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Abstract

Conducting polymers display properties such as high conductivity, light weight and
redox activity giving them great potential for use in many applications. Polythiophenes
have proved to be particularly useful because they are readily functionalised and have
good chemical stability. The purpose of this work was to investigate the effect of
electron-withdrawing and electron-donating substituents on the synthesis and

properties of polythiophenes.

Initial work entailed the synthesis of a series of styryl-substituted terthiophenes.
Polymerisation of these materials using both chemical and electrochemical methods
was found to produce predominantly short chain oligomers (2 < 4) and insoluble

material that could not be further processed.

An analogous series of styryl-substituted terthienylenevinylene materials were
electrochemically oxidised for comparison to the terthiophene series. These materials
were also found to produce predominantly dimer and short oligomers, but with the

expected higher conjugation length than the corresponding terthiophene oligomers.

To enhance polymerisation and increase the solubility of the resulting materials, the
polymerisation of styryl-terthiophenes with alkyl and alkoxy functionalities was
investigated. The properties of the resulting polymeric materials were determined using
electrochemistry, mass spectrometry, spectroscopy and microscopy. The alkoxy
substituted polymer was found to have a longer average polymer length than the
corresponding alkyl derivative (~# = 11 compared to ~» = 6), but was less soluble
(78% compared to 100%). It was found, however, that by increasing the alkoxy chain
length from 6 carbons to 10 carbons, the solubility of the polymer could be increased
to 97% without affecting the average polymer length. The alkoxy-substituted polymers
were observed to be very stable in the oxidised, conducting state compared to the
alkyl-substituted polymer, which appeared to be more stable in the neutral, non-

conducting state. It was found that these soluble materials could be separated into



fractions of different length polymers by using sequential soxhlet extractions in

different solvents.

Preliminary investigations were made into the suitability of these soluble oligomeric
and polymeric materials for use in photovoltaic, actuator and organic battery
applications and promising results were achieved for actuator and battery functions. In
addition, the solubility of these materials allowed nano- and micro-structured fibre and

fibril surfaces to be prepared for use in high surface area electrodes.
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UV-VIS-NIR spectra of films that were previously oxidised (solid lines)
and neutral films (dashed lines) of NMe,STT deposited using
potentiodynamic and potentiostatic methods.

Spectroelectrochemistry of an electrochemically grown film of oligoSTT
on ITO-coated glass. Potentials between 0.4 V and 1.1 V were applied in
steps of 0.1 V.

SEM images of neutral and oxidised films of oligoNMe,STT deposited
onto ITO-coated glass using potentiodynamic methods. Magnification:
x10000.

SEM image of an oxidised film of oligoOMeSTT deposited using
potentiodynamic methods. Magnification: x10000.

Potentiostatically deposited films of STT oligomers. (a) Neutral film:
x1400, inset: x70. (b) Oxidised film: x1400.

SEM images of oligoSTT films deposited using cyclic voltammetry. (a)
Neutral film: x1000, inset: x3000. (b) Oxidised state: x2000
magnification.

SEM images of oligopCNSTT films deposited using a constant potential.
(a) oxidised state, x10000 magnification, (b) neutral state, x5 000
magnification.

SEM images of oligoCNSTT films deposited using cyclic voltammetry.
(a) oxidised state, x10000 magnification, (b) neutral state, x10000
magnification.

SEM image of a neutral oligoNO,STT film deposited using a constant
potential, x 10000 magnification.

SEM images of oxidised oligoNO,STT films deposited by (a)
potentiostatic and (b) potentiodynamic methods, x 10000 magnification.

A polythienylenevinylene derivative
Terthienylenevinylene monomer derivatives.

Potentiodynamic growth of NO,STV on a platinum micro electrode (SA
= 10 pm?). Monomer concentration: 5 mM. Supporting electrolyte: 0.1
TBAP/1:1 AN:DCM. Potential limits: -500/+800 mV. 15 cycles. Scan
rate: 100 mV s™'. Inset: first three cycles.
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4.7

4.8

4.9

4.10

4.12

4.13

4.14

4.16

4.17

Potentiodynamic growth of CNSTV on a platinum micro electrode (SA =
10 um?). Monomer concentration: 5 mM. Supporting electrolyte: 0.1
TBAP/1:1 AN:DCM. Potential limits: -500/+800 mV. 15 cycles. Scan
rate: 100 mV s™. Inset: first three cycles.

Potentiodynamic growth of STV on a platinum micro electrode (SA =
10 um?). Monomer concentration: 5 mM. Supporting electrolyte: 0.1
TBAP/1:1 AN:DCM. Potential limits: -500/+800 mV. 15 cycles. Scan
rate: 100 mV s Inset: first six cycles.

Potentiodynamic growth of OMeSTYV on a platinum micro electrode (SA
= 10 um’). Monomer concentration: 5 mM. Supporting electrolyte: 0.1
TBAP/1:1 AN:DCM. Potential limits: -500/+800 mV. 15 cycles. Scan
rate: 100 mV s’ Inset: first three cycles.

Potentiodynamic growth of NMe,STV on a platinum disc electrode (SA
= 1.8 mm®). Monomer concentration: 5 mM. Supporting electrolyte: 0.1
TBAP /1:1 AN:DCM. Potential limits: 0/4+800 mV. 15 cycles. Scan rate:
100 mV s™. Inset: first three cycles.

Post growth cycling of oligopNO,STV deposited on a platinum micro
electrode (SA = 10 um’). Supporting electrolyte: 0.1 TBAP/AN.
Potential limits: -500/+800 mV. 10 cycles. Scan rate: 100 mV s™.

Post growth cycling of oligopCNSTV deposited on a platinum micro
electrode (SA = 10 um?). Supporting electrolyte: 0.1 TBAP/AN.
Potential limits: -500/+800 mV. 10 cycles. Scan rate: 100 mV s™.

Post growth cycling of oligoSTV deposited on a platinum micro electrode
(SA = 10 um®). Supporting electrolyte: 0.1 TBAP/AN. Potential limits: -
500/+800 mV. 10 cycles. Scan rate: 100 mV s™.

Post growth cycling of oligoOMeSTV deposited on a platinum micro
electrode (SA = 10 um’®). Supporting electrolyte: 0.1 TBAP/AN.
Potential limits: -500/+800 mV. 10 cycles. Scan rate: 100 mV's™.

Postgrowth cycling of oligopNMe,STV deposited on a platinum disc
electrode (SA = 1.8 mm?). Supporting electrolyte: 0.1 TBAP/AN.
Potential limits: -500/4+800 mV. 10 cycles. Scan rate: 100 mV s™.

UV-VIS-NIR spectrum of oligoNO,STV electrodeposited onto ITO-
coated glass and electrochemically oxidised (solid line) and reduced
(dashed line).

UV-VIS-NIR spectrum of oligoCNSTV electrodeposited onto ITO-
coated glass and electrochemically oxidised (solid line) and reduced
(dashed line).

UV-VIS-NIR spectrum of oligoSTV electrodeposited onto ITO-coated
glass and electrochemically oxidised (solid line) and reduced (dashed
line).

UV-VIS-NIR spectrum of oligpOMeSTV electrodeposited onto ITO-

coated glass and electrochemically oxidised (solid line) and reduced
(dashed line).

UV-VIS-NIR spectrum of NMe,STV electrodeposited onto ITO-coated
glass and electrochemically oxidised (solid line) and reduced (dashed
line).
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54

55
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58

59

5.10

5.11

5.12

5.13

Relationship between electron withdrawing/donating effect of the
substituent and the wavelength maxima due to the # — a* transition of
the oligomer-chain chromophore for both terthiophene and
thienylenevinylene derivatives.

Alkyl- and alkoxy-substituted styrylterthiophene monomers that were
initially polymerised and investigated in this study.

Polymerisation of OCsDASTT.

Possible structure created by the mesomeric effect of the oxygen on
alkoxy substituted thiophene polymers.

MALDI-TOF mass spectrum of polyOC,DASTT. Signals are labelled
with the assigned oligomer length in terms of monomer units (»).

UV-VIS-NIR spectrum of the soluble fraction of polyOCsDASTT in
solution in the oxidised state (excess Cu(ClO,),, solid line) and neutral
state (dashed line). The n-n* band in the neutral state is labelled with its
wavelength maximum.

CV of chemically polymerised OC¢DASTT, which has been cast as a
film onto an ITO-coated glass electrode (~1 cm®). Supporting electrolyte:
0.1 M TBAP/AN. Potential limits: -500/+1200 mV. 16" to 20" cycles.
Scan rate: 100 mV s™.

Photograph of the monomer and solvent fractions as solutions in
chloroform. (a) Monomer, (b) hexane, (c) acetone, (d) dichloromethane
and (e) chloroform.

MALDI-TOF mass spectra of OCs<DASTT oligomer fractions extracted
using hexane followed by acetone, dichloromethane and chloroform.
Signals are labeled with the assigned oligomer length in terms of
monomer units (n). M, of monomer: 550.5 g mol.

UV-VIS-NIR spectra of OC¢DASTT oligomer fractions separated by (a)
hexane, (b) acetone, (¢c) DCM and (d) chloroform. Samples were
measured in the oxidised state (excess Cu(ClQO,)., solid line) and neutral
state (dashed line) from solutions in chloroform.

UV-VIS-NIR spectra of neutral samples of OC(DASTT oligomer
fractions which have been separated using hexane, acetone, DCM and
chloroform. The A of the major m—=n* transition for each fraction is
shown.

MALDI-TOF mass spectrum of poly(C;DASTT). Signals are labelled
with the assigned oligomer length in terms of monomer units (»).

UV-VIS-NIR spectra of polyC;DASTT in the oxidised state (excess
Cu(ClQy),, solid line) and neutral state (dashed line). The n-n* bands in
the neutral state are labelled with their wavelength maxima.

CV of a chemically polymerised C;DASTT film, which has been cast
onto an ITO-coated glass electrode (SA: ~1 cm®). Supporting electrolyte:
0.1 M TBAP/AN. Potential limits: -500/+1200 mV. 5 cycles. Scan rate:
100 mV s’
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5.24
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5.26

5.27

MALDI-TOF MS of C;DASTT oligomer fractions extracted using
methanol followed by hexane, acetone and dichloromethane. Signals are
labelled with the assigned oligomer length in terms of monomer units (»).
M, of monomer: 546.5 g mol™.

UV-VIS-NIR spectra of C;DASTT oligomer fractions separated by (a)
methanol, (b) hexane, (c) acetone and (d) DCM. Samples were measured
in the oxidised state (excess Cu(ClQ,),, solid line) and neutral state
(dashed line) from solutions in chloroform.

UV-VIS-NIR spectra of neutral samples of C;DASTT oligomer fractions
which have been separated using hexane, acetone and DCM. The Ay of
the T—n* transition for each fraction is shown.

C,o-dialkoxy styrylterthiophene (OC,;,DASTT)
Reaction procedure employed for the polymerisation of OC,;(DASTT

MALDI-TOF MS of polyOC;,DASTT. Signals are labelled with the
assigned oligomer length in terms of monomer units (7).

UV-VIS-NIR spectra of polyOC,DASTT in chloroform in the oxidised
state (excess Cu(ClO,),, solid line) and neutral state (dashed line). The
major An for the T—a* absorbance is labelled.

CV of chemically polymerised OC,,DASTT, which has been cast as a
film onto an ITO-coated glass electrode (~1 cm?). Supporting electrolyte:
0.1 M TBAP/AN. Potential limits: -500/+1200 mV. 10 cycles. Scan
rate: 100 mV s™.

MALDI-TOF mass spectra of OC;,DASTT polymer fractions extracted
using hexane followed by acetone, dichloromethane and chloroform.
Signals are labeled with the assigned oligomer length in terms of
monomer units (x). M, of monomer: 662.4 g mol™.

UV-VIS-NIR spectra of OC,,DASTT oligomer fractions separated by
(a) hexane, (b) acetone, (c¢) DCM and (d) chloroform. Samples were
measured in the oxidised state (solid line, oxidised using excess
Cu(ClQOy,),,) and neutral state (dashed line) from solutions in chloroform.

UV-VIS-NIR spectra of OC,(DASTT oligomer fractions which have
been separated using hexane, acetone, DCM and chloroform. The A, of
the m—n* transition for each fraction is listed.

Cyclic voltammetry of OC,(DASTT oligomer fractions that have been
cast onto a glassy carbon electrode (SA: 7 mm?). Supporting electrolyte:
0.1 M TBAP/AN. Potential limits: -1000/+800 mV. 10 cycles. Scan
rate: 100 mV s™'. The average oligomer length in terms of monomer units
(n.y) 1s displayed.

Growth CV of oligoSTT (5 mM) on a platinum microelectrode (SA: 10
um?). Electrolyte solution: 0.1 M TBAP/1:1 AN:DCM. Potential limits: -
500/+900 mV. 15 cycles. Scan rate: 100 mV s™'.

Growth CV of C;DASTT (5 mM) on a platinum microelectrode
(10 um?). Electrolyte solution: 0.1 M TBAP/1:1 AN:DCM. Potential
limits: 0/+800 mV. 15 cycles. Scan rate: 100 mV s™.
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534

5885
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5.40

Relationship between the current produced during the growth of
C;DASTT (measured at 0.8 V) and the cycle number.

Post growth cycling of polyC;DASTT which has been deposited using
cyclic voltammetry on a platinum micro electrode (SA: 10 pm?).
Supporting  electrolyte: 0.1 M TBAP/AN. Potential limits:
-500/+800 mV. 10 cycles. Scan rate: 100 mV s™.

Potentiostatic growth of C;DASTT (5mM) on a platinum micro
electrode (SA: 10 um?). Solvent: 1:1 AN:DCM. Potential held at 0 mV
for 1 s, then stepped to 700 mV for 29 seconds.

Post growth cycling of polyC;DASTT, which has been deposited
potentiostatically on a platinum microelectrode (SA: 10 um?®). Supporting
electrolyte: 0.1 M TBAP/AN. Potential limits: 0/+800 mV. 10 cycles.
Scan rate: 100 mV s™.

Growth CV of OC,DASTT (5 mM) of a platinum micro electrode (SA:
10 um?). Electrolyte solution: 0.1 M TBAP/1:1 AN:DCM. Potential
limits: -500/+800 mV. Scan rate: 100 mV s”. The first scan is shown as
an inset.

Post growth cycling of polyOCsDASTT which has been deposited using
cyclic voltammetrv on a platinum microelectrode (SA: 10 pm?).
Supporting  electrolyte: 0.1 M TBAP/AN. Potential limits:
-500/+800 mV. 10 cycles. Scan rate: 100 mV s™.

Potentiostatic growth of OC(DASTT (5 mM) on a platinum
microelectrode (SA: 10 pm?). Electrolyte solution: 0.1 M TBAP/I:1
AN:DCM. Potential held at -500 mV for 1 s, then stepped to 800 mV for
19 s.

Post growth cycling of polyOC¢DASTT which has been deposited
potentiostatically on a platinum microelectrode (SA: 10 pm?).
Supporting  electrolyte: 0.1 M TBAP/AN. Potential limits:
-500/+800 mV. 10 cycles. Scan rate: 100 mV s™.

Growth CV of OC(DASTT (5 mM) on an ITO-coated glass electrode
(SA: ~lcm®). Electrolyte solution: 0.1 M TBAP/1:1 AN:DCM.
Potential limits: -500/+800 mV. 5 cycles. Scan rate: 100 mVs™.

Post growth cycling of polyOC(DASTT that has been deposited
potentiodynamically on an ITO-coated glass electrode (SA: ~1 cm?).
Supporting  electrolyte: 0.1 M  TBAP/AN. Potential limits:
-500/+800 mV. 10 cycles. Scan rate: 100 mV s™.

Potentiodynamically deposited films of OC¢DASTT oligomers on ITO-
coated glass. (a) Neutral film: x1400, (b) Oxidised film: x1400 inset:
x350.

MALDI-TOF MS of polyOC(DASTT, which was polymerised by
potentiodynamic deposition onto an ITO-coated glass electrode.
Significant signals are labelled with oligomer length in terms of monomer
units (n). Detection suppression limit: 1000 Da.

Growth CV of OC;,DASTT (5 mM) on a platinum microelectrode (SA:
10 um?®). Electrolyte solution: 0.1 M TBAP 1:1 AN:DCM. Potential
limits: -500/+800 mV. Scan rate: 100 mV s™.
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542
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548

549

5.50

551

552

Post growth cycling of polyOCi,cDASTT which has been deposited
potentiodynamically on a platinum microelectrode (SA: 10 pm?).
Supporting  electrolyte: 0.1 M TBAP/AN. Potential limits:
-500/+800 mV. 10 cycles. Scan rate: 100 mV's™.

Potentiostatic growth of polyOC;(DASTT (5 mM) on a platinum
microelectrode (SA: 10 uml). Electrolyte solution: 0.1 M TBAP/I:1
AN:DCM. Potential held at -500 mV for 1 s, then stepped to 800 mV for
19s.

Post growth cycling of polyOC,(DASTT which has been deposited
potentiostatically on a platinum  microelectrode (SA: 10 pm?).
Supporting electrolyte: 0.1 M TBAP/AN. Potential limits:
-500/+800 mV. 10 cycles. Scan rate: 100 mV's™.

Spectroelectrochemistry of a potentiostatically deposited
poly(OC,,DASTT ) film on ITO-coated glass. The film was initially in a
reduced state and was oxidised in steps of 0.1 V. Supporting electrolyte:
0.1 M TBAP/AN. Potentials are reported vs Ag/Ag".

Growth CV of OC;(DASTT (5 mM) on an ITO-coated glass electrode
(SA: ~1 cm?). Electrolyte solution: 0.1 M TBAP/1:1 AN:DCM. Potential
limits: -500/+800 mV. 5 cycles. Scan rate: 100 mVs™.

Post growth cycling of poly(OCicDASTT) that has been deposited
potentiodvnamically on an ITO-coated glass electrode (SA: ~1 cm?).
Supporting  electrolyte: 0.1 M  TBAP/AN. Potential  limits:
-500/+800 mV. 10 cycles. Scan rate: 100 mV s™.

Potentiostatic growth of polyOC;)DASTT (5 mM) on an ITO-coated
glass electrode (SA: ~1cm?). Electrolyte solution: 0.1 M TBAP/I:1
AN:DCM. Potential held at -500 mV for 1 s, then stepped to 800 mV for
19s.

Post growth cycling of polyOC;DASTT that has been deposited
potentiostatically on an ITO-coated glass electrode (SA: ~1cm?).
Supporting  electrolyte: 0.1 M  TBAP/AN. Potential  limits:
-500/+800 mV. 10 cycles. Scan rate: 100 mV s™.

SEM images of potentiodynamically deposited films of OC,,DASTT
oligomers. (a) Neutral film: x1400, (b) Oxidised film: x1400.

SEM images of potentiostatically deposited films of OC,(DASTT
oligomers. (a) Neutral film: x1400, (b) Oxidised film: x1400.

SEM images of (a/b) potentiostatically and (c/d) galvanostatically
deposited polyOC;oDASTT films on ITO-coated glass. Images (b) and
(d) are of the film edges formed at the solution/air interface. All images
are displayed at x7000 magnification.

MALDI-TOF MS of polyOC,,DASTT, which was polymerised by
potentiodynamic  deposition onto an ITO-coated glass electrode.
Significant signals are labelled with oligomer length in terms of monomer
units (7). Detection suppression limit: 1000 Da.
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MALDI-TOF MS of polyOC,,DASTT, which was polymerised by
potentiostatic deposition onto an ITO-coated glass electrode. Significant
signals are labelled with oligomer length in terms of monomer units (»).
Detection suppression limit: 1000 Da.

MALDI-TOF MS of polyOC;;DASTT, which was polymerised by
galvanostatic deposition onto an ITO-coated glass electrode. Significant
signals are labelled with oligomer length in terms of monomer units ().
Detection suppression limit: 1000 Da.

Construction of a PEC cell.

I -V curve of a cast film of chemically dimerised NMe,STT in the dark
(thin line) and under illumination (thick line).

I-V curves of electrochemically grown films of styryl thienylenevinylene
derivates. (a) NMe.STV, (b) OMeSTYV, (c) CNSTV and (d) NO,STV.

The relationship between the photovoltaic activity at Isc (8/sc, where 8/sc
= Lighvsc — laaisc) and the electron-withdrawing capability of substituents
on films of thienylenevinylene oligomers.

I -V curve of a PEC device comprising a cast film of STV dimer.

Experimental setup using a Dual Mode Lever System for measuring
electromechanical properties of a sample.

Schematic of a bender made by casting polymer as a solution in
chloroform on a PVDF memebrane strip.

CV of a cast polyOC,(DASTT film on a PVDF membrane substrate.
Surface area of substrate: 7 mm’. Amount of polymer cast: 15 pg.
Supporting electrolyte: 0.1 M TPAP/AN. Ten cycles. Scan rate: 100 mV
-
s,

Absorbance of a polyOC;,DASTT film on PVDF (a) immediately after
being cast from solution, (b) after electrochemical oxidation (+1 V vs
Ag/Ag’) and (c) after oxidation with iodine.

UV-VIS-NIR spectra of a cast polymer/PVDF strip which has been was
reduced and oxidised potentiostatically at ~0.6V and +1.0 V. Supporting
electrolyte: 0.25 M TBAPF4/PC. A piece of platinum coil was used to
wrap around the polymer/PVDF film to increase charge accessability,
and the potential was applied for 30 minutes.

Experimental setup for testing a polymer/PVDF strip. Electrolyte:
0.25 M TBAPF4/PC electrolyte. Counter electrode: stainless steel mesh.
Reference electrode: Ag/Ag’. The strip is shown in both an (a) reduced
and (b) oxidised state.

Schematic showing the expansion of the polymer film on oxidation by
incorporation of the anion, and contraction on reduction due to expulsion
of the anion.

Chronoamperometry of polyOC;oDASTT/PVDF strip in 025 M
TBAPF¢/PC. Oxidation potentials: switching from -0.6 V to 0.8 V.
Reduction potentials: switching from 0.8 Vto -0.6 V.
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6.24
6.25

6.26

Correlation between the injected charge and the displacement of the free
end of the film. The charge due to non-Faradaic process can be
determined by extrapolation of the linear trend.

Schematic of fibres on which polyOC,\DASTT was deposited. (a)
Hollow PVDF membrane fibre wrapped with a 50 um platinum wire. (b)
Hollow PVDF membrane fibre which has been sputter-coated with
platinum and wrapped with a 50 um platinum wire. (c) 250 um wire
wrapped in a 50 um wire.

Actuation of a hollow PVDF membrane fibre (49 mm long) wrapped in a
50 pm wire and coated with polymer (39 pg mm™). The force was held
constant at 6 mN while the potential was altemnated between -0.6 V and
+0.8 V. The distance the fibre stretches and the current produced were
measured.

Relationship between displacement and charge injected into a PVDF
membrane fibre coated with polyOC,(DASTT during (a) reduction and
(b) oxidation of one tvpical pulse. A negative charge is used to indicate
reduction, a negative displacement to indicate contraction, a positive
charge to indicate oxidation and positive displacement to indicate
expansion.

Comparison of the rate of contraction/expansion during oxidation and
reduction of one typical pulse. The slope represents the rate at which the
fibre is expanding or contracting.

Free-standing film of polyOC;(DASTT incorporating a zigzagged (50
pm diameter) wire. Dimensions of film: 6 mm x 21 mm with a thickness
of 81 um. Mass = 16.1 mg.

Strain created by the polyOC,,DASTT film over time as it is doped
(oxidised) and then dedoped (reduced at —0.6 V) to and from various
oxidation potentials.

The effect of the oxidation potential on the strain measured after 5000
seconds of oxidation.

Relationship between the strain generated at different oxidation potentials
and the electrochemical efficiency (EE).

Relationship between the isometric stress generated on the film and the
charge density passed as the film is reduced. The film was pre-
conditioned at +1V to obtain the fully expanded state and then isometric
measurements were performed as the potential was switched to -0.6 V.

Schematic of the test cell used in this study.

SEM images of the electrodes. Anodes prepared by casting
poly(OC,,DASTT) onto (a) Ni/Cu substrate (b) carbon fibre substrate.
The blank substrates before polymer deposition are given for comparison
as insets in the top right hand comer. (c) Cathode prepared by
electrodeposition of polypyrrole on stainless steel mesh. Images are
displayed at x400 magnification with insets at x100 magnification.

Cyclic voltammograms of polyOC,(DASTT cast on carbon fibre
substrate and Ni/Cu substrate. Electrolyte solution: 60 mM TBAPF¢/PC.
Scan rate: 10mVs™.
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6.37

6.38

Charge (A,C) and discharge (B,D) curves of cells with anodes
comprising Ni/Cu substrate (A,B) and carbon fibre (C,D). The
charge/discharge current density is 0.02 mA cm™.

Discharge capacities at different discharge current densities obtained for
the Teflon cell using Ni/Cu and carbon fibre anode substrates.

Variation of discharge capacity with cycle number for cells with an anode
comprising polyOC,)DASTT on Ni/Cu substrate and carbon fibre
substrate. Current density: 0.02 mA cm™.

SEM images showing polyOC;oDASTT fibrils with a platinum film as a
support. (a) Partially dissolved template and viewed from platinum
coated side, and (b) cross-section of the fibrils with a polymer film on left
and platinum film on the right.

CV of fibrils in a partially dissolved template with a platinum backing
stuck on ITO coated glass. Supporting electrolyte: 0.1 M TBAP/AN.
Scan rate: 100 mV s™.

Platinum inverse opals showing the honey comb structure. (a) x7500 and
(b) x3000 magnification.

Platinum opal structures produced by sputter-coating the polystyrene
opal with platinum. (b) opal showing predominantly body-centred cubic
square-packing. (c) showing predominantly hexagonal close-packing with
polymer coating,.

AFM images of the underside of a platinum opal structure. (a) 3-
dimensional image, (b) Height data and (c) deflection data. Scan size:
10.00 pm.

(a) Gold opal surface on ITO-coated glass and (b) polyOC;(DASTT cast
on a gold opal surface.

Edge of ITO opal structure on ITO-coated glass.
SEM images electrospun polyOC,,DASTT fibres.

Growth of platinum on opal coated ITO coated glass. 10 cycles. Scan
rate: 100 mV's™.
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Molecular weight

Number average molecular weight
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nﬂ\"

Ry

Molar mass

Weight average molecular weight

Oligomer length in terms of monomer units
Variable number

Number of electrons per monomer unit
Number of molecules

Average oligomer length in terms of monomer units
Variable functional group

Retention factor

Time

Velocity

Volt

Voltammeter

Open circuit voltage (Potential at zero current)
Voltage at peak power.

Variable cation

Charge

xxvil



List of Abbreviations

ACTH Adrenocorticotropic hormone

AFM Atomic force microscopy

AN Acetonitrile

Anhyd. Anhydrous

CE Counter electrode

Cp Conducting polymer

Cv Cyclic voltammetry

DBTT 3’,4’-dibutyl-2,2’:5°2”-terthiophene
DBU 1,8-diazabicyclo[5.4.0]Jundec-7-en
DCM Dichloromethane

dppp 1,3-diphenylphosphinopropane
ECE Energy conversion efficiency

EDG Electron-donating group

EDOT 3,4-ethylenedioxythiophene

PE Electrochemical efficiency

EI Electrospray ionisation

EQCM Electrochemical quartz crystal microbalance
Equiv. Equivalents

EWG Electron-withdrawing group

FAB Fast atom bombardment

Fc Ferrocene

FF Fill factor

GPC Gel permeation chromatography
GPES General purpose electrochemical system
GRIM Grignard method

HH Head-to-head

HOMO Highest occupied molecular orbital
Hrs Hours

HT Head-to-tail
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ICP

IPRI

ITO

LUMO
MALDI-TOF MS

MCP
N/A

OFET
OLED
PCBM

PD

PEC
PEDOT
PEDOT-PSS
PEO

Ph

PMMA

PPV

PV

PVDF

RT

SA

SCE
SEM
SHE
TBAP
TBAPFs
TLC

Inherently conducting polymer

Intelligent Polymer Research Institute
Indium tin oxide

Lowest unoccupied molecular orbital
Matrix assisted laser desorption/ionisation time-of-flight
mass spectrometry

Methyl

Micro-channel plate

Not applicable

Nuclear magnetic resonance

Organic field effect transistor

Organic light emitting diode
3’-phenyl-3"H-cyclopropa[ 1,9][5,6]fullerene-Cso-1,-3’-
butanoic acid methyl ester

Polydispersity

Photoelectrochemical cell
Poly(3,4-ethylenedioxythiophene)
Poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate)
Polyethylene oxide

Phenyl

Polymethylmethacrylate
Polyphenylenevinylene

Photovoltaic

Polyvinylidene fluoride

Reference electrode

Room temperature

Surface area

Standard calomel electrode

Scanning electron microscopy

Standard hydrogen electrode
Tetrabutylammonium perchlorate
Tetrabutylammonium hexafluorophosphate

Thin layer chromatography
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THF

TOF

TPP

TT
UV-VIS-NIR

w.r.t.

Tetrahydrofuran

Time-of-flight

Tetraphenyl porphyrin
Tail-to-tail
Ultraviolet-visible-near infrared
Working electrode

With respect to
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Monomer Abbreviations

C,DASTT
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STT: Styryl terthiophene

DASTT: Dialkoxy styryl terthiophene or
Dialkyl styryl terthiophene

STV: Styryl terthienylenevinylene
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