Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE EFFECT OF WATER STRESS ON WATER RELATIONS, CARBON ISOTOPE DISCRIMINATION, AND SHOOT AND ROOT GROWTH OF SAINFOIN (Onobrychis viciifolia Scop.) AND LUCERNE (Medicago sativa L.)

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Department of Plant Science at Massey University

Seyed Reza Mir-Hosseini-Dehabadi

In the name of Allah, the Compassionate, the Merciful, Prise be to Allah, Lord of the Universe, And Peace and Prayers be upon His final Prophet and Messenger.

-ABSTRACT i	
-ACKNOWLEDGMENT iii	
-LIST OF ABBREVIATIONS vi	
-TABLE OF CONTENTS viii	
-LIST OF TABLES xviii	
-LIST OF FIGURES xxvi	
-LIST OF PLATES xxxii	
-LIST OF APPENDICES xxxiv	

ABSTRACT

Sainfoin (*Onobrychis viciifolia* Scop.) is a useful forage legume regarded as having drought resistant attributes. Also, it does not cause bloat in ruminants and is not sensitive to alfalfa weevil (*Hypera postica*. L). Although the physiological and morphological responses to water stress of lucerne (*Medicago sativa* L.) are well known the responses of sainfoin to water stress have not been fully studied. In this study the physiological and morphological responses of sainfoin to water stress of sainfoin to water stress were investigated, with lucerne used as a reference plant.

The results of the indoor and outdoor studies showed sainfoin had useful characteristics for forage production in dry conditions. Relative to lucerne it had a lower yield, due to lower leaf area, lower stem number and poor regrowth. However, sainfoin responded to water stress at least as well as lucerne. Sainfoin had a higher root:shoot ratio and a lower specific leaf area ratio than lucerne, indicating a higher allocation of carbohydrate to the roots, and a lower leaf surface area for transpiration in sainfoin than for lucerne. Water stress decreased the yield of lucerne proportionally more than sainfoin mostly due to the greater reduction in the above ground dry weight of lucerne.

The indoor study of root characteristics of sainfoin and lucerne in 1m tall tubes showed that in terms of root development sainfoin responded to water stress better than lucerne. Although sainfoin had equal root mass and root length to lucerne, the root distribution of sainfoin at below 0.6 m depths was greater than for lucerne. As water stress developed sainfoin roots grew below 0.6 m earlier than lucerne roots. Sainfoin had a higher root osmotic adjustment than lucerne and also maintained higher (less negative) leaf water potential than lucerne.

The stomatal resistances (Rs) of sainfoin and lucerne were equal, but Rs was not distributed equally between adaxial and abaxial leaf surfaces. The Rs of the adaxial leaf surface of sainfoin was lower and more sensitive to water stress than the Rs of the abaxial leaf surface. The different Rs of the adaxial and abaxial leaf surfaces of sainfoin was partly due to the different stomatal frequencies of the respective surfaces. Comparison of sainfoin cultivars in a climate room showed that the water use efficiencies (WUE) of Remont, Fakir, Cotswold-Common, and Eski, were similar. Remont was more sensitive to water stress than the other three cultivars, and Eski produced a greater root length and mass than other cultivars. The growth of Eski was initially slower than that of the Remont in both the indoor and the outdoor studies. However, lucerne grew faster than all the sainfoin cultivars. Over three harvests in the field the yields of Eski and Remont were similar but lucerne out yielded both sainfoin cultivars. Sainfoin produced a greater proportion of its yield earlier than lucerne, whereas lucerne distributed its yield throughout the whole season, indicating that sainfoin is adapted to regions with precipitation in only winter and spring.

The results of the carbon isotope discrimination (Δ) analysis for the indoor and outdoor studies showed Δ had a negative correlation with WUE, leaf water potential, osmotic potential, and stomatal resistance, but had a positive correlation with relative water content, turgor potential, transpiration rate, and photosynthetic rate. These correlations demonstrated the usefulness of this technique for evaluating the responses of plants to water stress. The stressed plants always had lower Δ than the control plants showing the higher WUE of stressed plants. The Δ of roots was higher than the Δ of the leaves suggesting that the growth of leaves occurred in conditions that were an average drier than for the growth of roots. This was supported by the lower (more negative) water potential of leaves than roots. The Δ of the roots below 0.6 m depth was higher than the Δ of roots above 0.1 m depth suggesting the roots above 0.1m grew under higher water stress than the roots below 0.6m depth. Over three harvests in the field the Δ of Eski and lucerne were similar and the Δ of Remont was higher than for Eski and lucerne.

In conclusion, sainfoin was found to have several useful attributes for growth and survival in dry regions. Of the sainfoin cultivars examined Eski was the best adapted to water stress. Relative to lucerne, sainfoin yielded less, but had a similar water use efficiency, a shorter season of growth, a greater root: shoot ratio, deeper roots and better maintenance of leaf water potential under water stress.

ACKNOWLEDGEMENT

First of all I would like to express my deepest sense of gratitude to almighty Allah, whose kindness and blessing helped me to do this study. Praise be to the final prophet Mohammad (peace upon him) and other messengers of Allah who were the righteous guidance of the human beings. I am grateful to my parents who taught me the first words and showed me the way of school on the first day of my study.

Thanks are extended to my chief supervisor Professor J. Hodgson for his excellent guidance and support during the last four years. Any time I needed his help I was provided a friendly answer. I have never felt any problems during this study due to his invaluable help and support.

I have no words to express my appreciation for the enthusiastic, helpful, friendly, and scholastic supervision of my two co-supervisors Drs. P. D. Kemp and D. J. Barker. The great patience and considerable attention of these two great men shown at regular meetings over four years is highly appreciated. Without their strong, and tireless efforts, this work could never have been finished. To me, this has been an invaluable educational experience, any errors remaining in this thesis, are entirely mine.

I acknowledge the assistance given to me by the following:

- Drs. I. L. Gordon (Department of Plant Science), and S. Ghaneshanandam (Department of Statistics) for statistical advice.
- Professor G. D. Farquhar and his group (Research School of Biological Science, Australian National University (ANU)) for their very useful discussion and comments, allowing me to work in their laboratory, analysing the samples for carbon isotope discrimination, teaching me the carbon isotope discrimination technique, and their warm hospitality during my training

course at ANU.

- Professors W. Silvester, and A. Rajendram Carbon Isotope Unite (University of Waikato,) for analysing samples for carbon isotope discrimination.
- Professor R. G. Thomas (Department of Plant Biology) for his advice and comments on stomatal frequency reported in this thesis.
- Drs. C. A. Cornford and D. W. Fountain (Department of Plant Biology) for teaching me plant water relations.
- Associated Professor A.C.P. Chu and Dr. C. Matthew (Department of Plant Science) for their comments, discussions, and sympathetic support.
- Drs. D. R. Scotter, and D. J. Horne (Department of Soil Science) for teaching me soil water relationships and allowing me to work in their laboratory.
- Mr L. D. Currie (Department of Soil Science) for measurements of soil fertility used in this study.
- Technicians of the Plant Science Departments: Ms. F. Brown for her excellent assistance with laboratory work on growing rhizobium and rhizobium inoculation, and Mrs. C. Mckenzie for drawing the templates and providing facilities.
- Mrs. S. Cleland for patiently and carefully estimating leaf area, and for measurements of leaf water potential.
- The Manager of Plant Growth Unit (P.G.U.) Mr. R. Johnston and staffs of P.G.U. in particular technical assistance of C. Forbes, and G. Russell during the experiment. I will never forget the immediate and positive response of Mr. Johnston to all of my requests and his famous sentence: Nothing is impossible.
- Mr. B. Mckay for writing the computer programs for the manipulation of the data from the porometer, and Li-Cor 6200.
- Ag-Research for permission to use the facilities which made this study possible.
- The staff of Hort-Research in particular those in the Climate Room Services, and the Technical Service team for prompt and efficient service.
- Mr. T. Lynch and M. Osborne (Plant Science Department) for Technical

assistance with the field experiment and refurbishment of the Rain-out shelter.

- Dr. D.J. Barker for lending the Decagon, and TDR, and his assistance with the for preparation of the figures in this thesis.
- Dr. H. Behboudian for lending the Wescor, and his excellent advice and comments.
- The late Dr. M. Forde and Montana State University for providing sainfoin seed.
- All postgraduates and members of Plant science Department who provided me an excellent and friendly environment and removed all difficulties.
- The staff of the Massey University Computer Center for their cooperation.
- All members of the International Muslim Association at Massey, in particular Iranian, Pakistanian, and Indonesian brothers and their families who created a pleasant and religious work environment for me and my family.

Special thanks are extended to my wife Nosrat for her patience, loyal support, sacrifices and understanding in allowing me to pursue my study during last decade in tranquillity. I am also grateful to my beloved daughter Zeinab and my son Ali for their patience, forbearance and submissiveness during this study.

Finally the financial support (full scholarship) of the Ministry of Jahad Sazandegi (Iran) for undertaking this study is highly appreciated.

This dissertation is dedicated to the martyrs of the Islamic Republic of Iran who presented their life to Allah and irrigated the tree of Islam by their blood.

LIST OF ABBREVIATIONS:

- A= Assimilation rate (μ mol CO₂/m²/s)
- ABA= Abscisic Acid
- ANOVA= Analysis of variance
- $C_a = CO_2$ concentration of the air (ppm)
- $C_i = CO_2$ concentration inside of the leaf (ppm)
- C_s = Stomatal conductance (cm/s)
- D= drainage

DAP= Days after planting

DS= Days of stress

DW= Dry weight

E= Transpiration rate (mol $H_2O/m^2/s$)

 $e_a =$ Vapour pressure of the air

 e_i = Vapour pressure of the leaves⁻

FR= Fine roots (<0.3 mm diam.)

GSWC= Gravimetric soil water content (%)

I= Interception of rainfall by crop canopies

LA= Leaf area (cm^2)

LAI= Leaf area index

LDW= Leaf dry weight (g)

P= Turgor potential (MPa)

 P_a = Partial pressure of CO₂ concentration of the air (MPa)

 P_i = Partial pressure of CO₂ concentration of the leaf (MPa)

 P_n = Net photosynthetic rate (µmol CO₂/m²/s)

R = run - off

 R_s = Stomatal resistance (s/cm)

RH= Relative humidity (%)

RSE= Relative stem elongation (mm/mm/day)

RWC= Relative water content of the leaf (%)

RWD= Root weight density (g/m^3)

SDW= Stem dry weight (g)

SLA= Specific leaf area (cm²/g)

SEM= Standard error of the mean

S/R= shoot:root ratio

TAC= Total available carbohydrate

TDR= Time domain reflectometer

TR= Thick roots (>0.3 mm diam.)

Tr= Transpiration rate (ml H_2O)

VPD= Vapour pressure deficit

VSWC= Volumetric soil water content (%)

W= Transpiration efficiency {(μ mol CO₂/m²/s)/(mol H₂O/m²/s)}

WUE= Water use efficiency

 Y_{ec} = Economic yield

 Δ = Carbon isotope discrimination

 π = Osmotic potential (MPa)

 π_{100} = Osmotic potential at full turgor (MPa)

 υ = Water vapour pressure difference between the intercellular spaces and the atmosphere

 ϕ = Loss of carbon or water not through stomata

 Ψ = Leaf water potential (MPa)

Table of contents

Chapter 1	1
1. Introduction and objectives	2
Chapter 2	4
2 Review of literature	5
2.1 Plant adaptation to water stress	5
2.1.1 Definition and concepts	5
2.1.2 Categories of drought resistance	5
2.1.2.1 Drought escape	6
2.1.2.2 Avoiding stress	7
2.1.2.3 Dehydration tolerance (low lethal water	
status)	10
2.2 Water use efficiency	11
2.2.1 Introduction	11
2.2.2 Definitions	11
2.2.3 Factors effecting water use efficiency	13
2.2.3.1 Plant factors	13
2.2.3.2 Environmental factors	14
2.2.4 Improving water use efficiency	15
2.3 Water status of the plant	16
2.3.1 Water potential	16
2.3.2 Components of water potential	16
2.4. Osmotic adjustment	16
2.4.1 Definition	16
2.4.2 Osmotic potential (π)	17
2.4.3 Components of osmotic adjustment	17
2.4.4. Importance of osmotic adjustment in dry conditions	18
2.5 Stomatal resistance	20
2.5.1 Stomatal resistance and water stress	20

0.5.1.1. Otherstell and international institution	20
2.5.1.1 Stomatal resistance and transpiration	20
2.5.1.2 Stomatal response to drought and plant water	
status	21
2.5.2 Stomatal response to humidity	21
2.5.3 Stomatal response to CO ₂ concentration	22
2.5.4 Stomatal response to phytohormones	23
2.6 Root and water stress	23
2.6.1 Rooting depth	24
2.6.2 Hydraulic conductance of the root	25
2.7 Carbon isotope discrimination	26
2.7.1 Definition	26
2.7.2 Drought, soil strength and discrimination (\triangle)	26
2.7.3 Water use efficiency and discrimination (a)	27
2.8 Sainfoin (Ononbrychis viciifolia Scop.)	28
2.8.1 Sainfoin: potential as a forage legume	28
2.8.2 Agronomy of sainfoin	29
2.8.3 Sainfoin in dry conditions	30
Chapter 3	32
3. Adaptation of sainfoin cultivars and lucerne to water stress	33
3.1 Abstract	33
3.2 Introduction	34
3.3 Materials and Methods	34
3.3.1 Experimental	34
3.3.2 Measurements	35
3.4 Statistical analysis	36
3.5 Results and Discussion	36

Chapter 4	9	
4. Physiological and morphological responses of lucerne to soil moisture		
stress	0	
4.1 Abstract	0	
4.2 Introduction	1	
4.3 Materials and Methods 4	2	
4.3.1 Experimental 4	2	
4.3.2 Measurements: 42	2	
4.3.2.1 Transpiration (Tr) 42	2	
4.3.2.2 Relative water content (RWC) 42	3	
4.3.2.3 Stomatal resistance (Rs) 42	3	
4.3.2.3 Leaf water potential (Ψ), Leaf osmotic potential		
$(\pi) \qquad \qquad$	3	
4.3.2.4 Leaf area development, and leaflet number 43	3	
4.3.2.5 Plant height and relative stem elongation 44	4	
4.3.3 Plant harvest	4	
4.4 Statistical analysis 44	4	
4.5 Results 44	5	
4.6 Discussion:	3	
4.6.1 Physiological responses	3	
4.6.2 Morphological responses	3	
4.7 Conclusion	5	
Chapter 5 56	6	
5. Comparison of sainfoin cultivars and lucerne, with an emphasis on		
sainfoin responses to water stress	7	
5.1 Abstract	7	
5.2 Introduction	8	
5.3 Materials and Methods 59	9	
5.3.1 Glasshouse experiment	9	

5.3.2 Field experiment	59
5.4 Results	62
5.4.1 Glasshouse experiment	62
5.4.2 Field experiment	63
5.5 Discussion	67
5.5.1 Glasshouse experiment	67
5.5.2 Field Experiment	68
5.6 Conclusion	69
Chapter 6	70
6. Plant water status, and shoot and root growth of sainfoin cultivars at	
constant water stress levels.	71
6.1 Abstract	71
6.2 Introduction	72
6.3 Materials and Methods	74
6.3.1 Experimental	74
6.3.2 Measurement	76
6.3.2.1 Transpiration rate (Tr)	76
6.3.2.2 Relative water content (RWC)	76
6.3.2.3 Stomatal resistance (Rs)	76
6.3.2.4 Leaf water potential (Ψ), Leaf osmotic potential	
(π)	77
6.3.2.5 Photosynthesis	77
6.3.2.6 Leaf area development, and leaflet number	79
6.3.2.7 Plant harvest	79
6.3.2.8 Water use efficiency (WUE)	79
6.3.2.9 Specific leaf area (SLA)	80
6.3.3 Statistical analysis	80
6.4 Results	82
6.4.1 Roots	82
6.4.2 Yield	82

6.4.3 Leaf area
6.4.4 Specific leaf area (SLA) 86
6.4.5 Relative water content (RWC) 88
6.4.6 Stomatal resistance (Rs) 90
6.4.7 WUE
6.4.8 Leaf water potential at dawn
6.4.8.1 Glasshouse
6.4.8.2 Climate room
6.4.9 Osmotic potential (π) at dawn
6.4.9.1 Glasshouse
6.4.9.2 Climate room
6.4.10 Turgor potential (P) 95
6.4.10.1 Glasshouse
6.4.10.2 Climate room
6.4.11 Total, osmotic, and turgor potential of the leaf at
midday
6.4.11.1 Leaf water potential
6.4.11.2 Osmotic potential
6.4.11.3 Turgor potential
6.4.11.4 Midday leaf water potential by pressure
bomb
6.4.11.5 Leaf water potential: Wescor vs Pressure
Chamber
6.4.12 Photosynthesis (P_n) 101
6.4.13 Leaflet number
6.4.14 Estimated leaf area 103
6.4.15 Transpiration rate 105
6.5 Discussion
6.5.1 Yield and its components 108
6.5.2 Relative water content 109
6.5.3 Water status of sainfoin 110

6.5.4 Stomatal resistance	112
6.5.5 Transpiration and stomatal resistance	113
6.5.6 Photosynthesis and WUE response to water stress	114
6.5.7 Cultivar response to water stress	114
6.6 Conclusion	116
Chapter 7	117
7. Root and shoot responses of sainfoin and lucerne to water stress	118
7.1 Abstract	118
7.2. Introduction	119
7.2. Materials and Methods	123
7.2.1 Plant materials and culture	123
7.2.2 Plant growth container	123
7.2.3 Design and treatments	124
7.2.4 Soil moisture.	126
7.2.5 Morphological measurement	129
7.2.6 Physiological measurement	129
7.2.7 Statistical analysis	131
7.2.7.1 Analysis of morphological measurements	131
7.2.7.2 Analysis of physiological measurements:	131
7.2.7.3 Analysis of soil moisture	132
7.3. Results	134
7.3.1 Soil moisture	134
7.3.1.1 Average soil moisture (0-70 cm depth)	136
7.3.1.2 Water content of the pots measured by	
weighing	136
7.3.2 Morphological measurements	138
7.3.2.1 Leaf area	138
7.3.2.2 Leaf dry weight (LDW)	138
7.3.2.3 Stem dry weight (SDW)	142

7.3.2.4 Specific leaf area (cm²/g) 142

7.3.2.5 Shoot:Root ratio	142
7.3.2.6 Root Length Density	146
7.3.2.7 Root weight density (RDW)	150
7.3.3 Physiological measurements	153
7.3.3.1 Relative water content (RWC)	153
7.3.3.2 Transpiration rate	153
7.3.3.3 Stomatal resistance (Rs)	156
7.3.3.4 Leaf water potential (Ψ) by Pressure Bomb	160
7.3.3.5 Leaf water potential by Wescor (Ψ)	162
7.3.3.6 Osmotic potential (π)	164
7.3.3.7 Turgor potential of the leaf	166
7.3.3.8 Osmotic potential at full turgor	169
7.3.3.9 Total, osmotic, and turgor potential of roots	171
7.3.3.10 Root osmotic potential at full turgor	175
7.3.3.11 Comparison of total, osmotic and turgo	
potential of root and leaf	177
7.3.3.11.1 Total potential of leaf-root	177
7.3.3.11.2 Osmotic potential of leaf-root	180
7.3.3.11.3 Osmotic potential of leaf and root at	
full turgor (π_{100})	182
7.5. Discussion	184
7.5.1 Soil moisture	184
7.5.2 Morphology	184
7.5.2.1. Root growth	186
7.5.3 Physiology	187
7.5.3.1 Relative water content	187
7.5.3.2 Stomatal resistance.	188
7.5.3.3 Leaf water potential	188
7.5.3.4 Osmotic potential (π)	189
7.5.3.5 Root water status	191
7.5. Conclusion	193

Chapter 8	194
8. Water relationships of lucerne and sainfoin cultivars in the field	195
8.1 Abstract	195
8.2 Introduction	196
8.3 Materials and Methods:	197
8.3.1 Site and treatments	197
8.3.2 Measurements	200
8.3.2.1 Soil water content	200
8.3.2.2. Morphological measurement:	200
8.3.2.3 Physiological measurements:	200
8.3.3 Statistical analysis	201
8.4 Results	201
8.4.1 Soil moisture	201
8.4.2 Morphological measurement	206
8.4.2.1 Leaf area	206
8.4.2.2 Leaf dry weight(LDW)	206
8.4.2.3 Stem dry weight (Stem DW)	209
8.4.2.4 Stem density	209
8.4.2.5 Yield	212
8.4.2.6 Specific leaf area (SLA)	213
8.4.3 Physiological measurement	217
8.4.3.1 Relative water content (RWC)	217
8.4.3.2 Total leaf water potential (Ψ)	221
8.4.3.3 Osmotic potential (π)	226
8.4.3.4 Osmotic potential at full turgor (π_{100})	229
8.4.3.2 Turgor potential (P)	232
8.4.3.6 Photosynthetic rate (P _n)	235
8.4.3.7 Stomatal resistance (Rs)	235
8.4.3.8 Stomatal resistance measured by Promote	
(Rs)	238

8.4.3.9 Stomatal frequency	241
8.5 Discussion	243
8.5.1 Soil moisture	243
8.5.2 Morphology	244
8.5.3 Physiological factors:	246
8.3 Conclusions:	249
Chapter 9	250
9. Carbon Isotope Discrimination of leaves and roots of water stressed	
sainfoin	251
9.1 Abstract	251
9.2 Introduction	252
9.3 Materials and Methods	253
9.3.1 Technique	253
9.3.2 Measurements	254
9.3.3: Statistical analysis	254
9.4 Results	255
9.4.1 Climate Room experiment	255
9.4.2 Glasshouse results	256
9.4.2.1 Carbon isotope discrimination of leaves in the	
glasshouse experiment (Chapter 7).	256
9.4.2.2 Carbon isotope discrimination of the roots	256
9.4.3 Carbon isotope discrimination in the field.	257
9.4.3.1 Carbon isotope discrimination of Remont	257
9.4.3.2 Carbon isotope discrimination of Eski,	
Remont, and lucerne in the field.	258
9.4.4 Relationships between \triangle and Ψ , π , P, RWC, Rs, Tr,	2
C_i/C_a and P_n	260
9.4.5 Relationships of \triangle with yield and SLA	260
9.5 Discussion	267
9.5.1 Discrimination and WUE	267
9 5 2: Discrimination and Roots	269

9.5.3: Yield, water status of the leaf and \triangle	270
9.6 Conclusion:	272
Chapter 10	273
10. General Discussion	274
10.1 Responses to water stress of sainfoin	274
10.3 Comparison of the methods used in this study	278
10.4 Conclusion	280
Literature cited	282
Appendixes	323

List of tables:

Table 3.1 : Root, leaf and above ground dry matter (g/pot) for three sainfoin	
cultivars and lucerne after 100 days, with no watering over the last 30	
days	36
Table 4.1: Dry weight (g DW) of total shoot, stem, leaf, and root, root length	
(m), leaf area (cm ²), and specific leaf area (cm ² /g) per pot of lucerne	
at different levels of soil water available (133 DAS)	46
Table 4.2: Stomatal resistance (Rs), relative water content (RWC),	
transpiration rate (TR), leaf water potential (Ψ), and osmotic potential	
(π) of lucerne at three soil moisture levels	52
Table 5.1: Leaf area (LA), leaf dry weight (LDW), stem dry weight (SDW),	
root dry weight (RDW), and specific leaf area (SLA) of eight	
glasshouse-grown sainfoin cultivars and species, and lucerne, at 65	
days after planting.	62
Table 5.2: Leaf area (LA), leaf dry weight (LDW), stem dry weight (SDW),	
and specific leaf area (SLA) of field grown Remont, for stressed	
(rain-out shelter) and non-stressed (rain-fed control) treatments	65
Table 6.1 : The length and dry weight of fine and thick roots of four sainfoin	
cultivars at three soil moisture.(180 day after planting)	83
Table 6.2 : The interaction between cultivars and soil moisture for total root	
length (m). (SEM = 288.7)	84

Table 6.3: Yield, cumulative yield (CU yield), and leaf area (LA), of sainfoin

cultivars per pot at different soil moisture levels 200 day after planting (DAP)
Table 6.4 (a) Leaf dry weight (DW), leaf area (LA), and specific leaf area (SLA) of two sampled plants per pot. 87
Table 6.4 (b): Interaction of cultivar by soil moisture treatment for SLA(SEM= 12.85) (P < 0.05).
Table 6.5: Water use efficiency (g/kg) (by 5 methods, see text) of foursainfoin cultivars at three soil moisture levels.92
Table 7.1: Leaf area (cm ² /pot) of Eski and Grasslands G35 sainfoin, and Grasslands Oranga lucerne, at the early harvest (45 days after planting (DAP)) late harvest (75 [°] DAP), and regrowth harvest (30 days regrowth, 105 DAP) at two soil moisture levels
 Table 7.2: Leaf dry matter (g/pot) of Eski and Grasslands G35 sainfoin and Grasslands Oranga lucerne at early harvest (45 days after planting, DAP) late harvest (75 DAP) and regrowth harvest (30 days regrowth and 105 DAP) at two soil moisture levels.
Table 7.3: Stem and petiole dry matter (g/pot) of Eski, and Grasslands G35 sainfoin and Grasslands Oranga lucerne at the early harvest (45 days after planting), late harvest (75 DAP) and the regrowth harvest (30 days regrowth, 105 DAP) at two soil moisture levels
 Table 7.4: The specific leaf area (cm²/g) and shoot:root ratio of two sainfoin cultivars and lucerne at the early harvest (45 days after planting, DAP), late harvest (75 DAP), and the regrowth harvest (30 days, 105 DAP) at two soil moisture levels.

.

Table 7.5: Total root length density (m/m ³)*10 ³ of Eski, Grasslands G35, and	
lucerne (Grasslands Oranga) at two soil moisture levels and three	
harvests.	149
Table 7.6: Total root dry weight density (g/m ³) of Eski, Grasslands G35, and	
lucerne (Grasslands Oranga) at two different soil moisture levels for	
three harvests.	152
Table 7.7: Relative water content (%) of two sainfoin cultivars and lucerne	
at the early (45 days after planting, DAP) late, (75 DAP) and	
regrowth (30 days after cutting, 105 DAP) harvests at two soil	
moisture levels.	155
Table 7.8 (a): Total stomatal resistance (s/cm) of sainfoin cultivars and	
lucerne at two soil moisture levels for early (45 days after planting),	
late (75 days after planting), and regrowth (30 days after cutting)	
harvests.	157
Table 7.8 (b): Stomatal resistance (s/cm) of abaxial and adaxial surfaces of	
leaves of sainfoin cultivars and lucerne in two soil moisture levels at	
early harvest (45 days after planting), late harvest (75 days after	
planting), and regrowth.	158
Table 7.0. Total leaf water potential (MPa) by pressure bomb of early (15	
days after planting DAP) late (75 DAP) and regrowth (30 days after	
cutting 105 DAP) harvests of two sainfoin cultivars and luceme at	,
two levels of soil moisture at dawn and midday	161
the levels of son monstare, at dawn and midday.	101
Table 7.10 : Total leaf water potential by Wescor (MPa) of early (45 days	
after planting, DAP) and late harvest (75 DAP) and regrowth (30 days	
after cutting, 105 DAP) harvest of two sainfoin cultivars and lucerne,	

	at two levels of soil moisture, at dawn and midday	163
Table 7	7.11: Osmotic potential by Wescor (MPa) of early (45 days after planting, DAP) late (75 DAP) and regrowth (30 days after cutting, 105 DAP) harvests of two sainfoin cultivars and lucerne, at two levels of soil moisture, at dawn and midday.	165
Table 7	7.12: Turgor potential (MPa) of early (45 days after planting, DAP) late (75 DAP) and regrowth (30 days after cutting, 105 DAP) harvests of two sainfoin cultivars and lucerne, at two levels of soil moisture, at dawn and midday.	168
Table 7	7.13: The full turgor osmotic potential (MPa) using the Decagon of Eski, Grasslands G35 and lucerne (Grasslands Oranga) at dawn and midday at early harvest (45 days after planting, DAP), late (75 DAP), and regrowth (30 days after cutting, 104 DAP) harvests at two levels of soil moisture.	170
Table 7	7.14: The total potential (MPa) of roots of sainfoin cultivars and lucerne at two depths, and two soil moisture levels at early (45 days after planting, DAP), late (75 DAP), and regrowth (30 days after cutting, 105 DAP) harvests	172
Table 7	2.15: The osmotic potential (MPa) of roots of sainfoin cultivars and lucerne at two soil moisture levels at early (45 days after planting, DAP), late (75 DAP), and regrowth (30 days after cutting, 105 DAP) harvests .	173
Table 7 1	7.16: The turgor potential (MPa) of roots of sainfoin cultivars and lucerne at different depths at two soil moisture levels at early (45 days after planting, DAP), late (75 DAP), and regrowth (30 days after	

cutting, 105 DAP) harvests.	. 174
Table 7.17: The root osmotic potential at full turgor (MPa) of two sainfoin cultivars and lucerne at two depths and two soil moisture levels at early (45 DAP), late (75 DAP), and regrowth (30 days after cutting, 105 DAP) harvests.	. 176
Table 7.18 : The total water potential (MPa) of roots and leaves of sainfoin cultivars and lucerne at different depths for two soil moisture levels at early (45 days after planting), late (75 days after planting), and regrowth harvests.	. 179
Table 7.19: The osmotic potential (MPa) of the roots and leaves of sainfoin cultivars and lucerne at two soil moisture levels at the early (45 days after planting), late (75 days after planting), and regrowth harvests.	. 181
Table 7.20: The osmotic potential (MPa) of roots and leaves of sainfoin cultivars and lucerne at full turgor at different depths at two soil moisture levels at the early (45 days after planting), late (75 days after planting), and regrowth harvests.	. 183
Table 8.1: The average volumetric soil moisture (cm ³ /cm ³ %) to 0-70 cm depth for the stressed and non-stressed experiments for three harvests, and regrowth following the second harvest.	204
Table 8.2: Leaf area (cm ² /m ²) of Eski, Remont, and lucerne at five harvests under non-stressed and stressed experiments.	. 207
Table 8.3: Leaf dry weight (g/m ²) of Eski, Remont, and lucerne at five harvests under non-stressed and stressed experiments.	. 208

Table 8.4: Stem dry weight (g/m²) of Eski, Remont, and lucerne at five harvests under stressed and non-stressed experiments.	210
Table 8.5: The stem density (stems/m²) of Eski, Remont, and lucerne at fiveharvests under non-stressed and stressed experiments.	211
Table 8.6: Yield (g/m ²) of Eski, Remont, and lucerne at five harvests under non-stressed and stressed experiments.	215
Table 8.7: The specific leaf area (cm ² /g) of Eski, Remont, and lucerne at five harvests under non-stressed and stressed experiments	216
Table 8.8 : Relative water content (%) of Eski, Remont, and lucerne at dawnfor five harvests under stressed and non-stressed experiments.	218
Table 8.9: Relative water content (%) of Eski, Remont, and lucerne at middayfor five harvests under stressed and non-stressed experiments.	219
Table 8.10: Leaf water potential (MPa) measured by Pressure Bomb for Eski, Remont, and lucerne at five harvests at dawn under non-stressed and stressed experiments	222
Table 8.11: Leaf water potential (MPa) measured by Pressure Bomb for Eski, Remont, and lucerne at five harvests at midday under non- stressed and stressed experiments	223
Table 8.12: Leaf water potential (MPa) measured by Wescor for Eski, Remont, and lucerne at dawn from five harvests under non-stressed and stressed experiments .	224

Table 8.13: Leaf water potential (MPa) measured by Wescor for Eski,

and a

Remont, and lucerne at midday from five harvests under non-stressed and stressed experiments	225
Table 8.14: Osmotic potential (MPa) of Eski, Remont, and lucerne at dawn from five harvests for non-stressed and stressed experiments	227
Table 8.15: Osmotic potential (MPa) of Eski, Remont, and lucerne at midday from five harvests for non-stressed and stressed experiments.	228
Table 8.16: The osmotic potential at full turgor π_{100} (MPa) of Eski, Remont, and lucerne at dawn from five harvests for non-stressed and stressed experiments.	230
Table 8.17: The leaf osmotic potential at full turgor π_{100} (MPa) of Eski, Remont, and lucerne at midday from five harvests for non-stressed and stressed experiments.	231
Table 8.18: Turgor potential (MPa) of Eski, Remont, and lucerne at dawn from five harvests for non-stressed and stressed experiments.	233
Table 8.19: Turgor potential (MPa) of Eski, Remont, and lucerne at midday from five harvests for non-stressed and stressed experiments.	234
Table 8.20: Photosynthesis (µmol CO ₂ /m ² /s) of Eski, Remont, and lucerne at midday from five harvests for non-stressed and stressed experiments.	236
Table 8.21: Stomatal resistance (s/cm) of Eski, Remont, and lucerne at midday from five harvests for non-stressed and stressed experiments, measured by a Li-Cor 6200.	237

Table 8.22 (a): Stomatal resistance (s/cm) of adaxial and abaxial leaf surfaces	
measured by Delta porometer for Eski, Remont, and lucerne for	
stressed and non-stressed experiments.	239
Table 8.22 (b): Pooled analysis of variance results (Pr>F) for stomatal	
resistance measured by Delta Porometer over the second and third	
harvests for adaxial, abaxial and total leaf surfaces	240
Table 9.1: Carbon isotope discrimination with Cotswold-Common, Eski,	
Fakir, and Remont, at three levels of soil moisture in a climate	
room	255
Table 9.2: Carbon isotope discrimination with leaves of Eski and Grasslands	
G35 at two soil moisture levels in the glasshouse	256
Table 9.3: Carbon isotope discrimination of roots of Eski, at two depths and two	o soil
moisture levels in the Glasshouse.	257
Table 9.4: Carbon isotope discrimination of Eski, Remont, and lucerne for	
non-stressed and stressed experiments at the second (60 days after	
imposing water stress, DS), third (90 DS), and regrowth (65 DS)	
harvests in the field.	259

List of figures

Fig. 3.1: Stomatal resistance, transpiration and relative water content during	
31 days water stress. Symbols are the average of four replicates for	
three sainfoin cultivars and lucerne. Bars show ±SEM	38
Fig 4.1: Lucerne height at different levels of soil water available. Vertical bars show ± SEM	47
Fig. 4.2: Lucerne relative stem elongation per pot at different levels of soil water available.	47
Fig 4.3: The estimated leaf area per plant for lucerne at different levels of soil water available. Vertical bars show ± SEM	48
Fig 4.4: The leaflet numbers per pot for lucerne at different levels of soil moisture available. Vertical bars are ± SEM.	48
Fig 4.5: The total dry weight components per pot for lucerne at different levels of soil moisture available. Vertical bars show ± SEM	49
Fig. 4.6: The root dry weight and root length per pot for lucerne at different levels of soil moisture available. Vertical bars show \pm SEM	49
Fig 4.7: The relationship between transpiration rate and leaf area at different soil moisture levels.	52
Fig. 5.1: Volumetric soil water content (VSWC, cm ³ /cm ³ %) for 0-15 (O), and 50-70 cm (■) depth under a rain-out shelter. Symbols are means	64
	04

Fig. 5.2 Relationships between Remont petiole water potential (Ψ, -MPa), relative water content (RWC, %), or stomatal resistance (adaxial surface, closed symbols; abaxial surface, open symbols) and volumetric soil water content (0-15 cm, VSWC, cm ³ /cm ³ %), for rainfed (non-stressed) plots (□,■) and stressed plots (O,●). Symbols are means of three replicates. Vertical bars show + SEM
means of three replicates. Vertical bars show \pm SEIVI
Fig. 6.1: soil water retentivity curve for the growth medium
Fig. 6.2 (a) : Relative water content of sainfoin at three soil moisture levels. The Vertical bars show ± SEM
Fig. 6.2 (b): Relative water content of four sainfoin cultivars. Vertical bars show ± SEM
Fig. 6.3: Stomatal resistance of abaxial and adaxial leaf surfaces. Vertical bars are ± SEM
Fig 6.4: Osmotic potential (π), Leaf water potential (Ψ), and turgor potential (P) of sainfoin at three soil moisture levels at dawn. Vertical dars
show mean s.e.m
Fig 6.5: Relationship between leaf water potential measured by Pressure Chamber and Wescor. 100
Fig 0.0: Photosynthesis rate μ mol Co ₂ /m ⁻ /s of salinfoin at three soil moisture levels. Vertical bars show ±SEM
Fig 6.7 (a): Leaflet number of sainfoin at three soil moisture levels. Vertical bars show ± SEM. Markers are mean of four replicates.

	Fig 6.7(b): Estimated leaf area of sainfoin at three soil moisture levels.	
	Vertical bars show ± SEM. Markers are mean of four replicates	104
	Fig 6.8 (a): Transpiration rate ml/pot/day of sainfoin at three soil moisture	
	levels. Vertical bars show ± SEM. Markers are mean of four	
	replicates.	106
W.	Fig 6.8 (b): Relationship between leaf area and transpiration rate. Vertical	
	bars show ±SEM. Markers are mean of four replicates	106
	Fig. 6.9 (a): Relationship between stomatal resistance of sainfoin and	
	transpiration rate.	107
	Fig. 6.9 (b): Relationship between stomatal conductance of sainfoin and	
	transpiration rate.	107
	Fig 7.1: Plant growth container (Drawn by Cally McKenzie)	125
	Fig. 7.2: Relationship between gravimetric soil water content determined from	
	sampling and volumetric soil water content determined by TDR	133
	Fig. 7.3: Volumetric soil water content (cm ³ /cm ³) of two moisture treatments	
	(M) (control and stressed) at 0.2, 0.5, and 0.85 m depth for three	
	harvests (M) (early, late, and regrowth harvests). $*, **$, and $****$	
	show significance at the 0.05, 0.01, 0.0001 levels, respectively $\ldots_{\frac{1}{2}}$.	135
	Fig 7.4: Root length density (m/m ³)*10 ³ of the Eski, Remont, and lucerne at	
	different depths for two soil moisture levels. Bars show ±SEM	148
	Fig 7.5: Root mass density (g/m ³) of Eski, Remont, and lucerne at different	
	depths for two soil moisture levels. Bars show ±SEM.	151

- Fig 8.1a: The volumetric soil water content of stressed and non-stressed experiments at 0-15, and 15-30 cm depths during 140 days water stress. The regression equations for 0-15 cm depth of non-stressed and stressed are Y=47-0.1*X R²=30%, Y=39-0.25*X R²=40%, Y=29.4-0.1*X R²=67% respectively. Markers are means of eight replicates.203

- Fig 8.1b: VSWC of the stressed and non-stressed experiment at 30-50 cm and 50-70 cm depth during 140 days water stress. The regression equations for 30-50 and 50-70 cm depths for non-stressed and stressed experiment are Y=57-0.2*X, R²=63%, Y=52-0.24*X R²=855, y=34+0.03*X, R²=11.3%, Y=39-0.06*X R²=60%. Markers are means of eight replicates. 203
- Fig 8.2: Leaf and stem dry weight of Eski, Grasslands G35, and lucerne in the stressed and non-stressed (control) experiments for (a) first harvest (30 days after imposing water stress, Ds), (b) second harvest (60 DS), and (c), third harvest (90 DS). Vertical bars present the ±SEM. 214
- Fig. 9.1 : Correlation of △ and a) turgor potential b) leaf water potential c) osmotic potential d) relative water content of four sainfoin cultivars (Cotswold-Common, Eski, Fakir, and Remont) under three constant soil moisture levels (C is control and M and S are moderately and severely stressed). Vertical and horizontal bars represent ±SEM. Markers are means of four replicates.
- Fig 9.2: Correlation of △ and stomatal resistance of a) abaxial leaf surface b) adaxial leaf surface c) whole leaf of the four sainfoin cultivars (Cotswold-Common, Eski, Fakir, and Remont) under three constant soil moisture levels (C is control, and M and S are moderately and severely stressed respectively, vertical and horizontal bars represent ±SEM. Markers are means of four replicates.

261

1.5

Fig. 9.3 : Correlation of △ and a) transpiration b) net photosynthesis, and c) instantaneous transpiration of Cotswold-common, Eski, Fakir, and Remont under three constant soil moisture levels (C is control, and M and S are moderately and severely stressed, respectively). Vertical and horizontal bars represent ±SEM. Markers are mean of four replicates.

いいないの

List of plates

Plate 5.1: A sainfoin (left), and lucerne plant (right) 60 days after planting.	61
Plate 6.1: A view of the plants in the climate room	78
Plate 6.2: Measurement of total and osmotic potential by Wescor	78
Plate 6.3: Control (left), moderately (middle), and severely (right), stressed sainfoin plants.	81
Plate 6.4: The roots mass of the Eski for control (left), moderately (middle), and severely (right) stressed treatments.	81
Plate 7.1: A view of a single sainfoin plant grown in the pot (1.5m tall) 1	20
Plate 7.2: (a) Plastic chips used for minimising evaporation, (b) Internal view of plant growth container	27
Plate 7.3 Watering by hoses at seven depths (left), and location of hoses (right) 1	28
Plate 7.4 (a): A view of experiment in the glasshouse and measurements of soil moisture using TDR, (b) seven segments of roots for measurements of root length and root mass at seven depths 1	30
Plate 8.1: a) Rain out shelter for imposing water stress in the field b) A view of field experiment	98
Plat 8.2: A view of a) non-stressed plants and b) stressed plants in the field 1	99

-		
Plate	8.3: Stressed plants under rain-out shelter 140 days after imposing water	
	stress (top) and, soil cracking and impaired sainfoin growth	
12	(bottom)	05
Plate	8.4: The stomatal frequencies of a) adaxial and b) abaxial surfaces of	
	leaf of sainfoin (Eski)	42

and the

Appendix 4.1: Template used to estimate leaf area of lucerne during growth.	324
Appendix 6.1: Relative water content (RWC) of four sainfoin cultivars at three soil moisture levels.	325
Appendix 6.2: Stomatal resistance (s/cm) of the abaxial leaf surface of four sainfoin cultivars and three soil moisture levels.	326
Appendix 6.3: Stomatal resistance (s/cm) of the adaxial leaf surface of four sainfoin cultivars and three soil moisture levels.	327
Appendix 6.4: Leaf water potential (-MPa) of four sainfoin cultivars at three soil moisture levels at dawn in the glasshouse.	328
Appendix 6.5: Osmotic potential (-MPa) of four sainfoin cultivars at dawn under three soil moisture levels in the glasshouse	329
Appendix 6.6: Turgor potential (-MPa) of four sainfoin cultivars at dawn under three soil moisture levels in the glasshouse	330
Appendix 6.7: Leaf water potential (-MPa) of four sainfoin cultivars at dawn in the climate room under three soil moisture levels.	331
Appendix 6.8: Osmotic potential (-MPa) of four sainfoin cultivars at dawn under three soil moisture levels in the climate room	332
Appendix 6.9: Turgor potential (-MPa) of four sainfoin cultivars at dawn under three soil moisture levels in the climate room	333

ndix 6.10: Leaf water potential (-MPa) of four sainfoin cultivars at three	
soil moisture levels at midday in the climate room	334
ndix 6.11: Osmotic potential (-MPa) of four sainfoin cultivars at three	
soil moisture levels at midday in the climate room	335
	ndix 6.10: Leaf water potential (-MPa) of four sainfoin cultivars at three soil moisture levels at midday in the climate room

Appendix 6.12: Turgor potential (-MPa) of four sainfoin cultivars at three soil	
moisture levels at midday in the climate room	336

- Appendix 6.13: Leaf water potential (-MPa) (measured by pressure bomb) of four sainfoin cultivars at three soil moisture levels at midday in the 337
- Appendix 6.14: Photosynthesis (μ mol CO₂/m²/s) of four sainfoin cultivar at three soil moisture levels during the last month in the climate room. . 338
- Appendix 6.15: Leaflet numbers/pot of four sainfoin cultivars at three soil moisture levels. 339
- Appendix 6.16: Estimated leaf area of four sainfoin cultivars at different soil moisture levels. 340

Appendix 6.17: The monthly transpiration rate (ml/pot/day) of four sainfoin	
cultivars at three soil moisture levels.	341
Appendix 6.18: Repeated measures analysis of morphological and	* 12
physiological characters of sainfoin cultivar under three soil moisture	
levels	342
Appendix 6.19: The interaction between time $*$ soil moisture $*$ cultivar' Ψ at	

dawn in the climate room.

State State		
Apper	ndix 6.20: The interaction between Time * Soil moisture * cultivar' π at	
	dawn in the climate room.	344
Apper	ndix 6.21: Template used to estimate leaf area of sainfoin during	
Astrois	growth	345
Аррег	ndix 7.1: Formulas used to calculate the moisture demand (I1I7) for	
· 191	125, 275, 425, 587.5, 762.5, 925, mm depths respectively, at regrowth	
Mainter Mainter	harvests according to VSWC of 20 cm (A), 50 cm (B), 85 cm (C)	
	depth.	346
14. 201		
Apper	and 7.2: The average volumetric soil water content (cm/cm, %) of	
L.	pois to 70 cm depin measured by TDK at three harvests three plant	217
	types and two soil moisture treatments.	547
Apper	div 7.3. Volumetric soil water content (cm ³ /cm ³ %) of nots at early	
Appen	late and reproduct horizonta under two soil moisture treatments at 0.2	
	0.5 and 0.85 m don't at horizonting times	240
		340
Appen	dix 7.4: Root length density $(m/m^3)*10^3$ at seven depths at the early	
	harvest (45 DAP) of Eski, Grasslands G35, and lucerne (Grasslands	
	Oranga) at two soil moisture levels.	349
Appen	dix 7.5: Root length density (m/m ³)*10 ³ at seven depths at the late	
Sec.	harvest (75 DAP) of Eski, and Grasslands G35, and lucerne	
	(Grasslands Oranga) at two soil moisture levels.	350
Age		· 5
Appen	dix 7.6: Root length density $(m/m^3)*10^3$ at seven depths at regrowth	
	harvest (30 days cutting, 105 DAP) of Eski, and Grasslands G35, and	ų.
	lucerne (Grasslands Oranga) at two soil moisture levels.	351

Appendix 7.7: Root weight density (g/m^3) at seven depths at the early

harvest (45 DAP) of Eski, Grasslands G35, and lucerne (Grasslands	
Oranga) at two soil moisture levels	. 352
Appendix 7.8: Root weight density (g/m ³) at seven depths at the late harvest (75 DAP) of Eski, and Grasslands G35, and lucerne (Grasslands Oranga) at two soil moisture levels.	. 353
Appendix 7.9: Root weight density (g/m ³) at seven depths, at regrowth harvest (105 DAP) of Eski, Grasslands G35, and lucerne (Grasslands Oranga) at two soil moisture levels.	. 354
Appendix 7.10: P>F from pooled ANOVA over harvests for leaf water potential measured by pressure bomb (Ψ_p), leaf water potential measured by Wescor (Ψ), osmotic potential of the leaf measured by Wescor (π), turgor potential of the leaf (P), and osmotic potential of the leaf at full turgor measured by Decagon (π_{100}), over all three harvests.	. 355
Appendix 7.11: $Pr > F$ for the effect of time (dawn and midday) and time interactions for leaf water potential measured by Pressure bomb (Ψ P), leaf water potential measured by Wescor (Ψ), osmotic potential of the leaf measured by Wescor (π), turgor potential of the leaf (P), and osmotic potential of the leaf at full turgor measured by Decagon ($\pi_{(100)}$), over three harvests.	. • 356
Appendix 7.12: Pr > F for pooled ANOVA over three harvests for root water potential (Ψ), osmotic potential (π), turgor potential (P), and root osmotic potential at full turgor (π_{100}), at two depths.	. 357

Appendix 7.13: Pr > F for pooled ANOVA over three harvests for roots and leaves for water potential (Ψ), osmotic potential (π), turgor potential

(P), and root osmotic potential at full turgor (π_{100}) .	358
Appendix 8.1: Soil water content (cm ³ /cm ³) to 1.7m depth at soil water potentials of -1.5, -0.1, and -0.0005 MPa. (Adapted from Scotter et al. 1979a).	359
Appendix 8.2: Mean rainfall, temperature of the air and earth, and relative humidity (RH) (measured at Ag-Research, Grasslands 500 m from the Experimental area) during experiment in the field.	360
Appendix 8.3: The volumetric soil moisture at depth 0-0.15, 0.15-0.30, 0.30- 0.50, 0.50-0.70 m for the stressed and non-stressed experiments for all three harvests, and regrowth of second harvest.	361
Appendix 8.4: Repeated measures analysis for comparison of the first (30 days after stress) and second (60 days after stress) harvests and their subsequent harvests for morphological characteristics.	362
Appendix 8.5: The results of repeated measures analysis for comparison of the first (30 days after stress) and second (60 days after stress) harvests and their subsequent harvests for physiological characteristics at dawn.	363
Appendix 8.6: The results of repeated measures analysis for comparison of the first (30 days after stress) and second (60 days after stress) harvests and their subsequent regrowth harvest for physiological characteristics at midday.	`364
Appendix 8.7: Probability of significance for comparison of stomatal resistance (Rs)(s/cm) of adaxial, abaxial surfaces and total leaf Rs	

from the second harvest and related regrowth harvest by repeated