Copyright is owned by the Author of the thesis. Permission is given for a
copy to be downloaded by an individual for the purpose of research and

private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

A Platform for Practical Homomorphic

Encryption in Neural Network Classification

Mehmood Baryalai

A thesis submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy (Ph.D.) in Information Technology,

Massey University, 2021.

ABSTRACT

Convolutional neural networks (CNN) have become remarkably better in correctly
identifying and classifying objects. By using CNN, numerous online services now exist
that processes our data to provide meaningful insight and value-added services. Not all
services are reliable and trustworthy due to which privacy concerns exist. To address the
issue, the work presented in this research develops and optimise new techniques to use
Homomorphic Encryption (HE) as a solution. Researchers have proposed solutions like
the CryptoNets [1], Gazelle [2], and CryptoDL [3]. However, homomorphic encryption is
yet to see the limelight for real-world adoption, especially in neural networks. These
proposed solutions are seen as a solution only for a particular CNN model and lack
generality to be extended to a different CNN model. Moreover, the solutions for HE-
CNN integration are seen as unprepared for adoption in a practical and real-world
environment. Additionally, the complex integration of hybrid approaches limits their
utilization with privacy-preserving based CNN models. For that reason, this research
develops the mathematical and practical knowledge required to adopt HE within a CNN.
This knowledge of performing encrypted classification for a CNN model is based on a
careful selection of appropriate encryption parameters. Furthermore, this study succeeds
in developing a dual-cloud system to mitigate many of the technical hurdles for
evaluating an encrypted neural network without compromising privacy. Moreover, in the
case of a single cloud, this study develops methods for overcoming technical issues in
selecting encryption parameters for, and evaluating, a convolutional neural network. In
the same context, the novel method of selecting and optimizing encryption parameters
based on probability is given. The proposals and the knowledge from this research can

aid and advance the strategies of HE-CNN integrations in an efficient and easy way.

il

In loving memory of my father

ACKNOWLEDGEMENTS

All the praises and thanks to Allah for blessing me with the potential and ability to

complete this manuscript.

I wish to express my profound gratitude and appreciation to my supervisors and my
research team of Professor Dianne Brunton, Associate Prof. Winston Sweatman,
Dr. Dongxi Liu, and Associate Prof. Julian Jang-Jaccard. Thank you for sharing your
wealth of knowledge with me and teaching me scientific methods and research. This PhD
dissertation would not have been possible without you. Here I would like to thank all
my teachers who taught me in school, college, and university in Pakistan and New

Zealand. All of you have helped me to become what I wanted to be.

I would like to thank my fellow Postgrads at Massey University, especially Fahim Zaidi,
Ashar Malik, Sibghat Ullah, Rahila Umar, Hooman Alavizadeh, Amir Bashir, Saad

Aslam for the invaluable discussions and disruptions.

I would like to thank the Higher Education Commission (HEC) of Pakistan and the
Balochistan University of Information Technology, Engineering, and Management
Sciences (BUITEMS) for their generous financial assistance as well as the experiences

they have allowed me to share in.

Last but not the least; I would like to give a big thank you to my family. I am forever
grateful to you all. Especially my mother, my uncles, and my siblings. I owe a very
special thank you to my wife for her numerous sacrifices due to my PhD — this thesis

would not have been completed without your patience and support.

My apologies to anyone whom [failed to mention.

CONTENTS

T Introduction. 1
1.1 Research GOAlSuuiiiiiiiiiii 2
1.2 Thesis SETUCTUTE .. 2
1.3 Original Contributionscccccooiiiiii 3

1.5.1 Proposed a robust non-colluding dual cloud system 3
1.5.2 Developed generic formulas to estimate homomorphic parameters
JOr @ ONN ..o 4
1.5.5 Novel knowledge presented using case studies 4
1.5.4 Proposed a novel approach of approximating and optimising
encryption parameters probabilistically...............cccoviiiiiiiiiiiiiiiiiiiainn, 4

2 Preliminaries. ..o 5
2.1 Areas Demanding Privacy-Preserving Classification 5
2.2 Convolutional Neural Networkscccccocoo. 6

2.2.1 The composition of & CNNcccoiviiiiiiiiiiiiiiiiiiiiiiieiiee 10
2.2.2 Linear LAYEers......cccoeuiuiiiiiiiieiii e 11
2.2.83 Convolution Layercooiiiiiiiiieiieiie e 12
2.2.4 Fully connected LAyers...........cccouuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieai 14
2.2.5 Pooling Layer.........ccooiiiiiiiiie e 14
2.2.0 NON-LiInear LaYers.........ccouuuuiiiiiiiiiiiiiiiiieeieeiee 16
2.2.7 An Example CNN Classification............cccoeeeiiiiiiiiiiiiiiiniain... 17

vii

2.3 Homomorphic Encryption ... 18

2.3.1 Partially Homomorphic Encryption (PHE)...............c.ccccceeeen.... 21
2.3.2 Somewhat Homomorphic Encryption (SHE)cccccccccccuun.... 28
2.3.8 Fully Homomorphic Encryption (FHE).........ccccccoiiiiiiiiiiiiiiinn, 24
2.8.4 Levelled Homomorphic Encryption (LHE)...............cccceeeevennn... 25
2.8.5 Introduction to SHE and its implementation in SEAL.............. 25
2.3.6 Description of the F'V Scheme..........c.cc.coovviiiiiiiiiiiiiiiiiiiaa. 26
2.3.7 Key generationccoooevuiiiiiiiiiiiiiiii i 28
2.3.8 ENeryptionco.oovi i 28
2.3.9 DECTYPLioN ..o 30
2.3.10 Noise budget (Circuwit Depth)cc.coccceiiiiiiiiiiiiiiiiaiiiiiii, 32
2.8.11 Parameter Selection (T, G, 1)cevveiiieiiiiiiiiiieiiiiieee 33
2.3.12 Relinearizalionc.ccouiiiiiiiiiiiiiiiiiiiiiicie e 35
2.3.18 Number encoding............cocouuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieee 37
2.3.14 Noise within the CipherteTt..........cccoviiiiiiiiiiiiiiiiiieiieaen 38
2.8.15 An example of HE 0Derationsc.cceuueeueiueineinainainaiannnn., 39
2.4 Homomorphic Encryption Code Libraries...........ccccccvvvvviiiiiiiiieneninn. 45
2.5 Related Work in Privacy-Preserving Classification.cc......... 46
2.6 Issues in Privacy-Preserving Classificationcccccoooviiiiiiiicnnn. 48
2.6.1 FEvaluating Activation Function.............ccccoooviiiiiiiiinaiininannn.. 48
2.6.2 Number Encodingc..oouiiiiiiiiiiiiiiiiiiiieiie e 49
2.6.3 Interpreting the Final Result.............c.ccoveeiiiiiiiiiiiiiaiiaann. 51

viii

3 Towards Privacy Preserving Classification in Neural Networks................. 53

3.1 SYSEEM GOALS ...t 53
3.1.1 Secure Qutsourcing of Computationccccoeeviiviiiiiiiiiin.... 53
3.2 Related Work ... 54
3.3 Autonomous CompPUtAtIONueeeiii e 55
3.4 Noise-Reductioncccooc 55
3.5 Our Proposed System ... 56
3.5.1 QUETULEW . 57
3.6 COMPONEIITS. ..eiiiiiiiiiiiiiie 57
3.6.1 CUIEME e 57
3.6.2 ClOUA A oo 58
3.6.3 CloUd B ..o 59
3.7 SYStEmM DESIZI ...t 60
3.7.1 Feeding Data Encryption...........cooveveiiiiiiiiiiiiiiiiiiiiieeiaa 60
3.7.2 Homomorphic Weighted Sumccccooiiiiiiiiiiiiiiiiiiiiiiiiain, 60
3.7.8 Activation FUunctions...........cooeueiiiiiiiiiiiiiiiiiiiieeeee 62
3.7.4 Dealing with the OQutput Layerccoeuvviiiiiiiiiiiiiiiiiinainn, 02
3.7.5 Decrypting Classification............cccouuiiuiiiiiiiiiiiiiiiiiiieiieiee 63
3.8 Security and Correctness ANalysiseueviviiiiiiiiiiiiiiiiiiiiiiiiiiiianns 63
3.8.1 Attack on Communication between the Client and Cloud A 64
3.8.2 Attack on Cloud A (or dishonest Cloud A)........cccccccoeeeiiiiiiiii. 65

ix

3.8.3

3.8.4

3.8.5

3.9

Attack on Cloud B (or dishonest Cloud B).............ccccccceeeeei... 65

Attacks on Communication between Cloud A and Cloud B...... 66
Communication between Cloud B and Client........................... 66
Findings and Summaryceiiiiiiiiiiiiieiee e 67

4 Parameter Selection for Homomorphically Encrypted Neural Networks69

4.1

4.2

4.3

4.4

441

4.4.2

4.5

4.5.1

4.5.2

4.5.9

4.6

4.6.1

4.6.2

4.6.8

4.6.4

4.6.5

4.6.6

MOtIVALION ...eeiiiiiiiii 69
Major contribUtIONSuiiiiiiiiiiii e 70
Related WOTKcooooiiiii e 71
Problem Description..........coooeeeeiiiiiiiiiiiieeee e 73
Importance of appropriate HE parameters 73
Complexity of setting appropriate HE parameters 77
Parameter Selection Method ..., 78
Calculating encrypted operations in a CNN................cc.coo... 78
Estimating the total noise in a CNN..........cooovviiiiiiiiiiiiiiii. 87
Estimating the encryption parameters.............c..cccoeeiveiiin... 100
Evaluation of the parameter selection method 107
Effects of fully connected layersccooeveiviiiiiiiiiiiiinii. 108
Effects of Neuron Count in fully connected layers.................. 110
Effects of Convolution Layersccccccovviiiiiiiiiiiiiiiiiiiai, 111
Effects of Filter Count in Convolution Layers 112
Effects of Filter Size in Convolution Layers 114
Effects of Filter Stride Size in Convolution 115

4.6.7 Effects of Sum-Pooling Sizecc.ccoooviiiiiiiiiiiiiiiiiiiiiiiiin. 116
4.6.8 Effects of Sum-Pooling Stridecc.cooiviiiiiiiiiiiiiiiiiii. 118
4.7 Findings.......coooviiiiii 118
4.8 SUTNIILATY ettt 122
5 Practical Case StUIES.......cooiiiiiiiiiiiii e 123
5.1 Selection of Case StUIeS........uuiiiiiiiiiiiiiiiiiiiiiiii 123
5.2 Microsoft’s CryptoNets Case..........coouuiimiiiiiiiiiiiiiiiiiiiiiieieeeeee 125
5.2.1 Novelty in CryptoNetsc..coveiiiiiiiiiiiiiiieieieeieee 126
5.2.2 Arithmetic operations in CryptoNetscccvvvviiiniinannnn.. 129
5.2.8 Detail of encrypted operations in CryptoNets 131
5.2.4 Practical Implementation Detailsc..covvviiiviiiiininnn... 135
5.3 Applying our method with CryptoNetsccevvviiiiiiiiiiiii, 136
5.3.1 Estimating the initial noise from the encryption 137
5.3.2 Estimating for the first convolution layer.............................. 138
5.8.3 Estimating for the square layerccoeviiuiiiiiiiiiiiiiiiai. 138
5.3.4 Estimating for the sum-pooling layerccccovviiiiiiiin.. 139
5.3.5 Estimating for the convolution layer............c..coevviiiiiiniin. 139
5.5.6 Estimating noise for the sum-pooling layer............................ 139
5.8.7 Estimating for the fully connected layer................cc.ccoovenii.. 140
5.3.8 Estimating noise for the square activation layer..................... 140
5.5.9 Estimating noise for the fully connecting layer....................... 140

X1

5.3.10 Estimating the encryption parameters for the network............ 140

5.4 LeNet-5 Case StUAY ..veeiiiiiiiiiiiiiiiieeeee e 143
5.4.1 Detail of CNN operations in LeNet-5.........c.ccocvvviiiiiiininann... 1438
5.4.2 Selecting encryption parameters for LeNet-&......................... 145

5.5 SUTNIILATY ettt 146

6 Probabilistic Optimization of Encryption Parameters.............cccocoeeeinnnn. 148

6.1 INtroduCtionooooiiiiiii e 149

6.2 Motivation for a statistical noise analysis approach 150

6.3 Problem Description..........ccooeeeiiiiiiiiiiiiiieeeeee e 151
6.3.1 Main ContribUtions..........ccoueeiiiiiiieiieiie e 152

6.4 Related WOTKooooiiiiii e 152

6.5 NOISE ANALYSIS 1. 154
6.5.1 Solving for €lo.oiiiiii 155
6.5.2 Solving for €0Uoeuiiiiiiiii i 156
6.5.3 SOIVING fOr €28 oo 158
6.5.4 Calculating for v....o.oooviiiiie e 158
0.5.5 Experimental analysis............cc.coooiviiiiiiiiiiiiiiiiiiiiiiiiiiiii 160

6.6 Noise after homomorphic operations.............ccccceveveveveeiiiieiireeiiennnn. 161
6.0.1 Homomorphic addition of two ciphertexts.............................. 162
6.6.2 Homomorphic multiplication of two ciphertexts...................... 165
0.6.3 Squaring a CIPhertertcoviiiiiiieiieie e 165
6.6.4 Concrete effect of homomorphic operations 167

xii

6.7 Noise after processing a single neuron..............ccccccoovviiiiiiiiiiennnn, 168

6.8 Probabilistic Optimization Method.............ccccccciiiiiiiiiiiiiiiiiiiiin. 171
6.9 Validation and implementation of the statistical noise analysis
APPIOACH ..o 171
6.10 Findings.......ooooiiiiii 173
6.11 SUTIIILATY ettt 176
T CONCIUSION « ettt e 177
7.1 Major works in our research...............ccccciiii 179
7.2 Social Impact of our Workcccviiiiiiiiiiiiiiiiiiiiiiiie 180
7.3 Future Research Directions...........coooooiiiiiiiiiiiiiiiiiiiiieec 181
References and Bibliographiycooooooooioioiiie e 183
Appendix A. Noise estimates for operations in the SEAL Library 193
Appendix B. Screenshots of our parameter estimation system 194
Appendix C. Original Function Contributions..........cccoeoviiiiiiiiiiiiinniiinnn.. 198

Xiii

LisT OF FIGURES

Figure 2-1 Abstraction of a single Neuron.ccccccceiiiiiiiin 7
Figure 2-2 An example of a typical 3-4-3 model of an artificial neural network..... 7
Figure 2-3 A sample of MNIST dataset imagescccccoeviiiiiiiiiiiiieiiiiiii. 10
Figure 2-4 Overall architecture of Convolutional Neural Networks...................... 11
Figure 2-5 Example of a sum pooling operation..............ccccceeeiiiiiiiiiiiinnn... 15
Figure 2-6 Toy example for classification using convolutional neural network......17
Figure 2-7 Effect of ciphertext polynomial count on the noise in the results 36
Figure 2-8 Remainder example of a single coefficient 40
Figure 2-9 Ring illustration of a polynomialcccccoiiiiiiii 41
Figure 3-1 Architecture of our dual-cloud approach [14]ccccoooiiiiiiiiniiinnn. 57
Figure 3-2 A neural network with one hidden layer [14].........cccccociiiiiniininn 61

Figure 3-3 Total Roundtrip Time until classification results against different key

Figure 4-2 Output of an operation before and after the maximum circuit depth of 8

(i.e., NOISE DUAZEE) ..evviiiiiiiiiiii e 76
Figure 4-3 Processing of a filter in the convolution layer 82
Figure 4-4 Relationship of Noise value and encryption parameters...................... 89
Figure 4-5 Operations in a fully connected layer ..o, 90
Figure 4-6 Operations in a sum-pooling example..................ccccc 95
Figure 4-7 Operations in a square activation layercccoooviiiiiinnniiiiinnnn. 98

Xiv

https://buitms-my.sharepoint.com/personal/mehmood_baryalai_buitms_edu_pk/Documents/Examiner%20Reports/Baryalai%20-%20Thesis%20-%20Emendations%20v1.docx#_Toc75636818

Figure 4-8 Flowchart for the Estimation of Encryption Parameters in SEAL103

Figure 4-9 Effects of sequentially connected FC Layers on the estimation of

ENCTYPHION PATAITIETETS. «oeuuiiiiieiiie ettt e e e e eaie e 109

Figure 4-10 Effects of neuron count on the estimation of encryption parameters in

sequentially connected FC Layers.oooooiiiiiiiiiiiiiieeeeeee, 110

Figure 4-11 Effects of sequentially connected Convolution Layers on the estimation

Of eNCryPtion PATAINETEIS. . ..vviviiiiiiiiiiiiiiieii ettt eaeeeees 111

Figure 4-12 Effects of Filter count on the estimation of encryption parameters in

Convolution LAYETrS. ..ooooiiiiiiiiiiiieiii e 113

Figure 4-13 Effects of Filter size on the estimation of encryption parameters in

Convolution LAYeTsccooiiiiiiiiiii e 114

Figure 4-14 Effects of Filter stride size on the estimation of encryption parameters

in Convolution LAYers ...t 116

Figure 4-15 Effects of pooling size on the estimation of encryption parameters in

SUM-Pooling Layers.........ooooiiiii 117

Figure 4-16 Effects of Pooling stride size on the estimation of encryption parameters

in Sum-Pooling Layers ... 118
Figure 5-1 The full form of CryptoNetsccooviiiiiiiiiiiiiiiieeee 127
Figure 5-2 The reduced form of CryptoNets.........cccooc 127
Figure 5-3 Block diagram of the tools and libraries used in this research 136

Figure 6-1 Histogram of the simulation of normal random variables r in section 6.5.1

XV

Figure 6-2 Histogram of the simulation of folded normal variables e in section 6.5.1

Figure 6-3 Histogram of the simulation of random variables in section 6.5.2......161
Figure 6-4 Histogram of the simulation of random variables in section 6.5.3......161
Figure 6-5 Histogram of the simulation of random variable in section 6.5.4 161
Figure 6-6 Histograms of noise coefficients for the 10 outputs of CryptoNets.....174

Figure 6-7 Probability density of noise coefficients for the 10 outputs of CryptoNets

XVvi

LisT OF TABLES

Table 2-1 Partially Homomorphic Cryptosystemsccccooviiiiiiiiiiiiiiiniiiiien. 21
Table 3-1 Adversarial Matrix [14] ... 64

Table 4-1 Calculating the total noise for a fully connected / convolution layer....91

Table 4-2 Calculating the total noise for a sum-pooling layer. 95
Table 4-3 Calculating the total noise for an average-pooling layer........................ 96
Table 4-4 Calculating the total noise for a square activation layer. 98

Table 4-5 Nature of homomorphic operations in a convolutional neural network

Table 4-6 Noise estimates for Layers in Convolution Neural network based on

SEAL’S heuristic @STIIMATION. .. vuee et 120

Table 4-7 Convolutional neural network Hyperparameters affecting encryption

PATATIIETETS. et ettt et ettt ettt e e e e e et e e et e e et e eaa e eaas 121
Table 5-1 Layer Variation in CryptoNetscccoiiiii 128
Table 5-2 Operations in CryptoNets (Left: full form, Right: reduced form)........ 130

Table 5-3 Difference of operations between 3D and 2D convolutions in the full form

OF CTYPEONEGES 1. eeiiiiiiiiie e 131
Table 5-4 Total encrypted operations for the full form of CryptoNets................ 132
Table 5-5 Total encrypted operations for the reduced form of CryptoNets......... 133

Table 5-6 Individual encrypted operations for the full form of CryptoNets 134

Table 5-7 Individual encrypted operations for the reduced form of CryptoNets.134

xXvii

Table 5-8 Our estimated encryption parameters for CryptoNets......................... 141

Table 5-9 Comparison with the encryption parameters of CryptoNets (reduced

FOTTIL) 1. 142
Table 5-10 Total encrypted operations for the LeNet-5......ccccoeeeiiiiiiiiiiiiiinnnn, 144
Table 5-11 Individual encrypted operations for the LeNet-5............................... 145
Table 5-12 Our estimated encryption parameters for LeNet-5 network 145
Table 6-1 Mean and variance of the terms of vccocccciiiiiiiii 159

Table 6-2 Defining the p and o of v in the operands for a ciphertext product. ..164
Table 6-3 Calculation steps for finding p and o of v in a ciphertext product.164
Table 6-4 Effect of Ciphertext operations on the noise............ccccccvvviiiiiiiiiieiinin. 167
Table 6-5 Distribution of noise after a single neuron...............ccccccvviiiiiiiiiiiiiinn. 170

Table 6-6 Effect of homomorphic operations on the noise in a weighted layer of a

NEUTAL NEEWOTK oot 170

Xviii

NOMENCLATURE

evk Evaluation key
pk Public
sk Secret /Private key

Represents the scaling down of = to the nearest integer

Weight Matrix. Individual weight is identified by a subscript

Inputs / Outputs

Number of values

Input depth (number of channels)

w / h

Width and height of a matrix

w, / h, Output matrix width and height
¢/ ct Ciphertext
) Plaintext
F Filter
F, Number of filters
F, x F, width and height of a convolutional filter
F, The depth of the filter in a 3D conv layer.
X /Y Input / output
o Activation functions

Xix

Total layers

Individual layer

Z, Number of neurons

k k is the ending number of a counter as in Zzz e

v Inherent Noise Polynomial

v, Output inherent noise polynomial after an operation

b Bias value

K Target size in relinearization

q Coefficient modulus

t Plaintext modulus

n Degree of polynomial modulus

m Original message m

s Random term for security

J Size of the polynomial representing ciphertext
N,, the highest degree of the polynomial representing message m

The absolute biggest coefficient number for our input message m.

[m]| Or in other words:

The maximum of the absolute values of the coefficients of m.

Chapter 1

1 INTRODUCTION

The internet is an invaluable facility to share data and information. However, the
widespread data-breaches and privacy violations have worried businesses as well as
the average person discouraging the use of the full potential of internet. Among the
potential utilizations, intelligent data classification is progressively increasing. Such
intelligent data classifications are made on data that is already stored on the
internet or uploaded temporarily for the sake of classification. There are instances
where the data items that need to be uploaded may contain sensitive and private
information. Due to this sensitive nature, such data items are kept back, and their
classification is avoided altogether from the fear of data-breaches and privacy

violations.

On the internet, entities can store and host their data in their own datacentres or
on a third-party server. Maintaining private datacentres are expensive for many
businesses and individuals because it requires financial, hardware, software, and
human resources. Therefore, instead of owning a private datacentre, data can be
stored and hosted on third-party datacentres after encryption, for which relatively
small amounts of rent will be paid. In the same way, if the data is hosted in a

private datacentre, it still needs to be encrypted due to security concerns.

In both the cases of storing and hosting our encrypted data on a third party or our
private premises, it needs to be processed later at some point. In addition, since the
data is encrypted now, we have either to fully decrypt it (either on third party or
on our private premises) or use an intelligent way to process without decryption.

The intelligent way of processing without decryption is to use the homomorphic

Chapter 1

encryption schemes. These schemes become necessary to use in scenarios dealing

with sensitive information as discussed in the later section.

1.1 Research Goals

In general, the aim of this research is to improve the state of privacy for online
computation. In particular, this thesis serves as a bridge between two domains of
knowledge: artificial neural networks; and the cryptographic schemes named
homomorphic encryptions. The central inquiry of this study is to find out and
answer the technical issues in adopting homomorphic encryption within neural
networks. As a result, solutions will be proposed to make the integration where the
artificial neural networks and the homomorphic encryptions work at their best. The

steps are as follows:

e FEvaluate the state-of-the-art implementations for homomorphic encryption.
This involves the study of the weaknesses and strengths of important
homomorphic encryption parameters. This incorporates security provision of the
implemented scheme, key and ciphertext sizes, complexity of operations, and
the processing speed.

¢ Find the parameters of current homomorphic encryption implementations that
pose problems for adoption in applications like neural networks.

e Find the optimum set of encryption parameters for evaluating an encrypted
neural network.

e Study the optimisation opportunities between homomorphic encryption and

neural networks.

1.2 Thesis Structure

The rest of the dissertation is organized as follows. Chapter 2 presents the

background knowledge required in later sections. Chapter 3 presents our system of

2

Chapter 1

a non-colluding dual-cloud model to process a classification task on a neural
network. Chapter 4 presents a method for selecting homomorphic encryption
parameters for a convolutional neural network. Chapter 5 presents practical case
studies and shows how a convolutional neural network can be evaluated
homomorphically by going through the important aspects. This chapter uses our
parameter selection method for the case studies as practical examples. Chapter 6
presents our research on the probabilistic determination of noise and selecting
optimised parameters for practical reasons. Chapter 7 presents conclusions and

suggests future work.

1.3 Original Contributions

1.3.1 Proposed a robust non-colluding dual cloud system

We begin by developing a robust non-colluding dual cloud system for encrypted
neural network inference. This system is able to perform operations based on a
Paillier cryptosystem on one of the cloud systems, and only single plain operations
on the other cloud system. A number of protection mechanisms are used to ensure
that neither of the clouds learns anything of significance, consequently privacy is
ensured. The dual cloud architectural design allows us to perform any sequence of
complex operations on the data, including nonlinear functions. Moreover, our
system works without the need for a continuous client connection, which is another
advantage over similar models. We evaluate the feasibility by implementing and

testing on a LAN connection for different encryption key lengths.

Chapter 1

1.3.2 Developed generic formulas to estimate homomorphic

parameters for a CNN

We developed generic and new mathematical formulas to find the exact circuit
depth for any ciphertext processed through an encrypted convolutional neural
network. Based on the new formulas, a fresh method is formulated for automatic
estimation of encryption parameters for an encrypted feed-forward convolutional
neural network. Our parameter estimation platform is better in performance than
the standard estimation of SEAL. Moreover, we are the first to show the concrete
effects of varying the parameters of a convolutional neural network on the
parameters of homomorphic encryption. This helps in designing better-encrypted

convolutional neural networks.

1.3.3 Novel knowledge presented using case studies

The proper usage of convolution and pooling layer types in an encrypted
convolutional neural network is shown by using case studies. To facilitate practical
adoption, distinct optimisation techniques and insights for encrypted convolutional

neural networks are given by using case studies.

1.3.4 Proposed a novel approach of approximating and optimising

encryption parameters probabilistically

We propose a novel method to approximate and optimise the SEAL encryption
parameters probabilistically. New mathematical formulas are created for analysing
noise of a ciphertext as a random variable in applications like the convolutional
neural network. According to our knowledge, we are the first to use probabilistic
optimisation and approximation of homomorphic encryption parameters in a
practical application i.e., convolutional neural network. This method can be an

extremely effective tool for homomorphic encryption in applied settings.

4

Chapter 2

2 PRELIMINARIES

2.1 Areas Demanding Privacy-Preserving Classification

To stress the need for adopting a privacy-preserving classification mechanism,
Armknecht et al. [4] provide convincing cases. Here, we also highlight the following

important areas in which we need privacy-preserving classifications:

Forensic Image Classification: There are cases where we need to know the
existence of certain objects or people in an image. This is done using object or face-
recognition where neural networks match the required data points from the image,
such as facial elements with people in an existing database. Here, we need a privacy-
preserving approach to detect faces and then match the facial elements with entries

in our databases.

Network Traffic Analysis: In classifying malware network traffic, a combination
of techniques including neural networks are used. In scenarios where the underlying
data is of a private nature, then we need a privacy preserving neural network that
can perform deep packet inspection without compromising the privacy of legitimate

users as well as classify malicious data.

Medical Data: When dealing with medical data, we must grant doctors or
hospitals access to our personal health data. This data can be in the form of medical
imagery like X-rays or CT scans, or it can be the records of our medical
prescriptions. The combination of all this data is already used by Google’s
DeepMind project [5] to assist doctors in curing their patients. However, it is also
necessary for personal data to be private. Here, privacy-preserving techniques can

be used to perform the classifications in the neural network.

Chapter 2

Financial Data: For a financial institute or a business, it is desirable to analyse
past and current market trends and predict future trends. This becomes very
accurate when their internal data can be consolidated and compared with that of
other businesses in the market. However, the private data of other financial
institutes is never available. This suggests that privacy-preserving technologies are
implemented in analysing market trends, where institutes share their private data

in encrypted form, for the sake of a more accurate analysis overall.

2.2 Convolutional Neural Networks

The convolutional neural network (CNN) is a class of powerful and complex neural
network architecture that has demonstrated par-human accuracy in image
classification tasks. CNN is fundamentally a feed-forward neural network, which
has proven to be extremely effective in the task of image analysis and classifications.
A distinction is made between the non-encrypted execution of a CNN and an

encrypted CNN by calling the former a “conventional CNN”.

A neural network, in general, is essentially a computational structure that is
extremely good in finding the association of an unknown observation of data to
already known patterns [6]. The reader may think of identifying a face from an
image in which instead of comparing the pixel values for equality with a known
image, the neural network matches the pattern in the pixel values with an already
analysed pattern from previously seen images of the same face. These (artificial)
neural networks are originally inspired by the way biological neural cells operate in
our nervous system. Several abstractions from the biological neural cells have been

adopted into the present computational neural networks. These shall be discussed.

Chapter 2

Neural networks are a combination of interconnected neurons combining input
values and, possibly, processing through one of the non-linear functions f, then

transmitting the output to the next neuron.

X1 Wi
X W 5 Net Output o;
X Wy fmvixy + wpxp + ...+ WpXy)

Figure 2-1 Abstraction of a single neuron.

The abstraction of a single neuron is shown in Figure 2-1. This contains n inputs
shown by z,. Each of these input connections to the neuron has an associated weight
value shown by w;,. The incoming input z, is multiplied by the corresponding weight
w,. Both values are expected to be real values. The incoming values, obtained after
multiplication, are integrated at the neuron, usually just by adding them all, so that
a net input is obtained. The net input of the neuron, possibly, then passed to a non-
linear activation function f, generates an output o,. Details of this activation

function will be discussed later.

Based on the primitive neural unit, many models for neural networks exist. Modern
networks can comprise of hundreds of layers each comprising of hundreds of
neurons. Figure 2-2 shows the topology of a typical neural network where we have
layer-wise: 3 inputs (z,, 5 x3), 4 hidden neurons, and 3 output neurons. This

network can be written as 3-4-3 due to the number of units in each layer.

Figure 2-2 An example of a typical 3-4-3 model of an artificial neural network

Chapter 2

Neural networks in existence have numerous models. Their differences, as argued
by Chang and Lu [6], stem out from three areas that are important for any neural

network. They are as follows:

e structure of neurons.
e topology of the network; and

e the learning algorithm used to find the weights of the network.

Structure of neurons: The variations in the structure of a single neuron are
primarily due to the activation function. The most common activation functions

available in the literature are discussed in section 2.2.6 below:

Topology of the network: After varying in the structure of neurons, neural
network models can have further variations based on the topology in terms of the
arrangement and interconnections of neurons. The structure of the network
comprises various combinations of layers having numerous neurons. The greater the
number of layers, the better the network can classify to a range of output classes.
In the same way, the greater the number of neurons in the layers, the more
accurately the network can classify to classes. In deep neural networks, the
classification accuracy is relatively higher due to the increased number of layers as

compared to the number of neurons in each layer.

Normally all the number m of neurons from a layer are connected to all the n
neurons in the next layer. This will result in m - n interconnections, each having an
associated weight w. While classifying, the propagation of values in a network is in
the forward direction of the outputs. However, there are exceptions for some
networks having interconnections back either into the same neuron or to a different

neuron in the previous or current layer.

Learning algorithm used in the network: In a classification task, the flow of

values from inputs towards outputs is the forward direction. This is called a forward

8

Chapter 2

propagation. The forward propagation results in the classification inference as an
output of the indicated class for the provided inputs. Whereas, before the
classification stage, the training phase is necessary to tell the network about the
expected output for each kind of input values. The resulting classification of the
unknown data record to a known pattern is achieved by training it to already known
pieces of data. The process of training is often a challenging task because it involves
tweaking internal values of the network to match correct output results. To achieve
this, a known data record is provided as an input to the network and the outputs
are matched with that of the expected output. Matching values of the expected and
the actual output provides the difference as an error measurement value of the
network. This error value is propagated in the back direction and the weight values
of each input link to each neuron is adjusted according to this error value. Such a
process is called the backpropagation training technique. The whole training process
is performed by cycling through many records with known patterns. The number
and quality of the records in the dataset is one of several factors that affects the

accuracy of the whole network.

Learning dataset used for the network: In the training phase of the network,
many records of known patterns are processed through the backpropagation
technique. The higher the number of records in the training dataset, the more
accurate the network becomes in classifying unknown patterns. Similarly, the more
versatile the dataset records are, the more confident the network becomes in

classifying to different classes.

Chapter 2

Figure 2-3 A sample of MNIST dataset images

The main dataset used for training the neural networks in this research was the
Mixed National Institute of Standards and Technology (MNIST) dataset [7] shown
in Figure 2-3. This selection is based on several reasons. The prime reason of this
selection is the comparison of our results with that of a leading paper in our field
(i.e., CryptoNets [1]) as they have also used the same dataset. Another reason of
using the MNIST dataset is its widespread acceptance as a standard benchmark for
classification and computer vision tasks among the researchers. A comprehensive
set of machine learning literature is available that use the MNIST dataset which
makes it a good choice for research and reference purposes. In this dataset, there
are grayscale images of hand-written ten numerals that are 28 x 28 pixels in
dimension. Each pixel can have a value from 0 to 255. Overall, the dataset contains
a total of 70,000 images in which 60,000 are for training a neural network and 10,000

are for validating the training of a network.

2.2.1 The composition of a CNN

The processing of a CNN involves a sequence of computations arranged in linear
and non-linear transformation layers. To classify an image, a CNN performs
computations on its pixel values and outputs one or more numbers representing the
statistical equivalence to a known category. The sequence of linear and non-linear

layers of computations provide the output of a CNN in the form of potential classes

10

Chapter 2

to which the input image may belong. An example convolutional neural network is

shown in Figure 2-4.

24@48x48 1%x256
B8@128x128 24@16x16
B(@D64x64 1x128
m II
e \
T
Max-Pool Convolution Max-Pool Flatten Dense

Figure 2-4 Overall architecture of Convolutional Neural Networks

In addition, a hyperparameter is a variable parameter of the network that
determines the network structure or the training process. The value of
hyperparameters are fixed before the training process begins, for example, the

number of convolution layers, or the detail of the filters and neurons.

2.2.2 Linear Layers

In all the artificial neural networks including CNNs, the perceptron is the basic
processing unit transforming inputs (x;) to one output (y). For each input element
x,;, there is a corresponding trainable weighted value w;. For each perceptron, there
is a trainable bias value represented as b. In CNN, a linear layer is a layer of

trainable perceptrons that acts on the input elements x by computing y = w - x + b.

In the context of multi-dimensional inputs, for example an image, there are two
kinds of linear layers: the convolutional (conv) and the fully connected (FC). These
two kinds of linear layers are based on the arrangement and number of connections

from the input elements to the perceptron.

11

Chapter 2

2.2.3 Convolution Layer

The convolution layer reduces the dimensionality of input image data. The
dimensions of an input image represented by (w;,h,d;) having w, as width, h, as
height, and d, as the depth (channels) of the input image i. The convolution layer
has trainable perceptrons that in the context of this layer are called filters F'. For
the classification to be performed in an efficient way, the convolution layers find
and convey only the interesting patterns from the original input. Identifying only
the interesting patterns is performed by using the filters. After training, these filters
look through all the values in an incoming input, and allow only the interesting
patterns to the next layer. In this way, the convolution layers eliminate the
uninteresting parts of the input, and thus, reduce the dimensionality of the input

image by preserving the important patterns for the later layers.

In Figure 2-4, for example, the layers of square blocks show the data matrices. These
matrices are passed from left-to-right after processing. Figure 2-4 shows that the
convolution-processing layer transforms multi-dimensional input (w,h,d) of
64 x 64 x 8 to the reduced dimensions of 48 x 48 x 24. From the figure, we see the
reduction of dimensionality for inputs to outputs by using the convolution
processing layers. The data matrices gradually flatten to an array of a single

dimension that is then passed on to the fully connected network.

Convolution layers, essentially, are an attempt to extract important features from
input images that will help in classification. In the process of extracting only the
important features, they discard irrelevant information and thus reduce the
dimensionality. The extraction of features is performed using a number of
perceptrons arranged in layers called the filters f. The filters process input value
matrices by taking a sub-section (represented as f,, x f, X f;) from the incoming

input values. Therefore, filters have a defined width and height called the size of

12

Chapter 2

the filter. The width and height restrict the operation of a filter to a specific area
at each step, however the depth remains equal to the depth of the input. When
processing, we convolve the filter over the pixel values in the image and calculate
the dot product of the filter values and related values in the neighbourhood of the

pixel.

Each of the filters f also has a bias value b which is added to the outputs after
calculating the dot product. The convolution layer has an output of w, x h, x d,

where the output depth d, is equal to the number of filters f;.

The input image is sometimes padded with zeros on the edges to provide a bigger
output image size. The term “Same” padding is used to describe edge padding with
zeros. Same padding is used to provide the same size of output as the input. Whereas
“valid” padding is when there is no input padding used. The width and height of
the output in valid padding is calculated as:

w, =w; — f, +1

hy=h; — f, +1
Sometimes the granularity of convolving the filter over the pixels is specified by a
stride size represented here as (s,,,s;). The stride size specifies how big the filter
steps should be across the width and height. When we specify the stride size with
valid padding, then the width and height of the output image will be represented

as:

el

S’IU

. :{hi—fhﬁ—lJ

13

Chapter 2

2.2.4 Fully connected Layers

The fully connected (FC) layer (also called dense layer) takes a one-dimensional
vector z of length 2, as input. After processing, the layer provides an output vector
y of length z,. The lengths of the vector z and y, z; and z, respectively, are always

the same in the case of a FC layer.

The FC layer in a CNN is placed at the end of the network and is shown as dense
layers in Figure 2-4. It is called fully connected because every processing unit in this
layer is connected to all of the incoming input values. The input is processed by
calculating ¥ = w -z + b. Each input value z; is multiplied with the corresponding
weight w, and then all the connections of a neuron are summed up together with a

bias value b. Its operation can be viewed mathematically as:

Y=wTy + Wy + Fwx, +0
The key difference between a convolution layer and a FC layer is the number of
input elements they process at a single instance. Convolution layers take a subset

of all the input elements to process through a filter whereas the FC layer takes all

the input values as input. This makes the FC layers very expensive computationally.

2.2.5 Pooling Layer

Pooling layers reduce the input size for the next layer. They take an image as input
i that can be represented as (w;,h;d;), having w, as width, h, as height, and d; as

the depth (channels) of the input image.

The granularity of the pooling operation is defined in terms of its stride size s.
Stride size in a pooling works the same way as in a convolution layer: to define the

step size of the pooling filter to perform the next pooling operation.

If the filter size of the pooling filter is f,, x f,, then we can calculate the output

size of the pooling layer in the same way as for the convolution layer:

14

Chapter 2

w—f —+—1J

o=
{ “f’L“J

The pooling layers do not have any weight parameters w to learn during the training
of the network. These layers are necessary in order to reduce the size of the input
data and continue with the execution in an efficient manner. A 2 x 2 pooling means

that a total of 4 values are pooled together to make a single value.

Conventionally, experts in the machine learning community have been using one of
two choices for pooling: average pooling and maximum pooling. In the homomorphic
encryption community, Dowlin et al. [1] showed that a sum-pooling is efficient in
processing. The pooling operations are performed in such a way that a sub-region
of the incoming input is reduced to a single value by taking the maximum, average,

or a summadtion.

sum pool with 2x2 filter 1321
and stride 2 8ls8

w | o

~l
~rlO|00|

«— <
—
[NSIEN ST)]
W | =

Figure 2-5 Example of a sum pooling operation

From this section, the important observation related to our work is that a sum
pooling can also be used as an alternative to the max pooling or average pooling.
An example of sum pooling can be seen in Figure 2-5. In the example shown, the
left table denotes input values in which a 2 x 2 filter with a stride of 2 is used. The
input values added together are shown by the same colour in the table on the right

denoting the output of each pooling step.

15

Chapter 2

2.2.6 Non-Linear Layers

The non-linear layers in a CNN use an activation function (hereon represented by
a) to process each input element individually. These activation functions « are non-
linear mathematical functions. These do not have any weight parameters w to learn

during the training of the network.
Some of the most common activation functions used in CNN are as follows:
Logistic Sigmoid

Its output lies between 0 and 1. This makes it an ideal candidate to be used for
probabilistic results showing the matching probabilities to a known class. The

sigmoid functions are mostly used in the fully connected layers to help in better

classification.
- 1
Y71 +e "

Hyperbolic Tangent
Its output lies between —1 and + 1.

eil? _ e—l

y=tanh z =——
e..l/_i_e—._l,

Heaviside Step
Its output is either 0 or 1.
if x <0 thenOelseif = >0 then 1

Softmax
It is used in the last layer of a neural network to normalize the outputs because it
provides values between 0 and 1 for a single output z, and the sum of all outputs

is equal to 1. For example, a layer outputs a total K values, then the softmax

activation function is defined as:

16

Chapter 2

ReLU

The ReLU function and some of its variants are the most common activation
functions used in CNN models. The ReLLU functions are mostly used directly after

a convolution layer. They are calculated as y = max(0, z) for an input z.

2.2.7 An Example CNN Classification

Let us consider a toy example having just two layers, to explain the key operations
involved in convolution layers more concretely. In this example, the input image is
a single 4 x 4 matrix having a single channel (total 16 values) provided to a

convolution layer. The convolution layer has a single 2 x 2 filter.

The output of the convolution is connected to a fully connected layer having a
vector of 4 neurons. These two layers can be seen in Figure 2-6 connected by a
black arrow whose direction represents the flow of values. In this example, we have
not used any activation functions and the fully connected layer is a simple weighted
sum of values for each of the 4 neurons. The output of the 4 neurons will be treated

as the output of the network.

Figure 2-6 Toy example for classification using convolutional neural network.

In this network, the 2 x 2 filter is first set on the top left 4 values of the input.
These values are multiplied by the 4 weight values of the filter and summed up

17

Chapter 2

together to provide the first output value. Then the filter is moved two pixels to
the right to the top right input values to multiply them by the 4 weight values of
the filter and sum them to get the second output value. Then the filter is moved
again to the 4 values in the lower left of the input image and processes them to get
the third output value. The filter is then moved to the lower right 4 values to get

the final fourth output value of the convolution layer.

After processing the convolution layer, the 4 output values are provided to the fully
connected layer as input. Since the output from the convolution layer is a 2-
dimensional matrix, but the fully connected layer expects a 1-dimensional array as
input, we have to convert the incoming values to an array. At the end, the converted
linear vector is provided to a fully connected layer to process as expected. After the
processing of the fully connected layer that is our last layer, we interpret the output

as our prediction result from the network.

This toy example highlights the major parts of a CNN where we perform the main

predictive operations.

2.3 Homomorphic Encryption

This section aims to provide the preliminary level of understanding for
homomorphic encryption in general, and then the important aspects that are

relevant to this research.

In general, encryption is the method of converting information, known as plaintext,
into a seemingly random and garbled form known as ciphertext. The conversion,
however, is predictable and only reversible by the party holding a secret piece of

information called the secret key.

Homo-morphism is derived from Greek words that mean to have same form. The

word homomorphism in algebra refers to a structure-preserving map between two

18

Chapter 2

algebraic structures of the same type as rings or vectors. Consequently,
Homomorphic encryptions are cryptosystems where the conversion from plaintext

to ciphertext preserves relationship between their elements.

The aim of creating homomorphic encryption schemes is to perform arithmetic
operations directly on the encrypted data. This exclusive property enables us to
perform any arbitrary operations on the ciphertexts without the need of decryption.
In a traditional encryption technique, we can only convert our sensitive plaintext
data to scrambled ciphertext. Traditionally, the scrambled ciphertexts do not allow
any computational operations on the data other than its decryption back to the
original plaintext. This suggests a non-interactive property of the traditional
ciphertexts in which we cannot interact with the original content scrambled into it.
However, the ciphertext generated through homomorphic encryption schemes has
an interactive property through which we can perform arithmetic operations on the
ciphertext itself. The results of the operations are the same as if we were performing

the same operations on the content inside the ciphertext itself.

In the most recent homomorphic schemes, the supported arithmetic operations
available are addition and multiplication. Subtraction can be performed by negating
the second number and adding this to the first. The division operation, however, is
not possible in a straightforward way. In the same way, since comparison of two

numbers is a logical task, this is also not straightforward.

In 2009, Gentry proposed the first fully homomorphic encryption (FHE) scheme [8].
The key to allowing arbitrary computations is that an FHE scheme allows both
homomorphic addition and multiplication operations on the encrypted data.
Previous homomorphic encryption schemes only provided one of the two operations

and therefore were not fully homomorphic. Ciphertexts of current FHE schemes

19

Chapter 2

inherently contain a certain amount of noise, which grows during homomorphic
operations. This noise ‘“‘pollutes’ the ciphertext and if it grows too large, makes

correct decryption impossible, even with the legitimate decryption key.

Fully homomorphic schemes have at their core a somewhat homomorphic
encryption scheme that can handle a certain amount of homomorphic computation.
To enable an unlimited number of operations, ciphertexts need to be refreshed by

a costly re-encrypt procedure called bootstrapping.

In Gentry’s initial work and many follow-up papers, the standard way of encrypting
data is bitwise. This means that the encryption procedure takes each bit of the data
separately and produces a corresponding ciphertext. Addition and multiplication of
bits (modulo 2) corresponds to bitwise XOR and AND operations and thus allows
us to evaluate any Boolean circuit, i.e., carry out arbitrary computation, by first
expressing the computation in XOR and AND gates. Nevertheless, breaking down
a computation into bit operations can quickly lead to a complicated and deep circuit
that cannot be handled by the somewhat homomorphic scheme and requires

bootstrapping.

Homomorphic Encryption Schemes: A seminal work on classifying and defining
various homomorphic encryption schemes based on their properties was conducted
by Armknecht et al. in 2015 [1]. Their work has resulted in adopting precise
terminologies and setting a trajectory for our study into current homomorphic
encryption schemes. The following definitions are an adoption of their work in which

explanations of the definitions are provided wherever necessary.

Current homomorphic encryption schemes can evaluate two types of Boolean
functions in the form of logic gates: addition and multiplication. Messages in such
schemes are represented in a plaintext space of P = {0,1}, which can be used to

represent any message. The two Boolean functions can be used to form a logic

20

Chapter 2

circuit C' that can describe computation involving addition (4) and multiplication

(x) by using binary XOR and AND operators.

2.3.1 Partially Homomorphic Encryption (PHE)

Prior to Gentry’s work in 2009, PHE schemes showed how to compute a single type
of homomorphic operation over the encrypted values. Among them, some did allow
multiple types of operations but in a very limited way. Notable ones are shown

against their supported type of encryption as follows:

Table 2-1 Partially Homomorphic Cryptosystems

PHE Cryptosystem Supported Homomorphic Encryption

El Gamal [9] Multiplicative
Paillier [10] Additive
Multiplicative

RSA [11]

Goldwasser-Micali [12] Additive, but it can encrypt only a single bit

Boneh-Goh-Nissim [13] Unlimited number of additions but only one

multiplication

As opposed to the recent Boolean circuit based evaluations, Dowlin et al. [1] discuss
PHE schemes which have their plaintext messages and their corresponding
ciphertexts contained in a related algebraic structure, often a group or a ring. This
typically limits the function f to be an algebraic operation associated with the
structure of the plaintexts. PHE schemes are more efficient than the later discussed

SHE and FHE.

The preliminary knowledge of Paillier cryptosystem for our work in Chapter 3 is

reproduced here from our original publication in [14].

21

Chapter 2

Paillier cryptosystem

Homomorphic Encryption (HE) [8] deals with the mathematical phenomena of
performing operations on garbled text (also known as ciphertext). This involves
encryption to be done in such a way that if the resultant ciphertext is transformed
back to plaintext then the result will be the same as if the operation was performed

in plaintext.

In mathematics, a homomorphism is a structure-preserving transformation. To
explain, Dowlin et al. [1] provides an example. Consider the map ¢: Z — Z, such
that @ z = z mod 7. This map ® preserves both the additive and multiplicative
structure of the values in the sense that for every z;, z, € Z, we have that @(z; +
29) = DP(z,) DP(25) and P(z; @ 2,) = P(2,) @ P(2,) where @& and @ are the

addition and multiplication operations in Z.

The Paillier cryptosystem is a probabilistic asymmetric algorithm for public key
encryption. It was first invented by Pascal Paillier [10] and then later improved by
constructing more generalized version [15]. The scheme is an additive homomorphic
cryptosystem which can compute the encryption of m, + m, if it is given a public

key and the encryptions of m; and m,.
The scheme works as follows:
Key generation

This algorithm generates a set of key pairs K where K = PK X SK with a public
key PK and a secret key SK. These keys are generated by selecting p, q as big
primes. Then A = lem(p — 1,9 — 1) is the secret key SK. Moreover,
let n = pq and g in Z, > be an element of order an for some & # 0. (n,g) is

the public key PK.

22

Chapter 2

Encryption

This algorithm is responsible for generating ciphertext C from a plaintext
message M < n by using the PK in such a way that a random value r < n gives

us € = gMr™ mod n® = Ency,(M).
Decryption

This algorithm is responsible for generating the plaintext message M in such a

way that Decg,(C) » M. Here, C <n? is the ciphertext, and Decy (C) =

L(c* mod n?)

Wmod n, where L(x) = (x — 1)/n.

2.3.2 Somewhat Homomorphic Encryption (SHE)

SHE is defined as a Boolean circuit-evaluation scheme that has correct decryption
and correct evaluation on the ciphertext, with no limits enforced on the length of
the generated ciphertexts, and having support for a limited number of consecutive

operations for evaluation.

An example of SHE is the Brakerski, Gentry, and Vaikuntanathan (BGV) scheme
[16] which bases its security on the Ring Learning With Errors (RLWE) problem.
RLWE is considered to form a fundamental foundation for future public-key
cryptography in a post-quantum computational world in which cryptanalysis of
traditional problems, like integer factorization and discrete logarithm, will be much
easier to solve. Although these schemes have no limit intrinsically on the
manipulated ciphertext [17], the BGV showed that such schemes can be feasible to
implement and adopt practically for relative efficiency and reasonably short
ciphertexts [18]. SHE schemes also serve to build up later schemes like FHE and

LHE, after modifications.

23

Chapter 2

2.3.3 Fully Homomorphic Encryption (FHE)

FHE is defined as a Boolean circuit evaluation scheme in which: the length of the
ciphertext does not grow through homomorphic operations, the ciphertext is
correctly decrypted to the corresponding plaintext without error, and which
supports all possible circuits for evaluation through the evaluation key evk. In
addition, the length of the output after arithmetic evaluation has an imposed limit,

which in the case of SHE is non-existent.

It is important to note here that the key contribution of Gentry’s work [19], [20],
was the development of the bootstrapping technique. FHE schemes based on his
work can evaluate a circuit by adding noise to the ciphertext. This noise however
increases with each homomorphic evaluation and requires decryption to eliminate
it. If we do not decrypt, then, after a certain threshold on the number of
homomorphic evaluations, the growing noise in the ciphertext results in a failure to
decrypt correctly to its corresponding plaintext. Gentry solved the problem through
a re-encryption step by converting the decryption algorithm for his scheme into a
circuit for homomorphic evaluation. In addition, encrypting the noisy ciphertext
again to make it doubly encrypted. In this way, he could perform decryption of the
inner encryption in a homomorphically-encrypted way by passing the doubly
encrypted ciphertext and an encrypted version of the private key to the decryption
circuit. The output of his re-encryption was the outermost ciphertext of the same
plaintext that was doubly encrypted, but with the noise gone. Furthermore, this
recryption ability was made a part of the evaluation algorithm along with the ability
to evaluate at least a single logic gate so that any desired circuit can be fully

evaluated.

24

Chapter 2

2.3.4 Levelled Homomorphic Encryption (LHE)

LHE is defined as a Boolean circuit evaluation scheme in which the auxiliary input
a limits the maximum depth, d, of circuits can be evaluated. Along with the
requirements of correct decryption and a practical limit on the output from
arithmetic evaluation, it is necessary that the length of the evaluation output is not

dependent on the depth of the Boolean circuit.

The limit on the depth of the Boolean circuits is usually a confusing difference
between LHE and SHE. The depth of the Boolean circuits in SHE can be increased
through the choice of parameters that in turn increases the length of the output
ciphertext. In LHE on the other hand, the depth of the Boolean circuit is an input

parameter that is independent from the length of the output ciphertext.

2.3.5 Introduction to SHE and its implementation in SEAL

Homomorphic encryptions are able to perform computations directly on ciphertext.
However, based on the properties of the various variants of HE, not all are suitable
for every task. Somewhat homomorphic encryption (SHE) is a variant of HE in
which one is able to perform many encrypted operations sequentially, but the
number of total encrypted operations is limited by the initialization parameters of

the scheme.

In our work, we have used the SEAL' implementation that is a practical
homomorphic library for use in higher-level applications. The library is written in

C++, with a wrapper for languages like C#, and the library code is available for

! https://github.com/microsoft/SEAL

25

Chapter 2

analysis and improvement under the open-source MIT licence on GitHub, which is

sufficient for our work.

One of the underlying schemes implemented in SEAL is the Fan-Vercauteren (FV)
scheme [21] along with some improvements as discussed in their documentation [22].
The FV scheme is a somewhat homomorphic encryption scheme. The security of
this scheme is based on the Ring Learning with Errors (RLWE) problem that is
considered a quantum-secure problem providing high security. Besides the FV

scheme, SEAL now includes the CKKS scheme [23] as well.

For somewhat homomorphic encryptions, the distinguishing property from other
homomorphic encryption types is that they are not compact. Their ciphertext length
is not bounded for the output of any homomorphic evaluation operation [4]. This
means that if we use a somewhat homomorphic encryption scheme, then sequential

use of the homomorphic operations will result in a bigger and bigger ciphertext.

2.3.6 Description of the FV Scheme

The homomorphic encryption scheme used in the SEAL library is the F'V scheme.
This scheme is based on the algebraic ring structure. The algebraic rings are
basically mathematical sets of elements within a modulus and support the two
binary operations of addition and multiplication. The FV scheme requires our
original plaintext numbers, those that we want to encrypt, to lie in the ring
structure R,. The ring R, is defined such that R, = Z,[z]/ =™ + 1 , which means
that only those integer numbers from Z are included for which there exists a
polynomial of degree smaller than n with coefficients reduced modulo ¢. Here, the
scheme is initialized by specifying the key initialization parameters of the plaintext
modulus ¢, ciphertext modulus ¢, and the degree of polynomial modulus n. The ring
structure allows polynomials of degree less than n with coefficients modulo t. The ¢

is called the plaintext modulus and the z" + 1 is called the polynomial modulus.

26

Chapter 2

Both of these moduli are specified as encryption parameters before performing the

encryption itself.

For one to encrypt a number under this scheme the number has to lie within the
ring structure R,; therefore, we first encode each of our original numbers to become
a member of the ring structure and to make it encrypt-able. The ring R, specifies
that any number, either an integer or a rational number, should be encoded into a
plaintext polynomial in R, and then it can be encrypted under the scheme. Once
the required numbers are encoded into R,, they are encrypted into a ciphertext
array of at least two polynomials in the ring structure R, where g is called the
coefficient modulus and is specified as an encryption parameter before performing

the encryption itself. See section 2.3.7 below for setting the initialization parameters.

The precise definitions of the encryption and decryption in the F'V scheme are stated

$
in this section for completeness. Here, by a + R, it is denoted that « is sampled

uniformly from the finite set R,. The main algorithms of the scheme are:

o Generate secret key sk, public key pk, and evaluation keys evk using the
SecretKeyGen, PublicKeyGen, and EvaluationKeyGen algorithms.
o Encryption(pk,m): For m € R,, let the public key pk = (p,,p;). Sample
u i R,, and e, ,ey + X.
o Compute ct = ([Am + pyu + e, [pu + ey],) to get the encrypted
ciphertext ct.
e Decryption(sk,ct): Set s = sk, ¢, = ct[0], and ¢, = ct[1].

o Compute m’ = Hf—l ¢y + ¢15],]] to get the decryption of m into m’.
t

27

Chapter 2

2.3.7 Key generation

The encryption step converts a plaintext number to a ciphertext number by using
the secret (also called the private) and public key pair. The key generation is
performed in two steps. The first step is to generate the secret key s. The generation
of the secret key is performed by generating a random polynomial having n terms.
Moreover, each of the coefficients is sampled uniformly from the set {—1,0,1}. Next,
the public key pk is generated by first taking another temporary random polynomial
(called the a polynomial) from the ciphertext space, i.e., a polynomial having its
coefficients modulo the ¢ variable. The coefficients are sampled uniformly from the
entire range of the g. The number of terms in the temporary random polynomial a
will also be equal to n as in the secret key. Next, we will need a random error
polynomial called e for the public key, so we sample n coefficients from a discrete
Gaussian distribution of relatively much smaller values as compared to g. The public
key is then defined by the two polynomials (pk, = [—as + €], and pk, = a) in the
following form:
pk = ([~as + €], a)

Now, after generation of the s and the pk keys, we are able to perform encryptions.

Therefore, next, we will see how the encryption step is performed in the encrypt-

process-decrypt routine.

2.3.8 Encryption

Recall that the encryption step converts a plaintext polynomial to a pair of
ciphertext polynomials. Where the plaintext polynomial has n terms, each having
its coefficient modulo . Moreover, the ciphertext polynomial pair also has n terms,
but the coefficients are modulo ¢. In order to perform the encryption, we will have

to generate three more small polynomials similar to those used in the generation of

28

Chapter 2

the public key. Two error polynomials e; and e, will be sampled from the same
discrete Gaussian distribution used in the generation of e in the public key. Along
with e; and e,, we will also generate the third polynomial, u, having coefficients

uniformly sampled from the same set as the secret key, i.e., the set {—1,0,1}.
— 5/ n—1 / n—2 N | /
e =a , " +a, x" "+ -+ax +a,
7 n—1 17 n—2 2 1 77
€y =0a T "t a s, or T et at T tar
_ 177 n—1 177 n—2 /177 1 177
Uu=a n—laj +a n—2‘,1j +ta 1‘,1j +a 0

After generating the three polynomials e, e,, and u, the two ciphertext polynomials

(cty = [pky - u+e; + |1 -m], and ct; = [pk; - u + e,],) are calculated as:

= ([wren s [1]] v

q
The ciphertext ct calculated above hides our message m in the combination of
random noise values successfully. Since our original message m is the plaintext
polynomial having coefficients of the modulus ¢ variable, it is scaled up first by [4],
and then hidden by summing up with pk, - u + e,. Although, the e, is sampled from
a discrete Gaussian distribution, the term pk,-u hides our message effectively
making it indistinguishable from random noise. It is precisely because of pk, - u,

that the same plaintext message will result in a different ciphertext every time.

By further analysis of the calculations for any single encryption step, we can

distinguish five components that go into a ciphertext. They are the following:

1. public key
2. private key
3. message

4. mask

5. noise

29

Chapter 2

The five components of the encryptions can be observed in the mathematical

expansion of the public key in the encryption step as follows:

The ciphertext is a combination of two polynomials as

cty = |pky-u+e; + FJ -m}
t q
cty = [pky - u + 62](1
Similarly, the public key pk is a combination of the following two polynomials as
pky = [—as + €],
Pk, =a

So, expanding pk,, in ct, will give us

cty = [—a5+e -u+el+EJ -m}
q

cty = {—aus +eu+e; + {%J : m]
q

Similarly, expanding pk, in ct; will give us
cty = [a-u+ ey,
By combining the expanded form of ct, and ct, for ct, we get distinct components

as emphasized in equation 2.1.

Pk Pk Pk
—— e —_— q ”~
ct = —au S +eu+el+L—J-m sl a -u+ ey 21
—— —— t ~—— - .
mask secret —_—— mask noise

noise q

message

2.3.9 Decryption

After understanding the encryption step in the encrypt-process-decrypt routine, we
move to understanding the decryption process. In order to decrypt a ciphertext ct
in the FV scheme, we first remove the masking by adding the two polynomials of

the ciphertext to get a polynomial as follows:

30

Chapter 2

[cty +cty - s8], = _—aus+eou+el + {%J -m] +la-u+e), s
A .

= |—aus +eyu +e; + {%J -m] +la-u-s+eys],
A .

= |€out ey + EJ -m} + [eas],
- q

= |eys tegu+ ey + EJ ~m]

q
The above expansion of the terms shows that, besides our message m scaled by 4],
extra information called the inherent noise, v, exists in the ciphertext. This inherent

noise can be defined from the equation above as

Next, for the decryption to work correctly, we calculate by scaling down the ct
polynomial back to the values in modulo ¢. Meanwhile, the noise terms v will be
removed by rounding off. For this to work, the noise terms need to be small enough
so that they are rounded off otherwise the decryption will fail. This scaling down

step is performed by first multiplying with 57 and then the small noise terms are

rounded off as follows:

=] [l 1]] |

On the other hand, we can write this by highlighting the noise polynomial as:

o[e o)]

In the above equation, our plaintext message m is decrypted to its equivalent

t

plaintext message m’. If the ciphertext was not operated on, then m’ =m,

otherwise m” will be the resultant value of the operation being performed.

31

Chapter 2

More importantly, the coefficients of the noise polynomials represented by v need

to be small enough so that they are scaled down by 3 and are rounded off. On the

contrary, if the noise coefficients are bigger, then they will end up closer to a
different integer than their correct one and will silently produce an incorrect result.
This observation means that the difference ¢/t gives us the liberty to handle an
equivalent amount of noise. The larger the difference between the ¢ and the ¢, the

larger the amount of noise that can be tolerated in the decryption process.

2.3.10 Noise budget (Circuit Depth)

Each ciphertext can support a limited number of homomorphic operations on it.
This limit is called the noise budget by SEAL but is normally referred to as the
circuit depth by other researchers in the homomorphic encryption community. We
will use the nomenclature of “noise budget” as well. As we perform homomorphic
operations, this noise budget decreases towards zero. After the zero limit of the
noise budget is reached, all the homomorphic operations will result in garbage values
because the coefficients of the polynomial representing the ciphertext will exceed
the coefficient modulus ¢, an encryption parameter. Thus, the decryption algorithm

will not be able to decrypt the ciphertext within the set encryption parameters.

In our work, the noise budget is the most important aspect to follow. This is because
the noise budget allows or restricts a computing party to perform any further

homomorphic operations on a ciphertext.

It is worth mentioning here that if we combine a ciphertext, having a zero or
insufficient noise budget, in an arithmetic operation with another ciphertext having
ample noise budget, then the noise budget for the resultant ciphertext will be zero.
This clarifies that if either of the ciphertext operands have insufficient noise budget,

then the output will not be decrypted and decoded correctly.

32

Chapter 2

The initial noise v, in a ciphertext is determined by the following formula as shown

in the SEAL documentation [22]:

q mod ¢
vV, = T ’ HmH ' Nm

nt

- min noiseMaxDeviation, 6 x noiseStandardDeviation

In the formula for calculating the initial noise budget above, we have our original
message represented as m, the encryption parameters as n,t,q, and the highest

degree of polynomial m as N, . The random noise distribution is defined by the

m:*
standard deviation and the maximum deviation of the sample. We see from the
initial noise formula above that for the same message m, the initial noise budget is

determined by the initialization parameters ¢, ¢, and n of the encryption scheme.

These parameters are defined in the following section.

2.3.11 Parameter Selection (t, q, n)

The homomorphic operations are strongly dependent on the encryption
initialization parameters. The initialization parameters affect the actual encryption,
decryption, performance, and the result of the operations. These parameters need
to be set before encrypting any numbers or performing any homomorphic
operations. Based on these encryption parameters, the security keys (the public key,
private key, and the evaluation keys) of the scheme are generated. Three main

encryption parameters are explained as below:

2.3.11.1 Plaintext Modulus (t)

The plaintext (coefficient) modulus can be any positive integer that determines the
size of the plaintext data that can be encrypted. Importantly, it affects the initial

noise budget in a freshly encrypted ciphertext, as well as the consumption of the

33

Chapter 2

noise budget in homomorphic multiplications. It is essential to keep the t value as

small as possible for a good performance without affecting the noise budget [22].

2.3.11.2 Ciphertext Modulus (q)

The ciphertext (coefficient) modulus in the FV scheme is a product of one or more
small prime numbers. The size of the coefficient modulus should be thought of as a
significant factor in determining the noise budget. A ciphertext should have its noise
value smaller than the g value to get decrypted properly. The decryption algorithm
will not be able to decode a ciphertext that has a noise value larger than the ¢

value.

If a large noise budget is required for complicated computations, a large coefficient
modulus needs to be used. However, researchers have shown that a larger coefficient
modulus g also lowers the security level of the scheme. This reduction in the security
level can be recovered by simultaneously increasing the polynomial modulus n when

increasing q [22].

When we talk about the size of the coefficient modulus, we mean the bit length of
the product of one or more smaller prime numbers. In SEAL, the coefficient
modulus is a positive composite number that is the product of distinct primes

limited in size to less than 60 bits.

Performance is primarily affected by the size of the polynomial modulus n, and the
number of prime factors in the coefficient modulus. Thus, based on our experiments
as shown later in section 4.6, we will recommend using as few factors in the

coefficient modulus is possible for good performance.

2.3.11.3 Polynomial Modulus (n)

The polynomial modulus is the maximum number of terms that can be used in a

polynomial to represent a plaintext or a ciphertext. The value n should be thought

34

Chapter 2

of as mainly affecting the security level of the scheme. A larger polynomial modulus
makes the scheme more secure. In order to be able to encode numbers into the ring
R, properly, the value of n must be a power-of-2 cyclotomic polynomial, i.e., a
polynomial of the form (1-z®oweref2) 4 1) for example (1-22°%® + 1). The
prominent effect of a bigger polynomial modulus n is that it makes ciphertext sizes
larger because of the higher number of coefficients, and consequently all operations
are slower. SEAL’s documentation recommends n takes values of 1024, 2048, 4096,
8192, 16384, or 32768, based on security and performance reasons, for common

computation scenarios.

2.3.12 Relinearization

In the FV [21], and other similar homomorphic encryptions schemes, multiplications
result in increasing the number of polynomials in a ciphertext. Relinearization is
the method of reducing the number of polynomials back to a certain acceptable

value to control the noise growth.

Since each ciphertext is an array of polynomials, the array contains at least two
polynomials (¢, and ¢,;) as represented below where s is the random number for
security:
c=(cy+cy8)

Relinearization is necessary due to several reasons. These include that a bigger
polynomial takes more time to process as compared to a smaller polynomial.
Further, convolutional neural networks are very computationally intensive
algorithms, involving operations, like multiplication of many numbers, in several
layers, to produce the result. During our research, we found another interesting
reason to use relinearization is that smaller ciphertexts lead to a smaller increase in

the noise. The increase of noise is dependent on the size of the ciphertext operands

35

Chapter 2

that can be improved by using relinearization after every multiplication in the CNN.
This can be seen by a simulation of the noise growth when two ciphertexts are
multiplied together, one with an increasing number of polynomials and the other
with a fixed polynomial count size of 2. The noise in the result of the multiplication
is calculated by wusing the relinearization formula provided in the SEAL

documentation for multiplication [22].
2t
vozvi%—;-mm{B,(ﬁa}- J—K n-1l+1 -z 23

Simulation of Noise in Multiplication by varying Ciphertext polynomial array size

1(]274

1(]226

10178

1(]13()

Noise bound of output

1082

1034

10714 - : X
2 10 20 30 40 50 60 70 80 90 100

¢ty polynomial count.
Figure 2-7 Effect of ciphertext polynomial count on the noise in the results

The example simulation in Figure 2-7 shows the estimation of the upper bound of
the noise in the product of ciphertexts ct; x ct, where the polynomial count size of
cty is always 2. On the x-axis, we have the varying size of the ciphertext ¢; from
two polynomials to 100 polynomials. On the y-axis, we have the noise growth

estimates for the product of ct; and ct,.

This estimation is based on the noise bound formula for ciphertext multiplication
given in SEAL documentation. The formula is reproduced in Appendix A. In the

formula, the sizes j; and j, represents the polynomial counts of the ciphertext

36

Chapter 2

operands ct, (cy, ¢y, -, ¢;) and cty(cy, ¢y, -y ¢) respectively. Here, ¢ represents a
single polynomial of the ciphertext. In addition, in the formula, v; and v, represent
the existing noise in these ciphertext operands, respectively. The formula for the
noise bound tells us the extent of the noise in the resultant ciphertext after
multiplying ciphertexts of sizes j; + 1 and j, + 1 respectively. By keeping all other
values static and varying the size of an operand, say j, for ct; in the multiplication
formula, we will know whether multiplication with a smaller size ciphertext inherits
smaller noise or not. Using this formula, we can estimate the maximum theoretical
noise that can be inherited in the resultant ciphertext. Note that this is not giving
us the exact noise value but rather gives a maximum bound on the noise that is

possible but is unlikely to occur in practice.

We conclude from this simulation that there is an exponential growth of noise from

small to large ciphertexts.

It is notable that this behaviour occurs for the SEAL library because it allows
ciphertexts of size greater than 2 to delay a relinearization step for flexibility.
However, we do not recommend delaying the relinearization step in order to keep

the noise of the result to a minimum.

2.3.13 Number encoding

The numbers on which we want to perform computations in SEAL have to be
encoded in a polynomial of the form z™ + 1. Here n is a power of two and x is the
coefficient of the polynomial. The 2™ 4 1 is the polynomial modulus as discussed in
section 2.3.11.3 above. The SEAL library encodes integers and fractions in a slightly

different way as described below.

37

Chapter 2

Integer Encoding

We introduce integer encoding using an example. If the encoding base z = 2, then
the integer 26 = 2% + 23 4 2! which is encoded as the polynomial 124 + 12% + 12*.
In the same way, when the encoding base x = 3, then the integer 26 = 3% — 39 is

encoded as the polynomial 1z° — 1.
Fractional Encoding

Fractional encoding is done using fixed-precision rational numbers in a manner
where the integral part is handled similarly to integer encoding but the fractional
part is handled slightly differently. It expands the number in a given base x, possibly
truncating an infinite fractional part to finite precision, for example,
26.75 = 24 +2° 421 4+ 271 4+ 272

where x = 2 as an example. For purpose of illustration, suppose the polynomial
modulus is 12'°?* + 1. The integer part of the number is represented in the same
way as in encoding an integer, but the fractional part instead is moved to the
highest degree part of the polynomial with the signs of the coefficients changed.
Since we are dealing with ring structures with only positive integers, therefore, the
negative coefficients are always encoded as a remainder of the plaintext coefficient
modulus £. In this example, with £ = 8 and n = 1024, we would represent 26.75 as

the polynomial below:

26.75 = 7x1923 4 721022 4 124 4+ 123 + 121,

2.3.14 Noise within the Ciphertext

In a homomorphic operation, random numbers called the “noise” are added to the
resultant ciphertext for security reasons. The practice of combining random
numbers with our original message m is common in cryptography to make the

ciphertexts unpredictable. These random noise numbers are taken from a

38

Chapter 2

combination of random number distributions. To get our original message m back,
from the scrambled ciphertext, it is necessary to remove all the random noise values.
The removal of the random noise is achieved through the help of the secret keys,

which only the authorized parties hold.

In homomorphic encryption schemes, unlike their traditional counterparts, the
ciphertexts are dynamic as they have the ability to interact with other ciphertexts,
resulting in an entirely new ciphertext. The value of the noise is taken randomly;
therefore, its exact value cannot be known. However, the random distribution from
which we sampled the noise value is known. SEAL documentation [22] provides a
close estimation for the upper bound and the extent of the added noise. This
estimation of noise is used in our work described later in section 4.5.2 below to get

the encryption parameters for a convolutional neural network.

2.3.15 An example of HE operations

The mechanisms and concepts behind a homomorphic encryption scheme can be
overwhelming at a first view. Here we will present an example to connect and
elaborate the HE preliminary mechanisms and concepts described above. For
illustrative purposes, much smaller numbers will be used in the example to keep it
well-defined. However, numbers in real usage of HE need to be much larger than in
this example due to security reasons. For due reference, the idea for this explanation
is inspired by Stephen Hardy’s article online’. Unfortunately, the website is now

offline and not available on the internet.

2 https://blog.nlanalytics.com/homomorphic-encryption-illustrated-primer (Accessed: October 22, 2019)

39

Chapter 2

We will start with the most basic numerical structure (i.e., rings) used in these
schemes to hold data. The ring structure holds the data contents of both the
encrypted ciphertext as well as the unencrypted plaintext. Any ciphertext or
plaintext is essentially a normal polynomial, but apart from the ring limits applied
to it. To understand the concept of rings and ring limits further, consider the

example of a normal polynomial such as 8% + 4z + 1.

The polynomial in a ring structure will have two differences from a normal
polynomial. First, all the coefficients (i.e., 8, 4, and 1) are whole numbers and the
remainder of some other whole number ¢ called the plaintext modulus (see section
2.3.11.1). If t = 12 then this will essentially be a 12-hour clock. Adding 6 to 9 in

such a case will give us a value of 3.

Figure 2-8 Remainder example of a single coefficient

Second, this idea of using only the remainders is extended to the complete
polynomials themselves and not limited to their coefficients only. The polynomial
modulus is represented by mn. Here, the n restricts the polynomials to only the
remainders after division with a specific form of n. Notably, the FV scheme [21]
used in this research requires n in the specific form of ™ + 1 where n is a power of
2. If we take the value of n = 16, then the polynomial modulus will be x'% + 1. So,
each polynomial considered will range from 0 to 15 where each coefficient will be
from 0 to t — 1. This is illustrated in Figure 2-9 where we have 16 rings (similar to

Figure 2-8), and each ring represents a single coefficient.

40

Chapter 2

. - . - " . "
* * 03 * *
Q * R e R * *
- & 4y g ae &, o, v &g 4, 4y ae 44 0, a4 . .
L] L L L ~ - L L ~ L L L L] L L L
P 16:0:0:0:¢:6:6:6:¢:6:¢:¢:¢:¢ ¢ ¢
- . GG - @ N 48 2 &7 R 4 4 4
. . . v . . s v . . . n . . . vy
. . ‘:: ": YOI ‘3'. ‘3'. . . ‘:: ECCS O ‘3'. o K K
- . £ » £>
- . e 0%, o0, 0 e o0, o%0, P 0, %0, e, O LTS A4 o
AT CHAELVPE CHE YA E I OIS S MNP CLE LA AL A E S MRE LS £ 3N L) e

Figure 2-9 Ring illustration of a polynomial

The illustration in Figure 2-9 is represented by the polynomial in the following form,

a15x15 + a14x14 + awxlg + a12x12 + allxll + awxlo + agxg + axxg + a7x7 + aﬁxﬁ
+ azz® + ayxt + azx® + agr? + a;x + ay

Now that we have understood the underlying to hold the data of a plaintext and

ciphertext in an FV scheme, we will see how encryption and decryption is

performed. To encrypt a plaintext to a ciphertext, we will need a pair of public and

private keys. The public key is used to perform the conversion from a plaintext to

a ciphertext. Whereas the reverse process of decryption to get a plaintext from a

ciphertext is performed using the private key.

The plaintext is represented by a polynomial from the ring with its coefficient
modulus ¢. The encryption of this plaintext is represented by two polynomials from
the ring but a coefficient modulus ¢, which is much larger than ¢. For example, if
we take the values n = 16,¢t = 7, and ¢ = 874, then the generation of private and

public keys is the first step which is done as follows.
The private (or secret) key represented as s is generated by taking a random
polynomial with coefficients from the set {—1,0,1}. For example,
s pld I3 12 p11 0 4 o8 L a6 g4 42 4]
After generating the private key, we generate the public key by taking a random

polynomial a with coefficients from the ciphertext space i.e., coefficients modulus g¢.

a = 42x1° — 25621% — 393213 — 229212 + 44721 — 369210 — 21227 + 1072® + 5227
+ 7025 — 1382° + 322x* + 18622 — 28222 — 60z + 84

41

Chapter 2

In the next step of generating public key, we take another random polynomial e
with its coefficients drawn from a discrete gaussian distribution. The coefficients
are relatively much smaller, and this polynomial is used only once here for the

generation of public key and is then discarded.

The public key is defined by a pair of polynomials pk, pk; as pk=
([—as +el,, a), for which we now have all the components. Therefore, the first
polynomial pk, of pk is constructed as pk, = [—a x s + ¢],,, which gives us
pky = —285x'0 — 43121 — 3221 + 86212 — 83zt — 142210 — 412° + 43028
+ 2627 — 1582°% — 2812° + 377x* + 1102® — 23422 — 113z + 252

Now that we have both the private and the public keys generated, we will see the
encryption phase. The encryption coverts a plaintext polynomial with coefficients
modulo ¢, to a pair of polynomials with coefficients modulo ¢. For example, if our

original message to encrypt is m = 3 + 4%, then the encryption step is as follows.

The encryption phase requires three more small polynomials. Two of them are
similar random error polynomials (e; and e,) with their coefficients taken from the
same discrete gaussian distribution as above. And another polynomial u with its
coefficients drawn from the set {—1,0,1}. Let’s say we get the following
e, = —bx!® — 2z 4 3213 — 212 — 42 + 3210 + 29 + 42® + 427 + 5a® — 44°
— 3x% — 323 + 222 — 62 + 4
ey = =7z + 22 — 4213 + 5t 4 2210 — 29 4 4a® + 42" — 325 + 225 — 22t 4 2
—4x% — 22 + 2
u=a+ 21 + 21?2 — 8 — 25 — 23+ 1
Then the encryption process converts m to a pair of ciphertext polynomials

cty, cty as ct = ([pky-u+e; + [-m], , [pky-u+ ey],). The original message

q Y
m is present here with no change except just a scaling. All the other terms are here

only for hiding m. Due to this phenomena, homomorphic encryption enables the

42

Chapter 2

additions and multiplications of our original message even though in an encrypted
form. Here, evaluating the first element of ¢t gives us

cty = 2172 — 53z + 13218 — 249212 — 39221 — 238219 4 25227 + 1152% + 527
+ 18425 — 20125 — 258x* — 24723 + 14422 + 232 + 42

Similarly, evaluating the second element of ¢t gives us

cty = 25x1° + 225214 — 12213 4 27022 + 3502 — 24210 + 5627 — 33028
+386x7 + 22525 — 3322° + 682 — 202 — 2622 — 91z + 380

Now that we have converted a plaintext message m to an encrypted ciphertext ct,
we will see how it can be converted back through decryption. To decrypt, we will

need the secret key s to calculate [ct, + ct;s],. This gives us

ctys + cty = 1321 — 221 + 17213 4 22212 — 32211 — 23210 + 1927 — 38028
+927 + 102° — 1325 — 32* — 22% — 1222 + 72 + 393

After this, we rescale the polynomial back to the original range of modulus ¢ by ¢/t,

then we have

1315 g4 N 17213 N 1122 g1 23210 N 1927 95g8
128 64 128 64 4 128 128 32

9z N 525 13z 32t P 322 N Tx +393
128 64 128 128 64 32 128 128

Finally, after rounding off our polynomial, we get back our original message m as
m = 3 + 48

After understanding rings, encryption, decryption, and keys, we look at the addition
process of two ciphertexts a and b encrypting plaintext messages m; and m,

respectively.

q

" ([pkoul Fe o+ EJ ~m1] [pkyu, + ez]q>
)

b= ([pkouz +es; + EJ . mz] , [Pk uy + 64]q

q

43

Chapter 2

Here, note that both the ciphertexts are encrypted using the same public key.
However, the small polynomials of u, and e, ...e, are all different for both

ciphertexts.

The addition of two ciphertexts is procedurally simple and involves the addition of

their two corresponding polynomial elements. In our example, this will be
a+b=[pkyu +uy, + e +eg +qmy+my [t [Pk, up tuy + ey tey],
a+b=[pk, u; + e; +q m;+my /t]q, pk, us; + €4]q

So, from the above addition step, we see that the two messages as well as the small

error terms are all added, and we get a resultant ciphertext with similar polynomials

that can be decrypted as above. After decryption, we will get a plaintext message

that is the sum of m, and m,.

Similarly, the multiplication involves taking the product ¢ of the two corresponding
polynomial elements but with some further detail to consider. Consider the same
ciphertexts a and b encrypted using the same public key and having their

corresponding masking terms as follows

a = [pkou; + ey +gmy /t, pkiu; + epy)
b = [pkyu, + eyy + gmy /L, Pk uy + egy)

When we multiply two ciphertexts a and b, here instead of ending up with two
polynomials as in addition, we will get three polynomials as the product outcome.
This is shown below.

t
Cy = [a aob()}

q

Chapter 2

From a decryption point of view, the third extra polynomial in the product is
accommodated by expanding the decryption process to include the extra term as

follows:

t
decrypt a x b =my = Ua [ctys + cty st + CtQSQ]qH
t

2.4 Homomorphic Encryption Code Libraries

Practical implementations of PHE are common. A simple search on GitHub for
“paillier” returned more than 90 results for repositories of project source codes in
languages like Java, Python, C, JavaScript etc. Similarly, the search for other PHE
schemes returned many results such as “elgamal” which returned 161 repositories
in various languages. Among these repositories, we found several well-maintained

source code projects that are usable in the real world.

On the other hand, most of the FHE are of a theoretical nature and exist mostly
on paper at present. Only a few major implementations of FHE exist. Two of them
are: Halevi and Shoup’s HEIlib [24]; and Microsoft’s SEAL [25]. An up-to-date list
of implementations is maintained online by the homomorphic encryption

consortium?.

HElib is an implementation of the HE scheme by Brakerski, Gentry, and
Vaikuntanathan (BGV) [16], in which the library uses several optimizations such
as the ciphertext packing techniques for single instruction, multiple data (SIMD)

[26] and the bootstrapping for FHE as detailed in [27]. Currently the HEIlib has very

3 https://homomorphicencryption.org/introduction/

45

Chapter 2

low-level routines and is intended only for researchers working on HE. These low-
level routines (e.g., SHIFT, ADD, MUL, etc.) are considered as the assembly
language for HE. It is written in C++ and uses the NTL mathematical library?* that
is often used with the GNU Multi-Precision library® (GMP) for faster

multiplications.

The Simple Encrypted Arithmetic Library (SEAL) is an implementation of the HE
scheme by Fan and Vercauteren (FV) [21], in which, the security is again based on
the Ring Learning With Errors (RLWE) problem like the BGV. RLWE is
considered highly secure, and its ciphertext noise growth properties are considered

better primarily due to a smaller secret key size.

A notable optimization library using CUDA GPU acceleration is the cuHE [28].
This is designed to boost homomorphic encryption schemes such as the BGV [16],
Lépez, Tromer, and Vaikuntanathan (LTV) [29] and Doréz, Hu, and Sunar (DHS)
[30], by taking advantage of the greater parallel computing power and high memory
bandwidth offered by GPUs. It also takes advantage of an efficient implementation

of the bootstrapping algorithm [31] making it an ideal support for our work.

2.5 Related Work in Privacy-Preserving Classification.

Several researchers have worked on the preservation of privacy of data that includes
the adoption of homomorphic encryption. In this regards, researchers have tried
techniques like differential privacy in [32] and [33]. Differential privacy tries to
achieve data privacy by summarising or omitting information. Nevertheless, the

wider adoption of homomorphic encryption in neural networks is yet to occur and

4 http://www.shoup.net/ntl/
5 https://gmplib.org/

46

Chapter 2

will require developing more user-friendly code libraries and toolsets. In this regard,
several research works and codes exist to integrate homomorphic encryption with

neural networks.

A parallel work of Elsloo et al. [34] presents a framework on neural network inference
on encrypted data. Their research abstracts most of the encryption related details

for quick prototyping of an encrypted neural network inference task.

Another parallel work by Dathathri et al. [35] presents another similar framework
in the form of a domain-specific compiler for fully-homomorphic neural network
inferencing. Their work evaluates the circuit depth required for a neural network

and then optimizes the underlying encryption scheme parameters for it.

Another development by Dowlin et al. [1] introduces CryptoNets which
demonstrates a levelled homomorphic encryption scheme that is applied in the
execution of a trained neural network. In their work the authors applied the levelled-
homomorphic encryption scheme of Bos et al. [36], inspired by the original fully
homomorphic encryption scheme suggested by Gentry [19]. Their method is applied
to the 28 x 28 images of handwritten digits from the Mixed National Institute of
Standards and Technology (MNIST) dataset [7]. In their work, they avoided the
heavy bootstrapping method of re-encryption of the original scheme and, instead,
they estimated the number of operations required to compute an arbitrary function
homomorphically over encrypted data without the loss of accuracy in the final
decrypted result. In addition, once this estimation was done for the encryption
scheme in NN, the input values are limited to a fixed precision. They have reported
an average of 51,000 predictions per hour on an ordinary PC. That is an
improvement over similar techniques. This approach has helped to reduce the

required processing power and time significantly. However, it is worth mentioning

47

Chapter 2

that their approach has limitations in terms of computing the neural network

activation functions and the pooling operations.

Recently, plenty of works in encrypted inferencing like the [37], [38], [39], [40], and
[41] are being produced to advance the area of private inferencing using

homomorphic encryption.

2.6 Issues in Privacy-Preserving Classification

The classification task can be listed as a set of arithmetic operations along with a
few modifications to the neural network. In view of the discussion above, the

following issues need to be solved to achieve privacy-preserving classification.

2.6.1 Evaluating Activation Function

The crucial part in evaluating a single neuron is the evaluation of the activation
function by using only the multiplication and the addition operations. This is

problematic when we do not have support for the division operator.

Functions such as those presented in section 2.2.6 above, however, can be
approximated by polynomial expressions using integer values, and do not necessarily
need to be expressed in a bitwise manner. Some of the more efficient FHE schemes
allow encrypting polynomials that can encode such integer values. The advantage
of this approach is that a single ciphertext now contains much more information
than just a single bit of plaintext, but restricts the possible operations to arithmetic
circuits in these polynomials. Furthermore, these functions are often simple enough

such that the expensive bootstrapping procedure can be avoided. Evaluating

_ 1
T lte®

functions like the logistic sigmoid a(x) requires us to approximate it using

Taylor series. This is because in the encrypted domain, we cannot raise the value

of e to an encrypted number x. So, the normal polynomial terms from McLaurin

48

Chapter 2

series (i.e., a case of Taylor series in the region near x = 0) for approximating the

logistic sigmoid are stated in equation 2.4.

1 1, 1 . 1T . 31,
fe T RY T iso” T 1515207

1
=9 1P T RY Tus0” T s0640” - 24

The more the number of terms we use to approximate the function the more

accurate will be the result, but the more computational power will be needed.

2.6.2 Number Encoding

Homomorphic encryption schemes support only integers denoted by the set Z. On
the other hand, neural networks are considered to work best on real numbers
denoted by the set R. The clear mismatch between the integer and decimal
datatypes in terms of practical implementation is an issue faced in three separate

parts of a neural network, which are:

e Input values for the neural network.
e Optimal weights of neurons after training.

e Output of the activation function after processing each neuron.

One way to overcome the datatype mismatch is by adopting an encoded evaluation
mechanism that helps to execute the neural network on integers even if the inputs

or the weights are non-integer values.

To allow real numbers as inputs, we can multiply the input number z by 10¢ to
obtain an integer representation, where d is the number of accurate digits we require
after the decimal. However, an issue arises when we want to get our required number
back after the completion of evaluation through the network. This is because to get
the output back to expected range, we must divide the output by 10¢, and in our

case we do not have the divide operation in homomorphic encryptions.

49

Chapter 2

Due to this reason, we can get precise results for only a single layer of an already
trained neural network having pre-defined weights. This is because the output of

the single layer is much higher in value than expected by the next layer.

This problem demands that we either perform the complete execution of the neural
network in binary form (base-2 numbers) using digital logic circuits, or we match
the high input values with those of the associated connection weights so that the
aggregated input to the neuron permits proper evaluation. This also suggests that

we can adjust the optimal weights to match the encoded input.

Moreover, in our case the encoding of input values only will not suffice for the
complete execution of the neural network. This is because the output from the first
layer are again real numbers, and the culprit now is the activation function. To
overcome this problem, we used the Maclaurin Series that give us an approximating
polynomial to estimate the sigmoid function. We raise the whole polynomial to get
integers as output instead of real numbers. For this, we again multiply the required
number of terms from the polynomial with 10¢. It should be noted that in this case
the value of d is not necessarily to be the same as in the case of encoding input

values.

For example, to make the approximation of a logistic sigmoid function as shown in

equation 2.4 to output integers, its terms will be stated as:

F 104 N 104 104
r = — xXr — —
2 4 x 104 48 x 10dx3)

34 ..

These three terms are tested using HEIlib [24] and the following observations were

made:

e The effective range of input for three terms from the series is from -4 to +4

inclusive. Beyond this range, the output is distorted.

50

Chapter 2

e Comparing the normal evaluation versus the encrypted evaluation of the
three terms, when our encoding value for d is 6, the output for the encrypted
form reveals that the approximation is giving a correct result within the
specified range. For example:

A normal approximation for an input of value 1 for x will be as follows:

= (0.500000) + (0.250000) — (—0.020833)
= (0.729167)

e Whereas, the same approximation in encrypted form for the input value of

1 for x will be:
= (500000) + (250000) — (200154760)
= (729167)

e The average calculation time for a single neuron in the above evaluation
using HElib was close to 1 second on a PC having a processor of Intel Core

i7 and 8 GB of RAM.

2.6.3 Interpreting the Final Result

The output values from the neurons in the last layer are the confidence values of
the network. These output neurons and their values correspond to the various
classes that can be predicted about. Normally the last layer uses the softmax
activation function, which provides all the values in probabilities for each class.
However, the probabilities are just a representational form to help in the

understanding of the output.

There is no direct method to evaluate the softmax function using the existing fully
homomorphic encryption schemes. In addition, because the output values represent
the confidence of the network for each class, we cannot take the max of all the
encrypted values to determine the class. Several ways exist to find the max value

for the encrypted results; it can be either of the following:

51

Chapter 2

e Get the max in the binarized form of the encrypted result.
e Send the values to the client to decrypt and get the result against each class.

e Use a multiparty computation protocol to find the maximum of the values.

52

Chapter 3

3 TOWARDS PRIVACY PRESERVING
CLASSIFICATION IN NEURAL

NETWORKS

This chapter presents a multi-cloud non-colluding platform for encrypted inference
for a neural network. This chapter is reproduced from our study published in [14]

with minor emendations.

3.1 System Goals

To address privacy concerns and evaluate all the operations in a neural network,
we propose a non-colluding dual cloud system that utilizes Paillier cryptosystem.
We illustrate how our proposal would allow us to compute non-linear functions
while preserving privacy. Such an achievement could make our proposed system an

ideal solution to use for real world applications.

3.1.1 Secure Outsourcing of Computation

Maintaining a neural network (NN) requires a significant expertise and
sophistication in understanding the way the neural network runs and produce
results (i.e., the classification). Rather than leaving this burden to the client, our

model proposes to outsource the NN computation to a cloud (let us call it a Cloud

A).

However, this approach could potentially create a security problem. For example,

Cloud A may gain critical unauthorized knowledge (e.g., input data, weighted

93

Chapter 8

measure at different neurons, final classification outcomes etc.) if an appropriate

security mechanism is not in place.

Our model provides a number of protection mechanisms in which Cloud A never
learns anything that it is not supposed to learn. First, any data passed from the
client to Cloud A is always encrypted, and Cloud A cannot decrypt this data by
any means. Second, the computation run by Cloud A is only performed on the
encrypted data and this effectively removes any possibility from Cloud A snipping

into the computation.

3.2 Related Work

An implementation of using FHE for classification tasks was presented by Bost et
al. [42] in their library integrating building blocks for construction of classifiers.
Their work consists of a set of protocols using homomorphic encryption and multi-
party computation (MPC), through which they built three major classifiers, i.e.,
Hyperplane Decisions, Naive Bayes, and Decision trees. Their protocols, however,
are only designed to accommodate two parties i.e., the cloud with the classifiers and
the client with the data. In such a scenario, the client needs to establish a continuous

connection and actively participate in the computational process of the classifier.

Orlandi et al. [43] also explored the evaluation of a neural network by using
obscurity and mingling of the weights and data transfer through homomorphic
encryption among multiple parties. In this, they are leaking much of the information
on weights of the network to the other party. To protect the data, they propose the
data being sent to the NN is encrypted using the generalized Paillier cryptosystem.
The Paillier cryptosystem they used is a modification from [15]. In this work, the
authors have shown that neither the owner of the NN is able to acquire any

information from the data inputs nor the client is able to know about the

54

Chapter 3

architecture, hidden weights, and the activation functions of the NN model the

cloud runs.

The architecture with two non-colluding clouds has been used in encrypted data
processing before. For example, the architecture of two clouds is proposed to cluster
encrypted data from multiple parties [44]. The existing work shows that the
architecture of two clouds can be used to deal with complex functions over
encrypted data. As shown in [45], this architecture is used to check complex query
conditions over encrypted databases. The activation functions that we use however
are more complex than query conditions in databases since they usually include

exponentiation operations and divisions.

However, we have not found any other work that utilises two non-colluding clouds

to classify encrypted data with neural networks.

3.3 Autonomous Computation

Further, our model also provides an additional advantage over other similar
techniques by allowing Cloud A to run independently without having to request
any keys (i.e., those required for cryptographic operations) from the client. Other
techniques usually require evaluation keys from the client. This adds another layer

of unwanted complexity although it aims to provide security for the data inputs.

3.4 Noise-Reduction

The noise is a random number added into the ciphertext while encrypting, during
HE to guarantee the security of the cryptosystems. The noises are typically sampled

from a distribution (e.g., from a set of polynomials with coefficients in {-1, 0, 1}).

95

Chapter 8

The level of noise generated is proportional to the number of homomorphic
encryption computations (i.e., additions and multiplications). As the number of
neurons (and hidden layers) in Cloud A increases, the noise level will increase as
additional hidden layers participate in the homomorphic encryption operation. The
level of noise introduced by the NN will become too large if the number of neurons
grows too large. At some point the decryption will no longer work as the amount
of the noise will exceed the maximum value set by the underlying cryptographic
system. To resolve this, Cloud A requires a way to minimize the number of HE
operations to be carried out by itself and to share it with another entity in a secure

way.

This leads us to the model of a dual cloud, that is, two clouds working together to
run homomorphic encryption operations at different stages. With the dual cloud
model we propose, Cloud A only runs HE that relates to input data to a neuron
while the additional cloud (let us call it a Cloud B) runs homomorphic encryption

relating to the output results of each hidden and output layer.

The input values required for Cloud B to compute the outputs, as a result of running
an activation function, are encrypted. The Cloud B cannot learn anything from the
activation function even though it receives the input results. Cloud A cannot learn
anything from the outputs received from the Cloud B as the outputs are encrypted

using the key that Cloud A does not know.

3.5 Our Proposed System

The preliminary knowledge for our work is given in 2.2 and 2.3.1. Here, we discuss

the details of our proposed system.

56

Chapter 3

3.5.1 Overview

The proposed system is depicted in Figure 3-1. Our system is comprised of three
parties: the client, Cloud A and Cloud B. The client owns the data. When the client
wants to run a NN for a classification task, it outsources Cloud A to run the neural
network-based classification on behalf of the client. Cloud A then collaborates with
Cloud B to produce the classification results in a secure way. The classification

result is finally then passed back to the client.

Encrypted Inputs, \ Cryptographic
Salt value ws, Results
Cloud A < > Cloud B
Intermediate &

final cipher values

Figure 3-1 Architecture of our dual-cloud approach [14]

3.6 Components

3.6.1 Client

In our proposed system, the client is the data owner who outsources the neural

network-based classification tasks from a cloud service.

The client as the data owner has the full knowledge of the data, and its class (e.g.,
data attributes such as ages, salaries, zip code etc.). When the data owner wants to
know a classification of an input, the data owner has the knowledge about the

attributes the client needs to feed into the neural network.

Before the feed, all attributes are encrypted homomorphically using the underlying

Paillier cryptosystem with a secret key shared between the owner and Cloud B.

57

Chapter 8

This is done so that the computational run at the NN is being processed over the

encrypted data.

After sending the encrypted input, the client now waits for the result (i.e.,
classification). Upon receiving the result, the client decrypts it using the shared

secret key and knows the classification of the input value it fed earlier to NN.

3.6.2 Cloud A

Cloud A is an outsourced cloud service where the actual NN model resides. The
complete architecture of the NN, which has a pre-determined number of neurons in
a pre-determined number of hidden layers, is only known by Cloud A. For each
neuron, the corresponding weights are also known only to the cloud A. It may fine-

tune these from time to time.

The only thing known publicly about the neural network is the total number of

inputs and their expected input type, and the total number of outputs.

We assume that this neural network has been pre-trained. This implies that the
overall neural network architecture and the individual weights are set before it has
started providing the classification service to the client. The client benefits from the

technical expertise of the up-to-date and pre-trained neural network.

For our model to work, however, Cloud A has to make a number of modifications
to a conventional neural network processing mechanism in order to provide the
service in a privacy-preservation way. The modifications made by Cloud A for our

proposal are as follows:

e A change is made in the calculation of each perceptron. The weighted sum
of all the inputs to each neuron in every layer is done homomorphically.
e The homomorphically encrypted weighted sum of each neuron in every layer

is sent to Cloud B for applying an activation function.

o8

Chapter 3

e A random number, called the salt in cryptographic community, is added
homomorphically to each of the final outputs before sending it to Cloud B
to prevent Cloud B from guessing the value therefore reducing the attack
surface.

e Encrypted outputs from the last layer are sent to Cloud B. At this stage,
the last output is posterior probabilities that cannot be read by the client
directly. Cloud B runs another and final Softmax activation function to

calculate the output in a better readable form on behalf of the client.

3.6.3 Cloud B

There are number of distinct functions performed by Cloud B. To start with, Cloud
B generates a shared key for each client it is interacting with. The client uses the
shared key to encrypt the data before sending it to Cloud A. Now Cloud A cannot
decrypt the data sent by the client, as it does not have the key to decrypt. Different

clients will have a different key.

During the execution of the neural network operation at Cloud A, Cloud B receives
the homomorphically encrypted weighted sum of each neuron from each layer.
Cloud B decrypts the encrypted weighted sum as it holds the shared secret key
exchanged with the client earlier. After the decryption, Cloud B runs an activation
function. Cloud B encrypts the result of the activation function using the shared
secret key and sends these back to Cloud A. These encrypted outputs become a new

input feed for the next neuron to run in the hidden layer.

After the final output layer at Cloud A, the final output values are sent to the
Cloud B to produce the final result (i.e., classification). The result is encrypted
again using the shared secret key and sent to the client. The client decrypts the
result using the shared secret key and thus knows the classification value.

99

Chapter 8

3.7 System Design

3.7.1 Feeding Data Encryption

Each input (i.e., different data attribute) is encrypted to prevent any unwanted
access (e.g., man-in-the-middle who may eavesdrop the communication between the
client and the cloud). For that, the client first obtains a shared secret key from
Cloud B. Here we assume that the client and Cloud B run the key exchange based
on [46] to produce ephemeral shared secret keys. Using the shared key, the client
now encrypts each attribute using a homomorphic encryption scheme according to
the underlying cryptographic algorithm implementation (i.e., Paillier
cryptography). The data is homomorphically encrypted so that any subsequent

computations can be done on an encrypted data without having to decrypt it first.

After encrypting all different data attributes, the client combines the encrypted
inputs as an indexed cipher data array. This cipher data array is then encrypted
once again using the public key of Cloud A as a whole, independently from the
earlier encryption. The encrypted cipher array is then sent to the Cloud A where it
is decrypted to the indexed cipher data array using its private key. This array acts

as the input to the neural network.

3.7.2 Homomorphic Weighted Sum

The basic unit of a neural network is a perceptron as described earlier. The
perceptron is interconnected using weighted connections in such a way that the
output value from one perceptron is the input value to each perceptron in the next
layer shown in Figure 3-2. The number of layers between the input layer and the

output layer are called hidden layers and are determined solely by Cloud A.

60

Chapter 3

— "

Input Nodes Hidden Nodes Output Nodes

Figure 3-2 A neural network with one hidden layer [14]

In Paillier cryptosystem, the addition operation is homomorphic. Consider two
ciphertext messages [m;] and [m,], where [] indicates the encryption and the
value inside is the plaintext value. The function Dec shows the simplified decryption
algorithm. The underlying cryptographic system computes as a sum of both the
ciphertexts by multiplying e as:
Decg, [mi] o [n,] =my +ny

The multiplication operation is done homomorphically over encrypted data by
simplifying the same addition property as:

ny

Decg, [m,]"™ = Decy, (I [[ml]]> =My X1y

i=1
m, is encrypted and n, is not encrypted. In our case n is the weight of the
connection to the perceptron. The Cloud A already knows this weight value so there
is no need to encrypt it. In other words, [m,] is added to itself n; times. Moreover,
combining the above two operations we get the weighted sum for each perceptron
using:

Dec,, (ZI:() [[m,]]") = Dec,, (It f [[m,]]) = io m;n;

i=0 g=1

61

Chapter 8

Here m is the input value to the perceptron, n is the corresponding weight, and 4

is the index of the connection with ¢, the total number of connections.

3.7.3 Activation Functions

The weighted sum is sent to Cloud B to calculate the activation function. Note that
at this stage, the weighted sum is a ciphertext and needs to be decrypted for any

further processing. Cloud B does the decryption using the key it created earlier.

We assume that the activation function that is to run has already determined been
by Cloud A although it does not run it due to concerns with the computational
overhead and the possibility of increasing noise. To minimise the number of addition

and multiplication operations, Cloud B runs the Activation function.

By sharing neural network execution, Cloud B is freed from computational overhead
concerns hence is flexible to support different activation functions depending on the
output requirements of applications. Common activation functions are given in

section 2.2.6 above.

3.7.4 Dealing with the Output Layer

In determining the class of an unknown input dataset, the output values from the
last layer need to be interpretable categorically as posterior probabilities. Thus,
these values need to be between zero and one, and their sum equal to one. To serve

this requirement, Cloud B needs to run the softmax function on behalf of the client.

As these values could give too much information as to what the final classification
is, the values must be only known to the client and neither to Cloud A nor to Cloud
B. Cloud A, however, cannot guess what these values could mean because the values
are already in ciphertext. To protect from Cloud B guessing, the client adds a

random salt to each of the output values homomorphically and then sends them to

62

Chapter 3

Cloud B. Cloud B applies the softmax function. The result is encrypted using the

shared key and sent to the client.

3.7.5 Decrypting Classification

The final values at Cloud B will be the probabilities of each attribute. These values
are sent to the client for further processing. The client decrypts them using the
shared secret key it created with Cloud B earlier. Once decrypted, the client will
have access to final values of each class it requires. The attribute with the matching

maximum value will be the class for a final classification.

3.8 Security and Correctness Analysis

Our solution is effective against honest-but-curious adversaries (also known as
passive adversaries). In this model, we assume adversaries are honest and follow the
security protocol. They do not try to gain any other information other than which
can be deduced from the protocol (e.g., they do not have the ability to steal any
cryptographic primitives such as secret keys or salts). However, they do have an
intention to peek into or store the private information (i.e., input and output feeds
to NN) for their own gain. The following table illustrates what can be known or
unknown to the adversaries if they have access to the major components of our

system.

63

Chapter 8

Table 3-1 Adversarial Matrix [14]

Known

Unknown

Input Data
Number and data types of Inputs for

the neural network.

Weights and architecture of the

neural network.

Client Number and data types of Outputs
from the neural network.
Secret Key for encryption and
decryption.
Weights and architecture of the | ¢ Input Data
Cloud A neural network. e Secret Key for encryption and
decryption
Secret Key for encryption and | ¢ Weights and architecture of the
decryption neural network.
Cloud B e Input Data

Number and data types of Outputs

from the neural network.

We illustrate different defence mechanisms we have in place in our proposed system

to thwart the adversaries who may gain access on different components of our

system.

3.8.1 Attack on Communication between the Client and Cloud A

We assume that the adversary has gained access to the communication channel

between the client and the Cloud A where client's input is being sent. Even if the

adversary obtains the input data somehow, access to the data is denied because the

data is encrypted and the adversary cannot decrypt the data, as it does not know

the secret key the data is encrypted with.

64

Chapter 3

Further, the adversary does not know the neural network model and the weights.
Therefore, it is not possible for the adversary to know the final classification even

if the input data is intercepted and decrypted.

3.8.2 Attack on Cloud A (or dishonest Cloud A)

We presume that either an adversary has taken over the Cloud A (e.g., using a
malware infection) or Cloud A is a dishonest entity which tries to gain an

unauthorized access to the client’s data for personal gain.

Fortunately, the adversary cannot tap into the data because the data sent to the
Cloud A is encrypted. This data is never decrypted at Cloud A because Cloud A

(or the adversary) does not possess the key the data is encrypted with.

Even if, at this stage, the adversary knows the weights at each node and the
architecture of the neural network model, it cannot guess the eventual classification
as it does not have the input. In addition, the actual weighted sum between the
weights and input values is done homomorphically and that makes unauthorized

access almost impossible.

The dishonest Cloud A knows which activation function to run and therefore may
attempt to run weighted sums as well as activations by itself without sharing them
with Cloud B. However, if a fully homomorphic encryption scheme is used, then
Cloud A may generate too much noise and at some stage Cloud A would not be

able to run homomorphic operations.

3.8.3 Attack on Cloud B (or dishonest Cloud B)

We presume again that either an adversary has taken over the Cloud B or Cloud B

is dishonest.

65

Chapter 8

The available data to the adversary (or dishonest Cloud B) is either the
intermediate result or the final array of output values from the output layer of the

neural network.

The intermediary value is of no use to the adversary as it is only used as another
input to the neural network that is run at Cloud A. Without having knowledge of
the weights and the neural network model (like Cloud A), the dishonest Cloud B

would be unable to obtain the classification information.

The final array of output values could hint to the adversary what the eventual
classification could mean. We protect against this by adding a random salt to output
values before they are sent to the Cloud B. Now the adversary does not know the

exact value as this already has been garbled.

3.8.4 Attacks on Communication between Cloud A and

Cloud B

Let us presume the adversary is the man in the middle between Cloud A and Cloud

B and has intercepted the data exchanged between the Clouds.

What happens here is Cloud A sending the weighted sum of each neuron to Cloud
B. Even if the adversary intercepts the weighted sum, it cannot access the data as

it does not hold a secret key to decrypt the data being intercepted.

Another data transfer occurs when Cloud B sends the activation result back to
Cloud A. If the adversary intercepts this result, it cannot access it because the result

is encrypted using the secret key that only the client (and Cloud B) knows.

3.8.5 Communication between Cloud B and Client

Let us presume the adversary is tapping the communication between Cloud B and

the client.

66

Chapter 3

At this stage, Cloud B sends the results of the final activation function. If this result
is intercepted, the adversary cannot decrypt it because it does not possess the secret
key it needs. Further, the adversary would never know the true value of the

classification because the result is garbled and only the client knows the salt.

3.9 Findings and Summary

In this chapter, a different approach of using non-colluding dual-cloud in evaluating
a privacy-preserving neural network was given as part of this research [14]. The
approach works by segregating the activation function to a second cloud in such a
way that it will be computed in plaintext, whereas the first cloud hosts the weights
and the topology of the neural network. The first cloud receives encrypted inputs
from the client by wusing a Paillier Cryptosystem which is an additively
homomorphic scheme. The non-colluding nature of the two clouds and the
computational mechanism of the neural network provides results after preserving
the privacy of the client input data. Such an arrangement is very effective in
obtaining classification results without compromising on privacy. However, the

results will show that it is relatively slower.

By using a dual cloud, one cloud solely handles input data to each node in the
neural network while the other cloud handles the output of the neurons. Because of
this work divide, the clouds do not suffer from heavy computational overheads. In
addition, when a fully homomorphic encryption scheme is used, our system provides

a way to control the noises in intermediate cipher texts.

The notable insight for an implementation within a LAN connection concerned the

overall computing time of the neural network for different encryption key lengths.

This is shown in Figure 3-3. For this experiment, the Mixed National Institute of

Standards and Technology (MNIST) dataset [47] was used to provide handwritten
67

Chapter 8

digits for the classification task. The dataset that was chosen contains digits in the
form of labels along with pictorial representations in images of 28 x 28 pixels. It

contains 60,000 images for training and 10,000 for testing.

10000 +
i 1,530.02

1000 +

100 +
Number of seconds at log 18 scale

10 +

l0.94 . 0.81

0.1128 256 512 1,024 2,048 4,096 8,192
key length in bits

Figure 3-3 Total Roundtrip Time until classification results against different key length

68

Chapter 4

4 PARAMETER SELECTION FOR
HOMOMORPHICALLY ENCRYPTED

NEURAL NETWORKS

Dowlin et al. [1] showed us how to perform secure and privacy-preserving inference
for a convolutional neural network using a single server setup. They called their
setup as CryptoNets. However, the study lacked generality and focused only on a
single architecture of a convolutional neural network. Although extensive research
has been carried out on using homomorphic encryptions in neural networks, much
of the research up to now is descriptive in nature. To cover this gap, this chapter
focuses on generating the knowledge for obtaining secure inferences from a wide
variety of convolutional neural networks. This is achieved by deriving
comprehensive mathematical formulas for selecting the encryption parameters for
evaluating a convolutional neural network homomorphically. These mathematical
relations are then used to show the concrete effects of changing any of the important
parameters for either the encryption scheme or the neural network under

consideration.

4.1 Motivation

The beneficiaries of this work are researchers in the fields of machine learning and
homomorphic encryption, as well as application developers that need the practical
knowledge. These beneficiaries need a clear understanding of the effects of
integrating homomorphic encryption in their solutions involving convolution neural

networks.

69

Chapter 4

Based on the understanding our work provides, Al researchers can create better
convolutional neural network models and structures for encrypted classification of
data. Likewise, homomorphic encryption researchers obtain a clearer picture of how
to develop improved homomorphic encryption schemes for a higher-level application
like convolutional neural network. Similarly, application developers can easily
transform an existing conventional convolutional neural network solution into an

encrypted convolutional neural network by using our work.

Our method can be extended to all the code libraries implementing homomorphic
encryption in a similar way. Therefore, application developers gain benefit from our
work with the knowledge of what to expect when they change the underlying

homomorphic encryption library.

4.2 Major contributions

In general, this study provides important insights for advancing our knowledge of
private and privacy-preserving computations in an untrusted environment. More
precisely, this study makes an original contribution through the following important

aspects:

1. A clear understanding for practical encrypted classifications in a single
cloud environment is provided that supports a wide variety of CNN
models.

2. Deriving mathematical formulas to relate a CNN model with the BF'V
HE parameters. This method is extensible to all the major homomorphic
encryption schemes.

3. Providing a method to find the minimal theoretical homomorphic
encryption parameters for any feed-forward convolutional neural

network. This method is extensible to various NN architectures of feed-

70

Chapter 4

forward propagation. In addition, our noise estimation is better in
performance than the standard estimation of SEAL given in [48].
4. Showing the effects of varying the parameters of the homomorphic

encryption scheme and the neural network on each other.

4.3 Related Work

Although, several studies have been done to show how one can perform privacy-
preserving inferences using a neural network, the issue of setting proper
homomorphic encryption parameters for more complicated neural networks have
still not been addressed. For practical reasons, not only is this an important issue
to address, but it is also a much needed one. The research to date has mainly
focused on how to frame the computation of a neural network in the form of
encrypted data, or the working of an encryption scheme to support a neural
network. This has only been successful in providing theoretical frameworks and
protocols, but not in providing the ability to extend the approach to other complex
neural networks. To support complex neural networks, the effect of setting proper
homomorphic encryption parameters with respect to the neural network has been

an open problem.

Among these studies, an important contribution is Microsoft’s CryptoNets [1], in
which a protocol is given to perform encrypted classification using a convolutional
neural network. In their research, they fixed encryption parameters for the network
and gave their reasons for selecting them; however, this is not sufficient to be
generalized and adopted into other convolutional neural networks. In their work,
they primarily showed the SIMD ability of evaluating a convolutional neural
network for a batch of input images using the SEAL library [25]. The SIMD (single

instruction multiple data) allows us to perform classification of multiple images in

71

Chapter 4

a single execution. Moreover, they trained their network on a bigger convolutional
neural network and then merged several of the layers to make the network smaller

for encrypted classification without losing any classification accuracy.

The Gazelle [2] framework is a set of two-party protocols through which one is able
to perform encrypted convolutional neural network classifications. The underlying
encryption scheme used by Gazelle is a packed additively homomorphic encryption
(PAHE) and garbled circuits (GC). The two-party computation in Gazelle involves
the client to process some parts of the computations. This has shown great
improvements in terms of the execution speed over CryptoNets. However, the
authors did not provide a detailed account of extending their work to convolutional
neural network applications. More importantly, they concluded by stating their
future intention to build a compiler that allows the computations to factor into the
encryption scheme and two-party primitives to select their encryption parameters
according to the convolutional neural network. For building the compiler for
selecting the encryption parameters according to a convolutional neural network,

this chapter might serve as a helpful resource.

Preceding Gazelle, three similar works involving multi-party computations have
suggested similar kinds of protocols for evaluating an encrypted CNN: the MiniONN
[49], the SecureML [50], and the DeepSecure [51]. All three have presented related
ways of enabling an encrypted classification but the three of them are deficient in

the same area, which is the selection of parameters according to the neural network.

In a another line of work similar to CryptoNets, CryptoDL [3] shows improved
performance and support for convolutional neural network operations. CryptoDL’s
main contribution is to provide the mechanism to approximate the lowest degree

polynomials representing a function. Their work is also focused on enabling an

72

Chapter 4

encrypted classification efficiently, however, it lacks in providing the specific details

of selecting encryption parameters for a convolutional neural network.

In places where research studies address parameter selection for homomorphic
encryptions, tend to focus only on the security aspect. Therefore, the knowledge
gap of setting homomorphic encryption parameters by considering not only the
security but also the efficiency of the neural network needs attention. This issue is

highlighted in the following section.

4.4 Problem Description

The convolutional neural networks have been a very important tool in data analysis.
They have become the most reliable mechanism of classifying unseen images to
known classes with very high accuracy. Therefore, such reliability has allowed
convolutional neural network to provide meaningful insights through all sorts of
services. However, due to the inherent concern of privacy, people have been
reluctant in sharing their private datasets with convolutional neural network-based
services. This reluctance exists even if the convolutional neural network services are
providing very valuable and meaningful insights from the private datasets. For
example, a hospital, serving numerous patients, can have a silo of medical imagery
data, but they will be comfortable in sharing those images with a third-party

convolutional neural network service to get automated analysis.

This section discusses the problems and provides detail of why the proposed
solutions are neither generic nor readily adoptable yet.

4.4.1 Importance of appropriate HE parameters

In the cryptographic community, the setting up of parameters for a cryptosystem

is considered a very crucial step [48]. The choice of parameters for a homomorphic

73

Chapter 4

encryption scheme controls several factors like the depth of calculations, execution
performance, and the security of the encrypted values. When we want to perform
encrypted classification in a convolutional neural network, we must choose the

parameters of the cryptosystem by considering all the factors they control.

The security of any encryption scheme is dependent on mathematically hard
problems against attackers guessing our secret keys and data. If we fail to consider
the attacks against our encryption schemes, then our encryption can be broken by
using available attack methods and our valuable data will be exposed. Studies in
the literature (for example [52]-[54]) have assessed the encryption algorithms
against certain encryption parameters and have shown the scenarios of attackers
guessing our secrets. These studies have provided a combination of parameter ranges
against all the known attack methods that can be used. By using these secure
parameter ranges, we can be sure of the security of our data as well as private

processing.

The requirements of the encryption security, and the computational depth, apply
to the computation of a privacy-preserving neural network, because we want to
enable a secure as well as complete execution of a convolutional neural network
privately. In previous years, many frameworks and protocols for privacy-preserving
neural networks have been proposed as shared in the related work section. However,
researchers have argued that the extension and customization of these approaches

to more complicated neural networks is still an open problem.

Among researchers that have posed the problem of extending existing work is Riazi
and Koushanfar [55]. These researchers have assessed the current privacy-preserving
framework and protocols for deep learning and inference, in a systematic manner.
After the systemization of knowledge, they have shared the conclusion that the

customization of the privacy-preserving approaches for deep learning and inference

74

Chapter 4

is a viable research direction that is going to open doors for more efficient solutions.
Their conclusion rightly points to the customization of such approaches as the
foremost important step. The customization of the homomorphic encryption in this
regard is twofold. First, develop special purpose encryption schemes for neural
networks. Second, utilize the existing homomorphic encryption schemes by selecting

appropriate encryption parameters.

To design an encrypted CNN;, the “noise budget” (also called circuit depth) requires
attention. In the homomorphic encryption literature, noise budget defines the
number of maximum successive operations starting from a freshly encrypted
ciphertext. Beyond the limit of the noise budget, the resultant ciphertext will result
in an incorrect plaintext after decryption as shown in Figure 4-1 below. This is an
important subject for our attention before deciding on the design of an encrypted
CNN due to an important reason. That is, CNN have all their calculations arranged
in the form of successive operations in several layers demanding a strong
consideration of the noise budget. However, the noise budget can be “extended” to
accommodate the whole of the CNN until the result. The extension of the noise
budget is possible by choosing appropriate encryption parameters as discussed in

the subsequent section.

Circuit Circuit
Depth 1 Depth 2

Beyond Circuit Depth

Figure 4-1 A depiction of circuit depth

75

Chapter 4

Figure 4-1 shows that if we use a ciphertext beyond its noise budget (circuit depth)
then we get an incorrect answer from the operation. In this depiction, we start by
multiplying ciphertexts of value 2 with 2 and get a resultant ciphertext of value 4.
In the next step, we use the same ciphertext of value 4 to do another multiplication
with 2 and get a ciphertext of value 8. Assuming this is the maximum depth that
the encryption parameters support, if we perform another multiplication of the

ciphertext 8 with a value, say two, then we will get a garbage value.

A simple experimental evaluation can depict the phenomena of noise budget as
follows by setting encryption parameters fixed to a value. We test for the maximum
number of operations (also called the depth of the evaluation circuit) supported by
performing a successive set of operations on a ciphertext. This test was performed

by performing the following operation successively:
:((2><1 ><1>><1)... 41

—o— Average of budget =~ —@—Average of Result

200 150 g
g
150
100 S
100 < z
50 =
g 50 <
S &
2 0 0 2
: =
(@
2 0 -50 ,c::)
-100 3
-100
-150
200 -150

SUCCESSIVE OPERATION STEP

Figure 4-2 Output of an operation before and after the

maximum circuit depth of 8 (i.e., noise budget)

Figure 4-2 shows the output of the simple test to check the circuit depth by

performing successive multiplication operations as in equation 4.1. Theoretically,

76

Chapter 4

when we subtract 2 from the output there should always be a zero. However, the
output of the multiplication after the eighth successive multiplication is always a
random garbage number. This is evident from the blue coloured line with round
markers. Until step 8, the output is zero according to our evaluated formula, which

means that eight successive multiplications is the multiplicative depth in this case.

For a homomorphic scheme, the encryption parameters are the determinants of how

many successive operations we can perform using the same ciphertext.

In the FV scheme [21], as implemented in SEAL [22], the current support of
arithmetic operations over encrypted data is limited to two operands only. Within
this limit, complex operations have to be computed successively. Each intermediate
result is used for the next operation. For example, a cube operation of z* will require
us to perform two separate multiplications as (z-z)-x. This limitation is more
prominent in convolutional neural networks because of operations, like the weighted

sum (calculation of) w, - x;), arranged in the form of layers.

4.4.2 Complexity of setting appropriate HE parameters

Moore et al. [56] surveyed the approaches for making homomorphic encryption more
practical. After surveying, they concluded that the foremost problem in adopting
homomorphic encryption in a real-world scenario is the parameter selection. They
have also discussed how complexity arises because each scheme must specifically

select parameters based on the existing attacks and the computational limits.

To set up a cryptosystem for any computation, a user must go through an extremely
complex process of selecting parameter settings by considering the required
computational depth, security, and performance of the executing algorithm. The

complexity becomes more prominent in algorithms: like a convolutional neural

7

Chapter 4

network where we have many operations to be performed on values. However, we
have a limit on the number of operations that can be performed successively on

those values.

4.5 Parameter Selection Method

A very high-level view of our approach can be listed as a 5-step process:

1. Calculate the total number of encrypted operations required to produce a
single CNN output.

2. Assume an initial set of small encryption parameters for calculating the
noise.

3. Based on the initial encryption parameters, calculate the maximum noise
threshold of the network using the known theoretical bounds of the
encryption scheme.

4. Check the ability of set initial encryption parameters for successfully
decrypting a ciphertext with the calculated maximum noise threshold.

5. If the decryption is not successful, then gradually increase the encryption
parameters to find the smallest secure encryption parameters sufficient for
the maximum noise. Otherwise, provide the set encryption parameters for

evaluating the neural network homomorphically.

These steps are detailed in the following sections.

4.5.1 Calculating encrypted operations in a CNN

In order to estimate the encryption parameters, we have to know certain important
things about the operations involved in the evaluation of the neural network. The
neural network architecture that we will be focusing upon in this study is a
convolutional neural network. In this regard, the evaluation of the convolutional

neural network needs to be broken down into basic arithmetic operations. This

78

Chapter 4

needs to be done so that we can calculate the total incurred noise for each value
after processing. The calculation of the noise is performed by using the noise
estimates for basic encrypted arithmetic operations given in the SEAL

documentation [22].

After breaking the evaluation into basic arithmetic operations, the operands of the
operations need to be categorised as plaintext or ciphertext. A homomorphic
operation always outputs a ciphertext, but it may take two ciphertexts or a
ciphertext and a plaintext as input. Identifying the operands is necessary because
the noise growth in an operation involving ciphertexts is greater than that of an
operation involving a ciphertext and a plaintext operand. This will be shown
representing the plaintext operand with P and the ciphertext operand with C. For
example, if a multiplication involves a ciphertext and a plaintext then it will be

written as C' x P.

Moreover, after breaking the evaluation into basic arithmetic operations, another
distinction about the sequence of the homomorphic operations is necessary. The
sequence of homomorphic operations is identified as sequential or discrete. This
distinction will identify the accumulation of noise in the case of sequential
operations. Fundamentally, any homomorphic operation is a binary operation
involving only two operands to produce the result. In the case of many operands,
all the operands have to be operated one by one to produce the result. There are
functions available in the SEAL library to provide more than two ciphertext values
to perform an operation, for example, there is a function to add up many ciphertexts
together. However, these functions perform the calculation in the same way by only
taking two values at any single time and then loop through the many ciphertexts.

Here, we make the distinction of homomorphic operations being sequential or

79

Chapter 4

discrete based on the number of operands. We call those operations involving more
than two operands a sequential operation, because if we want to perform an
operation involving more than two values, then the operation will be performed
sequentially only using two values at any one time. On the other hand, if an

operation involves only two values, then the operation is a discrete operation.

This distinction can become clearer after taking the example processing of a single
neuron shown in section 2.2 Figure 2-1. This is a single neuron, consider having 3
input values represented by z,. These input values are multiplied with their
corresponding weight values w;, and then summed together to form a single output
value. A bias value b is then added to this output value, and the result is passed to
either the activation function f or to the next layer directly. In here, we can see
that there are two arithmetic operations involved to get the output, i.e.,

multiplication and addition.

In summary, by representing a ciphertext with C'and a plaintext with a P, the steps

required to process a single neuron will sequentially be as follows:

1. Multiplying with a weight value: C' x P.
2. Calculating the weighted sum: C' + C + ---.

3. Adding a bias value: C' + P.

In the first step, a single input value is multiplied by a single weight value making
a total of 2 values for the operation. Therefore, the multiplication part involves
distinct operations. After the multiplication, we will get the exact number of
weighted-input values as before the multiplication. We already know that the
operands of these multiplications are a ciphertext and a plaintext represented as
C x P. Here, we take the input values as encrypted and the weight values as

plaintext values.

80

Chapter 4

In the second step of evaluating a single neuron, as in section 2.2 Figure 2-1, all the
weighted-input values need to be added together to make one value. This
summation is a sequential operation and not a discrete operation. It involves adding
up three values. This is done by adding the first 2 values, and then adding the third
value to the earlier sum of the 2 values. We also know that the operands of these
additions are all ciphertexts and so the operation will incur two additions to sum-

up three values. The operation is represented as y = [(¢, + ¢;) + ¢5].

The third step of evaluating a single neuron involves adding a plaintext bias value
b to the weighted-sum. This is a discrete operation involving the addition of a
ciphertext with a plaintext. This can be represented by C + P. The outcome is

either passed to an activation function f or to the next layer for further calculations.

4.5.1.1 Encrypted operations in a Convolution Layer

A convolution layer works on multi-dimensional data as compared to a fully
connected layer where only single-dimensional vector data is processed. In the
convolution layers, instead of neurons, we have filters processing multi-dimensional
data such as images. A single filter takes a subset of input values across the width
and height of an image. However, an image can have more than 1 matrix of pixels.
The matrices are called the depth channels, which in a normal RGB image, there
are 3 channels each for the red, green, and blue colours. The channel depth will be
represented by d hereon. A filter can take values across all of the channels, or it can
process through the channels one by one. If the movement of the filter is specified
in three axes, then it is called a 3-D filter. Similarly, if the movement of the filter
needs on two axes, then it is called a 2-D filter. Internally, the filter in a convolution

layer performs its execution in the same way as a neuron in a fully connected layer.

81

Chapter 4

1[1/1[o]o
of1/1f1]o]| [4
ofof1]1]1
ofof1]1]o0
o[1]1]o]o

Figure 4-3 Processing of a filter in the convolution layer

The nature of the operations involved in a convolution layer can be analysed by
using the example shown in Figure 4-3. For each value in the output matrix, the
filter works on a specific area from the input matrix. This area for each filter is

determined by the filter width and height represented by F,, and F),, respectively.

In Figure 4-3, the green coloured matrix shows the input matrix having a width
and a height of 5 x 5. The yellow region in the input matrix represents the filter
that has a width and a height of 3 x 3. There is only a single Input Channel in
this example; therefore, the filter processes a total of nine values from the input
matrix in a single step. Every step produced a single value in the output matrix,
shown on the right-hand side of Figure 4-3, having width and height of 3 x 3. The
filter is moved a single pixel at a time from left to right and top to bottom to
process the next input region. This movement of the filter is called the stride value
and it is one for this example. For each step, the filter performs the following
calculations to get a single output value for the output matrix. Here w is the weight,
x is the input value, b is the bias of the filter, and a is the final outcome from the

filter.

a =04 wT] + wely + wWyly + wyTy + Wyl + Weky + Wr Ly + wWeXy + WyTy
We see that there are distinct multiplications between the weight w and the input
x. They are distinct because every multiplication will involve two operands. They

are represented as C' X P as we know that the input value is a ciphertext and the

weight value is a plaintext.

82

Chapter 4

From these observations, we derive that, for every output of any filter in a
convolution layer, the number of multiplications will be the width times the height

times the depth of the filter F, x F} x d.

Furthermore, the additions will be sequential because they involve more than two
operands to produce a single output. In the example, there are eight addition
operations, each involving 2-ciphertext operands. Therefore, there will be a total of

(F,, x F;, x d) — 1 addition operations for every output of each filter.

w

Once we obtain the weighted sum, we have to add a plaintext bias value b to get
the output of the filter. This will be a single distinct operation involving a ciphertext

and a plaintext.

Therefore, for a single encrypted output, a 3-dimensional convolution layer will have
the following numbers of homomorphic operations for each filter. In other words, a
single ciphertext output from a 3-dimensional convolution layer will be acquired

after the following processing steps.

e Number of C' x P operations is F,, x F} X d.
e Number of C' + C operations is (F,, X F), x d) — 1.

w

e Number of C' + P operations is 1.

These operations will be carried out by taking the depth d of the input data as the
channels so a single filter will be performing processing on a multi-channel input
and transforming it into a single channel output. However, when we want to perform
a two-dimensional convolution on a per channel basis, then the number of input
channels will only be 1 instead of d. This is because each filter is performing

operations on each channel independent of the others.

83

Chapter 4

After understanding the encrypted operations in a convolution layer, the important
observation here is the precise computations required for an encrypted convolutional

neural network.

From a different perspective on the processing of a convolution or pooling layer, it
could be argued that the total number of operations performed on each pixel are
different. This perspective is based on the pixel location in the input matrix. From
the perspective of an input matrix, the edge pixels get used fewer times in the
calculation of the outputs than the centre pixels. This phenomenon of the
convolution method is an intrinsic trait already known in the machine learning
community. However, this phenomenon does not change our calculations since our
study already takes the maximum count for an operation to occur in a layer,
therefore this is not significant. The preference for using the maximum count is due
to the reason that the encryption parameters must be set according to the output
ciphertext with the highest number of operations. In this way, all other ciphertexts

with lesser a number of operations will automatically be accommodated.

4.5.1.2 Encrypted operations in a Fully Connected Layer

In the fully connected layer, we have to know the number of operations that result
in an output ciphertext so that we can calculate the homomorphic noise. We
represent the total number of input values as z;, and the total number of neurons

in the layer as z_, then the number of distinct multiplications in the layer will be

o’

z; A fully connected layer will always have the following number of

i X Z

o
homomorphic operations to provide a single output ciphertext. Here, P is a
plaintext, C' is a ciphertext, z; is the number of inputs, and z, is the number of

outputs.

84

Chapter 4

e Number of discrete C' x P operations is z; X z,,.
e Number of sequential C' 4+ C operations is z; — 1.

e Number of C' + P operations is 1.

In this section, the important aspect to consider for our work is the total number
of additions and multiplications. In a fully connected layer, the number of

multiplications performed will be z; X z,,.

In general, fully connected layers are very costly in terms of processing requirement.
In comparison to a convolution layer, the FC layer requires a considerably higher
number of multiplications and additions for the same number of inputs. If we do
not use convolution, and instead feed all the values of an image directly into a fully
connected layer, then this makes for a very high number of connections to process.
A small image having dimensions of 200 x 200 being fed to merely a 10-neuron layer
will result in 200 x 200 x 10 = 400,000 interconnections, just for the single layer.
However, if we use a convolution layer with a single filter of size 5 x 5 with a stride
2 then the same 200 x 200 input will be reduced to a 98 x 98 input to the fully
connected layer. Such a reduced input will result in 98 x 98 x 10 = 96,040
interconnections, which is a significant reduction of 76%. Due to such a high number
of interconnections, the fully connected layer is used at the end of a convolutional
neural network where the number of values has decreased dramatically from the

earlier values, so that the network can learn or process in an efficient manner.

4.5.1.3 Encrypted operations in Pooling Layers

A pooling layer, in general, performs sub-sampling of the incoming values and
reduces the dimension. In a sum-pooling layer, a region in each channel of the input
matrix is summed to use a single value in its place. A simple sum pooling operation

can be seen in section 2.2.5 Figure 2-5 where we have a 4 x 4 input matrix reduced

85

Chapter 4

to a 2 X 2 output matrix. The filter size is 2 x 2 which means that four values are
summed at every step to make a single output value. The filter has stride 2 which
means that the filter is moved 2 pixels from left to right or top to bottom. For each
step, the filter performs the following operation where the x represent the input and

the a is the output.

4= Ty +Ty+Ty+ Ty
We observe that only sequential additions are required between ciphertexts. The
total number of these additions are determined by the size of the filter. Therefore,

we obtain the total number of operations to produce a single output value in a sum-

pooling layer as:

e Number of C' + C operations is (F,, x F},) — 1.

Similarly, an average-pooling layer performs sub-sampling of the incoming value
and reduces the dimension in the same way as a sum pooling. In an average-pooling
layer, a region in each channel of the input matrix is summed-up and then divided,
by the total number of elements, to produce a single value in its place. For each
step, as in the example in the previous section, the filter performs the following

operations, where the x represent the input and the a is the output,

Tyt xy+x5+ T
o= 24 3 4 _ Ty + 2o+ a5 +1, %025

We observe that only sequential additions are required between ciphertexts and a
final multiplication. The total number of these additions to produce a single output
are determined by the size of the filter. Therefore, we obtain the total number of

operations for each output value in an average-pooling layer are:

e Number of C' + C operations is F,, x Fj — 1.

e Number of C' x P operations is 1.

86

Chapter 4

4.5.1.4 Encrypted operations in Activation Layers

The square function is the smallest non-linear function where we compute the square
of a number x [1]. When we want to perform the square activation function on a
homomorphic encryption, we multiply the ciphertext with itself to obtain the
output. This is mathematically represented below, where a is the output and z is
the input,

CL:Q,’ZZQ,"ZE

We can see that there is a single multiplication involved. For which, both the
operands are the same ciphertext. Noting that both the operands are the same
ciphertext is important, and this will be discussed when we consider the calculation
of noise for the square activation layer. For each output from the square layer, the

homomorphic operation required is:

e Number of C' x C operations is 1.

In this section we have laid out the exact number of operations required to produce
a single output for a feed forward convolutional neural network. Next, we will
describe the process to find the noise threshold based on the number of operations
that any ciphertext goes through in the convolutional neural network under

consideration.

4.5.2 Estimating the total noise in a CNN

Let us recall the properties of noise as implemented in the SEAL library for the FV
scheme. There is an acceptable range [25] for the growth of inherent noise v,,,,

which is characterized by the ciphertext modulus q and the plaintext modulus t

shown in Lemma 35 of Player [57] as:

87

Chapter 4

q t

||Uinh|| < 2%, 2

The noise v,

inp grows in a known manner whenever a ciphertext goes through

homomorphic operations. Eventually, when the noise has grown more than the limit,
then it will not be possible to decrypt the ciphertext to a correct value as shown
with the example in section 4.4.1 Figure 4-2. Therefore, the noise is a key
determinant for the proper integration of the convolutional neural network and the

homomorphic encryption.

Although we know the growth factor for the noise term after a homomorphic
operation, it is still random. The SEAL documentation [22] has shared mathematical
formulas for calculating the maximum incurred noise value for all of the
homomorphic operations. Based on these formulas, we know the maximum noise

term for an operation like multiplication or addition.

To calculate the maximum noise, we have to understand the relationship between
the noise and the encryption parameters. The determination of maximum noise for
the output of any homomorphic operation is determined by the encryption
parameters that encrypted the input ciphertext operands. This means that, to know
the maximum noise of an operation, we have to know the encryption parameters
first. Figure 4-4 below, provides a visual summary of the relationship between the
noise and the encryption parameters. For a homomorphic operation, with each
variation of the encryption parameter set, the maximum noise in the result will
differ. Not only the maximum noise, but also the initial noise and the rate of noise
growth in a ciphertext are affected by the encryption parameters. The maximum

noise value is a key factor in deciding the correct encryption parameters.

38

Chapter 4

Helps in predicting

[+

Moise Encryption
Value Farameters
Affects

Figure 4-4 Relationship of Noise value and encryption parameters

In our approach, we always know the exact nature of operations, as detailed in 4.5.1
above. Therefore, here, we will be using the noise estimation formulas of SEAL to
find the smallest encryption parameter set, which can decrypt the maximum

possible noise for a network.

We have to remember that there is an initial noise in each of the ciphertexts. This
initial noise is estimated based on the given formula for SEAL reproduced in

Appendix A:

- min noiseMaxDeviation, 4.2

6 X noiseStandardDeviation

From the above formula, that is explained in section 2.3.10, we can calculate the
initial noise v; for any ciphertext. We will use the formulas for different kinds of
layers to calculate the total noise incurred in the output ciphertext. After their
derivation, the formulas for each of these layers will be summarized later in Table

4-6.

39

Chapter 4

4.5.2.1 Estimating noise in Convolutional and Fully Connected

Layers:

The noise calculation formulas for both the convolutional layer and the fully
connected layer are the same. The reason is that the nature of operations in these
two layers is the same. The key difference between these two layers is the number
of inputs that are processed at a single instance of the calculation. When we are
working with the fully connected layer, we take all the incoming values, represented
as the number of inputs i, and process these in a neuron. Whereas, when we are
working with a convolution layer, we only take a subset of all the incoming values

and process these through a filter.

Pt

Step 2 Step 3

\

+ *—»(Bias Value);—— neuron 1 output

+
+ |— (Bias Value),——» neuron 2 output

\/

Figure 4-5 Operations in a fully connected layer

The noise calculation can be understood using an example. Consider a two-neuron
fully connected layer having only two inputs a and b. If we want to calculate the

noise for this layer, then we will require the operations shown in Figure 4-5.

Since there are two neurons, the calculations of the neurons are independent of each
other as they work on the inputs separately. The operations that will be performed

by a neuron, as shown in the Figure 4-5, are as follows:

1) Multiply input a with the weight w1, and multiply input b with the weight w1,
to get weighted a and b for neuron 1.

2) Add the resultant weighted a and weighted b of neuron 1 together.

90

Chapter 4

3) Add a plain bias value to get the output.

In the same way, the operations are performed by neuron 2 for its corresponding

weight values independently of neuron 1, as shown in Figure 4-5.

Therefore, in total, there are eight operations for a two-neuron layer having two
inputs and two outputs. The sequential calculation of a neuron in terms of the
nature of homomorphic operations can be stated as:
[Cox P, + Gy x Py]+ Py,

Here C' represents the encrypted ciphertext of the inputs a and b, respectively, and
the P represents the plaintext values for corresponding weights and the bias value.
The same sequential calculation will be performed by neuron 2 but independently
of any interaction with the calculation of neuron 1. The only difference between
neurons exists in their weight values, for which we know the maximum limit.
Therefore, the maximum noise for both neuron 1 and neuron 2 will be exactly the

same, so we can calculate for either of them and it will be equally applicable to

both.

For a single neuron, we can enlist the formulas for noise calculation from Table 4-1.

Table 4-1 Calculating the total noise for a fully connected / convolution layer.

Step Description Nature of operation Maximum Noise Estimate
Multiplication of an
1 input with the weight CxP Ny, [mllv;
value
Summation of all the i

2 C—i—C:E C Uy = Uy + Uy
weighted inputs

ES
Il
—

Addition of the bias qmod t
3 C+P Up = Uz +
value

X Ny, x]

91

Chapter 4

In Table 4-1, we have the formulas for estimating the maximum noise incurred after
the corresponding homomorphic operation in a fully connected or a convolution
layer. After these three steps in the layer, the maximum noise estimate v, will be
the final noise for a single neuron / filter. Here the noise v; represents the initial
noise already present in the input ciphertext C'. When we multiply the initial noise
v, with the N, and the |m| (the highest degree of the polynomial representing our

message m, and the biggest number that the ciphertext can represent, respectively),

we get the noise estimate for the C' x P.

In the second step in the layer for performing the C'+ C estimation, we have i
ciphertexts. To estimate the maximum noise, we have to add their corresponding
noise values v as shown in Table 4-1. In our example, we have 2 inputs, so we will
have 2 different ciphertexts having noise v; and v, each. By adding these 2 we will
get the intermediate maximum noise v4. The final noise of the output ciphertext of

a single neuron will be known after the estimation in step 3.

To make the process efficient, we can skip the calculation values and still be able
to get a good noise estimate. Since we are estimating for the maximum noise, once
we calculate noise for the biggest number in our input, then other smaller numbers
can also be processed homomorphically within the same homomorphic parameters.
This estimation for the first step of multiplying the ciphertext with the weight
value, can be performed on all the inputs independently of each other. Thus, out of
all the inputs, the maximum number can represent all other smaller input numbers
in the noise calculation. Therefore, if we calculate noise in the first step for only the
maximum input number and the maximum plaintext weight value P, then all the

smaller numbers will also be accommodated.

Based on the discussion above, we make the process of finding the maximum

possible noise in a fully connected / convolution layer significantly efficient. We

92

Chapter 4

calculate the first step estimating C' x P only once, using the maximum possible C
and P. This will be sufficient for all the inputs 7 and so will significantly improve

estimation performance.

After the first step, the second step estimates the noise for only the biggest input
value and weight value. Therefore, for step two in the layer, we can add this
estimated noise to itself ¢ times. This will give us the maximum noise for a neuron

/ filter. This is summarized below.
We know that the nature of homomorphic operations in a fully connected or a
convolution layer will be:
[Cox P, + Cyx By +-4 C;x P]+ Py,

where the total number of summands is equal to the total number of inputs . In
our example of two inputs, this will be C, x P, + (C, x F,) for inputs a and b.
However, we know that if we calculate for the biggest input number and weight
value, for example a, then it will be sufficient for all the inputs. If we combine the
estimation of all the three steps above for the biggest input, then we will obtain the
following;:
For step 1, we have for each input k:

v, = N, X |m| x v,
For step 2, we have:

Vg =V U+t
After putting in the value of v,, for step 2 we get:

vy =20 Ny X lmll vy or vy =i (N, X ml X vy)

m

93

Chapter 4

For step 3, we have:

q mod t
Uy = Vg +T X Nm, X ||m||

After putting in the value of v, from step 2, we get:

. q mod t
U, = [Z ’ (Nm X ||m|| X Uk:)] L

o

X Ny, % lml]

After simplification, we obtain the final formula for estimating the total noise in a

fully connected or convolution layer as:

Vy = Nm X ”TTL” ’

—ti- vk> 4.3

Where noise v, will be the maximum noise in all the resultant ciphertexts from the
layer, v; is the initial noise before processing the layer, and ¢ is the number of total
inputs to a neuron or a filter.

q mod t

An important thing to note here is that = is always:

e 1 when g <t.
e (when g =t.

e Some fractional number when ¢ > t.

This is important because it means that in general the bigger ¢ is relative to ¢, the
smaller the noise will be. Moreover, it is interesting to see that the derivative of the

formula for the estimation is:

t
(v []) =i,
Ov q

[ml

This shows that, in terms of the rate of change of noise v, the dependence is on the

number of inputs i, and the size of the input numbers represented by N, - |m||.

94

Chapter 4

4.5.2.2 Estimating noise in Pooling Layers

The noise estimation in a sum-pooling layer is based on the same methodology of
calculation as the fully connected or convolutional layers. However, the calculation
is much simpler. In simple addition of ciphertexts, their noise values are added
together to get the maximum noise of the resultant ciphertext. In this layer, we
only have C + C operations, with ciphertexts as operands, to be summed. As an
example, as shown in Figure 4-6, if we have a 3 x 3 input to a pooling layer of
windows size 2 x 2, then we will obtain a 2 x 2 output from the layer. For each
output, we will have to add 4 ciphertexts together. The number of ciphertexts to

sum is dependent on the pooling window size, which in the case of our example is

2xX2=4.
1 2 3
1424445 | 2434546
4 5 & —— Sum-Pooled >
4+5+7+8 | 5+6+8+9
7 8 9

Figure 4-6 Operations in a sum-pooling example
The exact nature of operations in this layer is shown in Table 4-2.

Table 4-2 Calculating the total noise for a sum-pooling layer.

Step Description Nature of operation Maximum Noise Estimate

Summation of inputs in)
C+C=ZZ‘,1C Uy = Up + Uy + U3 + 1y
the pooling window -

Here, i is the total number of ciphertexts in the pooling window, which in our

example is four. In simple addition of ciphertexts, their noise values are added

95

Chapter 4

together. Therefore, the formula for maximum noise estimation is written to

accommodate four of the noise values of our four ciphertexts.

For optimizing this estimation, we can take a subset of all the calculations. We take
the largest input number and weight value, to get the maximum noise estimate for
the layer. We can take the estimation of a single pooling operation in the layer, and
this estimate will represent all the incoming inputs because it will be the estimation

for the maximum number.

The general formula for the estimation of noise after a sum pooling is:
Uy =0+ 0+ F

Which in our case will become as:

v :E Ve =1V
0 k=1 k k

In a similar fashion, the method of noise estimation in an average-pooling layer is
similar to that of the sum pooling. In the average-pooling operation of ciphertexts,
their noise values are added together to get the maximum noise of the resultant
ciphertext, and then divide them with the number of ciphertexts being pooled. Due
to the underlying encryption scheme, we are limited to multiplication; therefore,

the divide operation is carried out by multiplying with a decimal number.

The exact nature of operations in this layer is shown in Table 4-3.
Table 4-3 Calculating the total noise for an average-pooling layer.

Maximum Noise
Step Description Nature of operation
Estimate

Summation of inputs in the i
1 C’+C’:§ C Uy =Vt Uy + U3+ 0y
pooling window =1

Division by the total number

2 C x P Uo = Nm“m“US
of elements

96

Chapter 4

Here, 7 is the total number of ciphertexts in the pooling window, which in our
example is four. In simple addition of ciphertexts, their noise values are added
together and then the summation is multiplied by the end number. Therefore, the
formula for maximum noise estimation is written to accommodate the four noise

values of our four ciphertexts.

For optimizing this estimation, we can take a subset of all the calculations. We take
the largest input number and weight value, to get the maximum noise estimate for
the layer. The maximum noise for all the outputs of the convolution or fully
connected layers will be the same because of usually the same homomorphic
operations. Since the pooling layers are used after a convolution layer, we can take
the estimate for a single pooling window. This estimate will represent all the

incoming inputs and will be the maximum.

The general formula for the estimation of noise after average pooling is:
Vo =Up TVt F7

Which in our case will become:

k .
Vy = Nm, ' “TTL“ ’ } =1 vV, = Nm : ”TTL” O 4.4

o 3

4.5.2.3 Estimating noise in Activation Layers:

The activation functions are infamous for not allowing straightforward encrypted
operation or estimation. This has been due to the use of the exponential function
in activation functions. However, researchers such as Dowlin et al. [1] have shown
that the square function is the smallest usable activation function in a CNN.

Therefore, here, we will estimate the noise for the square activation function.

97

Chapter 4

1x1 2x2 3x3

4x4 | Sx5H | 6x6

1 2 3
4 5 6 |——sguared—m
7 8 9

TX7T | Bx8 | 9x9

Figure 4-7 Operations in a square activation layer

The method of maximum noise calculation in the square activation layer follows

the same method as in the other layers. In a square layer, all the ciphertexts are

multiplied by themselves to get the squared result. The same number of outputs

will be provided as the number of inputs. For example, Figure 4-7 shows a simple

square activation of a 3 x 3 input that provides the same 3 x 3 output. However,

each output is the result of a multiplication of the corresponding input with itself.

Therefore, the homomorphic operations involved in this layer will only be C' x C.

Table 4-4 Calculating the total noise for a square activation layer.

Step | Description | Nature of operation Maximum Noise Estimate
Square v, =t 3n (201302 .y, . nd/2 4 127 . 0J)
1 Activation C?2—CxC Or if ciphertext size is always kept to 2, then:
Layer U, =1 3n (144712 + 24711}/,;) + Upetin

In Table 4-4, we can see the maximum noise estimation formula, reproduced from

the SEAL documentation as in Appendix A, for the multiplication of two

ciphertexts C'; and C,. Beside the encryption parameters ¢t and n, the size j of the

polynomial array representing the ciphertext is also required. This formula tells us

the final noise v, based on the previous noise v; in the ciphertext. Therefore, we

can further simplify this estimate.

98

Chapter 4

Based on the following estimation formula for multiplying two ciphertexts, given in
the SEAL documentation, we can derive our simplified formula for the square
activation layer.

.,' .,' ',' +','
v, =1-vV3n- 12n171-1)2+ 12nl72-vl—+— 12n 2"

By replacing both the sizes j and the noises v with the same value, because the

ciphertexts are the same, we obtain:
v, =1-/3n- [12n%-vi+ 12n%-vi+ 12n %]
After simplification, we obtain for a ciphertext of size j and noise v;:
v, =t-V3n (2041312 p, . n/2 + 127 nd) 4.5

If we are keeping the ciphertext size j = 2, which is the smallest possible, then this

formula can be further simplified by putting the size j as 2 to obtain

4.6

v, =t -v/3n (144n? + 24nv,) +v

relin

Based on the formulas derived above, we can estimate the maximum noise possible
in a square activation layer. This maximum value will be the same for all of the

outputs from this layer.

If we intend to keep the size of the ciphertext at two, then we have to relinearize
each ciphertext back to size 2 after every C' x C operation. This relinearization step

also has an associated noise v to add. In the SEAL documentation reproduced

relin

in Appendix A, this is estimated as

Urelin

2t
=v,+— -min B,6oc - J-K n-[+1 -2
q

Here, min B, 60 is the minimum of the maximum noise deviation B and the noise

standard deviation 60. The J is the current size of the ciphertext and K is the

99

Chapter 4

target size of the ciphertext (which in our case is always 2). (I + 1) corresponds to

the evaluation key size. Here, z is the number base for the relinearization.

If we perform the relinearization, the final noise of the ciphertext, by combining

with equation 4.6, is

v =19, + Urelin

4.5.3 Estimating the encryption parameters

In this section, we combine the previous two steps and provide the required
encryption parameters for a convolutional neural network. First, we calculate the
exact number of operations that any ciphertext goes through in a convolutional
neural network in section 4.5.1. Then we calculate how much noise would change

in each of a convolutional neural network layer, in section 4.5.2.

While evaluating a convolutional neural network, we can trace a single input
through to the output and add the noise estimates for each operation along the
way. We use the maximum noise that can be incurred for each input value until we
get our output. This maximum noise value is going to be very helpful in determining
the encryption parameters required for the encrypted evaluation of the
convolutional neural network. The maximum noise value, along with the upper
bound of the input values, will determine exactly what the encryption parameters

must be.

For clarity, and distinction from our work, we note that the earlier versions of the
SEAL library [25] also included a noise estimation module for simple operations.
However, our work takes the calculation path for only a single ciphertext output
and generalizes this over an entire convolutional neural network. Whereas the SEAL
module would have simulated the entire convolutional neural network for every

input in every layer. This makes the SEAL estimation mechanism less efficient, and

100

Chapter 4

it often crashed because of code bugs. The SEAL estimation module is currently

removed from their latest versions of the code.

In the SEAL estimation module, if we were to estimate a convolutional neural
network, then all the individual values in all of the layers would be saved along
with their history of operations. So, a final noise estimate is calculated based on all
the operations. If the parameters are not able to perform the required operation,
then the parameters are updated accordingly, and the entire estimation is rerun. At
the end, while updating the parameters for each required calculation, if the
parameters are able to decrypt all the outputs, then they are selected as the output
of the parameter estimation. Otherwise, if the updated parameters are not able to
decrypt all of the results, then the parameter estimation fails. Figure 4-8 gives the

flowchart of the parameter selection available previously in the SEAL library.

It is also important to know that the SEAL estimation primarily used integer
encodings and the default set of encryption parameters provided with the library.
This default set of encryption parameters are based on the underlying security of
the encryption algorithm. Therefore, this default set of encryption parameters is
always limited in its range of suggested parameters for any application. If an
application, in our case the convolutional neural network, requires more encrypted
operations than those supported in the default set, then the estimation process will
clearly fail in acquiring a suitable set of encryption parameters. In essence, if the
estimation process cannot find the parameters from the default set, then the
estimation will fail in finding a suitable set of encryption parameters. This kind of
failure only means that there are not enough combinations of the default parameters
in the library, and we are able to modify and add values according to our own

needs. To add new values to the default set of parameters, we have to consider the

101

Chapter 4

security implications. SEAL recommends consulting the standardization document
[58]. Besides the SEAL library, this standardization document also mentions certain
recommended values that can be set for encryption. These recommendations are all

based on the literature [59] for better security and execution.

102

Chapter 4

start

(find the largest absolute bit count of)

operands the operands

\ = largest_bit_count + 1)

largest_g = find the
max_coefficient_count of the
operands

read current_default_g
read current_defauli_n

h

current_g_bitcount = total bitcounts
of current_default_g

current_default_g = largest_q
and
current_g_bitcount = ¢ bitcount

|
simulate all the operations in the operation
history for each of the operands based on
f, current_defaulr_cl, current_default_n

remaining_noise_budget =
current_g_bitcount - noise_significant_bit_count - 1

YES

remaining_noise_budget > 0 default n,q combinations remaining?

YES

Good params found Params not found

Figure 4-8 Flowchart for the Estimation of Encryption Parameters in SEAL

103

Chapter 4

In Figure 4-8, a flowchart of the parameter estimation mechanism, found in the
earlier versions of SEAL library [25], is presented. Sequentially, the flow starts with
the estimation of the ¢t and ¢ values based on the expected maximum of input. These
two values are specified before starting the estimation. Based on the values of £ and
q, a default combination of ¢ and n are tried for a simulation on all the operations
resulting in the output ciphertext. This simulation will give the final noise for the
individual outputs based on the t, ¢, and n. After calculating the final noise for all
the outputs, the remaining noise budget is calculated. This remaining noise budget
should be greater than O in order to select the ¢, g aNd Ngupane @S the final
parameters. Otherwise, if there are no more default combinations of g4, and

Ngeaye F€Maining, then the parameter estimation fails.

Our work extends the existing module of parameter selection in SEAL by estimating
the encryption parameters optimised and designed for a complete convolutional
neural network. The extension to the SEAL library is made by developing our own
methods of estimating the homomorphic encryption noise for individual

convolutional neural network layers.

The method of selecting the individual encryption parameters is provided below.

4.5.3.1 Estimating t

In SEAL, all the numbers for applying homomorphic operations are processed as
polynomials of the form “x™ + 17, where x is the number base for the coefficients
having polynomial degree less than mn. The coefficients are modulo plaintext-
modulus ¢ which controls the number of non-zero coefficients in a polynomial. This
plaintext modulus ¢ determines the size of the plaintext data, therefore, the bigger
the plaintext number, the bigger value for ¢ that is required. Moreover, due to the
coefficients being modulo ¢, each non-zero coefficient in a polynomial can expand

up to t before a reduction can occur.

104

Chapter 4

Therefore, to estimate ¢, we have to do the reverse and determine two quantities:
the maximum length of the polynomial; and the maximum absolute value of
polynomial coefficients. The maximum coefficient length, and the maximum
absolute value, needs to be checked for all the operands and the resultant value
after performing the operation so that a reduction, modulo ¢, is avoided. We note
that we do not necessarily need a real encrypted operation; instead, we can calculate

directly using the underlying polynomials to find the two quantities.

4.5.3.2 Estimating n and ¢

Once the estimation settles to a good value for £, the estimation for determining the
values for the polynomial modulus n and the coefficient modulus ¢ is performed. In
the SEAL library, a set of n and ¢ pairs of combinations are provided for ease of
selection. This set of pairs, which can be seen in the SEAL documentation [22], is
used to estimate the @ .o, and Ngepage vValues during the estimation. The
estimated noise of the operations in SEAL are calculated through the formulas given
in the SEAL documentation [22] (reproduced in Appendix A). The combination of
n and ¢ is selected as shown in Figure 4-7 above by looping through them
sequentially and testing them against the final noise. In this way, we will get our

required encryption parameters for any feed-forward convolutional neural network.

4.5.3.3 Numerical Limits of the Proposed System

In connection with the inference of a neural network, it is essential that we explicitly
describe the limits to the numbers used throughout the system. We describe these
limits from a combined view of homomorphic encryption and convolutional neural

network hereafter.

105

Chapter 4

Numerical limits pertaining to the convolutional neural networks are relatively
easier to understand when we see them according to their usage. In our encrypted
neural network system, we have two views of the numbers involved: the

unencrypted numbers; and the encrypted numbers.

In the training phase, the convolutional neural network is basically a normal neural
network, and no special limits are applied to the numbers involved. This means
that the limits applied to any normal neural network are applicable to the training

networks in our system as well.

However, in the inference phase we have both unencrypted as well as encrypted
numbers involved. The unencrypted numbers in the inference phase are only the
trained weight values of each neuron/filter derived during the training phase.
Whereas the encrypted numbers are the inputs and the outputs to each layer in the

network.

There are important numerical limits applicable in the inference phase of an
encrypted neural network. The unencrypted numbers (i.e., the weight values) needs
to be encoded into the ring structure of the encryption scheme and this encoding
can affect the classification accuracy of the neural network. For this purpose, we
followed the decimal precision used by Dowlin et al. [1] for comparative reasons.
We found that encoding the weight value using 10 coefficients (i.e., 10-bit precision)
of a plaintext polynomial gives an encoding accuracy of 3 decimal places. This has
been enough to maintain our classification accuracy unchanged from an
unencrypted network to an encrypted network. In addition to the unencrypted
numbers, the inputs that need to be encrypted must also go through encoding first.
Therefore, all input values were encoded with the same encoding setting of 10-bit

precision.

106

Chapter 4

For the sake of completeness, we also mention that the encrypted operations have
a different precision value as compared to the unencrypted values. This is because
the modulus for the plaintext numbers is ¢, whereas the modulus for the encrypted
numbers is q. Therefore, once the numbers are encrypted, then the numbers remain
within the range of the selected n and ¢ pair used in the initial encryption. These
numbers can be different for different networks. For security hardness and simplicity
reasons, the most commonly required pairs of n and g are given in the SEAL
documentation [22]. Luckily, we do not have to manually select this pair for a neural

network because our system is able to suggest this as explained in above sections.

4.6 Evaluation of the parameter selection method

From a top-level view, the estimation of encryption parameters for a complete
convolution neural network requires some important considerations. In a
convolution neural network, the number of calculations can quickly become very
high and complicated to manage, if we are not careful about the arrangement of
layers or the number of neurons or filters in the layer. This becomes even more
important to consider in an encrypted environment. Therefore, here, we present and
evaluate our parameter estimation method based on the variations of convolutional
neural network hyperparameters. The evaluation will be shown for the most

important aspects:

1) The number of fully connected layers connected in succession.
2) The number of neurons in a fully connected layer.

3) The number of sequential convolution layers.

4) The number of filters in a convolution layer.

5) The number of pooling layers.

6) The size of a filter in a convolution layer.

107

Chapter 4

7) The stride size of a filter in a convolution layer

In estimating the optimal encryption parameters, we developed a module for
estimating the sequence of operations in each layer based on the discussion in 4.5.1
above. The results of implementing and testing the estimation will be shared in the

current section.

Hereon, the results from estimating the encryption parameters against the
hyperparameters will be presented based on our proposed method. Each section
shows the effect in three graphs, for £, ¢, and n, respectively. The ¢ will be shown
in log-scale because of their exponential growth. The value for ¢ will be a value
showing the significant-bit of the product of all the primes in the coefficient
modulus. By knowing the significant-bit of the product, we can use any combination
of primes to make the product within the range of bits. Each of the primes in the
product, however, needs to be within the 60-bit limit of the SEAL library.
Subsequently, the values for n are representing the highest degree of the ciphertext

polynomials.

4.6.1 Effects of fully connected layers

The number of fully connected layers affects the accurate classification. However,
the number of fully connected layers in a convolutional neural network is usually
set by trying different variations and choosing what works best for the particular

classification problem.

The following estimations were performed by providing a set of four input values,
and using a single neuron in sequential layers from 1 to 10. The effect on each

parameter is shown below.

108

Chapter 4

4,000 |
3,500 |
3,000 |

2,500 -

Polynomial Modulus (n) Coefficient Modulus (¢) Plaintext Modulus ()
g

200{ @ MW |

1 2 3 4 5 6 7 8 9 10

Number of sequentially connected Fully-Connected Layer(s)

Figure 4-9 Effects of sequentially connected FC Layers on the estimation of encryption
parameters.

From the estimation shown in Figure 4-9 above, the value of ¢ needs to be increased

exponentially if we want to add sequential fully connected layers. This effect is

because the result from each layer is used as an input for the next layer, and they

are multiplied by a weight value. Therefore, the encrypted values will grow and will

require a bigger value of the plaintext modulus ¢ to represent them in the encrypted

form.

From the estimation, we see that the value of ¢ is quite consistent across the
sequential FC layers. The only time it changed, from a 54 bit to almost its double
of 109 bits, is after 4 layers. This is because the polynomial modulus n and the

value of ¢ need to be increased to accommodate bigger numbers.

109

Chapter 4

From the estimation of n, we see that the sequential execution of up until 4 FC
layers will result in numbers within the range of polynomials having 2048
coefficients. After this, the degree of polynomial needs to be increased to

accommodate bigger numbers.

This sequence of the increasing encryption parameters continues in a similar way

for more than 20 layers.

4.6.2 Effects of Neuron Count in fully connected layers

108 00 1 FC Layer — I
107 Oo2 re Layers —
106 o3 FC Layers]
105
104
10°
102

110 ~ — - — — — _—
100 ~
90 4
80 4
70 4
60

ocfficient Modulus (¢q) Plaintext Modulus (¢)

,
/

50 | I N [T

4,000 |
3,500 1
3,000 1

2,500 |

Polynomial Modulus (n) C

2000 PO PR POET | PRET | PAET | PR | OB [T

1 2 3 B 5 6 7 8 9

Neuron(s) in every Fully-Connected Layer

Figure 4-10 Effects of neuron count on the estimation of encryption parameters in sequentially

connected FC Layers.

The estimation in Figure 4-10 shows the effect of the number of neurons in a fully
connected layer. The estimation was performed by providing a set of four inputs to

one, two and three sequentially connected layers to see the effect more clearly.

110

Chapter 4

From the estimation shown, we observe that the number of neurons have little
impact in a single layer. This is because the values are not used in any further
calculations. However, the impact is high for performing the same estimation when
2 or 3 sequential FC layers are used and the neuron count is increased gradually

from 1 to 9.

From the estimation shown, there is no effect on ¢ when using a single layer, again,
because the values are not used further. Even when using 2 or 3 sequential layers,
the effect is not a major one. The value is almost doubled when using 9 neurons in

2 sequential layers because of the doubling of the value of n.

From the estimation shown, we see that the only change in the value of n is required
when the underlying numbers are getting bigger. In two sequential fully connected

layers, this can be seen from 9 neurons.

4.6.3 Effects of Convolution Layers

In these estimations, the effect of sequential convolution layers is observed by
providing an initial input of 10 x 10 matrix. All the convolution layers have a single

filter of size 2 x 2 with a stride of 1.

= 108 |l = 110 p1 ol = 4.000 4 o

2 T 2100 - 5

= 10 = =

= = = 500

< 108 T 90 2 3,500

= 10 “ 80 = 3000 |

+ = o)

;w0 £ 70 g

£ 100 5 £ 2,500 |

i S T 60 =

= T T T I (I o 507,?‘ m m T T v 23000_’?‘ m m T T
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Number of sequentially connected Convolution layer

Figure 4-11 Effects of sequentially connected Convolution Layers on the estimation of encryption

parameters.

111

Chapter 4

From the estimation shown in Figure 4-11, we observe the effect of sequential
convolution layers on the value of ¢. Here, the ¢ value needs to be increased
exponentially more rapidly as compared with the ¢ value from the FC layer count.
This effect may be due to the fact that the FC layers had an input of four values,
whereas the convolution layers start with a 10 x 10 input matrix making a total of

100 values.

The effects on ¢ are very similar to those of a fully connected layer. This means
that there is less effect on ¢ value whether we increase the fully connected layers or

convolution layers.

As with the estimation of ¢, the estimation of n, also shows similarity between the
counts of fully connected layers or convolutional layers. This means that there is

less effect on the n value whether we increase the FC layers or convolution layers.

4.6.4 Effects of Filter Count in Convolution Layers

Filters in a convolution layer act as the neurons to find patterns. The effect is
important to note because it is considered as an important factor for the prediction
accuracy of a convolution network. For this estimation, an input matrix of 5 x 5

was provided as input to the convolution layer.

112

Chapter 4

Plaintext Modulus (t)

0o 1 Convolution Layer
60 [©2 Convolution Layers

2,400 |
2,300 |
2,200 |
2,100 -|
2,000 -
1,900 1

Polynomial Modulus (n) Coefficient Modulus (q)

1 2 3 4 5 6 7 8 9 10
Number of filters in each Convolution Layer

Figure 4-12 Effects of Filter count on the estimation of encryption parameters in Convolution
Layers.
There were filters from 1 to 19 having a size of 2 x 2 with stride 1. Estimation was
observed for a single layer as well as for 2 sequential convolution layers. The effects

can be seen in Figure 4-12.

From the estimation shown in Figure 4-12, we observe that if the values are not
used in a subsequent layer, then the number of filters has no effect on t value. This
is because each filter performs processing independently on the same set of input
values. However, it is important to note that once the output values are being used
in another layer, then the number of filters will affect the ¢ value. If we compare
this estimation of filter count with that of the neuron count in the fully connected

layer, then we see little difference.

From the estimation shown, there is no difference for ¢ as the number of filters is
increased if they are in sequential convolution layers.

113

Chapter 4

Similarly, to the effect on ¢, the estimation shows us that the number of filters in a

convolution layer has no effect on the value of n.

4.6.5 Effects of Filter Size in Convolution Layers

Filter size is the width and height of the region in the input matrix for which the
filter processes values in a single step. The bigger the filter size, the bigger the
region of values processed at once. In a convolution neural network, the filter size
determines the size of the pattern for which the filter has to look for. In this
estimation, observation was made by providing an input of 10 x 10 to a single filter
in a single convolution layer having a stride of 1. The following effects were observed

for the estimation as shown in Figure 4-13.

103 7 _ _

102

Plaintext Modulus (¢)
|

Polynomial Modulus (n) Coefficient Modulus (g)

1 2 3 4 5 6 7 8 9 10

Filter size (width and height) in a single convolution layer

Figure 4-13 Effects of Filter size on the estimation of encryption parameters in Convolution

Layers

114

Chapter 4

The only difference due to changing the filter size was observed for the value of ¢.
The estimation shows the effect that the bigger the filter size, the bigger ¢ is required
to accommodate the accumulation of many values into a single one. Since the filter
size indicates the dimension of the filter region taking more input values for

processing, the bigger the size of the filter, usually the double the t value is required.

Unlike the t value, the filter size has no effect whatsoever on the ¢ value. From the
estimation, it can be noted that a filter size of 1 means that the filter is taking a
1 x 1 region for processing, which means only a single value. However, the rest of
the filter sizes shows no effect on the ¢. Similarly, the estimation shows that the n

value is not affected by the size of the filter used in a convolution layer.

4.6.6 Effects of Filter Stride Size in Convolution

The stride size of a filter is the amount of movement from one-step to the next. The
stride value determines how coarsely or finely the filter can look for patterns. Since
the stride value determines the total output dimension of the filter as well as the

number of individual operations in processing filter, its effect is analysed here.

For this estimation, a stride from 1 to 5 is used for a single filter of size 2 x 2 in a
single convolution layer. A 10 x 10 matrix of input values is provided. The effects

are observed in Figure 4-14.

= 102! A = = 2,400

é 102 é 60 - é 2,300

2 o0 E Z 2,200 4

S s 20 55 - = 2,100 4

= 102 4 " — 2,000 |

j%% 1017 2 50 | = 1,900 |

g 1.6 | = 2

g 1 E: z

A 1015 ~ 45 o
1 I I I I ~ T T T T T Q_‘ T T T T T
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Filter stride size in a single convolution layer

115

Chapter 4

Figure 4-14 Effects of Filter stride size on the estimation of encryption parameters in
Convolution Layers
From the estimation shown in Figure 4-14, no effect was seen on the ¢ value. This
clears the concern, mentioned in section 4.5.1.1 above, about using the edge pixels

less than the centre pixels in a convolution layer.

As for the t value, there is no effect of stride on the ¢ and the n values.

4.6.7 Effects of Sum-Pooling Size

The pooling size is the size of the window for taking a subset of values from the
original input matrix. The bigger the pooling size, the higher the number of values
processed in a single pooling step. A pooling layer essentially reduces the dimension
of the input matrix. In this estimation, the effect of pooling size on the encryption
parameters was observed. This estimation was performed on an input matrix of size

10 x 10 x 1 having a stride size of 1.

116

Chapter 4

102 A

Plaintext Modulus (t)
|
|

10t H
] I

Polynomial Modulus (n) Coefficient Modulus (q)
bo
[S4]

1,000 4 I I

1 2 3 4 5 6 7 8 9 10

Pooling window size (width and height) in a single sum-pooling layer

Figure 4-15 Effects of pooling size on the estimation of encryption parameters in Sum-Pooling

Layers

Figure 4-15 shows the effect of pooling size on the value of t. We can see that the
bigger the pooling size, the bigger the value of ¢ that is required, to accommodate

many values.

In this estimation, we see that the value of ¢ is mostly consistent. This means that

the pooling size does not have a direct effect on the value of q.

As for the ¢ value, the pooling size is not the main determinant of the value of n

and the value can be seen to be mostly consistent.

117

Chapter 4

4.6.8 Effects of Sum-Pooling Stride

The pooling stride is the amount of movement for the pooling window after every
operation. The bigger the value of the stride, the more the number of inputs that
are skipped after each step. For this estimation, two experiments with different
input matrix size were performed: 10 x 10 and 100 x 100 input matrices. In the

experiments, a pooling size of 2 x 2 was used. The effects are shown in Figure 4-16.

< 10105 | CH = 1,200 |

=z 10! A Z 30 2 L1504

= = = 1,100 |

L= 0.95 | g o !

2 1009 S 28 1 23 1,050 |

= 10Y-Y i =

B 100-85 B 264 g

g g 2 950

= 1008 = 24 | S

[iv] T >

AL 10075 5 3
1 I 1 I 1 T T T T T D-‘ T T T T T
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Pooling stride size in a single Pooling layer

Figure 4-16 Effects of Pooling stride size on the estimation of encryption parameters in Sum-
Pooling Layers
In Figure 4-16, we can see that the pooling stride is irrelevant here to the value of

t, q, and n. These values are the same for all the stride sizes.

4.7 Findings

We have described methods used to find the relationship between the homomorphic
encryption and convolutional neural network parameters. The first key finding of
our research is the method and the formulas for finding the exact circuit depth of
an encrypted convolutional neural network. In Table 4-5 below, a summary of the
sequence and the type of homomorphic operations is presented for future reference.
Their calculation method is detailed in section 4.5.1 above. In the summary Table
4-5, each row represents a typical layer type found in a convolutional neural
network. Each column represents the type of operation. The columns show the type

of operations between a ciphertext C' and a plaintext P.

118

Chapter 4

Table 4-5 Nature of homomorphic operations in a convolutional neural network

Square Activation

CxP c+C C+P CcxC
operations operations operations operations

Fully Connected Zi X 2, zi—1 1 None
3D-Convolution F,xF, xd (F, x F), xd)—1 1 None
2D-Convolution F, x F, x1 (F,x F,)—1 1 None
Sum-Pooling None (F, x F,)—1 None None
Average-Pooling 1 (F, x F,)—1 None None

None None None 1

The second key finding is the derivation of formulas for calculating the maximum

noise incurred for a certain convolutional neural network layer. A summary of these

noise-calculating formulas is given in Table 4-6. To calculate the maximum noise

for a network, we first calculate the initial noise a after fresh encryption. Besides

the initial noise, our derived formulas from the estimations of SEAL for each

network layer type are:

119

Chapter 4

Table 4-6 Noise estimates for Layers in Convolution Neural network based on SEAL’s heuristic

estimation.

Layer type Maximum noise v, after the layer
q mod t
Convolution Layer Uy = Ny, X [m] - (P +u- Uk:)
q mod t
Fully Connected Layer Vo = Ny, x [Im] - q L)"
Sum - Pooling Layer Uy =11y,

Average - Pooling Layer Uy = N, - [mf i~y

v, =t 3n (20113024, . nd/2 4 127 . 0))
Square Activation Layer Or if ciphertext size is always kept to 2, then:

v, = t- 3n (144”2 + 24”1},) + Urelin

In Table 4-6, we summarize our derived formulas for estimating the maximum
change in noise for any ciphertext passing through a convolutional neural network
layer. Here, |m| is the absolute biggest number that can be provided as input. N,,
is the highest degree of the polynomial representing our message m. The j is the
ciphertext size, this usually will be 2, when relinearizing after every ciphertext-
ciphertext multiplication. The 7 represents the number of inputs to the layer. The
v; represents the noise already in the ciphertext before the layer. The v, is the noise
after the layer. The t, ¢, and n represent the encryption parameters of plain

modulus, coefficient modulus, and polynomial modulus, respectively.

Another key finding is the concrete establishment of the effects of individual
hyperparameters of a CNN on the HE parameters (see section 4.5.3.3). In here, we
conclude from the estimations that some hyperparameters are affecting the
encryption parameters, whereas some are not. This can be summarized in the

following Table 4-7.

120

Chapter 4

Table 4-7 Convolutional neural network Hyperparameters affecting encryption parameters.

Affects t Affects q Affects n

FC Layer Count Yes Yes Yes
FC Neuron Count Yes Yes Yes
Conv Layer Count Yes Yes Yes
Filter Count Yes No No
Filter Size Yes No No
Stride size No No No

Table 4-7 summarizes the effects of CNN hyperparameters on the HE parameters
where yes means a strong link and no means a weak or non-existent link. A strong
link with any of the convolutional neural network hyperparameters and any of the
encryption parameter shows a directly proportional link. In such a case, if we
increase or decrease the hyperparameter, then the encryption parameter will also
need to be increased or decreased, respectively. The amount to which the encryption
parameter requires to be increased or decreased, can be estimated using our derived
relationships shown in Table 4-6. In comparison to a strong link, a weak link, such
as that in the case of stride size, shows that there is no need for increasing or
decreasing the encryption parameter with respect to that particular
hyperparameter. This means that, the particular hyperparameter can be changed
without the need to change the encryption parameter. In such a case, the noise in
the output ciphertext will remain the same, irrespective of the change in the

hyperparameter.

121

Chapter 4

4.8 Summary

Throughout this chapter, we demonstrate that the solution to preserve privacy,
while analysing data through a third party encrypted convolutional neural network,
can be made generic to accommodate a variety of convolutional neural network
models. We discuss the mechanism for extending encrypted classification capability,
to any feed-forward convolutional neural network model by using our parameter
estimation method. Moreover, we show how to derive our noise estimation formulas
for the individual convolutional neural network layers. Based on our derived noise
calculation formulas, we saw the effects of different hyperparameters of a

convolutional neural network that define the core structure of the network.

122

Chapter 5

5 PRACTICAL CASE STUDIES

The application of homomorphic encryption within a convolutional neural network
is a desirable functionality for developers. The enabling mechanism of this
functionality is discussed in the previous chapter on selecting the encryption
parameters. Here, we describe and learn from important cases of convolutional
neural network models by applying our mechanism for selecting encryption
parameters. These case studies help to acquire in-depth insights about the common
convolutional neural network models. Among which, the case studies will illustrate
the parameter selection method more eloquently. In addition, these cases show that
the methodology, suggested by us, is a generic method applicable to a wide variety
of convolutional neural network models, and not just to one specific convolutional
neural network. Moreover, these case studies help us in knowing the exact
limitations of the overall research work, and highlight the required improvements
to enable a privacy-preserving convolutional neural network classification task.
These case studies have been very effective in terms of defining the limitations and

the edge cases of our work.

5.1 Selection of Case Studies

For the purpose of this investigation, we have limited our observations to 2 case
studies. The selection of case studies is always a crucial step to properly present
and discuss issues. Therefore, we aim to select the most prominent convolutional
neural network models available. Since the CryptoNets [1] is based on the SEAL
library, it is important to compare our work with this, therefore the CryptoNets

was the first case study. Besides the CryptoNets, we shortlisted 4 convolutional

123

Chapter 5

neural network models from Canziani et al. [60] that could be good candidates to
fulfil our objective of a case-study. Canziani et al. [60] provide a thorough analysis
of the state-of-the-art 14 different deep convolutional neural networks (DNNs).
Their analysis was based on several important metrics for practical applications
such as accuracy, memory footprint, parameters, operation counts, inference time
and power consumption. The shortlisted candidates for detailed analysis in our case

studies were:

1. CryptoNets

2. AlexNet
3. VGG-16
4. LeNet-5

5. GoogleLeNet / Inception

AlexNet [61] and VGG-16 [62] both require millions of encrypted calculations. The
initial analysis using our parameter estimation technique showed that their
encryption parameters could be estimated easily within a second on our computer
having Intel Core i7 7700 with 16GB RAM. However, due to their huge number of
encrypted operations, they were not practical to evaluate. Therefore, they could not

be selected for further analysis.

GoogleLeNet [63], also called the Inception Networks, are also interesting to analyse.
The main differentiating factor in the Inception Networks from other convolutional
neural network models is the inception module. The inception module first takes
the input from each layer and passes it through several parallel convolutions. Then
the results of all these convolutions are combined together to provide a single output
to pass to the next layer. This reason also eliminated GoogleLeNet from our study,

as it will not be practical to evaluate and analyse.

124

Chapter 5

Beside the limitations of the case studies themselves, another factor related to the
estimation of the parameters is the selection of the maximum absolute value and
the maximum coefficient count. During these case studies, we used a fixed coefficient
count of 10 for all the ciphertext encryption as well as the plaintext encodings.
However, these values will depend on the scale of the input numbers and the
decoding step for the decrypted outputs. The reason for the values that we have
selected is that a count of 10 coefficients in the ciphertext polynomials provide 3-
digit accuracy for the fractional part of a number in base 2. Moreover, the maximum

absolute value was set to 1.

5.2 Microsoft’s CryptoNets Case

The use of Homomorphic Encryption in Convolutional Neural Networks has been
an active research area. In this regard, Dowlin et al. [1] shared their research of
incorporating a state-of-the-art HE scheme in a convolutional neural network model

which they called CryptoNets.

These researchers shared high throughput and accuracy for classifying encrypted
images through a convolutional neural network. CryptoNets show that
homomorphic encryption could be efficient and accurate enough for real world
applications. Unlike the previous criticism against the use of homomorphic
encryption in real world applications, CryptoNets demonstrates that a single
classification step of encrypted input data can be processed on a single PC in 570
seconds (9.5 minutes). In a normal classification setup, only one input record is
provided to the neural network to produce one predicted output. However, the
underlying encryption scheme used in CryptoNets allows one to classify more than
one input record to produce multiple predicted outputs. CryptoNets is primarily

aimed at classifying more than one image at a time by encoding multiple images in

125

Chapter 5

one single encrypted ciphertext. The high throughput claimed by CryptoNets is due
to this batch processing ability. It has been demonstrated that CryptoNets can
process 8192 input records in a single classification step to produce 8192 predicted
outputs simultaneously without any lag in processing time [1]. This ability of batch
processing is certainly a very welcomed aspect of CryptoNets. However, not all

applications will require the classification of multiple input records in a single step.

5.2.1 Novelty in CryptoNets

5.2.1.1 Usage of the sum-pooling

In CryptoNets, the researchers have modified some parts of a traditional
convolutional neural network to enable it to be used for homomorphic operations.
One of the modifications is the use of a sum-pooling operation instead of the
commonly used max pooling or the average-pooling operations. CryptoNets shows
that this change results in fewer homomorphic operations without any loss in the

classification accuracy [1].

In our observation, the usage of sum pooling can be justified for use in neural
networks with a fewer number of layers but not for deeper networks. However, there
exists the option of an average pooling which can be used in an encrypted
environment with minimal effect on the inherent noise or computational load. It is
noteworthy that the sum-pooling operation adds several incoming input numbers
to make a single number. This can result in a rather large number for the last layers.
Therefore, the sum pooling should be used with consideration of the growth of the
numbers within a neural network. The issue with very huge numbers is that they
require bigger encryption parameters, and hence, with unnecessary reduction in

computational performance.

126

Chapter 5

5.2.1.2 The two forms of CryptoNets

Another modification CryptoNets has is the usage of two different forms of their
convolutional neural network. One form of the neural network was termed as the
full form of the network for the purpose of training it, and the other one was the

reduced form of the network for performing inferences only.

50@5x5 50@sxs X100 1x100

1@28x28 5@13x13 5@13x13 5@13x13 1x10

E o e N\ .
Conv Square Sum-Pool Conv Sum-Pool FCL Square FCL

Figure 5-1 The full form of CryptoNets

1x100 1x100

1@28x28 5@13x13 5@13x13 1%10

& & Ea | =
Conv Square FCL Square FCL

Figure 5-2 The reduced form of CryptoNets

The two forms of the CryptoNets CNN model for training and inference purposes
can be seen in Figure 5-1 and Figure 5-2, respectively. The training network had 8
layers (excluding the last sigmoid layer) and the reduced network had 5 layers. In
these figures, the numbers above the layers indicate the transformation of the
dimensions representing the pixels. The prime difference comes from the merging of
layer 3 to 6 in such a way that the pooling layers are removed, and the weights of
the 3 layer (a convolution layer) is merged with that of the 6™ layer (a fully

connected layer). By the merging of the convolution and the fully connected layers,

127

Chapter 5

a single fully connected layer is shown to work for both of these layers. This

arrangement is easily understood in the following Table 5-1.
Table 5-1 Layer Variation in CryptoNets

The reduced

Layer
The full form

Number form
1 Convolution Convolution
2 Square Square
3 Sum
4 Convolution

FCL

5 Sum
6 FCL
7 Square Square
8 FCL FCL

From Table 5-1, we have an important observation about the arrangement of the
layers. The observation is about the logical arrangement of the first 3 layers where
the pooling layer is expected to come before the activation layer. Conversely, the

activation layer precedes the pooling layer in CryptoNets.

52.1.3 Usage of 3-dimensional convolution instead of

2-dimensional convolution

The CryptoNets used a 3-dimensional (3D) convolution filter type in their network
instead of the commonly used 2-dimensional (2D) convolution filters. The basic
difference between these two convolutions arises from the way they perform a single
convolution step on the incoming input values. In a single convolution step, a 3D
convolution filter can take values from a single input channel whereas the 2D

convolution filter takes inputs from all the input channels. The 3D convolution

128

Chapter 5

layers, as in CryptoNets, convolve filters over the input data volume in
3-dimensional directions including the depth direction. This means that, whenever
we use a 3D convolution filter, the stride size will be specified in 3 directions as the

width F

w?

height F}, and the depth F, of a filter F'. In this way, we specify the
number of channels to process in a single convolution step. For example, we can
specify the filter depth F); as one, which means that in a single convolution step the

filter will take values from only a single channel.

Unlike the 3D convolution, a 2D convolution filter actually takes values from all
the input channels. The convolution is performed in only the width and height
directions but not the depth. In this way, 2D convolution will use a stride

specification of only width F, and height F,

(h»

but not the depth F; of a filter F'.
The 2D convolution filters take values from all the input channels constrained by

the filter dimension for processing.

The filter depth F); in CryptoNets was set to one, so, each filter convolves over a
single channel of the input at a time. In this way, the convolution continues over
the next input channel after finishing the current one. The next section provides
some insight for deciding to have a 2D convolution over all the channels versus a

3-dimensional convolution over each of the channels separately.

5.2.2 Arithmetic operations in CryptoNets

In order to find the encryption parameters, it is necessary to understand the

underlying CNN model. Therefore, the two forms of the CryptoNets are studied.

129

Chapter 5

Table 5-2 Operations in CryptoNets (Left: full form, Right: reduced form)

Layer Layer Sum Mul Layer @ Layer Sum Mul
No. Type Ops Ops No. Type Ops Ops
1 Conv 21,125 21,125 1 Conv 211925 21125
2 Square 0 845 2 Square 0 845
3 Sum 5,760 0 3 FCL 84500 84500
4 Conv 6,250 6,250 4 Square 0 100
5 Sum 1,280 0 5 FCL 1000 1000
6 FCL 25,000 25,000 Total 106625 | 107570
7 Square 0 100
8 FCL 1,000 1,000
Total 60,415 54,320

In Table 5-2, the left and right-hand tables represent the full-form and the reduced-
form of the CryptoNets models respectively. Against each of the layer types, the
summation and the multiplication operations are shown to give an overview of what

to expect.

During the observation of CryptoNets as a case, a necessary improvement was found
to the architecture of the neural network model. To make CryptoNets more suitable
in terms of execution performance, the convolution layers can be changed from 3D
convolutions to 2D convolutions. If we only consider the encryption parameters
required for the 3D or the 2D convolution layers, then the estimated parameters
will be the same. However, the number of heavy multiplication calculations being
performed will be significantly less in the case of 2D. Even more, the number of

homomorphic multiplications in the full form of the network, having 8 layers, will

130

Chapter 5

be less than that of the reduced form, with only 5 layers. To be exact, the difference

is shown in the following Table 5-3.

Table 5-3 Difference of operations between 3D and 2D convolutions in the full form of

CryptoNets

Total C x P | Total C +C

3D convolution 302,375 188,330
2D convolution 77,375 84,210
Difference: +225,000 +104,120

The interesting reason for this difference in the number of operations is that when
a convolution layer has filters that are applied on a single input channel for the 3D
convolution, then two things happen. First, the total number of trainable weight
values that each filter has, are reduced, because the filter only has width and a
height but not the similar depth as the 2D. Secondly, a greater number of output
values for the 3D convolution, in contrast to the 2D convolution, will be passed on

to the next layer.

5.2.3 Detail of encrypted operations in CryptoNets

The total number of encrypted operations in an encrypted CNN can be similar to
that of an unencrypted plaintext version of the same CNN model. Nevertheless, it
is important to note that this may not always be the case. Sometimes the encrypted
version may have more operations because HE operations support only two
operands in a single instance. Whereas, in a plaintext version, a single operation
can have more than two operands at a time. Therefore, the number of encrypted

operations can be different.

131

Chapter 5

The total number of encrypted operations for the CryptoNets for the full form of

the network and the reduced form of the network are given in the following table.

Table 5-4 Total encrypted operations for the full form of CryptoNets

Layer Layer Type Total Total Total Total
Number CxC CxP c+C C+P
1 Conv2D 0 21,125 20,280 845
9 Square 845 0 0 0
3 Sum 0 0 5,760 0
4 Conv2D 0 156,250 30,000 1,250
5 Sum 0 0 6,400 0
¢ TCb 0 125000 124,900 100
7 Square 100 0 0 0
8 FCL 0 0 990 10
Grand Total 945 = 302,375 188,330 2,205

In the same way, the total number of encrypted operations in the reduced form of

the CryptoNets model are:

132

Chapter 5

Table 5-5 Total encrypted operations for the reduced form of CryptoNets

Layer Total Total Total Total
Layer Type

Number CxC CxP Cc+cC C+P
1 Conv2D 0 21,125 20,280 0
2 Square]45 0 0 0
3 FCL 0 84,500 84,400 100
4 Square 100 0 0 0
5 FCL 0 0 990 10
945 | 105,625 105,670 110

Grand Total s)

In Table 5-4 and Table 5-5, we see the total number of encrypted operations as
calculated by using the following formulas for all of the filters in the convolution

layers and the neurons in the fully connected layers.

The total number of operations can only tell us how fast the execution performance
can be, but not the exact number of operations that an individual ciphertext goes
through. The number of operations for a single ciphertext is essential to estimate
the encryption parameters rather than the total number of operations in a layer.
When an input is passed through a convolutional layer, then each of the input pixels

only has an effect on some of the output values in that layer and not all of them.

For the encrypted version of CryptoNets, the number of encrypted operations that

a single ciphertext goes through, are as follows.

133

Chapter 5

Table 5-6 Individual encrypted operations for the full form of CryptoNets

Layer Layer | Individual Individual Individual Individual
Number Type CxC CxP Cc+cC C+P

1 Conv2D 0 1 04 1

9 Square 1 0 0 0

3 Sum 0 0 8 0

4 Conv2D 0 1 04 1

5 Sum 0 0 8 0

6 FCL 0 1 1,249 1

7 Square 1 0 0 0

8 FCL 0 1 99 1

Grand Total 2 4 1,412 4

In the same way, the number of individual encrypted operations for the reduced

form of CryptoNets are as follows.

Table 5-7 Individual encrypted operations for the reduced form of CryptoNets

Layer Layer Individual Individual | Individual Individual
Number Type CxC CxP c+cC C+P

1 Conv2D 0 1 94 1

9 Square 1 0 0 0

g FCL 0 1 844 1

4 Square 1 0 0 0

5 FCL 0 1 99 1

Grand Total 2 3 967 3

134

Chapter 5

The number of encrypted operations that any single ciphertext goes through in the
CryptoNets are shown in Table 5-6 and Table 5-7. These were calculated by using

our formulas shown in Table 4-5.

5.2.4 Practical Implementation Details

For our research, we used and customised several software tools. Here we provide a
brief summary of the various tools and their combinations. The block diagram in

Figure 5-3 below shows a summarized view for visual explanation.

Since this research is focused on CNN, therefore, the open-source ConvNetSharp®
deep learning library was customised for our use. The customisation involves the
integration of SEAL library within the ConvNetSharp code. This integration
enabled us to perform SEAL encrypted classification tasks of any neural network
that we desire. Moreover, the ConvNetSharp library already has several training
algorithms for a neural network that we used. The customised integration works in
such a way that we train a neural network using a plaintext dataset to get plaintext
weight values. Afterwards, we can use the trained weight values both in a plaintext

as well as encrypted neural network.

In addition to the above customisation of the ConvNetSharp library, we also added
several new methods within the SEAL library itself. The new methods allowed us
to estimate the encryption parameters for any feed forward neural network such as

the CryptoNets. Details of these methods are added in the Appendix C.

¢ https://github.com/cbovar/ConvNetSharp

135

Chapter 5

¢ Custom C# codg
for pre and post

(. Python scripts of:

¢ sympy

 matplotlib processing of
i experimental

® maxima

data.
* nuUMpy

Other code
SageMath for data
processing

ConvNetSharp SEAL library
with SEAL with new
integration methods

e SEAL library
integration for
encrypted NN
inferences.

e New methods
for estimating HE
parameters

. J

Figure 5-3 Block diagram of the tools and libraries used in this research

The ConvNetSharp library helped in training of our CNN in plaintext. All the major
training algorithms are already implemented withing the ConvNetSharp. For our
CNN, the trainings were performed like CryptoNets by first training a full form of
the network and then merging some layers to make a reduced form as in
CryptoNets. The detail of such merging is provided in 5.2.1.2. The training was
performed in mini batches of 100 random samples from MNIST images. Overall, the
training took around 20 minutes on an NVIDIA GTX 1060 laptop GPU resulting
in a 98% classification accuracy rate which is good but common for the MNIST
dataset. However, a single inference task took around 1.4 hours on average. It should

be considered that this time is for the inference of a single input image.

5.3 Applying our method with CryptoNets

For selecting the best encryption parameters for any convolutional neural network,
we have to calculate the total number of operations that any single ciphertext of

the convolutional neural network goes through. Once we have calculated for the

136

Chapter 5

value of a single ciphertext, then the same parameters are valid for all of the
ciphertext inputs individually. When considering only a single ciphertext

throughout the network, we observed the following phenomena:

e In a convolution layer, estimating parameters for single filter represents the
whole layer irrespective of the number of filters in the layer.
e In a fully connected layer, estimating for a single neuron represents the whole

layer irrespective of the number of neurons in the layer.

From our noise calculation formulas, as shown in the Table 4-6, we calculate the
encryption parameters for the full as well as the reduced forms of CryptoNets. We
show the systematic calculation of the reduced as well as the full form of the

CryptoNets networks for complete coverage as follows.

5.3.1 Estimating the initial noise from the encryption

The first step in the usage of an encryption algorithm is to convert our original
numerical message in the plaintext form to the encrypted form of a ciphertext. For
such a conversion to happen, the original numerical message plaintext has to be

encoded in a form usable by the encryption algorithm.

However, in the estimation of encryption parameters, we do not have a fixed number
as our original numeric message. Therefore, the estimation formula uses the
maximum numerical message that can be provided as input. By using the
maximum, the estimation process will certainly accommodate all the smaller

numbers between 0 and the maximum.

For understanding CryptoNets as a case, it is necessary to understand the inputs
being provided to it. The inputs to the CryptoNets network are grayscale images

having a single channel. For each image, we have a matrix of pixels each having a

137

Chapter 5

value from 0 to 255. However, these pixel values are all scaled between 0 and 1.
Each pixel of this grayscale image is encrypted separately, therefore, in this example
the maximum value that we can have as an input will be the value of 1. This 1
represents the scaling down of 255. Hence, in the estimation formula for the initial

encryption noise, |m|| will get the value of 1.

For this step, the noise is estimated using the formula given in SEAL documentation
as [22]:

_gqmodt

v

1 m

nt
[m]| - N,, + — - min noiseMaxDeviation, 6 x noiseStandardDeviation
4q

Here, the £, ¢, and n are the encryption parameters to be estimated, m represents
our input message, |m| is the maximum of the absolute values of m, and N,, is the
highest degree of the polynomial representing m. In our case, the initial values of
[m| and N,, were set as 1 and 10, respectively. The variables noise Max Deviation

and the noiseStandardDeviation controls the randomness of the noise value itself

and is normally fixed for the SEAL library.

5.3.2 Estimating for the first convolution layer

After calculating the noise for the initial encryption, we calculate for the first layer
of CryptoNets. The first layer is a convolution layer; therefore, we estimate for a

single filter as: v; = N,, x [m]| - (%Odf + i - vy,). This will eventually represent the

whole layer. Here, we have v, from step 1, and the value of 7 is the total number of
inputs to a single filter. In the first layer, we have filters of size 5 x 5, therefore, the

value of 7 is 25.

5.3.3 Estimating for the square layer

After the first convolution layer, we get a ciphertext of noise value v;. The second

layer is the square activation layer, so we calculate the noise for this layer by using

138

Chapter 5

the formula: v, =t -v/3n (144n? + 24nv,) + v,,,,- Here we have 2 summands in

which the first one is for the square of the ciphertext, and the second summand of

is for relinearization to keep the ciphertext size to 2. v, is calculated by

v relin

relin

using the relinearization formula given in the SEAL documentation [22]. Moreover,

the value of v, is taken as the initial noise calculated in step number 1.

5.3.4 Estimating for the sum-pooling layer

After calculating the noise v, for the second layer, we calculate the noise for the
sum-pooling layer next. Again, we estimate for a single output of the sum pooling

that represents the whole layer as: vy = iv,. Here, the value of ¢ is 9 because the

sum-pooling window size is 3 x 3.

5.3.5 Estimating for the convolution layer

Next, we calculate for the fourth layer that is a convolution layer. This layer has

filters having the window size of 5 x 5. Similar to the previous convolution layer in

q mod t

step 2, the noise for this layer is calculated as: v, = N, x [m] - (. T vg).

The value of 7 is 25 because the filter window size is 5 x 5.

5.3.6 Estimating noise for the sum-pooling layer

After calculating the noise v, for the fourth layer, we calculate the noise for the
sum-pooling layer. Again, we estimate for a single output of the sum pooling which

represents the whole layer as: v; = iv,. Here, the value of i is 9 because the sum-

pooling window size is 3 x 3.

139

Chapter 5

5.3.7 Estimating for the fully connected layer

The sixth layer of CryptoNets is a fully connected layer having 100 neurons. Here,
we calculate the noise for a single output of the layer, that is a single neuron, and
this will represent the whole layer. Moreover, a neuron takes all of the output values
from the previous layer as its input. Therefore, the noise for this layer is calculated

as: vg = N,, X |m]| - (%;m”%- i - vy) where the value of 7 is 1250 because every

neuron will take i inputs from the previous layer.

5.3.8 Estimating noise for the square activation layer

The next layer is a square activation layer as in step 3. We calculate the noise for

this layer by using the formula: v, =t -v/3n (144n? + 24nvg) + v,.y;,. Here we

have two summands in which the first one is for the square of the ciphertext, and

the second summand of v, is for relinearization to keep the ciphertext size to 2.

relin

v is calculated by using the relinearization formula given in the SEAL

relin

documentation [22].

5.3.9 Estimating noise for the fully connecting layer

Next, we calculate for the final fully connected layer. The noise for this layer is

calculated as: vg = N,,, x |m| - (% + i - v;) where the value of i is 100.

5.3.10 Estimating the encryption parameters for the network

When finished with calculating the noise for all the layers of the network, we get a
single ciphertext cg having some noise represented by vg. This ciphertext cg noise
value is then checked for proper decryption against the encryption parameters (¢,
q, and n) selected in step 1. If the selected encryption parameters are able to decrypt
cg, then they are returned as the final output of the estimation process. Otherwise,

the next set of encryption parameters are selected for another round of noise

140

Chapter 5

estimation and once again, the process is repeated from step 1 until the end. The
repetition of noise estimation for all the layers is required because the change of
encryption parameters will result in a different amount of noise throughout the

layers.

By following the above steps, we are able to estimate the encryption parameters
required for the execution of the full form of the CryptoNets. The estimation for
the reduced form of CryptoNets work in the same manner with a few differences.
The differences are the removal of steps 4, 5, and 6; and changing the value of i

from 1250 to 845 in step 7.

The final estimated encryption parameters for the CryptoNets are in the following

table.

Table 5-8 Our estimated encryption parameters for CryptoNets

CryptoNets CryptoNets

Full-Network Reduced network
Polynomial modulus (n) 128192 4 1 128192 4 1
Coefficient modulus (q) 218 bits 218 bits
Plaintext modulus (t) 65,536 32,768

After estimating the encryption parameters for both of the network variations of
CryptoNets, we get the values for the set of encryption parameters given in Table
5-8. These values for encryption parameters (¢, ¢, and n) tell us that, irrespective
of the amount of noise produced from the homomorphic operations of the network,
the output ciphertext can be decrypted correctly by using the given ¢, ¢, and n.
Interestingly, the ¢ and n variables have the same values, for both the networks.

This serves as a good example to reiterate that the number of operations that a

141

Chapter 5

single ciphertext goes through in a network dictates the encryption parameters and
not the total number of operations in the layers. The total number of operations,

however, affects the overall processing time and required memory for a full network.

The estimation of encryption parameters for CryptoNets has been an important
case to study. This case has worked as a benchmark for comparing our method of
estimating the parameters for the execution of an encrypted convolutional neural
network. The benchmarking is done using comparisons with the original encryption
parameters reported with our estimated ones. The parameters are given in the

following table.

Table 5-9 Comparison with the encryption parameters of CryptoNets (reduced form)

CryptoNets Our estimated
Parameters [1] Parameters
’ 8192
Polynomial modulus (n) 128192 + 1 Lz + 1
Coefficient modulus (q) 384 bits 218 bits

t, = 1099511922689,
ty = 1099512004609

Plaintext modulus (t) 32768

In Table 5-9, we compare the original encryption parameters used by the
CryptoNets researchers with our estimated encryption parameters. Since they did
not perform encrypted classification on their full-network, this table shows the
comparison of only the reduced-form of the networks. The polynomial modulus is
same for both, however, the coefficient and plaintext moduli used by the CryptoNets
are larger than actually required. For a fair comparison, it is imperative to share
that our work has focused on the classification of a single image. Whereas
CryptoNets focuses on packing several images into a single ciphertext to process all

in one execution. Therefore, CryptoNets uses two values for t in the CRT method.

142

Chapter 5

This could be one of the reasons that the CryptoNets researchers were required to

use the above encryption parameters.

In our estimation of the two CryptoNets network (reduced and full) models, a
difference of plaintext modulus exists. The plaintext modulus in the reduced
architecture was estimated to be half of the one estimated for the full form. The
reason for the difference seems to be the huge range of numbers found in the
calculation of the full form of the network. The full-form of the CryptoNets network
has several square and sum-pooling layers, which make all the numbers larger than
the reduced-form of CryptoNets. Therefore, to cope with this huge range of
numbers, the plaintext modulus is double than that in the reduced form of the

CryptoNets network.

5.4 LeNet-5 Case Study

LeCun et al. [47] provides the pioneering work inventing the convolutional neural
networks. In their work, they share a model of how we can perform image
classifications using neural networks. LeCun et al. showed how can a convolutional
neural network be used on multi-dimensional data, like images, in an effective and
efficient way. Since their work, numerous researchers have improved their network

model to achieve classification accuracies above 99%.

5.4.1 Detail of CNN operations in LeNet-5

The total number of encrypted operations for LeNet-5 are listed in Table 5-10:

143

Chapter 5

Table 5-10 Total encrypted operations for the LeNet-5

Legend: C (Ciphertext), P (Plaintext)
Layer Total Total Total Total
Layer Type
Number CxC CxP c+C cC+P
1 Convolution 0 117600 112896 4704
2 Average 0 1176 3528 1176
3 Convolution 0 240000 238400 1600
4 Average 0 400 1200 400
5 FCL 0 48000 47880 120
6 FCL 0 0 9996 84
Grand Total 0 407176 413900 8084

The table presents the total number of encrypted operations, for all the filters in

the convolution layers and the neurons in the fully connected layers as calculated

by using the formulas given in Table 4-5.

The total number of operations can only tell us how fast the execution performance
can be, but not the exact number of operations that an individual ciphertext goes
through. The number of operations for a single ciphertext is essential for estimating
the encryption parameters, rather than the total number of operations in a layer.

When a convolution layer is provided with an input, then each of the input pixels

affects only some of the output values in that layer and not all of them.

144

Table 5-11 Individual encrypted operations for the LeNet-5

Layer Layer Type Individual
Number CxC
1 Convolution 0
2 Average 0
3 Convolution 0
4 Average 0
5 FCL 0
6 FCL 0

Grand Total

Individual

Individual

CxP c+C

399

119

Chapter 5

Individual

C+P

524

The number of individual encrypted operations in the LeNet-5 are shown in Table

5-11. These were calculated by using our formulas shown in Table 4-5.

5.4.2 Selecting encryption parameters for LeNet-5

By using our formulas of noise estimation shown in Table 4-6 and the steps as

shown in section 5.3 above, we estimate the following encryption parameters for the

LeNet-5 network presented in Table 5-12.

Table 5-12 Our estimated encryption parameters for LeNet-5 network

Polynomial modulus (n)
Coefficient modulus (q)

Plaintext modulus (t)

LeNet-5 Network

1$4096 + 1

109 bits

The estimated encryption parameters shown allow us to perform encrypted

classifications and still be able to decrypt the result properly.

145

Chapter 5

If we compare the encryption parameters for LeNet-5 to those of CryptoNets, we
see that the LeNet-5 requires comparatively smaller encryption parameters.
Interestingly, the total number of encrypted operations for LeNet-5 and the full-
form of CryptoNets are very similar. Several reasons exist for the smaller encryption
parameters of LeNet-5. One reason is the use of an average-pooling layer instead of
the sum-pooling layer. Unlike average pooling, sum pooling results in bigger and
bigger numbers. Another reason is the absence of the square activation function
that requires the heavy operation of multiplying a ciphertext with itself. Another
rationale for the smaller encryption parameters is the comparison of operations that
a single ciphertext has to go through by looking at the LeNet-5 Table 5-11 and the
CryptoNets Table 5-6. LeNet-5 requires a much smaller number of operations over

an individual ciphertext than the CryptoNets, therefore, smaller parameters arise.

5.5 Summary

The aim of this chapter was to observe the parameter selection approach for
different CNN models. We consider the usage of our encryption parameter
estimation method for two different CNN models: CryptoNets, and LeNet-5. For
the CryptoNets case, we compare our estimated parameters with those parameters
originally used by CryptoNets. Here the parameters estimated by our method were
closer; but smaller than those used by CryptoNets. Hence, this provides the
confidence that our estimation method is working as expected. From the LeNet-5
case, we observed that our method can be seen as applicable to a wide variety of
convolutional neural network models. Our method can be applied to a convolutional
neural network other than CryptoNets and still be able to provide proper encryption

parameters.

With the estimation of parameters in the two cases above, we show the mechanism

for a machine-learning researcher or an application developer to apply homomorphic

146

Chapter 5

encryption within their convolutional neural network. This in turn will allow
developers and researchers to create convolutional neural network models that are
good at classification tasks while at the same time preserving the privacy of the

users.

Along with the above observations, we also observe that there may be certain
convolutional neural network models that are still not practical to perform in
encrypted form. Even if we are able to estimate the encryption parameters for those
networks, they require a huge number of encrypted operations and that makes them

impractical.

Moreover, another important observation from the case studies was the selection of
maximum absolute value and the maximum coefficient count. For the sake of the
case studies, we fixed the value of the maximum absolute value to be 1 and the
maximum coefficient count to be 10. This has so far given us good encryption

parameters and provides a 3-digit fractional accuracy.

It is also important to note that the estimation of the encryption parameters is an
upper bound and not necessarily the most optimal fixed value. This upper bound
can often be an overestimation of the encryption parameters for the CNN model in
practice. However, the parameter estimation is based on the latest knowledge
currently available and that can be optimised for an improved estimation instead

of the upper bound.

147

Chapter 6

6 PROBABILISTIC OPTIMIZATION OF

ENCRYPTION PARAMETERS

In our previous part of the study, we devised and tested a novel and generic method
to determine the required encryption parameters for the evaluation of any feed-
forward convolutional neural network. However, it is observed that the parameters
are not optimal for every case because they are based on the upper boundary of the
noise value in the ciphertext. Therefore, it is necessary to examine the determined

parameters and to optimize them further for any specific case one may require.

For optimizing the determined parameters further, one avenue of investigation is
the reduction of the parameters based on a probabilistic method. The notion of
selecting parameters probabilistically is based on the likelihood of the most common
cases for which it will work flawlessly. However, in some cases, the possibility exists

that the encrypted operations will fail entirely because of a less likely noise value.

In this chapter, we explore a powerful method for selecting the initial encryption
parameters of a feed-forward convolutional neural network. The new proposed
method presents a statistical framework for a better approximation of the
encryption noise for the neural network under consideration. As a result, the
wastage of computing resources can be minimized by selecting tighter and more
practical encryption parameters. Furthermore, the new proposed framework allows
probabilities to be determined for decryption failures more accurately than the

widely used existing methods.

We name such a method for selecting encryption parameters the probabilistic

method of selecting encryption parameters. In contrast, the parameter selection

148

Chapter 6

mechanism shown in the previous parts of our study will be called the deterministic

method of parameter selection.

The motivation for the reduction of encryption parameters is that we can, first, gain
performance boost. Second, we will close the gap of theoretical to practical noise

growth.

6.1 Introduction

The solution of a convolutional neural network (CNN) to provide encrypted
inference results for encrypted private inputs is not a insignificant and trivial one.
This becomes further complicated when we consider the abundance of convolutional
neural network architectural models overlapped with the complexity of encryptions.
Nonetheless, in the previous parts of our study, we showed how one could utilize
the available knowledge of convolutional neural networks and homomorphic

encryptions to enable encrypted inferences.

Our work in this research primarily deals with the practical aspects of encrypted
classifications and inferences. Consequently, our focus has been on the
computational performance of evaluating an encrypted convolutional neural
network correctly in the least amount of CPU time. Owing to this focus, we first
addressed that how one can adopt homomorphic encryption within a vast array of
neural networks. As a second step, we show how one can find the initial encryption
parameters required for the correct evaluation of encrypted convolutional neural

networks.

The step of setting the initial parameters for any encryption scheme is important
and determines the most important characteristics of the schemes themselves. For

traditional encryption schemes, that do not allow operations directly on the

149

Chapter 6

ciphertexts, the important characteristics are the speediness of encryption or
decryptions steps, and the security of the encrypted ciphertext and their security
keys. Unlike the traditional schemes, there are additional characteristics to consider
for the homomorphic encryption schemes. These additional characteristics include
the speediness of the processing operations directly over the ciphertext; the
maximum number of operations correctly performable using a freshly encrypted
ciphertext; and the range of numbers permissible as input and output for the
encrypted operations. Therefore, the setting of the correct initial parameters has
become a more important step to take during the development of a system using a

homomorphic encryption scheme.

6.2 Motivation for a statistical noise analysis approach

Fully homomorphic encryption has rightly been called the holy grail of cryptography
for the wondrous applications that can benefit from it. In this regard, we have
focused our research goals on the practical aspects of homomorphic encryption
within neural networks. By practical aspects, we have focused our research to bridge
the gap between the latest cryptographic theory and implementations, and their

proper usage and execution in neural networks.

Murphy and Player, the authors of the latest noise estimates for the SEAL library
have also published their recent work [64] giving a similar framework for Ring-LWE
encryption schemes. In their paper [64], they analysed the symmetric key
homomorphic cryptosystem given by Lyubashevsky, Peikert and Regev [65] using a
statistical framework and compared this with the existing approaches for
approximating encryption parameters. After their analysis, they concluded that
their statistical approach determines probabilities more accurately and so gives rise
to better bounds for decryption failure probabilities in Ring-LWE than the widely

used sub-gaussian approach. Their research direction further encourages our

150

Chapter 6

research direction to design a more efficient parameter approximation mechanism

for evaluating a neural network using the SEAL library.

6.3 Problem Description

Owing to their importance, the initial parameters for evaluating an encrypted
convolutional neural network are necessarily highly optimized. Our method to find
the initial encryption parameters is very effective in suggesting encryption
parameters for a wide variety of networks irrespective of their complexity. However,

we saw room for further improvement to increase the computational performance.

To elucidate the problem statement, the deterministic method for selecting the
encryption parameters works by approximating for the maximum possible noise
values. It, therefore, selects encryption parameters from a pre-determined list of
secure parameters. In our implementation for a convolutional neural network, we
count the total number of operations that a single ciphertext goes through. After
this count, we approximate the encryption parameters for a single ciphertext to
complete the CNN inference in an encrypted form. The approximated encryption
parameters always result in selecting bigger parameters than required for the exact
computation. The reason for this over-approximation was found to be the original
estimations of noise growth for the encrypted operations. Therefore, there was a
need to tighten the estimate of noise growth for better approximation of encryption

parameters in CNN environments.

The method of calculating the total noise first and then suggesting the minimum
encryption parameters to cope with the calculated amount of noise is an effective
method. This method gives us the smallest encryption parameters required for the
upper-maximum boundary of the possible noise in the encrypted ciphertexts. The

handling of the upper noise boundary is effective; however, we do not see it as an

151

Chapter 6

efficient method. From our observations, we see that the determined parameters
sometimes have room for a few more operations to be performed on the ciphertexts.
Therefore, there is a wastage of computational and memory resources which can be

avoided.

The selection of encryption parameters for the most frequent amount of noise
instead of the maximum noise has associated benefits as well as penalties. The most
prominent benefit will be the improved computational performance due to smaller
parameters. In this way, the wastage of computational and memory resources can
be reduced. Conversely, the reduction in parameters can cause some homomorphic
operations to produce incorrect results. In cases where the noise within a ciphertext
is bigger than the parameters have been optimized for, the decryption step will yield

an incorrect result.

6.3.1 Main Contributions

This chapter examines a novel method of probabilistically optimising the
parameters for homomorphic encryption in the inference stage of neural networks.
To define the scope for practical reasons, this chapter explores the theoretical and
empirical feasibility of using a probabilistic method for optimising the encryption
parameters for the FV encryption scheme as implemented in SEAL. The
optimisation is based on the likelihood of the maximum noise threshold in the final

output(s) of a neural network.

6.4 Related Work

It is common to use analytic methods to set a very tight boundary of the random
noise with the required probability. Lyubashevsky et al. [65] gave a toolkit of
algorithms and analytical techniques that can be used in a variety of ring-based

cryptographic applications. Their analytic method for the noise bounds shows how

152

Chapter 6

one can adopt a statistical approach to find very tight boundary of noise with a
required probability. Their algorithms, for all the main cryptographic operations,
are able to execute faster relative to the best-known techniques. Among their
algorithms, they provided specialized techniques for the generation of noise terms
under probability distributions by guaranteeing the cryptographic hardness as well
as decoding of the noise terms of a ciphertext for decryption and related operations.
Besides the algorithms, they also provide analytical methods of bounding the noise
growth for operations like addition, multiplication, and discretization. Their
analytical methods give high level and generic analysis of noise terms for ring-LWE
based encryption schemes. In their proofs for the noise bounds in homomorphic
operations, they provided the statistical tail bound on sub-gaussian random

variables that can be used within applications.

In the same context, Murphy and Player [66] improved and corrected the statistical
analysis framework of Lyubashevsky et al. [65] for using the sub-gaussian random
variables to analyse noise growth of homomorphic operations. In comparison, these
derive the noise bounds by applying the central limit theorem to random variables

and show that this is a more correct approach.

In a separate work, Bos et al. [67] show that the calculation of probability for a
successful decryption is used commonly in the cryptographic community. In their
work, they provide several post-quantum cryptographic primitives, for their
encryption scheme, that are also secure against CPA (chosen-plaintext attacks).
More importantly, they also show the correctness of their scheme in terms of the
probability of successful decryption. Bos et al. state their definition of the

probability which has been implemented in their code as well Bos et al. Theorem 1

[67).

153

Chapter 6

6.5 Noise Analysis

We begin by first finding the probability density of the noise terms in any SEAL
ciphertext. For this, we will analyse and follow the lifecycle of the noise terms from

their generation step to the final decryption step.

We know the details of encryption and decryption from the existing literature as
detailed in section 2.3. The next step after understanding the decryption of a
ciphertext is the analysis of the noise polynomial v embedded in ciphertexts. From

section 2.3.9 above, we know that a SEAL ciphertext ct is represented as:

= ([ohorwrer |4 om] -
q

From a decryption perspective, the expansion of the public key in ¢t and removal

of the masking will provide the following polynomial to decrypt.

€8+ egu + ey + FJ -m} = [U+ FJ -m] .
t q t a

In this way, we can mathematically follow and extract the terms for the noise
polynomial v. Let us consider only the noise terms without our message m in the

ciphertext as in equation 2.2 section 2.3.9 above,
v =[eys +egu+ €],

After extracting the exact random terms from a ciphertext, we are able to calculate
the probability distribution from where all of the random coefficients for the
polynomial v are taken. The method to find the final probability distribution of v
will be to use the algebra for random variables in order to calculate the combined
mean and variance for all the terms in v (i.e., e, s, and u). These noise terms for v
are taken from known probability distributions as discussed subsequently.

Moreover, they are all encoded as positive values in the ciphertext, therefore, we

154

Chapter 6

will also take the absolute of the random values for our analysis. These calculations

are as follows.

6.5.1 Solving for e,

To find the mean and standard deviation for e; in v, we will have to consider how
it is generated as well as encoded into a ciphertext. The distribution of random
variables represented by e is known from the SEAL literature [22]. Therefore, we
start by taking a normal random variable r; having a mean p, of 0 and a standard

. . 8
deviation o, of Ners

(0(3)

We know from the SEAL implementation as well as theory that all the values are
integers, and they are only positive. In SEAL code, normal random values are
generated, their absolute is taken and then this is rounded off to the nearest integer.
Therefore, we will convert our normal random variables to folded normal random
variables [68]. This is done by taking the absolute of each of the r; which gives us
a folded normal variable e; without any negative values so that e, = |r;|. This

conversion will affect the new mean p, and standard deviation o, as follows [68].

2 —u? 7
= —_ _— f
e 0\/; exp (202> + per < 202)

After putting in the starting values of u and o, we get the following expression for

the mean p, for any single random variable e;:

—i\/g ex L +0-erf Y
Me \/% T P 2(8 2 < 5
\/27T 2(/27'[')

155

Chapter 6

He = 6.1

8
T
e = 2.546479089470325372302140213960229792551354331847303179962 ...

After finding the mean value for one of the folded normal variable, we find the

variance [68] as:

oz ba 6.2

o? = 3.701360604771684116800275210418350280326455748365433593731 ...

In other terms, the standard deviation of a single e random variable will be:

/32 64
o, =1/ ——— = 1.92389204602848860491610546681 ... 6.3
T

This outcome was confirmed experimentally as well, resulting in almost exact values

for the mean as well as the variance.

6.5.2 Solving for eju

To find the mean and standard deviation of e, x u, we will calculate for the product
of two random distributions. The ¢, is a folded normal distribution for which we
have already found the mean and variance in equation 6.1 and 6.2 respectively. The
second term of the product is a discrete uniform distribution w from the set
{—1,0,1}. However, we will take the absolute of this distribution resulting in a
distribution with the values of 0 and 1. After taking the absolute of the distribution,
probability distribution of —1 will be added onto the probability distribution of 1.

After understanding this, we will now calculate the mean and variance for e,u.

156

Chapter 6

6.52.1 Mean p,_,,

After taking the absolute of the discrete uniform distribution, we will get a

probability distribution of P 0 = %, and P 1 = % Therefore, the mean will be

~ 0.6666666667

+1-

[GVNN)
Wl N

Wl

Hy =0

The mean of e is the same as e; in equation 6.1, therefore

:ueou = :uco * My,

16
=3 ~ 1.697652726 6.4

2
3 T

8
s

6.5.2.2 Variance o2,

Similar to above, we find the variance

Hence, the standard deviation of u will be

5 V2
o, = \£ — g ~ 0.4714045208

The variance of e is the same as e; in equation 6.2, therefore

02eou—U2Xa2Y+a2X<uY)—|— Y(LLX)
32 64\ 2 N2 2 2
-(F2) 5 (G2 6) 5 ()
_192-m—256 4 00586126 6.5
9.72

157

Chapter 6

u

1192 - m — 256
o -
€o 9. 7T2

95— —9Fa
_ V1921 =256 0mr014448 6.6

3.7

Hence, the final standard deviation of o, , will be

This outcome was confirmed experimentally as well, resulting in almost exact values

for the mean as well as the variance.

6.5.3 Solving for eys

The mean and variance for e, s is the same as e,u. This is because the nature of the
random variables involved is the same. The e, and e, random variables have the
same mean and variance as shown in equation 6.1 and 6.2 respectively. Similarly,
the s and the u random variables have the same mean and variance. Therefore, the

mean and variance for e,s will be as follows.

The mean p,_, of the product of e,s will be

8 16
— . - ="~ 1.697652726 6.7
T 3

2
3 T

The variance UZQS of eys similar to equation 6.5 will be

, 192.7—256
e

~ 3.908586126 6.8

6.5.4 Calculating for v

We summarise the means and variances of all the random variables for v in Table

6-1.

158

Chapter 6

Table 6-1 Mean and variance of the terms of v

Term Mean Variance

8 32 64

e, © ~ 2.546479089 = 2~ 3.701360605
N T T
16 192 - 7 — 256

eott | — ~ 1697652726 —— =22 & 3.908586126
3 9. 72
16 192 - 7 — 256

eys | — A~ 1607652726 727 1 3.908586126
37 9. 72

The next step is to sum the three random variables as calculated above for v. Recall

that the v polynomial is represented as:
v=leys + eyu + 61]q

The final mean value of the random variable v is the sum of all the mean values of

its terms. This will be as follows.

8 16 16 56
My =—+ —+—=-—~5.941784542 6.9
T 37 3@ 3.7

Moreover, the sum of the variances of the terms of v will be as follows.

5 (32 64) " (192 “T— 256) N (192 ST — 256)

O‘ g
v T 2 9. 72 9.72

6727 — 1088

9.2 ~ 11.51853286 6.10
T

Hence, the final standard deviation for v will be

~ 3.393896412 6.11

B \/672.7r—1088_ V672 -7 — 1088
v 9-72 3.7

159

Chapter 6
6.5.5 Experimental analysis

The mean and variance values were independently confirmed with a repeated Monte
Carlo simulation of our theoretical analysis. The simulation was performed through
python code in SageMath” (explained in 5.2.4 above) by generating huge arrays of
random numbers and combining them through same arithmetic operations to create
a final array of values representing v. The simulation results yielded same or
extremely close values. The density histograms from the simulations are shown in

Figure 6-1 to Figure 6-5 and display as below:

Histogram of raw values r Histogram of ey
0.25

01z
0.20

E‘ 0.10 -E'
2 2
8 0.08 8 0.15
B B
= 0.06 =
4 £ p1o
F=] F=]
S 0.04 2
=9 =9
0.05
0.02
0.00 0.00
-16 -12 -8 —4 o 4 a 12 16 o1 2 3 4 5 6 7 8 9 10 11 12 13 14 13
=
Figure 6-1 Histogram of the simulation of Figure 6-2 Histogram of the simulation of
normal random variables r in section 6.5.1 folded normal variables e in section 6.5.1
Histogram of egu Histogram of ;5
0.40 0.40
0.35 0.35
%' 0.30 E‘ 0.30
=1 =1
o o
& 0.25 & 0.25
B B
= 0.20 = 0.20
8 8
-] -]
@ 0.15 @ 0.15
* o1o * o1o
0.05 0.05
0.00 0.00
o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
el es

7 https://www.sagemath.org/

160

Chapter 6

Figure 6-3 Histogram of the simulation of Figure 6-4 Histogram of the simulation of

random variables in section 6.5.2 random variables in section 6.5.3

Histogram of v

0.08

0.06

0.04

Probability Density

0.02

0.00
=5 0 3 10 15 20 25

Figure 6-5 Histogram of the simulation of random variable in section 6.5.4

Interestingly, the simulated v in Figure 6-5 shows that the final random distribution
of v looks like a log-normal distribution. For this distribution, we know the mean
w,, and the variance o2. However, we must be cautious and consider that this is an
independent analysis of only the noise coefficients apart from the encryption scheme.
In the encryption scheme, these coefficients are part of the encryption ciphertexts

with the coefficients modulo ¢q. The negative values, for example —v,, in SEAL are

encoded as ¢ — —v, mod g for each of the negative value coefficients.

In this section until now, we have calculated the mean, variance, and standard
deviation of noise within a ciphertext. Next, we will see how this analysis can help
us to find the change in the distribution of noise coefficients after homomorphic

operations.

6.6 Noise after homomorphic operations

In the FV scheme, we are able to perform addition and multiplication of numbers

despite the fact that they are still encrypted. Any homomorphic operation

161

Chapter 6

performed over the ciphertexts will give us another ciphertext as a result. The
resultant ciphertext will hold the outcome of the operation, say addition or
multiplication, along with the noise v. The noise value in the resultant ciphertext
increases with the number of consecutive homomorphic operations when the
resultant ciphertext of a previous homomorphic operation is used. For a better
understanding of this increase of noise, we provide a similar analysis to that of

Hardy [69]. This is given below.

6.6.1 Homomorphic addition of two ciphertexts

Consider two ciphertexts ct, and ct;,, both encrypted under the same encryption
keys.

Cta, = <|:pk:(] “U, e+ L%J ’ ma} s [pkl “Ug + 62](1)

q

q
Ctb = (|:pk0 . ub + 63 + LZJ : mbi| 9 [pkl : U’b + 64](])

a
The two ciphertexts ct, and ct,, use the same public key polynomial pairs of
pky = [—as +e¢], and pk; =a generated under the same n,t,q initialization
parameters. However, the noise polynomials of the ciphertexts are different. These
are the u, and u,, and the e,, e,, e4, €, noisy error polynomials. The addition of the

two ciphertexts can be stated as below:
ct, =ct, + ct,

- ([p]{:o U, ey + EJ : ma] , [pky - uy + 62]q>

q

+ ({Pko Sy, + ey + EJ : Tnb} [pky - uy, + e4]q>

q

q
= (Ipko- wat+uw, + extey +|3]- mu+m,],

[pkl C Uy T Uy T+ <€2 + e4>]q)

= (ko e + s +[5]mdy s R e+ (e)],)

162

Chapter 6

From the above simplification, we see that the noisy error terms are fundamentally
combined into new error terms by a direct addition. This is shown in the noise
estimate for adding the two ciphertexts having noise v, and v, in the SEAL

documentation (see Appendix A) as:
Vo = Y, + Uy
Irrespective of the scaling by [7], the resultant message m,. is ultimately a direct

addition within the ciphertext. The final ciphertext ct, is represented as below with

new noise terms.
q
ct, = ([pko “U, T+ e5 Tt EJ ’ m(:]q? [pky - u,. + 66]q>

From a decryption perspective, the expansion of the public key in ct. and removal

of the masking in the similar way will provide the following polynomial to decrypt.

= [eﬁs +eu,. +e5+ FJ . mc]

el

From this polynomial, we can extract the same terms for the noise polynomial v as:
v =[egs +egu, + eS]q

Here, as long as the new noise values are not too large, then we can decrypt the
result successfully. To be more specific, if any of the coefficient in the noise
q

polynomials is bigger than [£| —% then the decryption will fail. This is based on

the proof given by Player in Lemma 35 [57].

6.6.2 Homomorphic multiplication of two ciphertexts

The noise estimate for multiplying two ciphertexts as given in the SEAL

documentation (see Appendix A) is:

163

Chapter 6

Jo J1+io
2

v, =1t-vV3n- 12n%-v2+ 12n 2 v, + 12n 2

We treat the noise v as randomly distributed and find the mean and standard
deviation of the output noise v,. Both the input ciphertexts have the mean p, and

standard deviation o,. These are given in Table 6-2 and Table 6-3.

Table 6-2 Defining the u and o of v in the operands for a ciphertext product.

Ciphertext ct,

Ciphertext ct,

Mean p, SD o, Mean pu, SD o,
12n 7 - Iy 12n 7 - oy 12n 7 - fho 12n 7 - ol

We calculate the Mean p,, and Standard Deviation o, of the output noise as:

Table 6-3 Calculation steps for finding u and o of v in a ciphertext product.

Mean p,, Standard Deviation o,
:[12n%-u1}+{12n%'ﬂz} =[12nj71~01r+[12nj72~02r
- [12n%.ﬂl} + [12nj72-,u2}

+ 12n %
=t \/%{[1271/?1 ,ul} =t-V3n
Jy 2 Ja 2
+[12nJ72 ,u2} \/{12n2 Ul}+[12n7 02}
+ 12n %}
Simplifying:
:t-\/%~\/12n Ji-0? 4+ 12n Iz - 03

From the calculation and simplifications shown in Table 6-3, we get the following

mean and standard deviation for the noise in the product of two ciphertexts.

164

Chapter 6

/’1 /‘2 /’1+/’2
u,”:t~\/3n~{[12n17-,u1} + [12nj7~u2] + 12nJ 2 } 6.12

o, = t-vV3n - \/ 12n J1 - O'% + 12n J2 . O'% 613

6.6.3 Squaring a ciphertext

When we multiply a ciphertext ct; with another ciphertext ct, that have noises v,
and v, respectively, and have polynomial array sizes of j; and j,, respectively, then
the maximum noise v, in the output will be calculated as:

'/‘ '/‘ q +¢‘
v, =1-vV3n- 12n171-1)2+ 12n172-vl+ 12n 2"

As both the ciphertexts are the same in the case of square, we set the polynomial
array sizes j; and j, to be j, and similarly use v instead of v; and v,. each with the
same value because both the ciphertexts are the same. If we are always keeping the
array size of the ciphertext polynomial to its smallest value, j = 2, then this formula
can be further simplified as to get our un-relinearized ciphertext maximum noise v,

as:

q ./‘ ./‘_’_./‘
v, =1t-vV3n- [12n %'U¢+ 12n%-v,,;+ 12n %]

=t-/3Bn-[2271.3%2 .y, 0?2 4 12207
=t-/3n (144n? + 24nv,) 6.14

So, from the equation above, if we have input noise v;, then we get v, as our output
noise by following these steps:

1. Multiply 24 - n with v,.

2. Add 144n? to the noise in step 1.

3. Multiply t - v/3n to the noise in step 2.

165

Chapter 6

4. Add the number 7,

-o1in, fOT the noise of relinearization performed through the

equation 2.3 on page 36.

2t
v, = v; + — - minimum{B,6c}- J—K -n- [+1 -z
q

2t
=— -min{B,6c}- J—K n- [+1 -z
q

where r,

Vo =Y +r relin

relin

Here, minimum{B, 60} is taken as the minimum of the maximum noise deviation
value B, and the noise standard deviation times six as 6¢. Then the J is the current
polynomial array size of the ciphertext (which in our case will be 3 after C' x C)
and K is the target polynomial array size of the ciphertext (which in our case is 2).
The (I + 1) corresponds to the evaluation key size. Here, z is the number base for

the relinearization.

Now that we have established the steps to find the maximum noise boundary after
a square function, we can calculate the mean and standard deviation for the output
random noise. Let us consider that the ciphertext had mean p, and standard
deviation o, before the square function. Then by following the four steps of

calculation from above, we will get:

1. The mean as 24n - u,,, and the standard deviation as 24n - o,
2. The mean as 144n? + 24n - u, , and the standard deviation as 24n - o,
3. The mean as t - v/3n - [144n? + 24n - u, |, and the standard deviation as t -

Vv3n- 24n-o,
4. The mean as {t-+/3n-[144n®+ 24n-pu, |} +

relin?

and the standard

deviation as t - v3n - 24n-o, .

166

Chapter 6

The distribution of the random noise in a ciphertext having an initial mean g, and

the standard deviation o, as follows:

Hsquare = {t “V3n - [144712 + 24n - Moy]} + Tretin 6.15
Osquare — t-v3n- 24n - Ty 6.16

6.6.4 Concrete effect of homomorphic operations

Putting the values in the maximum noise estimates provided by SEAL (as shown
in Appendix A) gives us the values for mean and standard deviation of the changed

distribution of the noise. Table 6-4 summarises the effect on the noise distribution.

Table 6-4 Effect of Ciphertext operations on the noise

Step Mean My SD Oy
Fresh 96 V672 - — 1088
3.7 3-m
Encryption ~ 5.941784542 ~ 3.393896412
Plaintext
My X Nm, : ”m” 0, X Nm : ”m”
Multiplication
Plaintext
g mod t
Moy (’ Nm, : ”m“) Oy
Addition
Ciphertext
oy + oy o3 + 03
Addition
Square +
{t-V3n-[144n? + 24n - p, |} + Trerin t-V3n- 24n- o,
Relinearize
J J
Ciphertext t-v3n- {[12n 2 - ul} + [12n % - ,LL2:| t-v/3n
Multiplication + 12n ’4%2} . \/ 12n 71 - 0% 4+ 12n J2 - o3

167

Chapter 6

6.7 Noise after processing a single neuron

In order to calculate for a full network, we will have to start from a single neuron.
The arithmetic operations after a single neuron will yield a single output ciphertext,

say ct_, as the output of the neuron. Whereas, there can be i ciphertext inputs to

o)

the neuron. The precise sequence of operations performed to produce the output

from the inputs will be as follows:
e Input multiplied with weight value:
ciphertext x plaintext (incurs v,,,,;;)
e Summation of all the weighted values:
ciphertext + ciphertext (incurs v,,,,)
¢ Adding of the bias value:
ciphertext + plaintext (incurs v,,,4,)

Recall that each operation will incur a certain random noise represented by
corresponding v. As we have already found the random distribution for the noise
terms, we will now consolidate them to find the precise random distribution of the

noise in the output ciphertext ct,,.

In a neuron, first each input ciphertext ct, will be multiplied by its corresponding
plaintext weight value. Since these operations are performed independently of each
other, therefore the noise distribution will be the same for each of the weighted
products. Consider that the plaintext weight value has a maximum range of
N,, - |m| . Then the noise distribution of each of the weighted encrypted products

will have

56
/’l’l)'m,ult = 3—7_[_ X Nm ’ HTTLH

Tty = 3:393896412 x N, - [m] 2

m

168

Chapter 6

Next, these weighted products are added together to produce a single encrypted
weighted sum. The encrypted sum will incur a noise, say v, 4, and this depends on
the total number of inputs i to be added together. Therefore, the weighted sum will

have a noise distribution as

Headd = lu’p’m/u,lt X1

— ;2
Ocadd = O-p’m/u,lf, X

Next, we add a bias value to the sum to produce the final noise distribution after a

For this, we will have to add a plaintext constant, say P

neuron, say v max’

neuron’
to U.,4q to represent the addition of the bias value with the weighted sum in a

neuron. The maximum value of the bias value is represented by

p _qmodt.

max ~
q

Nm : ”TTL”

Therefore, putting the values in v, ,, we get the distribution of v as follows.

neuron

For the mean based on Table 6-4,

g mod t
Hneuron = Meadd + (T X Nm X ||m||)

q mod t

= (M ¥ 1) + (X Ny, X [m])

56 dt
- K— N,, x |m]) x] + 120N, x Im
3.7 q

<q mod ¢t 56 x i
= +
q 3

) ‘N, % |m] 6.17

For the standard deviation based on Table 6-4, we put in the values and get

— -2
Oneuron — O-pmult X1

= 3.393806412 x N, - |m] 2 x i2 6.18

169

Chapter 6

Based on equations 6.17 and 6.18, Table 6-5 summarizes the distribution of the

noise v

Here, for any single neuron of the first layer in a neural network, v

neuron

in the output from a single neuron.

Table 6-5 Distribution of noise after a single neuron

/’1/711(1’11/7'()'(1,

O-’IZ euron

(qmodt 56 X 1
+7

) Ny x Jmi
q 3T

3.393896412 x N, - |m] 2 x i?

neuron Le€Presents

the random distribution from which each of the coefficients of the noise in ct, is

sampled. This finding will help us find the noise for a complete neural network.

From the perspective of the first layer in a network, all the ciphertext outputs will

have the same distribution as characterized in equations 6.17 and 6.18. A summary

of the procedure for calculating the equations is presented in Table 6-6 below.

Table 6-6 Effect of homomorphic operations on the noise in a weighted layer of a neural network

Step

Description

Generate random
noise variates and
perform encryption
of input

Multiply encrypted
ciphertext with a
plaintext weight
value

Sum all the

weighted products

Change in Mean p,, Change in SD o,
672 -7 — 1088
56 5941784549 VOIZ T 0% 3.393896412
3-m 3.7
Moy X Nm . ||m|| 0, X Nm, ' ”m”
o, + g+ 0 +0f + -

170

Chapter 6

Add the plaintext

dt
4 bias value to the Mgy T+ (q m;) N, - ||m||) Oy

weighted sum.

A similar procedure will be adopted for further layers by calculating the mean and

standard deviation until the final layer.

Next, we will see how this knowledge can be used for optimizing encryption

parameters.

6.8 Probabilistic Optimization Method

Once we find the noise distribution of our final layer then we can find the probability
of our maximum acceptable noise within the final distribution. According to the
proof given in Lemma 35 of Player [57], the maximum noise value for any particular
combination of ¢ and ¢ will be [£] —L An algorithm is devised to find the exact

2t

probability for the successful decryption of a ciphertext.

Algorithm 1: Finding probability of successful decryption.

Algorithm 1: Finding the probability of a successful decryption

Input: Encryption parameters: g,n,t, Ciphertext: ¢t
Output: probability of decrypting ct successfully.
1 Calculate the mean /:.; and the standard deviation o.; for the noise in ct;

2 Calculate the maximum noise value that can be decrypted using the encryption parameters using
t
Umaxz = ;_t - 5;

3 Find and return 1—(the Probability of v, or greater) in the noise distribution having ;..; and o_; ;

6.9 Validation and implementation of the statistical noise

analysis approach

The algorithm as stated above has 3 main independent steps to find the exact
probability for a successful decryption. Step 1 deals with the calculation of the mean

and standard deviation. This has been given in detail in sections 6.5, 6.6, and 6.7.

171

Chapter 6

Step 2 is trivial and only requires putting the values of the encryption parameters

q and ¢t in the equation to find the maximum decryptable noise value.

However, step 3 requires us to know the shape and nature of the probability
distribution for which we have calculated the mean and standard deviation. From
our simulation as shown in section 6.5.5 above, we saw that the final distribution
of the noise was shaped as a normal distribution, as shown in Figure 6-5. However,
the histogram of the simulated noise only shows the random distribution
independent of the encoding mechanism used in the SEAL encryption. Therefore,
we performed two independent validation tests to find more precise information
about the final probability distribution. These tests will also serve as a validation

for the working of the probabilistic parameter optimization method.

First, we tried checking the probability of the maximum noise coefficient value in
known distributions like the normal distribution and folded normal distribution.
For this, a SageMath® module (explained in 5.2.4 above) was developed so that
there is not a limitation on how huge the numbers can get. This module takes a
convolutional neural network and SEAL encryption parameters as inputs. The input
of a convolutional neural network can have any number of layers or
hyperparameters. Similarly, the encryption parameters can be any value regardless
of the limitations set in the SEAL library. The outputs of our SageMath module
are the means and standard deviations of the noise after each layer; and the
probability of the maximum noise coefficient if it is within known random
distributions like the normal distribution. That probability, however, is already
known to be incorrect because the noise distribution is not a normal distribution as

seen in the Monte Carlo simulation in 6.5.5 above. Moreover, the SEAL encoding

8 https://www.sagemath.org/

172

Chapter 6

mechanism maps into positive integers only. This method of validation needs to
have a concrete probability density function that is beyond the scope of this study.

The final noise in a ciphertext shows to be a mixed probability distribution.

For a second and more direct type of validation, the SEAL library code was
modified, and a method was created to return the complete noise polynomial of a
ciphertext. The noise polynomials have n + 1 coefficients as per the set polynomial

modulus n of the ciphertext.

For direct validating using the extracted noise polynomials, the best candidate was
the CryptoNets inference network. Therefore, the CryptoNets was run repeatedly
for a large number of times and the noise polynomials of the final outputs were
extracted. The execution of CryptoNets was done carefully and the exact same set
of inputs were given to produce the same outputs. The network outputs 10
ciphertexts representing the 10 MNIST classes. For each of the 10 outputs, there
were 8193 noise coefficients for the set encryption parameter n = 8192. All of these
coefficients for each of the output were averaged over the repeated executions. The

findings are as follows.

6.10 Findings

Our findings, from analysis of the extracted noise from the encrypted outputs of
CryptoNets, are shown in Figure 6-6, Figure 6-7, and Figure 6-8. The noise
coefficients are very big numbers; therefore, they were min-max normalized to lie
between zero and one. In Figure 6-6, we see the histograms of the noise polynomials
from all of the outputs of CryptoNets. All of the outputs show a mixed distribution,
which is certainly not a normal distribution. These histograms are also shown in a
3-dimensional chart in Figure 6-8 for a better view. For these outputs, a probability

density diagram is shown in Figure 6-7. The conclusion from these diagrams is that

173

Chapter 6

the final noise distribution in a SEAL ciphertext is a mixed distribution. On a side
note, the value of 0 has a very high frequency count. Recall that this was evident
in the histograms of our Monte Carlo simulation shown in Figure 6-1 to Figure 6-5

as well.

The Algorithm 1 on page 171 gives a new approach of approximating and optimising
the SEAL encryption parameters for a convolutional neural network. Although, the
current investigation was unable to find an exact probability value for the step 3 of
the algorithm, this was only because the final probability distribution has been
found as a mixture distribution for which the statistical probability density and

cumulative density functions are not yet known.

Histogram of Noise Coefficients for the 10 outputs of CryptoNet

2000
0
. 1500 1
-
3 2
O 3
>
2 4
2 1000 5
(o8
@ 6
L 7
i 8
) ““ |
II| ‘lll ;lilili“il:.-
0 I 1
0.0 0.2 04 06 0.8 10

Noise (normalized)

Figure 6-6 Histograms of noise coefficients for the 10 outputs of CryptoNets

174

07

Probability Density
o o o o o
[i%] w I w [=2]

o
-

0.0

Chapter 6

Probability Density of Noise Coefficients for the 10 outputs of CryptoNet

[i= TR = T4 4 I R =

00 02 04 06 08 1.0
Noise (normalized)

Figure 6-7 Probability density of noise coefficients for the 10 outputs of CryptoNets

175

Chapter 6

2000
=1750

=1500

=1250

=1000

Frequency

= a0
=~ 500
= 260

Figure 6-8 3-D Histograms of noise coefficients for the 10 outputs of CryptoNets

6.11 Summary

Despite its exploratory nature, this study offers several noteworthy contributions to

the existing knowledge of encrypted operations in general, and encrypted
convolutional neural networks in particular.

In this chapter, we have seen a novel view of the noise and its growth in a ciphertext.
The knowledge of the noise as a random variable in a ciphertext holds significant

importance for making practical improvements for a convolutional neural network

especially, and other applications in general.

176

Chapter 7

7 CONCLUSION

Performing computation on encrypted data is termed as the holy grail of
cryptography. In today’s service-oriented nature of the internet, we have very
mature neural networks that can help us to understand our data by arranging it to

known classes. This study has sought the integration of these two technologies.

This dissertation discusses the current issues and gaps for privacy-preserving
classification networks; and suggests possible solutions in terms of implementation

and practical adoption of homomorphic encryption.

This thesis begins by setting the research goals and setting the scope. This is
followed by the introduction and of the two technologies, i.e., convolutional neural
network and homomorphic encryption. In this regard, the latest code libraries of
homomorphic encryption are reviewed and SEAL [22] is selected for practical
adoption and implementation. This is followed by reviewing related works and their
shortcomings to position this research. Subsequently, the technical challenges in
adopting state-of-the-art homomorphic encryption schemes within convolutional

neural network are expounded.

Following the background knowledge, a detailed design and the architecture of our
proposed dual-cloud system is presented. The main motivation for developing the
system was to overcome all the technical challenges highlighted earlier while
performing privacy-preserving classification. Our dual-cloud system uses a partially
homomorphic encryption scheme over two cloud systems. In our dual-cloud system,

there is a trade-off in performance due to the networked entities involved.

177

Chapter 7

Next, we show the usage of fully homomorphic encryption in a convolutional neural
network with a focus on the encryption parameter selection. We show how one can
select very fine-tuned encryption parameters for any feed-forward convolutional
neural network. This results in a comprehensive method for automating the
selection of encryption parameters of a convolutional neural network. Based on this,
we then show the effects of varying the parameters of convolutional neural network

and homomorphic encryption on each other.

Following this, insights and practical optimisation techniques of using homomorphic
encryption are discussed using the case studies of well-known convolutional neural

networks.

Afterwards, a novel method of optimising the encryption parameters is proposed
using a probabilistic approach. Our probabilistic method of selecting and optimising
encryption parameters can predict the exact decryption probability for a ciphertext.
This holds significant value for both the designers of a convolutional neural network
as well as homomorphic encryption schemes. Our probabilistic method is optimised
for a convolutional neural network; however, it is generic enough to be adopted in
other application areas as well. A comprehensive mathematical model and computer
algorithm is developed to find out the probability of a successful decryption. During
the research work for the probabilistic method, the SEAL library was modified to
return the actual noise polynomials from a ciphertext. This was used to check the
validity of our mathematical model with that of the practical implementation and
it held extremely accurate. The final random distribution of the noise polynomial
in a ciphertext is found to be a mixed distribution. Unhappily, this finding makes
it beyond the scope of this study to find the density function for the particular

distribution.

178

Chapter 7

7.1 Major works in our research

In our research, we aimed to improve the state of the privacy in online
computations. For this purpose, we have presented several works that all contribute
towards this goal. Here, we will try to summarise all our presented works from a

broader perspective.

Primarily, there are three interconnected works of significance. The first of these
works (presented in Chapter 3) is about a novel implementation of a partially
homomorphic encryption scheme to evaluate a neural network. As a self-criticism,
we saw that the partially homomorphic encryption scheme supports only a single
direct arithmetic operation i.e., addition of ciphertexts. Moreover, this system
requires non-colluding dual cloud architecture. Although this system is very
effective in privacy-preserving classification, we wanted to improve it further and
explore in the direction of using a fully homomorphic scheme as a single cloud

solution instead of dual-cloud.

Consequently, this exploration led us to produce our second major work as presented
in Chapter 4 and 5. In the second major work, we overcame our requirement of a
dual-cloud architecture and presented the details of using a single cloud
architecture. Moreover, this work uses a fully homomorphic encryption scheme. For
this purpose, we presented the novel method of selecting precise encryption

parameters for the inference of any convolutional neural network.

Although our second major work emphasised the use of precise encryption
parameters using deterministic mathematical formulas, from our experiments we
found that there is still some room for improvement. The method of selecting
encryption parameters deterministically were always correct but were bigger than

required and not optimal in practical cases. Therefore, in our third major work (as

179

Chapter 7

presented in chapter 6), we explored a novel approach of optimising the encryption
parameters for the most probable cases used in practice. We name this approach as

the probabilistic optimization of encryption parameters.

All of the above three major works are connected with the aim to perform optimised

privacy-preserving classifications.

7.2 Social Impact of our work

From the start, this research has aimed to achieve a more practical and privacy-
preserving setup in which neural networks are used and deployed across services.
These services can be untrusted third-party organisations that can be equipped with
our proposed techniques to provide classification results on our private data. We
believe that we have achieved this by presenting implementation and optimisations

techniques for practical cases.

In section 2.1, we presented some of the obvious areas where we require privacy-
preserving classification technologies. For example, consider the image classification
system we mentioned for forensic purposes. In such a setup we have a central
database of criminals across the globe, and we try to match new images with the
ones already in the database to find similarity of faces and objects. Here, not every
country will have legislations to upload the images of their citizens to an online
personnel identification service. Therefore, in order not to share the new images in
a form that is understandable to third-party services, we can use an encrypt
classification system of images. This way, our input image will be encrypted and

not understandable to the third-party service.

We can extend the same example to a medical classification service where the input
images are private medical imagery of patients. An encrypted medical imagery

classification service will not only retain the privacy of the patients, but also

180

Chapter 7

continue to improve their system for accurate classifications by using other plaintext
datasets, and state-of-the-art machine learning scientific advancements. This way,
the hospitals will be receiving scientifically accurate and up to date classification

results within a privacy-preserving manner.

7.3 Future Research Directions

The current study has opened several pathways for future research. Some of them

are summarized below.

The proposed dual-cloud model can be converted to a fully homomorphic scheme
instead of a partially homomorphic scheme. The benefit could be that a wider
variety of operations required by applications will be supported. However, the
downside can be the loss of performance due to a computationally heavy encryption
scheme. Nonetheless, as mentioned in the related works section 2.5, researchers have
been proposing faster homomorphic encryption schemes that support a wide range

of numerical operations that can be explored.

Presently, part of our research has focused on the use of the FV homomorphic
encryption scheme as implemented in SEAL. Parameter estimation and
implementation of other types of homomorphic encryption schemes like the CKKS

[23] can be explored.

In our current research, we have been working only on feed-forward neural networks.
The most prominent example is the convolutional neural networks. However, there
are several other architectures of neural networks, like the recurrent neural

networks, can be explored for evaluation using homomorphic encryption.

In one of our works in this research, we focused on the statistical approximation of

encryption parameters. This involves the estimation of the random noise polynomial

181

Chapter 7

within a given ciphertext after passing it through certain homomorphic operations.
However, during our work, we faced hurdles in finding the exact statistical functions
for probability and cumulative densities of the random noise polynomial. We used
the Monte Carlo simulations to fulfil our needs. However, these functions can be
explored for not only the optimization of encryption parameters, but for evaluating

the security characteristics of an encryption scheme.

182

REFERENCES AND BIBLIOGRAPHY

1]

N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and J.
Wernsing, “CryptoNets: Applying neural networks to Encrypted data with
high throughput and accuracy - Microsoft research,” in International
Conference on Machine Learning, 2016, pp. 201-210, [Online]. Available:

http://research.microsoft.com/apps/pubs/?id=260989.

C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “Gazelle: A Low
Latency Framework for Secure Neural Network Inference,” in Proceedings of
the 27th USENIX Conference on Security Symposium, Aug. 2018, pp. 1651—

1668, doi: 10.5555/3277203.3277326.

E. Hesamifard, H. Takabi, and M. Ghasemi, “CryptoDL: Deep Neural
Networks over Encrypted Data,” arXiv Prepr., pp. 1-21, Nov. 2017, Accessed:

Sep. 19, 2020. [Online]. Available: http://arxiv.org/abs/1711.05189.

F. Armknecht et al., “A Guide to Fully Homomorphic Encryption,” IACR

Cryptol. ePrint Arch., 2015, doi: 1192.

L. Stevens, “Big Read: What does Google DeepMind want with the NHS?,”
Digital Health, 2017. https://www.digitalhealth.net/2017/03/deepmind-

mustafa-suleyman-interview/ (accessed Jun. 24, 2017).

Y. C. Chang and C. J. Lu, “Oblivious polynomial evaluation and oblivious
neural learning,” Theor. Comput. Sci., vol. 341, pp. 39-54, Sep. 2005, doi:

10.1016/j.tcs.2005.03.049.

Y. LeCun, C. Cortes, and C. J. C. Burges, “The MNIST database of

183

8]

[9]

[10]

[11]

[12]

[13]

[14]

handwritten digits,” 1998. http://yann.lecun.com/exdb/mnist/.

R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On Data Banks and Privacy
Homomorphisms,” Found. Secur. Comput., vol. 4, no. 11, pp. 169-180, 1978,
[Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.500.3989&rep=re

pl&type=pdf.

T. Elgamal, “A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms,” IEEE Trans. Inf. Theory, vol. 31, no. 4, pp. 469472,

1985, doi: 10.1109/TIT.1985.1057074.

P. Paillier, “Public-key cryptosystems based on composite degree residuosity

)

classes,” in Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1999,

vol. 1592, pp. 223-238, doi: 10.1007/3-540-48910-X__16.

R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp.

120-126, Feb. 1978, doi: 10.1145/359340.359342.

K. Peng, C. Boyd, and E. Dawson, “A Multiplicative Homomorphic Sealed-
Bid Auction Based on Goldwasser-Micali Encryption,” in Information
Security: 8th International Conference, ISC 2005, Singapore, September 20-
23, 2005. Proceedings, J. Zhou, J. Lopez, R. H. Deng, and F. Bao, Eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 374-388.

D. Boneh, E. Goh, and K. Nissim, “Evaluating 2-DNF formulas on
ciphertexts,” Theory Cryptogr., pp. 325-341, 2005, doi: 10.1007/978-3-540-

30576-7__18.

M. Baryalai, J. Jang-Jaccard, and D. Liu, “Towards privacy-preserving

184

[15]

[16]

[19]

[20]

[21]

[22]

[23]

classification in neural networks,” in 2016 14th Annual Conference on
Privacy, Security and Trust (PST), Dec. 2016, pp. 392-399, doi:

10.1109/PST.2016.7906962.

[. Damgard and M. Jurik, “A Generalisation, a Simplification and Some
Applications of Paillier’s Probabilistic Public-Key System,” in PKC' 2001:

Public Key Cryptography, no. December, Springer, 2001, pp. 119-136.

Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “Fully Homomorphic
Encryption without Bootstrapping,” IACR Cryptol. ePrint Arch., 2011,

[Online]. Available: http://eprint.iacr.org/2011/277.

F. Armknecht et al., “A Guide to Fully Homomorphic Encryption,” IACR

Cryptol. ePrint Arch., 2015.

M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can homomorphic
encryption be practical?,” Proc. 3rd ACM Work. Cloud Comput. Secur.

Work. - CCSW 11, pp. 113-124, 2011, doi: 10.1145/2046660.2046682.

C. Gentry, “Fully Homomorphic Encryption Using Ideal Lattices,” in
STOC09 Proceedings of the forty-first annual ACM symposium on theory of

computing, 2009, pp. 169-178.

C. Gentry, “A Fully Homomorphic Encryption Scheme,” PhD Thesis,

Stanford University, 2009.

J. Fan and F. Vercauteren, “Somewhat Practical Fully Homomorphic
Encryption,” Proc. 15th Int. Conf. Pract. Theory Public Key Cryptogr., pp.

1-16, 2012, [Online]. Available: https://eprint.iacr.org/2012/144.
K. Laine, Microsoft SEAL (release 2.3.1). Microsoft Research, 2018.

J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic Encryption for

185

[24]

[25]

[26]

[27]

28]

[30]

[31]

Arithmetic of Approximate Numbers,” Adv. Cryptol. — ASIACRYPT 2017,

pp. 409-437, 2017, doi: 10.1007/978-3-319-70694-8 15.

S. Halevi, “HElib - an implementation of homomorphic encryption.”

http://shaih.github.io/HElib/.

K. Laine, H. Chen, and R. Player, Microsoft SEAL (release 2.1). Microsoft

Research, 2016.

N. P. Smart and F. Vercauteren, “Fully homomorphic SIMD operations,”
Cryptol. ePrint Arch., 2011, [Online]. Available:

http://eprint.iacr.org/2011/133.

S. Halevi and V. Shoup, “Bootstrapping for HEIlib,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), vol. 9056, 2015, pp. 641-670.

W. Dai and B. Sunar, “cuHE: A homomorphic encryption accelerator
library,” in Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2016,

vol. 9540, pp. 169-186, doi: 10.1007/978-3-319-29172-7_11.

A. Lopez-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption,” Proc.
44th Symp. Theory Comput. - STOC 12, pp. 1219-1234, 2012, doi:

10.1145/2213977.2214086.

Y. Doréz, Y. Hu, and B. Sunar, “Homomorphic AES Evaluation using
NTRU.,” Cryptol. ePrint Arch., pp. 1-16, 2014, [Online]. Available:

https://eprint.iacr.org/2014,/039.pdf.

L. Ducas and D. Micciancio, “FHEW: Bootstrapping Homomorphic

Encryption in Less Than a Second,” in Lecture Notes in Computer Science

186

[32]

[33]

[34]

[35]

[36]

[37]

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), vol. 9056, Springer, 2015, pp. 617-640.

C. Dwork, “Differential Privacy,” in Automata, Languages and Programming:
33rd International Colloguium, ICALP 2006, Venice, Italy, July 10-14, 2006,
Proceedings, Part II, M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 1-12.

S. U. Bazai, J. Jang-Jaccard, and X. Zhang, “A Privacy Preserving Platform
for MapReduce,” in Communications in Computer and Information Science,

vol. 490, Springer, 2017, pp. 88-99.

T. van Elsloo, G. Patrini, and H. Ivey-Law, “SEALion: a Framework for
Neural Network Inference on Encrypted Data,” arXiv Prepr., 2019, [Online].

Available: http://arxiv.org/abs/1904.12840.

R. Dathathri et al., “Chet: An optimizing compiler for fully-homomorphic
neural-network inferencing,” Proc. ACM SIGPLAN Conf. Program. Lang.

Des. Implement., pp. 142-156, Jun. 2019, doi: 10.1145/3314221.3314628.

J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig, “Improved Security for a
Ring-Based Fully Homomorphic Encryption Scheme,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 8308 LNCS, Springer, 2013, pp.

45-64.

F. Boemer, Y. Lao, R. Cammarota, and C. Wierzynski, “NGraph-HE: A
Graph Compiler for Deep Learning on Homomorphically Encrypted Data,”
ACM Int. Conf. Comput. Front. 2019, CF 2019 - Proc., pp. 3-15, 2019, doi:

10.1145/3310273.3323047.

187

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and R. Sharma,
“CrypTFlow: Secure TensorFlow Inference,” in 2020 IEEE Symposium on
Security —and Privacy (SP), May 2020, pp. 336-353, doi:

10.1109/SP40000.2020.00092.

F. Boemer, A. Costache, R. Cammarota, and C. Wierzynski, “nGraph- HE2:
A High-Throughput Framework for Neural Network Inference on Encrypted
Data,” Cryptol. ePrint Arch. Rep. 2019/947, 2019, [Online]. Available:

https://eprint.iacr.org/2019/947.

C. Hazay, A. Marcedone, Y. Ishai, and M. Venkitasubramaniam, “Leviosa:
Lightweight secure arithmetic computation,” Proc. ACM Conf. Comput.

Commun. Secur., pp. 327-344, 2019, doi: 10.1145/3319535.3354258.

P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. Ada, “DELPHI :
A Cryptographic Inference Service for Neural Networks,” 29th USENIX

Secur. Symp. USENIX Secur. 20), 2020.

R. Bost, R. Popa, S. Tu, and S. Goldwasser, “Machine Learning Classification
over Encrypted Data,” in Network and Distributed System Security

Symposium, 2015, pp. 1-31, doi: 10.14722/ndss.2015.23241.

C. Orlandi, A. Piva, and M. Barni, “Oblivious neural network computing via
homomorphic encryption,” Furasip J. Inf. Secur., vol. 2007, 2007, doi:

10.1155/2007/37343.

F. Y. Rao, B. K. Samanthula, E. Bertino, X. Yi, and D. Liu, “Privacy-
Preserving and Outsourced Multi-user K-Means Clustering,” in 2015 IEFEE
Conference on Collaboration and Internet Computing (CIC), 2015, pp. 80—

89, doi: 10.1109/CIC.2015.20.

B. K. Samanthula, W. Jiang, and E. Bertino, “Privacy-preserving complex

188

[46]

[47]

[48]

[50]

[51]

[52]

query evaluation over semantically secure encrypted data,” in FEuropean

Symposium on Research in Computer Security, 2014, pp. 400-418.

W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE
Trans. Inf. Theory, vol. 22, mno. 6, pp. 644-654, 1976, doi:

10.1109/TIT.1976.1055638.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. IEEFE, vol. 86, no. 11, pp. 22782323,

1998, doi: 10.1109/5.726791.

N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and J.
Wernsing, “Manual for Using Homomorphic Encryption for Bioinformatics,”
in Proceedings of the IEFE, 2017, vol. 105, no. 3, pp. 552-567, doi:

10.1109/JPROC.2016.2622218.

J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious Neural Network
Predictions via MiniONN Transformations,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, Oct. 2017,

no. 2017/452, pp. 619-631, doi: 10.1145/3133956.3134056.

P. Mohassel and Y. Zhang, “SecureML: A System for Scalable Privacy-
Preserving Machine Learning,” Proc. - IEEE Symp. Secur. Priv., pp. 19-38,

2017, doi: 10.1109/SP.2017.12.

B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “DeepSecure: Scalable
Provably-Secure Deep Learning,” arXiv Prepr., 2017, [Online]. Available:

http://arxiv.org/abs/1705.08963.

T. Lepoint and M. Naehrig, “A Comparison of the Homomorphic Encryption

Schemes FV and YASHE,” in Lecture Notes in Computer Science (including

189

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 8469 LNCS, Springer, 2014, pp. 318-335.

J. van de Pol and N. P. Smart, “Estimating Key Sizes for High Dimensional
Lattice-Based Systems,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 8308 LNCS, Springer, 2013, pp. 290-303.

R. Lindner and C. Peikert, “Better Key Sizes (and Attacks) for LWE-Based
Encryption,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

vol. 6558 LNCS, Springer, 2011, pp. 319-339.

M. S. Riazi and F. Koushanfar, “Privacy-preserving deep learning and
inference,” in Proceedings of the International Conference on Computer-

Aided Design, Nov. 2018, pp. 1-4, doi: 10.1145/3240765.3274560.

C. Moore, M. O’Neill, E. O’Sullivan, Y. Doroz, and B. Sunar, “Practical
homomorphic encryption: A survey,” in 2014 IEEFE International Symposium
on Clircuits and Systems (ISCAS), Jun. 2014, pp. 2792-2795, doi:

10.1109/ISCAS.2014.6865753.

R. Player, “Parameter selection in lattice-based cryptography,” PhD Thesis,

University of London, 2017.

M. Chase et al.,, “Security of Homomorphic Encryption,” Jul. 2017.

https://homomorphicencryption.org/introduction/ (accessed Dec. 20, 2018).

M. R. Albrecht, R. Player, and S. Scott, “On the concrete hardness of
Learning with Errors,” J. Math. Cryptol., vol. 9, no. 3, pp. 169-203, 2015,

doi: 10.1515/jmc-2015-0016.

A. Canziani, A. Paszke, and E. Culurciello, “An Analysis of Deep Neural

190

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Network Models for Practical Applications,” arXiv Prepr., 2017, [Online].

Available: http://arxiv.org/abs/1605.07678.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks,” Adv. Neural Inf. Process. Syst., pp.

1097-1105, 2012.

K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition,” arXiv Prepr. arXivi409.1556, Sep. 2015,

[Online]. Available: http://arxiv.org/abs/1409.1556.

C. Szegedy et al., “Going deeper with convolutions,” in 2015 IEEFE
Conference on Computer Vision and Pattern Recognition (CVPR), Jun.

2015, pp. 1-9, doi: 10.1109/CVPR.2015.7298594.

S. Murphy and R. Player, “A Central Limit Framework for Ring-LWE

Decryption,” IACR Cryptol. ePrint Arch. Rep. 2019/452, pp. 1-24.

V. Lyubashevsky, C. Peikert, and O. Regev, “A Toolkit for Ring-LWE
Cryptography,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

vol. 7881 LNCS, Springer, 2013, pp. 35-54.

S. Murphy, R. Player, and R. Holloway, “Noise Distributions in
Homomorphic Ring-LWE,” TACR Cryptol. ePrint Arch. Rep. 2017/698, pp.

1-56, 2017, [Online]. Available: https://eprint.iacr.org/2017/698.pdf.

J. Bos et al., “CRYSTALS - Kyber: A CCA-Secure Module-Lattice-Based
KEM,” in 2018 IEEE FEuropean Symposium on Security and Privacy

(EuroS&P), Apr. 2018, pp. 353-367, doi: 10.1109/EuroSP.2018.00032.

M. Tsagris, C. Beneki, and H. Hassani, “On the folded normal distribution,”

191

Mathematics, vol. 2, no. 1, pp. 12-28, 2014, doi: 10.3390/math2010012.

[69] S. Hardy, “A Homomorphic Encryption Illustrated Primer,” N1 Analytics,
2018. https://blog.nlanalytics.com/homomorphic-encryption-illustrated-

primer/ (accessed Oct. 19, 2019).

192

APPENDIX A.NOISE ESTIMATES FOR
OPERATIONS IN THE SEAL

LIBRARY

The following table reproduces the noise estimates for operations in the SEAL

library as given in their documentation [22].

Operation Input description Noise bound of output
Encrypt Plaintext m ”T(Q)HmHNm + % min{ B, 6¢}
Negate Ciphertext ct v
Add/Sub Ciphertexts ct; and cta v+ s

AddPlain/SubPlain| Ciphertexl ct and plaintext m v+ #NmumH
MultiplyPlain Ciphertext ct and plaintext m Ny ||m||lv
Multiply Ciphertexts ct; and cty of sizes tv3n [(12n)-i‘/2uz + (12n)72/%1
ji+1and ja+1 +(12n) 01 +42)/2
Square Ciphertext ct of size j Same as Multiply(ct,ct)

Relinearize Ciphertext ct of size K and target| v + %t min{B, 6 (K — L)n({ + 1)w
size L, such that 2< L < K

AddMany Ciphertexts cti,...,ctg ot
MultiplyMany Ciphertexts cti,...,cty Apply Multiply in a tree-like manner,
and Relinearize down to size 2 after

every multiplication

Exponentiate Ciphertext ct and exponent & |Apply MultiplyMany to k copies of ct

193

APPENDIX B. SCREENSHOTS OF OUR
PARAMETER ESTIMATION

SYSTEM

Here we share some screenshots of our parameter estimation system. For
implementation and testing, we coded our derived formulas in the SEAL library.
The exact details of the changes in the library are given in Appendix C. The changes
done in the SEAL library equipped us to specify any convolutional neural network
and get an estimation of the encryption parameters for it. This includes the
specification of the exact number of inputs, and all the layers and their types. In
the first screenshot, we see the parameter estimation performed for CryptoNets

reduced (small) network.

194

1img with PolyC

Auto
Auto
. Auto ; !
Auto ; n Selection:
utoma Selection: Test Case
Noise i

8. Exit
Total memory allocated by global memory pool: @ MB

Run example:

ized parameters: Done

-~ modulus size: 2
coeff_modulus valu
plain_modulus: 1638
Remaining i riant noise budget:
\ noise_standard_deviation: 3

Run example: 11

ptoNets Full Netwo

optimized parameters: Done

In our probabilistic estimation, we coded the probability calculation into SEAL
which is seen in the following screenshot for testing parameters on the CryptoNets

and checking the probability.

195

d parameters: Done

coeff modulus
plain_modulus

DESCRIPTIVE STATS **’

B.ea0e00
left tail -8 .006000
Phi: .
Failure p abil B
Su ss probability:

In a different test, the extraction of the exact noise polynomial from a ciphertext is
performed and is shown in the following screenshot. Please note that since the noise

polynomial has the length of 4096 coefficients, only the beginning and the end of

the output is shown here.

plain_modulus:
\ nmoise_standard_deviation: 3

196

The end of the output of noise polynomial from a single ciphertext.

197

APPENDIX C. ORIGINAL FuNCTION

CONTRIBUTIONS

The following original functions were added into the SEAL library version 2.3.1.
Here we enlist the function signatures within the respective code files and a brief

description.

1. /SEAL/seal/chooser.h

In this file, five functions were declared for approximating encryption parameters

of a single layer according to the specified parameters.

class ChooserEvaluator

{
public:

ChooserPoly weighted_layer(
const ChooserPoly & operand,
int plain_max_coeff_count,
std::uint64_t plain_max_abs_value,
int inputs_to_a neuron);

ChooserPoly weighted_layer(
const ChooserPoly &operand,
const ChooserPoly &plain_chooser_poly,
int inputs_to_a_neuron);

ChooserPoly sum_pooling layer(
const ChooserPoly &operand,
int inputs);

ChooserPoly average pooling layer(
const ChooserPoly& operand,
int plain_max_coeff_count,
std::uint64 t plain_max_abs value,
int inputs_to_a_neuron);

ChooserPoly average_pooling layer(
const ChooserPoly& operand,
const ChooserPoly& plain_chooser_poly,
int inputs_to_a neuron);

198

2. /SEAL/seal/chooser.cpp

In this file, the five functions declared in the above header file are implemented.
These functions call the actual simulation functions specified in the simulation.cpp

files specified next.

namespace seal

{

ChooserPoly ChooserEvaluator: :weighted_layer(
const ChooserPoly & operand,
int plain_max_coeff_count,
std::uint64_t plain_max_abs_value,
const int inputs_to_a_neuron) {...}

ChooserPoly ChooserEvaluator: :weighted_layer(
const ChooserPoly & operand,
const ChooserPoly & plain_chooser_poly,
const int inputs_to_a neuron) {...}

ChooserPoly ChooserEvaluator::sum_pooling_layer(
const ChooserPoly & operand,
int inputs) {...}

ChooserPoly ChooserEvaluator::average_pooling_layer(
const ChooserPoly & operand,
int plain_max_coeff_count,
std::uint64_t plain_max_abs_value,
const int inputs_to_a neuron) {...}

ChooserPoly ChooserEvaluator::average_pooling_layer(
const ChooserPoly & operand,

const ChooserPoly & plain_chooser_poly,
const int inputs_to_a_neuron) {...}

3. /SEAL/seal/simulator.h

Three declarations are added into this file for functions that approximate encryption
parameters for a specific kind of neural network layer. The weighted layer function
is used to approximate for both the fully connected layer as well as the convolutional

layer.

199

class SimulationEvaluator

{
public:

Simulation weighted_layer(
const Simulation &simulation,
int plain_max_coeff_count,
std::uint64 t plain_max_abs value,
int inputs_to_a_neuron);

Simulation sum_pooling_layer(
const Simulation & simulation,
int number_of inputs);

Simulation average_pooling_layer(
const Simulation& simulation,
int plain_max_coeff_count,
uinté4_t plain_max_abs_value,
int number_of inputs);

4. /SEAL/seal/simulator.cpp

In this file, the actual code of the three functions is implemented that were declared
in the header file above. These three functions has the actual approximation codes

for any particular neural network layer with some specific parameters.

namespace seal
{
Simulation SimulationEvaluator::weighted_layer(
const Simulation & simulation,
int plain_max_coeff_count,
std::uint64 t plain_max_abs value,
int inputs_to_a neuron) {...}

Simulation SimulationEvaluator::sum_pooling_layer(
const Simulation &simulation,
int number_of _inputs) {...}

Simulation SimulationEvaluator::average_pooling_layer(
const Simulation& simulation,
int plain_max_coeff_count,
uint64_t plain_max_abs_value,
int number_of inputs) {...}

200

5. /SEAL/seal/util/computation.h

Three classes were added in this file to represent the three different functions
implemented for the estimation of encryption parameters of a neural network. These
classes are used to hold the complete computation history for a neural network. In

other words, all the computations performed prior to the current layer.

class WeightedlLayerComputation : public Computation

{...}

class SumPoolinglayer : public Computation

{0}

class AveragePoolinglayer : public Computation

{...}

6. /SEAL/seal/util/computation.cpp

In this file, the constructors, destructors, and functions of the above declared three

classes in the header file computation.h are implemented. The code is similar to the

implementations of other similar classes in this file.

201

DRC 16

MASSEY UNIVERSITY
GRADUATE RESEARCH SCHOOL

STATEMENT OF CONTRIBUTION
DOCTORATE WITH PUBLICATIONS/MANUSCRIPTS

We, the candidate and the candidate’s Primary Supervisor, certify that all co-authors have
consented to their work being included in the thesis and they have accepted the candidate’s
contribution as indicated below in the Statement of Originality.

Name of candidate: Mehmood Baryalai

Name/title of Primary Supervisor: Professor Dianne Brunton

Name of Research Output and full reference:

M. Baryalai, J. Jang-Jaccard, and D. Liu, “Towards privacy-preserving classification in neural networks,” in 2016 14th Annual Conference on Privacy, Security and Trust (PST), IEEE, 2016, pp. 392-399.

In which Chapter is the Manuscript /Published work: 2,3

Please indicate:

e The percentage of the manuscript/Published Work that was

contributed by the candidate: 70

and

e Describe the contribution that the candidate has made to the Manuscript/Published
Work:

conceptualization, methodology, validation, analysis, investigation, original draft
preparation, visualization, and responding to reviewers' comments.

For manuscripts intended for publication please indicate target journal:

Candidate’s Signature:

Date: 29.09.2020

Primary Supervisor’s Signature:

Date:

(This form should appear at the end of each thesis chapter/section/appendix submitted as a
manuscript/ publication or collected as an appendix at the end of the thesis)

GRS Version 4—January 2019

	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Goals
	1.2 Thesis Structure
	1.3 Original Contributions
	1.3.1 Proposed a robust non-colluding dual cloud system
	1.3.2 Developed generic formulas to estimate homomorphic parameters for a CNN
	1.3.3 Novel knowledge presented using case studies
	1.3.4 Proposed a novel approach of approximating and optimising encryption parameters probabilistically

	2 Preliminaries
	2.1 Areas Demanding Privacy-Preserving Classification
	2.2 Convolutional Neural Networks
	2.2.1 The composition of a CNN
	2.2.2 Linear Layers
	2.2.3 Convolution Layer
	2.2.4 Fully connected Layers
	2.2.5 Pooling Layer
	2.2.6 Non-Linear Layers
	2.2.7 An Example CNN Classification

	2.3 Homomorphic Encryption
	2.3.1 Partially Homomorphic Encryption (PHE)
	2.3.2 Somewhat Homomorphic Encryption (SHE)
	2.3.3 Fully Homomorphic Encryption (FHE)
	2.3.4 Levelled Homomorphic Encryption (LHE)
	2.3.5 Introduction to SHE and its implementation in SEAL
	2.3.6 Description of the FV Scheme
	2.3.7 Key generation
	2.3.8 Encryption
	2.3.9 Decryption
	2.3.10 Noise budget (Circuit Depth)
	2.3.11 Parameter Selection (t, q, n)
	2.3.11.1 Plaintext Modulus (t)
	2.3.11.2 Ciphertext Modulus (q)
	2.3.11.3 Polynomial Modulus (n)

	2.3.12 Relinearization
	2.3.13 Number encoding
	2.3.14 Noise within the Ciphertext
	2.3.15 An example of HE operations

	2.4 Homomorphic Encryption Code Libraries
	2.5 Related Work in Privacy-Preserving Classification.
	2.6 Issues in Privacy-Preserving Classification
	2.6.1 Evaluating Activation Function
	2.6.2 Number Encoding
	2.6.3 Interpreting the Final Result

	3 Towards Privacy Preserving Classification in Neural Networks
	3.1 System Goals
	3.1.1 Secure Outsourcing of Computation

	3.2 Related Work
	3.3 Autonomous Computation
	3.4 Noise-Reduction
	3.5 Our Proposed System
	3.5.1 Overview

	3.6 Components
	3.6.1 Client
	3.6.2 Cloud A
	3.6.3 Cloud B

	3.7 System Design
	3.7.1 Feeding Data Encryption
	3.7.2 Homomorphic Weighted Sum
	3.7.3 Activation Functions
	3.7.4 Dealing with the Output Layer
	3.7.5 Decrypting Classification

	3.8 Security and Correctness Analysis
	3.8.1 Attack on Communication between the Client and Cloud A
	3.8.2 Attack on Cloud A (or dishonest Cloud A)
	3.8.3 Attack on Cloud B (or dishonest Cloud B)
	3.8.4 Attacks on Communication between Cloud A and Cloud B
	3.8.5 Communication between Cloud B and Client

	3.9 Findings and Summary

	4 Parameter Selection for Homomorphically Encrypted Neural Networks
	4.1 Motivation
	4.2 Major contributions
	4.3 Related Work
	4.4 Problem Description
	4.4.1 Importance of appropriate HE parameters
	4.4.2 Complexity of setting appropriate HE parameters

	4.5 Parameter Selection Method
	4.5.1 Calculating encrypted operations in a CNN
	4.5.1.1 Encrypted operations in a Convolution Layer
	4.5.1.2 Encrypted operations in a Fully Connected Layer
	4.5.1.3 Encrypted operations in Pooling Layers
	4.5.1.4 Encrypted operations in Activation Layers

	4.5.2 Estimating the total noise in a CNN
	4.5.2.1 Estimating noise in Convolutional and Fully Connected Layers:
	4.5.2.2 Estimating noise in Pooling Layers
	4.5.2.3 Estimating noise in Activation Layers:

	4.5.3 Estimating the encryption parameters
	4.5.3.1 Estimating 𝒕
	4.5.3.2 Estimating 𝒏 and 𝒒
	4.5.3.3 Numerical Limits of the Proposed System

	4.6 Evaluation of the parameter selection method
	4.6.1 Effects of fully connected layers
	4.6.2 Effects of Neuron Count in fully connected layers
	4.6.3 Effects of Convolution Layers
	4.6.4 Effects of Filter Count in Convolution Layers
	4.6.5 Effects of Filter Size in Convolution Layers
	4.6.6 Effects of Filter Stride Size in Convolution
	4.6.7 Effects of Sum-Pooling Size
	4.6.8 Effects of Sum-Pooling Stride

	4.7 Findings
	4.8 Summary

	5 Practical Case Studies
	5.1 Selection of Case Studies
	5.2 Microsoft’s CryptoNets Case
	5.2.1 Novelty in CryptoNets
	5.2.1.1 Usage of the sum-pooling
	5.2.1.2 The two forms of CryptoNets
	5.2.1.3 Usage of 3-dimensional convolution instead of 2-dimensional convolution

	5.2.2 Arithmetic operations in CryptoNets
	5.2.3 Detail of encrypted operations in CryptoNets
	5.2.4 Practical Implementation Details

	5.3 Applying our method with CryptoNets
	5.3.1 Estimating the initial noise from the encryption
	5.3.2 Estimating for the first convolution layer
	5.3.3 Estimating for the square layer
	5.3.4 Estimating for the sum-pooling layer
	5.3.5 Estimating for the convolution layer
	5.3.6 Estimating noise for the sum-pooling layer
	5.3.7 Estimating for the fully connected layer
	5.3.8 Estimating noise for the square activation layer
	5.3.9 Estimating noise for the fully connecting layer
	5.3.10 Estimating the encryption parameters for the network

	5.4 LeNet-5 Case Study
	5.4.1 Detail of CNN operations in LeNet-5
	5.4.2 Selecting encryption parameters for LeNet-5

	5.5 Summary

	6 Probabilistic Optimization of Encryption Parameters
	6.1 Introduction
	6.2 Motivation for a statistical noise analysis approach
	6.3 Problem Description
	6.3.1 Main Contributions

	6.4 Related Work
	6.5 Noise Analysis
	6.5.1 Solving for ,𝒆-𝟏.
	6.5.2 Solving for ,𝒆-𝟎.𝒖
	6.5.2.1 Mean ,𝝁-,𝒆-𝟎.𝒖.
	6.5.2.2 Variance ,𝝈-𝒆,𝒖-𝒄.-𝟐.

	6.5.3 Solving for ,𝒆-𝟐.𝒔
	6.5.4 Calculating for 𝒗
	6.5.5 Experimental analysis

	6.6 Noise after homomorphic operations
	6.6.1 Homomorphic addition of two ciphertexts
	6.6.2 Homomorphic multiplication of two ciphertexts
	6.6.3 Squaring a ciphertext
	6.6.4 Concrete effect of homomorphic operations

	6.7 Noise after processing a single neuron
	6.8 Probabilistic Optimization Method
	6.9 Validation and implementation of the statistical noise analysis approach
	6.10 Findings
	6.11 Summary

	7 Conclusion
	7.1 Major works in our research
	7.2 Social Impact of our work
	7.3 Future Research Directions

	References and Bibliography
	Appendix A. Noise estimates for operations in the SEAL Library
	Appendix B. Screenshots of our parameter estimation system
	Appendix C. Original Function Contributions
	DRC 16 - V3 Online Statement of Contribution to Doctoral Thesis Containing Publications

	Name of candidate: Mehmood Baryalai
	Nametitle of Primary Supervisor: Professor Dianne Brunton
	Name of Research Output: M. Baryalai, J. Jang-Jaccard, and D. Liu, “Towards privacy-preserving classification in neural networks,” in 2016 14th Annual Conference on Privacy, Security and Trust (PST), IEEE, 2016, pp. 392–399.
	Chapter: 2,3
	Percentage: 70
	Contribution: conceptualization, methodology, validation, analysis, investigation, original draft preparation, visualization, and responding to reviewers' comments.
	Targeted Journal:
	Date: 29.09.2020
	Date_2:

