Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.



ON THE AUTOMATION OF
DEPENDENCY-BREAKING
REFACTORINGS IN JAVA

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DocTtor or PHILOSOPHY
IN
COMPUTER SCIENCE
AT Massey UNIVERSITY, PALMERSTON NORTH,

NEwW ZEALAND.

SYED MUHAMMAD ALI SHAH

2013



ii



Abstract

Over a period of time software systems grow large and become complex due to un-
systematic changes that create a high level of interconnection among software arte-
facts. Consequently, maintenance becomes expensive and even making small changes
may require considerable resources due to change propagation in the system, a phe-
nomenon known as ripple effects. Industrial evidence suggests that more resources are
spent on the maintenance phase than on the initial development. It is evident that
companies make huge investments to maintain legacy systems until a point comes
where a complete restructuring of the system is required. In most cases, it becomes
very expensive to refurbish legacy systems manually due to their inherent complexity.
Several semi-automated solutions have been proposed to restructure simplified mod-
els of existing systems. It is still expensive, in terms of resources, to translate those
model level transformations into source code transformations or refactorings. The
question that arises here is whether we can automate the application of model level

changes on the source code of programs.

In this thesis, we have developed novel algorithms to automate the application of
a class of architectural transformations related to improving modularity of existing
programs. In order to evaluate our approach, we have analysed a large dataset of open
source programs to determine whether the manipulation of models can be translated
into source code refactorings, whether we can define constraints on those refactorings
to preserve program correctness, and to which extent the automation of the whole
process is possible. The results indicate that this automation process can be achieved
to a significant level, which implies that certain economic benefits can be gained from

the process.

iii



iv



Acknowledgements

I would like to express my profound gratitude to my supervisor Dr. Jens Dietrich for
his advice, guidance, and endless support through every step of the way. He has a
great passion for his work and he knows how to get the best out of his students. He
has been a source of learning throughout these years. I also thank him for the Guery
tool he had developed. This tool was very helpful in my research.

I extend my sincere gratitude to my co-supervisor Dr. Catherine McCartin for her
valuable feedback during the entire time. She has been very kind and helped me
polish my work. This work would have not been possible without the help and
support of my supervisors.

A special thanks to my family. Words cannot express how grateful I am to my mother
(late), and father for all of the sacrifices that they have made on my behalf. Their prayer
for me was what sustained me thus far. Thanks to all of my siblings for their support
and wishes during these years. I would like to thank my sisters Farhat, Yasmin, and
Najma for looking after me so well, whenever I visited home. A word of thanks to my
younger brother Taskeen, who helped me in many different ways during my research.

My years at Massey were very enjoyable, thanks for the friendship of Abrar (for all
the enjoyable distractions), Shujat (for the jokes and laughs), Ezanee (for stimulating
useful discussions), Saleem (for being a good flatmate and friend), and Tariq (for the
friendship and discussions on every aspect of life). I would also like to thank my
friends in Pakistan especially Irfan, Bhatti, Ainan, and Naseer. Many thanks to the
Pakistani community in New Zealand. They have been very kind and never made me
miss the exotic Pakistani cuisine. They all made me feel at home.

I take this opportunity to thank Massey University and the School of Engineering and
Advanced Technology (SEAT) for providing a conducive working environment for
research. I would also like to thank the SEAT staff, in particular, Christina Bond, Fiona,
Michelle Wagner, Linda Lowe, and Dilantha Punchihewa for never complicating the
administrative tasks.



Last but not least, I would like to thank the Higher Education Commission for provid-
ing the financial support granted through Overseas Scholarship Program to complete
my PhD degree.

Vi



vii

This thesis is dedicated to my late mum ...



viii



Contents

[Abstract

[Acknowledgements|

1 Intr ion|

1.1 Problem Definiti

[1.2  Research Questions| . . . .

(1.3 Approachf. . . ... ....

[I.3.1  Critical Dependency Detection| . . . ... ............ ..

1.4 Thesi ntribution| . . . .

(I.4.1 Algorithms| . . . .

[1.4.2 Implementation|. .

2 Research Methodology|

[2.1  Architectural Model - The Dependency Graph| . . . ... ... ... ...

.1.1 ExtractingtheModell . . . . .. ... ... ... ... . ... ...

2.2 Architectural Antipatterns|

ix

iii

10
10
10
10

11

13



[2.2.1  Antipattern DetectionTools| . . . . ... ... ..... ... ... .. 15

2.2 FEvaluationofloolsl . . ... ... ... ... ... .. .. ..., 15

[2.2.3  Representing Antipatterns|. . . . . .. ... ... ... .. ... .. 17

.3 AntipatternSet| . ... ... ... ... . L oo oo 19
3.1 IVIOW] . . . . . 19

[2.3.2  Circular Dependencies between Packages|. . . . . ... ... ... 20
[2.3.3 Subtype Knowledge| . . . .. .. ... ... .. .. ... .. ..., 23
[2.3.4  Abstraction Without Decoupling| . . . ... ... ... . ... .. 26
[2.3.5 Degenerated Inheritance|. . . . . ... ... ... ... ... ... 28

2.4 Detecting Opportunities - Scoring Edges|. . . . . .. ... .. ... .... 31
.5 Dependency Classification| . . . . . ... ................... 33
Ro TheDatasetl . ... ... ... ... .. .. ... .. ... . .. 34
3 Dependency-Breaking Refactorings | 37
Bl Overviewl. . . . ... .. .. .. e 37
B.2 Package Level Refactorings| . . .. ... ...... .. .. ... .. ..., 39
B21 MoveClass| . . ... ... ... .. ... ... .. .. 39
[3.22 SplitPackages|. . .. ... .. ... .. ... .. ... .. .. ... . 40
.23 MergePackages|. . . ... ... ... .. 0000 41

3.3 Class Level Refactorings| . . . . ... ...... ... ... ......... 42
[3.3.1 AdaptParameter] . . . . ... ... ... ... ... .. ..., 42
3.3.2 ExtractInterfacel. . . . . ... ... ... ... o oL 45
[3.3.3 Dependency Injection| . . ... ... ... ... ... ... ... 46
B34 Servicelocator] . ... ............. .. ... ... ... 50
[3.3.5 Type Generalisation| . . ... ... .. ... ... ... ... ... 51
[3.3.6  Static Members Inlining| . . . . ... ... ... ... . ... 52

3.4 Evaluation of Refactorings| . . . . . ... ............. .. ..., 56




@  Applying Package Level Refactorings| 61

Bl Overviewl. . . . ... .. .. . e 61
@2 Background| .. ... ... ... o oo o 63
@3 Algorithm| . ... ... ... ... .. 64
@.3.1 Building the Dependency Graph| . . . . ... .. ........ .. 66
@.3.2 Computing Antipattern Instances| . . . . .. ... ... ... ... 66
@.3.3 Computing Edge Scoring| . . . . .. ... ... ........ ... 67

@4 Implementation: CARE - The Eclipse Plugin| . . . . ... ... ... ... 67
@#.4.1 Implementing Dependency Classification| . . . . . . ... ... .. 68
@.4.2 Implementing Refactoring Constraints| . . ... ... ... .. .. 68
@43 Implementing Refactorings| . . . .. ... ... ... ..., ... 72

@.5 Strongly Connected Component Metrics Detinition| . . . ... ... ... 75
@6 Experimentl. ... ... ... .. ... . ... 78
@.6.1 CaseStudy: JMoney-04.4 . . . ... ... ... .......... 78
@.6.2 CaseStudy: JGraph-5.13.0[. . . . .. ... ... ... . ... 79
@.6.3 Impact of Move Class Refactoring| . . . .. ... .......... 81
@.6.4 Refactoring Simulation on Model vs Refactoring Application on |

[ Codel . . . ... 82
@.6.5 Impact of Program Size on Number of Refactorings| . . . . . . .. 83
6.6 PackageMergingl . . . ... ... ... ... .. L 84
@.6.7 Distribution of Move Refactorings| . . . . ... ... .. ... ... 85

@.6.8 Refactorability|. . . ... ... ... . .. o0 o oL 85

#.6.9 Success Estimation of Model to Code Refactorings|. . . . . . . .. 86
@.6.10 Strongly Connected Components Metrics| . . . . . ... ... ... 87
@.6.11 Limitations of the Experimentf . . . .. ... .. ... ... ... 88
@.6.12 Scalability| . . . ... ... ... o 93
4613 TestResults| . ... ............. ... .. ... .. 93

xi



B.7 Summary|. . ... ... 95

[> Applying Composite Refactorings| 97
bl Overviewl. . . . ... .. .. . e 97
p.2 Background| . . ... ... .. ... ... o o o 98

p.2.1 Type Generalisation| . . . ... ... ... ... ... ... .. 98

2.2 rvice I, ISl . 100

p.2.3  Static Members Inlining| . . . . ... ... ... ... 000, 100

p.3 Algorithm| . ... ... ... ... ... ... o 101
[p.3.1 The Dependency Graph| . . . .. ... ..... ... .. .. .... 102
p.3.2  Computing Antipattern Instances| . . . . . ... ... .. ... .. 103
.3.3 Computing Edge Scoring| . . . . ... ................ 103
[p.3.4 Parsing SourceCode| . . . . .. ... ... . . L L. 103

p.4 Implementation: CARE - The Eclipse Plugin| . . . ... ... ....... 103
.41 Implementing Dependency Classification| . . . . . ... ... ... 103
.42 Implementing Refactoring Constraints| . . .. ... .. ... ... 105
.43 Implementing Refactorings| . . . ... ... ....... ... ... 108

p.5 Experimentl. . . ... ... ... ... . o 112
p.5.1 Examples . .. ... ... ... .. ... . o 112
[p.5.2  Impact of Refactorings on Instance Count Metrid[. . . . . . .. .. 114
[p.5.3  Refactoring Simulation on Model vs Refactoring Application on |
Codel . . .. . 114

[p.5.4  Refactoring Types Applied| . .. ... ... ... . ... ... ... 115
[5.5.5 Strongly Connected Components Metrics| . . . . ... ... .. .. 115
b.5.6 TestResults| . . ... ... ... ... ... .. ... .. .. ... 117

p.6 Summary|. . ... ... 117
lb__Conclusions and Future Work] 123

xii



6.1 Research Questions| . . . . . . .. .. .. ... ... ... ... .. 123

[.1.1 Can model level dependency-breaking refactorings be automat- |

| ically translated into source code refactorings?[ . . . . ... .. .. 124
[.1.2 How can we define and evaluate constraints on refactorings to |

| preserve the correctness of the program being refactored? . . . . 124
[6.1.3 'To what extent can these dependency-breaking refactorings be |

[ automated?] . ... ... oo 125
[6.2 Threatsto Validity|. . . . .. ... ... ... .. ... .. ...... 126
21 DatasetSelection| . . . ... ... ... ... o oL L 126

[6.2.2  Correctness of Refactored Programs| . . . . .. ... ... .. ... 126

[6.2.3 Developers Feedback|. . . . .. ... ... ... ... ... ... 127

.24 Influenceof Toolsf. . . ... ............... .. ..... 128

[6.2.5 Java Specific Refactorings| . . . . .. ... ... ... 0L 128

[6.2.6 Scalability] . . . ... ... ... ... . oo 129

6.3 Research Contributions|. . . . .. .. ... ... .. .. .. ... ...... 129

4 FPutur rkl o 130
Bibliography 131
|A_Declaration of Previous Workl 141
(B CARE Plugin: Installation and Instructions| 143
B.1 Installationl. . . ... .. ... .. ... ... .. .. 143
[B.1.1 Configuration| . . . . .. ... ... ... ........ .. .... 143

[B.2 Usage Instructions| . . .. ... ... .... ... .............. 144
B21 Userlnterfacel . . . ... ... ... .. ... ... . L. 144

B22 Preferencesl . .. ... ... ... .. ... oL 144

[B.2.3 Importing Projects| . . ... ... ... ... ... . ... 144

[B.2.4 RefactoringOutput|. . . . . ... ... .. .. ... .. ... .. .. 145




[C List of Acronyms| 153

Xiv



List of Tables

2.1 Tool Features in terms of Architectural Antipatterns Detection| . . . . . . 16
2.2 Comparison of Different Scoring Mechanisms|. . . . . .. ... ... ... 32
23 TheDatasetl .. ....... ... ... ... .. .. ... .. .. ... 36
[3.1 Refactoring Attributes in terms of Breaking Dependencies| . . . . .. .. 58
4.1 Instance Count Before and After Refactoring| . . . ... ... ... ... .. 72

2 ric Val tThreeSCCsl. . . . . . . o oo 77
.3 The Resultant Move Refactorings for [Money-0.4.4{ . . . . ... ... ... 78
.4 Metrics Values for JMoney-0.4.4{. . . . ... ... ... .. ... .. ..., 80
.5 Metrics Values for JGraph-5.13.00 . . ... .. ... ... ... .. ..., 80
{.6 Result for Merged Packages| . . . . . ... ... ... ... ... .. .. 85
4.7 Refactorability Example] . . ... .. ... ... .. ... ... . 0. .. 86
@.8 Top 5 Programs with Highest Execution Time|. . . . . . .. ... ... .. 94
4.9 Test Results of 5 Programs Before and After Refactorings| . . . . . . . .. 95
0.1 Dependency Categories and their Detfault Respective Refactorings|. . . . 105
[p.2 Test Results of 5 Programs Before and After Refactorings| . . . . . . ... 117
[B.1 Eclipse Project Structure| . . . . . ... ... ... .............. 145
B2 DatasetFiles| . . . .. ... ... ... ... 145
[B.3 Output Description| . . . . ... ... ... ... ... ... 146

XV



xvi



List of Figures

[I.1 Evolution of Packages and Classesin JRE| . . . . ... ... ..... ...

[L.2  Evolution of Package Relationships and Class Relationships in JRE| . . .

[1.3  Evolution of Package and Class level Tanglesin JRE[ . . . . ... ... ..

[I.4 Evolution of Relationships of Package and Class level Tangles in JRE] . .

(1.5 JRE1.7.0 Package Level Dependency Graph|. . . . ... ... ... .. ..

(1.6 JRE1.7.0 Class Level Dependency Graph| . ... ... ........ ...

2.1 User Interface/Database Dependency Antipattern| . . . ... ... .. ..

2.2 Dependency Cycle Between the AWT and Swing Packages| . . . . . . ..

[2.3 Circular Dependency between Packages| . . . . . . ... ....... ...

2.4  Weak Circular Dependency between Packages| . . . ... ... ... ...

.5 Abstraction Example| . . . .. ... oo o oo

[2.6 Example of Subtype Knowledge Antipattern| . . . . . ... ... ... ..

.7 Subtype Knowledge| . . ... ... ... .. ... . ... . ... ...

2.8 Example of Abstraction Without Decoupling Antipattern| . . . . . . . ..

2.9  Abstraction Without Decoupling| . . . .. ... ..... ... ... . ...

[2.10 Example of Degenerated Inheritance Antipattern|. . . . . . .. ... ...

[2.11 Degenerated Inheritance| . . . . . .. ... ... .. ... ... ... ...

[2.12 Example Program’s Dependency Graph| . . . . ... ... ... .. .. ..

3.1 MoveClassExamplel . . .. ... ... ... ... ... ... ... ...




B2 MoveClassExamplel . . .. .. ... ... ... ... ... .. 0. 41
3.3 Split Packages Example] . . .. ... ... ... ... ... ... ... 42
.4 The Adapt Parameter Refactoring|. . . . . . ... ... ... ........ 44
[3.5 Extract Interface Refactoring|. . . . . ... ... ... ... .. .. ... 46
3.6 Example of Dependency Injection|. . . . .. ... .. ...... .. ..., 48
@.1 Class Diagram of Dependency Classification for Move Refactoring] . . . 68
@.2 Class Diagram of Pre and Postconditions| . . . ... .. ... ....... 69
@.3 Example of Increase in the Instance Count Metrid . . ... ... ... .. 73
@4 Example of Decrease in the Instance Count Metric| . . . . .. ... .. .. 74
@.5 Class Diagram of Refactorings|. . . . . ... ... ... ........... 75
@.7 Package Dependency Graph of JMoney-04.4 . . . .. ... ........ 79
.8 Decrease in SCD Instances After Move Refactorings| . . . . . ... .. .. 81
.9 Decrease in no. of Instances: Comparison between SCD and WCD] . . . 82
.10 Decrease in no. of Instances: Comparison on Model and Code Levels| . . 83
@.11 Impact of Program Size on Number of Refactorings| . . . . ... ... .. 84
@12 Refactorability|. . . . .. ... ... ... . .. oo oo 87
.1 Automated Refactoring Process| . . . . . . ... ... ... ........ 102
p.2 Class Diagram of Dependency Categories| . . . . .. ... ... ...... 104
p.3  Class Diagram of Composite Refactorings . . . . . ... ... ... .... 109
p.4 Decrease in Instance Count Metric After Refactorings| . . . . . ... ... 115
[p.5 Decrease in no. of Instances: Comparison on Model (graph) and Code |
C Teveld . . . . . o 116
.6 Refactoring Types Applied|. . . . .. ... ... ... ... ... .. .. 117
B.1 CARE Installation] . . . ... ... ... ... ... . o 147
B.3 CARE Preferencesl. . . . ... ... ... .. ... ... ... . ... ... 149
[B.4 Import Existing Projects| . . .. ... ...... ... ... ... .... 150




[B.5 Select Projects to Import|

Xix



