞∑
k=0

Mk(x, t), (6.17)

where

Mk(x, t) =
k∑

j=0

ck,jFk(wk,j(x, t)).

and

F0(w) = m0(w), (6.18)

F ′
k+1(w) = Fk(w). (6.19)

Here, the ck,j are given by c0,0 = 1, and

ck,j =
bαck−1,j−1

αk−j(αj − 1)
, (6.20)

ck,0 = −
k∑

j=1

ck,j, (6.21)

where k = 1, 2, ..., and j = 1, ..., k.

6.3 Extension of the solution for 0 ≤ x < t

We use the solution constructed to equation (6.7) in section 6.2 to construct
a solution that also satisfies condition (6.8) and is valid for all x ≥ 0, t ≥ 0.
The functional character of equation (6.7) can be exploited to continue the
solution (6.17) via a sequence of “wedges”. For n ≥ 1, let

Wn = {(x, t) : t

αn
≤ x ≤ t

αn−1
}
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Figure 6.2: Constructing wedges to extend the solution to 0 ≤ x < t

(see Figure 6.2). The key here is that equation (6.7) is not functional in
Wn if the solution is known in Wn−1. In this case the problem reduces to a
non-homogeneous first order linear partial differential equation that can be
readily solved. It is required that the solution be continuous across the wedge
boundaries, and this provides the initial data. The extension to W1 differs
from the other extensions in that the initial data is on the characteristic
projection x = t. The first extension thus introduces an arbitrary function.
Further extensions induce non characteristic data so that there is only one
arbitrary function in the construction. In the next section we use condition
(6.8) to determine this function.

The solution to equation (6.7) valid in the wedge Wn will be denoted by
hn for n ≥ 1. In addition, we introduce the notation

Pn =
∞∑
k=n

k∑
j=n

ck,jFk(wk,j) (6.22)

for n ≥ 0. If (x, t) ∈ W1 then (αx, t) ∈ W0. The function h1 thus satisfies

(h1)t + (h1)x = bαP0(αx, t).

In characteristic coordinates the above partial differential equation is

(h1)ξ = bα

∞∑
k=0

k∑
j=0

ck,jFk(wk,j),
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and using the relation wk,j = wk+1,j+1 along with equation (6.19) we have

h1(ξ, η) =
∞∑
k=0

k∑
j=0

bαck,j
αk−j(αj − 1)

Fk+1(wk+1,j+1) +G0(w0,0),

where G0 is an arbitrary function of w0,0 = η. Equation (6.20) thus implies

h1(ξ, η) = P1(ξ, η) +G0(η). (6.23)

We require the solution to be continuous across the characteristic projection
η = 0 (see Figure 6.3), and this condition will not determine G0 uniquely.

Figure 6.3: Imposing continuity on the line x = t or η = 0

Now,

lim
η→0−

h1(ξ, η) = P1(ξ, 0) +G0(0)

and

lim
η→0+

P0(ξ, η) = P1(ξ, 0) + lim
η→0+

∞∑
k=0

ck,0Fk(wk,0).

The continuity condition and the relation wk,0 = αkη thus give

G0(0) = lim
η→0+

∞∑
k=0

ck,0Fk(0).
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The function Fk+1 can be any antiderivative of Fk, since condition (6.21)
ensures that condition Mk(x, 0) = 0 is satisfied. We can thus choose the
Fk such that Fk(0) = 0 for k ≥ 1. Equation (6.18), however, requires that
F0(0) = 1. With this choice of Fk we thus have

G0(0) = 1.

We now consider the extension of the solution to the wedge W2 (see Figure
6.4) and from this analysis extract a general form for hn. Proceeding as

Figure 6.4: Extension of solution to the W2 wedge

before

(h2)ξ = bαh1(ξ, η),

which by using equation (6.23) gives

(h2)ξ = P 1(ξ, η) +G0(η). (6.24)

Integrating equation (6.24) with respect to ξ, using the definition of Fn and
the recursion relation (6.20) leads to

h2(ξ, η) = P2(ξ, η) +
bαG1(w1,1)

α− 1
+H(η),
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where H is an arbitrary function and G′
1(u) = G0(u). (The

1
α−1

factor comes
from w1,1 = (α−1)ξ+αη.) The function G1 can be any antiderivative of G0,
so we choose G1 such that G1(0) = 0. To get H, we impose the continuity
condition on the line x = t

α
, i.e., w1,1 = 0. Thus,

lim
w1,1→0−

h2 = lim
w1,1→0−

P2 +
bαG1(0)

α− 1
+ lim

w1,1→0−
H(η)

and

lim
w1,1→0+

h1 = lim
w1,1→0+

P2 + lim
w1,1→0+

∞∑
k=1

ck,1Fk(wk,1) + lim
w1,1→0+

G0(η).

Since

wk,1 = αk−1(α− 1)ξ + αkη

= αk−1w1,1

we have

lim
w1,1→0+

∞∑
k=1

ck,1Fk(wk,1) =
∞∑
k=1

ck,1Fk(0) = 0.

The continuity of P2 in W2 ∪W1 means that

lim
w1,1→0−

P2 = lim
w1,1→0+

P2,

and the continuity condition

lim
w1,1→0−

h2 = lim
w1,1→0+

h1

yields

lim
w1,1→0−

H(η) = lim
w1,1→0+

G0(η), (6.25)

since G1(0) = 0. Now, w1,1 = 0 implies

η = −(α− 1)

α
ξ,
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and this means condition (6.25) must be satisfied for all ξ on the line w1,1 = 0,
i.e., for all ξ on this line

H

(
−(α− 1)

α
ξ

)
= G0

(
−(α− 1)

α
ξ

)
.

We thus conclude that

H(u) = G0(u),

and the solution is thus

h2 = P2 +
bα

α− 1
G1(w1,1) +G0(w0,0).

We can determine h3 in a similar manner to get

h3 = P3 +
(bα)2

(α− 1)(α2 − 1)
G2(w2,2) +

bα

α− 1
G1(w1,1) +G0(w0,0),

where G′
2(u) = G1(u) and G2(0) = 0. For the general wedge Wn, n ≥ 2 we

find

hn = Pn +G0(w0,0) +
n−1∑
k=1

(bα)k

k∏
m=1

(αm − 1)

Gk(wk,k),

where, for k ≥ 1, G′
k+1(u) = Gk(u) and

Gk(0) = 0.

A solution m to equation (6.7) that satisfies the initial condition (6.9) can
thus be defined piecewise by the sequence {hn}, viz.,

m(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h0 ≡ P0, if (x, t) ∈ W0

h1 = P1 +G0, if (x, t) ∈ W1

...

hn = Pn +G0(w0,0) +
n−1∑
k=1

(bα)k

k∏

m=1
(αm−1)

Gk(wk,k), if (x, t) ∈ Wn.

...

(6.26)
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By construction the solution is continuous on the wedge boundaries. If the
initial data m0 is smooth, then the construction also shows that mξ is smooth
for 0 ≤ t

αn ≤ x. The function G0 in the solution (6.26) is arbitrary. If it is
required that m have a continuous derivative with respect to η, then G′

0(u)
would have to be continuous but this does not ensure continuity on the line
η = 0. Now,

(h0)η =
∞∑
k=0

ck,0F
′
k(wk,0)α

k + (P1)η,

and

lim
η→0+

(h0)η = c1,0αF
′
1(0) + lim

η→0+
(P1)η

=
−bα2

α− 1
+ lim

η→0+
(P1)η,

Here we have used F ′
k+1(0) = Fk(0) = 0 for k ≥ 1, F ′

1(0) = F0(0) = m0(0) =
1, and F ′

0(0) = m′
0(0) = −n0(0) = 0. The continuity condition

lim
η→0+

(h0)η = lim
η→0−

(h1)η

thus gives

G′
0(0) = − bα2

(α− 1)
. (6.27)

Similar calculations on the other wedge boundaries show that (6.27) is in
fact the only requirement on G0 apart from the continuity of G′

0. In the next
section we determine G0 and show that it satisfies this continuity condition
and condition (6.27).

6.4 The limiting solution and asymptotics as

t → ∞
In this section, we determine G0 from the boundary condition (6.8) at x = 0.
To apply this boundary condition it is necessary to look at the limiting
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function hn as n → ∞. For a fixed value of t, the limit x → 0+ corresponds
to (x, t) in Wn as n → ∞. We thus consider lim

n→∞
hn(x, t).

The series defining P0 is a convergent; hence, Pn → 0 as n → ∞; and

h(0, t) = lim
n→∞

hn = G0(−t) +
∞∑
k=1

(bα)k

k∏
m=1

(αm − 1)

Gk(−t).

Now h(0, t) = m(0, t) = ebαt by condition (6.8), and therefore

e−bαu = G0(u) +
∞∑
k=1

(bα)k

k∏
m=1

(αm − 1)

Gk(u), (6.28)

where u = −t. Taking the Laplace transform of both sides of equation (6.28)
gives

1

s+ bα
= f(s)

⎛
⎜⎜⎝1 +

∞∑
k=1

( bα
s
)k

k∏
m=1

(αm − 1)

⎞
⎟⎟⎠ , (6.29)

where f(s) is the Laplace transform of G0. The infinite series in (6.29) can
be converted into an infinite product by use of the Euler’s identity

∞∏
k=0

(1 + zqk) = 1 +
∞∑
k=1

zkq
k(k−1)

2

k∏
m=1

(1− qm)

,

for |q| < 1. Now,

1 +
∞∑
k=1

( bα
s
)k

k∏
m=1

(αm − 1)

= 1 +
∞∑
k=1

( bα
s
)k

α
k(k+1)

2

k∏
m=1

(
1− 1

αm

)
= 1 +

∞∑
k=1

( b
s
)kq

k(k−1)
2

k∏
m=1

(1− qm)

,
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where q = 1
α
, We apply the Euler’s identity with z = b

s
to get

1

s+ bα
= f(s)

∞∏
k=0

(
1 +

b

αks

)
,

so that

f(s) =
1

s(1 + bα
s
)(1 + b

s
)(1 + b

αs
)(1 + b

α2s
)...

.

It is clear that f has simple poles at s = −bα−k, for k = −1, 0, 1, 2, . . . , the
Mittag-Leffler theorem implies that f(s) can be represented in the form

f(s) =
a−1

s+ bα
+

a0
s+ b

+
a1

s+ b
α

+ ...+ r(s),

where r is an entire function. The inverse transform of f is therefore

G0(u) = a−1e
−bαu + a0e

−bu + a1e
− bu

α + ...

=
∞∑

n=−1

ane
−bα−nu,

where

an = Res
s=− b

αn

f(s).

Now,

a−1 = lim
s→−bα

(s+ bα)

(s+ bα)(1 + b
s
)(1 + b

αs
)(1 + b

α2s
)...

=
1

∞∏
k=1

(
1− 1

αk

) = R(α),

a0 = lim
s→−b

(s+ b)

s(1 + bα
s
)(1 + b

s
)...

=
1

(1− α)
R(α),

a1 = lim
s→− b

α

s(1 + bα
s
)

s(1 + bα
s
)(1 + b

s
)(1 + b

αs
)(1 + b

α2s
)...

=
1

(1− α2)(1− α)
R(α),
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and in general

ak =
(−1)k+1

k+1∏
m=1

(αm − 1)

R(α);

hence,

G0(u) = R(α)

⎧⎪⎪⎨
⎪⎪⎩e−bαu +

∞∑
n=1

(−1)ne−bα u
αn

n∏
m=1

(αm − 1)

⎫⎪⎪⎬
⎪⎪⎭ . (6.30)

The function G1 is the antiderivative of G0, such that G1(0) = 0. Integrating
equation (6.30) yields the antiderivative

G1(u) = −R(α)

bα

⎧⎪⎪⎨
⎪⎪⎩e−bαu +

∞∑
n=1

(−1)nαne−bα u
αn

n∏
m=1

(αm − 1)

⎫⎪⎪⎬
⎪⎪⎭ ,

and it can be confirmed directly from the Euler’s identity that G1(0) = 0. In
general, for n ≥ 0, it can be shown that

Gn(u) =
(−1)nR(α)

(bα)n

⎧⎪⎪⎨
⎪⎪⎩e−bαu +

∞∑
k=1

(−1)kαkne−bα u

αk

k∏
m=1

(αm − 1)

⎫⎪⎪⎬
⎪⎪⎭ , (6.31)

and that Gn(0) = 0 for n ≥ 1. Substituting u = wn,n = αnx− t into equation
(6.31) yields

Gn(α
nx− t) =

(−1)nR(α)

(bα)n

⎧⎪⎪⎨
⎪⎪⎩e−bααnx+bαt +

∞∑
k=1

(−1)kαkne−bααn−kxe
bαt

αk

k∏
m=1

(αm − 1)

⎫⎪⎪⎬
⎪⎪⎭ ,
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and the limiting function is therefore

h(x, t) = R(α){

⎛
⎜⎜⎝e−bαx+bαt

∞∑
k=1

(−1)ke
−bαx

αk e
bαt

αk

k∏
m=1

(αm − 1)

⎞
⎟⎟⎠

+
bα

α− 1
{−1

bα

⎛
⎜⎜⎝e−bααx+bαt +

∞∑
k=1

(−1)kαke−bαα1−kxe
bαt

αk

k∏
m=1

(αm − 1)

⎞
⎟⎟⎠}

+

...

+
(bα)n

n∏
j=1

(αj − 1)
{(−1)n

(bα)n

⎛
⎜⎜⎝e−bααnxebαt +

∞∑
k=1

(−1)kαkne−bααn−kxe
bαt

αk

k∏
m=1

(αm − 1)

⎞
⎟⎟⎠}

+ . . . }.
The above series can be rearranged to collect the factors of ebαt, ebt, e

bt
α , . . ..

In particular, the ebαt term is

v0(x, t) = ebαt

⎧⎪⎪⎨
⎪⎪⎩e−bαx +

∞∑
n=1

(−1)ne−bα(αnx)

n∏
m=1

(αm − 1)

⎫⎪⎪⎬
⎪⎪⎭ ,

and the ebt term is

v1(x, t) = − ebt

(α− 1)

⎧⎪⎪⎨
⎪⎪⎩e−bα x

α +
∞∑
n=1

(−1)nαne−bα(αn−1x)

n∏
m=1

(αm − 1)

⎫⎪⎪⎬
⎪⎪⎭ .

In general,

vk(x, t) = − (−1)ke
bαt

αk

k∏
m=1

(αm − 1)

⎧⎪⎪⎨
⎪⎪⎩e−bα x

αk +
∞∑
n=1

(−1)nαne−bα(αn−kx)

n∏
m=1

(αm − 1)

⎫⎪⎪⎬
⎪⎪⎭ ,
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and the limit function can thus be expressed as

h(x, t) = R(α)
∞∑
k=0

vk(x, t). (6.32)

We note that the constant R(α) can be evaluated or represented a number
of ways. Hall and Wake [24] show that Euler’s pentagonal number theorem
can be invoked to convert this product to an infinite series. They also note a
representation of R(α) in terms of a Jacobi elliptic function. More generally,
Morgan [47] considers this constant as a special case and shows that it can
be represented in terms of a Dedekind eta function or implicitly in terms of
a theta function.

Finally, we note that G0 is a smooth function and

G′
0(0) = −bαR(α)

⎧⎪⎪⎨
⎪⎪⎩1 +

∞∑
n=1

(−1)n

αn
n∏

m=1

(αm − 1)

⎫⎪⎪⎬
⎪⎪⎭ .

Euler’s identity shows that

1 +
∞∑
n=1

(−1)n

αn
n∏

m=1

(αm − 1)
=

∞∏
k=0

(
1− 1

αk+2

)

=
1(

1− 1
α

)
R(α)

,

so that equation (6.27) is satisfied. In summary, we have the following result.

Theorem 6.4.1 (Existence). A solution m to equation (6.7) that satisfies
conditions (6.8) and (6.9) is given by equation (6.26), where the Pn are de-
fined by (6.22) and G0 is defined by (6.30). The smoothness of this solution
is limited only by the smoothness of the initial function m0.

It is known (cf. [53]) that any solution to equation (6.1) that satisfies
conditions (6.2) and (6.3) also satisfies

n(x, t) ∼ ebαty(x)
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as t → ∞. Here, y is the steady size distribution derived by Hall and Wake
[24]. Thus, for any initial probability density function n0, the “long term”
solution approaches asymptotically the same function. We can deduce this
asymptotic relationship directly from our general solution.

Fix any x > 0. The solution m is given by a function in the sequence
{hn}, and it is clear that n → ∞ as t → ∞. We are thus drawn to study the
limiting solution h(x, t) given by equation (6.32). From this equation we see
immediately that

m(x, t) ∼ R(α)ebαtv0(x, t)

as t → ∞. Relation (6.6) can then be used to show that

n(x, t) ∼ −R(α)ebαt
∂

∂x
v0(x, t),

which is the SSD solution obtained by Hall and Wake. Note that the limiting
solution, however, provides more refined results. For instance, as t → ∞,

m(x, t) ∼ −R(α)(ebαtv0(x, t) + ebtv1(x, t)) + O(e
b
α
t).

Finally, we note that the Dirichlet series defined by the vk correspond to the
eigenfunctions derived by van-Brunt and Vlieg-Hulstman [77], [78].

6.5 Uniqueness

We show the solution m in Theorem 6.4.1 is unique. Suppose that m1 and
m2 are distinct solutions to equation (6.7) that satisfy equations (6.8) and
(6.9). Let u(x, t) = m1(x, t)−m2(x, t). Then u satisfies

ut + ux = bαu(αx, t),

u(x, 0) = 0,

u(0, t) = 0.

Let

u(x, t) = ebαtp(x, t).
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Then p satisfies

pt + px = bα(p(αx, t)− p(x, t)), (6.33)

p(x, 0) = 0, (6.34)

p(0, t) = 0. (6.35)

The next lemma shows that the only solution to above problem is p = 0.

Lemma 6.5.1. Let W = {(x, t) : x ≥ 0 and t ≥ 0}, and suppose that p is
a solution to equation (6.33) valid in W that satisfies conditions (6.34) and
(6.35). Suppose further that pt and px are continuous in W and that for any
T ≥ 0 and any ε > 0 there are positive numbers δε and Xε such that

|p(x, t)| < ε (6.36)

whenever t ∈ [T, T + δε] and x > Xε. Then p(x, t) = 0 for all (x, t) ∈ W .

Proof. Suppose there is a point (x0, t0) ∈ W at which p(x0, t0) �= 0. Without
loss of generality we can assume p(x0, t0) > 0. Conditions (6.35) and (6.36)
imply that p0(x) = p(x, t0) must have a global maximum γ0 > 0 at some
x ∈ (0,∞). Condition (6.36) also indicates that there must be a largest
value of x, say m0, at which p0(m0) = γ0. Let l0 > m0 and define the set

R0 = {(x, t) ∈ W : x ≤ l0, t ≤ t0}.
Now p is continuous on R0, so there must be a point (x1, t1) ∈ R0 at which
p attains its maximum value Λ0 ≥ γ0. Since m0 is the position of the “last”
global maximum for p(x, t0), we have px(m0, t0) = 0 and

pt(m0, t0) = bα(p(αm0, t0)− p(m0, t0)) < 0. (6.37)

Inequality (6.37) shows that there must be a t < t0 at which p(m0, t) > γ0;
hence, Λ0 cannot be achieved on the line t = t0. Clearly Λ0 is not attained
on the lines x = 0 or t = 0; thus, it must be attained at either an interior
point of R0 or on the line segment L0 = {(x, t) : x = l0, 0 < t < t0}. If
it occurs on L0, then pt(x1, t1) = 0 and px(x1, t1) ≥ 0; hence, p(αx1, t1) ≥
p(x1, t1) = Λ0. If Λ0 is not attained on L0, then (x1, t1) is an interior point;
hence, px(x1, t2) = pt(x1, t1) = 0 and consequently

p(αx1, t1) = p(x1, t1) = Λ0.
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If (αx1, t1) is an interior point of R0, then the above argument can be applied
to (αx1, t1). Eventually αnx1 > l0 for n large, so that in this manner we can
assert the existence of a point (x∗, t1) with x∗ > l0 at which p(x∗, t1) ≥ Λ0 >
γ0.

The function p1(x) = p(x, t1) must have a largest value of x, say m1, at
which p1 achieves its global maximum γ1 ≥ Λ0. Choose any number l1 such
that l1 > max{m1, αl0} and let

R1 = {(x, t) ∈ W : x ≤ l1, t ≤ t1}.
We can repeat the arguments used on R0 to assert the existence of a point
(x̃, t2), where l1 < x̃ and t2 < t1, at which p(x̃, t2) ≥ Λ1 > γ1 > γ0. Here, Λ1

denotes the maximum of p in R1. Evidently, we can continue this process ad
infinitum, and thus construct sequences {tk}, {mk} and {γk}, where pk(x) =
p(x, tk) has its last global maximum γk at x = mk. All of these sequences are
monotonic: in particular, {tn} is monotonic strictly decreasing and bounded
below by 0; {mk} is monotonic strictly increasing and satisfies mk > αk−1l0;
and {γk} is monotonic strictly increasing so that specifically γk > γ0 > 0
for all k. Clearly, there must be a τ ≥ 0 such that tk → τ as k → ∞; and
mk → ∞ as k → ∞. For each k ≥ 1, p(mk, tk) > γ0 > 0, so that if we choose
T = τ and ε = γ0, it is clear that there is no δε > 0 that satisfies (6.36).

Theorem 6.5.2 (Uniqueness). Let m be defined by equation (6.26). Then
for any ε > 0 and any T ≥ 0 there is a δε > 0 and an Xε such that

|m(x, t)| < ε (6.38)

whenever t ∈ [T, T +δε] and x > Xε. The function defined by equation (6.26)
is unique among functions with continuous partial derivatives that satisfy
equations (6.7), (6.8), (6.9) and (6.38).

Proof. Lemma 6.5.1 shows that the solution m of Theorem 6.4.1 is unique
provided m satisfies the appropriate decay condition. Let

m(x, t) = ebαtp(x, t).

We show that p satisfies condition (6.36). Choose T ≥ 0 and ε > 0. For
x > t, the solution m is given by equation (6.17), and the arguments used to
establish the uniform convergence of the series (6.10) can be readily adapted
to show that

0 ≤ m(x, t) ≤ ebαtΛ(x, t),

78



where

Λ(x, t) = sup
z≥α(x−t)

m0(z).

Choose any δε > 0. Since m0(x) → 0 as x → ∞, there is an Xε such that
Xε > T + δε and m0(z) < ε for all z ≥ α(Xε − (T + δε)), i.e.,

p(x, t) ≤ Λ(x, t) < ε

for all x > Xε and t ∈ [T, T + δε].

6.6 Conclusions

In this chapter we developed a new method whereby an initial boundary value
problem involving a first order linear functional partial differential equation
can be solved. The method is not restricted to the functional equation stud-
ied in this paper: the same strategy can be employed to deal with more
general functional partial differential equations with advanced arguments.
For example, if the division rate b is not constant with respect to x, the same
approach in principle can be used. The crux, however, is finding the limiting
function. Certainly, future work would include such generalizations.

In terms of the cell division model, the general solution developed in this
chapter provides more detailed information about how the cell size distribu-
tion depends on the initial distribution. It is well known that solutions are
asymptotic to the SSD solution as t → ∞, but the analysis underlying this
relation does not fully explain or illustrate why the initial data has such a
weak influence on the long term solution and how the SSD solution arises.
The weak dependence is a result of the hyperbolic character of the differential
operator and the advanced argument. We have shown that the SSD solution
arises as the leading order term in an expansion for the limiting function,
which represents the solution as t → ∞. In contrast, this limiting solution
depends strongly on the boundary data. The expansion also provides the
higher order terms in the asymptotic expansion, and these terms correspond
to eigenfunctions for the pantograph equation.
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Chapter 7

Symmetrical cell division with
dispersion

In chapters 5 and 6 we studied the cell growth model (4.4)-(4.7) for determin-
istic growth rates. Also, we observed in chapter 4 that the deterministic cell
growth model (4.4)-(4.7) can be refined to include stochasticity in the growth
rate of cells. Hall [25] notes that there may be an “experimental evidence
showing significant variation in the growth rates of individuals all with the
same measured properties”. In such a scenario, the deterministic cell growth
model would be inappropriate. To cater for this, we added stochasticity to
the growth rate of cells and this lead to a dispersion-like model (4.12)-(4.16).
Here, we study this model (4.12)-(4.16) for the case of symmetric division of
cells.

As seen in Chapter 5, the process in which a cell of size αx divides into
α cells each of size x can be modelled by

W (x, ξ) = αδ

(
ξ

α
− x

)
, (7.1)

where δ denotes the Dirac delta function. A straightforward calculation
shows that W (x, ξ) given by equation (7.1) satisfies the mass balance equa-
tion (4.8) as well as equation (4.9). The above choice of W and the mass
balance equation simplify equation (4.16) to

nt(x, t) + gnx(x, t) + (b+ μ)n(x, t) = Dnxx(x, t) + α2bn(αx, t). (7.2)

Here, we take for simplicity D, g and b as positive specified constants.
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Equation (7.2) is supplemented with an arbitrary initial number density

n(x, 0) = n0(x), (7.3)

the no-flux condition

Dnx(0, t)− n(0, t) = 0, (7.4)

and the condition

lim
x→∞

n(x, t) = 0. (7.5)

We follow a procedure similar to that used for the symmetric division of
cells with deterministic growth rates (chapter 5) and focus on the solutions
of equation (7.2), subject to the conditions given by (4.12)-(4.15), that cor-
respond to the steady size distribution (SSD) (of constant shape). Wake et
al. [80] studied equation (7.2) without the mortality term and considered

separable solutions of the form n(x, t) = y(x)N(t), where N(t) =
∞∫
0

n(x, t)dx

is the total population at time t and y(x) (i.e., y is time invariant) is a

probability density function with
∞∫
0

y(x)dx = 1. These separable solutions

correspond to the “steady size distributions” (SSDs). SSD solutions are thus
separable solutions of the form n(x, t) = N(t)y(x) which upon substitution
into equation (7.2) leads to solutions of the form

n(x, t) = e−λty(x), (7.6)

where λ is a separation constant (to be found) and y satisfies

Dy′′(x)− gy′(x)− (μ+ b− λ)y(x) + α2by(αx) = 0. (7.7)

The “no-flux condition” (4.12) gives

Dy′(0)− gy(0) = 0. (7.8)

We also impose the condition

lim
x→∞

y(x) = 0, (7.9)
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and

lim
x→∞

∂

∂x
n(x, t) = 0.

The function y(x) is a probability density function (pdf) so that

∞∫
0

y(x)dx = 1. (7.10)

Integrating equation (7.7) with respect to x from 0 to ∞ and using equations
(7.10), (7.8) and (7.9) yield

λ = μ− b(α− 1). (7.11)

The substitution of λ to equation (7.7) yields the functional differential equa-
tion

cy′′(x)− y′(x) + aαy(αx)− ay(x) = 0, (7.12)

where c = D
g
, and a = bα

g
. Wake et al. [80] showed that the solution to

equation (7.12) is in terms of a Dirichlet series and is given by

y(x) =
∞∑
n=0

ane
−αnrx, (7.13)

where the coefficients an are given by

an =
−aαan−1

cr2α2n + rαn − cr2 − r
. (7.14)

The parameter r is the positive root of the indicial equation

cr2 + r − a = 0. (7.15)

Wake et al. [80] also showed that the SSD solution (7.13) is positive and
unique.

As discussed in the non-dispersion case (chapter 5), SSD solutions are
of central interest in this model since they can be easily matched to data
for the size distribution of cells for large time. They are special solutions
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to the nonlocal partial differential equation (7.2). In particular, given an
initial distribution n(x, 0) = n0(x), the SSD solution does not give the com-
plete solution (unless n0(x) = y(x)) and this prompts one to consider other
techniques to solve the more general problem.

This means that there is a set of solutions for equation (7.7) with ho-
mogeneous boundary conditions, that is, λ has the role of an eigenvalue as
discussed in van-Brunt et al [76]. We note that the general solution to the
partial differential equation at this stage, is not known. It may be possi-
ble that a class of solutions ym for m = 0, 1, . . . can be obtained using an
eigenfunction expansion. Specifically, we can use the conditions given by the
successive moments (that is, the Mellin transform),

∞∫
0

xm−1ym(x)dx = 0,

∞∫
0

xmym(x)dx �= 0 (7.16)

to calculate some further solutions to equation (7.7). These conditions give
rise to a class of eigenfunctions and are sufficient in this respect. At this
stage it is not clear whether there are other eigenfunctions. The idea mim-
ics that used by van-Brunt and Vlieg-Hulstman [77]. However, in our case,
we will see that the first eigenfunction (after the SSD solution) is qualita-
tively different from the higher eigenfuntions in that the first eigenfunction
involves the solution to a non-local, non-linear functional differential equa-
tion. Eigenfunctions, other than the first eigenfunction, entail the solution
to a linear, non-local functional differential equation. We first discuss the
case of eigenfunctions ym, where m ≥ 2 and then consider the eigenfunction
y1. For m ≥ 2, we multiply equation (7.7) by xm and then integrate the
resulting equation with respect to x from 0 to ∞, i.e.,

D

∞∫
0

xmy′′(x)dx− g

∞∫
0

xmy′(x)dx− (μ+ b− λ)

∞∫
0

xmy(x)dx

+ α2b

∞∫
0

xmy(αx)dx = 0, (7.17)

which by using conditions in (7.16) gives

λ = μ+ b− bα−(m−1), (7.18)
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where m = 2, 3, . . . . The functional differential equation (7.7) thus reduces
to

Dy′′(x)− gy′(x) + α2by(αx)− bα−(m−1)y(x) = 0. (7.19)

The solution to equation (7.19) subject to the no-flux condition (7.8) and
the condition (7.9) can be obtained in a way similar to that used by Wake
et al. [80] for the SSD solution. We suppose that the solution to equation
(7.19) is of the form given by equation (7.13), i.e.,

y(x) =
∞∑
n=0

ane
−αnrx, (7.20)

where the coefficients an and the parameter r are to be determined. Since

y′(x) = −r
∞∑
n=0

anα
ne−αnrx,

y′′(x) = r2
∞∑
n=0

anα
2ne−αnrx,

and

y(αx) =
∞∑
n=1

an−1e
−αnrx,

equation (7.19) gives

Dr2
∞∑
n=0

anα
2ne−αnrx + gr

∞∑
n=0

anα
ne−αnrx + α2b

∞∑
n=1

an−1e
−αnrx

−bα−(m−1)

∞∑
n=0

ane
−αnrx = 0.

Equating coefficients yields the indicial equation

Dr2 + gr − bα−(m−1) = 0, (7.21)

and the recurrence relation

an =
−α2ban−1

Dr2α2n + grαn − bα−(m−1)
, (7.22)
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for n = 1, 2, . . . . Since the series (7.20) diverges for r ≤ 0, we choose r to be
the positive root of (7.21). This positive root is given by

r =
−g +

√
g2 + 4bα−(m−1)D

2D
.

In closed form, the recurrence relation (7.22) can be written as

an =
(−1)n(α2b)na0

n∏
k=1

(Dr2α2n + grαn − bα−(m−1))
. (7.23)

Since limn→∞
∣∣∣an+1

an

∣∣∣ < 1, the series
∑∞

n=0 an converges by the ratio test and

the absolute convergence test; hence the series (7.20) converges by the limit
comparison test. The uniqueness of these eigenfunctions can be established
by following the analysis used by Wake et al. [80].

For the first non-SSD eigenfunction we multiply equation (7.7) with x
and then integrate the resulting equation with respect to x from 0 to ∞, i.e.,

D

∞∫
0

xy′′(x)dx−g

∞∫
0

xy′(x)dx− (μ+ b− λ)

∞∫
0

xy(x)dx

+ α2b

∞∫
0

xy(αx)dx = 0,

which by using conditions in (7.16) gives

λ1 = μ−Dy1(0), (7.24)

where the subscript ”1” of λ and y is used to show that we are considering
the first eigenfunction case. The presence of y1(0) makes λ1 unknown since
the value of y1 at x = 0 is not known. Exploring the nature of y1(0) has been
left for future work and is not included in this thesis. However, we show
that if such a λ1 exists, then we can find the first eigenfunction on a pattern
similar to that used for the other eigenfunctions. We proceed by substituting
λ from equation (7.24) to equation (7.7). This yields

Dy′′1(x)− gy′1(x) + α2by1(αx)− (b+Dy1(0))y1(x) = 0. (7.25)
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Notice that the presence of y1(0) in equation (7.25) makes the equation non-
linear (and non-local). The solution to equation (7.25) subject to the no-flux
condition (7.8) and condition (7.9) can be obtained in a way similar to that
used by Wake et al. [80] for the SSD solution. We suppose that the solution
to equation (7.25) is of the form given by equation (7.13), i.e.,

y1(x) =
∞∑
n=0

ane
−αnrx, (7.26)

where the coefficients an and the parameter r are to be determined. Substi-
tuting y1(x) from equation (7.26) to equation (7.25) gives

Dr2
∞∑
n=0

anα
2ne−αnrx + gr

∞∑
n=0

anα
ne−αnrx + α2b

∞∑
n=1

an−1e
−αnrx

−(b+Dy1(0))
∞∑
n=0

ane
−αnrx = 0.

Equating coefficients yields the indicial equation

Dr2 + gr − (b+Dy1(0)) = 0, (7.27)

and the recurrence relation

an =
−α2ban−1

Dr2α2n + grαn − (b+Dy1(0))
, (7.28)

for n = 1, 2, . . . . Since the series (7.26) diverges for r ≤ 0, we choose r to be
the positive root of (7.27). This positive root is given by

r =
−g +

√
g2 + 4D(b+Dy1(0))

2D
.

In closed form, the recurrence relation (7.28) can be written as

an =
(−1)n(α2b)na0

n∏
k=1

(Dr2α2n + grαn − (b+Dy1(0))
. (7.29)

Since limn→∞
∣∣∣an+1

an

∣∣∣ < 1, the series
∑∞

n=0 an converges by the ratio test and

the absolute convergence test; hence the series (7.26) converges by the limit
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comparison test. The uniqueness of the first eigenfunction can be established
by following the analysis used by Wake et al. [80].

Now, we obtain a constructive existence theorem for the linear non-local
dispersion-growth equation (7.2) with an arbitrary initial size-distribution
(7.3) and with a no-flux boundary condition (7.4). We show that this solution
is unique. We will assume that n0(x) ≥ 0 for x ≥ 0, that n0 is integrable,
bounded and continuous on [0,∞).

Before we embark on establishing a constructive existence theorem we
make some simplifications to the partial differential equation (7.2). Let

n(x, t) = e−(b+μ)tñ(x, t).

Then partial differential equation (7.2) simplifies to

ñt + gñx = Dñxx + bα2ñ(αx, t),

and this can be further simplified using the transformation x = gx̂, to get

−D̂n̂x̂x̂(x̂, t) + n̂t(x̂, t) + n̂x̂(x̂, t) = α2bn̂(αx̂, t),

where D̂ = D
g2

and n̂(x̂, t) = ñ(gx̂, t). Dropping circumflexes and tildes, it
is clear that we can reduce the cell growth partial differential equation with
dispersion problem to

−Dnxx(x, t) + nt(x, t) + nx(x, t) = bα2n(αx, t), (7.30)

and retain conditions (7.3) and (7.4). The initial cell distribution n0 can be
regarded as a probability density function.

If we restrict our attention to solutions of (7.30) that are integrable with
respect to x on [0,∞) for any fixed t > 0, then the transformation

m(x, t) =

∞∫
x

n(ξ, t)dξ, (7.31)

yields

−Dmxx(x, t) +mx(x, t) +mt(x, t) = bαm(αx, t). (7.32)
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Integrating equation (7.30) from 0 to ∞ w.r.t x and applying condition (7.4)
gives

mt(0, t) = bαm(0, t),

here, we have assumed that m → 0 as x → ∞ for any t ≥ 0; hence, for
constant k = 1

g
, there is the boundary condition

m(0, t) = kebαt, (7.33)

and the initial condition for equation (7.32) is

m(x, 0) = m0(x) =

∞∫
x

n0(ξ)dξ. (7.34)

7.1 A Laplace Transform Solution

The problem posed by equation (7.32) with conditions (7.33) and (7.34)
is an initial boundary value problem involving a functional equation. In
the absence of a functional term, a common strategy is to use the Laplace
transform to reduce the problem to a non-homogeneous second order ordinary
differential equation, followed by a solution using the appropriate Green’s
function. We use this strategy here to solve the problem. In contrast, the
functional term leads to a singular Fredholm equation that can be solved
using a Neumann series. We show that the integral equation has a unique
solution and invoke a Paley-Wiener Theorem to assert that the transform
has an inverse.

Let M(x, s) denote the Laplace transform of m(x, t) with respect to time
t. Applying the Laplace transform to equation (7.32) with respect to time
and using condition (7.34) gives

−DMxx(x, s) +Mx(x, s) + sM(x, s) = bαM(αx, s) +m0(x). (7.35)

The boundary conditions are

lim
x→∞

M(x, s) = 0, (7.36)
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and, from equation (7.33),

M(0, s) =
k

s− bα
. (7.37)

To obtain the Green’s function, we convert the problem to one with homo-
geneous boundary conditions. Let

V (x, s) =
F (x)

s− bα
−M(x, s). (7.38)

To ensure that the boundary conditions for V are homogeneous, we require

lim
x→∞

F (x) = 0, (7.39)

and

F (0) = k. (7.40)

The transformation (7.38) thus converts the partial differential equation
(7.35) to

−DVxx(x, s) + Vx(x, s) + sV (x, s)− bαV (αx, s) +m0(x)− F (x)

=
1

s− bα
{−DF ′′(x) + F ′(x) + bαF (x)− bαF (αx)}, (7.41)

where ′ denotes the derivative with respect to x. We choose an F (x) such
that

−DF ′′(x) + F ′(x) + bαF (x) = bαF (αx). (7.42)

Equation (7.42) is a second order pantograph equation. Wake et al. [80]
showed that there is a unique solution F to (7.42) that satisfies conditions
(7.39) and (7.40). They also showed that F ′(x) < 0 for all x > 0, so that
the derivative can be scaled to be a probability density function. A related
eigenvalue problem was studied by van-Brunt et al. [76]. The solution is
given by the Dirichlet series (7.13)-(7.15). With this choice of F , the partial
differential equation (7.41) reduces to

−DVxx(x, s) + Vx(x, s)+sV (x, s) = bαV (αx, s) + v0(x), (7.43)
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where

v0(x) = −m0(x) + F (x), (7.44)

and by construction

V (0, s) = 0 = lim
x→∞

V (x, s). (7.45)

Theorem 7.1.1. Let Ls
∞[0,∞) denote the space of functions V : [0,∞) ×

C → C such that for s ∈ C, V is bounded in [0,∞). If Re s > bα, there exists
a solution to equation (7.43) that satisfies condition (7.45). This solution is
unique among functions in Ls

∞[0,∞).

Proof. We first recast the problem as an integral equation. The causal
Green’s function G(x, ξ, s) associated with the boundary value problem sat-
isfies

−DG′′ +G′ + sG = δ(x− ξ), (7.46)

where ′ denotes ∂
∂x

and δ is the Dirac delta function. The Green’s function
is

G(x, ξ, s) =

⎧⎪⎨
⎪⎩
G1(x, ξ, s) =

e−m1ξ

D(m1−m2)
(em1x − em2x) ; 0 < x < ξ

G2(x, ξ, s) =
em2x

D(m1−m2)

(
e−m2ξ − e−m1ξ

)
; ξ < x < ∞

(7.47)
where m1 and m2 are given by

m1 =
1 +

√
1 + 4sD

2D
,

m2 =
1−√

1 + 4sD

2D
.

(7.48)

The solution V (x, s) thus satisfies the integral equation

V (x, s) = bα

∞∫
0

G(x, ξ, s)V (αξ, s)dξ + f(x, s), (7.49)
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where

f(x, s) =

∞∫
0

G(x, ξ, s)v0(ξ)dξ. (7.50)

Note that equation (7.49) could be written as a singular Fredholm equation
of the second kind, viz.

V (x, s) = b

∞∫
0

G(x,
ξ

α
, s)V (ξ, s)dξ + f(x, s). (7.51)

Let K and T be operators defined by

Kφ = bα

∞∫
0

G(x, ξ, s)φ(αξ, s)dξ,

Tφ = Kφ+ f

for φ ∈ Ls
∞[0,∞). We show that for Re s > bα, T is a contraction mapping

on Ls
∞[0,∞). Suppose that φ ∈ Ls

∞[0,∞). Then there is an Ms > 0 such
that |φ(x, s)| ≤ Ms for all x ∈ [0,∞). For any fixed s, we consider the
Banach space (Ls

∞[0,∞), ‖‖∞) where

‖φ‖∞ = sup
x∈[0,∞)

|φ(x, s)|. (7.52)

Now,

|Kφ| ≤ bα

∞∫
0

|G(x, ξ, s)||φ(αξ, s)|dξ,

≤ bα‖φ‖∞
∞∫
0

|G(x, ξ, s)|dξ.

Thus

|Kφ| ≤ bα‖φ‖∞{J1 + J2}, (7.53)
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where

J1 =

x∫
0

|G2(x, ξ, s)|dξ, (7.54)

and

J2 =

∞∫
x

|G1(x, ξ, s)|dξ. (7.55)

A straightforward calculation yields

|G1(x, ξ, s)| ≤ 1

D(γ1 + γ2)
e−γ1ξ(eγ1x + e−γ2x), (7.56)

and

|G2(x, ξ, s)| ≤ 1

D(γ1 + γ2)
e−γ2x(eγ2ξ + e−γ1ξ), (7.57)

where

γ1 = Rem1 > 0, (7.58)

and

−γ2 = Rem2 < 0. (7.59)

The integrals (7.54) and (7.55) thus yield

J1 ≤ 1

Dγ2(γ1 + γ2)
, (7.60)

and

J2 ≤ 1

Dγ1(γ1 + γ2)
; (7.61)
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hence, inequality (7.53) along with inequalities (7.60) and (7.61) give

|Kφ| ≤ bα

Dγ1γ2
‖φ‖∞. (7.62)

Let

s = σ + iτ, σ, τ ∈ R, (7.63)

and

√
1 + 4sD = u+ iv, u, v ∈ R. (7.64)

Squaring equation (7.64), using equation (7.63) and equating the real parts
yield

Re
√
1 + 4sD ≥ √

1 + 4Dσ. (7.65)

From equations (7.58), (7.59) and (7.65), it is straightforward to show that

1

γ1γ2
≤ D

Re s
, (7.66)

and thus inequality (7.62) implies

|Kφ| ≤ bα

Re s
‖φ‖∞. (7.67)

Inequality (7.67) implies that for Re s > 0, Kφ ∈ Ls
∞[0,∞) if φ ∈

Ls
∞[0,∞), so that K maps Ls

∞[0,∞) into Ls
∞[0,∞). In particular, we

know that the function m0 and F are bounded so that v0 must be bounded.
Since f = Kv0, this means that f ∈ Ls

∞[0,∞) and, consequently, that
Tφ ∈ Ls

∞[0,∞) whenever φ ∈ Ls
∞[0,∞) and Re s > 0. Now, for any

φ1, φ2 ∈ Ls
∞[0,∞),

‖Tφ1 − Tφ2‖ ≤ ‖K(φ1 − φ2)‖
≤ bα

Re s
‖φ1 − φ2‖,

and the theorem thus follows from the contraction mapping principle.
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The solution is given by the Neumann series

V =
∞∑
j=0

Kjf, , (7.68)

where K0f = f , and for j ≥ 1

Kjf = Kj−1f.

The function F has derivatives of all orders for x ≥ 0. The differential
equation (7.43) indicates that the smoothness of V with respect to x relies
on that of v0, which in turn relies on that of m0.

7.2 The solution

Theorem 7.1.1 provides a solution V to the differential equation (7.43), but it
does not guarantee a solution to partial differential equation (7.32). It must
be established that V has an inverse Laplace transform with respect to s.
The Neumann series (7.68) representation of V makes it awkward to establish
this directly for an arbitrary cumulative probability density function m0. In
this section we show that the solution V of Theorem 7.1.1 lies in a suitable
Hardy space and appeal to a Paley-Wiener theorem to assert the existence
of an inverse Laplace transform.

Let Πq ⊆ C denote the half plane {s ∈ C : Re s > q} and H(Πq) denote
the space of functions V : [0,∞)× C → C such that V (x, s) is holomorphic
with respect to s for all s ∈ Πq and x ∈ [0,∞). Define the function M(σ, V )
and the norm ‖‖ by

M(σ, V ) = {
∞∫

−∞

|V (x, σ + iτ)|2dτ} 1
2

and

‖V ‖2 = sup
σ>q

M(σ, V ).

We work with the Hardy space H2(q) = {V ∈ H(Πq) : ‖V ‖2 < ∞}.
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Lemma 7.2.1. Let Re s > bα. Then there exists an M > 0 such that

|f(x, s)| =
∣∣∣∣

∞∫
0

G(x, ξ, s)v0(ξ)dξ

∣∣∣∣ ≤ M

|s| . (7.69)

Proof. Let

f(x, s) = B1 +B2, (7.70)

where

B1 =

x∫
0

G2(x, ξ, s)v0(ξ)dξ, (7.71)

and

B2 =

∞∫
x

G1(x, ξ, s)v0(ξ)dξ. (7.72)

The integration by parts gives

B1 = (v0(ξ)g1(x, ξ, s))

∣∣∣∣ξ=x

ξ=0

−
x∫

0

g1(x, ξ, s)v
′
0(ξ)dξ, (7.73)

and

B2 = (v0(ξ)g2(x, ξ, s))

∣∣∣∣∞
ξ=x

−
∞∫
x

g2(x, ξ, s)v
′
0(ξ)dξ, (7.74)

where

g1(x, ξ, s) =

ξ∫
0

G2(x, τ, s)dτ, (7.75)
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and

g2(x, ξ, s) = −
∞∫
ξ

G1(x, τ, s)dτ. (7.76)

It is straightforward to show that

|g1(x, ξ, s)| ≤ 1

|Dm1(m1m2)| +
|m2|2 + |m1|2

D|m1(m1m2)(m1 −m2)| ,

so that there is a constant Λ1 such that

|g1(x, ξ, s)| ≤ Λ1

|s| , (7.77)

for Re s > bα. Similarly, there is a constant Λ2 such that

|g2(x, ξ, s)| ≤ Λ2

|s| , (7.78)

for Re s > bα. We know that F and m0 are positive decreasing functions in
[0,∞); hence,

|v0(x)| = |F (x)−m0(x)| ≤ k. (7.79)

In addition, since n0 is bounded and continuous, and −m′
0(x) = n0, there is

a k̃ such that

|v′0(x)| = |F ′(x) + n0(x)| ≤ n0(x) ≤ k̃. (7.80)

Inequalities (7.77), (7.78), (7.79), (7.80) establish inequality (7.69) with

M = max(Λ1,Λ2)(k + k̃). (7.81)

Corollary 7.2.2. Let V be the solution of Theorem 7.1.1. Then V ∈ H2(q)
for any q > bα.
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Proof. Choose any q > bα and let s ∈ Πq. The functions Knf in the Neu-
mann series solution (7.68) are holomorphic for s ∈ Πq. Moreover the analysis
in the proof of Theorem 7.1.1 shows that the Neumann series is uniformly
convergent in Πq. We thus conclude that V ∈ H(Πq).

The analysis in the proof of Theorem 7.1.1 and inequality (7.69) also show
that

|Kf(x, s)| ≤ bα

q

M

|s| ,

and in general,

|Knf(x, s)| ≤ μnM

|s| ,

where μ = bα
q
< 1. Therefore,

|V (x, s)| ≤ |f(x, s)|+
∞∑
n=1

|Knf(x, s)|

=
M

s

1

1− μ
.

We thus see that V ∈ H2(q).

We now return to equation (7.32) and conditions (7.33) and (7.34). The-
orem 7.1.1 shows that there is a unique solution V to equation (7.43) and
hence there is a unique solution M to equation (7.35). Corollary 7.2.2 shows
that V ∈ H2(q) for any q > bα, and a Paley-Wiener theorem can be used to

assert the existence of an inverse transform v(x, t). Evidently, F (x)
s−bα

has an

inverse ebαtF (x) and hence we establish the solution

m(x, t) = ebαtF (x)− v(x, t),

which is unique.
Since V ∈ H2(q) for any q > bα, it is possible to glean an asymptotic

relation as t → ∞. In particular, it can be shown that for any fixed x ≥ 0,

|v(x, t)| ∼ o(eqt)

as t → ∞ (cf. Widder [81], Chapter 2). In summary we have the following
theorem
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Theorem 7.2.3. Let W = {(x, t) : x, t ≥ 0}. Then there exists a unique
solution m to equation (7.32) that satisfies conditions (7.33) and (7.34) and
is valid for (x, t) ∈ W . Moreover,

|m(x, t)| ∼ o(eqt)

for any q > bα, as t → ∞.

The asymptotic result for m is a weak result. The function ebαtF (x) is
the SSD solution for the problem. Although it has not been shown that
|m(x, t)| ∼ ebαtF (x) as t → ∞, it is conjectured that this relation holds, i.e.,

|v(x, t)| ∼ o(ebαt), (7.82)

as t → ∞.

7.3 Conclusions

In this chapter, we studied the cell growth equation with dispersion for sym-
metric division of cells. We discussed the SSD solution and established the
existence of higher eigenfunctions ym for m ≥ 2. It remained elusive to
determine the eigenvalue λ1 owing to the presence of a y1(0) term in a non-
linear functional differential equation. This problem was exposed. We then
obtained a constructive existence theorem for the linear, non-local dispersion-
growth equation with an arbitrary initial size distribution and with a no-flux
boundary condition. We showed that this solution is unique. It is still an
open question as to whether or not the solutions obtained by separation of
variables form a complete spanning set.
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Chapter 8

Asymmetrical Cell Division and
the Steady size distributions

Here, we study the case of binary asymmetrical splitting in which a cell of
size ξ divides into two daughter cells of different sizes and find the steady size
distribution (SSD) solution to the non-local differential equation. We then
discuss the shape of the SSD solution. The existence of higher eigenfunctions
is also discussed.

8.1 Qualitative results and SSD solutions

Asymmetric cell division occurs when a cell divides into daughter cells of
different sizes. Here, we study the case in which a cell of size ξ divides
into two daughter cells of (different) sizes ξ

α
and ξ

β
(the asymmetrical binary

splitting), where α > β > 1. The function W (x, ξ) in this case becomes

W (x, ξ) = δ

(
ξ

α
− x

)
+ δ

(
ξ

β
− x

)
, (8.1)

where δ denotes the Dirac delta function. A straightforward calculation
shows that W (x, ξ) given by equation (8.1) satisfies the mass balance equa-
tion (4.8) as well as equation (4.9). The above choice of W and the mass
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balance equation simplify equation (4.4) to

nt(x, t)︸ ︷︷ ︸
net rate of change

+ gnx(x, t)︸ ︷︷ ︸
growth rate in size

= αbn(αx, t)︸ ︷︷ ︸
cells from division

at size αx

+ βbn(βx, t)︸ ︷︷ ︸
cells from division

at size βx

− bn(x, t)︸ ︷︷ ︸
loss of cells

through division

− μn(x, t)︸ ︷︷ ︸
cell-death

. (8.2)

Here we took for simplicity g and b as specified constants. Moreover, the
mass balance equation (4.8) implies

1

α
+

1

β
= 1, (8.3)

i.e.,

β =
α

α− 1
. (8.4)

Without loss of generality we can assume

α ≥ β > 1.

We follow a procedure similar to that used for the symmetrical case (chapter
5) and focus on the solutions to equation (8.2), subject to the conditions
given by equations (4.5)-(4.7), that correspond to the steady size distribu-
tion (SSD) (of constant shape). Hall and Wake studied the symmetrical
case (α = β = 2) and focused on the solutions that correspond to the
steady size distribution (SSD) (of constant shape). Perthame and Ryzhik
[53] proved the existence of a stable steady distribution (first positive eigen-
function) and exponential convergence of solutions toward such a steady state
for large times. Hall and Wake [24] considered separated solutions of the form

n(x, t) = y(x)N(t), where N(t) =
∞∫
0

n(x, t)dx is the total population at time

t and y(x) (i.e., y is time invariant) is a probability density function with
∞∫
0

y(x)dx = 1. They called such solutions “steady size distributions” (SSDs).

SSD solutions are thus separable solutions of the form n(x, t) = N(t)y(x)
which upon substitution into equation (8.2) gives

N ′(t)
N(t)

= −g
y′(x)
y(x)

+
αby(αx)

y(x)
+

βby(βx)

y(x)
− (b+ μ)

= −λ,
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where λ is a separation constant (to be found). This leads to solutions of the
form

n(x, t) = e−λty(x), (8.5)

where y satisfies

gy′ = αby(αx) + βby(βx)− (μ+ b− λ)y(x), (8.6)

along with the conditions

y(0) = 0 = lim
x→∞

y(x). (8.7)

Clearly, we require that y(x) ≥ 0 for all x ≥ 0. We further require that y be
integrable on [0,∞) and without loss of generality we can assume that y is a
probability density function (pdf) so that

∞∫
0

y(x)dx = 1. (8.8)

The value of λ can be determined by integrating equation (8.6) with respect
to x from 0 to ∞ and using conditions (8.7) and (8.8). This yields

λ = μ− b. (8.9)

This value of λ is consistent with the result in the symmetrical case when
α = 2. Equation (8.6) thus reduces to

y′ +
2b

g
y(x) =

b

g
(αy(αx) + βy(βx)) . (8.10)

The solution to equation (8.10) subject to the conditions (8.7) and (8.8) can
be found (see section 8.3.1) by the following a pattern similar to that used
by Suebcharoen et al. [68]. The resulting solution is a double Dirichlet series
of the form

y(x) =
∞∑
k=0

∞∑
j=0

ck,je
− 2b

g
αkβjx, (8.11)
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where,

c0,0 =
2b

g
+

(
b

g

) ∞∑
k=1

2k(α−k + β−k)
k∏

s=1

(2− α−s − β−s)

, (8.12)

ck,0 =
(−1)kαk

2k
k∏

s=1

(αs − 1)

c0,0, (8.13)

c0,j =
(−1)jβj

2j
j∏

s=1

(βs − 1)

c0,0, (8.14)

ck,j =
−1

2(αkβj − 1)
(αck−1,j + βck,j−1), (8.15)

for k, j ∈ N. The convergence of equations (8.12)-(8.15) and uniqueness of
the double Dirichlet series solution (8.11) along with the positivity of the
solution can also be proved in a way similar to that used by Suebcharoen et
al. [68]. No closed form solution for ck,j has been obtained, but clearly we
can obtain the ck,j iteratively.

8.2 Shape of the SSD solution

The shape of the SSD solution is not obvious from the Dirichlet series (8.11).
Numerical experiments, however, suggest strongly that the SSD solution is
unimodal (see Figure 8.1). Rather than use the Dirichlet series directly, we
will use the equation (8.10) to show that the function y must be unimodal.
As noted in the last section, it can be shown that y(x) > 0 for all x > 0.

The proof of unimodality for the single nonlocal term, the basic panto-
graph equation, was established by da Costa et al. [13]. The symmetric case
α = β = 2 is covered by this analysis. If α �= 2, then the presence of a second
non-local term complicates the analysis and certain arguments valid in the
one term case break down for the two term case. To show the unimodality
of the pdf solution y analytically, we suppose on the contrary that y is a pdf
solution to equation (8.10) that is not unimodal. Without loss of generality
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Figure 8.1: The solution y0(x) given by the Dirichlet series (8.11) for g = 2 units,
b = 1 unit, α = 3, 5.

we can assume

α > 2 > β > 1.

Then there exists at least one local minimum. Let {mn} be a strictly increas-
ing sequence of points where y has a local minimum and {Mn} be a strictly
increasing sequence where y has a local maximum. Since the derivative of y
from equation (8.11) can be written as

y′(x) = −2b

g
c0,0e

−2b
g

x +O(e−
2b
g
βx), (8.16)

it is clear that y′ = O(exp(−2b
g
x)) for large x and is negative, and hence

y has to be ultimately monotone decreasing (see also Theorem 4 of [13]).
Accordingly, neither mn nor Mn tends to infinity as n tends to infinity. Also,
{mn} and {Mn} have no limit points since y′ is holomorphic in the complex
half plane and a limit point of extrema implies y′(z) = 0 for all Re(z) > 0
which is clearly not true. We thus conclude that the sequences are finite.
Note that y cannot be piecewise constant in any interval (a, b), a < b of the
positive real axis by the same argument and this means y must be strictly
decreasing after the last maximum.
Let mf and Mf be the locations of the last local minimum and maximum
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respectively i.e. max {mn} = mf and max {Mn} = Mf . Then

y(mf ) > 0, y′(mf ) = 0, y′′(mf ) ≥ 0, (8.17)

and equation (8.10) implies

2y(mf ) = αy(αmf ) + βy(βmf ). (8.18)

Since α > 2 and y(mf ) > 0, we have

y(mf ) > y(αmf ). (8.19)

The last maximum at Mf must occur after the last minimum at mf , and
equation (8.19) implies that

mf < Mf < αmf . (8.20)

In particular, y′(αmf ) cannot be positive as this could induce another lo-
cal maximum beyond Mf . Also, at the last maximum Mf , equation (8.10)
implies

2y(Mf ) = αy(αMf ) + βy(βMf ). (8.21)

Since

2y(mf ) < 2y(Mf ), (8.22)

Equations (8.18) and (8.21) give

αy(αmf ) + βy(βmf ) < αy(αMf ) + βy(βMf ). (8.23)

The function is decreasing after the last maximum and αmf < αMf , hence,

y(αmf ) > y(αMf ). (8.24)

Inequalities (8.23) and (8.24) give,

αy(αMf ) + βy(βmf ) < αy(αmf ) + βy(βmf )

< αy(αMf ) + βy(βMf ), (8.25)

104



which implies βy(βmf ) < βy(βMf ), i.e.,

y(βmf ) < y(βMf ). (8.26)

Now βmf < βMf and y is decreasing after the last maximum, consequently,

mf < βmf < Mf < αmf , (8.27)

so that,

y(mf ) < y(βmf ). (8.28)

Equation (8.21) and inequality (8.24) give,

2y(Mf ) = αy(αMf ) + βy(βMf )

< αy(αmf ) + βy(βMf ). (8.29)

Adding and subtracting βy(βmf ) to equation (8.29) gives,

2y(Mf ) < αy(αmf ) + βy(βMf ) + βy(βmf )− βy(βmf ),

which, using equation (8.18), yields

2 (y(Mf )− y(mf )) < β (y(βMf )− y(βmf )) , (8.30)

and since 1 < β < 2, Inequalities (8.28) and (8.30) imply,

y(Mf )− y(mf ) < y(βMf )− y(βmf )

< y(βMf )− y(mf ). (8.31)

Inequality (8.31) implies,

y(Mf ) < y(βMf ), (8.32)

which contradicts the fact that Mf is the last maximum. This proves that y
is unimodal for all α > 2 > β > 1.
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8.3 Existence and uniqueness of higher eigen-

functions

SSD solutions are of central interest in this model since they can be easily
matched to data for the size distribution of cells for large time. They are
special solutions to the nonlocal partial differential equation (8.2). In par-
ticular, given an initial distribution n(x, 0) = n0(x), the SSD solution does
not give the complete solution (unless n0(x) = y(x)) and this prompts one
to consider other techniques to solve the more general problem.

This means that there is a set of solutions for equation (8.6) with ho-
mogeneous boundary conditions, that is, λ has the role of an eigenvalue as
discussed in van-Brunt et al [76]. We note that even in the single nonlo-
cal term case, the general solution to the partial differential equation is not
known. It may be possible that a class of solutions ym for m = 0, 1, . . . can
be obtained using an eigenfunction expansion. Specifically, we can use the
conditions given by the successive moments (that is, the Mellin transform),

∞∫
0

xm−1ym(x)dx = 0,

∞∫
0

xmym(x)dx �= 0 (8.33)

to calculate some further solutions to equation (8.6). These conditions give
rise to a class of eigenfunctions and are sufficient in this respect. At this
stage it is not clear whether there are other eigenfunctions. The idea mimics
that used by van-Brunt and Vlieg-Hulstman [77], and leads to the spectrum
(see Figure 8.2)

λm = μ− b

(
1

αm
+

1

βm
− 1

)
, (8.34)

for m = 0, 1, 2, ... . Here y = ym is the solution to equation (8.6) when
λ = λm.

We note that there are a countable number of real eigenvalues in the
interval [μ−b, μ+b), increasing withm, with point of accumulation λ = μ+b.
These eigenvalues lead to equations of the form

y′m +
b

g
(α−m + β−m)ym(x) =

b

g
(αym(αx) + βym(βx)) . (8.35)

Of course, there may be other eigenvalues and eigenfunctions. These eigen-
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Figure 8.2: Spectrum of Eigenvalues

functions ym are the solutions to equation (8.35) subject to equation (8.33)
and

ym(0) = 0 = lim
x→∞

ym(x). (8.36)

The first eigenfunction is the pdf solution y0 given by equation (8.11). The
higher eigenfunctions (as shown in Figure 8.3) can be found by following the
procedure used by Suebcharoen et al. [68], as shown in the next section.

8.3.1 A Laplace transform solution

A solution to the boundary value problem can be derived using the Laplace
transform. Let Y (s) denote the Laplace transform of y. Applying Laplace
transform to equation (8.35) and using equation (8.36) gives[

s+
b

g
(α−m + β−m)

]
Y (s) =

b

g

[
Y
( s
α

)
+ Y

(
s

β

)]
. (8.37)

For m ≥ 1, conditions in (8.33) give
∞∫
0

ym(x)dx = 0, and so

Y (0) = 0. (8.38)

For m = 0, conditions in (8.33) give
∞∫
0

y0(x)dx = 1, and so Y (0) = 1. We

consider a subset Ω of C and letH(Ω) denote the set of functions holomorphic
in Ω. Let D(a;R) denote the disk s ∈ C : |s− a| < R.

107



Lemma 8.3.1. There exists a unique solution to equation (8.37) in

H
(
D
(
0; b

g
(α−m + β−m)

))
that satisfies equation (8.38).

Proof. Let

Y (s) =
∞∑
k=0

aks
k. (8.39)

Equation (8.38) implies that

a0 = 0. (8.40)

We show that the radius of convergence is b(α−m+β−m)
g

. Substituting the power

series into equation (8.37) and balancing powers of s yields

b

g
(α−m + β−m − 1− 1)a0 = 0, (8.41)

and also the recursion,

ak−1 + { b
g
(α−m + β−m)− b

g
(α−k + β−k)}ak = 0, (8.42)

for k ≥ 1 and any fixed m > k. Equation (8.41) is satisfied since a0 = 0.
Also, equation (8.42) for k = 1 and for any fixed m > k, yields

a0 +
b

g
(α−m + β−m − (α−1 + β−1))a1 = 0, (8.43)

and since b
g
(α−m + β−m − (α−1 + β−1)) �= 0 for any fixed m > k, this implies

a1 = 0.

The same argument can be repeated for any k ≤ m− 1. This gives an = 0
for n = 0, 1, . . . ,m− 1. For k = m equation (8.42) implies

am−1 +
b

g
(α−m + β−m − (α−m + β−m))am = 0,
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which holds true for an arbitrary am, since am−1 = 0. When k > m, the
recursive relation (8.42) yields

am+k =
(−1)kamg

k

bk
k∏

r=1

( 1
αm + 1

βm − 1
αm+r − 1

βm+r )

. (8.44)

Since,

lim
k→∞

∣∣∣∣am+(k+1)

am+k

∣∣∣∣ = g

b(α−m + β−m)
,

hence by the ratio test the radius of convergence is b(α−m+β−m)
g

.

Lemma 8.3.2. The holomorphic solution Y of Lemma 8.3.1 can be mero-

morphically continued beyond D
(
0; b

g
(α−m + β−m)

)
. The only singularity

on the circle is at s = − b
g
(α−m + β−m) at which Y has a simple pole.

Proof. We know from Hadamard’s theorem that Y must have at least one
singularity on the unit circle. Equation (8.37) can be written as

Y (s) =
b

g
[
s+ b

g
(α−m + β−m)

]W (s), (8.45)

where

W (s) =

[
Y
( s
α

)
+ Y

(
s

β

)]
. (8.46)

since
[
b
g
(α−m + β−m)

]
<
[
b
g
(α−m + β−m)β

]
<
[
b
g
(α−m + β−m)α

]
and Y ∈

H
(
D
(
0; b

g
(α−m + β−m)

))
, soW is holomorphic inD

(
0; b

g
(α−m + β−m) β

)
.

In particular W is holomorphic for all s such that |s| = b
g
(α−m + β−m)

but Y must have a singularity on D
(
0; b

g
(α−m + β−m)

)
and consequently

it must be at s = − b
g
(α−m + β−m). The singularity is a simple pole, and

Y ∈ H
(
D
(
0; b

g
β (α−m + β−m)

))
− { b

g
(α−m + β−m)}.
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Lemma 8.3.3. Let S = {s ∈ C : b
g
(α−m + β−m)αkβj; k, j ∈ N ∪ {0}}. The

solution of Lemma 8.3.1 can be meromorphically continued in C. The unique
continuation gives a function Y ∈ H(C − S). At each point in S, Y has a
simple pole.

Proof. We show first that the only singularities of Y must be in the set S.
Suppose that σ is a singularity for Y and that σ /∈ S. Without loss of
generality, we can assume that σ is the closest such singularity to the origin.
Clearly − b

g
(α−m + β−m) ∈ S and therefore σ �= − b

g
(α−m + β−m). Equation

(8.45) implies that W must be singular at σ and this means that Y is singular
at either σ

α
or σ

β
. Since σ /∈ S neither σ

α
nor σ

β
are in S. But σ

α
< |σ| and

σ
β
< |σ| and this contradicts the definition of σ. We thus conclude that the

only singularities for Y lie in S.
We now show that each point in S is a simple pole for Y . Suppose that

there is a σ ∈ S such that Y does not have a simple pole at σ (e.g., σ is
a removable singularity, a higher order pole, or an isolated essential singu-
larity). Without loss of generality we can assume that σ is the closest such
singularity to the origin. Now Y has a simple pole at s = − b

g
(α−m + β−m).

Therefore σ �= − b
g
(α−m + β−m). Equation (8.45) implies that W must have

the same type of singularity. If σ ∈ S, then both σ
α
and σ

β
are in S. Since

σ is the closest singularity that is not a simple pole for Y , we know that Y
has a simple pole at both σ

α
and σ

β
. The singularity at σ therefore cannot

be a higher order pole or an essential singularity. Since α �= β, the singular-
ity cannot be removable. We thus conclude that σ is a simple pole, which
contradicts our hypothesis.

Lemma 8.3.4. The boundary value problem given by equations (8.35), (8.36),
(8.33) has a solution of the form

ym(x) =
∞∑
k=0

∞∑
j=0

ck,je
−αkβj b

g
(α−m+β−m)x, (8.47)
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where,

c0,0 = (−1)m
(
b

g
(α−m + β−m)

)m+1

+

(−1)m
(
b

g

)m+1 ∞∑
k=1

((α−m + β−m))
k+m

am(α
−(k+m) + β−(k+m))

k∏
r=1

(α−m + β−m − α−(m+r) − β−(m+r))

, (8.48)

ck,0 =
(−1)kαkc0,0

(α−m + β−m)k
k∏

s=1

(αs − 1)

, (8.49)

c0,j =
(−1)jβjc0,0

(α−m + β−m)j
j∏

s=1

(βs − 1)

, (8.50)

and for k, j ∈ N

ck,j =
−1

(αkβj − 1)(α−m + β−m)
(αck−1,j + βck,j−1). (8.51)

Proof. The function Y has a unique meromorphic continuation in C and each
point of S corresponds to a simple pole for Y . The Mittag-Leffler theorem
therefore implies that Y can be represented in the form

Y (s) =
∞∑
k=0

∞∑
j=0

(
ck,j

s+ b(α−m+β−m)αkβj

g

− Pk,j(s)

)
+ h(s), (8.52)

where the series is uniformly and absolutely convergent in any compact subset

of C − S. Here, the ck,j are the residues of Y at s = − b(α−m+β−m)αkβj

g
, the

Pk,j are polynomials and h is an entire function. We can thus invert the
above expression for Y term by term and this yields equation (8.47).

The coefficient c0,0 is the residue of Y at s = − b(α−m+β−m)
g

. Equation

(8.45) implies that

c0,0 =
b

g

(
Y

(−b(α−m + β−m)

gα

)
+ Y

(−b(α−m + β−m)

gβ

))
. (8.53)
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Equations (8.39) and(8.44) give

Y (s) = ams
m +

∞∑
k=1

(−1)kamg
ksk+m

bk
k∏

r=1

( 1
αm + 1

βm − 1
αm+r − 1

βm+r )

,

for all D
(
0; b

g
(α−m + β−m)

)
. Substituting s =

(
−b(α−m+β−m)

gα

)
and s =(

−b(α−m+β−m)
gβ

)
in the expression for Y(s) and then using equation (8.53)

gives equation (8.48). Let

ck =
((α−m + β−m))

k+m
am(α

−(k+m) + β−(k+m))
k∏

r=1

(α−m + β−m − α−(m+r) − β−(m+r))

am.

Then it is straightforward to show that

lim
k→∞

ck+1

ck
< 1;

hence it can be shown directly that the series defining c0,0 is convergent.
From equation (8.47) we have,

y(x) =
∞∑
k=0

∞∑
j=0

ck,je
−αkβj b

g
(α−m+β−m)x,

and

y′(x) =
∞∑
k=0

∞∑
j=0

ck,j

(−αkβjb(α−m + β−m)

g

)
e−αkβj b

g
(α−m+β−m)x.

Substituting these equations in equation (8.37) gives,

∞∑
k=0

∞∑
j=0

−ck,jAα
kβje−αkβjAx + A

∞∑
k=0

∞∑
j=0

ck,je
−αkβjAx − b

g
α

∞∑
k=0

∞∑
j=0

ck,je
−αk+1βjAx

− b

g
β

∞∑
k=0

∞∑
j=0

ck,je
−αkβj+1Ax = 0, (8.54)
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where A = b
g
(α−m + β−m). Balancing the coefficients yields

∞∑
j=0

−c0,jAβ
je−βjAx + A

∞∑
j=0

c0,je
−βjAx − b

g

∞∑
j=0

c0,je
−βj+1Ax = 0, (8.55)

∞∑
k=1

−ck,0Aα
ke−αkAx + A

∞∑
k=1

ck,0e
−αkAx − b

g

∞∑
k=0

ck,0e
−αk+1Ax = 0, (8.56)

and

∞∑
k=1

∞∑
j=1

−ck,jAα
kβje−αkβjAx + A

∞∑
k=1

∞∑
j=1

ck,je
−αkβjAx−

b

g
α

∞∑
k=0

∞∑
j=1

ck,je
−αk+1βjAx − b

g
β

∞∑
k=1

∞∑
j=0

ck,je
−αkβj+1Ax = 0. (8.57)

Balancing the coefficients in equations (8.55) and (8.56) yields equations
(8.50) and (8.49) respectively. Equation (8.57) gives the recursive relation

(8.51). In Figure 8.3, we have chosen am so that
∞∫
0

xy1(x)dx = 1.

It can also be shown directly that the double series
∞∑
k=0

∞∑
j=o

ck,j converges

absolutely. The absolute convergence of this series is established by the
recursive relation (8.51) once it is shown that there are Mj and Mk such that

|ck,j| ≤ Mj for all k and |ck,j| ≤ Mk for all j. Consider
∞∑
k=0

|ck,0| and
∞∑
j=0

|c0,j|.
Then,

lim
k→∞

|ck+1,0

ck,0
| = lim

k→∞
α

(α−m + β−m)(αk+1 − 1)
= 0 < 1,

and

lim
j→∞

|c0,j+1

c0,j
| = lim

j→∞
β

(α−m + β−m)(βj+1 − 1)
= 0 < 1.

and so
∞∑
k=0

|ck,0| and
∞∑
j=0

|c0,j| are convergent by the ratio test; hence there are

numbers L and N0 such that |ck,0| ≤ L and |c0,j| ≤ N0 for all j, k. Let v1
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be the smallest non-negative integer such that (α+β)
(α−m+β−m)(βv1−1)

< 1 and let

N1 = max{|c1,0|, c1,1, ..., |c1, v1|, N0}. If |c1,j−1| ≤ N1 and j ≥ v1,

|c1,j| ≤ 1

(α−m + β−m)αβj − 1
(α|c0,j|+ β|c1, j − 1|),

≤ (α + β)N1

(α−m + β−m)(αβj − 1)
,

≤ N1. (8.58)

It follows by induction that |c1,j| ≤ N1 for all j ≥ v1 and hence for all j. This
argument can be applied successively to each row. For the nth row we can de-
fine vn as the smallest non-negative integer such that (α+β)

(α−m+β−m)(αn−1βvn−1)
<

1 and define a new upper bound by letNn = max{|cn,0|, |cn,1|, ..., |cn, vn|, Nn−1}.
We can construct a sequence {vn} and {Nk} so that |ck,j| ≤ Nn for all k ≤ n

and all j. Let μ be the smallest positive integer such that (α+β)
(α−m+β−m)(αμ−1−1)

<

1. Then vn = 0 for all n ≥ μ. Now Nμ = max{|cμ,0|, Nμ−1} and since
|ck,0| ≤ L and for all k we can use the bound N = max{L,Nμ−1}. This
bound can be applied to all the rows after the μth row and hence M is an
upper bound for |ck,j|.
Remark 1. The solution to the boundary value problem defined by the
equations (8.35), (8.36) and (8.33), for m = 0, can be deduced from the
working above by puttingm = 0. However the value of the Laplace transform
Y (s) at s = 0 changes, i.e., Y (0) = 0 in the proof of Lemma 8.3.1 changes
to Y (0) = 1, and this yields a0 = 1. Equation (8.44) and the subsequent
working remains valid for m = 0.

8.4 Uniqueness

The Dirichlet series solution is based on the assumption that the Laplace
transform is holomorphic at the origin. Under this assumption, the mero-
morphic continuation of Y is unique and the inverse is also unique. The
requirement that Y be holomorphic at s = 0 places a strong decay condition
on y: solutions Y that are holomorphic at the origin correspond to solutions
y that decay exponentially. The boundary-value problem makes sense with-
out such strong decay conditions, and it may be that equation (8.37) has
solutions that satisfy equation (8.38) but are not holomorphic at s = 0. For

114



example, the origin could be a branch point for Y . Rather than chase other
Laplace transform solutions, however, we can establish that the Dirichlet se-
ries solution is the only solution directly from the boundary value problem.
Suebcharoen et al. [68] had established the uniqueness of the SSD solu-
tion. Here, we modify their proof to establish the uniqueness of the higher
eigenfunctions.

Suppose that y is a solution to the boundary value problem (8.35),(8.36),(8.33).
Let

δ0(x) =

∞∫
x

ym(ξ)dξ, (8.59)

and

δj(x) =

∞∫
x

δj−1(ξ)dξ, (8.60)

for j = 1, 2, ...,m. Integrating the functional differential equation (8.35) from
x to ∞ yields

gδ′0(x) = bδ0(αx) + bδ0(βx)− b(α−m + β−m)δ0(x).

Integrating the above equation again from x to ∞ gives

gδ′1(x) =
b

α
δ1(αx) +

b

β
δ1(βx)− b(α−m + β−m)δ1(x).

Repeating the process m + 1 times, i.e., integrating equation (8.35) from x
to ∞ m+ 1 times yields

δ′m(x) +
b

g
(α−m + β−m)δm(x) =

b

gαm
δm(αx) +

b

gβm
δm(βx). (8.61)

Also,

δm(0) =

∞∫
0

δm−1(ξ)dξ = 1 �= 0, (8.62)

and
lim
x→∞

δm(x) = 0. (8.63)
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Lemma 8.4.1. Any solution δm to equation (8.61) that satisfies equations
(8.62)-(8.63) cannot have local extrema in (0,∞).

Proof. Suppose that δm has a positive local maximum at M1 > 0. Then
δ′m(M1) = 0 and consequently

b

g
(α−m + β−m)δm(M1) =

b

gαm
δm(αM1) +

b

gβm
δm(βM1), (8.64)

which can be written as

δm(M1) =
1

1 + αm

βm

δm(αM1) +
1

1 + βm

αm

δm(βM1).

Then we can show that either δm(αM1) ≥ δm(M1) or δm(βM1) ≥ δm(M1).
Since δm(M1) > 0 and δm(x) → 0 as x → ∞, there must be another positive
local maximum at M2 ≥ βM1 at which δm(M2) ≥ δm(M1). We can repeat
this argument on M2 to show that there is another local maximum at M3 ≥
β2M1. It is clear by this means we can construct a sequence {Mk} where
δm has positive local maxima such that {Mk} → ∞ as k → ∞ and that
δm(Mk) ≥ δm(M1) > 0. The existence of such a sequence however contradicts
equation (8.63) and we thus conclude that δm cannot have a local positive
maximum in (0,∞). The above argument can be applied to −δm to show that
δm cannot have a negative local minimum in (0,∞). Evidently δm cannot
have a positive local minimum since this requires a positive local maximum.
We thus see that δm cannot have any local extrema in (0,∞).

Theorem 8.4.2. Let δm be a solution to equation (8.61) that satisfies equa-
tions (8.62)-(8.63). Then δ′m(x) �= 0 for all x ∈ (0,∞).

Proof. Suppose that δ′m(τ) = 0 for some τ > 0. The proof of Lemma 8.4.1
shows that either δm(ατ) ≥ δm(τ) ≥ δm(βτ) or δm(βτ) ≥ δm(τ) ≥ δm(ατ).
Lemma 8.4.1 precludes the existence of an x > τ such that δm(x) > δm(τ)
since this would require δm to have a local maximum. Therefore, δm(ατ) =
δm(βτ) = δm(τ). But δm cannot have a local extrema; consequently δm(x) =
δm(τ) for all x ∈ [τ, ατ ]. The continuity of δ′m implies that δ′m(ατ) = 0.
We can thus repeat the above argument to show that δm(x) = δm(τ) for all
x ∈ [τ, α2τ ]. The argument can be repeated any number of times to show
that δm(x) = δm(τ) for all x ∈ [τ,∞). Equation (8.63) therefore implies that
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δm(x) = 0 for all x ∈ [τ,∞]. We now show that δm(x) = 0 for all x ∈ (0, τ ].
Since δm(x) = 0 for all x ∈ [τ,∞), equation (8.61) reduces to

δ′m(x) +
b

g
(α−m + β−m)δm(x) = 0,

for x ∈ [ τ
α
, τ
]
. We also know that δ(τ) = 0. The unique solution to this

initial value problem is δm(x) = 0. Therefore δm(x) = 0 for all x ∈ [ τ
α
, τ
]
. We

can repeat this argument any number of times and show that δm(x) = 0 for
all x ∈ (0, τ ] and hence δm(x) = 0 for all x > 0. The function δm, however,
is continuous at x = 0 and this implies that δm(0) = 0 which contradicts
equation (8.62).

Corollary 8.4.3. The Dirichlet series (8.47) is the unique solution to the
boundary value problem (8.35), (8.36), (8.33).

Proof. Suppose that y1 and y2 are solutions to the boundary value prob-
lem (8.35),(8.36), (8.33) and let z = y1 − y2. Redefine δm as δm(x) =
∞∫
x

∞∫
ξ1

...
∞∫
ξm

z(s)ds...dξ1. Then δm satisfies equations (8.61)-(8.63). The proof of

Lemma 8.4.1 is still valid and the proof of theorem 8.4.2 shows that δm(x) = 0

for all x ∈ [0,∞). Therefore δ
(m)
m = (−1)mz(x) = 0 and consequently y1 = y2

for all x ∈ [0,∞).

8.5 Conclusions

In this chapter we studied the cell division problem for the case of binary
asymmetrical splitting. We extended the results obtained for the symmetrical
division of cells (chapter 5). The focus of our study was on separable solutions
to equation (5.2). The motivation for the study of such solutions came from
experimental results for certain plant cells that suggested solutions of this
type, at least as a long term approximation [27]. We found “the steady size
distribution” (SSD) and showed that it was unique. The question of whether
the set of the above solutions (eigenfunctions) are complete is still open.
Suppose that n is a function of the form

n(x, t) =
∞∑

m=0

cmym(x)e
−λmt, (8.65)
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where the above series is uniformly convergent for x ≥ 0. Then it is straight-
forward to show that such a function is a solution to equation (8.2). The
problem, however, is that in order to satisfy condition (4.7), the coefficients
cm must satisfy

n0(x) =
∞∑

m=0

cmym(x), (8.66)

and this brings to the fore the crucial question about what function space is
spanned by the eigenfunctions. This question and other properties of these
eigenfunctions remain to be explored, and this will be the subject of future
papers.

If, as we conjecture that, equation (8.65) is the full solution to equation
(8.2), then clearly n(x, t) ∼ c0y0e

−λ0t for large time, showing the steady size
distribution is propotional to y0(x). This is given in equation (8.47) form = 0
and is shown in Figure 8.1 and below in Figure 8.3. The latter also includes
y1(x), the second eigenfunction.
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Figure 8.3: The solutions y0(x) and y1(x) given by the Dirichlet series (8.47) for
m = 0, 1, g = 2, b = 1, α = 3, β = 3

2

Now we have the means, through equation (8.65), to calculate the evo-
lutionary path of the cell population cohort. Although ym(x) is not mono-

118



signed for m > 0, we expect that n(x, t) remain positive for all x, t > 0 but
we have not proved this here. It is to be addressed in a future paper.
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Chapter 9

Asymmetrical cell division with
dispersion

We discussed in chapter 4 that the deterministic cell growth model (4.4)-
(4.7) can be refined to include stochasticity in the growth rate of cells. Hall
[25] notes that there may be an “experimental evidence showing significant
variation in the growth rates of individuals all with the same measured prop-
erties”. In such a scenario, the deterministic cell growth model would be
inappropriate. To cater for this, we added stochasticity to the growth rate of
cells and this lead to a dispersion-like model (4.12)-(4.16). In chapter 7, we
studied this model (4.12)-(4.16) for the case of symmetric division of cells.

Here, we extend our study to the case of asymmetric division of cells and
analyze the cell growth partial integro-differential equation (4.16) subject
to conditions (4.12)-(4.15) for binary asymmetrical splitting. The choice of
W (x, ξ) in this case becomes

W (x, ξ) = δ

(
ξ

α
− x

)
+ δ

(
ξ

β
− x

)
, (9.1)

where δ denotes the Dirac delta function. A straightforward calculation
shows that W (x, ξ) given by equation (9.1) satisfies the mass balance equa-
tion (4.8) as well as equation (4.9). The above choice of W and the mass
balance equation simplify equation (4.16) to

∂n(x, t)

∂t
+

∂(g(x)n(x, t))

∂x
=

∂2

∂x2
(D(x)n(x, t)) + αb(αx)n(αx, t) + βb(βx)n(βx, t)

− (μ+ b)n(x, t). (9.2)
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The numbers α and β are not independent: the mass balance equation (4.8)
implies

1

α
+

1

β
= 1, (9.3)

i.e.,

β =
α

α− 1
. (9.4)

Without loss of generality we can assume

α ≥ β > 1.

We follow a procedure similar to that used for the asymmetric division of
cells with deterministic growth rates (chapter 8) and focus on the solutions
of equation (9.2), subject to the conditions given by equations (4.12)-(4.15),
that correspond to the steady size distribution (SSD) (of constant shape).
Begg [5] proved the existence of a steady size distribution to the cell growth
equation with dispersion (9.2). As discussed earlier that Hall and Wake [80]
studied equation (9.2) without the mortality term and considered separated

solutions of the form n(x, t) = y(x)N(t), where N(t) =
∞∫
0

n(x, t)dx is the

total population at time t and y(x) (i.e., y is time invariant) is a probability

density function with
∞∫
0

y(x)dx = 1. These separable solutions correspond to

the “steady size distributions” (SSDs). SSD solutions are thus separable so-
lutions of the form n(x, t) = N(t)y(x) which upon substitution into equation
(9.2) leads to solutions of the form

n(x, t) = e−λty(x), (9.5)

where λ is a separation constant (to be found) and y satisfies

(D(x)y(x))′′ − (g(x)y(x))′+αb(αx)y(αx) + βb(βx)y(βx)− (μ+ b− λ)y(x) = 0.

(9.6)

The no-flux condition (4.12) yields

lim
x→0+

{(D(x)y(x))′ − g(x)y(x)} = 0. (9.7)
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9.1 Constant coefficients case:

In this section, we take for simplicity D(x) = D, g(x) = g and b(x) = b
as positive specified constants. Clearly, we require that y(x) ≥ 0 for all
x ≥ 0. We further require that y be integrable on [0,∞) and without loss
of generality we can assume that y is a probability density function (pdf) so
that

∞∫
0

y(x)dx = 1. (9.8)

Integrating equation (9.6) with respect to x from 0 to∞ and using conditions
(9.7) and (9.8) yield

λ = μ− b. (9.9)

Equation (9.6) thus reduces to

Dy′′ − gy′ + αby(αx) + βby(βx)− 2by(x) = 0. (9.10)

Equation (9.9) shows that the first eigenvalue remains the same in the disper-
sion case as in the non-dispersion case. We seek solutions to equation (9.10)
subject to conditions (9.7) and (9.8). As seen in chapter 7 that solutions to
the functional differential equation (7.7), arising in the case of symmetrical
division of cells, are in the form of a Dirichlet series. Also, in the case of
asymmetrical division of cells with deterministic growth rate (Chapter 8),
functional differential equations such as (9.10) arise with D = 0 and have
solutions in the form of a Dirichlet series. Motivated by this, we consider a
solution to the functional differential equation (9.10) of the form

y(x) =
∞∑
k=0

∞∑
j=0

ck,je
−αkβjAx. (9.11)

where the coefficients ck,j and A are to be determined. From equation (9.11)
we have,

y′(x) =
∞∑
k=0

∞∑
j=0

(−αkβjA)ck,je
−αkβjAx, (9.12)
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and

y′′(x) =
∞∑
k=0

∞∑
j=0

(α2kβ2jA2)ck,je
−αkβjAx. (9.13)

Substituting these to equation (9.10) gives

D

∞∑
k=0

∞∑
j=0

α2kβ2jA2ck,je
−αkβjAx − g

∞∑
k=0

∞∑
j=0

(−αkβjA)ck,je
−αkβjAx+

αb

∞∑
k=0

∞∑
j=0

ck,je
−αk+1βjAx + βb

∞∑
k=0

∞∑
j=0

ck,je
−αkβj+1Ax − 2bβ

∞∑
k=0

∞∑
j=0

ck,je
−αkβjAx = 0.

(9.14)

Equating coefficients of e−Ax yields the indicial equation

DA2 + gA− 2b = 0. (9.15)

Since the series (9.11) diverges if A ≤ 0, we choose A to be the positive root
of (9.15). This gives

A =
−g +

√
g2 + 8bD

2D
. (9.16)

Equating coefficients of e−αkAx,e−βjAx, e−αkβjAx for k, j ≥ 1 yields

ck,0 =
(−1)k(αb)kc0,0

k∏
s=1

(DA2α2s + gAαs − 2b)

, (9.17)

c0,j =
(−1)j(βb)jc0,0

(
j∏

s=1

(DA2β2s + gAβs − 2b)

, (9.18)

ck,j =
−b

(DA2α2kβ2j + gAαkβj − 2b)
(αck−1,j + βck,j−1), (9.19)

for k, j = 1, 2, ... . It can also be shown directly that the double series
∞∑
k=0

∞∑
j=o

ck,j converges absolutely. The absolute convergence of this series is
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established by the recursive relation (9.19) once it is shown that there are
Mj and Mk such that |ck,j| ≤ Mj for all k and |ck,j| ≤ Mk for all j.

consider
∞∑
k=0

|ck,0| and
∞∑
j=0

|c0,j|. Then,

lim
k→∞

∣∣∣∣ck+1,0

ck,0

∣∣∣∣ = lim
k→∞

(αb)k+1
k∏

s=1

(DA2α2s + gAαs − 2b)

k+1∏
s=1

(DA2α2s + gAαs − 2b)(αb)k

= 0 < 1,

and

lim
k→∞

|cj+1,0

cj,0
| = lim

j→∞

(βb)j+1
j∏

s=1

(DA2β2s + gAβs − 2b)

j+1∏
s=1

(DA2β2s + gAβs − 2b)(βb)j

= 0 < 1,

and so
∞∑
k=0

|ck,0| and
∞∑
j=0

|c0,j| are convergent by the ratio test; hence there are

numbers L and N0 such that |ck,0| ≤ L and |c0,j| ≤ N0 ∀ k, j. Let v1 be the
smallest non-negative integer such that

(α + β)b

DA2β2v1 + gAβv1 − 2b
< 1,

and let N1 = max{|c1,0|, c1,1, ..., |c1, v1|, N0}. If |c1,j−1| ≤ N1 and j ≥ v1,

|c1,j| ≤ (α + β)b

(DA2α2β2j + gAαβj − 2b)
(α|c0,j|+ β|c1, j − 1|)

≤ (α + β)bN1

(DA2α2β2j + gAαβj − 2b)

≤ N1.
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It follows by induction that |c1,j| ≤ N1 for all j ≥ v1 and hence for all j.
This argument can be applied successively to each row. For the nth row we
can define vn as the smallest non-negative integer such that

(α + β)b

DA2α2n−1β2vn + gAαn−1βvn − 2b
< 1,

and define a new upper bound by letNn = max{|cn,0|, |cn,1|, ..., |cn, vn|, Nn−1}.
We can construct a sequence {vn} and {Nk} so that |ck,j| ≤ Nn for all k ≤ n
and for all j. Let μ be the smallest positive integer such that

(α + β)b

DA2α2μ−1 + gAαμ−1 − 2b
< 1.

Then vn = 0 for all n ≥ μ. Now Nμ = max{|cμ,0|, Nμ−1} and since |ck,0| ≤ L
for all k, we can use the bound N = max{L,Nμ−1}. This bound can be
applied to all the rows after the μth row and hence there is an upper bound
for |ck,j|.
Remark 2. The problem we had exposed in chapter 7 about λ1 given by
equation (7.24) is also encountered here in the asymmetrical cell division.
Here again,

λ1 = μ−Dy1(0).

where y1 is the first non-SSD eigenfunction. The presence of y1(0) makes λ1

unknown since the value of y1 at x = 0 is not known. Exploring the nature
of y1(0) has been left for future work and is not included in this thesis.
However, it is possible to show that if such a λ1 exists, then we can find
the first eigenfunction y1, as well as the higher eigenfunctions on a pattern
similar to that used for the symmetric division of cells (see Chapter 7).

We now prove the uniqueness of the SSD solution.

9.1.1 Uniqueness

suppose that y is a solution to equation (9.10). Let

δ0(x) =

∞∫
x

y(ξ)dξ, (9.20)
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Then

lim
x→∞

δ0(x) = 0. (9.21)

Integrating equation (9.10) w.r.t x from x to ∞ gives

Dδ′′0(x)− gδ′0(x) + bδ0(αx) + bδ0(βx)− 2bδ0(x) = 0. (9.22)

Lemma 9.1.1. Any solution δ0 to equation (9.22) that satisfies equations
(9.21) cannot have local extrema in (0,∞).

Proof. Suppose that δ0 has a positive local maximum at M1 > 0. Then
δ′0(M1) = 0, δ′′0(M1) ≤ 0 and consequently

Dδ′′0(M1)− gδ′0(M1) + bδ0(M1) + bδ0(M1)− 2bδ0(M1) = 0.

This gives

δ0(M1) ≤ 1

2
{δ0(αM1) + δ0(βM1)}. (9.23)

Then we can show that either δ0(αM1) ≥ δ0(M1) or δ0(βM1) ≥ δ0(M1).
Since δ0(M1) > 0 and δ0(x) → 0 as x → ∞, there must be another positive
local maximum at M2 ≥ βM1 at which δ0(M2) ≥ δ0(M1). We can repeat
this argument on M2 to show that there is another local maximum at M3 ≥
β2M1. It is clear by this means we can construct a sequence {Mk} where
δ0 has positive local maxima such that {Mk} → ∞ as k → ∞ and that
δ0(Mk) ≥ δ0(M1) > 0. The existence of such a sequence however contradicts
equation (9.21) and we thus conclude that δ0 cannot have a local positive
maximum in (0,∞). The above argument can be applied to −δ0 to show that
δ0 cannot have a negative local minimum in (0,∞). Evidently δ0 cannot have
a positive local minimum since this requires a positive local maximum. We
thus conclude that δ0 cannot have any local extrema in (0,∞).

Theorem 9.1.2. Let δ0 be a solution to equation (9.22) that satisfies equa-
tions (9.21). Then δ′0(x) �= 0 for all x ∈ (0,∞).

Proof. Suppose that δ′0(τ) = 0 for some τ > 0. The proof of Lemma 9.1.1
shows that either δ0(ατ) ≥ δ0(τ) ≥ δ0(βτ) or δ0(βτ) ≥ δ0(τ) ≥ δ0(ατ).
Lemma 9.1.1 precludes the existence of an x > τ such that δ0(x) > δ0(τ) since
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this would require δ0 to have a local maximum. Therefore, δ0(ατ) = δ0(βτ) =
δ0(τ). But δ0 cannot have a local extrema; consequently δ0(x) = δ0(τ) for
all x ∈ [τ, ατ ]. The continuity of δ′0 implies that δ′0(ατ) = 0. We can thus
repeat the above argument to show that δ0(x) = δ0(τ) for all x ∈ [τ, α2τ ]. The
argument can be repeated any number of times to show that δ0(x) = δ0(τ)
for all x ∈ [τ,∞). Equation (9.21) therefore implies that δ0(x) = 0 for all
x ∈ [τ,∞). We now show that δ0(x) = 0 for all x ∈ (0, τ ]. Since δ0(x) = 0
for all x ∈ [τ,∞), equation (9.22) reduces to

δ′′0(x)−
g

D
δ′0(x)− 2bδ0(x) = 0,

for x ∈ [ τ
α
, τ
]
. We also know that δ0(τ) = 0. The unique solution to this

initial value problem is δ0(x) = 0. Therefore δ0(x) = 0 for all x ∈ [ τ
α
, τ
]
. We

can repeat this argument any number of times and show that δ0(x) = 0 for
all x ∈ (0, τ ] and hence δ0(x) = 0 for all x > 0. The function δ0, however,

is continuous at x = 0 and this implies that δ0(0) = 0 i.e.,
∞∫
0

ydx = 0, which

contradicts equation (9.8).

Corollary 9.1.3 (Positivity of solution). If y is a solution to equation (9.10),
then y(x) > 0 for all x > 0.

Proof. The condition (9.8) implies that y must be positive somewhere in
(0,∞). The corollary follows immediately from Theorem 9.1.2 and the rela-
tion

δ′0(x) = −y(x). (9.24)

Corollary 9.1.4 (Uniqueness). The solution y to equation (9.10) that sat-
isfies equation (9.21) is unique.

Proof. Suppose that y1 and y2 are solutions to equation (9.10) subject to

(9.21). Let z = y1 − y2. Redefine δ0 as δ0(x) =
∞∫
x

z(ξ)dξ. Then δ0 satisfies

equation (9.22). Equation δ0(0) = 1 is replaced by δ0(0) = 0. The proof
of Lemma 9.1.1 is still valid since δ0(0) = 1 was not used and the proof of
Theorem 9.1.2 shows that δ0(x) = 0 for all x ∈ [0,∞). Therefore δ′0(x) =
−z(x) = 0 for all x ∈ [0,∞), and consequently y1 = y2 for all x ∈ [0,∞).
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9.1.2 Shape of the SSD solution

The shape of the SSD solution is not obvious from the Dirichlet series (8.11).
Numerical experiments, however, suggest strongly that the SSD solution is
unimodal (see Figure 9.1). Rather than use the Dirichlet series directly, we
will use the equation (9.10) to show that the function y must be unimodal.
As noted in the last section, it can be shown that y(x) > 0 for all x > 0.

As discussed earlier, the proof of unimodality for the single nonlocal term,
the basic pantograph equation, was established by da Costa et al. [13]. The
symmetric case α = β = 2 is covered by this analysis. If α �= 2, then
the presence of a second non-local term complicates the analysis and certain
arguments valid in the one term case break down for the two term case. To
show the unimodality of the pdf solution y analytically, we suppose on the
contrary that y is a pdf solution to equation (9.10) that is not unimodal.
Without loss of generality we can assume

α > 2 > β > 1.

Then there exists at least one local minimum. Let {mn} be a strictly increas-
ing sequence of points where y has a local minimum and {Mn} be a strictly
increasing sequence where y has a local maximum. Since equation (9.12) can
be written as

y′(x) = −Ac0,0e
−Ax +O(e−Aβx), (9.25)

it is clear that y′ = O(exp(−Ax)) for large x and y′ does not change sign.
Accordingly, neither mn nor Mn tends to infinity as n tends to infinity. Also,
{mn} and {Mn} have no limit points since y′ is holomorphic in the complex
half plane and a limit point of extrema implies y′(z) = 0 for all Re(z) > 0
which is clearly not true. We thus conclude that the sequences are finite.
Note that y cannot be piecewise constant in any interval (a, b), a < b of the
positive real axis by the same argument and this means y must be strictly
decreasing after the last maximum.
Let mf and Mf be the locations of the last local minimum and maximum
respectively i.e. max {mn} = mf and max {Mn} = Mf . Then

y(mf ) > 0, y′(mf ) = 0, y′′(mf ) ≥ 0, (9.26)
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Figure 9.1: The solution y0(x) given by the Dirichlet series (9.11) for m = 0, 1,
D = 1, g = 2, b = 1.

and equation (9.10) implies

2y(mf ) ≥ αy(αmf ) + βy(βmf ). (9.27)

Since α > 2 and y(mf ) > 0, we have

y(mf ) > y(αmf ). (9.28)

Since the last maximum at Mf must occur after the last minimum at mf ,
equation (9.28) implies that

mf < Mf < αmf . (9.29)

In particular, y′(αmf ) cannot be positive as this could induce another lo-
cal maximum beyond Mf . Also, at the last maximum Mf , equation (9.10)
implies

2y(Mf ) ≤ αy(αMf ) + βy(βMf ). (9.30)

Since

2y(mf ) < 2y(Mf ), (9.31)
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Equations (9.27), (9.30) give

αy(αmf ) + βy(βmf ) < αy(αMf ) + βy(βMf ). (9.32)

The function is decreasing after the last maximum and αmf < αMf , hence,

y(αmf ) > y(αMf ). (9.33)

Inequalities (9.32) and (9.33) give,

αy(αMf ) + βy(βmf ) < αy(αmf ) + βy(βmf )

< αy(αMf ) + βy(βMf ),

which implies βy(βmf ) < βy(βMf ), i.e.,

y(βmf ) < y(βMf ). (9.34)

Now βmf < βMf and y is decreasing after the last maximum, consequently

mf < βmf < Mf < αmf , (9.35)

so that

y(mf ) < y(βmf ). (9.36)

Equations (9.30) and (9.33) give

2y(Mf ) ≤ αy(αMf ) + βy(βMf )

< αy(αmf ) + βy(βMf ). (9.37)

Adding and subtracting βy(βmf ) to equation (9.37) gives

2y(Mf ) < αy(αmf ) + βy(βMf ) + βy(βmf )− βy(βmf ),

which by using equation (9.27) yields

2 (y(Mf )− y(mf )) < β (y(βMf )− y(βmf )) , (9.38)
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and since 1 < β < 2, equations (9.37) and (9.38) imply

y(Mf )− y(mf ) < y(βMf )− y(βmf )

< y(βMf )− y(mf ). (9.39)

Inequality thus (9.39) gives

y(Mf ) < y(βMf ), (9.40)

which contradicts the fact that Mf is the last maximum. This proves that y
is unimodal for all α > 2 > β > 1.

9.2 A Bessel-type equation arising in Asym-

metrical cell division

In this section, we study the cell growth equation with dispersion (9.6) sub-
ject to condition (9.7) for a certain choice of non constant coefficients that
correspond to dispersion, growth and splitting rates. This choice of coeffi-
cients leads to a Bessel type operator, and it is shown that there is a unique
probability distribution function that solves the equation. The solution is
constructed using the Mellin transform and is given in terms of an infinite
series of modified Bessel functions.

We consider the case in which the dispersion and division rates are quadratic,
but the growth rate is linear. Specifically, we study the case in which
D(x) = D2x2, g(x) = gx , and b(x) = c2x2. Here D, g and c are posi-
tive constants. For this choice of coefficients, equation (9.6) reduces to

(x2y(x))′′−ĝ(xy(x))′ + (λ̂− μ̂− ĉ2x2)y(x) + ĉ2α3x2y(αx) + ĉ2β3x2y(βx) = 0,

where

ĝ =
g

D2
, ĉ =

c

D
, μ̂ =

μ

D2
, λ̂ =

λ

D2
.

Dropping circumflexes, it is clear that we can reduce the functional differen-
tial equation problem to

(x2y(x))′′−g(xy(x))′ + (λ− μ− c2x2)y(x) + c2α3x2y(αx) + c2β3x2y(βx) = 0.
(9.41)
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In addition to the “no-flux” condition (9.7), we impose the decay condition

lim
x→∞

{(D(x)y(x))′ − g(x)y(x)} = 0. (9.42)

The “no-flux” boundary condition (9.7) and the boundary condition (9.42)
loom large in all the treatments of the second order cell growth problem.
In fact, more fundamental conditions can be imposed. We will drop the
boundary conditions and replace them with the requirement that y be a pdf
along with certain growth/decay conditions as x → ∞ and as x → 0+. These
growth/decay conditions ensure the existence of a Mellin transform.

In the next section we derive some qualitative results about solutions to
equation (9.41) that concern the eigenvalue and uniqueness. In section 9.2.2,
we derive and solve an equation for the Mellin transform of y. In section
9.2.3, we develop a solution in the form of an infinite series of modified Bessel
functions . The transform is exploited to deduce the asymptotic behaviour
of y as x → 0+. It turns out that the asymptotic behaviour is linked strongly
to the parameter g.

9.2.1 Qualitative properties

We are concerned with classical solutions to equation (9.41) that are also pdfs;
hence, we require y ∈ C2(0;∞) and y ∈ L1[0;∞). If stronger growth/decay
conditions are imposed, then the exact value of λ can be determined. Let
G(τ1, τ2) denote the set of functions f such that f ∈ C2(0;∞), f(x) =
O(1/xτ1) and f ′(x) = O(1/xτ1+1) as x → 0+, and f(x) = O(1/xτ2) and
f ′(x) = O(1/xτ2+1) as x → ∞.

Theorem 9.2.1. Suppose that y ∈ G(τ1, τ2) is a pdf solution to equation
(9.41), where τ1 < 1 and τ2 > 4. Then λ = μ− g.

Proof. The growth/decay conditions placed on the pdf y imply that xpy ∈
L1[0;∞) for 0 ≤ p ≤ 3. Multiplying equation (9.41) by x and integrating
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from 0 to ∞ yields

(λ− μ+ g)

∞∫
0

xy(x)dx+
(
x3y′(x)− (g + 3)x2y(x)

) ∣∣∣∣∞
0

= c2
∞∫
0

(x3y(x)− α3x3y(αx)− β3x3y(βx))dx

= 0.

The growth/decay conditions placed on y ensure that the boundary terms
vanish; therefore,

(λ− μ+ g)

∞∫
0

xy(x)dx = 0. (9.43)

The function y is a pdf so that y(x) ≥ 0 for all x ≥ 0 and y is not identically
zero; hence,

∞∫
0

xy(x)dx > 0.

Equation (9.43) thus implies λ = μ− g.

Under the conditions of Theorem 9.2.1, equation (9.41) can be recast as

(x2y(x))′′ − g(xy(x))′ − (c2x2 + g)y(x) + c2α3x2y(αx) + c2β3x2y(βx) = 0.
(9.44)

We now focus on solutions to this equation and show that any solution (pdf
or otherwise) that is positive at some point in (0,∞) must be positive for
all x > 0. The proof of this result is also connected with uniqueness. We
begin with a transformation and a Lemma. Suppose that y ∈ G(τ1, τ2) is a
solution to equation (9.44), where τ1 < 1 and τ2 > 4, and let

Δ(x) =

∞∫
x

ξ3y(ξ)dξ.
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The function Δ is well defined for x ≥ 0, Δ ∈ C2(0,∞), and

Δ′(x) = −x3y(x),

Δ′′(x) = −x3y′(x)− 3x2y(x).

Now,

∞∫
x

(
ξ(ξ2y(ξ))′′ − gξ(ξy(ξ))′ − gξy(ξ)

)
dξ

=− x3y′(x)− x2y(x) + gx2y(x)

=Δ′′(x)− (g + 2)Δ′(x)
x

;

consequently, (9.44) yields

Δ′′(x)− (g + 2)Δ′(x)
x

= c2(Δ(x)− 1

α
Δ(αx)− 1

β
Δ(βx)). (9.45)

Lemma 9.2.2. If Δ ∈ C2(0,∞) is a non-trivial solution in (0,∞) to equa-
tion (9.45) such that

lim
x→∞

Δ(x) = 0. (9.46)

Then Δ′(x) �= 0 for all x > 0.

Proof. We show first that Δ cannot have local extrema. Suppose first that Δ
has a positive local maximum at x1 > 0. Then Δ′(x1) = 0 and Δ′′(x1) ≤ 0;
hence

Δ(x1) ≤ 1

α
Δ(αx1) +

1

β
Δ(βx1). (9.47)

Then we can show that either Δ(αx1) ≥ Δ(x1) or Δ(βx1) ≥ Δ(x1). Since
Δ(x1) > 0 and Δ(x) → 0 as x → ∞, there must be another positive local
maximum at x2 ≥ βx1 at which Δ(x2) ≥ Δ(x1). We can repeat this argument
on x2 to show that there is another local maximum at x3 ≥ βx2 ≥ β2x1

at which Δ(x1) ≤ Δ(x3). It is clear by this means we can construct a
sequence {xk} of points at which Δ has positive local maxima such that
{xk} → ∞ as k → ∞ and that Δ(xk) ≥ Δ(x1) > 0. The existence of such a
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sequence however contradicts equation (9.46) and we thus conclude that Δ
cannot have a local positive maximum in (0,∞). The above argument can
be applied to −Δ to show that Δ cannot have a negative local minimum in
(0,∞). Evidently Δ cannot have a positive local minimum since this requires
a positive local maximum. We thus conclude that Δ cannot have any local
extrema in (0,∞).

Suppose that Δ′(x1) = 0 for some x1 > 0. Since Δ cannot have local
extrema, it follows that Δ(x) = Δ(x1) for all x ∈ [x1, αx1]. The continuity of
Δ′ implies that Δ′(αx1) = 0. We can thus repeat the above argument to show
that Δ(x) = Δ(x1) for all x ∈ [x1, α

2x1]. The argument can be repeated any
number of times to show that Δ(x) = Δ(x1) for all x ∈ [x1,∞). Equation
(9.46) therefore implies that Δ(x) = 0 for all x ∈ [x1,∞). We now show that
Δ(x) = 0 for all x ∈ (0, x1]. Since Δ(x) = 0 for all x ∈ [x1,∞), equation
(9.45) reduces to

Δ′′(x)− (g + 2)Δ′(x)
x

= c2(Δ(x))

for x ∈ [x1

α
, x1

]
. We also know that Δ(x1) = 0 and Δ′(x1) = 0. The unique

solution to this initial value problem is Δ(x) = 0 Therefore Δ(x) = 0 for all
x ∈ [x1

α
, x1

]
. We can repeat this argument any number of times and show

that Δ(x) = 0 for all x ∈ (0, x1] and hence Δ(x) = 0 for all x > 0. It is
assumed, however, that Δ is nontrivial in (0,∞); therefore Δ′(x) �= 0 for all
x > 0.

An immediate consequence of Lemma 9.2.2 and the definition of Δ is that
y is nonzero for x > 0 if it is nonzero at any point in (0,∞). In particular if
y satisfies the condition

∞∫
0

y(x)dx = 1, (9.48)

then y must be positive somewhere in (0,∞) and therefore it must be positive
for all x > 0. More formally, we have the following result.

Corollary 9.2.3. Suppose that y ∈ G(τ1, τ2) is a nontrivial solution to equa-
tion (9.44) where τ1 < 1 and τ2 > 4. Then y(x) �= 0 for all x > 0. In
particular if y satisfies condition (9.48), then y(x) > 0 for all x > 0.

135



The above corollary shows that we do not have to impose positivity condi-
tions on solutions to guarantee that they are pdf solutions. The growth/decay
conditions and the normalizing condition are sufficient to ensure positivity.
Corollary 9.2.3 can also be used to establish a uniqueness result.

Theorem 9.2.4. If there exists a solution y to equation (9.44) that satisfies
condition (9.48) such that y ∈ G(τ1, τ2) for some numbers τ1 < 1 and τ2 > 4,
then this solution is unique.

Proof. suppose that y1 and y2 are distinct solutions and let z = y1−y2. Then
there is an x1 > 0 such that z(x1) �= 0, and without loss of generality z can
be defined so that z(x1) > 0. Since y1 and y2 also satisfy equation (9.48), we
also have

∞∫
0

z(x)dx = 0. (9.49)

Now, z ∈ G(τ1, τ2) and therefore the function δ̂ defined by

δ̂(x) =

∞∫
x

ξ3z(ξ)dξ.

satisfies the conditions of Lemma 9.2.2 and hence z(x) �= 0 for all x > 0.
Since z(x1) > 0, the function z must be positive on (0,∞) and therefore

∞∫
0

z(x)dx > 0

The last inequality, however, contradicts equation (9.49); therefore y1(x) =
y2(x) for all x > 0.

9.2.2 A solution for the Mellin transform

Equation (9.44) can be recast in the form

x2y′′ − (g − 4)xy′ − (c2x2 + λ)y(x) = −c2α3x2y(αx)− c2β3x2y(βx), (9.50)
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where

λ = 2(g − 1). (9.51)

In the above form it is clear that the differential operator is the well known
modified Bessel operator. The Mellin transform of y is

M [y(x); s] =

∞∫
0

xs−1y(x)dx.

Under the growth/decay conditions of Theorem 9.2.1, this transform has
a fundamental strip that includes 1 ≤ Re(s) ≤ 3. Applying the Mellin
transform to equation (9.50), noting that the boundary terms vanish, gives

((s− 3 + g)s+ 2(g − 1))M(s) = c2
(
1− 1

αs−1
− 1

βs−1

)
M(s+ 2), (9.52)

where for succinctness M(s) = M [y(x); s]. Condition (9.48) implies

M(1) = 1. (9.53)

We seek a solution to equation (9.52) of the form

M(s) = F (s)Q(s),

where

((s− 3 + g)s− λ)F (s) = c2F (s+ 2). (9.54)

Equation (9.54) is the Mellin transform equation associated with the modified
Bessel equation

x2y′′(x)− (g − 4)xy′(x)− (c2x2 + λ)y(x) = 0,

which has solutions of the form

y(x) = c1x
(g−3)/2Iν(cx) + c2x

(g−3)/2Kν(cx),

where Iν and Kν denote the modified Bessel functions, the ck are constants,
and

ν =
g + 1

2
.
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The function Iν is not bounded as x → ∞, but Kν decays exponentially as
x → ∞ for any ν. We choose a solution F based on the Mellin transform of
the homogeneous solution

yh(x) = x(g−3)/2Kν(cx);

hence,

M [yh(x); s] =
1

4

(
2

c

)(2s+g−3)/2

Γ

(
s+ g − 1

2

)
Γ

(
s− 2

2

)
= F (s).

Equations (9.54) implies

Q(s) =

(
1− 1

αs−1
− 1

βs−1

)
Q(s+ 2),

which has a solution of the form

Q(s) =
∞∏
k=0

(
1− 1

αs+2(k− 1
2
)
− 1

βs+2(k− 1
2
)

)
,

where C is a constant determined by equation (9.53). In particular,

C =
4
(
c
2

)(g−1)/2

Γ
(
g
2

)
Γ
(−1

2

) ∞∏
k=0

(
1− 1

α2k − 1
β2k

) . (9.55)

In summary, a solution to equation (9.52) that satisfies equation (9.53) is

M(s) =
C

4

(
2

c

)(2s+g−3)/2

Γ

(
s+ g − 1

2

)
Γ

(
s− 2

2

) ∞∏
k=0

(
1− 1

αs+2(k− 1
2
)
− 1

βs+2(k− 1
2
)

)
.

(9.56)

Note that the function Q has zeros of order one at s = 2, 0,−2,−4, ... and
the function Γ

(
s−2
2

)
has poles of order one at these points. The function

Γ
(
s−2
2

)
Q(s) is entire. The singularities of M arise from the term Γ

(
s+g−1

2

)
and are poles of order one that lie on the real line. The largest value of s that
produces a singularity is s = 1− g. The function M is thus meromorphic on
C and holomorphic in the half plane Re(s) > 1 − g. We show in the next
section that the asymptotic behavior of the solution to equation (9.50) as
x → 0+ depends on whether 0 < g < 1, g = 1, or g > 1, i.e., on the sign of
the eigenvalue λ.
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9.2.3 A pdf solution

The infinite product in (9.56) can be written as a double power series in αs

and βs. This observation prompts us to look for a solution of the form

y(x) =
∞∑
k=0

∞∑
j=0

(αkβjx)(g−3)/2ak,jKν(cα
kβjx). (9.57)

Substituting (9.57) into equation (9.50) and equating the coefficients ofKν(cα
kβj)

yields

x2c2K ′′
ν (cx) + xcK ′

ν(cx)−
(
c2x2 +

(
g + 1

2

)2
)
Kν(cx) = 0, (9.58)

along with the relations,

a0,j =
(−1)j(β3)ja0,0
j∏

s=1

((βs)2 − 1)

; j = 1, 2, ..., (9.59)

ak,0 =
(−1)k(α3)ka0,0
k∏

s=1

((αs)2 − 1)

; k = 1, 2, ..., (9.60)

and

ak,j =
−1

(αkβj)2 − 1
{α3ak−1,j + β3ak,j−1}; k, j = 1, 2, ... . (9.61)

Equation (9.58) gives

ν =
g + 1

2
. (9.62)

It can be shown directly that the double series
∞∑
k=0

∞∑
j=o

ak,j converges abso-

lutely. The absolute convergence of this series is established by the recur-
sive relation (9.61) once it is shown that there exist Mj and Mk such that
|ak,j| ≤ Mj for all k and |ak,j| ≤ Mk for all j.

The series
∞∑
k=0

|ak,0| and
∞∑
j=0

|a0,j| are convergent by the ratio test; hence there
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are numbers L and N0 such that |ak,0| ≤ L and |a0,j| ≤ N0 for all k and j.
Let v1 be the smallest non-negative integer such that

α3 + β3

α2β2v1 − 1
< 1,

and let N1 = max{|a1,0|, a1,1, ..., |a1, v1|, N0}. If |a1,j−1| ≤ N1 and j ≥ v1,
then equation (9.61) implies

|a1,j| ≤ 1

(α2β2j − 1)
(α3|a0,j|+ β3|a1, j − 1|),

≤ (α3 + β3)N1

(α2β2j − 1)
,

≤ N1.

It follows by induction that |a1,j| ≤ N1 for all j ≥ v1 and hence for all j.
This argument can be applied successively to each row. For the nth row we
can define vn as the smallest non-negative integer such that

α3 + β3

α2nβ2vn − 1
< 1,

and define a new upper bound by Nn = max{|an,0|, |an,1|, ..., |an, vn|, Nn−1}.
We can construct a sequence {vn} and {Nk} so that |ak,j| ≤ Nn for all k ≤ n
and for all j. Let φ be the smallest positive integer such that

α3 + β3

α2φ − 1
< 1,

Then vn = 0 for all n ≥ φ. Now Nφ = max{|aφ,0|, Nφ−1} and since |ak,0| ≤ L
for all k, we can use the bound N = max{L,Nφ−1}. This bound can be
applied to all the rows after the φth row and hence M is an upper bound for
|ak,j|.

Recall that for any ν,

Kν(x) ∼
√

π

2x
e−x,

as x → ∞. The series defining y thus converges rapidly and uniformly in
compact sets in (0,∞). Note that the terms in the above series are functions
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holomorphic in the half plane Re(z) > 0 and that the series converges in any
compact set of this half plane. The function y defined by equation (9.57) is
thus holomorphic in this half plane; a fortiori, y ∈ C2(0,∞). It is clear that

y(x) ∼
√

π

2c
x(g−3)/2e−cx,

as x → ∞, but the asymptotic behavior of y as x → 0+ is less obvious
particularly since

Kν(x) ∼ Γ(ν)

2

(
2

x

)ν

as x → 0+. The Mellin transform of y can be further exploited to deter-
mine this asymptotic behavior. Let f be a function with a Mellin transform
M [f(x); s] defined in a fundamental strip A < Re(s) < B. Recall that the
inversion formula is

f(x) =
1

2πi

∫ κ+i∞

κ−i∞
M [f(x); s]x−sds,

where A < κ < B. If f ∈ C2(0,∞), then the Riemann-Lebesgue Lemma and
integration by parts show that M [f(x); σ + it] = o(|t2|) as t → ±∞, where
σ is a fixed real number. If M [f(x); s]x−s can be meromorphically continued
to a strip A1 < Re(s) < B, where A1 < A, and if A1 < −N < A, then the
inversion formula and the asymptotic relation can be used to show

f(x) =
∑
λk∈S

Res(M [f(x); s]x−s; s = λk) + O(xN), (9.63)

where S denotes the set of singularities in the strip −N < Re(s) < κ. Here,
it is assumed that M [f(x); s]x−s has no singularities on the line Re(s) = −N .

It was shown at the end of Section 9.2.2 that M is holomorphic in the
half plane Re(s) > 1 − g. The transform has only simple poles and can be
meromorphically continued to Re(s) > −(1 + g). Since y ∈ C2(0,∞) we can
thus use the relation (9.63) in this half plane.

Suppose that g > 1 (see Figure 9.2). Then M is holomorphic in the right
half plane Re(s) ≥ 0 and therefore there is an N > 0 such that

y(x) = O(xN),
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as x → 0+, so that

lim
x→0+

y(x) = 0.

suppose that g = 1. Then M has a pole at s = 0, and equation (9.63) yields

y(x) = Res(M(s)x−s; s = 0) + O(xN), (9.64)

where 0 < N < 1 + g. Now,

Res

(
Γ
(s
2

)
Γ

(
s− 2

2

)(
1− 1

αs+1

)(
1− 1

βs+1

))
= −4

{
1

α
logα +

1

β
logβ

}
,

and therefore

Res(M(s)x−s; s = 0) =
C

2
R(α)(α + β − 1)c

{
logα

α
+

logβ

β

}
,

where

R(α) =
∞∏
k=2

(
1− 1

α2k−1
− 1

β2k−1

)
.

Let θ0(α) = Res(M(s)x−s; s = 0). Equation (9.64) yields

lim
x→0+

y(x) = θ0(α) > 0. (9.65)

Finally, suppose that 0 < g < 1. Then M has a simple pole of order one at
1− g > 0. Equation (9.63) implies

y(x) = θ1(α)x
g−1 +O(xN),

where 0 < N < 1 + g and

θ1(α) = Res(M(s); s = 1− g) > 0.

In this case

lim
x→0+

y(x) = ∞.

Note, however, that −1 < g − 1 < 0 so that y ∈ L1(0,∞). The three cases
are illustrated in Figure 9.2.
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Theorem 9.2.5. Let y be defined by equation (9.57). Then for any positive
numbers g and c there are numbers τ1 < 1 and τ2 > 4 such that y ∈ G(τ1, τ2).
The function y is a pdf solution to equation (9.44) and it is unique among
functions in G(τ1, τ2).

Proof. By construction y is a solution to equation (9.44) and it has been
shown that y ∈ C2(0,∞). Once it is established that there are numbers
τ1 < 1 and τ2 > 4 such that y ∈ G(τ1, τ2), the other properties of y follow
immediately from Corollary 9.2.3 and Theorem 9.2.4.

The above asymptotic analysis shows that

y(x) = O(xg−1) (9.66)

as x → 0+. Since

M [y′(x); s] = −(s− 1)M(s− 1),

the asymptotic behavior of y′ can be readily deduced from that of y. Briefly,
the first pole of M [y′(x); s] is at s = 2− g, and it follows that

y′(x) = O(xg−2) (9.67)

as x → 0+. It is clear that y′ also decays exponentially as x → ∞ so that
y and y′ meet the decay conditions as x → ∞ for any choice of τ2 > 0.
Equations (9.66) and (9.67) imply that there is a number τ1 < 1 such that y
and y′ satisfy the requisite growth conditions at the origin.

9.3 Conclusions

We discussed the cell growth equation with dispersion, first for the constant
coefficients case (Section 9.1) and then for a certain choice of non constant co-
efficients (Section 9.2) that corresponded to dispersion, growth and splitting
rates.

For the constant coefficient case, we found the SSD solution to the cell
growth equation (9.2) and showed that the solution is unique and positive.
We also discussed the shape of the SSD solution and established that the
SSD solution is unimodal.
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Figure 9.2: Pdf Solutions for α = 3, β = 3
2 , c = 1, g = 1

2 , 1, 2

In Section 9.2, we established that the cell growth equation (9.41) has,
under certain growth/decay conditions, a unique solution that is also a pdf.
It was shown that the eigenvalue λ is determined uniquely by these conditions
along with the requirement that y be positive for some x > 0. For this λ,
we showed that the solution must be positive for all x > 0. The Mellin
transform was used to study the asymptotic behavior of the solution as x →
0+. Although the solution technique is limited, the specific case studied here
is useful as a guide for more general cases where explicit solutions are not
available. The general theory of eigenvalue problems for functional equations
such as (9.2) remains largely unexplored. In all studies it was shown that the
eigenvalue problem mimics a singular Sturm-Liouville problem. Future work
certainly includes a closer study of equation (9.41) as an eigenvalue problem,
and an extension of results to more general coefficients.
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Chapter 10

Conclusions

In this thesis we modeled and analyzed the cell growth and division process
to gain insight into the cell population dynamics. Living cells which simul-
taneously grow and divide are usually structured on size and accordingly we
constructed a size structured cell population model. The biological relevance
of symmetric and asymmetric cell divisions was studied in Chapter 1. Exam-
ples of such symmetric and asymmetric cell divisions were also discussed. It
was explained that stem cells switch between the two modes of division ac-
cording to the needs of the body. The rationale for using single-compartment
cell growth models was also provided.

A mathematical model encompassing the relevant aspects of cell biol-
ogy was presented. This model is an extension of that studied by Hall and
Wake [24] and incorporates the asymmetric division of cells in addition to
the symmetric cell division. A novel aspect of the model is its focus on
the biological interpretation of the splitting kernel. Initially, determinis-
tic growth and splitting rates were considered and this led to a first order
partial-integro differential equation (equation (4.4)). The cell growth model
was then extended to include stochasticity in the growth rate of cells. This
extension resulted in a “dispersion-like” model and yielded a second order
partial-integro differential equation (equation (4.11)).

In chapters 5 and 8, we studied functional partial differential equations
(5.2) and (8.2), subject to appropriate initial and boundary conditions, aris-
ing in the cases of symmetric and binary asymmetric cell divisions, respec-
tively. The case of symmetric cell division yielded a functional partial differ-
ential equation with only one non-local term whereas the binary asymmetric
division resulted in a functional partial differential equation with two non-

145



local terms. However, the focus in both these chapters remained on separable
solutions to their corresponding functional partial differential equations. The
motivation for the study of such solutions came from experimental results for
certain plant cells that suggested solutions of this type, at least as a long term
approximation [27]. We found the steady size distribution (SSD) solution y0
in both these cases and showed that it was unique. A comparison of the
SSD solutions arising in the symmetrical and asymmetrical cases is given in
Figure 10.1. The blue curve indicates the SSD solution y0 for the binary
symmetrical case, i.e., the case in which a cell of size x divides into α = 2
cells each of size x

2
. The green curve shows the behavior of the SSD solution

for binary asymmetrical case, i.e., the case in which a cell of size x divides
into two cells of different sizes x

α
and x

β
. The graph clearly shows that when

the division becomes asymmetric, the peak shifts not only downwards but
also to the left. The higher eigenfunctions for the symmetrical as well as for

Figure 10.1: SSD Solutions for binary symmetric and asymmetric divisions.
For symmetric binary division, we have taken α = 2, g = 2 units,
b = 1 unit and for asymmetric binary division we have taken
α = 5, β = 5

4 , g = 2 units, b = 1 unit.

the asymmetrical case were obtained. For symmetrical cell division, it was
shown that the zeros of the eigenfunctions are nested and the result is given
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by Theorem 5.2.6. The question of whether the set of eigenfunctions ym are
complete is still open. Suppose that n is a function of the form

n(x, t) =
∞∑

m=0

cmym(x)e
−λmt,

where the above series is uniformly convergent for x ≥ 0. Then it is straight-
forward to show that such a function is a solution to equation (5.2) (equation
(8.2) for the asymmetric case). The problem, however, is that in order to
satisfy condition (4.7), the coefficients cm must satisfy

n0(x) =
∞∑

m=0

cmym(x),

and this brings to the fore the crucial question about what function space is
spanned by the eigenfunctions. This question and other properties of these
eigenfunctions remain to be explored, and this will be the subject of future
work.

We also developed a novel solution technique to solve the functional par-
tial differential equation (5.2) arising in the symmetrical case for general ini-
tial distributions. We obtained a solution valid for the quadrant x ≥ 0, t ≥ 0
(see Theorem 6.4.1). This solution was then used to determine the asymp-
totic behavior of the solution explicitly. The general solution allowed us to
easily get the higher order terms in the asymptotic expressions for the num-
ber density. The method is not restricted to the functional equation studied
in Chapter 6: the same strategy can be employed to deal with more general
functional partial differential equations with advanced arguments. For exam-
ple, if the division rate b is not constant with respect to x, the same approach
in principle can be used. The crux, however, is finding the limiting function.
Certainly, future work would include such generalizations. In terms of the
cell division model, the general solution developed in Chapter 6 provided
more detailed information about how the cell size distribution depends on
the initial distribution. It is well known that solutions are asymptotic to the
SSD solution as t → ∞, but the analysis underlying this relation does not
fully explain or illustrate why the initial data has such a weak influence on
the long term solution and how the SSD solution arises. We showed that the
weak dependence is a result of the hyperbolic character of the differential
operator and the advanced argument. We also showed that the SSD solution

147



arises as the leading order term in an expansion for the limiting function,
which represents the solution as t → ∞. In contrast, this limiting solution
depends strongly on the boundary data. The expansion also provided the
higher order terms in the asymptotic expansion, and these terms correspond
to eigenfunctions for the pantograph equation.

In Chapters 7 and 9 we studied our cell growth problem (see equations
(7.2) and (9.2)) involving stochastic growth rates, together with appropriate
boundary and initial conditions, for the symmetrical and the asymmetrical
division of cells respectively. In both the cases, we encountered a second or-
der functional partial differential equation. However, the functional partial
differential equation encountered in the symmetrical case (Chapter 7) con-
tained one non-local term whereas the functional partial differential equation
that arose in the asymmetrical division of cells (Chapter 9) had two non-local
terms. We focused on the SSD solutions to the non-local equations. A com-
parison of the SSD solutions arising in the symmetrical and asymmetrical
cases is given in Figure 10.2. The blue curve indicates the SSD solution
y0 for the binary symmetrical case, i.e., when a cell of size x divides into
α = 2 cells each of size x

2
. The green curve shows the behavior of the SSD

solution for binary asymmetrical case, i.e., when a cell of size x divides into
two cells of different sizes x

α
and x

β
. The graph clearly shows that when the

division becomes asymmetric, the peak shifts not only upwards but also to
the left. Here the dispersion coefficient D is taken to be 1. For the case of
symmetric cell division, we obtained a constructive existence theorem for the
linear, non-local dispersion-growth equation (7.2) with an arbitrary initial
size distribution and with a no-flux boundary condition. We showed that
this solution is unique (see Theorem 7.2.3).

Finally, we studied a linear cell growth ordinary differential equation
(9.41) with two non-local terms for a certain choice of non-constant coef-
ficients. This choice of coefficients lead to a Bessel type operator and it was
shown that the cell growth equation (9.41) has, under certain growth/decay
conditions, a unique solution that is also a pdf (see Theorem 9.2.5). It was
established that the eigenvalue λ is determined uniquely by these conditions
along with the requirement that y be positive for some x > 0. For this λ, we
showed that the solution must be positive for all x > 0. The Mellin trans-
form was used to study the asymptotic behavior of the solution as x → 0+.
Although the solution technique is limited, the specific case studied here
is useful as a guide for more general cases where explicit solutions are not
available. The general theory of eigenvalue problems for functional equations
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Figure 10.2: SSD Solutions for binary symmetric and asymmetric divisions
with stochastic growth rates. For symmetric binary division, we
have taken α = 2, D = 1, g = 2 units, b = 1 unit and for
asymmetric binary division we have taken α = 2.2, D = 1, g = 2
units, b = 1 unit.

such as (9.2) remains largely unexplored. In all studies it was shown that the
eigenvalue problem mimics a singular Sturm-Liouville problem. Future work
certainly includes a closer study of equation (9.41) as an eigenvalue problem,
and an extension of results to more general coefficients.
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Appendix A

Since a Dirichlet series is uniformly convergent, it can be differentiated term
by term. Substituting m = m− 1 in equation (5.29) and differentiating the
resulting equation with respect to x yields

y′m−1(x) = Km−1

(−b

g
α−(m−2)e−

b
g
α−(m−2)x +

∞∑
r=1

(−1)rαr(m−1)

α
r(r−1)

2

∏r
j=1(1− α−j)

(−b

g
α−(m−2)+r

)
e−

b
g
α−(m−1)+rx

)

= Aym(αx),

where A = Km−1

Km

(
−b
g

)
α−(m−2).
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[9] M.J. Cáceres, J.A. Cañizo, S. Mischler, Rate of convergence to an asymp-
totic profile for the self-similar fragmentation and growth-fragmentation
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