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SUMMARY

The economic implications of equipment failure are called for effective maintenance
techniques. The research investigates current maintenance practice in several New
Zealand industries and the improvements that could be obtained by the usc of

predictive maintenance techniques.

Initial research was undertaken in a series of case studies within New Zealand
industries situated in Auckland. The first two cases studies were of preventative
maintenance techniques of two conveyor lines in a biscuit manufacturing company.
The results showed a well defined preventive maintenance schedules that was
Systems Applications Products (SAP) programme was used to managed for daily,

weekly, monthly and yearly maintenance activities.

A third case study investigated current predictive maintenance technique involving
Fast Fourier Transform analysis of shaft vibration to identify a bearing defect. The
results diagnosed a machine with a ball bearing defect and recommendation was given
to change the bearing immediately and install new one. The machine was opened up,
a big dent was on one of the balls as predicted by the analysis and the bearing was

changed.

Research then looked at a novel technique called Cepstrum analysis that allows the
deconvolution of vibration spectra from separate sources. This allows identification of
several defects from the monitoring of a single vibration signal. Experiments were
carried out to generate transfer functions for different gear faults at two different
loadings. Blind deconvolution of the signal using a homomorphic filter was used to
separate the source forcing frequencies from the structure resonance effects of the two
gear faults, indicating that the technique could be used successfully to monitor

equipment for a range of gear faults occurring simultaneously.
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Chapter 1

Introduction

1.1 The Topic of this Thesis
The funding for this project was obtained from Technology New Zealand by the
consulting firm SchemNZ, which was investigated and presented for my PhD research
work. The aim of the project was to investigate the maintenance practices of difterent
manufacturing companies in NZ and present the best maintenance practice that would
improve equipment reliability, predict failures, reduce maintenance costs and augment
profitability. The following are the common maintenance practices in manufacturing
companies:

e Breakdown

e Preventive

e Predictive.
This thesis was carried out to meet the following objectives:

I. Explore maintenance and diagnostic strategies

2. ldentify possible techniques to diagnose machine faults.

1.2 Why Predictive Maintenance?

The economic implications due to equipment failure are severe. The losses suftered
by manufacturing companies due to machinery failure and downtime for repairs are
pronounced.

Table 1.1 shows the causes of the aircraft accidents between the 1950s and 1990s.
Human errors can be reduced by observing the safety regulations, but the mechanical
tailures can be avoided by installing condition monitoring and fault diagnostic

systems which would give warning as soon as a fault develops.



Table 1.1: Fatal Accident Causes By Category (by percentage) |2]

CAUSE 1950s | 1960s | 1970s | 1980s | 1990s
Pilot Error 43 34 26 29 30
Pilot Error (Weather Related) 9 19 16 17 20
Pilot Error (Mechanical Related) | 7 5 4 4 6
Total Pilot Error 58 58 46 49 56
Other Human Error 2 8 9 7 7
Weather 5 9 (12 14 8
Mechanical Failure 19 19 21 19 20
Sabotage 5 4 9 1l 8
Other Cause 0 2 3 I I

For an ocean-going merchant vessel carrying 100,000 metric tonnes of liquid natural
gas as cargo, losses amount to between US$80,000.00 and US$1,000.000.00 per day
in the event of any machine failure or repair. In addition, it is estimated that more than
2000 lives have been lost as a result of marine accidents caused by machinery failure
[1].

A Boeing 737 veered oft the runway due to the collapse of the right landing gear. A
private plane experienced engine trouble and crashed. Another one experienced

mechanical failure, disintegrated and crashed soon after taking oft'[1].

Another example is the gearbox of an emergency coal conveyor of a steel
manufacturing company where the author carried out investigations on predictive
maintenance. The conveyor was out of service for two weeks due to overheating. The

cost of replacement, production and maintenance was about $2.5 million dollars.

1.3 Aims
The aims of this thesis are:
e The first and primary objective is to investigate the maintenance practices in
different major manufacturing companies in New Zealand outlined in chapter
2 and review predictive maintenance — the use of vibration a sensor and FFT

data collector - to predict machine failures.



e The second objective pertains to the use of existing Fast Fourier Transform
(FFT) algorithms for predictive maintenance and its limitations (presented in
chapter 4).

e The third objective is the use of a mathematical relationship between the FFT
data and a faulty machine component to determine the root cause of the failure
(presented in chapter 4). This technique identifies the root cause of a failure
instead of treating failure symptoms that FFT data analysis presents in most
cases.

e The fourth objective is to formulate and develop an extension of the cepstrum
technique using homomorphic blind deconvolution filtering to separate the
forcing and transmission path effects in the signals measured from a gearbox

(outlined in chapters 5 and 6).

1.4 Thesis Overview

This thesis is organized as follows:

Chapter 1: Introduction
This chapter presents the topic of this thesis, why predictive maintenance, existing

work on the predictive maintenance and scope of the present work.

Chapter 2: Literature Review
In this chapter, different work that had been done on predictive maintenance are
reviewed and machine diagnosis and reliability, vibration monitoring and blind

deconvolution are discussed.

Chapter 3: History of Maintenance and its Strategies
This chapter presents the history of maintenance and its strategies, evolution of

maintenance, its costs and strategies.

Chapter 4: Fast Fourier Transform Technique and Pitfalls
The theory of the Fast Fourier Transform (FFT) is discussed with the use of complex
numbers and the operation of a piezoelectric accelerometer. Case studies are

presented using the FFT technique, and the pitfall of this technique is discussed.



Chapter 5: The Theory of the Cepstrum Technique
This chapter prescnts the theory of the cepstrum technique to diagnose the vibration
of a gearbox. The theory of homomorphic deconvolution is also presented, coupled

with the cepstrum analysis and poles and zeros.

Chapter 6: Experimental Analysis
This chapter presents the experimental analysis. The gear test rig is explained and the
instrumentation for the data collection is described. The application of the cepstrum

technique, homomorphic deconvolution, the poles and zeros analysis are presented.

Chapter 7: Conclusion and Recommendations
A summary of the work is given, followed by a list of contributions of this thesis.
Then we bring in some discussion about the proposed methodology and conclude the

thesis with some recommendations for the future work.



Chapter 2

Literature Review

2.1 Machine Diagnosis and Reliability

Maintenance is an activity to ensure that equipment is in a satisfactory condition and
reliable. The goal of maintenance is to ensure that the performance of the equipment
is satisfactory.

A good maintenance system contributes to efficiency, customer service, high quality,
safety, on-time delivery, and customers’ satisfaction.

McFadden [3, 4, 5, 12, 18] presented various papers on the application of Wavelets to
gearbox vibration signal and analysis of gear vibration in the Time-Frequency
domain. Techniques like Adaptive Noise Cancellation, Computer Order Tracking,
Non Stationary Modelling of Vibration Signals and Synchronous Averaging were
used to diagnose machine faults[6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21,
22, 23, 24, 25] thcse papers could not provide solutions to resonance effect in the
transmission path.

Toliyat et al [26], described how maintenance has long been a powerful source of
know-how and when to best schedule production, which needs to comply with
customers’ schedules. Siyambalapitiya et al [27] also described the maintenance
support activities of manufacturing companies and Vas [28] presented a paper on the
use of'a maintenance programme to manage maintenance strategies. Abrecht et al [29]
described the basic elements necessary to implement maintenance programs.

Despite what Toliyat, Siyambalapitiya, Vas and Abrecht said on maintenance strategy
and programs, there is still a misrepresentation of the maintenance strategies in
industry. The misrepresentation relates to the inability of the authors to clearly present
the maintenance strategy associated with each company, which would have given a
true reflection of the strategy most companies practice and why. This is one of the
objectives of this research, investigating three key maintenance practices; reactive,

preventive and predictive and the companies associated with each type and why.



Diagnosis is the process of determining the fault responsible for a set of symptoms.
Blunt et al [30], defined it as the formulation and investigation of a hypothesis about

the malfunctioning equipment.

If the real cause of the problem is not corrected, then further breakdown is likely to
occur.

Diagnosis is the process of determining the fault responsible for a set of symptoms. It
is also the formulation and investigation of hypotheses about the malfunctioning
equipment [30]. Zakrajsek et al [31], defined diagnosis as “knowing the difference”
between normal and abnormal behaviours of a machine, then one needs to have more
functional knowledge about the internal structure of the machine and the interaction
of its constituent parts. Minns and Stewart[32], presented a five step strategy for
diagnostic problem solving which they summarised as “formulation and investigation
of a hypothesis about the malfunctioning equipment™: (i) formulation of the problem
by analyzing the situation, making observations, and developing a plausible
hypothesis; (ii) developing expectations for each of the hypothesis: (iii) selecting the
hypothesis with the highest expectations for leading to the cause: (iv) collecting and
analysis of data (v) evaluating the hypothesis (vi) in the case of indecisiveness of the
hypothesis, the first five steps are repeated as many times as required until the cause is
identified. Eshleman [33], described in his work that component life expectancy and
wear rates can only be assessed on the basis of recorded information that represents a
true reflection of operating conditions.

Heinz P. Block [34], writes on machine reliability improvement and maintenance cost
reduction. He divided machinery reliability management in process industries into
three phases: cquipment selection and pre-erection reliability assurance; preparation
for effective start-up; and post-start-up reliability assurance and maintenance cost
reduction. The techniques and procedures that covered each phase have led to
improved equipment reliability and maintenance efficiencies.

Eisenmann [35] with over 33 years of experience in solving machinery problems
coupled with numerous technical notes on how to use the application of engineering
principles to diagnose and correct machinery malfunctions. The machinery under
discussion in the book operates within the heavy process industries such as oil
refineries, chemical plants, power plants, and paper mills. He asserted that the

majority of machinery problems that do occur fall into what he calls the ABC



category, which are generally related to Alignment, Balancing, and incorrect
Clearances (typically on bearings). Although machines also exhibit other types of
failures, he devoted more time to each of this ABC problem categories due to the
continual appearance of these malfunctions. 52 detailed case histories are combined
with numerous sample calculations and examples to solve real world problems.
Doebelin [36] developed an understanding of the operating principles of measurement
hardware and the problems involved in the analysis, design, and application of such
equipment. He wrote on the treatment of dynamic responses for all types of inputs:
periodic, transient, and random, on a uniform basis, utilising the frequency domain.
He further gave detailed consideration of problems involved in interconnecting
components. He also presented a detailed study of measuring instruments and their
characteristics, which are used in the monitoring of processes and operations, control
of processes and operations, and experimental engineering analysis.

Kuhnell [37] states that managers are breaking out of the vicious cycle by improving
the maintenance processes and increasing the eftectiveness or productivity of asset
and human resources. Improving maintenance processes involves re-engineering the
process and increasing resource effectiveness by moving to a mostly condition-based
maintenance philosophy and adding maintenance tasks to manage economically
preventable failure modes that historically have caused failures.

Hill [38], described design methodology for fault diagnosis in linear systems, which
can also apply to non-linear cases [ 38].

Iserman [39] surveyed the detection of process faults based on modelling and
estimation methods, coupled with the estimation of unmeasurable process parameters
and variables. Frank and Koppen-Seliger [40], presented fuzzy logic and neural
networks as another new approach to system modelling, a paper outlining the most
up-to-date developments in artificial intelligence for fault diagnosis.

Block and Geithner [41], presented how the profitability of modern industry and
process plants is significantly influenced by the reliability and maintainability of the
machines. They described the probabilistic and statistical way of thinking when
dealing with matters of process machinery reliability, availability and safety.

Jeffrey [42] described the techniques designed to monitor machine operation and
generate information that can be used to anticipate breakdown. He maintained that
advances in sensors, algorithms, and architectures should provide the necessary

technologies for effective incipient failure detection.



Despite the breadth and clarity of the literature on this subject of fault diagnosis, there
is also a problematic narrowness, a concern with the fact that diagnostic strategy is
experience-based and relies on an experienced diagnostician to have been
“conditioned™ over time for the task. If the diagnosis is defined as responding to
symptoms and trying to determine the cause(s) of the symptoms, then the diagnostic
decision making relies more on rule-of-thumb and less on fundamental (functional
and behavioural) knowledge about the equipment. The literature on this subject of
fault diagnosis only identified the symptoms of machine problems and not the root
cause.

Examples of machine failures include bearing, gear failures; shaft misalignment,
looseness and imbalance etc.

Whether the component was operating within operating parameters is the question
rcquiring an explanation. Knowledge of previous incidents could be even misleading
in this situation. Relying on the patient,s history primarily as the basis for diagnosis
could have severe consequences if the true cause is not the usual one. To explain how
a fault took place, one needs to trace the situation back until a satisfactory cause is
identified. The fact that a component broke down in a machine is not necessarily the
satisfactory cause of the fault, rather, what led to the breakdown of the component is

part of the objectives of this research.

222 Predictive Maintenance — Vibration Monitoring

The few companies that have vibration monitoring gears use data collectors that
operate on Fast Fourier Transform Technique. This has been the most widely adopted
form of condition monitoring, recording and analysis of machine vibration signatures.
The literature presented here on this subject — Predictive Maintenance-Vibration
Monitoring, lacks the improvement needed to make a machine reliable, reduce the
number of breakdowns and augment profitability. None of this literature is interested
in the root cause of a failure. Even though a lot of work has been done on fault
detection, none of the faults detected by these writers have been traced down to the
root cause.

The application of statistical analysis to measured diagnostic signals is as old as the

science of measuring the signal. A review of time domain analysis using statistical



methods forms part of virtually every PhD thesis and masters dissertation conducted
in the field of vibration monitoring.

In general, time domain analysis entails calculating the root mean square, peak value,
crest factor and kurtosis values of a signal. The root mean square value gives an
indication of the continuous or steady state amplitude in a time varying signal. The
peak level or value is defined as half of the difference between the maximum and
minimum values in the signal. This is not a statistical value and it is known not to be a
reliable indicator of damage. The crest factor is defined as the ratio of the peak value
divided by the root mean square value of the signal.

The kurtosis is the normalised fourth statistical moment of a signal. The parameters
defined above are also referred to as overall vibration parameters. In general, they are
calculated for each measurement and trended over time to give an indication of
machine condition, rather than the condition of specific components in the machine.
Thc parameter does not provide any diagnostic information. However, the parameters
are easy to implement in low cost online monitoring equipment.

Komura et al. [43] developed a hand held vibration monitoring sensor which utilises
the root mean square, kurtosis and mutations thereof to classify a machine’s condition
according to three categories namely; normal, warning and alert. This is no longer
widely used because it only provides overall vibration level on a spot which will tell
you where a fault is coming from and what sort of fault it is, but there is no
diagnostics advantage in this measuring equipment.

Martin et al. [44] Ismall et al. [45] and Oguamanam et al. [46] applied statistical
distributions to experimental data measured on gears and gear pump test rigs. A
synchronous, or time domain average, of the vibration signal was calculated before
applying the statistical distribution to segments of the time domain-averaged signal.
The segmentation of the signal enables local fault detection on the gear teeth of the
gears. A beta distribution was fitted since the kurtosis of a normal distribution was too
sensitive to noise in the vibration data. It was indicated that the reciprocal of the beta
kurtosis value could indicate the presence of a local defect on a gear.

Howard [47] developed a composite signal averaging technique to overcome the
monitoring problems encountered when monitoring gears in an epicyclic gearbox.
Typical problems were the varying transmission path to the transducer and the fact
that multiple components mesh at the same frequency. Experimental tests were done

with a progression in induced gear damage and vibration measurements were taken



for the various fault conditions in order to validate the technique. The composite
signal averaging technique was applied to the experimental data and the modulation
of the averaged signals was calculated. Kurtosis values for the modulation were
estimated and it was shown that the kurtosis increased as the extent of gear damage
increased. The kurtosis value of the modulation therefore proved to be an eftective
indication of gear condition once composite signal averaging had been done.
Forrester[48] did tests to detect early fatigue cracks in gears. The test was of a time
domain signal processing technique that compares two signals to indicate the
likelihood that the two signals have the same probability density function. In essence,
the tests determined whether two signals were similar or not. Forrester [49] stated that
a fault condition could be indicated by comparing a signal with a number of signal
templates of known fault conditions. The technique was applied to experimental data
and its results indicated that the technique could successfully detect the presence of a
fatigue crack.

McFadden[50] utilised multivariate statistics in combination with principal
component analysis to detect localised faults in a two stage helical gearbox. (Principal
component analysis is utilised to reduce the dimension of a data set to fewer samples.
In essence, it is utilised for data compression). Vibration signals under different fault
conditions where measured. Principal components were calculated for the normal or
no-fault-present condition. These components, where statistically represented were
calculated for the new measurements to observe any deviations from the normal
condition. The square predictor error is the sum of the squared difference between the
data indicating the normal condition and the measured data. A deviation in the value
will indicate a deviation in the condition of the machine.

According to Randall [51] the amplitude modulation of the time domain average
signal can be calculated by taking the absolute value of the signal’s analytical signal.
The analytical signal is a complex time signal of which the imaginary part is the
Hilbert transform of the real part. Note that the phase modulation can be calculated by
calculating the phase of the analytical signal.

McFadden and Smith[52] band-pass filtered the time domain averaged signal around
the prominent gear-meshing harmonic and removed the gear mesh harmonic itself in
order to obtain what they referred to as a residual signal. The amplitude modulation of
the residual signal were analysed and the statistical parameters of the residual signal

was analysed and statistical parameters of the residual signal modulations were

10



calculated. The methodology proved to be an effective way to detect local defects on
gears.

McFadden [52, 53 & 54] utilised the amplitude and phase modulation of the time
domain average they band-pass filtered around the prominent gear mesh harmonic to
detect fatigue cracks in the gears of a helicopter’s main rotor gearbox.

McFadden & Howard [55] extended the technique to incorporate all of the gear
meshing harmonics and applied the technique to torsional vibration measurements
measured on an experimental test rig with artificial seeded defects. They concluded
that the technique is more sensitive in detecting gear defects when compared to a
narrow band-filtered approach.

Brie et al. [56] developed an adaptive amplitude and phase demodulation approach,
which has lower numerical complexity when compared to the conventional route of
calculating the modulation using the Hilbert transform. The algorithm is sequential
which allows it to be implemented in real time.

Wang [57] applied a resonance demodulation technique common to rolling element
bearing defect detection and monitoring to detect incipient gear tooth cracks. The
methodology is based on the fact that a root crack will lower gear tooth stiftness in the
gear mesh resulting in impacts as the gear tooth after the damaged gear tooth enters
the gear mesh. This impacting will excite the structural resonance. A residual signal is
calculated from the time domain average and band-pass filtered around the structural
resonance. The band-pass filtered residual signal is then demodulated to detect sudden
changes in the modulation, which are related to the presence of fatigue cracks in the
gears.

Spectrum analysis entails the conversion of a time signal to a frequency domain
representation through a discrete Fourier transform. The term spectrum is used for the
amplitude representation versus the positive frequency range of the time signal’s
Fourier transform.

Frequency domain analysis is widely used due to the simplicity in analysing machine
faults. At the beginning of this research work, the analysis carried out on various
machines was made with the FF'T technique.

The advantage in using spectrum analysis lies in the fact that the amplitude at each
discrete frequency can be monitored in contrast to the overall amplitude monitoring
approach of time domain analysis. A log scale for the amplitude axes can be chosen to

improve the dynamic range of the representation. Defects that will cause a small

Il



change in amplitude at a certain frequency with low amplitude will therefore be
detected much easier in comparison with time domain analysis.

Lots of work has been done with this technique and the literature on it is vast.

The frequencies at which a certain defect on a particular component will cause an
increase in the amplitude of the spectrum are referred to as defect frequencies. Hence,
diagnostic capability can be obtained by relating amplitude growth at a certain
frequency to a particular component in the machine based on its physical parameters.
This type of analysis is conventionally used in practice to monitor plant equipment.
Forrester [58], Matthew [59] and Mechefske [60] have described spectral analysis in
detail.

The book of Goldman [61] on Vibration Spectrum Analysis is based on his
experience when he worked at Nash Engineering in the early 1970s. The book is
about problem solving in general based on his many years experience.

Forrester [62] states that the gear mesh vibration measured on the casing of a gearbox
descends from the fluctuation in gear meshing stiffness as the gears rotate in and out
of the gear mesh. If a time domain average or synchronous average of the vibration on
the gearbox casing is calculated and band-pass filtered around the fundamental gear
mesh harmonic, the resulting signal will approximate a sinusoid where each peak in
the sinusoid represents the structural response due to a gear tooth entering the gear
mesh.

The author will improve the current diagnosis techniques that rely only on monitoring
some physical characteristics that reflect the condition of the machine or identify the
machine faults but not the root cause. The author will use mathematical relationships
between the condition monitoring data and the faulty components to determine the

root cause of a failure; this is presented in chapter 4.

23 Artificial Neural Network

Predictive maintenance, or condition monitoring, is based on continuous monitoring
of equipment through sensor-based data collection equipment and specialised
technologies to measure specific system variables. All machinery generates vibration:;
the analysis of the system variables will render valuable information about the

condition of the machines.



Artificial neural nets (ANN) are increasingly being used in fault diagnosis systems.
The popular approach to developing ANN-based diagnostic systems is to induce
several artificial faults into specific machinery sub-components, acquire data
representative of each fault and train the nets to classify them, cross-validating and
testing the trained system with data not used for training [3].

There has been research work carried out on neural network to detect gear fault

because of its time series prediction capabilities [3], [15]. [21]. [46]. [S0].[60].

Data from simulation models have been used occasionally with varying degrees of
success. The major gap in the existing work is that there is no proper quantification of
the fault induced. Without the knowledge of how severe or subtle the fault induced is,
there is no way of evaluating the predictive method used. On a similar note, many of
the faults detected are either too trivial or too severe; and do not justify the use of
sophisticated detection methods. Another major drawback in the field is that there are
no benchmarks. What may appear as a serious fault to the uninitiated may be nothing

more than a blemish to the experienced mechanical engineer.

2.4 Blind Deconvolution and Cepstrum Analysis

The term cepstrum analysis is the inverse Fourier Transform of a spectrum. It is
utilised to detect a series of harmonics or sidebands and to estimate their strength. The
various harmonics in a conventional spectrum are reduced to predominantly one peak
in what is referred to as the quefrequcncy domain. Periodicity in the conventional
spectrum is therefore detected. Only a single peak needs to be detected to diagnose a
fault condition. Logarithmic values of the spectrum are utilised in the calculation of
the cepstrum in order to improve the dynamic range of the analysis [63].

The vibration spawning from the meshing of a gear pair in a gearbox has to be
transmitted through the shaft, roller element bearings and casing before being
measured. It is common knowledge that this transmission path has structural
impedance characteristics in terms of amplitude and phase. If the gears rotate at a
certain frequency, the force being transmitted from the meshing gears will be subject
to amplitude and phase changes induced by the structural impedance at the particular

frequencies. However, if the rotational speed changes the forces being transmitted



from the meshing gears are subject to different amplitude and phase changes induced
by the transmission path impedance at the alternative frequencies. As a result, the
amplitude and relative phase of the measured structural response will be different
depending on the structural dynamic characteristics [64].

Schaum [64] covers both continuous-time and discrete-time signals and systems,
develops the fundamental input-output relationship for linear time-variant systems
and explains the unit impulse response ot the system and convolution operation. He
explored the transform techniques for the analysis of linear time-invariant systems
and dealt with the z-transform and its application to discrete-time linear time-
invariant.

Schaum [65] described the fundamental of digital signal processing. description and
characterisation of discrete-type signals and systems, convolution, and linear
coefticient difference equations.

Randall [66] suggests that the ccptsrum exists in various forms, but all can be
considered as a spectrum of algorithmic (amplitude) spectra. He used these techniques
for detection of a periodic structure in the spectrum, e.g from harmonics, sidebands or
the effects of echoes. He demonstrated that the effects which are convolved in the
time signal (multiplied in the spectrum) become additive in the cepstrum, and
subtraction there resulted in a deconvolution. He described the applications of
cepstrum, including the study of signals containing echoes (land-based and marine
seismology, aero-engine noise, loudspeaker measurements) speech analysis (format
and pitch tracking, vocoding) and machine diagnostics (detection of harmonics and
sidebands).

Haykin [67] stated that the book he edited in 1994 on blind deconvolution contained
various algorithms for solving the blind channel-equalisation problcm. Haykin [68]
presents a theory that blind deconvolution and blind source separation originated
independently, yet they are related to each other and constitute the two pillars of
unsupervised adaptive filtering.

Randall [69] described how Fourier analysis led to different types of signal
encountered in practice and how they appear in spectra and other representations. He
also treated the convolution subject in some detail and that the output of a linear
physical system is obtained by convolving the input signal with the impulse response

of the system.



Dalpiaz [70] compared the results obtained from the time-frequency and cylco-
stationarity analysis, and those from cepstrum analysis and time-synchronous average
analysis on a gear pair affected by a fatigue crack, considering two different depths of
the crack. He concluded that the time-synchronous average and demodulation
techniques are able to localise the damaged tooth, but the demodulation technique is
affected by the transducer location. However, the wavelet transform seems to be a
good tool for crack detection, if the residual part of the time-synchronous averaged
signal is processed.

Lee [71] used higher-order statistics based on third-, fourth-, fifth- and sixth-order
statistical blind deconvolution on impacting signals. He recovered the impulse impact
signals and improved the estimation time between the impacts by comparing the
efticiency and robustness of the schemes.

Randall [72] and Angelo [73] stated that cepstrum analysis is insensitive to the phase
variations in the transmission path. The power spectrum of a signal measured at an
external point on the casing of a rotating machine such as a gearbox can be expressed
as the product of the power spectrum of the source function with the squared
amplitude of the frequency response of the transmission path. By taking the log of the
transform, the multiplication turns into an addition of the logarithmic source function
power spectrum and the logarithmic frequency response function, to obtain the
logarithmic spectrum of the response. This implies that the source and transmission
path effects are additive in the cepstrum. The transmission path transfer function has
low quefrequency components, which will be well separated from the high
quefrequency components representing the source function. Randall [73] applied the
cepstrum analysis to the vibration measured on a gearbox at two different positions on
the casing. He concluded that the spectra of the two signals were different but the
cepstra were almost identical.

Forrester [ 74] however stated that cepstral analysis is not very useful in the analysis of
synchronously averaged signals, since the signals is not periodic in the so-called angle
domain and periodicity is lost when translated to the quefrequency domain.

A variety of expressions and forms of the cepstrum have been developed. Childers et
al. [75] described the relationships between the various forms. Wu and Crocker [76]
developed a modified cepstrum technique to determine the magnitude of a structure’s
frequency response function. The novelty of the technique is based on the fact that no

prior knowledge of the input force is required to calculate the magnitude of the
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structural transfer function. Debao et al. [77] applied cepstrum analysis to detect
misalignment, unbalance and bearing damage in generators. Van Dyke and Watts [78]
utilised the cepstrum analysis as a data pre-processor for an expert system, which can
detect rolling element bearing deterioration and predict fault severity.

Badaoui et al. [79] proposed a moving cepstrum integral to detect and localise tooth
spalls in gears. The technique applies a moving window in order to isolate the gear
tooth faults. This enables the detection and localisation of local tooth spall on gear
teeth. The technique was applied to numerical and experimental data and the authors
where able to detect light spalling on gear teeth.

Jeung [80] said that a direct measurement of an excitation pulse is not simple because
locating sensors at the exact source location is not practical in many engineering
applications. He presented an indirect method for detecting a transient source
waveform by using a sensor at a remote position and using cepstral analysis as a
robust inverse filter to smooth out the transmission path.

Zhinong [81] reviewed the application of blind source separation in machine fault
diagnosis, considering noise elimination and extraction of weak signals, the separation
of multi-fault sources, redundancy reduction, feature extraction and pattern
classification based on independent component analysis. The application of blind
source separation in machine fault diagnosis has been developed rapidly for the last
several years [82]. Blind source separation provides a new technique for the
separation of mechanical source signals under high-level background noise and
diagnosis of the compound fault [82].

Mirko [83] carried out an assessement for blind source separation [BSS] algorithms
with respect to machine diagnosis and verified the applicability of a new BSS
algorithm.

The sound of a rotating machine is periodically (or at least first order cyclostationary)
and therefore stationary. The typical interfering sources are normally not stationary,
like human speech, hammer blows or clicking of switches [84]. Machine faults
modity the machine sound characteristically, therefore observing the machine sound
can be a useful means for fault diagnosis and classification [85]. Blind source
separation deals with the problem of recovering several sources from linear mixtures

without knowledge about the mixture [85].



A gearbox is an example of an extremely difficult case to measure the force at the
gear mesh which is roughly fixed in space, but moving with respect to the meshing
gears [86]

A methodology was outlined to determine poles and zeros corresponding to the
frequency response function (FRF) of a signal transmission path from response
measurements alone, without the need to measure the forcing function.

Gao [87] presented a paper on the determination of frequency response functions from
response measurements — extraction of poles and zeros from response cepstra by
adopting the Levenberg-Marquardt and Ibrahim time domain methodologies for the
curve-fitting purpose. He used the blind source separation techniques to separate the
vibration sources in internal combustion engines. He used the blind source separation
techniques to separate the vibration sources in internal combustion engines.

Cepstrum analysis and Hilbert transform techniques may be useful in situations where
frequency analysis alone or time signal analysis alone does not enhance those features
of the signal that characterise the fault to be diagnosed [88].

Traditional frequency analysis techniques are not very useful due to the overlap of the
difterent sources over a wide frequency range [89].

Peled [90] used a blind deconvolution to separate signals from different sources which
are convoluted and mixed by the mechanical systems before being measured. He
based his methodology on blind deconvolution separation, considering the kurtosis of
the separated signals coming from bearings as the measure to be maximised. He tested
his methodology on simulated and experimental cases. The results showed the
elimination of the effect of structural resonances, which often causes severe problems
in classical diagnostic methods.

Jerome [91] used industrial cases to demonstrate how the spectral kurtosis can be
efticiently used in the vibration-based condition monitoring of rotating machines. He
introduced the concept of kurtogram, from which optimal band-pass filters can be
deduced as a prelude to envelope analysis.

Jerome [92] established the extent to which spectral kurtosis is capable of detecting
transients in the presence of a high noise-to-signal ratio and thereby proposed a short-
time Fourier-applications.

Jerome [93] proposed two robust separation techniques based on the short-time
Fourier transform to separate the convolutive mixtures of sources. He ascertained that

blind source separation is the issue of recovering the various independent sources

17



exciting a system given only the measurements of the outputs of the system, and it has
become the focus of intensive research work due to its high potential in many
applications.
Having reviewed the above extensive literature, gear faults still remain a difticult
problem to analyse because of the overlapping of the frequencies, sidebands and
harmonics, which is the reason for this research work; developing a novel technique
to solve this problem by using cepstrum technique that uses homomorphic blind
deconvolution to remove the effect of transmission path transfer functions from
externally measured gearbox signals.
Homomorphic filtering is unique because it will extract a smooth envelope, which
enables the detection of events that are suspected. It will decompose (deconvolve) the
additive components into cepstra components for better diagnosis. This is the missing
piece in the work just outlined.
The reason for the homomorphic liltering over other work on the cepstrum technique
is of two parts:
e The first part is the detection of those parts in the cepstrum which ought to be
suppressed in processing.
e The second part includes the actual filtering process and the problem of
minimising the random noise which is enhanced during the homomorphic

procedure.



Chapter 3

Maintenance Strategies

3.1 Introduction
The function of maintenance is to ensure that plant and equipment are available in a

satisfactory condition for operation when required. The determination of what
constitutes a satisfactory condition for rotating machinery will depend largely on the
operating situation, type of industry, process requirements and business objectives.
In all cases, however, the performance of the maintenance function can be judged by
the condition of machinery, which the following factors will indicate [42]:
e Performance, this is the ability of the machine to perform its functions.
e  Downtime, operation of the machine must be within an acceptable level of
downtime.
e Service life, before replacement of the machine is necessary: it must provide a
good return on investment.
e FEfficiency, the level of efficiency of the machine must be acceptable.
e Safety, the machine must be safe to the personnel.
e Environmental impact, the operation of the machine must be friendly to the
environment and other equipment.
e C(ost, it is expected to have a maintenance cost within an acceptable level.
The goal of maintenance is to ensure that machinery performance is satisfactory,
considering the above factors. This chapter covers the brief history of traditional
machine maintenance and maintenance strategies.
Most management now see maintenance efficiency as a factor that can affect business
effectiveness and risk-safety, environmental integrity, energy efficiency, product
quality and customer service and that it is not constrained only to plant availability
and cost. Thus, as the climate of doing business changes, so does the need for better

maintenance programs.



3.2 Evolution of Maintenance
In general, the evolution of maintenance is categorized into 3 different generations:

e the period of 1930's-1940"s which is referred to as the First Generation,
e between 1950°s to 1970°s as the second generation, and
e thc 1980°s untill date as the third generation [ 139].
The growth in maintenance efficiency has become more complex due to equipment

automation.

3.2.1  First Generation

The first generation describes the earlier days of industrialization where
mechanization was low. Most equipment in the factory was basic and the repairing
and restoration process was done in a very short time. Thus, the term downtime did
not matter much and there was no need for managers to put maintenance as a high

priority issue.

3.2.2  Second Generation

The second generation emerged as the results of growing complexity in equipment
and plant design. This had led to an increase in mechanization and industry was
beginning to depend on these complex machines. Repair and restoration had become
more difficult with special skills and more time needed to mend the machinery. As
this dependence grew, downtime became a more apparent problem and received more
attention from management. People were beginning to think that these failures should
be prevented which led to the concept of preventive maintenance. As maintenance
cost started to rise sharply relative to other operating costs, there was a rising interest

in the field of maintenance planning and control systems.

3.2.3 Third Generation

Reliability had become vital in the maintenance circle from the 80s; failure of
machines would be detrimental to productivity and profitability. At this time a
machine breakdown could have an adverse effect on a plant and its operation. The
complexity of machinery and automation system had been on the increase.

The evolution of the maintenance strategy is demonstrated in the table 3.1 and the

development between the first and third generations are summarised as follows:
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e More focus on equipment reliability and root cause analysis to cnhance better
performance.
e The technology that can predict and reduce a machine breakdown is available.
The trend of this development is pointing at ways to attain zero breakdowns.
e  Maintenance tools have improved.
Many organizations have stated zero breakdowns/zero in-service failures as their
maintenance goals. However, since no amount of maintenance can guarantee the total
elimination of failures (there is always a probability of failing but it may be very close
to zero) it is not a realistic objective. A more realistic approach is to avoid, reduce or
eliminate the consequences of failures.
Table 3.1 and figure 3.2 present a summary of the survey that the author carried out.
The survey was conducted through phone calls to twenty manufacturing companies
that have local branches spread across New Zealand. The survey was also conducted
among the attendees of Vibration Association of New Zealand Conference in the two
years | attended the conference. Attendance at each was 200 and the attendees
represented the managers and maintenance planners of various companies across New
Zealand. The author spoke to either the maintenance manger or the maintenance

planner and asked the following questions in Table 3.1

Table 3.1: Questionnaires

Questions Answers

Company’s Name

Type of Processes

Is your maintenance reactive or

preventive or predictive

What is your maintenance software?

What is your predictive maintenance

gear?

The answers to the above questions were collected by the author and are demonstrated

in Table 3.2 and figure 3.1 respectively.
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The difficulties the author encountered during the survey were that the maintenance

manager or planner were not interested in the survey. This was the reason the author

decided to use telephone instead of sending out questionnaire forms.

Patience and perseverance helped the author to overcome these difficulties. The

Patience helped to call as many times as possible to speak to the right person; and the

perseverance helped keep ringing back to get the information the author needed for

this survey.

Table 3.2:

The Summary of Maintenance Evolution

First Generation

Second Generation

Third Generation

*Break and fix

maintenance strategy.
*65% of companies in
New Zealand use this

strategy.

*Preventive maintenance
strategy

*Job scheduling and
planning

*Low-tech maintenance
programme

*30% of companies in New
Zealand use this strategy.
*About 45% have the
preventive maintenance
programmes, only about
30% follow the routine and
procedures, the rest 15% still
fix the machines when it

break down.

* Predictive maintenance
strategy

* Equipment reliability

* Hazard studies and
safety

* Root cause analysis

* Various maintenance
programmes.

*About 5% claim to have
the predictive maintenance
programmes, only about
3% practice this strategy
with diagnosis and
reliability, the rest 2% still
fix the machines when it
breaks down and also use
preventive maintenance

programmes.

N
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Maintenance Strategies

Predictive
Maintenance,
Preventive 5%
Maintenance,
30%
Reactive
Maintenance,
65%

Figure 3.1: Maintenance Strategies Based on the Practices in New Zealand

Companies

The increased usage of computer modelling in maintenance strategies. rapid
development ol computer technology (especially in the area of aruficial intelligence
and expert systems) and computer simulations have increased the predictive
maintenance tools. Todav computers help in data collection, data storage. signal
processing and analysis of equipment failure.

The reactive maintenance is mostly practised by manv companies because of lack of
information on predictive maintenance or the cost of it or lack of interest.

For the purpose of clarityv. reactive maintenance is broader than many people used to
see it. Many see it as a tvpe of maintenance other than preventive and predictive: there
is more to it. The following are the broader delinitions of reactive maintenance.
considering the results of the survey. therefore reactive maintenance is where [42]:

e There is no preventive and predictive maintenance. but run the machine until a
lault develops. is sopped and s fixed.

e There s no predictive maintenance. preventive maintenance is in place. but
the routine work 1s never done or ignored by the maintenance personnel: the
machine runs until a fault develops. is stopped and is fixed.

e Predictive maintenance 1s in place (either online or off line) but the
recommendations based on this strategy are ignored by the plant ovwners or

technicians. the machine is run until failure occurs and then fixed.



3.3 Maintenance Cost
Maintenance costs have been a great concern in past years, which also affected
productivity and profitability. Maintenance is the largest single manageable
expenditure in the plant, which surpasses the annual net profit of some companies. It
is widely accepted that maintenance strategies like preventative and predictive
maintenance programs produce savings of up to 25%, yet 1/3 of these maintenance
costs can be saved [42]. Maintenance costs are classified into two types:

e Labour, materials, services and overhead are costs that are easily measured.

e The second one is not easy to measure, these are the unexpected stops of

machine, unplanned plant shutdown and breakdown.

Therefore, it is very important for companies to maximize the effectiveness of their
maintenance and equipment uptime. According to a survey carried out by the author
on manufacturing companies across New Zealand, most of their maintenance
departments are about 30% productive, due to lack of proper maintenance of their
machines.
However, maintenance productivity can be drastically improved by the planning and
scheduling of maintenance activities. For the past 20 years, most manufacturers have
only focused on reducing costs in the manufacturing processes to stay competitive as
a low cost producer [94]. This effort would yield some measurable productivity gain
but still excludes the opportunity for the maximum gain in overall productivity since
maintenance was often excluded from these improvement plans [95]. Clecarly, it is
also important to integrate a maintenance program into the improvement agenda of

the manufacturing companies [96].

3.4  Maintenance strategies

All machines have some physical characteristics that reflect their conditions. A
normal running level for that characteristic is established when the machine is in good
condition, any significant deviation from that level gives a warning that a fault may be
developing and maintenance will be required.

Although the specific requirements of an individual machine are rarely quantified, it
is important that the criteria by which performance can be assessed are understood
and monitored. Despite the fact that definite levels of acceptability arc hard to

establish, trends in machine conditions can be observed and should be used as
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indicators of maintenance requirements. Three types of maintenance strategies are

discussed in this chapter.

34.1 Breakdown Maintenance (Reactive)

This type of maintenance strategy is referred to by some people as reactive or
corrective or ‘break and fix' maintenance. In Auckland and Wellington about 65% of
the companies surveyed use this strategy to maintain their machines. The approach is
reactive when the machine breaks down or the machine is in the process of breaking
down. This process shortens the life of the equipment, which often results in the
replacement of the machine or components. The costs of labour, production, repair
and parts make the overall maintenance cost under this strategy the highest among the
maintenance practices. This maintenance strategy is basically “run the machine till it
breaks™. Advantages to reactive maintenance can be viewed as a double-edged sword.
It we are dealing with new equipment, we expect minimal incidences of failure. If our
maintenance strategy is only reactive, we will not expand manpower, dollars or incur
cost until something breaks.

Since there is no associated maintenance cost, this could be viewed as saving money.
On the other hand, by waiting for the equipment to fail, its life is being shortened
which would result in more frequent replacement. The labour cost associated with
repair will be higher than normal because the failure will most likely require more
extensive repairs than would have been required if the piece of equipment had not

been run to failure.

3.4.2  Preventive Maintenance (PM) Strategy
This is a ‘time-scheduled’ task to prevent breakdown, which is performed on
machines periodically or by schedules. During this maintenance period, machines are
opened up and inspected, and then repairs are made. Items are replaced or overhauled
at a specified time, no matter their condition. This research work investigated
maintenance strategies in different companies in New Zealand (see Table 3.2 and
Figure 3.1); about 30% of them operate PM effectively. Some of these companies
incorporated their maintenance routine into SAP software and collected the list of
machines due for inspection each week. Examples of this routine work are in
Appendix B. This was the PM strategy that was set up for a company that claimed to

have a preventive program but still practised a reactive maintenance strategy. The
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following were investigated before the PM was set up: machine history. hyvpothetical
failure history. manufacturers manual as well as interviews with the operator of the
machine and the maintenance team. PM has two features. which are. activity 1o be
performed and frequency at which it is performed. Failure to assess the two [eatures
will result in either under-maintaining or over maintaining the machines. Under-
maintaining machines occurs when PM is not performed often enough. while over
maintaining is when PM is performed at more frequent intervals than necessary or
performing activities that add no value to the machine output ‘The companies visited
during the investigation showed their preferences for the following intervals when

spectfving the PM [requencies: weekly. monthly. quarterly. six-monthly and annually.

3421 Preventive Maintenance Costs By I'requency
Breakdown is when a machine is operating less than satisfactorilv. Despite all
attempts at prevention. machine breakdowns of various kinds do occur and ofien need
1o be fixed on an urgent or emergency basis. It is important to make sure that the real
cause of the breakdown is found and remedied and not just the effect patched up. Root
cause analvsis should be rigorous in finding the inherent cause of the problem. If the

real cause of the problem is not corrected then further breakdown is likelv to occur.

PM Activty Costs by Frequency

Monthly 82% 5%

82% .
Quarterly 3% '"“*-—--.. 4%
1%
8%

Six Monthly 8%

Annually 4%

Over-Annuallv

Figure 3.2: Preventive Maintenance Costs by Frequency
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Figure 3.2 shows over 80% ol the PM expenditure on activities with a [requency
of one month or less. whereas the six-monthly and annual activities are onlv 8%
and 4% of maintenance costs respectivelyv. The figure outlines the costs involved

during preventive maintenance.

3422 Case Study 1: Fan Drive l-nd Bearing Under Preventive
Maintenance

A steel manufacturing company shown in Figure 3.3 performs different operations in
six plants. which are: Iron. Steel. Meta Coating Line. Colour Coating Line. Rolling
Mills and Mine Site. The maintenance strategies in these plants were preventive and
predictive. The plant owners designed preventive maintenance (PM) for some

machines and predictive for others.

Figure 3.3: Steel Manufacturing Company in Auckland New Zealand



Figure 3.4: Multi-Hearth Furnace Fan
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This case study will discuss a machine under preventive maintenance. The machine is
shown in figure 3.4, a multi-hearth furnace fan that had a history of premature bearing
failure at the fan drive end (DE) shown in figure 3.5. The preventive maintenance on
this machine scheduled its lubrication frequency and when to change bearings as

shown in Table 3.3, more PM schedules can be found in Appendix B.

Table 3.3: PM Schedule

Component Frequency
Motor Bearings Check Lubrication level weekly
Fan Bearings | Change bearings yearly

The PM schedules for the bearings shown in Table 3.3 were based on the following:
e Plant experience

e Manufacturer's recommendation

3.4.2.3 Plant Experience

Local knowledge of machine performance in the longer term, proved to be a more
appropriate method of establishing the frequency of major overhaul and other
maintenance requirements. Before this experience could be used to set up the
preventive maintenance, accurate maintenance records were kept so that performance
patterns and characteristics could be clearly established. Component life expectancy
and wear rates can be assessed on the basis of recorded information that represents a
true reflection of operating conditions. This information will not be detailed enough:
the use of a predictive maintenance technique provides the kind of detailed

information on which maintenance records can be based.

34.24 Manufactures’ Recommendation
Most equipment manufacturers provide details of recommended maintenance
requirements, from basic lubrication schedules to major overhaul information. This
information was used as an initial basis on which to determine preventive work, such
as overhaul and routine replacement of components, to be carried out during annual or
other planned shutdowns. Until plant experience indicates otherwise, it is good to

follow these recommendations in the early stages of operation.
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In this case study, the problem was that the DE fan bearing always failed within 3-4
months and never lasted the one year predicted by PM and not in any way near the
bearing life. The plant maintenance team resorted to this routine without knowing the
root cause of the premature failure.
Some investigators [97] state that, by performing PM as the equipment designer
envisioned, the life of the equipment would be extended close to the design, but
would not prevent catastrophic failure. The problem with the idea of using PM to
extend the equipment life has the following missing components which this thesis will
address:

e The root cause of the failure

e No valid data that quantifies and validate when a component be changed or

replaced.

One of the aims of this research was to use a vibration sensor and a data collector
(Predictive Maintenance-PDM) to collect valid measured data to diagnose faults and
find the root cause of the failure, using a mathematical approach and compare the
calculated values with the component’s standard to substantiate the deviations from

the designed values. This will be discussed in chapter 4.

3.4.3 Predictive Maintenance (PDM)

The condition of all machinery should be under continual surveillance by both
operating and maintenance personnel. The casual and routine monitoring of
equipment all yield information regarding the operating condition on which
maintcnance requirements can be planned. It is vital that maintenance personnel
realise the importance of being critically aware of the operating condition of
machinery and ensure that their observations are accurately reported. Inspection
requires the use of the senses and maintenance personnel should develop an eye, ear
and a nose, for machine condition. Recognition of normal running characteristics are
the basis from which deviations can be observed and trends in machine condition can
be predicted.

In recent years a variety of techniques have been developed by which the operating
condition of machinery can be either intermittently or continuously monitored. These
techniques will use mechatronics sensors for inspection and detect when machinery

deviates from normal operating conditions. The most important aspect of these
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techniques is the ability to provide information on which maintenance requirements
can be based.

Machines are regularly monitored to determine the condition of the machine
components while the machine is running. It is a more condition-based approach to
maintenance, which uses a vibration technique to determine if the machine will fail
during some future period, and then takes a corrective action to avoid the
consequences of that failure. By contrast preventive maintenance is based on a time
interval. Condition monitoring involves the acquisition, processing and analysis of
sensor data related to machine parameters, such as vibration. Developing problems
can be detected and identified at early stages by comparing the data being collected
continuously, and appropriate decisions can be made to fix the problem before the
failure becomes a catastrophic one.

Improvement in operation costs and safety has made predictive maintenance a viable
and cost effective choice for the optimum operation of modern plants. The
development of new sensor and computer technology has provided research
opportunities for scientists and engineers to investigate problems in the area of
condition monitoring and fault diagnosis. Condition monitoring can be oft-line or on-
line. Off-line is when the data collector is being used at scheduled intervals to monitor
the machines, while on-line is when the sensors are permanently fixed on the machine
for continuous monitoring. Data from both methods are processed until useful
quantities that best describe the current health of the machine are extracted. The
processed information is then compared against some known or predetermined normal
quantities, and finally, fault or failure indicating signals are generated. The system
behaviour can be predicted under various fault conditions for a given set of signals

and parameters.

3.4.3.1 Cuse Study 2: Identification of Deep Grove Bearing Defects by
Spectra Analysis.

Data collection is the most important step in the evaluation of machinery condition.
Data should be collected by placing the transducer in the load zone, the drive end. If
this is not done, the best signal definition may not be obtained. In order to know
where to place the transducer, it is good to know the internal machine geometry and
which problems generate radial or thrust loads. For example, with a radial load, the

best signal can be obtained in the radial position. With an angular contact bearing or a
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radial bearing in a thrust load, the best signal definition can be obtained in the axial
direction. Data can also be taken where the transfer function is best, for example, put
the transducer on a bolt head, not the cover. A machine with a defective bearing can
generate at least five frequencies that have been associated with defective bearings,
which can be computed by using the following formulae. Equations 3.1- 3.5 are valid

for a bearing mounted with outer race stationary and inner race rotating [98].

3.1
rps=REM
60
3.2
FTF:ﬁDE I—B" cos ¢
2 d
3.3
BPF1=£.RPS. 1+§icos @
2 Pd
3.4
B
BPF():-]YL.RPS. 1-—%cos¢
2 P,
. 3.5
R
BSF =—<_ RPS. l—fi;coszgé
2B, P

RPM =Revolution per minute

RPS = Revolution per second

FTF  =Fundamental train frequency

BPFI = Ball pass frequency of inner race
BPFO = Ball pass frequency of the outer race
BSF = Ball spin frequency

Ba = Ball or roller diameter
Ny = Number of balls or rollers
Py = Pitch diameter

¢ = Contact angle

The above data and definitions are needed to compute values for the frequencies.
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Rolling element bearing fault frequencies are guaranteed as a result of fatigue, wear,
improper installation, improper lubrication, and manufacturing faults in the bearing
components. It is possible to use the manufacturer’s data to find the ball diameter,
pitch diameter, number of rolling elements and the angle between the surface of each
rolling element and the races (called the contact angle). Knowing these three values,

the four fundamental defect frequencies can be calculated accurately.

The following equations are needed to compute the frequencies of bearings mounted
with the inner race stationary and outer race rotating. Equations 3.6- 3.9 are valid for

the bearing mounted with inner race stationary and outer race rotating [98].

3.6
FTF:ﬁS 1+—Bicos¢
2 P,
B 3.7
BPFI:%”—.RPS. 1-—%cos ¢J
d
3.8
BPF()=&.RPS. 1+&cos¢
2 P,
The formula for BSF is identical for both cases:
2 39

P B}
BSF=—4_ RPS.|1- —%_cos’ ¢
2B P

2
d d

When the bearing fault frequencies that appear in the vibration spectra do not match
the calculated frequencies, an unanticipated load in the bearing changes one of the

parameters used in the calculation. The typical parameter that changes is the contact

angle ¢ [98].
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3432 Lyuipment Specifications

RION VA - 10

The following are the details on the data collector used [or this case study.

Name of data collector: Rion VA-10

Analogue
Channels: |
Transducer:

Rion PV-55

Pizo crvstal with built in charge amplifier.

Signal conditioning:

Butterworth filters Slope -18dB/oct

High pass: 3.10.1k Hz. (at -10% point)

Low pass: | k. SKk. ISk S0k Hz. (at -10% point)
6 input ranges: (half decade steps)

Integration and double integration.

Rms and 0 to Peak deteciors.



Amplitude demodulation,

Antialiasing, low pass filter, 5" order Chebyshev, (tied to sample rate).

Analogue to Digital:
8 bit
Dynamic range 48 dB
Digital:
Sampling:
Window size; 256, (512 and 1024 with zoom)
Internal triggering; setable level and slope, post and pretrigger.
Averager modes; instantaneous, linear, exponential and peak.

Window time weighting; Rcctangle (none), Hanning, Flat top.

FFT: Standard; 256 points to 100 lines,

Zoom;, 512 points to 200 lines and 1024 points to 400 lines.
Other functions:

Crest Factor, Probability density, overall level, enveloped acceleration.
Memory:

100 line spectra; 180

Overall level and crest factor; 500
Display:

128 x 128 pixel lcd.
Cursor units:

X axis: Hz, Kcpm, Order, ms

. 2 . .
Y axis: G, m/s°, mm/s, in/s, mm, mils, %, dB

Interface:
RS-232, 1200 - 9600 baud.
Ambient operating conditions:

0 to 40° C, 20 to 90% RH

Dimensions:
215 (H) x 124 (W) x 43 (D) mm
700g
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3433 Measured I'requency

The theory on the (our fundamental delect [requencies was used to detect bearing
(atlure in an Arrol crane. (60tons). which carries steel [rom a (urnace to the casting
machine in a steel manulacturing company. The crane was noisy belore we were told
to do a vibration check. There was previous vibration data. The accelerometer was
placed on the bearing housing of the input shaft of the primary gearbox in the radial
direction and the readings were taken and analvsed to identily the defect bearing. The

spectrain figures 3.3 and 3.4 were generated by the data collector.

=}

Figure 3.6: Spectrum Showing the Bearing Delect

36



1.8
1.6
1.4

152

0.8 1)
0.6
0.4
0.2

0. 40. 80. 120. 160. 200.
B4-MHP-U Frequency (Hz)

Figure 3.7: Acceleration Amplitude versus Frequency

The spectra shown in figures 3.6 and 3.7 indicate a serious bearing problem.
ligure 3.6 has its highest [requency peak with velocity amplitude of 12mm/s and
the measured frequency was 43 4Hz. Figure 3.6 is the envelope. it is a good
technique to detect bearing faults. and the lact that it is peaky is an indication of
bearing lault. The envelope technique enables precise diagnosis of ball bearing
faults.

In order to validate the tvpe ol bearing delect. the predicted [requency was

calculated by using the bearing’s parameters.

3434 Predicled 1irequencies

* Frequencies associated with the various bearing defects can be obtained by
using equations 3.1 — 3.5.

o Shalt running speed = 10Hz.

* By=3493mm

e [,=15912mm

e Ny=4§ balls

* Angle=¢6°
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» Fundamental Train Frequency (FTF) = 3.91Hz. using equation 3.2
» Ball pass [requency inner race (BPFI) = 48 73H7 using equation 3.3
» Ball pass Frequency of the outer race (BPFO) = 31.27Hz using equation 3.4

» Ball spin [requency (BSF) = 21.7H/ using equation 3.5

The measured (requency was 43.4Hz and the predicted [requency of the ball spin
[requency was 21.7Hz. The efTect of the ball hitting both outer and inner race will
result in a total frequency of (21.7 x 2) 43.4Hz. This conlirms that the problem was
coming (rom the balls. When the bearing was dismantled. the delect ball bearing

causing the high peak was lound as shown in [igure 3.¥.

Figure 3.8: The Delect Bearing

The corrective action the author recommended was that the bearing be changed.
This was done and another set ol readings were taken 1o see il the acceleration
amplitude had dropped. Figure 3.9 shows the new spectrum aller the bearing was
replaced. It has a low acceleration amplitude. the noise was eliminated and the

crane worked smoothly.



0.45

0.35 4
0.3
0:25] .|
0.2
0.15 4
0.1
005 H

0. 40. 80. 120. 160. 200.
b4-MHP-D Frequency (Hz)

Figure 3.9: New Spectrum with Low Acceleration Amplitude

PDM is a good technique with valid data to predict svstem behaviour - its application

and pitlalls of its Fast Fourier Translorm (FFT) algorithm are discussed in chapter 4.
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CHAPTER 4

Fast Fourier Transform Technique and Its Pitfalls

4.1 Introduction

The Fourier transform converts time-domain signals to the frequency domain. Fourier
analysis can be used to describe systems and their properties in the frequency domain,
by breaking down the complex signal into its components at various frequencies. This
makes the input and output of systems easier to analyse by expressing them as a
function of frequency domain instead of time.

In this chapter, a system response to inputs of different frequencies is presented. The
signals are complex and comprise of real and imaginary components. In the frequency
domain, the Fourier transform is mathematically represented as complex numbers.
Difterent case studies are presented here; using the FFT technique to identify various
machine faults. A number of case studies are presented to investigate where the FFT
technique could not be used to identify the root cause of failures: A mathematical
modelling approach was used, together with the FFT data, to find the root cause.

It will be seen that the forcing frequencies and the resonance effect can overlap in an
FFT making diagnosis difficult. Conversely, the cepstrum technique using a
homomorphic filter will be shown (in the next chapter) to separate these two effects

making diagnosis much easier.

4.2 Complex Numbers

A complex number consists of both real and imaginary components. The Fourier
analysis algorithm converts the time domain to frequency domain, which is the
representation of frequency components. In order to have in-depth understanding of
the functions available in FFT spectrum analysers, complex numbers are presented.
The possibility to find the square root of minus one is the reason why complex
number is adopted. Mathematicians solve this problem by giving a value of i to be the
square root of minus one, the electrical engineers use this as a symbol of current,

hence the use of j as a symbol for the square root of minus one. In this thesis, the
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notation j of the electrical engineers will be used. Figurc 4.1 shows a complex number

plotted on the real and imaginary plane, assuming a complex number b + cj.

Imaginary

b +¢j

Maonitude

phase

|
I
|
'
[
I
U
]
I
i
1
i
'
1
I
]
1
[
'
1
]
i
1
I
]
1
1
[l

Real

h
Figure 4.1: Real and Imaginary Plane of a Complex Number

o 2 2 o o X
(Magnitude)” = (real component)” + (imaginary component)
Phase = tan” imaginary component/real component

Complex number (n) = b + ¢j 4.1

W here

n = complex number

b = real number

¢f = imaginary number

The multiplication of ¢ and j will result to a rotation of it by /7/2 radian. The number j
describes the square root of negative real numbers, hence

Ji=-1

The other way to represent a complex number is in form of its magnitude and phase.
Fourier analysis can be explained by using the Fourier series of a periodic function
after the application of the complex number.

If x () is a periodic function, therefore.

x () =x(t+nl) 4.2
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Where

T = periodic time

n — any integer

The continuous-time Fourier transform is shown in equation 4.3.

. d st 4.
X(N)= xte™ ’

The periodic T — o, while the spacing |/T between harmonics approaches zero and
X () becomes a continuous function of f'and equation 4.4 becomes the continuous-

time Fourier transform.

‘ ‘w - 4
X(/A):’l f/ x([)e‘/-lrﬂ\ull A

W here

S = Kfi

kth = harmonic of 1,

1/T to be kf). k is zero and negative integers, however, the kth component is obtained
from the integral.

21Nt

Multiplying the signal by e will cause all the components at other frequencies to
rotate and eventually integrate to zero over the periodic time.

Since complex numbers can be plotted on the real-imaginary plane, it is evident that
the spectrum analyzer will handle the complex numbers the same way as vector

mechanics, calculating both magnitude and phase.

4.3 Theory of FFT Analyser

The FFT analyser is the most commonly used piece signal analysis equipment in the
vibration field. Spectrum Analysis defined as the transformation of a signal from a
time-domain representation to frequency has its roots in the early 19" century [99]. It
took a practical man, an engineer with a good mathematical background to develop
the rationale upon which almost all our modern spectrum analysis techniques are
based. That engineer was Jean Baptiste Fourier, working for Napoleon during his
invasion of Egypt on a problem of overheating cannons when he derived the famous

Fourier series for the solution of heat conduction. It may seem a far cry from
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overheating cannons to frequency analysis, but it turns out that the same equations
apply to both cases [100].
Fourier later gencralized the Fourier series into the Fourier Integral Transform.
The advent of digital signal analysis naturally led to the so-called Discrete Fourier
Transform and the Fast Fourier Transtform (FFT). The FFT is simply an algorithm for
calculating the DFT in a fast and efficient manner.
Cooley and Tukey discovered FFT in 1967, but it existed much earlier. The FFT
algorithm places certain limitations on the signal and the resulting spectrum. For
instance, the sampled signal to be transformed must consist of’a number of samples
equal to a power of two [101].
Most FFT analyzers allow 512, 1024, 2048 or 4096 samples to be transformed. The
frequency range covered by FFT analysis depends on the number of samples collected
and on the sampling rate.
Spectrum analyser is a powerful device that is able to do a proper vibration diagnosis
on machinery. The condition of the machine and its mechanical problems are
determined by measuring its vibration characteristics, which are frequency,
displacement, velocity, acceleration and phase.
The vibration amplitude is the measure of the severity of the trouble in the machine
and the frequency components indicate the type of faults.
Case studies are presented on few of the common vibration problems in machinery,
which are:

e Bearing defects

e Imbalance of rotating parts

e Worn or damaged gears
The characteristics of the Entek FFT spectrum analyser the author used in this

research, are shown in table 4.1

Table 4.1: Entek Spectrum Analyzer Characteristics

Resolution 400 lines
ﬁequehcy range 10kHz

Dynamic range 96dB

Number of channels 2
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4.4 Case Study 3: Bearing Failure Due to Shaft Deflection

The data presented in the figures 4.2 and 4.3 was acquired by the author on the drive
end of the fan bearing housing of the multi hearth furnace (MHF) Flakt fan, which
supplies draught to Flakt venturi scrubbers in the iron plant of a steel manufacturing
company in New Zealand.

There are four multi-hearth furnace (MHF) Flakt fans and each one is powered by an
inline, direct drive 1.3mW electric drive. They were installed on site in late 1989 and
modifications to the bearing pedestals were undertaken in late 1996/early 1997, which
included trialling of diftferent bearing types in an attempt to achieve an acceptable
bearing life. The shaft has a simply supported boundary condition with a diameter of
IS0mm. The fan impeller has not been fitted with anti-thrust vanes, however, circular
stiffening rings have been fitted to prevent tlutter of the back plate and front sheet and
these preclude the fitting of anti-thrust vanes. Both the shaft and fan impeller are
made from Sandvik SAF 2205 stainless steel. The fan bearing at the drive end suffers
premature failures. The following investigations had become necessary to evaluate the
root cause of such failures and a corrective action was recommended. Investigations
were carried out to validate whether the premature bearing failure was due to
excessive shaft tlexing or whirling producing large angular misalignment at the
bearing journal.

In this investigation, historical and new data were used to evaluate the shaft and
impeller deflections, critical speed, loading on the bearing and lubrication system. The
predicted values and the manufacturer’s standard values (SKF & NSK) for the bearing
[103, 104, 105] were compared, and recommendations were given, considering the

system operating conditions, natural frequency, critical speed and deflection.

4.4.1 Natural Frequency & Critical Speed
Rotating shafts become dynamically unstable at certain speeds, and large vibrations
are likely to develop. The speed at which this phenomenon occurs is the critical speed.
Vibration difficulties frequently arise at the lowest or fundamental critical speed.
Equations 4.13 and 4.14 for a simply supported shaft boundary condition were used to

calculate the speed [106].
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v.-30 (&
C z\o
Where:
/= Natural frequency (Hz)
¢ = Acceleration due to gravity (m/s’)
o = Dellection (m)
N, = Critical speed (rpm)
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Figure 4.2: Fan Bearing Housing at Drive End, Horizontal Direction.
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Figure 4.3: Fan Bearing Housing at Drive End, Axial Direction.

The shape of the spectrum in Figure 4.2 1s a system response at 15Hz. 35Hz and 75Hz
respectivelyv: however. the 75Hz coincides with 3x running speed harmonic. Figure
4.3 is in the axial direction. while Figure 4.2 is in the horizontal direction. The

indication is that the fan is running between the [irst and second critical speeds.

442  Whirling of Shaft & Critical Speed
Critical speed of shafts may be found by anv of the means for calculating the natural
frequencies with equations 4.13 & 4.14 |106]. Whirling. 1.e. violent vibration at

critical speeds occurs in vertical as well as horizontal shafts. In non-vertical shaft like

the one in this case study. gravity effects may introduce additional critical speeds of

second order.

443 Dellection & Stiffness
A shaflt mav be designed and sull be unsatisfactory because it lacks rigidity.
InsufTicient ngidity. or stiffness. can result in poor performance of various shali-
mounted elements such as bearing. When a shafl is turning. eccentricily causes a
centrifugal force dellection which is resisted by the shaft’s flexural rigidity (%21). As

long as dellections are small. no harm is done.
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In this case study, the deflection due to both impeller and shaft was used to evaluate
the criticality between the bearing's axial and radial loads ratio, using equations 4.15

& 4.16 for a shaft with a simply supported boundary condition [ 106, 107, 108]

4,
swit 5

Smax shaft =384

Omax "'”?/"”7"":3”?/?;; (a+ 21})\/1;{:: +2b) whena Zbh.

Where:
d = Deflection
W = Load (kN)
! = Length (m)

4.16

E =Young's modulus of elasticity (Gpa)
/ = Moment of inertia (m™)
a = Distance from impeller to reaction "A’

b = Distance from impeller to reaction ‘B’

4.4.4  Permissible Angular Misalignment
The deflection of the impeller was used to evaluate the bearing angular misalignment.

The predicted values were compared with the manufacturers’ catalogues to obtain a

valid F,/F; ratio.
4.4.5 Results

The shaft has a bearing simply supported boundary condition and a concentrated load
(impeller) of 900kg.
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Figure 4.4: Concentrated Load (Impeller) on a Simply Supported Shaft

Applying clockwise moment = anticlockwise moment; Rz = 2.93kN

Applying upward force = downward force:
R/\ =9KkN

Impeller Venturi Eye Diameter = 1.358m
Area of Impeller = m? = 1.4484m2

Assume 100 millibar is the gauge pressure on one side:
Axial Thrust Force (F) =P x A =14.47kN

Deflection
Shatt diameter = 150mm

Moment of inertia ()

[ =24.85x 10°mm

Maximum deflection due to weight of shaft (Ona), using equation 4.1,

Maximum deflection due to impeller (Onay)
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(Brmay) = ;‘%;f;f’—[(a+ 2b)[3a(a+2b) whena Zb.

=0.18Imm

Total deflection = 0.28mm
Permissible Angular misalignment (PAM)

Bearing
Deflection due to impeller

RA0mm

0.18Imm

Figure 4.5: Effect of Shatt Deflection on Bearing

From Figure 4, 6 = 0.029°

PAM from manufacturer’s catalogue = 2° (The bearing is SKF 22228 CCK W33 C3,
tapered bore spherical roller bearing) | 104]

Effect of Axial Load on Bearing
Radial load from impeller = 14.7kN @ 0.029°

14.7cos0

_.6 -
14.7kN

R,\ = 9kN

14.7sin6

Figure 4.6: Effect of Misalignment Angle on Bearing
Axial load (F,) from figure 4.4 = 14.7kN
Radial load (F;) = 9.01kN
FJ/Fi=e=1.63
Critical Speed
From equations | & 2, critical speed (N¢) = 1 785rpm.

Assuming 60% increase on shaft rotational speed:
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Rotational speed = 1480rpm
Considering 60% increase, N, = 2368rpm

Deflection due to the 60% increase, using equations 4.13 & 4.14.

6=0.16mm
Deflection
Shaft diameter = 150mm

Moment of inertia (1) =

e

4
I =24.85x 10°mm
Maximum deflection due to weight of shaft (3may), using equation 4.15 [109].

_ swit

_ Sw
Oy 3841

=0.099mm

Maximum deflection due to impeller (dmay), using equation 4.16 [ 110].

(Ommax) = ‘;?_{)-!—(WrEh)\/.%a(u +2b) whena Zb.

2
=0.18mm
Total deflection = 0.28mm

4.4.53.1 Minimum Shafi Diameter

Assumption

60% increase over the shaft rotational speed, using equation 4 to find deflection due
to impeller

wab(a+2b)J3a(a+2b)

27E11

4wab(a+2b)+/3a(a+2b) 417

2T E Y

(Omax) Impeller =
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wab(a+2bh)+3a(a+2bh)

212E74

wab(a+2b)+3a(a+2b)

48 8 E r?

4.18

4.19

Total deflection = Maximum deflection due to shaft + Impeller

w=pv

6'I‘olal =
wi4 wab (a+2b)+3a(a+2b)
+
60.3 £ r? 48.8E Y
0.00016

78507r2 149,81 wab(a+2b)3a(a+2b)

603 Ert

48.8 F 4

0.00016r* =5.614x 107 +5.73 x 10”

(13)

r =0.0894m, hence shaft minimum diameter = 178.8mm.

Therefore the shaft minimum diameter is 180mm

Table 4.2: Shaft Conditions

4.20

4.21

4.22

Shaft Parameter

Present Condition

Recommended
Condition

Critical speed

120% of running speed

160% of running speed

Shaft diameter 150mm 180mm
Maximum shaft deflection 0.099mm 0.07mm
Maximum impeller 0.18Imm 0.09mm

deflection

In order to validate the value of the maximum deflection obtained, it was used to

calculate the bearing permissible angular misalignment and then compared with the

angle specified by the manufacturers. The predicted angle was 0.029° the permissible

angular misalignment indicated by the manufacturer was 2° (SKF catalogue), hence

the deflection was not the issue at this stage.
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Axial & radial load ratio for the bearing in question is governed by the manufacturer’s
standard (SKF & NSK), Fo/F, = 0.25 [103, 104].

The axial load on the bearing was inclined at a small angle, which was insignificant to
its horizontal and vertical components as shown under results.

The F,/F, = e. The ratio obtained was 1.63 which was higher than the 0.25 value
recommended by the manufacturers.

The critical speed was 1785rpm, which was only higher by 20% of shaft running
speed. 50% or more is a recommended value for a critical speed to avoid resonance
eftect.

The predicted F./F, ratio is 1.63, while the required value should be 0.25. this would
require the bearing to be greased more often, otherwise the cage wear is likely to
become a great concern as a result of the high ratio of 1.63.

The critical speed should be at least 50% more than the shaft running speed. The
deflection has a significant influence on the critical speed. The critical speed was
increased to 60% of the shaft running speed, the total deflection of the shaft and
impeller was calculated as 0.07mm + 0.09mm = 0.16mm. Therefore the minimum
shaft diameter of 180mm is recommended to reduce the total deflection from 0.28mm

to 0.16mm and increase the life span of the bearing.

4.5 Case Study 4: Fan Imbalance

Machinery [mbalance is one of the most common causes of vibration. Mass
Imbalance in a rotating machine often produces excessive synchronous forces that
reduce the life span of various mechanical elements. Unbalance is caused by an
asymmetry in the rotating element that results in an offsct between the shaft centreline
and centre of mass. It represents the most common type of synchronous excitation on
rotating machinery. Unbalance results from the fact that the centre of gravity of a
rotating member does not coincide with the centre of rotation, which causes a
centrifugal force pointing radially out from the centre of rotation and rotating at a
speed equal to the speed of the rotating member itself. The equation that governs the
amplitude of the unbalance force is as follows:

F = Mwr 423
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Where

F = Force (N)

M = Mass (kg)

o = Angular velocity (rad/sec)

r = radius (m)
The case study 1s about a dedust fan in an iron plant. It runs at a speed of 1450rpm
and the impeller has eight blades. The analvsis of the vibration data showed a high
velocity amplitude of 11.8mm/s at Ix fan speed. which was an indication of

imbalance.
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Figure 4.7: Imbalance Spectrum with High Amphtude at 1xFan Speed

The amplitude s proportional to the amount of imbalance. which was larger in the
radial directions of measurement of |1 .8mm/s velocity amplitude as shown in figure
4.7. The figure was obtained by using an Entak Enpac 2500 data collector.

A serious unbalance like the one in this case study could destrov the fan or anv ofits
components like the bearings. Severe unbalance could tear the machine from its
foundation: therefore corrective action was taken by balancing the fan. The lan was
balanced by using the two-channel Enpac 2500 spectrum analvser with a balancing
program. A relerence and trigger point was located on the shalt by sticking on a small

piece of tape. The laser light centred on the shafl triggered the analyser each time the

N
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reference point on the shaft crossed the laser light. The machine was run for about one
minute and was stopped when the phase angle was seen (o be stable. The phase angle
is relative to the arbitranily selected trigger position on the shafl used to trigger the
analvser.

A tnal mass of 22¢g was placed on the impeller at sero degree with reference to the
trigger point on the shaft and the fan was run second time for one minute. The data
collector displaced the actual mass that would reduce the imbalance amplitude and the
phase angle. When a machine was out of balance. a sinusoidal time waveform with a
frequency of the running speed and a large peak would be seen in the spectrum at the
I N running speed. Afiler the balancing. more vibration data was collected: the
spectrum showed the imbalance amplitude reduced to 1.2mm/s from |1.8mm/s as

shown n (igure 4.8.
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Figure 4.8: Spectrum after Balancing of Fan



4.6 Case Study 5: Root Cause Analysis Technique to identify gearbox Failure

During the March shutdown in the iron-sand minc sitc, the raw sand gearbox was
removed, sent to the central workshop, overhauled and returned to service on the 9th
March. On the 18th of March, a noise was reported from the gearbox and there was
oil leaking from the output shaft. The vibration data collector was used to collect data
on the gearbox and later analyzed; the diagnosis indicated a strong possibility of
broken teeth. On the 29th March, during a down day, the lid was lifted for an
inspection and broken bevel wheel teeth were discovered as shown in figure 4.9.
Investigations were conducted to ascertain the root cause of the bevel gear broken
teeth.

Firstly, the gearbox vibration level was investigated, using a Fast Fourier Transform
(FFT) data collector. Secondly, the predicted values obtained for contact and bending
stresses were compared with the American Gear Manufacturers Association Standards
(AGMA) and the manufacturer’s data to validate the root cause failure of the gearbox
tooth mesh [111].

The design, manufacturing and tooth mesh parameters were investigated to ascertain

the root cause of the gearbox broken teeth.

Figure 4.9: Gear with the broken teeth

After the vibration data was collected and analysed the spectrum in figure 4.9 was
obtained. Gears generate a mesh frequency equal to the number of teeth on the gear
multiplied by the rotational speed of the shaft driving it. A high vibration level at the
mesh frequency is typically caused by tooth error due to wear of the meshing
surfaces, improper backlash or any other problem that would cause the profiles of
meshing teeth to deviate from their ideal geometry.

Gears generate a large number of possible sidebands about the mesh frequency as

shown in figure 4.10, which is a pitfall of fast Fourier transform.
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Figure 4.11 is the envelope: this indicates that there is no bearing problem. due to the

low acceleration amplitude level in the (igure.
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Table 4.3 shows the information on the gearbox.

Table 4.3: Design and Manufacturing Considerations

Parameters Pinion Both Gear
Gear ratio 3.5454:1

Material Steel grade 2

Mounting Straddled

Number of teeth 11 39
Facewidth 80

Surface hardness 58+4 HRC

Heat treatment

QGas carburised

Motor speed = 1480 rpm

Motor Power = 250kw

Pinion Torque

. 9550p
—raa

where:
p = power (kw)
n; = pinion speed (rpm)
T/=1613Nm

Contact Stress (oy)

5

[ 20007
oH=2F |-——
!}f! —(J l Z]

where:

Z ¢ = elastic coefficient (N/mm?2)

K 4K,

KHpZxZxe

T'; = operating pinion torque (Nm) = 1613N/m

K4 = overload tactor = 1.0

K, = dynamic factor = 1.0
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K= load distribution factor = 1.0

Z, = size factor = 1.0

Z = crowning factor = 1.5

b = facewidth (mm) = 80mm

d,; = pinion outer pitch diameter (mm) = 95mm

Z, = pitting resistance geometry factor = 0.12

1 4.26

ZE = ‘

2 ra

5
= 1=y
+

d E} E>

where:
v = Poisson’s ratio = 0.3

E = Young's modulus of elasticity = 200,000N/mm?

Zr= 187N/mm?>

Therefore:
o= 1383N/mm°

=4x 10 cycles = 31years
Permissible Contact Stress (o)

ol _OHIimZNT 2w 4.27
P SpKgZ:

where:
orim = allowable contact stress number (N/mm?) = 1550N/mm?2
Zyr = stress cycle factor
Z,. = hardness ratio = 1.0
S;; = contact safety factor = 1.0
Ky = temperature factor = 1.0

Z. = reliability factor = 1.0
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Zi = 3:487 9 k502
=3.4822 x (4x 1080602
=1.1

Therefore:

Oip = 1 706N/mm?>

Op > OH, OK

Bending Stress (o)
200071K 4Ky YK pp
i bdgimgy }.’[‘}YJ
where:
T/=1613Nm
Ki=1.0
K.=10

M., = outer module = 10

Y, =size factor

Kup=1.0
b =80mm
d,y =95mm

Y, =0.4867 + 0.08399m,,
=0.57

q
Fe
Fg=021] -‘i) +0.789

'[), [RHJ

where:

Feo = cutter radius
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R,, = mean cone diameter

0.279 4.30

7= Iogw{sin )

where:

,» = mean spiral angle
Hence:
Yﬂ = 1.0

Y,=0.21

Therefore:

or=1152N/mm*

Permissible Bending Stress (oip)

oF limYNT 4.31

OFP=—F—p—;
2 SFEKoYz

OFlim = 240N/m m2

Yyr= 1.6831ny %%

=0.89
Sk=1.0
K,=1.0
i =1.0
Therefore:

op = 213.6N/mm?

OFp > Of, OK
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Since the main objective was to investigate the transmission error due to broken teeth
of the bevel gear, the following could be of great influence; design, manufacturing
and mcshing problems. The design and manufacturing problems were investigated by
analytically comparing the manufacturer’s data with the American Gear
Manufacturers Association (AGMA) standard, and then the gearbox life was
estimated to be 3 lyears from the pitting resistance of the pinion shown under equation
4.26. Since the permissible contact and bending stresses were more than the actual
contact and bending stresses, the design and manufacturing problems could be ruled
out. The only option left was the transmission problem due to tooth mesh. Good tooth
mesh would reduce the dynamic factor K., while a bad mesh would increase it and
could lead to tooth breakage. The dynamic factor makes allowance for the effects of
gear tooth quality as related to speed and load, hence high tooth mesh accuracy
requires a lower K,. Having used the above methodologies to validate the design,
manufacturing and tooth mesh parameters, however, the most likely cause of the
broken gear tooth was a mesh problem.

Trained and experienced fitters should carry out the assembly of gear and pinion to
avoid mishandling problems, and all documentation be properly kept for future
record. On installation and run up, condition monitoring checks should be carried out
to establish a vibration signature and quality control maintenance work.

The spectrum could be analysed to detect gear broken teeth, but would not tell you the
root cause of the problem. The mathematical approach was used with the vibration
data to find the root cause of the problem. The theory of the cepstrum technique to

diagnose gearbox problems is presented in the next chapter.
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Chapter 5

The Theory of Cepstrum Technique to Separate Gear mesh and

Transmission Path Effects

5.1 Introduction

The vibration produced by mating gears contains physical information pertaining to
the operating condition of the gear teeth. The major sources of vibration in a gearbox
are the rotating components related to the input and output shafts, which are gears,
shafts and bearings.

There are three major forcing frequencies involved in a gearbox, which are the input
spced, gearmesh and output speed. Tooth error is developed when the meshing teeth
deviates from their ideal geometry. The following could cause tooth error; poor
machining, wear and improper backlash. Resonance effect from the gear casings can
increase the gearmesh frequency and the sidebands energy would become large due to
gear tooth error. The FFT technique will not tell you if changes are coming from the
source (meshing frequency) or the transmission path (structure resonance), instead
this technique will overlap both frequencies on a particular order. Cepstrum technique
and homomorphic deconvolution are discussed in this chapter as a solution to this
short coming. Techniques in the literature review for machine diagnosis like artificial
neural network, adaptive noise cancellation, order tracking, synchronous averaging
and cepstrum analysis [63 — 93] did not address this problem.

This chapter presents a new technique for separating forcing frequency and
transmission path effect which employs two signal processing tools; homomorphic
deconvolution and cepstrum to diagnose gearbox fault and overcome the overlapping

and sidebands problems in the current FFT technique.
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S12 Gearbox Vibration

The mesh frequency generated by gears is equal to the number of teeth on the gear
multiplied by the rotational speed of the shafl. Sidebands of the mesh frequency are
due to a modulating rotational motion (rom a failure of mating teeth to impact one
another at the proper ime.

Vibration analysts are concerned to difTerentiate between high vibration amplitudes at
mesh frequencies. high energy content in the sideband and the resonance effect from
the structure.

Goldman [61] presents in his book on Vibration Spectrum Analvsis that a high
amplitude level at the mesh frequency can indicate an interference Nt between mating
gears. but a large number of high level sidebands can indicate non parallel shaft due to
excessive shalt deflection. gear tooth crack or spall. He claims that it is rare for gear
tooth vibration to be high without a resonance effect. which causes the vibration
intensity to become large.

No work has been done 1o separate the overlapping resonance effect from the meshing
frequency: Goldman only presents the effect of resonance on mesh frequency. but not

how to separate it from the source.
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Figure 5.1: Gearbox Spectrum from the Case Study



Some machines, such as gearboxes, produce very complicated spectrum signatures
like the spectrum shown in figure 5.1, which was collected on a gearbox handling raw
iron sand in the mine site of a steel manufacturing company. The spacing of the
sidebands around gearmesh frequencies is usually equal to one times the running
speed of the shaft. The diagnosis of the gearbox is presented in chapter 4 by using the
FFT technique, but the limitations are the overlapping of sidebands, meshing
frequency and resonance effect, which is where the cepstrum and homomorphic
deconvolution filtering techniques offer a way to simplify the analysis of these

signals.

5.3 Transmission Path

The vibration signal of a gearbox is normally measured at a convenient position on
the outside of the gearbox casing by using an accelerometer, which converts a
mechanical vibration signals into an electrical signal. There is corruption of the
vibration signal from the source to the measurement point; this is the transmission
path effect. The transmission path consists of the structure providing a mechanical
path from the vibration source to the measurement point. This includes the shafts,
bearings, gears and the gearbox static structure, which are between the source and the
transducer and modities the amplitude and phase of the vibration signal.

The periodic variations due to changes in the number of the meshing teeth, the motion
of rolling elements in a bearing, as well as non periodic variations like flexure of the
gearbox casing and operating temperature are factors which can cause changes in the
transmission path [117]. In addition, structural damage like cracks in the gearbox

casing will also change the transmission path eftects.

54 Transmission Error (TE)

Transmission error is defined as the non conjugacy of a gear pair, that is, the motion
error defined by the difference between the output gear’s actual position and its
position if the gear teeth were perfect in shape and infinitely stift. TE is defined by

equation 5.1 [118].

TE:RhP 9/7 —(;,—P}QL] >
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W here

O, = Rotation of the pinion

Og = Rotation of the gear shaft

N, = Number of teeth on the pinion
Ng = Number of teeth on the gear

Ryp = Radius base of the pinion

5.4.1 Static Transmission Error (STE)

The static transmission error is the composite effect of any deviation of the gear teeth
from perfectly formed involute surfaces. The assumption is that the gears are
uniformly spaced, perfectly formed and completely rigid. In practice, gears deviate
slightly from perfect involute surfaces and elastically deform under load, which
results in an unsteady force component of the torque. The unsteady forces are
transmitted as vibration from the gear, through the shaft and bearings to the gearbox
casing where it is measured.

The static transmission error is widely accepted as the principle source of vibration in
gearboxes. Mathematically, this unsteady forcing function due to the pinion is best
described by a complex Fourier series with fundamental frequency equal to the pinion

rotational rate, f, [ 19]

5.2

()= S e, "

n=0

The Fourier transtorm of the complex Fourier series is a one-sided pure line spectrum

at multiples of the gear rotational rate [120].

5.3

s(t)= 3¢ e

n=0

We can now present a mathematical expression for the composite vibration due to
both the position and the gear. This is accomplished by summing two infinite complex
Fourier series. Therefore, if the pinion has N teeth and the gear has M teeth, then

equation 5.2 describes the composite vibration due to both gears [121].
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C 2 - jmi{ 2 L 5.4
5({):ch'ea-uh.mu+Zcr”.e ( ?f.ll\_.:f

n=0 m=0

Referring to equation 5.2, f, is the pinion frequency and (N/M)f, is the gear rotational
frequency. The Fourier transform of the composite vibration is also a one-sided pure

line spectrum [122].

s(t) = ”Z‘cﬂﬁ”*"’” +Zc§[f —mf ()] >

n=0 m=0

The two summations share a common set of frequencies. In the second summation,
wherever m equals any integer multiple of M, the summations share the same

frequency component. Therefore, equation 5.3 can be further decomposed as equation
5.4 [123].

S L ” > 5.6
s()=>c¢, """+ Y c.o(f—-nf)+ e o™
=0 n=0.nxtN m=0.mzA
If we transform back to the time domain, we arrive at the following equation [124].
ST

S(f) = ZCJ .enz.w.\'f, " o Z C” 'e/(zm/,ua,,) + z c -e;iz_m;.r,r-»ﬁmu

m
=0 n=0nz/N m=0 m=iM

The tirst summation in equation 5.4 is composed of vibration components from both
the pinion and the gear. The first summation's fundamental frequency (Nf,) is the gear
mesh frequency. We have just shown that the components of vibration due to the gear
mesh frequency and its harmonics are due to both the pinion and the gear. This is a

fact that is neglected in the literature on gear diagnostics.
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5.4.2 Residual Error Signals

Mark [126] showed the component of the static transmission error that occurs at
multiples of the gear meshing frequency is caused by elastic tooth deformations and
the mesh deviations of the tooth faces from perfect involute surfaces. The remaining
components of the static transmission error that occur at multiples of the gear
rotational frequency are caused by the dynamic components of the tooth face
deviations. Thus, we have a concrete, physical justification for using the static
transmission error for gear diagnostics. The dynamic component of the static
transmission error is a physical measure of any gear tooth surface deviation. This
includes, but is not limited to, worn teeth, missing teeth and cracked or chipped teeth.
Wang and McFadden [127] described the gear motion error as the real part of the
static transmission error. The gear motion error is a real signal, described by an
infinite cosine series with fundamental period f. The static transmission error was
developed for predicting the amount of vibration produced by meshing gears; the gear
motion error was developed for gearbox diagnostics.

The decomposition of the composite gear motion error has three components; the
harmonic error component Sey(t), the residual error component due to the pinion

Ser.p(t), and the residual error component due to the gear Ser.g(t) [ 127].

s(t)y=s,,(D+s, (1)+s, (1) 5.8

Equations 5.1-5.8 are expressed graphically in figure 5.7. The figure shows the

spectra produced by a pinion and gear.
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Figure 5.2: Frequency Domain of Graphical Representation of Equation 5.8 [127]

5.5 Signal Processing

The concept of a signal processing technique to achieve the diagnosis of the gearbox
is presented in this section. The main objective of the signal processing technique is to
extract the echoing fault pulses from the mixture, which comprises the measured
vibration signal.

The vibration "y" of a gearbox can be described as a convolution between the Impulse
Response Function (IRF) of the transmission path /" and the combined effect of an
anomaly caused by a localized gear fault (fault impulses) “w’, the deterministic
signals "¢’ inherent in operating gears and the noise “»" as shown in figures 5.3 and

equation 5.5.
y=(e+w+n)*h 5.9

Where

v = Vibration of the gearbox
h = transmission path

w = gear fault

¢ = deterministic gear excitation (inherent in gear vibration)
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n - noise
* = convolution

¢ deterministic gearexciration

AAARAAR
ARAAA,

‘-'t.ilf"

we fault spectrum

Transmission path cffect

v measured signal

1 noise

oy

Figure 5.3: Vibration of a Gearbox

Gears with a crack or a spall can be diagnosed by comparing the vibration
characteristics of the laults. Figure 5.4 presents a proposed signal processing method
for the gearbox diagnosis

The first step of the signal processing is the extraction of the impulse from the
mixture ol vibration signals shown in figure 5.3. The negativelv inverted echo shown
in figure 5.4 characterizes the effect of both the spalled and cracked teeth. however.
the tvpe of the fault can be determined by examining the properties of the fault signals

in the cepstrum
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The complex cepstrum transformation is central to the theory and application of
homomorphic systems, that is, systems that obey certain general rules of
superposition | 128].

Randall demonstrates in [129] the powerful application of the cepstrum technique in
monitoring and diagnosing gears and rolling elcment bearings.

The harmonics and the sidebands in the spectrum represent the concentration of
excitation energy caused by the rotating machine components and they are typically
monitored to detect any abnormality in the operating machinery.

The advantage of using the cepstrum in machine condition monitoring is that the
combined effect of the harmonics and sidebands in the spectrum appear in the
cepstrum as a smaller number of clearly defined rahmonic peaks: i.e. in compressed
form, and it is therefore easier to monitor the changes occurring in the system. It is
able to detect the presence and growth of sidebands. and to extract the spectrum

periodicity.

5.6 Homomorphic Theory

Systems which the output is a superposition of the input and impulse signals by an
operation that has the algebraic characteristics of convolution of the impulsive and
forcing responses, (by exploiting the properties of thc Fourier transform and the
complex cepstrum) are called homomorphic systems.

The method of homomorphic filtering described by Oppenheim et al [133], Schafer
[131], and Buhl [130] is primarily developed for the problems of echo detection and
echo removal.

The algorithm transforms the convolution process into an additive superposition of its
components with the result that single parts can be separated morc casily. Ulrych
[132] has demonstrated the application of this method in seismology for the
separation of overlapping signals. The practical application of the homomorphic filter
process in seismic reflection work is discussed for the first time by Scafer [131], Buhl
[130] and Bryan [134].

A homomorphic system accepts a signal composed of two components and returns the
signal with one of the components removed. Its processing offers a great advantage
because no prior assumptions or knowledge of the impulse response of the
transmission path is necessary; it has a property of blind deconvolution.

A convolved signal is shown in equation 5.10
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y(t)=x(t) *h()
5.10

The components x (2) and / (t) could be isolated in order to study each individually.
This research will present a gearbox with convolved signals from good, spalled and
cracked teeth and use the cepstrum technique for homomorphic blind deconvolution
to separate the forcing function from the transmission path eftect, i.e. a homomorphic
filter (complex cepstrum) is applied to do the deconvolution of the signals. The
procedure of homomorphic filtering is shown in figure 5.5. (The act of applying a

homomorphic filter is called liftering).

Raw time
signal y(t) =x(t) * h(t)

FET Y(p = X9 . H()

Complex cepstrum logY (f) = logX(f) . logH(f)

Liftering

Inverse Y=X+H
cepstrum

Reconstructed
Time signal

Figure 5.5: Signal Processing for a Homomorphic Blind Deconvolution
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‘——_' xi(t)

Xy (1) *xo(1) —_—
Xt
System ;—’ 2v

Figure 5.6: Two Signals Deconvolved to Two Separate Signals

Deconvolution is undoing the convolution of two signals and isolates them as shown
in figure 5.6. This is useful for analysing the characteristics of the input signal and the
impulse response when only given the output of the system.

Homomorphic filtering is a deterministic process because fixed and pre-given parts of
the complex cepstrum, which are related to the undesired components, are eliminated.
The success of the method depends primarily on the rate of the separation of the
individual components in the complex cepstrum. Therefore the successful application
of the method in a gearbox diagnosis is critically determined by the simplicity and
predictability of the individual components of the gearbox cepstrum. In order to
demonstrate the possibilities and difficulties of homomorphic filtering, figure 5.7

shows the cepstra of the gearbox with different fault cases under |00Nm loading.

5.7 Cepstrum Technique

The Fourier transform and the inverse Fourier transform are complex domain
processes, the cepstrum is complex if the phase information of the original time
waveform is preserved. Complex cepstrum can be used for noise reduction and signal
separation, such as echo cancellation. Figure 5.5 demonstrates the procedures of the
complex cepstrum and homomorphic filtering, equations 5.12 — 5.15 are its algorithm.
This research presents an application of cepstrum technique that uses homomorphic
blind deconvolution to remove the eftect of transmission path transfer functions from
externally measured gearbox signals. For a better diagnosis of gear faults, the
cepstrum technique is used to separate source and transmission path effects into

different quefrency regions. The poles and zeros of the transfer functions
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from the response vibrations are extracted from the region in the cepstrum shown in
figures 5.7a, 5.7b and 5.7c, by curve-fitting expressions using a homomorphic filter.
The separation of the gear mesh excitation force from the transmission path transfer
functions was obtained by using the cepstrum technique of homomorphic blind
deconvolution without measuring the forcing function atthe gear mesh. The poles and
the zeros of the forcing function were used to validate the changes in the frequency
response function (FRF).

The transformation of a signal into its cepstrum is called a homomorphic
transformation, and the concept of the cepstrum is a fundamental part of the theory of
homomorphic systems for processing signals that have been combined by
convolution.

The Cepstrum is the inverse Fourier Transform of the natural logarithm of the Fourier
transform of a signal series. The definition of the complex cepstrum is given in
Equation 5.11. The spectrum of a gearbox signal consists of a number of harmonic
families. These harmonic families originate from the different ball bearings in the
gearbox and, from the tooth mesh frequencies of the gears. These are difficult to
separate in the spectrum. Cepstrum is a practical tool that makes it easy to find these
different harmonic families, and the individual families can be monitored for changes
that might indicate that something is wrong. The cepstrum can be mathematically

defined as follows [ 135].

C=3"{log £, (f)}
5.1

F (f) is the autospectrum (power spectrum)
Where:
T = quefrency
3= fourier transform
T = cepstrum
Cepstrum can be edited or liftered as it is called (paraphrasing of *filtered) [135]. The
equivalent spectrum, called the liftered spectrum, can be found by applying an FFT to

the liftered cepstrum. t has units of time, but is known as “quefrency’. Harmonically
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related components in the cepstrum are known as ‘rahmonics’. Table 5.1 compares

the terms used in the spectra and cepstral analyses.

Table 5.1: Comparison of Terms used in Spectral and Cepstral Analysis

_Spectmm;lysis CepstrJXﬁalysis
Spectrum Cepstrum
Frequency (Hz) Quefrency (milliseconds)
Harmonic Rahmonics
Filter Lifter
a ~ Phase 1 - Saphe -
Magnitude Gamnitude
Frequency analysis Quefrency alanysis
x (1) Y =x() *h
h) =
H )
X Y =X *H@

Figure 5.8: Frequency Response of'a System

Figure 5.7 describes a simple system with an input and output relationship. The output
y(t) is equal to the convolution between the input x(¢) and the impulse response A1),
which is mathematically shown as follows [121,129,130]. This is homomorphic

deconvolution.

y(t) = x(t) * h) 5.12

Using the convolution algorithm, equation 5.12 will transform to equation 5.13 by

applying the Fourier transform.

Y() =X . H() 5.13

Taking the logarithm of equation 5.13 will result in equation 5.14.
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Log Y(f) =log X(f) + H({f) 5.14

After the homomorphic deconvolution shown in equations 5.12 — 5.14, an inverse
transformation of equation 5.14 to the cepstral domain will produce the cepstrum in

equation 5.15.

S log Y (1)j=3"{log X (f)}+3 "{log H(f)} 5.15

Equation 5.15 defines the cepstrum of the signal measured, which is the sum of the
cepstra of the source and transmission path functions. The signal from the externally
measured gearbox is the convolution of the path and source effects. After
transformation to the cepstrum domain, the source and the path effects are
deconvolved and become additive. Equation 5.16 shows how the structural response
functions are treated in the l.aplace domain as a ratio of polynomials in the Laplace

variable s.

m

H(s)=tmmnte st 516

by tbs+bst . 4h8"

Applying partial fraction expansion to equation 5.16 results in poles and residues for

the individual modes in equation 5.17 [1,7,8].

~

n/

Hls)=2 0+

k=1

Loy ] 5.17

Equation 5.18 can be obtained in terms of poles and zeros by finding the roots of the

numerator and denominator using rational fraction expansion [121, 127, 128].

(=) 5.18
H(s)=""
ﬂ(\'-m)
The z-transtorm of the equation 5.18 will result in equation 5.19 [121].
.Iﬁ{l d‘:'}ﬁ{l bz) S.Ig
H(z)=—"
r][I-s',: I}rll_l--u‘l:]

Where ay, by, i, dy < 1
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Equation 5.20 is the cepstrum that presents the transfer function in terms of poles and
zeros [127,128].

mo I 520
Cln)=3 >+
k=1 k=1
Ny i fo
= _ dy
n n
k=1 k=1

ay and ¢, are minimum phase and are the poles and zeros in the unit circle, while by
and d, are the poles and zeros outside the unit circle [136,137]. Minimum phase
occurs at positive quefrencies. The maximum phase at negative quefrencies can be
neglected because the poles are unstable and it will not affect the detection of the

changes in the resonances.

5.8  Poles and Zeros Analysis

The transfer function provides a basis for determining important system
characteristics without solving the complex differential equation. The poles and zeros
are the properties of the transfer function and therefore of the difterential equation

describing the input-output system dynamics as shown in figure 5.9.

x(t) Hfs) _ V(Y
Figure 5.9: System with Input-Output Relationship
Y(s) = H(s).X(s) 5.21
Hs) = Y(s)/X(s) 5.22

The system function is H(s), which represents the characteristics of the system.
The poles and zeros govern the system’s behaviour, they specify the set of complex

frequencies for which the eigenfunction response is infinite or zero respectively. The

78



number of poles in a system corresponds to the number of independent state variables
in the system.

The plots are necessary because they help to easily design a filter and also obtain its
transfer function. The numerator roots are the zeros of the filter and the denominator
roots are the poles of the filter. The location of the poles and zeros will allow us to
quickly understand the magnitude response of the filter.

The aim of using a poles and zeros analysis in this chapter is to present the theory of
how the complex or differential cepstra of the path effects are curve fitted to extract
poles and zeros.

The polynomial form is another way that the process transfer function can be
represented as shown in equation 5.16; the ratio of polynomials is called the transfer
function. The values of s that cause the numerator of the equation to equal zero are
known as the zeros of the transfer function, which are also the roots of the numerator
polynomial. The values of s that cause the denominator of the equation to equal zero
are known as the poles of the process transfer function, which are the roots of the
denominator polynomial.

The pole-zero form is another way that the transfer function can be represented as

shown in equation 5.23.

H(S):k“[\-:,ii\ 23 )l $=20) 5.23

(s=py Ns=py ). 5=y )

The complex poles or zeros must occur in complex conjugate pairs.
The gain-time constant form is the one that we use most often for control system

design.

H(z):T 5.24

1

The zeros are: {0}

The poles are: {1/2, -3/4}
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Figure 5.10: Poles and Zeros Plot From Transfer Function

Once poles and zeros have been found for a given Z-transform, they can be plotted
onto the z-plane. which is complex with an imaginary and real axis referring to the
complex-valued variable z. The plots help to easily design a filter and obtain the
transfer function. Depending on the location of the poles and zeros. the magnitude
response of the filter can be quickly understood. The example in figure 5.10 shows the
locations of poles and zeros in the z-plane, the poles represent the mechanical natural
frequencies and the zeros reflect the locations where the vibration cancels to zero.

The next chapter is the deals with experiments using the cepstrum technique and
homomorphic filtering to demonstrate their practical application to diagnose gearbox

faults.
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Chapter 6

Experimental Analysis

6.1 Introduction

In this chapter, an experimental apparatus is described which generated the data used
to test the cepstrum technique for homomorphic blind deconvolution and the results.

Vibration signals measured on the casing of a gearbox are always a compound of
source effects and transmission path effects. The gearbox is a special case; where the
tooth-mesh is the principal source and hence signals measured would differ primarily
because of the differences in the transmission path. The aim of this research is to
develop a technique to separate the forcing function at the source, which is the gear
mesh from the transmission path function of a measured gearbox vibration signal.
This was achieved by collecting vibration data from the gearbox having good, spall
and cracked teeth profiles under different loadings. The data was recorded in a
MATLAB™ data file to demonstrate where the entire change was. The procedure was
implemented by using the signal processing package of MATLAB. The forcing
function is concentrated in the discrete regions in the cepstrum; the transfer function
is located below the first rahmonics of the forcing function and was separated by a
shortpass lifter. Since the poles and zeros occur in the complex conjugate pairs, the
poles and zeros of the transfer function were extracted from the response signal by
curve fitting analytical expressions to the appropriate regions of the cepstrum. The
homomorphic deconvolution filtering was employed as a novel application to a

gearbox fault diagnosis, separating the resonance effect from meshing frequency.

6.2 Gear Test Rig

The test rig was powered hydraulically as shown in figure 6.1. It had an electric
induction motor, which ran the rig to its specified speed, while the hydraulic pumps
generated the load for the rig. The pumps operated on a closed loop by returning the
fluid at the high-pressure outlet to the hydraulic motor and later powered the rig.
When the rig was running at a constant speed, the purpose of the electric motor was to

compensate for any losses in the system.
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Some of the components of the test rig in figure 6.1 are described below:

Induction motor (AC) (/)
This was a 5.5kW. 8 poles. AC induction motor. which powered the rig to have a

specified rotational speed. The stable speed that the gear operated was between 2H,.

and 14Hz of shaft speeds under a torque ol 120Nm.

Figure 6.1: Gear Test Rig
(Courtesy of NSW University)
Hvdraulic Motor (2)
This was a fixed volume type. which was connected in series with the electric motor
and ran by using re-circulated power (rom the pressure compensating pumps (loading

devices).

Variable Volume Pump (3)

This was a pressure-compensating pump that generated the loading on the gears.

Setting a slosh plate angle controlled the loading on the gears and the output pressure.



Variable Volume Pump (4)
This was trunnion controlled and also generated the loading on the gears. Adjustment

of the trunnion on the console controlled the loading and adjusted the output pressure.

Gears

The gears are undamaged: cracked and spall. shown in figure 6.2. Each one has 32

teeth.

Gear with a
Gear with crack
spall

Figure 6.2: Cracked and Spall gears

Flvwheel (5)

It attenuated the torsional vibration induced by loading.

Torque Transducer (6)
This was connected in series with the input shaft with shear pins (o prevent torsional

overloading). The transducer was capable of measuring over 200Nm of torque.

Control Console (7)
This consisted of a speed controller for the electric motor (frequency converter) and

sequence valves to remotely control the loading applied to the gears.
Coupling

This tvpe of coupling was an elastic tyvpe that allowed only the torque to be

transmitted between the shaf's.
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6.3 Instrumentation

The following instruments were used in measuring the gearbox signals:

Six acceleration signals. (wo encoder outputs and one tachometer output were
measured in the experiment. Figure 6.3 shows the positions of the accelerometers and

encoders set up for the experiment. The tachomelter is enclosed in the encoders.

The signals measured (rom the accelerometers and encoders were processed and
recorded by a Bruel & Kjaer PULSE svstem. The two encoders are connected to the
input and output shaft with special precision diaphragm couplings. The power supply

(or the encoders is 3V,

E} _~ Encoder |

~ Accelerometer |

Accelerometer 2

Accelerometer 3
‘ ~ Accelerometer 4

Encoder |

6.4 Instrumentation for Data Collection |138]
e Bruel Kjaer. PULSE Svstem: Front-end 3560C. Control Module: 7536.
Input/Output Module: 3109
¢ Bruel & Kjaer. PULSE Software
e Bruel Kjaer. Accelerometers. Tyvpe 4384
e Bruel Kjaer. Charge Amplifier. Type 2365
e Heidenhain ROD 426 Encoders
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6.5 The Structure of the Data Files:

Four acceleration signals, two encoder signals and one tachometer pulse were
measured on the test rig. These data were recorded in a MATLAB™ data file. The
tachometer is enclosed in the encoders. The acceleration was recorded from the
accelerometer’s signals, then the signals measured from the accelerometers and
encoders were processed and recorded by a Bruel & Kjaer PULSE system.

Each signal was measured for five seconds with a sampling frequency of 65,536Hz

and passed through a low pass filter.

6.6 Blind Deconvolution
Some machine components such as gearboxes produce very complicated spectrum
signatures, because the signal coming from the gearbox consists of a number of
harmonic families and sidebands, which can be difticult to separate in the spectrum.
The cepstrum analysis offers a way to simplify the analysis of these signals and is a
practical tool and a non-linear signal processing technique used to find different
harmonic families. The input signal to the physical system represents x(t) and the
impulse response of the system represents 4(t). while y(z) is the output of the system.
The deconvolution methods that are suitable for gearbox diagnosis are:

@ (epstra Analysis

@ Homomorphic filtering
In gearbox vibrations any deviations from the exact uniformity of each tooth-mesh
tends to show up partly as harmonics of the shaft speed and also as sidebands around
the toothmeshing harmonics caused by modulation of the tooth-mesh signal by the
lower rotational frequencies. The sideband spacing thus contains valuable information
as to the source of the modulation and can be extracted using the cepstrum. The
cepstrum has two advantages of being able to measure it very accurately because it
gives the average sideband spacing over the whole spectrum.
When trying to diagnose a vibration signal in order to identify possible faults in the
machine, the following are investigated in chapters 4 and 5:

@ Harmonic relations

® Presence of sidebands

® The relation of energy in different sideband and harmonic families.

&5



Cepstrum analysis, as described in chapter 5:

e Simplifies the analysis of'a complicated spectrum and

e s independent of the signal path
Cepstrum is an anagram of spectrum, is a non linear signal processing technique used
to identify and separate harmonic families in the spectra of gearbox signals. The
calculation of cepstrum involves the inverse Fourier transform of the natural
logarithm of a kind of spectrum. The following equations 6.7 to 6.9 define the

cepstrum forms

Complex Cepstrum

(‘cc.r :#.Ern lOg[X((_)"“ )1' lun(}(() 67
Real Cepstrum
C, =5 loglX (c i 1( ™dw 6.8
Power Cepstrum
C,=5[" |0-‘;‘.[X\"l”"”dm 6.9

Since both the Fourier transform and the inverse Fourier are complex domain
processes, the cepstrum is complex if the phase information of the original time
waveform is preserved. The complex cepstrum can be used for noise reduction and
signal separation, such as echo cancellation. If the input of the Fourier transform is
real (no phase information), for example, the power spectrum or the magnitude of the

Fourier transform of the signal, the cepstrum cannot be reconstructed back to the time
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domain, we still can “lifter” a harmonic family in the quefrency domain and obtain a
liftered spectra.

When the gearbox wears, the gear profile will gradually change due to slidding
between two teeth in mesh at any point except at the pitch point. This indicates that
changes due to wear in a gearbox will turn up at the second harmonic of the
toothmesh frequency, and since the change is not sinusoidal, higher harmonics will be
revealed as well as indicated in a simplified form.

In the vibration signals from gears, the force at the mesh and the transfer function
from the mesh to the measurement point, largely separate in the cepstrum, in that the
forcing function is periodic and most of it concentrates at rahmonics corresponding to
the tooth-mesh frequency and individual shaft speeds. Removing these with a suitable
comb lifter allows the remaining part of the log spectrum, dominated by the transfer
function to be reproduced by a forward transform. This can reveal whether resonance
peaks have changed, and thus whether measured changes are due to changes at the
source or in the signal transmission path.

The output of a linear physical system can be expressed in terms of the excitation
signal and transmission path properties as a convolution in the time domain (both in
the complex and power spectra) and a summation in the logarithmic spectrum (both in
the complex and power spectra). Because the Fourier transform is a linear operation,
this additive relationship is maintained in the cepstrum (both in the complex and
power cepstra).

Not only are the source and transmission path eftects additive in the cepstrum, they
are often largcly separated into different regions because of their characteristics with

respect to frequency.

6.7 Results

Figures 6.4 to 6.6 illustrate a typical gearbox signals with undamaged, cracked and
spall teeth under SONm loading. The two gears have 32 teeth respectively. The input
shaft was rotating at a speed of 10Hz (600rpm). When the gearbox was operated
under several loads the vibration signals were acquired through the acceleration

signals.
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Figure 6. 4: Undamaged Gear Vibration Signal
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Figure 6.6: Spall Tooth Vibration Signal
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Figures 6.7 — 6.12 show the cepstra for good. cracked and spall teeth. When the first
run was carried out. the good gears were engaged. figures 6.7 and 6.8 show the
spectra. The second run involved the good and the cracked gear. with the cepstra in
figures 6.9 and 6.10. The last run was when the good gear engaged with the spall one.
figure 6.11 and 6.12 demonstrates the cepstra. Each run was done under two different

loadings SONm and 100ONm respectively.

Cepstrum - Undamaged 50Nm
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Figure 6.7: Cepstrum ol Undamaged Teeth under SONm Load
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Cepstrum - Undamaged 100Nm
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Figure 6.9: Cepstrum of Cracked Tooth under S0Nm Load
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6.7.1 Homomorphic Deconvolution

The application of homomorphic filtering in the diagnosis of a gearbox is achieved by
using cepstrum technique to detect those signals that need to be suppressed and the
actual filtering process which includes random noise reduction.

In order to demonstrate the various possibilities of homomorphic filtering, the
application of the method is shown with three different cases, undamaged, cracked
and spall gears.

Homomorphic blind deconvolution offers a considerable advantage in that no prior
knowledge of the impulse response of the transmission path is necessary. The
transmission path is recovered by homomorphic deconvolution filtering, using the
steps in the equations 6.4 to 6.6.

Homomorphic filtering is a deterministic process in the sense that fixed and pre-given
parts of the complex cepstrum which are related to the undesired components are
eliminated. The success of the method depends primarily on the rate of the separation
of the individual components in the complex cepstrum.

The homomorphic filtering was applied to the cepstra shown in figures 6.7 — 6.12 to
elucidate its possibilities and ditficulties, the results of the filtering is shown in figures

6.13 — 6.15, considering only 100Nm loading.
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The results from the homomorphic filtering are shown in figures 6.13 - 6.15 for
different lault cases under [0ONm loading.

The Residual Motion Errors (RME) generated by the (aulty gears (cracked and spall)
are shown in figures 6.14 and 6.15.

The first and second derivatives of the RMEs estimate the corresponding velocity and
acceleration as shown 6.14 (A) and 6.14 (B) respectively. The sudden change in the
magnitude ol the RMEs appears as inveried pairs of pulses in their second derivatives.
In a constant load environment the magnitude of the TE resulting (rom the gear tooth
cracks changes hnearlyv with the stiffness ol the gear mesh. Presence ol the crack in a
gear tooth reduces the effective stillness ol the gear mesh as expected because of the
crack induced increase in compliance.

The TE caused by a tooth crack results in a double stepped rectangular shape. The
smaller step 1. Figure 6.14 is a result of the deflection when the load is carned by an
undamaged and a damaged tooth pair and the larger step 2. Figure 6.14 occurs when

the load is carried only by the tooth pair with a crack.
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The peaks in the second derivative of the RME occur dcterministically at the three
positions where the number of contacting tooth pairs switches from two to one and
back to two.

The second derivative of the TE from a gear mesh having teeth that contain spalls is a
pair of “inverted echo pulses™. The shapes of the RMEs are determined by the size
and shape of the spalls and are independent of the load carried by the gears.

Unlike the tooth cracks, the positions of the pulses appearing in the acceleration signal

of the spalls are not synchronized with the meshing cycle of the gear teeth.

Figures 6.14 and 6.15 illustrate the differences of the inverted echo pulses caused by a
cracked tooth gear and a spall. A diagnostic method to differentiate these faults is

possible by recognizing the two properties that affect only one of the two faults:

I. The eftect of tooth crack is load dependent while the effect of spall is load
independent; thus, reducing the load should reduce the symptoms of the fault

if it is caused by tooth crack.

2. The amount of delay between the inverted echo pairs is different for the tooth
crack and the spall. The delay caused by the tooth crack is more predictable
and correlates to the meshing pattern of the gears. Thus, if a correlation exists
the fault may be identified a tooth crack and if the correlation is absent the
fault may be identified as a spall.

The advantage of use of the cepstrum in machine condition monitoring is that the
combined effect of the harmonics and sidebands in the spectrum appear in the
cepstrum as a smaller number of clearly defined rahmonic peaks: i.e. in compressed

form, and it is therefore easier to monitor the changes occurring in the system.
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6.7.2 Poles and Zeros Analysis

The poles and zeros provide useful information about the response of the filter. The
plot is a graphical representation of the transfer function which is a function in the
complex variables, this helps to check the system stability.

Poles and zeros plots is necessary because it helps to easily design a filter and also
obtain its transfer function. The location of the poles and zeros will allow us to
quickly understand the magnitude response of the filter.

Equation 6.6 defines the cepstrum of the measured response signal, which is the sum
of the cepstra of the source and transmission path functions. The externally-measured
signal from a gearbox is the convolution of the path and source effects. After
transformation to the cepstrum domain, the source and the path effects are
deconvolved and become additive. Equation 6.10 shows the transfer function in the
polynomial form. The values of ‘s’ that cause the numerator to equal to zero are
‘zeros’ and the ones that cause the denominator to equal to zero or infinity are “poles’.
m 6.10

. .
H(s)= ag taps+axs” ot ays

bo+bys +/72.s'2 +oot by’

Applying partial fraction expansion to equation 6.10 results in poles and residues for

the individual modes [1,7.8].

H(S')—néz{—rk +—r4 J o
. k=ILS"Pk  S7Pk

Equation 6.12 can be obtained in terms of poles and zeros by finding the roots of the

numerator and denominator using rational fraction expansion [1,7,8].

m 6.12

The z-transform of the equation 6.12 will result in equation 6.13 [1].
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AT [I-ak: '] M(-byz)
k=1 k=
H(z)=— =
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[1 [I—c;{: ] [M(1-dgz)
k=1 k=

Where ay, by, ¢, di < 1

Equation 6.14 is the cepstrum that presents transfer function in terms of poles and

zeros [7, 8].
, o “/:' o C/,(7 6.14
Cln)= 3 -+ 3L
k=1 k=1
mo b, po d"
_ k k
ST AT
k=1 k=1

¢ and ¢, are minimum phase and are the poles and zeros inside the unit circle, while
by and dj are the poles and zeros outside the unit circle [1,2]. Minimum phase occurs
at positive quefrencies. The maximum phase at negative quefrencies can be neglected
because the poles are unstable, and it will not affect the detection of the changes in the
resonances.

The poles and zeros of the transmission paths to each measurement point over
different fault cases at SONm loading represent the transfer function between the gear
mesh and response measurement location for each case. Figure 6.18 shows the
transfer functions” smoothed spectra of the good gear, gears with spall and crack, that
were separated from the source using the homomorphic deconvolution.

The signals due to a resonance effects are extracted for different gear faults; cracked
and spall gear teeth, and undamaged gear. Figure 6.16 shows that the spectra are the
same, resonance peaks have not changed, however, under each gear case, the change
was not in the transmission path. The poles and zeros of the FRF were extracted by
curve fitting from thc region of the cepstrum (or differential) as shown in figure 6.17,
the changes between the poles and the zeros were used to evaluate the stability of the
system. Cepstra analysis was used to separate the source and the transmission path,

however, the reverse transformation was carried out to provide a smoothed spectrum.
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This process is known as homomorphic filtering and the result is shown in figure

6.19.
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Table 6.1: The Poles and Zeros from Curve Fitting Cepstra

Crack Tooth

Spall Tooth

Undamaged

Output Poles

0.9927 40.2523
0.9835 84.8058
0.9838 122.8589
0.9743 172.0098
0.9818 180.3605
0.9834 216.0168
0.9816 290.6066
0.9899 327.2236
0.9899 363.8738

Output Zeros

0.9838 61.8044
0.9847 104.4020
0.9796 141.7871
0.9159 162.9074
0.9833 197.4097
0.9880 309.4931
0.9904 344.9680

Output Poles

0.9847 40.0371
0.9821 121.7873
0.9715 154.6904
0.9794 184.4931
0.9306 187.0917
0.9686 259.1794
0.9768 297.8621
0.9793 329.4671

Output Zeros

0.9816 103.2626
0.9793 139.0656
0.9747 167.7449
0.9741 233.3018
0.9772 280.2142
0.9747 313.1636
0.9777 202.7121

Output Poles

0.9893
0.9865
0.9869
0.9858
0.9907
0.9741
0.9754
0.9843
0.9316
0.9778
0.9815
0.9823
0.9835
0.9783

164.0475
225.1507
249.0926
288.6942
331.2494
384.0393
445.4255
489.0010
5569.7729
614.5842
648.9281
720.2248
825.1824
864.9938

Output Zeros

0.9862
0.9850
0.9794
0.9670
0.9880
0.9728
0.9764
0.9871
0.9671
0.9651
0.9861
0.9891
0.9874
0.9794

191.3261
236.5377
263.2265
305.0647
367.8278
433.6325
460.2263
504.7227
578.6067
633.7310
663.6466
687.2795
755.0808
835.9365

Table 6.1 is generated from the FRFs in figure 6.17. The figures in the table are
represented in poles and zeros and their relative angles where they would stand in a
circle. In the FFT spectrum, figures 6.16 and 6.17 would overlap, but the new

technique separated the resonance effect shown in figure 6.16 from the meshing

effects in figure 6.17.
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Chapter 7

Conclusion and Discussion

7.1 Introduction

As discussed in the earlier chapters, the current FFT technique has its pitfall of
overlapping of frcquencies, which makes it difficult for vibration analysis. Solving
this problem has prompted the last part of this project.

An investigation to explore this subject has been carried out and as a result, the
cepstrum technique using homomorphic filtering was presented. It has been shown to
be an effective and efticient tool in the experimental part in Chapter 6.

This chapter briefly provides an overview of the previous chapters in this thesis, and
presents the conclusion and the recommendations for future work.

Chapter | introduced what this thesis is all about and the reason for the cepstrum
technique. Chapter 2 presented various previous researches and the methodologies on
predictive maintenance and chapter 3 described the maintenance strategies and the
history, that is, where the technology was, where it is and where is going as far as
maintenance is concerned. Chapter 4 introduced FFI technique and presented case
studies using the techniques and the pitfalls were identified, which is the reason why
cepstrum was presented. Chapter 5 explained the theory of cepstrum, homomorphic
and poles and zeros representations and Chapter 6 was the experimental part that
demonstrated the effectiveness of the cepstrum technique and homomorphic filtering

to separate resonance eftfects from the meshing frequency.

7 Discussion
The survey on the maintenance strategies presented in this thesis shows that
preventive maintenance is not as cost effective as predictive maintenance. The
predictive maintenance FFT technology has been extremely useful in accurately
diagnosing machinery condition. The major FFT pitfalls are:

® FFT can diagnose any bearing fault or a gear with broken teeth, but will not

diagnose the root cause. Examples of how mathematical approach was used in
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addition with the FFT data to establish the root cause of the failures are
presented in chapter 4.
® The overlapping of many harmonics, sidebands, resonance effect and mesh
frequencies that make diagnosis of a gearbox cumbersome; this was the reason
the author used cepstrum technique to diagnose gearbox faults under difterent
loadings, which was presented in chapters 5 & 6, where resonance effect was
separated from meshing frequency.
The test results demonstrated that noise generation is a complex mechanism, and the
cepstrum technique has successfully recovered the original sources. An externally
measured vibration signal is the convolution of the impulse response and the source
signals. After transformation to the cepstrum domain, the source and the transmission
path effects are deconvolved and become additive. Gearbox vibration spectra
normally contain sidebands due to modulation of toothmeshing frequencies and their
harmonics, and the strength of such sidebands usually indicates deteriorating
condition.
The spacing of such sidebands gives valuable diagnostic information as to their
source, since both amplitude and frequency modulation at the same frequency give
sidebands with the same spacing. Most faults give a combination of amplitude and
frequency modulation at the same time, the relative proportions and phase
relationships being dependent in a complex way on the response properties of the
individual machine, and so a division into the two categories is less useful than a
measure of the overall sideband “activity™ with a given spacing.
The cepstrum is good both for detecting the presence and growth of sidebands in
gearbox vibration spectra, and for indicating their mean spacing over the entire
spectrum, which has proved suitable for the detection and diagnosis of faults.
Cepstrum has advantages in able to extract spectrum periodicity with respect to fault
detection and insensitive to secondary effects like signal transmission path and phase
relationship of amplitude and frequency modulation.
The cepstrum, with respect to fault diagnosis, was able to measure the average
sideband spacing over a very wide rangc of the spectrum, thus allowing a very
accurate measure of the spacing, being representative of the whole spectrum. The
cepstrum has the ability to concentrate the significant sideband information in a very

efficient manner.
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The cepstrum can be considered as an aid to the interpretation of the spectrum. In
particular with respect to sideband [amilies. because it presents the information in a

more ellicient manner.
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Figure 7.1: Cepstra for Different Measurements
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The experimental data shows the diagnosis of a gearbox with a number of
measurement points on the same gearbox with undamaged. cracked and spall tooth
meshing excitations. The results shown in figure 7.1 are the cepstra ol the three

different cases.

Gear Smoothed Spectra after Homomorphic Filtering
Condition
| Undamaged
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——

1 1 1 | 1
0 2000 4000 6000 8000 10000

Number of Samples

Figure 7.2: Cepstra for Different Measurements

All machines have some phvsical characteristics that reflect their conditions. A
normal running level (or that characteristic is established when the machine. in this
case a gearbox 1s in good condition. any significant deviation (rom that level gives
warning that a fault may be developing and maintenance will be required. The three
different cases in figure 7.1 demonstrate a variation in the cepstra. which is an
indication that faults have developed. The (aults are the crack and spall. which would
overlap under FFT analvsis. but cepstrum technique separate them. through

homomorphic filtering.
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Figure 7.3: Cepstra for Different Measurements

108




Figures 7.2 and 7.3 are the resonance peaks. which are due to the nature of the
structure of the machine. including all its components like the gearbox. piping. and
support svstem. Thev are not self excited but can be viewed as lurking within the
structure of the svstem. readv to cause violent reactions when excited. They result

functions of the mass. stiffness and damping of a structure.

10 Peak B

Peak A

10 — L

1 1 1 L
n 2000 4000 G000 8000 10000
Number of Samples

Figure 7.4: Effect of Resonance

When the natural frequency of the gearbox was excited. it blew up peak B (ligure 7.1)
which resulted in a large increase in the amplitude of vibration of that frequency. Peak
A demonstrates the effect of resonance. which is not in peak B. The resonance effect.
which is in the transmission path. is lurked together with the forcing effect to produce
the output signal. The FFT technique could not identilv i the change was in the
transmission path or from the forcing frequency. which the cepstrum technique has
separated as shown in figure 7.4.

Comparing the resonance peaks for the different cases: undamaged. cracked and spall
gears. the peaks are the same. showing that the change was not in the transmission

path but from the forcing frequency. due to the spall and the crack.
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Figures 7. 5 and 7.6 show how. similar to the mechanical vibration case. poles and

zeros ol the [requency response [unctions (FRF) ol the gearbox could be created and

evaluated. The poles and zeros alone suggests whether the gears are undamaged or

damaged. but the changes n the FRF also confirm the claim that the changes are due

to the forcing ellect from the spall and crack and not the transmission path ellect. by

using the cepstrum technique ol" homomorphic blind deconvolution.
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7.3

Conclusion

In conclusion, this thesis makes the following contributions:

The nature of maintenance practices in New Zealand major industry was the
first contribution in this thesis. The maintenance practices were reactive,
preventive and predictive. The survey showed that most of the companies
operate on reactive maintenance and few on predictive. My visits to the power
stations showed that only Genesis Power Station has on-line monitoring, the
rest only employ the services of vibration analyst to monitor their machines
once a year. Only Fonterra out of other food companies operate on predictive
maintenance. My visit to Griffins Food and its associated ones revealed that
they practice preventive and reactive maintenance. New Zealand Steel out of
other steel manufacturing companies practice preventive and predictive
maintenance. The medium size companies mainly practice reactive
maintenance, although some of them claim to practice preventive, but after
investigations into these practices, they did not observe the routine checks that
preventive maintenance required.

Predictive maintenance was demonstrated in some of the companies, using
FFT technique that was presented in the case studies to identify machine
problems, which was helpful in scheduling the necessary repairs and saved the
companies thousands of dollars in terms of lost production and wasted
manpower and materials or parts. It put the manager in charge of the machine,
instead of the machine being in charge of the manager. When the FFT
technique identified the machine problem, it allowed the maintenance manager
to direct the correction of that problem at his convenience. When he did not
know the problem, he must react when the machine broke regardless of the
day and hour. This demonstration made the companies understand the huge
benefits in predictive maintenance, using FFT technique. The main pitfall of
the FFT technique is the overlapping of many harmonics, sidebands and
resonance effects, which make the diagnosis more cumbersome, this is a

problem cepstrum technique using homomorphic filtering has resolved.
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7.4

The cepstrum technique was originally applied to analysc speech with the aim
of detecting the harmonic structure of voiced sounds and measuring voice
pitch, but now presented for the purpose of condition monitoring especially in

the diagnosis of a gearbox faults.

The cepstrum technique included homomorphic filtering to separate the
gearbox cepstra, which resulted to the identification of the cause of the
changes in the expected good performance of the gearbox. The filtering
separated the signal due to the undamaged gear from the cracked and spall

ones as shown in table 7.1.

The inclusion of poles and zeros analysis in the cepstrum technique produced
the frequency response function of the gearbox as shown in figures 7.5 and
7.6. The changes in the outlook of the poles and zeros frequency response
functions also validate that the changes are from the meshing and not the

transmission path.
Finally, the resonance effect in figures 7.2 and 7.3 also validate that the
changes are in the transmission path because they are the same to the different

cases.

Recommendations for Future Work

Although a significant amount of work with regard to gearbox condition monitoring

based on cepstrum technique was carried out, still there are lots to be done to gain a

thorough understanding in this respect.

This thesis has gone through series of tests. This technique needs to be
extended to gearboxes with variable speed.

More research needs to be carried out to reduce or replace the zooming on the
sidebands and mesh frequencies of the gearbox.

The work could further be extendcd by averaging the excitation-dominated
parts of the original cepstra to obtain the best estimate of the excitation

function. This average could be subtracted from all the individual cepstra.
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which could be curve-fitted in either the cepstrum or spectrum domain for
estimation of the structural response functions.

More research needs to be carried out for further understanding of the
relationship between the signal energy and the fault severity so that tables or

charts can be produced to help in the gearbox condition monitoring.
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APPENDIX A

A.1 Transducers

The selection of the proper transducer can be as important as any of the steps in data
acquisition. The selection should be made with some care and thought as to the types
of defects to be detected, frequency range involved, required location of the
transducer, etc.

Vibration data for machinery can be gathered by selecting the right transducer from
displacement, velocity or acceleration transducers. The equations that govern

displacement, velocity and acceleration transducers are presented.

A.l.1  Displacement Transducer
Under this application, x; and x,, are the absolute displacements [120], while x is zero

as weight M acts along the x-axis, hence equation 5.

2 2
[_)‘- (I(!);.;

(D)= Al
* D” /wy +2ED/ wy, +1 )
Where
K¢
f=—L
2JK¢M
Where
M = Mass
D = Integrating Device
Ks = Stiffness
B = Damping
Frequency response for this displacement sensor is shown in equation 4.6
ST (i(z))z / (u,%
22 o)l
“ (iw/wy)” +2%io/w, +]
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Displacement transducers measure vibratory displacement where a fixed reference for

relative displacement measurement is not available. The transducer is drilled into a

stationary reference. Displacement transducers are called Eddy Current Probes. It is

has low frequency response, measures the actual displacement of the shaft within the

bearing [120]. The limitations are inability to measure high frequency, expensive to

install and only used for low speed machines below 600 cycles per second [120].

M

[ Cuase
Xe

_—"  Relative
displacement
transducer

t
=
/'%/
t | & 7

xi /
Motion to be B (damper)

measured _
k stiffness

Figure A.l1: Displacement Sensor

A.1.2  Velocity Transducer

eq =k X

5y 2
(-,‘_0(1)): k(_)l) J'(ﬂ)n

X" D2 ok 428D vy +1

Equation A.S can be rewritten as shown in equation A.4
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X0 (r\_ D
Dx-(D "3 2
J D* +280, D+ oy
Therefore,
A.S
i(i(z)):

: I
5505 A 2 '
! 20, - rli( w5 —0° ] / m}

The configuration of velocity transducer is similar to figure A.l, but measures
velocity x; instead of displacement x. It is an electromagnetic sensor, when it
vibrates; its magnet remains stationary due to inertia. The magnet moves within a coil
that eventually generates electricity that is proportional to the velocity of the mass. It
has the ability to operate under high tempcratures and easy to use. Its limitations are
that is has low signal to noise ratio and not suitable for low or high frequency

measurements [ 120].

A.1.3  Acceleration Transducer
The desired input in this respect is ¥, equation 5 can be written as shown in equation

A.6.

X() =£(-}~(D M Kk A.6
Dz.\',- i D? /(z),% +2¢D/ ), +1

k= Lz cm/(em/ s 2 )
wy

A.2  Operation of Piezoelectric Accelerometer

The transducer selected with this spectrum analyzer is a piezoelectric accelerometer,
because It has very wide range of frequency, amplitude and temperature.

It is of the same configuration as figure A.2. The mass M accelerates at x;, the spring
detlection x, causes the force that will produce the acceleration, therefore, xp is a

measure of acceleration x;.
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It is the most important pickup for vibration, shock and general-purpose absolute
motion measurement [120].

Piezoelectric came mainly in two types of material; quartz and synthetic ceramic, but
the most used is the quartz. The piezo-electric element in figure A.2 is squeezed
between the mass and the base, when it experiences a force, then generates an electric
charge between its surfaces. The force required to move seismic mass up and down is
proportional to the acceleration of the mass. The force on the crystal produces the
output signal, which is proportional to the acceleration of the transducer. The
following should be considered while selecting accelerometers:

1. Frequency Range

2. Dynamic range

ICP Amplifier

\ | [ Pre-loading spring

/ Seismic mass
% _]/ Piezo-electric crystal
l_

= element

Base

|—Dj‘ Mounting stud

Figure A.2: The Piezoelectric Accelerometer

A.2.1  Frequency Range
The high frequency response is limited by the resonance of the seismic mass coupled
(or bolted) to the springiness of the piezo element.

The resonance produces a very high peak in the response at the natural frequency of

the transducer, about 30kHz.
A rule of thumb is that an accelerometer is usable up to about 1/3 of its natural

frequency. Data above this frequency will be accentuated by the resonant response.
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Figure A.4: Construction of a Transducer

Equation 4.11 is obtained by applying Newton's law to the mass M
k xo+ By =M, =M (¥ —¥)) A7

A.2.2  Dynamic Range
It is the range of variable that an instrument is designed to measure, signal to noise
ratio (SNR). The variable is the ratio of the amplitude of the largest signal to the
smallest detectable dynamic input that the instrument can accurately and faithfully
measure. Linear or RMS averaging can be used to reduce the noise floor and improve
the dynamic range. Dynamic range is represented in decibels (dB), where the dB of a

number N is defined in equation A.8.
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The 96dB dynamic range of the data collector indicates that the instrument can handle
a range of input of 65,536 to |. Most spectrum analysers have gone up to 16 bit
analog-digital (AD) converters and claim 96 dynamic range.

dB=20log N A.8

A. 3 Cepstrum and Homomorphic Filtering

The major application of the power spectrum in machine vibration is to detect and
quantify families of uniformly spaced harmonics, such as bearing faults, missing
turbine blades and gearbox faults.

The cepstrum and auto-correlation are closely related. The main difference is that the
inverse FFT is performed on the logarithm of the power spectrum itself. The auto-
correlation is mainly dominated by the highest values of the spectrum. The logarithm
used when computing the cepstrum causcs it to take lower level harmonics more into
account than auto-correlation. The cepstrum mainly reacts to the harmonics present in
the auto-spectrum, but the autocorrelation is strongly influenced by the shape of the
time signal. The auto spectrum of the difterent gear cases the author investigated are
shown in the following figures. When we look at the auto-spectrum of the signal,
“forest™ of harmonics is clearly seen. Figure .. illustrates that the forcing function and

transfer function effects are separated in the cepstrum

Looking at the cepstra of different gear fault cases shown in the following figures, the
advantages of using homomorphic filter would be appreciated. Homomorphic filtering
is a deterministic process in the sense that fixed and pre-given parts of the complex
cepstrum which are related to the undesired components are eliminated. The success
of the method depends primarily on the rate of the separation of the individual
components in the complex cepstrum. The main advantage of homomorphic filters for
different deconvolution problems over other deterministic filters is the fact that no
prior knowledge is necessary, the necessary parameters can be determined during the

process itself.
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Deconvolution by homomorphic filtering is an attractive method as it reduces a
convolution to an additive superposition of the components and the separation of the
individual components in the complex cepstrum.

The poles and zeros of the FRF were extracted to evaluate the stability of the system.
Poles and zeros give useful insights into a filter’s response, and could be used for
filter design. Poles outside the unit circle would represent instabilitics and could
presumably be neglected.

Zeros outside the unit circle could not be dismissed, if they were, it would still be
possible to detect changes in the resonances (or poles) which is the primary aim in

monitoring. The best bit transfer function could be seen in figures ...

Appendix A: Cepstrum Technique and Homomorphic Filtering
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Power Spectra of the Separated Components
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Raw Signal SONm
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Spall SONm

Spall 50 Nm
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Smoothed Spectrum - Spall 50Nm
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FRF After Curving - Spall 50Nm
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FRF - 2nd Harmonic
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100Nm

Power Spectra of the Separated Components
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Smoothed Spectrum - Spall 100Nm
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10

FRF Afer Curing - Spall 100Nm
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FRF - 2nd Harmonic
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Power Spectra of the Separated Components
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APPENDIX B

Preventive Maintenance Activities

The routine inspection carried out under preventive maintenance by various
companies do not allow them to track equipment performance, failure history or any
other data that could, and should be used to plan and schedule tasks that would
prevent premature failures, extend the useful life of critical plant assets and reduce
their lifecycle cost.

Instead, maintenance scheduling has been, and in many instances still is, determine by
equipment failures or on the perceptions of maintenance personnel who arbitrarily
determine the type and frequency of routine maintenance.

For example, most facilities that employ thermography inspections have it done once
a year or every six months. This is a purely arbitrary decision, not supported by any
kind of factual data.

The following schedules shown in this appendix were the results of the work done by
the author, stripping downs machines in a biscuit manufacturing company to come up
with a well define preventive maintenance that was embedded into SAP program.
This was based on the history of the machines, manufacturers’ details and failure rate.
This result was not based on a data just as predictive maintenance is based on a valid
data, predictive maintenance differs from preventive maintenance by basing
maintenance need on the actual condition of the machine rather than on some preset
schedule. Preventive maintenance is time-based; activities such as changing lubricant
are based on time, like calendar time or equipment rum time, just as shown in the
author’s schedules for PM in this appendix.

Most people change the oil in their vehicles every 1,500 to 3,000 km travelled. This is
effectively basing the oil change needs on equipment run time, without considering
the actual condition and performance capability of the oil; it is changed because of

time, this methodology is associated with PM task.
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Appendix B: Preventive Maintenance (PM)
The PM was set up for the machines shown in this chapter for a biscuit manufacturing

company; the information was transferred to SAP software for their implementations

Introduction

The term Preventive Maintenance (PM) refers to any activity that is designed to:
e Predict the onset of component failure
e Detect a failure before it has an impact on the asset function

e Repair or replace asset before failure occurs

PM has two features:

e Activity to be performed

e Frequency at which it is performed
Failure to assess the two features will result to either under-maintaining or over
maintaining of assets, although continuous improvement will identify and eliminate

these wastes (under-maintaining and over-maintaining of machines).

Under-Maintaining of Machines

e This is when preventive activities are not performed at too long intervals.
Over-Maintaining of Machines

e Performing PM at more frequent intervals than necessary

e Performing PM activities that add no value to the output.
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PM Activity Costs by Frequency

Monthly 82% 5%
82% .
Quarterly 5% 4%
Semi-Annually 8% 1%
8%

Annually 4%

Over-Annually 1%

SOLLICH ENROBER

Preventive Maintenance

1. CLEANING:

Clean and service CHOCOLATE PUMPS every 12 — 24 months.
Clean water FILTERS in the tamperer every 3 months to ensure full
penetration regularly.

Thoroughly clean the machine weekly

External cleaning of the machine daily

Clean the blower tip weekly

Clean blower turbine annually.

2. VISUAL INSPECTION - DAILY

Visual inspection for possible damage
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External cleaning of the machine

Lubricate the sliding bearing of the detailing shaft with a lubricant
approved for foodstuff.

Adjust clutch for chocolate pump when starting to work with tempered
mass, especially when the clutch slides despite being adjusted

previously.

3. LUBRICATION:

Lubricate the CHAINS FROM GEAR DRIVE monthly (Renolds
chain tube spray recommended).

Lubricate CHOCOLATE PUMP weekly (if critical, once every 3
days).

Lubricate the SPREADER DISCS of the regulatory gears weekly. (if
critical, once in 3 days).

All shafts of the machine run in ball bearings. These are sufficiently

greased and need lubrication after a longer period of time, 6-12

months.

BEARINGS DETAILS

Bearing Location Bearing Type

Sollich Enrober 2205 -2 off
6207 D - 3 off
6205 -2 off
6007 — 2 off

Other items Size

Oil Seals e 35x50x7-10off
o 25x40x 7-2off
ASS 207N (NTN) 10 off

Flush Back. Parallel

Parallel OD. 72 OD. 35 OD
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BEARINGS DETAILS

Bearing Location

Bearing Type

Sollich Enrober. Flow Pans

6004 D — 2 off

e INA Brg. Rale 20 NPP FA 106

e 20mm ID
e 42mm OD - Parallel OD. Flush
Back
2 off
Other items Size
Oil Seals 20 x 47 x 7 - 2 off i
BEARINGS DETAILS

Bearing Location

Bearing Type

Sollich Main Drive/Pump

6308 2RSR -1 off

2205 RSR -1 off

Other items

Size

Oil Seals

e 68x90x8-2off
o 50x 68 x8—4off
e 30x40x7-3off

FAG 16212 — Flush Back

60mm ID — 1 off

e Greased packed bearings should be cleaned and re-greased every 6-12 months

e Fill only 1/3 of free volume of the bearing with grease.

4. CHAIN TENSIONING:

e Check CHAIN DRIVES tensioning every 3 months.

S. WIRE BELT TENSIONING:

e Check INFEED BELT every 3 months

e Check ENROBER CARRIAGE BELT every 3 months
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e Check WIRE BELT TENSION every 3 months.

6. AIR FILTER REPLACEMENT:
e Replace AIR FILTER every 12 months depending on the quality of

air.

7. DRIVE SECTION:
e The fitted belt cleaning brush assists with the removal of build up on
the embossed belt. This build up is removed and ejected on to the
bottom stainless steel drip trays and they should be removed and

emptied daily.

Note: The set pressure is recommended not to be set beyond S PSI as this is all that |

is required to tension the belt fully.

e All painted surfaces should be cleaned with a mild detergent and wiped
dry daily.

e All stainless steel beds or drip trays should be washed daily as your
normal practice regularly.

e The product transfer belt (type 1-GM-087) should be washed with a
mild detergent raised and wiped daily.

e Roller No. | and the main drive roller should be kept clean weekly.

e Rollers #3 & #4 have been fitted with multiple loaded spring steel,
individually adjustable roller scrapers, should be checked for tension

against the roller every 3-4 months and reset if required.

SOLLICH
HEAT EXCHANGER

Preventive Maintenance

8. CLEANING:

e (lean heat exchanger every 6 months.
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1. In case of deposit within the tank, clean with current solvents

N

For cleaning within the pipes, use brush for pipe cleaning.
3. Use new gaskets after cleaning

CHECK

e Chocolate infeed temperature = 45°C

e (Chocolate output temperature = 28.5°C

e (Cooling water infeed temperature = 12°C

e (Cooling water output temperature = 18°C

SOLLICH TUNNEL /COMPRESSOR

9. CLEANING:

o Rotary knife edge at the inlet section must be cleaned daily to ensure
trouble free tracking.

e [nspect evaporator section every 6 months to ensure rollers are
rotating correctly and have no excessive powdered chocolate build up.

® The Chocolate crumb collecting trays have to be cleaned daily

® The supporting armatures of the conveyor belt have to be cleaned
from chocolate weekly.

® (lean the condensed water drain valve of the evaporator weekly.

10. LUBRICATION:
® C(Check oil level in the compressor crank casing weekly.
® Change oil after 2-3 years to prolong the life of compressor.
e Lubricate all hood seals with food grade approved silicone spray every
3 months to ensure the seals slide together and prolong the life of the

seals.

Note: The bottom faces between the bed and the hoods have sentoprene R seals but

require no lubrication

11. REFRIGERATION MAINTENANCE:
® Check the efficiencies of COMPRESSORS and CONDENSER as

per the Refrigeration Maintenance Check Lists every 2 — 3 months.
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(see PTL manual for the check list, check items that apply to this

machine)

12. GEARBOX
@ Motor gearbox is an S.E.W. type: R73 DT90 N4 0.75KW at 18 rpm.
e All SEW gear units require minimum maintenance, but check oil levels
daily.

® Check chain tension every 3 months

SOLLICH TEMPERER
e Examine water circulation systems for leaks daily
e C(lean filter in the cooling water feed pipe and filter elements in the
pressure reducing valve weekly
e Check transmission oil annually

e (lean the cooling water system annually

Note: Clean surface with a dry cloth or wash in light soap water or water soluble

detergent.

e C(lean the 4 water filters in the temperer weekly to ensure full
penetration.

e C(lean solenoid valves of impurities from the water pipes weekly, such
as scales of rust.

e Retighten every 6 months the bolts between top and bottom covers.

13. Temperer’s Gear — Worm Gear

e Change oil every 12-18 months

14. Vibration Analysis
It is recommended to do vibration analysis of the machine every six months to check:
e Alignment
e Qil analysis (send about 0.5 litre sample to supplier oil analyst if it is
alright for use)

e Bearings outer & inner races, cage and balls
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e Looseness

e Parameters from the interoperability of machine components
The vibration report will be used to optimise the settings of the machine parameters

and move the maintenance strategy forward to both predictive and proactive

PTL ENROBER 1050 CHOCOLATE
Serial #2739

Preventive Maintenance

15. CLEANING:
e C(lean and service CHOCOLATE PUMPS every 12 — 24 months.
e Clean FILTERS weekly.
e C(Clean ENROBER BELT CARRIAGE weekly, use long thin nozzle.

NOTE: Never steam clean the in-feed conveyor, this may damage the electrics.

e Clean DETAILER and INFEED plate by scrapping off as much

chocolate as possible daily.

NOTE: Never steam clean or water on any of these items, it may damage the

trace heating.

16. LUBRICATION:

e [ubricate the ENROBING CARRIAGE CHAINS monthly.

e Apply spray lubricant (Renold Chain Lubricant Recommended) on
MAIN DRIVE CHAIN, which drives the carriage drive coupling and
stirrer weekly.

e Change oil for OIL - LUBRICATED GEAR annually.

1. Rossi MRV32-63B: Enrober belt shaker gerabox
2. Rossi MRCI 64 UO3A D90: Enrober pump drive gearbox
3. GPP 12525 gearbox: Enrober decorator DC drive gearbox

Note: Lubricate bearings for every change of oil for lubricated gear.
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LUBRICATE BEARINGS. GREASE NIBBLES
® Lubricate/grease BEARING nibbles monthly.

BEARINGS DETAILS

Bearing Location Bearing Type

Enrober wire belt drive housing roller | SKF — 6005 LLU: 2 off
bearings

Enrober stirrer housing bearing SKF - 61905 LLU: 2 off
Enrober shaker shaft bearing unit SKF — YAR207 — 2RF: 2 off
Enrober wire belt drive bearing unit SKF — YAR206 — 2RF: 1 off
Enrober decorator linear bearings LGW20CC: 2 off _

17. CHAIN TENSIONING:
® Check ENROBING CARRIAGE CHAINS tensioning every 3
months.

® Check MAIN DRIVE CHAIN every 3 months.

18. WIRE BELT TENSIONING:
® Check INFEED BELT every 3 months
® Check ENROBER CARRIAGE BELT every 3 months
® Check WIRE BELT TENSION every 3 months. Always replace the
exact number of broken wire strips, adjust tension if replacement is

less or more than the number of broken strips.

NOTE:
® Do not over-tighten; adjust equally either side to avoid damage to the
wire belt. Manufacturer recommends an engineer to adjust tension.
® The replaced wire strip must maintain the same shape after replacement.
If twisted, it may break again. Engineers are recommended to carry out

the replacement.

19. AIR FILTER REPLACEMENT:
® Replace AIR FILTER every 12 months depending on the quality of air.

189



20. GEAR MOTOR

e Overhaul the GEAR MOTOR after 3-S5 years.

Gearbox & Motor Frame Numbers

Description Type Qty
Enrober  belt shaker | Rossi MRV32-63B 10:1 | 1
gearbox ratio 0.18kW 3PH motor
Enrober wire belt drive | Rossi MRIVS50-71B | 1

motor 2.54X25 0.25 KW 3PH
motor

Enrober  pump  drive | Rossi MRCI 64 UO3A |1

gearbox D90 1.5kW 3PH motor

PTL COOLING TUNNEL
Serial #2739

Preventive Maintenance

21. CLEANING:

e (lean MACHINE daily from product build-up to ensure correct and

trouble free operation.

e Clean ALL ROLLERS weckly to prevent product build-up. Dirty

rollers will affect belt tracking and lead to belt damage.

22. LUBRICATION:

e Lubricate DRIVE CHAIN with chain spray monthly

¢ Inspect DRIVE CHAIN for correct tension and wear every 3 months

¢ Change OIL SEPARATOR (OF 303) every 12 months

e Change GEAR grease (double reduction maintenance free type shown

below) after 3/5 years operation, this will ensure a longer service life.

1. CNHX4135DC Cyclo: Cooling tunnel belt drive gearbox

2. Qty of grease = 50% of space volume = 65g of grease.
The grease recommended is ALVANIA GREASE RA, 10 -50°C ambient temperature
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Inspect the NOISE and VIBRATION of gear daily to ensure proper and continued

optimum operation.

LUBRICATE BEARINGS. GREASE NIBBLES
e [ubricate/grease BEARING nibbles monthly.

BEARINGS DETAILS

Bearing Location Bearing Type

Cooling tunnel drive shaft bearings SKF -FYTB 50 — TF: 2 off
Cooling tunnel take up bearings SKF - YAR207 - 2RF: 2 off
Cooling tunnel belt rol.lgr_bearings SKF — 6307 — 2RS1: 22 off
Cooling tunnel tracking bearings SKF - 6005 — 2RS1: 4 off

23. AIR LEAKAGE:
® Check the COOLING SYSTEM for air leakages daily.

24. REFRIGERATION MAINTENANCE:
® Check the efficiencies of RECIPROCATING COMPRESSORS and
CONDENSER as per the Refrigeration Maintenance Check Lists

every 2 — 3 months.

25. GEARBOX

e It is pre-packed with grease and sealed and requires NO regular check

26. FILTER REPLACEMENT
e Replace SUCTION FILTER (Sporlan RCW 48) every 12 months

27. Vibration Analysis
It is recommended to do vibration analysis of the machine every six months to check:
e Alignment
e Oil analysis (send about 0.5 litre sample to supplier oil analyst if it is
alright for use)
® Bearings outer & inner races, cage and balls

® [ ooseness
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e Parameters from the interoperability of machine components
The vibration report will be used to optimise the settings of the machine parameters

and move the maintenance strategy forward to both predictive and proactive types.

A: MULTI CO-EXTRUDER: UX 110

Preventive Maintenance

1. CLEANING:
e Strip machine, clean and grease weekly or after a complete
production cycle.
2. Lubrication:
o Grease up all the gears, grease nipple, chain and sprockets at the
extruder section every month.

e Grease up the grease nipple at the flow controller section every month.

Note:
Grease Brand & Grade: Mobilux 2 (mobil), Ristan 2 (EXXON) or equivalent

3. Checks:
e Check chain tension every 3 months

e Check gear teeth for wears/cracks every 6 months

B: HIGH SPEED ENCRUSTER: EN 310
4. Lubrication:

Drive Section Side View: OIL LUBRICATION

Lubrication Frequency Oil Grade Oil Brand

Lubricate speed reducer | every 3 months Gear 632 Mobil

gearbox with oil

Lubricate bevel gearbox with | every 3 months DTE-100 Mobil
oil

Lubricate the parallel index | every 3 months OMALA 71 Shell
with oil
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e C(Clean and change oil every 6 months

Drive Section Top & Encrusting Section Side Views: GREASE LUBRICATION

Lubrication Frequency Grease Grade | Grease Brand
Grease up the gears, rod ends. | Monthly Mobilux 2 | Ristan 2
sprocket and chains (mobil) (Exxon)
Grease up slide shafts, drive gears, | Monthly Mobilux 2 | Ristan 2
cam follower and linear bearing (mobil) (Exxon)

S. CHECKS:

are the same.

Check chain tension every 3 months

C: STAR WHEEL ENCRUSTER: ON 113

&

PRESS ROLLER: MR 210

6. LUBRICATION:

Top View

Front View

Side View

Grease up all gears monthly

Grease up screw jack monthly

7. CHECKS:

Check gear teeth for wears/crack every 6 months.

Check wears/crack on gear teeth every 6 months

D: LATTICI ROLLER: OR 295

e (rease up pillow block and worm wheel monthly

e Check roller clearance regularly

Check weekly if the clearance between encrusting pieces and housing

Note: Make sure that the clearance of rollers in horizontal adjustment is the same on

both sides (equidistant).




E: UNDERNEATH CONVEYOR: 2C 316

8. LUBRICATION:

TOP VIEW - (Conveyor under multi co-extruder)

e Grease up the gears, sprocket & chain monthly

TOP VIEW — (Row multiply unit)
e Grease up the gears, worm and worm wheel, sprocket, chain, linear

bearings, rod-end bearing and cam monthly.

9. CHECKS:
e Check belt tension monthly and adjust if necessary

e Check gear teeth for wear/crack every 6 months.

F: GUILLOTINE CUTTER: OK 774

SIDE VIEW

10. LUBRICATION:

e Grease up clevis pins, rod end, joint pins and linear bearings monthly

11. CHECKS & CLEANING:
(Air Case Section)

e Clean dirt on air filter & auto-drain function weekly

Note: Clean with neutral detergeﬁt or replace if necessary T

e Check abnormal change in air pressure dai_ly. Normal setting is 4kg/cm’

(Solenoid Valve)

e Check solenoid valve monthly, for unusual noise, change the valve.
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(Air Cylinder & Cutter Section)
o Check monthly for wear on clevis pin, bushing, knuckle joint pin, bearing,
pin, linear bearing, cutter, air cylinder and air joints. Change any worn part

as soon as possible.

G: EGG GRAZER

12. LUBRICATION:

(SIDE VIEW)

e QGrease up the chain & sprocket monthly

13. CHECKS:
e Check chain tension monthly

® Check roller clearance monthly. Clearance between rollers 1 & 2 and

rollers 2 & 3 should be 0.2mm

H: CONVEYOR WITH BELT CLEANER: 1C 358

14. LUBRICATION:

e Grease up the sprockets, chain & grease nipple monthly.

15. Checks:

e Check the chain & belt tension monthly

Note:
e Conveyor belt tension should be adjusted with tensioner bolts at both sides

e Adjust the drive tension with the tension sprocket
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VIBRATION ANALYSIS

It is recommended to do vibration analysis of the machine every six months to check:
e Alignment
e Balancing (rotor/coupling sleeves)
e (il analysis (send about 0.5 litre sample to supplier/ oil analyst if it is

alright for use)

e Bearings outer & inner races, cage and balls
e [ ooseness
e Parameters from the interoperability of machine components

The vibration report will be used to optimise the settings of the machine parameters

and move the maintenance strategy forward to both predictive and proactive types.

OVENS

Preventive Maintenance

6. Cleaning:
® (lean big rollers annually.
® (lean small rollers every 3 months.

® (lean big rollers “cleaning blades” monthly.

7. Checks:
® Check rollers smoothness, repair as required to remove rust or product

build up every 6 months.

NOTE:
Uneven rollers (for example, due to product build-up or rust or wear) may cause

bearing failure.

® Check gear teeth for wears/cracks every 6 months

® Inspect machine daily for loose nuts and bolts resulting from machine
vibration and tighten as required.

® Check driving chain and belts tension weekly and adjust as necessary.
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8. Lubrication:

e Lubricate all bearings monthly. Grease up from the bearing nipples.

OVEN FANS
9. Lubrication:
o Lubricate all bearings every monthly. Grease up from the bearing
nipples.
10. Checks:
e Check driving belt tension weekly, adjust or change belt as required.
e Check pulley grooves for wear and repair as required every 6 months.

e Check pulleys alignment weekly and adjust as required

VIBRATION ANALYSIS

It is recommended to do vibration analysis of the machine every six months to check:
e Alignment
e Balancing (rotor/coupling sleeves)
e Oil analysis (send about 0.5 litre sample to supplier oil analyst if it is

alright for use)

e DBearings outcr & inner races, cage and balls
e [ooseness
e Parameters from the interoperability of machine components

The vibration report will be used to optimise the settings of the machine parameters

and move the maintenance strategy forward to both predictive and proactive types.

RAW MATERIAL HANDLING & MIXING EQUIPMENT - Item 1.00

Preventive Maintenance

11. Cleaning:
e C(Clean sifting machine weekly: Dismantle and clean
12. Bearing:

e Grease up through nipples monthly
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o The bearings are sealed-type but further application of grease ejects the
old grease and replenishes the bearing whilst still maintaining a seal
13. Couplings — Spider Type Coupling
o Check every 6 months to ensure the spider is not unduly worn
e Any undue wear will be caused through misalignment of the motor and

sifter shafts and should be carefully checked.

Note: Adjustments can be made by loosening off the inlet end bearing and re-

tightening correctly.

14. Motor Bearings:
o These are to be cleaned out and supplied with fresh grease every 3
years
15. Sprocket Chains:

o Clean and lubricate every 3 months

Note: It is recommended to mount a new chain wheel when replacing the chain, as a

new chain running in a partly worn chain wheel will have a considerable shorter life.

HYDRAULIC SYSTEM/EXTRUDER: ITEM 2.00

e The filter placed on the delivery of the pump must be checked weekly
e Drain hydraulic oil every 6 months and carry out a complete cleaning to get

rid of any impurities accumulated at the bottom of the tank

Note: Drain the lubrication reservoir or thoroughly filter oil reservoir every 3 months

e C(Clean the worm-sleeve unit (extruder) at the end of one production circle or
weekly.

e Check worm —sleeve for wear weekly

e Check lubrication level daily

e Check all pipes for leakages daily

e Check oil level daily

e Check oil for contamination monthly

e (Change oil every 3-6 months
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D.C. MACHINE

@ C(Clean external part of machine daily

® Check tightness of connections daily

® Main Gearbox/other Gears

1.
2.
3.

Check gears teeth every 6 months for wear or crack
Rotate them at intervals to be sure they are covered in oil weekly

Check temperature of main gearbox daily

® Brushes:

1.

Check brushes of cooling fan motor for wear weekly.

Note: Brushes should be set so that they are just clear of the screen. They must NOT

be allowed to touch the screen. Use brushes up to 2/3 of their initial length.

e LUBRICATION:

Life lubricated machine: LSC 80, LSC 90, LSC 112, LSC 132 & LSC
160

Bearings have been lubricated by manufacturer; no lubrication should be

carried out.

Check oil seals weekly, replace if necessary

The ball bearings of the driving drum are equipped with grease nipple
through which the ball bearings should be lubricated at monthly.

The ball bearings of the tension drum is lubricated through grease nipple
in the link brackets monthly.

Check driving chains every 3 months for tension and lubrication
Lubricate all sprocket chains every 3 months

All movable links should be lubricated annually

Lubricate the guide way every 6 months

Note: For the lubrication of the driving chains, a thin non-corrosive, pure mineral oil

will be preferable.
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CONVEYOR BEFORE COOLING TUNNEL

Check rollers for wear every 3 months
Check chain belt tension every 3 months
Check sprocket chains every 3 months and lubricate, adjust tension or

change chain if necessary.

COOLING TUNNEL

Check the efficiencies of RECIPROCATING COMPRESSORS and
CONDENSER as per the Refrigeration Maintenance Check Lists
every 2 — 3 months (see PTL manual for the check list, check items that
apply to this machine).

Clean all the ventilation apertures and vent holes weekly

VIBRATION ANALYSIS

This machine is designed to be vibration less; any vibration located must be

eliminated.

It is recommended to do vibration analysis of the machine every six months to check:

Alignment

Balancing (rotor/coupling sleeves)

Oil analysis (send about 0.5 litre sample to supplier oil analyst if it is
alright for use)

Bearings outer & inner races, cage and balls

Looseness

Parameters from the interoperability of machine components

The vibration report will be used to optimise the settings of the machine parameters

and move the maintenance strategy forward to both predictive and proactive types.

NOTE: The cleaning instructions outlined in the *“Litebread Extruder Area

Cleaning — Daily” sheet (Ref: CLN/09/02) must be adhered

OVERHEAD WIRECUT

Preventive Maintenance
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16. Cleaning:
e¢ The extruder should be cleaned at the end of each day’s production.
e The die should be removed for cleaning daily.
e¢ (Clean the feed rolls daily:
1. Use compressed air stream into the grooves of the feed rolls to
remove product
2. Clean the rolls, dies and filler block with hot water or steam. DO
NOT SPRAY WATER DIRECTLY ONTO THE FEED ROLL
BEARINGS.

3. After cleaning with water, blow dry with air.

SAFETY:

1. DANGER: The use of water, especially when sprayed from hand held hoses,
increases the risk of an electrical shock which could cause severe injury or
even loss of life. Turn off electrical power source and lock-out before using
water around the motors of electrical panels and controls.

2. WARNING: Under no circumstances should any cleaning procedure be

performed while the machine is running. A momentary distraction could result
in a serious injury.
3. CAUTION: Always wear safety glasses to protect your eyes when using

compressed air.

17. Checks:
® [nspect drive chain tension and adjust as required daily.
® (Check gear teeth for wears/cracks every 6 months
e [nspect machine daily for loose nuts and bolts resulting from machine
vibration and tighten as required.
® Check hydraulic pipes daily for any leakage and repair as required
e Check pneumatic pipe lines daily for any leakage and repair or replace

as required.
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18. Lubrication:

L

Lubricate wire drop slides with food machinery lubricant weekly.
Lubricate drive chain and sprockets with Chevron SAE 30W oil
(asphalt base) or equivalent lubricant weekly.

Lubricate the drive gears with food machinery lubricant every 2
weeks.

Lubricate grease fittings in shaft ends and in frame with food
machinery lubricant monthly

Lubricate swing arm shaft pivot and eccentric housing with food
machinery lubricant monthly.

Lubricate all threaded screw adjustments with Chevron SAE 30W oil
or equivalent monthly.

Lubricate all bearings with grease fittings with food machinery

lubricant every 3 months.

VIBRATION ANALYSIS

It is recommended to do vibration analysis of the machine every six months to check:

®

Alignment

Balancing (rotor/coupling sleeves)

Oil analysis (send about 0.5 litre sample to supplier oil analyst if it is
alright for use)

Bearings outer & inner races, cage and balls

Looseness

Parameters from the interoperability of machine components

The vibration report will be used to optimise the settings of the machine parameters

and move the maintenance strategy forward to both predictive and proactive types.
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