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ABSTRACT 

The main objective of this thesis was to follow the biofilm development during 

start-up of a fluidized bed bioreactor with the help of digital image processing. 

A mixed microbial culture immobilized on activated carbon particles was grown 

on phenol as sole carbon source in an aerobic liquid-solid fluidized bed 

bioreactor. The effect of different reactor temperatures and of different inlet 

phenol concentrations on the system behaviour during start-up was investigated. 

The phenol inhibition kinetics of the culture was studied in batch culture 

experiments. Three substrate inhibition models (Teissier-Edwards, Haldane and 

Aiba-Edwards models) were fitted to the experimental data. There was no 

statistically significant difference in the goodness of fit between the equations. 

The phenol concentrations at which the fitted functions go through their 

maximum value were between 57 and 88 mg/I, corresponding to specific growth 

rates of between 0.64 and 0.65 h-1
• 

A fluidized bed system was developed and tested. The test runs showed that the 

most critical part of the apparatus was the liquid distributor at the bottom of the 

fluidized bed reactor. Other critical factors that were decided on during the test 

runs were initial bed expansion, flow rate, support particle size, and amount of 

support particles used, these parameters all being interdependent. 

The fluidized bed experiments proved that the use of image analysis techniques 

is a very effective means of measuring the mean biofilm thickness on fluidized 

support particles. Micrographs of the bioparticles were analyzed with the help 

of a software-controlled system. The software identified the circumference of 

the particle core and the bioparticle. The mean biofilm thickness was calculated 
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from the projected areas and the perimeters of the bioparticle and the particle 

core applying a simple trapezoid formula. 

In all fluidized bed experiments, the bed stratified into layers (in most cases two 

or three) containing bioparticles with different biofilm thickness and different 

biofilm structure. The main focus was on the development of the biofilm in the 

top layer. The phenol reduction was only small due to a very short hydraulic 

retention time. Conversely, the dissolved oxygen concentration in the outlet 

reached very low values. Thus, the system was oxygen-limited. 

Different reactor temperatures led to distinct differences in the morphology of 

the biofilm in the top layer. Without temperature control, i.e. at -17°C, and at 

30°C, a loose, fluffy, unevenly shaped, thick biofilm developed, whereas at 

25°C the biofilm was firm and relatively even in shape, the final thickness 

remaining far below the values reached by the fluffy biofilm. Since the biofilm 

that developed at 25°C showed the most favourable characteristics, this 

temperature was used for the experiments examining the effect of different inlet 

phenol concentrations. 

The biofilm thickness in the top layer increased the fastest at an inlet phenol 

concentration of 100 mg/l, followed by 35 mg/l, then 330 mg/I and finally 520 

mg/I. In the batch culture experiments, the same order had been found for the 

specific growth rates at phenol concentrations of the above values. In the case 

of the few observations obtained at non-inhibitory phenol concentrations, the 

biofilm density increased with increasing phenol concentration. At inhibitory 

phenol concentrations the flow patterns in the reactor were very different, thus 

these patterns were the dominating factor influencing the biofilm density. 
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