Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

A Comparative Study of Formalisms
for Programming Language

Definition.

A thesis presented in partial fulfilment
of the requirements for the degree of
Master. of Science in

Computer Science at

Massey University.

Ian Joseph Thompson

January 1975

ii

Abstract

This study looks at a number of methods for defining
the full syntax and sementics of computer programming
languages. The syntax, especizlly the nature of context-
dependent conditions in it, is first examined, then some
extensions of context-free grammars are compared to see
to what extent they can encompass the full context-
conditions of typical programming languages. It is found
that several syntax extensions are inadequate in this
regard, and that the ability to calculate complicated
functions and conditions, and to eventually delete the
values of such functions, is needed. This ability may be
obtained either by allouing unrestricted rules and meta-
variables in the phrase-structure, or by associating
mathematical functions either with individual production
rules or with the whole context-free structure, to trens-
form it into an 'abstract syntax'.

Since the form of a definition of a programming language
semantics depends critically on how one conceives "meaning",
five main types of semantics are considered: these are
called '"natural', 'propositional', 'functicnal', and
'structursl' semantics, as well as a semantics based on
string reuriting rules. The five types are compared for
their success in defining the semantics of compuiling
languages, of the example Algol-like language ALEX in
particular, Among other conclusions, it is found that the
semantics of structures and computations on structures is
the only type sufficiently comprehensive, precise, and

readable.

Acknowledgements

In the preperation of this thesis, I wish
particularly to thank Lloyd Thomas and
Professor Tate for many valuable discussions,
suggestions, and criticisms, and also to
thank Bob Doran for help in his obtaining

important source materials.

b

[N

L]

Table of Contents

Acknowledgements

1 The problems of programming lanquage

definition.

2 Syntax
2.1 Introduction
2.2 Context-dependent conditions
2.3 Extended grammars
2.3.1 Context-sensitive grammars
2.3.2 Scattered-context gremmars
2,3.3 Programmed grammars
2.4 Grammars with associated context-
dependent conditions
2.4.1 Property grammars
2.4,2 Grammars using inherited and derived
attributes, Production Systems
2.4.3 Conditions defined by functions on the
whole context-free syntactic structure
2.4,3,1 The Vienna Definiticn methad
2.4.3.,1 Objects and selectors and "
operations in VDL
2.4.3.2 Constructing the abstract syntax
in VDL
2,4,3.2 Linked-Forest Manipulation Systems

2.5 van Ui jngaarden grammars

2.5.1 Grammars with unrestricted reuriting rules

2.5.2 Grammars with metasyntactic variables

x2d

17

20
21

21

24
26
29
29
30

2.5.2.,1 An historical digression 30
2.5.2.2 Context~dependencies defined by

—

van Wi jngaarden grammars 3

2.6 Conclusian

3 Semantics 36
3.1 Introduction 36
3.2 Natural semantics 3%

3.,2.1 Natural laznguage semantics 37
3.2.2 Semantics by compilers 39
3.3 Propositional semantics 40
3.4 Functional semantics 44
3.4.1 The lamhda calculus 45
3.5 Gewrantics based on string reuriting rules 48
3.5.1 Preprocessing semantics 48
3.5.2 Data-processing semantics 51
3.6 Semantics with structures and computztions
on structures 54
3.6.1 Information structures 54
3.6.2 Semantic metalanguanes 57
3.6.2.1 The Vienna Definition Language &Y%
3.6.2.2 The BASIS/1 definition of PL/I
for ECIMA/ANSI 59
3.6.2.3 The Algocl 68 method 60
3.6.2.4 Linked-Forest FManipulation Systems
as semantic metalanguages 62
3.6.3 Hypothetical machines , 66
3.6.3.1 Machine structures 67
3.7 Conclusion 1

References : 73

Bibliography 79

Appendices 83

A Concrete syntax of ALEX: a context-free
covering grammar B3

B Abstract representation of the concrete
syntax in VDL 85
C Abstract syntax for the VDL definition of ALEX 88
Translation from concrete to abstract syntax 89

Definition of ALEX syntax by a Production
System

Cefinition of ALEX syntax by g van Ui jnoaarden
grammar

Definition of ALEX syntax by a Linked-Forest
flanipulation System

fiachine states for the VDL definition of

ALEX semantics

Interpretation instructions for the VOL
definition

Abstract syntax for the BASIS definition of
ALEX

ffachine states for the BASIS definition
Interpretation program for the BASIS definition
Abstract syntax tree~structures for the LFIS
definition of ALEX

Transformation rules for the LFMS definition

94

97

102

106

107

112

113

114

120
121

1 The preblems of proaramming lanquage definition

Defining a computing language is generally done in

two stages:

1) syntax : defining as rigorously as possible the set
of all possible programs of the language,
together with their formal structures and
substructures.
2) semantics : associating with each such program its
meaning, so that the effects of executing
the nrogram with its data are as rigorpus-

ly defined as possible.

Details of definitions of these two stages will
be discussed in the following twec chapters (although
the exact demarcation between the stages has varied
for different people; I shall discuss this further

in section 2.2). |

The aim is to be able to define a sionificantly
large languacge, including both stages of definition,
and to this end there are several criteria for

comparing the different systems examined later.

1) Scope of the definition method

Is it applicable to all features of all programming

languages, or are there some features that can be
encompassed either not at all, only with great
difficulty, or at the cost of breaking up a neat
system?

2) Elegance
A general aim is for a definition as readable, concise,
and 'transparent' as possible. A readable definition
should be understandable even with only a short
initiation into the details of the formalism j it
should not be written in a wholly foreign language.
A definition should also transparently follow the
language being defined; this means that small changes in
the language should require only small changes in the

formal definition. Concerning cnncisenesg one should

distinguish between the method and its application
to specific langueges: a very simple method will
generally lead to a very complicated definition.

3) Riocour
Syntax definitions should define, ideally, all
and only the programs in the lancuage; and assign
correct formal structures to valid programs. They
should avoid overlapping, incompatible, ambiguous,
and/or missing specifications. Similarly with
semantics. Nete, houever, that it is occasionally
desireable to leave certain parts of a standard
definition either completely open, or to deliberately
give only a partial definition of them. For example,
the details of real arithmetic, beyond certain
basic conditions, may be postponed beyond the
standard definitionj and in any case the effect of
merging parallel operations should intenticnally be
left vndetermined.

4) Formalisstion

The formalists! ideal is that a definition should

say everything that can be said about all programs

in the language, and in such a manner that mechan-
ical statements can be made about the prograem without
either using human understanding at this point, or
running it on a computer with specific data. Such
statements, for example, could concern the mechan-
igal design of implementations, or the mechanical
proofs of correctness, equivalence, etc., of

programs in the language.

Chapter 2 looks at the syntactic, and chapter 3 the
semantic, components of definitions of programming languages,
and in the appendices I have used those methods which are
sufficiently powerful for the definition of "ALEX". ALEX is
the name which henceforth I give to a certain subset of Algol
60; it does not include arrays, for-loops, conditional
expressions, or designational expressions, but it does
include mixed-mode arithmetic, procedures, functions, call-
by-name and call-by-value parameters, "goto" and "if"
statements, and the implicit declaration of labels.

? Syntax

s ——

2.1 Introduction

Syntactic theory is concerned with the formal systems
to be used for the grammars of the languages to be def-
ined. A grammar is a set of rules prescribing which
sequences of symbols over a given alphabet constitute
programs in the language, and it should also define the
structure of valid programs in such a way that efficient
translation or interpretation is possible.

The first grammars to be used in the definition of
full-size languages were context-free grammars, and,
by now, their theory is becoming well understood (see,
for example, the text Hopcroft and Ullman,1968),
having been by far the most common topic for formal
investigations. As well, they are increessingly being
applied in the construction of compilers. Feldman and
Gries(1968) give an extensive survey of such and
similar applications.

However, these context-free formalisms are inadeguate
to describe the full syntax of computer languages, and
most of chapter 2 will be concerned with the various
methor's that have been proposed to overcome such
inadequacies, and to try to capture these context-
sensitive conditions,

In the next section we will look at the details of
these problems, and after that consider the progressively
mnre complex and more powerful formalisms proposed as

possible solutions,

2.2 Context-dependent conditions

Context dependencies arise in all practical programm-
ing: vhen it comes to checking the scopes of identifiers;
checking that identifiers are not declared tuwice in
the same block; checking that identifier attributes
given by the declaeraticn are consistent both among
themselves and with those presupposed by the later uses
of that identifier; the notion of type conversion in '
.general; and the correspondence betueen formal and actual
parameters.

In some more complex languages = PL/T especially -
because of the great variety of contexts in which
identifiers can be used, and because many identifiers
need only be implicitly or contextually declared, many
of the context conditions are idiosyncratic, and need
individual treatment. For example, in PL/I, there are
no clean and simple universal rules telling houw 'implicit'
and 'contextual!' attributes are derived from all the
particular contexts. These processes are difficult to
describe by a context-free grammar: it uvill be seen
later (section 2.4.2 and Appendix E) houw Ledgard(1974)
has to use special functions, and table attributes of
nonterminal symbols, to specify contextual declarations.

Because context~free grammars are easy to mechanically
convert into parsing algorithms, the use of BNF to describe
the context-free requirements on syntax has had a pro-
found effect in computer science. It is common fer
compiler writers and others to use a context-free grammar
to determine the main phrase structures of the source
piogram. But, as I have described above, there are
many critical problems of syntax that transcend context-
free specifications. Hence the context-free grammer used
in the compiler must be a 'covering grammar': one which
generates all valid source programs, and many more in-
valid ones besides. It is then easy to consign the
specific context conditions to the ragbag of ‘'semantics',
to be dealt with by hand-wuritten procedures in later
stages of the compiler: stages that handle symbol tables
and their entries, type conversions, parameter match-

ing, etc.

This arrangement may work well for the compiler
uwriter, but when someone wants a rigorous specification
of the (context-sensitive) syntax, he should not be
required to plumb the barely-fathomable depths of the
compiler uwriter's ingenuity just to find out, say, in
PL/TI, whether labels are allowed on “"declare" statements,
or the exact nature of conversions in structure assign-
ments. As a matter of principle, I believe that ‘'semantics’
should be recognised for vwhat it is, as meaning and
effects, and not confused with centext-dependent conditions:
these conditions are essentially syntactical, being
determinable statically, independently of any prooram
execution. They may still be represented and enforced
by auxiliary procedures uritten separately, but formally
they are part of the syntactic component. When someone
vants to standardise the language, and to rigorously
define the set of all legal programs independently of
any compiler, he will see that the hand-uritten
procedures that are in the later stages of a compiler

effectively act as syntactic conditions as well: if the

condition is not satisfied in a source program, then
that procedure will flag an error. He will want to
separate these conditions from other functions of the
procedures (e.g. code generation) and include all the
conditions in the syntactic component, along with the
covering context-free grammar.

This leads to the aim of trying to synthesize both
the generative grammar and the context-dependent conditions
within one syntactic formalism. This formalism must of
course be more powerful than context-free grammars., For
example, the grammar of this very simple set of Algol
programs

'begin real w ; w := w end' for all w in (a,b,c)*

is not context-free : if a context-free language does
contain the above set of programs, then it must contain
other programs that are incorrect Algol because on
identifier will have been generated in the assionment
statement that is not in the declaration part. And this

is only a simple example; when arrays with any number

of dimensions or procedures with any number of parameters
are allowed, the practical problems of checking identifier
consistencies are more general and more complex.

Note that only if the context dependencies have sig-
nificant regularity will it be possible to extend the
syntax in a uniform manner. For example, in Algol 68,
where constraints concernino the declaration and use of
identifiers are independent of other features of the
lanquage (such as modes), the identification of identifiers
may be simply stated, and even included in the phrase
structure (see below, section 2.5). In PL/I, on the other
hand, many constraints are spedfic to particular modes
and particular contexts of use, so that it is here better
to define these constraints using individual conditions,
written alongside the relevant context-free rules of a
covering grammar.

S50 now we look at various extensions of context-free
grammars: extensions that try to encompass the ccntext

conditions in their formalisms.

2.2 Extended grammars

2.3.1 Context-sensitive qrammars

Context-sensitive grammars restrict the applicability
of context~free rules of the form A :i= w to specific
surrounding contexts so that they have rules of the form
rAs $:= rus (where A is a nonterminal, and w, r, and s
are arbitary strings of terminals and nonterminals,
provided w is not null).

However, straight context-~sensitive formalisms are
rarely used because they are too general for existing
programming languages, which reguire only a number of
specific types of context-dependent conditions. If they
vere used, definitions wculd be longuinded and untrans-

parent ones: programming languages have context conditions

between parts of a program that may be arbitarily far
apart, such as between the declaration and all the uses
of an identifier. Because the context-sensitive fermal-
ism only allous conditions from the immediately surround-
ing strings, incorpoeorating the context dependencies
of practical importance would involve, typically, having
several 'rmarker' symbols that cen travel to and fro
along the partially expanded sentential form, carry-
ing vital information, say, from declarations to
applications later in the program. Defining all these
cperations for the marker symbols which do not directly
illuminate the context dependencies or the semantic inter-
pretation requires many times as many rules as there might
be context--free rules in a covering grammar.

For example, to generate just the strings of the
form ambnambn, for any positive m and n, requires a set

of rules such as

AYB ::= TABB / AB
AT s:= TA -
BAT ::= BYA
A 1:= g
B ti= b

or, in the official “rAs ::= rus" format of above @
8 te= AXBAB AXB ::= AXF AXF ::= ABF
ABF ::= ABY AXE ::= AAXG AAXG ::= AABG
AARBG ::= AABX XA ::= UAA BU ::= BE
BE f3:= UE UE s:= UB AU ::= AX
BYA ::= BBYH BBYH ::= BBAH BBAH ::= BBAY
YA 3= YI ¥i 2:= Al Al :3= AY
AYB ::= JYBB JYBB ::= JABB JABB ::= TABB
AYB ::= AEBB AT ::= AK AK 33= TK
TK 3= TA BAT 2:= BAL BAL ::= BYL
BYL 3:= BYA A :i= a 8 23= b.

The nonterminals X,Y,T, and U (and E through L) are
only used as markers that cerry information backwards and
forwards along the sententisl form to synchronise separate
expansions. Having these extra symbols, and their asscciated
rules, results in the context conditions of the original
languace being represented most obscurely, even for a
language as simple as this example.

Further, context~sensitive grammars do not have nice
features such as parsing algorithms which are computation-

ally tolerable. And this is only complicated by the opacity
of the derivations as given above, where many powerful
extended rules are used to define a context-dependency
whose algorithmic specification may be quite simple.

It would be very much easier to write a small program to
directly check for strings of the form a"b"a"b" than

it would be to use a program operating only from the
context-sensitive rules listed above. Using the small
program to directly check for the context-dependent

conditions, which is the simpler, faster, and more

readable alternative, defeats many of the purposes

of using context-sensitive qrammars.

2.3.2 Scattered-context grammars

The difficulties of the general context-sensitive
formalism seem to stem from its only allowing context-
ual conditions on immediately surrounding strings.

This limitation is avoided by scattered context grammars,
introduced by Greibach and Hopcrcft(1968), which allouw
rules of the form

(n1,...,nn) $i= (”1""’“n)

which, when applied, means we have derivations like

XgR o XoRoueoX A X 0 D XU Xolopee X U X o

for any intervening strings X The basic formalism
does not limit n, but Greibach and Hopcroft(1968)
prove that increassing n sbove 2 does not increase the
generative pouwer of a scattered context grammar,

For an example of how this kind of grammar can
express context conditions, consider the generation

of the strings ambn,amhn by the set of rules

I consider this set decidedly more elegant than

that using the general context-sensitive formalism,

Thus, in principle at least, scattered context
grammars can deal with ensuring that all used iden-
tifiers have been declared, but what about other sorts
of context conditions, such as preventing the same
identifier being declared twice in one block? The
first problem is essentially one of generating
disparate identifiers wnich are the same, the second
of generating identifiers which are all different: a
'negative' rather than a 'positive' contextual condition.

Milgram and Rosenfeld(1971) discuss this problem,
and arque that since the riumber of symbols to the left
(or right) of a given symbel is potentially unbounded,

it may be necessary to introduce explicit negative

10

contextual conditions into the formalism, since such
conditions can no longer be imitated by sets of positive
conditions. For example, in an ordinary context-sensitive
grammar, a 'production' of the form

A t:= w if there is no C immediately to the left of A
is equivalent to the set of productions

XA 1:= Xu for all X#C in the vocabulery,
since once some X#C is present immediately on A's left,

C cennot be present, But in a scettered context grammar,
in trying to represent the "production'

A »t= w if there is no C anywhere to the left of A,
the number of different substrings that can occur just to
the 1laft of A is unbounded, and hence there is nec general
wvay of excluding C by any finite set of conditions. This
suggests that scattered context grammers be generalised
to 21low negative context conditions directly: notationally,
it could be represented by a line () above the symbol.
The last '"production'! above can then be written as

(C.A) 35= (L,w).

Milgram and Rosenfeld(1971) prove that the resulting
formalism is exacily as powerful as that of context-sensi-
tive grammars, so now it is possible to define the
programming=languace~like segquence

T8
B i, 51 P - « sV_ &
-k 1! 2! ’“m ? 1! 2’ . ’ n —

wvhere each of the i's and v's is any identifier, but with
the further context conditions that (a) all the i's are
different (i.e. each identifier declared only once here)

and (b) each of the v's is identical to one of the i's

(i.e. only identifiers declared can be used).
S :¢ti=bDj;Ue
D ::2=1/1,D
U izm 'V JF Ul

(b,€,t,€,;) for all identifiers t
for sll identifers t.

If there are a finite number of possible identifiers
then there will be a correspondingly finite number of rules,
but it is hardly a satisfactory situation when the size of
the grammar increases in proportion to the number of

identifiers possible in the language.

M1

Alternatively, the formulae above could be regarded as
rule schemata, which are 'meta-rules' for the generation of
an indefinite number of other ordinary rules. This idea will
be discussed more fully later, in section 2.5.2, with respect
to the van lijngaarden grammars, but even so, strictly speak-
ing, the above example is not a valid scattered-context
grammar. For only single symbols ere alloued in the left-
hand sequences of valid rules (see p9), and it is an essen-
tial part of the above grammar that, rather than checking
for the symbol "t" alone, as in the rule
(By: &y 35 M) 2%= (bs & 33 &),

it checks for a large number of specific identifiers, e.g.
(s @ 3 55 V) 32 (b, & 4 34 8),
(by aby §y V) $3= (P_: ab, ;, ab), etc.

This means that it requires any sized string as a context

condition, and this was not allowed in the original formuletion.
iouvever, even if scattered-context grammars are generalised

to allow all of positive and negative context conditions,

meta-rules and meta-variables, and having any sized strings

in the context conditions, they are still not adequate to

define full-scale programming languages. In particular they

cannot handle identifiers having one of a number of attributes.

For in a phrase-structure system such as this one, all rele-

vant information must be contained in the current sentential

form. Therefore information about variable attributes must

be so included, but, because this information should not

appear in the final program, it must be deleted at some stage

by some rule. This is impossible, houwever, in even the

extended scattered-context formalism, because it is based on

context-sensitive rules rather than on unrestricted rules.

Thus to handle identifier attributes, they must either be

represented outside the phrase structure (cf. section Pl s

or unrestricted rewriting rules must be allowed (cf. section

2:5).

12

2.3.3 Programmed grammars

Another way of restricting the application of
context-free rules is used in the programmed grammars
of Rosenkrantz(1969). These have labelled productions,
and allow successors of a given production to be chosen
by specifying two sets of labels(production names).

To try that production, the current sentential form is
searched for an occurence of the non-terminal symbol

on the left-hand side of the rule. If one is found (or
the leftmost, if more than one), it is replaced by the
expansion on the right-hand side of the production rule.
Then, depending on whether or not the rule was used,

one of the tuo sets of labels is taken, and an arbitary
selection from it is made to give the next production

to be tried.

An example, given by Rosenkrantz, is a pregrammed
grammar which generates sentences of the form nhan,
vhere n is a nonnegative integer expressed as a binary
number. A typical sentence is 107hazaaa -~ a sort of
pseudo Hollerith field,

Yo 5 31= 158 5(3)

2, S z:= 08 S(3)

3. A %= BB 5(3)F(4)

4, B ::= A 5(4)F(1,2,5)
5. S ::=h s(6)

6. A :¢= a S(6)F(sTOP)

While these grammars define a proper extension of
context-free grammars that is properly included within
the context-sensitive family, they are not well suited
to defining those context conditions found in program-
ming languages. For example to define all and only the
set of strings wjw (v being any identifier on the
alphabet of 'a' and 'b'), which is a simplified version
of the problem of matching the declaration with the use

of an identifier, requires the productions

13

1 8 ¢:= A;3B 5(2,3,6,7)
2. A ::= a s5(4)

3. A i:= b s(5)

5, B 23= a S(sTOP)

5. B ::=b S(STOP)

6. A t:= ah 5(8)

7« A 23= bA 5(9)

8, B ::= ah $(2,3,6,7)
9, B ::= bB §(2,3,;6,7)

For a larger number, n say, of alphabet letters,
we would require 4n+1 productions just to define wjuw.
Just as with the scattered context grammars of the
previous section, this is clearly not a satisfactory
arrancgement. A defintion would be much better if it
wvere to use a single nonterminal (say 'alphanumeric-
character') to generate the variety of any particular
alphabet.

Generalising from this example, there is the result
that a programmed grammar, with context-free core rules,
cannot generate the set u1;u2;...;um wvhere all the Wy
are equal for this would need a number of rules varying

with m, and m here has no fixed bound,

14

2.4 CGrammars with associated context-dependent conditions

2.4.1 Property grammars (Stearns and Lewis,1969)

Instegd of building the context conditions into the
phrase structure rules, the aim of property grammars
is to add extra conditions to each rule and require
that the condition associated with any rule be satis-
fied before it can be applied. There are various uays
of representing these associated conditions - see the
following sections -~ but in preoperty grammars these
are conditions on the properties of identifiers at
each place in the syntactic structure. Each nonterminal
symbol has associated with it a table in which each
identifier is given a certain numerical property. An
example,given by Stearns and Leuwis(1969), is a very
simple block-structured language in wvhich we have the
choice of values for an identifier, 'id' say,

0 - not used
- this nonterminal produces id
~ produces a declaration of id as a variable
= n 1 n 1 n 1 n labEl

- produces a use of id as a variatle

- L n n it n n u labEl.

(O A & N

That is, at each node in the syntax tree - for each
nonterminal - there is a table of values. Each identifier
will index the table, and must each have one of $he
property values e.qg. of the list above.

Conditions of productions are given as a collection
of vectors of properties. If, for example, the rule is
A ::= BCD, then we give it the vectors 0110 and 1300:

A ::= BCD
0 110
1 300

This means that when this rule is used in a derivation,
each identifier must 'satisfy' one of the vectors. It
may have property 0 in the table at A, 1 in the tables
at B and C, and 0 at O; or else it will have 1 at A,
3 at B, and property 0 ir the tables at both C and D.

15

Note that the grammar is both 'local' and 'static'.
It is static in the sense that no order of derivation
is required or implied, and it is local in the sense that
the correctness depends only on there being a correct
relation betueen each nonterminal and its immediate
descendants.

To demonstreate their method, Stearns and Lewis
apply it to a skeletal subset of Algol 60 - just
enough to include block structure, and the declaration
and use of identifiers as variables and labels (labels
are declared by their being statement prefixes). They

use the underlying grammar

P s:= B

B ::= beoin D L end

D ::= dec ID, D / null

L 33=8 3 L / null

§ ::=B / wuse ID / lab ID / goto ID
where 1D 1is any identifier

dec 1D declaration of ID as a variable

statement using ID as a varisble

leb ID = statement labelled with the identifier ID
goto ID = statement causing transfer to ID.

53
5]
o
—
o
i

Then, using the attributes 0 through 5 described earlier
this section, Stearns and Leuwis give the production-and-

condition set

P ::=B B ::= becin D L end S 1i= B
O 0 C 0 D0 O 1] 0
0] 20 O 4 4
0 0 2 4 0O 5 5
L 3= Sl 0 § 03 0
0 00 4 0 04 0O
3 03 5 0 05 O S ::= use ID
3 30 0 0
3 35 4 1
3 0 3 D 1s= dec ID, D
4 0 4 0 0 0
4 4 0 2 0 2 S t3= lab ID
4 4 4 2 1 0 0 0
5 05 3 1
5 50
5 55
D dim null
0 5 3:= goto 1D
D “ 0
L 3¢= null 9 1

16

This scheme is elegantly applicable to such a simple
language as this. However, for others it is seriously
restricting in that it requires a finite set of properties
to be chosen beforehand. This is not aluays possible,
even in a languge such as Algol 60. For instance, an
array may have an srbitarily large number of dimensions,
and a procedure or function can have any number of
parameters (each of a certain type). Although some
implementations use run-time checking of both subscript-
ing and parameter matching, this is only useful uhen
arrays or procedures are passed as procedure arqguments
without the type of the corresponding formal parameter
being fully specified. In all other situations it is
possible end usually desirable to check these conditions
syntactically, and property grammars with finite sets
of properties are unable to do this when any number of
array dimensions or procedure parameters is alloued,
for then there is no fixed bound to the number of

properties possible for any identifier.

17

2.4.2 Grammars using 'inherited' and 'derived' attributes,

Production Systems

Whereas property grammars have a value for each
identifier at each node in the syntax tree, grammars
in this system have attributes only for each node (each
nenterminal symbol). But these attributes can be much
more complex than just integer values. They could be
furnctions, for example, or they could be whole tables,
which can be used to model, as in property grammars,
the symbol table of identifiers 'visible' to that
particular place in the program. And the values in
these tables and of these functions are not restricted
to inteacers: any mathematical object is possible.

The method for constructing these attributes is
also more complex than that of property grammars.
Instead of having a predetermined table of alternatives,
with each production ruley, for 'A' say, there are nou
associated instructions to calculate the attributes of
this A, Each attribute of A may be either composed
from the attributes of the descendant nodes of A, or
it may depend only on the attributes of the ancestors
of A, i.e. on the context of A. These are called by
Knuth(1968) 'synthesised' (or 'derived') and 'inherited!
attributes respectively., So the initial nonterminal
(e.qg. 'program' at the root of the parse tree) can
have no inherited attributes, and the derived attributes
of terminals, constants, and identifiers etc., can
only be constant,

In an actual parse tree, there may be considerable
interaction between inherited and derived attributes
while they are being calculated, but potentially
circular definitions can be detected using an algorithm
formulated in Knuth(1968).

Knuth(1971) contends that the definition of brogram-
ming languages by means of inherited and derived attributes
corresponds closely to the way people understand them,
because the essential idea of such definitions is that

each attribute is defined by local rules: rules and

conditions on each nonterminal that start only from
the attributes in the immediate neighbourhood of
that node.

For examples of his method Knuth(1971) defines
Turingol, an Algol-like languzge to program Turing
machines, and he gives a formal definition of the class
cf all reducible lambda-calculus expressions.
Maurer(1972) also uses the method: to define a simple
subset of Fortran II (Fortran without declarations,
subroutines, arrays, common, or input-output, but
with real and integer expressions and assignments,
if statements, go to statements plain and computed,
do statements, and general program organisation).
lost of his definition concerns the operational semantics
of the various statements. This will be considered in
‘more detail later (section 3.4); what is of concern
here is houw he deals with the several context conditions
present in his subset of Fartran., In fact, his problems
‘are simple} since there is no problem of matching
declarations to uses because variables are not declared
in this subset. And labels cannot be confused with var-~
iables or integer constants because their possible
contexts of use do not overlap. That only leaves the
problems of checking that there are no duplicate label
defintions, and that there are no transfers to undefined
Jlabels., To this purpose, one attribute of each program
'section' is the 'label-function', which is a set of
ordered pairs (label,line-number), one for each of the
labels used in that section. When another statement is
added to the section by the production

section,x ::= section,z statement,v
‘there are the associated instructions

xlabel-—f‘unctlnn zlabel—functlon u (ulabel'ullnennumber)

‘and the condition

(Ulabal=null OR z

labeln?uncticn(ulahal) 18 undefined)

The first instruction is used to construct ‘the
composite label-function attribute as a derived attribute:

derived from the lasbel-function attribute of z and the

19

label and line-number attributes of the statement v,

The condition checks that there are no duplicate labels
by checking, if the sdded statement has a label, that
that lasbel does not already occur within the preceding
section z. Tegether with a similarly worded condition
that ensures that labels wused in "go to" statements must
have an entry in the label-function of the whole program,
all the context-dependent conditions in this simple
Fortran subset have been defined.

The 'Production Systems' of Ledgard(1974) have
many similarities to the schemes of Knuth and Maurer, but
Ledyard has used the idea of complex attributes much more
extensively, especially for defining the context conditions.
He uses a great variety of conditions, operaztions, and
functions to compute the required attributes. As well
as using well=known functions, in Production Systems
cne can define, recursively if necessary, neu functions of
any nature that would help the definition as a whole.

As an example of a largerscale definition, lLedgard
(1974) defines the complete syntex of a significant part
of PL/I. This subset = which he calls PL.1 - includes
block structure, explicit, implicit, and contextual
declarations, checking compatibilities of declarations
with uses, and use of arithmetic, string, pointer and
structured variables and their possible conversions. In
Appendix E, I have used his method to define the subset
of Algol €0 which 1 have called ALEX in chapter 1. In this
definition there are special functions for computing
symbol-tables from declarations, and for computing types
of expressions., Neither of these functions is very simple,
but beceause they are separate from, rather than integral
with, the phrase structure rules, one can directly use more
pouerful mathematics e.g. set theory. It is particularly
useful, as in this definition, to compose and use functions
mathematically, completely avoiding string-handling auto-
mata, e.q. Turing machines, whose calculation of even

simple functions tends to be extremely laborious.

2,4.3 Conditions defined by functicns on the whole

context-free syntactic structure

The previous methods have éssociated the various
context conditions with particular production rules so
that they can be checked when those rules are applied;
it is also possible to define the conditions by functions
on the whole program. To do it this way, all the program
text is first parsed to give its 'concrete syntax', this
is then transformed by a 'translate' function to give
the 'e#bstract syntax'. The translation function, operat-
ing on the whole concrete-syntax structure, is able to
check and chanue as much of that structure as is desired:
it can check any necessary context conditions, and usuzlly
it will rearrange the syntax toc remove 'syntactic sugar'
such as extra keywords, semicolons, etc., and to produce
a structure most suitable for later use eg. for inter-
preteation or code generation,

There are many such practical advantacges in having
tuwo stages of syntax in this way: uhereas context-free
grammars assume that the set of objects uhose syntax
is hkeing defined is a set of strings, and, therefore,
sensitive to the textual order in which the components
appearin astring, coempilers and interpreters are
concerned not with strings written down but with struct-
ures represented in some mcre abstract fashion. Components
of structures in a computer are identified not by a
linear textual ordering but by pointers (selectors)
that associate another object with each of the compo-
nents of a structure. 'Abstract syntax' is the formal
representation of these general structures, and the
Vienna Definition Language (VDL) is a language
especially designed to describe these structures and
operations on them (see section 3.6.2.1 and Lucas(1968)
or Wegner(1972). Also the next section).

Another advantage is that arbitary functions and
conditionsmaybedefined on any part of the concrete
syntax to verify context conditions of any complexity.

Often a programming language will allow contextual

21

declarations, or a large variety of default attributes
and defaulting constructions, and later sections of the
definitions, eg. an interpreter section, should not

have to work out these details each time statements are
executed. For, properly viewed, these are syntactic
details, being determinable statically, and independently

of any particular execution of the program.

2.4.3.1 The Vienna Definitionmethod

As mentioned earlier, the Vienna Definition Language
(VDL) was designed to handle abstract syntaxes struct-
ured with 'objecte' and 'selectors'. More detail of
this language is first given, closely following the
presentation of Wegner(1972), then in section 2.4.3.1.2
a way of going from the program text to the abstract
syntax, checking context conditions in the process, is

examined.

2.4.3.1.1 Objects and selectors and cperations in VDL

There are two classes of data objects in VDL:

1) Elementary objects, atomic objects which have no
components but have names which may be relevant
during interpretation.

2) Composite objects, which may be built up from
elementary objects by 'construction operators’'.
Composite objects have components that may be
selected by unique selectors.The components may
be either elementary objects or composite objects.

Figure 1 is a representation of a composite
object whose three comporents a,+,b may be selected

and s

by the selectors 8498 respectively. The

association of a seleitor s 3ith an object ob will

be represented by the notation <{s:ob) and will be
referred to as a 'selector-ocbject pair'. The
construction of the composite object of Figure 1 from
its three components may be accomplished by the
application of the 'construction operator' u, to the

0
three selector-object pairs (s1ta>,<s2:+>,<s3:h>:

22

uc(<s1:d>ﬂazz+>,453:b>).

The construction operator ug takes as its arguments a
varieble number of selector-ob ject pairs of the form
<Si:t£?’ where s; is a unique selector and ty is an
elementary object or a tree-structured composite object.
The general form of Ug is illustrated in Figure 2.
Selectors may be used as 'operators' that, when
applied to a structured object, select one of its
components., For example, if 't' is the composite
object of Figure 1, then 51(t) selects the elementary
object 'a'. When the object to which the selector s is
applied has no edge labeled "s" emanating from its root
vertex, then s(t) is defined as the null object '"null',
In order to be able to update and manipulate data
structures, the construction operator Ug is now
ceneralised to allow assignment of values to components
of data structures and allocation of new components in
an existing data structure. The assignment operator,

denoted by u, may defined as follous:

u(t;<x:t'y) is: eassign the value t' to the x-component
of t if t has a x-component; add a new x-component t'
to t if t does not have a x-component; delete the
x-component of t if t'=null. This is also extended to

allow many selector-object pairs «x:t'}.

The 'u' and 'UD' operators are central to the Vienna
Definition Language. In terms of these data-structure
operations it is possible to build translation or
interpretation routines as required. In section 3.6.2.1

this composition of elementary operations into

conditional expressions and subroutines will be described;

it is in this way that the 'translate' routine of
Appendix D and the interpret-program instructions of

Appendix I are constructed.

Figure 1.

1 2 " “n
Figure 2. The composite object
ugl<s, sty sdssity, ooe 448 1t D).

é-denl—part I s-st-list

elem(1)

INT

s=left-part s-right-part

a 5
Figure 3. VDL abstract structure.

block

declaration-list stmt-list
assignment-stmt
constant

INT,undef INT,undef 5

Figure 4. LFMS abstract structure

29

24

2.4.3.1.,2 Constructing the abstract syntax in UDL

The translation from concrete programs to abstract
programs is performed in two steps by the two functions
'parse' and 'translate': if 'txt' is a concrete
program, the corresponding abstract program is defined as

translate(parse(txt)).

The link between the two steps, namely the result
of parse and the argument of translate, is a structured
object t which is called the abstract representation
of txt and may be thought of as the parsing tree of txt,
according to the concrete syntax of the language.

For the example lancuage ALEX, in Appendix A is
aiven the concrete syntax in the ususl Backus Normal
Form (BNF). This notation, however, is not the most
sulitable for 2 langusge which uses data structures
with selectors and unordered components. Instead, the
VDL definition uses the 'abstract representation of the
concrete syntax' given in Appendix B, This, together
with a function 'generate', constitutes a formal delfinition
of an algorithm for generating 2ll concrete programs
of the programming language. Hence they are equivalent
to the production rules of the concrete syntax (Appendix
A) together with the instructions for their use.

The function 'generate', mapping the object t,
satisfying the predicate is—;~prn§r of Appendix B, into

a set of character value lists, is now defineo as follous:

generate(t) =
is-null(t) ::= null

1
slength(t)=0 s:= t

slength(t)
T3i= generate(s1(t)) + CONC (generate(s=-del(t))

. =2 +generata(si(t)))

(it has been assumed that a special selector s=-del
has been used to select list delimiters (cf. e.g.,
AR3, AR6 and AR12 etc. of Appendix B))

The function 'parse', which is the inverse of the
function 'generate', is defined, following Lucas(1968h

as fFfollows:

1 see Appendix D for the definition of "slength".

parse(txt) =
(tt) (txt = generate(t) & is-c—prcgr(t)f

Assuming that the concrete syntax is unambiguous,
the meaning of this definition is that the function
'parse' tramsforms a program character—-text into its
parsing tree 't', provided the list is a syntactically
correct program. This is in preparation for the
'translate' function, and so far depends only on the
covering context-free grammar, which includes no
context conditions.

'}ranslate‘is;lfunction on the concrete syntax to
transform it inte an abstract-syntax structure with the
same meaning, and at the same time to check all the
context~dependencies that cen be statically verified
in a reasonable time. For ALEX, this requires the 19
functions defined in Appendix D, and produces a struct-
ure satisfying the predicate 'is-progr' of the abstract
syntax, defined in Appendix C.

AN total of 11 context conditions are checked during
the operation of the translation function of Appendix
D, these are:

in T1 wvalid cencrete syntax.

TEé no duplicate declaration of the same identifier
at the same block level.

T8 the return-expression of a function must be
of the required type.

T9 no duplicete identifiers in a formel-perameter Jist.
T12 gotos must refer to declared labels.
T13 expression in an if-clause must be of type 'logical'.

T14 the expression in an assignment stmt, must be
convertible to the type of the variable.

T15 a procedure call must reference a procedure id.

T16 the lengths of formal- and actual-parameter
lists must be the equal.

T17 an actual parameter must be convertible to the
type of the formal parameter.

T18 variables in expressions must have been declared
as such.

The conjunction of all these conditions is not

explicitly defined as a function that can be evaluated.

1 see Appendix D for the definition of L, the iota guantifier.

26

Rather, in the course of converting the syntax from
concrete to abstract, if any one of the conditions is
not satisfied, then the correspondinc translation
function will produce E££Ei, and so further translation
in this defining translator cesses, S0, instead

of having conditions on the concrete syntax explicitly
stated, they are now implicit in the operation of the

translation functions.

2,4.,3.2 Linked=Forest FManipulation Systems

A slighfly different, but related, form for the
abstract syntax, and another way of constructing it,

has heen desribed by Culik(1973). There are three
features in his Systems which have not been considered
yet in this survey: 1) to allow arbitary links around
the tree structures, 2) to have Markov-like reuriting
rules to manipulate these linked-forest structures,
and 3) to construct the ahstract syntax in parallel
with the concrete text hy having small linked-forest
manipulation systems at strategic places to check
context conditiaons.

Allowing arbitary links points oul come shortcomings
of the Viennag Definition method that concern some
particular context-dependent relationships: fer examnle,
to relate a goto-stmt. to the corresponding label, the
label to the corresponding program point, procedure calls
to procedure dedlarations, etc. 1 digress to describe
the proklem, and the solution attempted in VDL, in more
detail,

The Vienna Definition method handles such relations
by allouing selectors to be elementary objects. The
result of selecting such an elementary object would
be a further selector which may be applied to some
other tree node which is zlready knoun - such as a

directory node. For example, the small ALEX program

beoin integer a,b; a:=5 end

would be represented by the abstract syntax tree of

Figure 3.

A7)

Here, the left part of the tree representing
'a:=5' is the name 'a', and this name is used as a
selector on the 'decl-part! node to obtain the
declaration of this identifier 'a'.

This scheme works well for situations where, from
scme known node, only one selection is needed to find
the required destination. With labels, the situation
is not nearly so elegant. In ALEX I have followed the
idea used in the PL/1 definition (Alber,1969) in
constructing "declarations" for each label that occurs
in the given block. This declaration gives for the
label a list of selectors which when successively
applied to the statement-list of that block, will
locate the stetement originally indicated by that label.
Speaking formally with respect to the ALEX definition,

a label attribute is the intevuer-list

(Ce]em(1):i{),(e1em(?):ii>, g ,<ﬂ]em(n):jn>).
Then, if b.is the block in which the label is declzred,

Sin.uin—1. e odi?(a st=list(h))
is the labelled statement,.

Having to store a vector of selectors in this manner
is a cumbersome construction, and results from not
having pointers that can directly link disparate parts
of the syntax tree, as, for example, is possible in
Culik's(1973) '"linked-forest manipulation systems',

In addition to the tree structures of VDL, there
can now be additional directed edues of a different
type(called 'pointers' or 'links' or 'designators')
that more directly reflect the context-sensitive
aspects of the program. For example, it is possible
to represent the short program of above by the structure
of Figure 4 (satisfying Appendix M). .

Now one of the great advantages in having only pure
tree structures is that subtree replacement and construct-
ion is easily done, and guaranteed to produce a valid
result, With the extra links, in the extended formalism,
more care must be taken. Culfk(1973) formally defines

a class of 'linked-forest manipulation systems' (LFMS):

28

these are more complicated than subtree replacement
mechanisms because now more general types of subgraphs
than trees are being considered, and also because of the
linking. However, he manages to define the manipulation
systems in such a way that coalescing an unchanged

part of a graph with s neuwly created subgraph causes

no problems. The formalism is more properly described

in section 3.6.2.4: uhere the similarities to lMarkov
systems ere considered in more detail.

As in the Vienna method, a concrete syntax is defined
using a context-free grammar. But instead of converting
this to an abstract syntax once the uhole program has
been parsed, there is now with each context~-free rule
a production for the parallel construction of the
abstract-syntax tree. The ALEX definition of Appendix
G requires 29 such pairs of productions.

This by itself would only be sufficient for produc-
ing the abstract syntax if there were no context-sensi-
tive conditions: it is just the formalism for syntax-
directed translations of CF languages. To check these
conditions and translate properly to the abstract
syntax, with links where appropriate, Culik(1973)
associates with several pairs of productions a small
linked=forest manipulaticn system, These LF[FNSs operats
on all the abstract syntax derived from the node with
which each is associated, and the structure suitably
prepared, e.g. for intcrpretation, and in which
context conditions have been verified, is returned.

For example, after all the context-free syntax for
a block or procedure has been chosen and constructed,
there is a LFlS to check that no identifier has been
declared twice (Appendix G, rule 2.1), to put in links
(designators) from the uses to the declaration of
identifiers (rules 2.2 to 5), to check that parameter
lists agree in number and types (rules 2.7 to 10).
Several other changes are made so that the resulting
abstract syntax, with links, is most useful for the
semantic psrt of the definition (eg. rule 2.11, uhich
converts declarations into data cells for executibn).
The semantic part will be described in section 3.6.2.4

(see also Appendices M and N).

L2

2.5 van Ui jngaarden orammars

2.5.1 Grammars with unrestricted rewriting rules (type [])1

Type 0 crammars are those with rules of the form
v :t= uw , where v & w are any sentential forms (v having
at least one nonterminal symbol). Traditionally in
computer science these grammars have been little used.
They are the most general phrase-generation grammars-—
being able to produce sll recursively enumerable sets,
and to simulate Turing machines - but tieing so general
they have little built-in structure that can be system-
atically exploited. A parser, for example, cannot
represent the derivation structure of a program by a
simple tree.

However, by imposing some discipline on the use of
these 'unrestricted' rules, one can benefit from the
power of type 0 systems while having an intelligible
grammar too. One can define a wide variety of predicates
to delimit various sets of e¢trinus - such as the sets
N,B such that A=B, A#£B, A is contained in B, or A begins
with B, etc. = that cannot be defined by context-free
grammars, and use these set predicates to judiciously
enforce context-sensitive conditions through the grammar.
It would no loncer be necessary to have conditions
written apart from the production rules, e.g. as in
Production Systems (see section 2.4.2, also Appendix E).
Instead of using set-theoretic notions to define, for
example, symbol-table membership, it can now be done

syntactically.

1Type 0 in the Chomsky hierarchy.

30

2.5.2 Grammars with metssyntactic variaghles

To properly define a set predicate of the section above,
'A=B' for example, it would be'"hbest if it were possible
to define it only once, with A and B string variables,
and then apply it toas many particular strings as required.
Because I and B stand for syntactic variables (i.e.
nonterminals), they will be called "metavariables", and
productions which show which strings of ordinary variables
they can produce are called "metaproductions". An example,
from Appendix F, is the predicate definition for A=B :
where NOTETY is WUTETY : true.
with the metaproductions for NRUOTETY to generate any
character string (possibly empty):
NOTETY :: HOTION 3 EMPTY .
NOTION s: CHAR 3 NOTION CHAR.
EHAR: 2t i@ § b & 8 «ss @bEE:

The predicate definition is therefore a finite abbrev-
iation for the infinite number of ordinary productions
where is : true.
where a is a ! true.
where b is b : true.
where ab is ab : true. etc.
There are no productions for “"where a is b", so "true"

can never be produced from 1it,

2.5.2.1 An historical diagression

Metavariables were introduced in Algel Y (Bauer et al, 1968)
to abbreviate the writing of rules for real, double
precision real, integer etc., but the first large
scale use was in the 1968 deFinitiﬁn of Algol €8
(van Wijngaarden et al., 1968). Here, again , they
were used not to describe context-dependencies, but to
allow the definition by a finite syntax of all of an
infinite number of modes; of the rules for their valid
declaration and uses in expressions etc. Thus, in a
Fiﬁite number of rules and metarules, it was possible
to define the matching ef actual and formal parameters
to a procedure or operator, even though the number of

parameters has no fixed bound.

31

Baker(1972) cives a general introduction to van
Wijngaarden grammars, which use both unrestricted
rewriting rules and metavariables; and one of his
examples is houw parameter matching can be defined by
them. (See, for example, the rules for "procedure call"
and "function cell" in Appendix F).

These formalisms were origineglly designed to
ebbrevicte to manageable proportions the description
of all the context-free rules necessary for all the
modes of procedures, structures, etc., that a program=-
mer might want to use in his procgram, but it was soon
realised that the formal system was much more pouwerful
than the BNF notation used in the Algol 60 report
(Naur et. al.,196%) : wheress in Chomsky's classsification
BNF is of type 2, these two-level grammars are of type
0 (5intzoff(1967), see also Baker(1972)).

At first the context conditions of Algol 68 to do
with eveoiding multiple declarations, matching use with
come preceding declaration, ete., were defined by
special "context conditions" in English which were
quite separate from the phrase~structure formalism,
These were avoided in subsequent versions of the
Alcol G8 report, resulting in van Wijngaarden et al.(1974),
by using the meta-syntactic feetures to define various
predicates as mentioned ebove, and described in more
detail below. Appendix F gives a definition of the

complete syntax of ALEX using this methed.

2.5.2.2 Context~dependencies defined by van Wi jngaarden

Qrammars

The entire process of matching indentifiers with
their declarations can now be described in the syntax,
using a metavariable (e.g. "NEST") to stand for the
'symbol teble': it has metaproductions uwhich are
capable of describing, and of passing on to the descendant
constructs, all the declared information which is
available at any psrticular place in the program,

In the 1974 definition of Algol 68 - which I largely
follow in the ALEX definition in Appendix F -~ "NEST"

32

generates a sequence of "LAYER"'s, one for each block;
each LAYER beino a sequence of properties(PRCPS) of

identifiers. The proaram

begin real Xx,y; new X has real y has real
begin integer x; new x has real y has real new x has
intecer
end
end

procram NEST

recuires, then, feor each block the "NESTY"s indicated.

In the generation of a valid "program", "NEST" is
first expanded to give 2ll the variables reguired,
together with their desired attributes. Now one of the
features of van Wijngaarden gremmars is that strings
venerated may be easily copied. In the present situation,
one copy aof the "NEST" is used to construct all the
declarations, and cther cOpies are passed dowun the
derivation tree wherever an identifier will be cgenersted.
So we have "NEST statement", "NEST assignment™, then,
for example, "real NEST expression", "“real NEST unary"
etc., finally doun to "reel NEST identifier". Product-
ions for "TYPE NEST identifier" must then generate some
identifier "ID"™ such that "ID" has a valid "TYPE" in
the "HNEST" of this place in the derivation tree. To do

this, the ALEX definition includes the scheme

TYPE NEST identifier: ID token,
where ID has TYPE from NEST.
The "ID token" generates the identifier representation,
and the "where" clause is a predicate. The “where ..
has .. from .." is defined in Appendix F in the section
"identifiers".

Extensive use is made of such predicates. These
are strings of variables (and metavariables) which are
deliberetely made to yield blind alleys when certain
conditions are not met, and yield empty terminal pro-
ductions otherwise. Only if they produce "true',

which produces "EMPTY" : the disappearance of the

33

predicate, will a velid program be produced. There are
no tther terminal productions of a predicate apart from the
empty string: only blind alleys containing some non-
terminals.

All this may seem excessively complicated, but it
has been successfully used for a large scale language
such as Algol 68B. In that case, the disciplined use of
type 0 productions (i.e. ones yielding ENPTY irreducibly)
has given a concise formal definition of the contextual
conditions, even though the lznguage has been influenced
to some extent by this method of definition.

One feature that sids our following the definition
is the English=like names of the predicates. Once a
person Knowus, for example, that the predicate "differs
from" has been formelly defined, its further details
are not so impertant for him. For the compiler-writer
too: he could directly defime the predicate in terms
of, say, machine primitives. Koster(1969,1971a,b) shous
how in general to construct procedures from rules with
metavariables. But for 'obvious' predicates it would
be more efficient to ignore the details of the formal
definition to instead interpret them directly., Of course,
some predicates are not so obvious: the Alcgol 68
definition makes extensive use of these in defining more
complex conditions such as the equivalence or non-
equivalence of modes, and operator identification, etc.
(see section 7 of van Wi jngaarden et al.,1974). But

these are still given names meaningful in English.

34

2.6 Conclusion

On the basis of the arguments that have been given,

I conclude that the first four methods surveyed -
contex-sensitive, scattered-context, programmed, and
property grammars - are either too weak for, or unsble
to express in a reasonable number of rules, the context
conditions of a medium~sized languace such as

Algol or ALEX.

The remaining formalisms cen be divided into two
broad groups - those which use ordinary mathematics
(e.q. including set theory), and those which use
unrestricted rewriting rules with metaUarinhles, to
describe the necessary context conditions. In the former,
there are corammars using inherited and derived attributes,
Production Systems, and the Vienna Definition method.

In the later group there are the van Wijnousarden grammars,
uhile the Linked-forest lManipulation Systems can be
looked upon as a cross hetween the two groups.

The groups have their characteristic advantages and
disadvantages. The van Uijngaarden grammars have the
advantage of staying close to the hasic notion of a
syntactic grammar for phrase-structure langquages and
still including the required contextual conditions,
Houever, being 2 definition only of the syntax, there
is no easy way of formally attaching the semantics of
the lancuace being SﬂECiFiEd.‘]n the Algol 68 report
(van Wi jngaarden et 21.,1968) this is done by associat-
ing English 'semantics' sections after each section of
syntax rules - following here the Algol 60 report (Naur
et al1.,1963). This may be quite readable, but, compared
with uwhat has been attained in some other methods, it
should be possible to make this association more formal.

Those schemes, for example the Vienna Definition
method or the Linked-forest Manipulation Systems, which
define transformations from 'concrete' to 'abstract!
syntaxes have advantages that are different than those of the van
Wi jngrarden arammars. They are more satisfactory when
formal definitions of semantics or algorithmic analyses
are to be included in the overall definition, as will be
properly seen in the next chapter. The 'abstract

syntax', in uwhich context conditions have been confirmed,
is a useful intermediate structure (see section 2.4.3).
However, for someone who only wants a specification of
syntax, finding the ansuer to even a simple question
(e.g. uhether, in PL/I, labels are allowed on "declare"
statements) can involve prolonged fatheming of the
translation functions., For they are mathematicelly stated
in such a way thet one needs to be fully acquainted

with the structures being analysed and reconstructed

at each stage in order to be =2hle to follow the trans-
lation of the sort of program in which one is inter-
ested. For somecne not so initiated, the Vienna Definition
Language is practically opaque, and definitions using

it (e.q. Appendices D & I, or the FL/I definition of

Walk et al.,1969) are unusable in many cases. 1 consider
that a scheme should be of the sort uhere, if someone
knows only a part of the method and structures involved,
one can understand at least a proportional part of

a definition using them. For this, it helps if English
names with 'obvious' meanings are used, rather than

large amounts of methematical notation which may be

herd to read.

36

3 Semantics

3.1 Introduction

Semantics is conecerned with meaning, and when one
studies the semantics of proorammino languages, one is
concerned yith the meaning of programs either as their
'effect' or as their 'value': there are different ways
of representinc meening.

Semantic theory is a somewhat less developed subject
compared with the theory of syntax, and as yet there are
ne direct applications of semantic theory uhich have
the importance, say of syntactic theory in compiler
construction. However, semantic theory is not being
neolected, and there are several important long-range
goals:

1) to help in the investigation of the properties of
specific programs, and in constructing proofs of
correctness of given procrams,

2) to help in the design and evaluation of languages,

3) to lead to methods for the complete formal definition
of procramming languages, to be used as a reference
by the cnmpilef uriter and the proorammer, and for
standardisation purposes,

4) in comhination with the formal studies of machine

operations, tec help in the construction of compilers.

The form of a semantic definition depends very much
on how one conceives "meaning" : various alternatives are
possible, and one can distinguish five main types of meaning,

as well as a scheme modelled on syntactic systems:

1) natural semantics

2) compiler semantics

3) structural semantics

4) functional semantics

5) propositional semantics

6) semantics based on string reuriting rules,

in order of increasingly formal nature. However, the
most formal definitions tend to be the lesst readable
and useful, so the types of semantics will not be

discussed in the order above.

37

3.2 Natural semantics

Natural meanings are those we use every day to think
with, but unfortunately the sciences have not given yg a
good theoretical hold on them. Even so, they are still
relevant for prooramming language definition. For if
we are to come to understand any definition, it must be
remembered that our very Qndmrstanding presupposes these
'natural meanings'. Everyone who uses a programming
lznguage must have an informal desription of this
language in his mind; otherwise he could not use the
language. There is no question that these informeal
descriptions are probably different for different people,
and that they will differ from any formal description.
But in the end, any language definition fails or prevails
according to how well it econveys our intuitive ideas
about the languace. Thus even in formal semantics one
should aluays keep an eye on how people intuitively
understand languages. Their informal understanding will
of course differ oreatly, as Naur(1964) remarks, from the
formal description of any compiler, so that it is not
very convenient to refer the programmer to the listing
of the compiler and tell him to answer his own questions,
AR more easily understood definition could be based, for
example, on the hierarchical specification of properties
and eactions of program structures : this is the besis of
'structured programming', Later it will be seen houw
different definition methods compare in this respect.

3.2.1 latural languace semantics

Part way in rigour between a person's intuitive
understanding and a formal definition, there are the
natura) languages: English in this case. Using natural
languages has been the most common way of describing
programming languages -~ familiar to everyone who has
experience with programming manuals etc. These may
range from an informal introduction to trying to specify
the language as completely as possible (for an example,
using PL/I, see I1BM(1970)). With care one can obtain
reasonable precision using English as a metalanguage
especially if used in conjunction with some more formal

scheme for syntax.

38

Note that this conjunction of English and formsal
syntax can be craftily arranged to greatly help the
readability. So the ARlgol 60 report can have 'the symbols used
for distinguishing the metalinguistic variables have been '
chosen to be words describing approxiamately the nature
of the corresponding variable. Where werds which have
appeared in this manner are used elseuhere in the text
they will refer to the corresponding syntactic definition.'
Duncan(1964) contends that it is this convention which
has given the Backus notation its value: 'by means of
it, a word can be used as a metaidentifier end be manip-
ulated formally while at the same time it can be uced
in the natural languace text and even undergo inflexion. ...
For example, ynu can have the word "label" in the syntax,
and you can say "labels", "to lzbel", "labeling"; "lahel-
ed", "unlabeled", etc.' in the textual definition of the
semantics. Such is the power of nstural language that
can be employed.

Returning to natural lenguanes in general: they are
easy for us to understand because they asre informal, and
much of what they say is tacit, not explicit, Schuartz
(1970) points out that vhat one finds in a programming
language manual is almost never a systematic formal
definition of the meaning of proorans. Instead, one finds
a definition having a strongly expositery flavour, in
which certain salient features may be set forth with
relative care, but in which much is suggested rather than
stated and left for the reader, guided by certain princi-
ples of naturalness and minimum surprise, to supply by
deduction. By their nature, definitions using natural
languages are extremely difficult to'process mechanically,
even hypothetically. For a natural language itself
incorporates a huge and nnt—Formally-ahalysed body of
tools, and we are still so far from being able to
treat them formally, especially in regard to their semantic
properties, that we have no way of processing such def-
inifinns, even in principle. That is, even if given what
purports to be s complete natural language definition of

a programming lanquage, there is not yet any programmable

39

way either of verifying its completeness, or of mechanically
transforming it into a complier or an interpreter for the
language, or of mechanically defermining whether any given
compiler does in fact realise the object defined orig- |
inally.

A definitional scheme ideally should a2id us in rising
from simplicity to complexity, and therefore a meta-
language should be simpler than the language that it is
being used to define. Although natural lznquages seem simple
for us, they are very complex for computers, and so quite

unsuitable in a mechanical world.

3.2.2 Semantics by compilers

It is possible to regard defining a programming
languace by a compiler as giving its meaning: by translat-
ing proarams into another languacge whose semantics is
known = wusually a machine languace for an actual or a
hypmthuticél machine. For examples, see Feldman(1966),
Garwick(1964), iivat and Nolin(19¢4), or Wirth and Ueber
(1966),(also section 3.6.3).

Using compiler semantics assumes that the execution-
time semantics of the target lancguaiye is given as a primi-
tive in terms of which source lancuages may be defined,
This allows many of the more complicated aspects of the
language to be treated only once, at compile-time, by
algorithms which are ouasranteed to terminate (the actual
methods of treatment will be discussed in section 3.5.1).

However, especially from the theoretical vieuwpoint,
definitions of languages by their compilers cannct be
regarded as satisfacfory for several reasons. One is that
it only postpones the difficult problem of defining the
basic interpretation of some computing language. And, as
Weoner(1272) notes, a compiler by itself only gives the
~relation between the socurce language and the target languace:
it rarely cives anyone insight into the essential nature of
the former. Because, too, compilers are usually heavily
involved with language-irrelevant machine details, the best
scheme would probably be a ccmﬁiler—independent definition,
and then one or more compilers can be constructed which

satisfy this definition of the language.

40

3.3 Propositional semantics

Propositional meanings are those represented by well~-
formed formulae in some system of locicel calculus. Each
formula represents some statement, whose truth or falsity
is explicitly asserted. In such asscsertions, all context-
dependent meanings have been removed : each formula represents
a statement standing alone with fixed (propositionsl) mean-
ing. The theories of formal logic such as the propositiional
or predicate calculi have been developed to great depths
by locicians (see lMendelson, 1964, for example).

When it comes to defining pregramming languages by
propositional meanings, though, the difficulties are much
more formideble. Largely because of their size, as yet
no-one has defined a whole language in this way: these
meanings have more been used, to date at least, in looking
at the meanings of particular programs. For example, many
investigators have looked into the problems of proving
that a particular program correctly calculates some given
function.

The first significant work in this field is that of
Floyd(1967). His method, applied to simple flowchart .
programs, consists of attaching predicates, using the
values of the program's variables, to the edges of the
flowchart. These predicates are therefore attached betueen
every tuwo successive statements, and at the start and end of
the program, and are designed to specify the set of all states
thet may occur when control passes along that edge of the
flowchart. The predicate with the input defines the domain
of the program considered as a function, and the predicate
associated with the output edge defines the set of all
output states that may occur when the program terminates.

The assertions represented by these predicates are then
proved to have the property that whenever the control
reaches any particular point in the program, the assertion
attached to that point will be true. Clearly if the
assertions have this property then whenever the program
stops, the last assertion will be true. Since this last
assertion is some statement about the expected results

of running the program, it will have been proved that the

results do indeed satisfy this statement for allowed inputs.

41

Floyd(1967) shouwed that the proof that the assertions
attached do have the required property could be done on
the basis of local tests. In fTact, it is sufficient to
show that the assertions attached before and after each
statement setisfy some condition related to the semantics
of that statement. Ashcroft(1972) calls this condition
the "verification conditjod’%or that particular statement.
If this verification condition is cansistent and complete
then it contains a areat deal of information about the
statement, and Ashcroft(1972) wonders whether it could
itself be considered as a definition of the semantics

of the statement: "If there is 2 rule for constructing
consistent and complete verification conditions, for all
possible statements of a given type then this rule can

be considered to be a semantic definition of this type

of statement, In the simple flouwchart case the execution
of any program consists only of the successive execution
of statements, aﬁd the rules for each type of statement
suffice ss a semantic definition of the language." He
says, however, that this idea of defining a lanquane via
verification conditions has not caught on.

Ao discussed below, there are doubts about the
adequacy of this approach for computer science, but it
deserves to be developed logically. Fost work on the
computer science side has been in proofs by 'inductive
assertions', as Floyd's method has been named. See, for
example, Hoare(1971b) and London(1972) for actual proofs,
and LLondon(1971) for a comparison of various such applic-
ations.

More efficient proofs result if more general relations
are formalised concerning larger-scale steps in the pro-
gram, as it is a common failing of proof techniques in
predicate calculus to get lost in a maze of partial
derivations: to be continually rediscovering and mis-
applying trivial lemmas. Floyd's original method has been
developed by Manna(1969,1971), Manna and Waldinger(1971),
and by Hoare(1969,1971a): these investigators consider
as more important correctness conditions for a whole
program, or significant section of a program, That is,

they look for input-output specifications for that program,

42

working from the concept of 'meaning' as @ correctness
criterion which constitutes a necessary and sufficient
condition for the program to realise a given function.
By relying less on the picture of assertions attached
to edges of flowcharts, it has heen found possible to
treat languages which at first did not seem amenahle
to Floyd's method, such as languages involving recurs-
ion (FManna and Pnueli, 1970). As well as simple flou-
chart languages, and simple recursive languages, the
method has been applied to non-deterministic programs
(Manna 1970) and parallel programs (Ashcroft and [anna
1971). Technigues have been investigated for synthes-
izing programs from their input-output specification:
lanna and Waldinger (1971).

There are reasons, houever, why this form of sem=-
antic definition - by input-output specifications - is
not altocether suitable as a universal normal form for
specifying the semantics of programming languages. The
proanfs must first assume that the program terminates :
otherwise it is useless to talk of any input - output
relations. Programming languages in genegral have an
undecidable halting problem, so while there are proofs
for particulsr programs that are known toc terminate ,
there can be no general definition of the meanings of
all possible programs in some programming language .
But one can talk of the meaning of a procram even if
it does not terminate, because, for example,- it may
print out intermediate results in a perfectly well-def-
ined manner. o

Secondly, input-output semantics regard all pro-
grams which realise the same function as equivalent,
This is very good for the logician, but the compyter
scientist is more often interested in'the problems of

representation of programs in different programming

languages, or in the differences of implementation
in various systems. These problems are not part of the
logical specification of the programs, but they are
not totally irrelevant in semantics, and they are esp-‘
ecially not irrelevant during the application of sem=

antic theory.

43

Input=output definitions using propositional sem=
antics are non-constructive definitions : rather than
explicitly giving sequences of operations, they only
state the essential constraints that must be satisfied
by all allowable sequences. In the representation and
implementation of programs, on the other hand, the aim
is to specify each operation as definitely as possible.

There are many researchers, hocver, who are mech-
anically minded, and who see propositional meanings as
the only type ultimately satisfactory, so the standing
of propositional meanings should be expected to impr=-

ove eventually.

44

3.4 Functional semantics

Defining a program by functionsl semantics consists
of specifying what partial function the proaram denotes
by defining this functien in terms of the functions
denoted by the subparts of the prooram. Compared with
the computational method (to be discussed in mare de-
tail in section 3.6, but in essence consisting of specify-
ing how the individual computations of the program are
carried out), the functional method is much more accept-
able mathematically : it cives o true mathematical model
of the procramming languacge. This is largely because
the theory of functional application is a branch of
mathemaetics which is reasonably well understoed, and
it is far harder to demonstrate that two machines with
different command sequences produce the same result
than it is to prove that tue functional expressions
represent the same value.

The neneral 2im in using functional mesninos to

define procrams is therefore to recard the wheole pro-

oram as an expressinn = in its most general sense as a
function of ite constituent variables - whose value is

to be found, Because the simplest sort of computer is
at least a sequence of commands, the composition of
. fupections neerds to be considered, and this composition
nives an oxpression which is the (functional) meaning
of the whole prooram. To define, then, a simple pro-
aramming lanouace, the rules for constructing the fun-
ction correspendinno to each command could be given.
This is done, for example, by Naurer(19?2), who regards
these functions as a further product of the ENF grammar
which defines the syntax of the program. (As seen in
section 2.4.2, this extra machinery can be used to
check various context-dependent conditions too).Naufer
(1972) gives a description of parts of Fortran II with
meanings by functions. His subset includes assianments,
arithmetic expressions, IF, GO TO, and DO statements,
and statement sequences. Houever, he does not consider
subroutines or parameters: these require an extended
formalism to represent in functional semantics, and

that found most useful has been the lambda celculus.

45

3.4.,1 The lambda calculus

The lambda czlculus has been extensively investigated
in mathematics (see, e.g. Church,1941) before it wes
introduced for use in defining prooramming semantics,
first in the LISP languaae (licCarthy et al., 1962).
Wegner(1968, sections 3.5 = 3.10) gives a general
introduction to the lambda ceslculus for computer
science.

As a start towards the theoreticzl semantics of
programming languages using the lambda calculus,
Landin(1964a) used it for modelling just the arith-
metic expressions that occur in proorams. That is, he
modeled the three ways cf constructino expressions:

1) by forming lambda-expressions (e.g. in the case
where the expression contains formal parameters, or
where an auxiliary function is being invoked) 3

2) by forming operator-operand cembinations for

infix arithmetic operators j; and 3) by forming lists

of expressions for pasrameter lists. He used the term
"applicetive expression" to describe the general nature
of these constructions, and described an abstract
machine (the "SECD") for evaluating the =zpplicative
expressions in any particular environment.

Since languacges are more than just expressions -
containing assignments, cotos and loops too - it is
more difficult to describe a2 full language usino funct-
ional meanings represented by lambda calculus express-
ions. Landin(1964b,1965) has to extend the calculus to
take imperative features of languages into account.
Jumps are now taken care of by treatinao them as proced-
ure calls - except, however, that this will not work
with an 'unnatural' jump into & compund statement uhere

a 'natural' exit is expected. Consider, for example :

if b then begin ...; lis § ... end else goto 1 ;

This sort of situation is a problem, too, with
other methods of defining Algol-like languages
(see also section 3.6.3.1). It is a case of the tree
structure of the program being seriously disturbed by

by gotos - so Landin(1964h) argues that 'there are some

46

grounds for blaming Algol 60 rather than our model'.

To deal with assignment, both the notion of
applicative expression and the structure of the eval-
uating machine are extended. This is really admitting
that functional meanings are inadequate to describe the
full range nf azssignments and contrnl statements in a
modern procramning language: because one has to build) |
them into a machine, operating imperztively rather than
purely functionally, instead of treating them in 2
unified manner in the lambda calculus of functions,

But the hybrid system is still meaningful, and
is useful for a definition of Algol 60 semantics -
essentially by exhibiting hou te model constructs of
Algol 60 by means of extended applicative expressions.
A formal descriptiaon of the correspondence is given in
Landin(1964b,1965), with an 'abstract Algol'! as an
intermediate step. The formal system ie used as a
basis for a discussion aof alternziives to various
Algol 60 concepis e.q. the different parameter mechan-

isms of call-by-reference es opposed to call-by-name & =value,

and some varistions on the 'oun' concept.

-

Strachey's(1964) uwork on semsntics by funetions
has been developed in parallel with the drnsign of the
prooramming Jlanguace CPL (e.g. see Barron et el.,1963).
Unlike Landin, he does not propnse extending ihe lambda-
calculus formalism, and he does not need to postulate
as an essential part of the basic semantic description
of the language any special 'evaluating mechanism' or
notional computer. These are avoided by first intro-
ducing two basic concepts of the "left-hand value" and
the "right-hand value" of an expression. These corres-
pond to "address" and "value" of an assignment operation
in a conventionzl computer, but they are more genersal,
being useable in other situations such as the specific-
ation of procedure parameters. With these two concepts,
an "abstract store" is defined, which is & function
from left-hand values to right-hand values. In the

mathematical model of & program, s, the abstract store,

is passed as an extra parameter to every operation. This
obviates the need for a separate abstract machine to
maintain the state of variables undergoing assignments: .
by passing the state functions explicitly at each

step, all the overwriting or updating is concentrated
into a single quantity, and, at least in principle, it
is never altered - a wholly neu abstract store is formed
by each updating operstion, without losing the old one.
For example,Strachey(1964) defines an update operator

U for each left~hand value a, and uses

s' = (U(a))(b,s)
to construct a new abstract store s' in which a2 is nou
mapped conto the new richt-heand value b. He then describes
a method for associating (comnositions of) functions
with (sequences of) proqram commends. In the reneral
case, when a locrp structure iz present in the seguence
of commands, the association will lead to a set of
mutually-recure=ive functions. fAs yet this method of
composition is only informelly described, but is
moderately comprehensive, being able tao handle jumps,
block declarations, different modes of celling parameters,
etc. Furthermore, it leads to several mathematical
results that are useful in prooramming theory. fFor
example, if it is mathematicelly possible tp construct
the 'fixed-point' operator for the group of mutually
recursive functions that represent a loop in the
original prooram, then one can remove the recursion,
and hence the loop, resulting in a simpler procram.

One of the main reasons why Strachey's metheod is so
useful is that he incorporates many ideas of structural
and computational sementics (which will be discussed in
section 3.6). For example, his 'abstract store' is
practically the same as the 'state vector' of comput-
ational models, as is the general scheme of representing
functions on and to 'abstract stores'. Herce it is not
surprising that the two methods - being in essence not

too different - share many of their advantages.

48 -

3.5 Semantics based on string rewriting rules

Because in the earlier years syntactic theocry was
much better developed than any theory of semantics, many
people tried using syntactic notions in defining all of
a programming language, including semantics. Although
none of their attempts were eminently successful, I
shall discuss them here for completeness, and because
some definitions still use them: they have string
rewriting rules to describe some syntactic 'preprocessing',
miduay between the pasrsing and the semantic operations.

3.5.1 Preprocessing semantics

Many,if not all, practical programming languages ccntain
certain features which, strictly speaking, are redundant.
The most well knouwn exawple is that of the controlled
loop: it is ecasy to write it out in detail using only
conditional statements and jumps. So easy, that it is
cominon to define the mezning of loop staternents in terms
of a string transformation into the language without
such statements. See, for example, sections 4.6.4.2
and 4.6.4.3 of the Algol 60 report (Naur et al.,1963),
or section 9.2 of the first Algol 68 report (van
WVijngaarden et al.,1968). In Algol 60, then, the
statement

for V = A step B until C do S

i

is mapped onto

V i= A

if (v=C) * sign(B) gt 0 then goto exhausted
S 3

V ¢t= Y+ B 3

goto L1 ;

exhausted:

where V is & variable; A,B, & C are expressions; and S
is a statement (The syntactic rules defining "variable"s,
"expression"s, and "statement"s are included elseuwhere
in the Algol 60 report).

This technique of defining features of a language
by mapping them onto constructs, in a subset, that have
the same meaning, has been used extensively, such as
by van UWijngazrden(1962,1964), Nivat and Nolin(1964),

and Boyle and Grau(1970).

49

In the scheme of van Wijngaarden(1962,1964), a
source program string of Algol 60 is thoroughly pre-
processed to convert it into a program in a related but
simple language. This string rewriting removes comments,
for statements, function designators and type procedures,
actuzl parameters uhich are expressions (in favour of
all perameters being procedure identifiers), conditional
expressions, suitches, lasbels, and poto statements. Algol
60, reduced according to such transformations, is seen
to contain only a few concepts: (foilowing van
Wijngaarden, 1964)

1) some arithmetical and Boolean operations

2) assignment

3) the procedure with or without parameters, call by
value, and call by nawne

4) locality and "own" concept: blocks and declarations.

In his scheme the preprocessing needs only to be done
once, before any of the program's data is processed. An
alternative scheme, espoused by Boyle and Grzu(1970), is
to have dynamic text transformations too. That is, the
decision to apply a rewriting rule to the procram text
may be made on the basis of the actual execution of the
progrsm, Although this complicates the rewriting, it
does allow a purely syntactic treatment of how identifiers
retain their values through the various possibilities
of block and procedure nesting. With dynamic transferm-
ations, therefore, Boyle and Grau are able to follou
closely the rewriting-semantics defined in the Algol 60
report concerning procedure invocations., There, invocations
are defined by 'copy fules': rules which replace the
procedure call by a textual copy of the procedure body,
and which specify the renaming of identifiers if
necessary to avoid clashes. What Boyle and Crau have
done is to formelise these rules for copying and renam-
ing so that they can write doun slgorithms for these run-
time textual transformations. These algorithms can be
applied to blocks as well, to renaine all occurences of
identifiers declared within them, so that the end result
is a program text for interpretation which has no prob-
lems of identifier scopes because each variable used has

an identifier, which they call its 'canonical identifier,'
uniquely its own. In the appendix of their paper (Hoyle
and Grau, 1970) they give an exampie of transforming a
recursive function to cancnical form. Since the

factorial function always terminates for finite input,
only a finite number of rewriting string transformations
are necessary in their example: even for recursive
programs.

Wegner(1970, section 5) slsc discusses the copy rule
model fer identifier accessing, and it has been often used
to define the invocation of procedures and functions (see
for example van Ui jngaarden et al,,1968, section 8.6.2),
following the idea of the Algol 60 report,

Hivat and Nolin(1964) describe another way of defining
Algel 60 programs by transforming them into simpler
programs,., However, they convert them into sequences of
simple assicnments and condition-instructions uwhich use
an explicit program stack: much as any compiler would
do to convert programs of a language that allows recur=
sion into a lou-level langusce to run on a von Neumann-
like machine with linear store, indirect addressing, and all.
And as Boyle and Grau(1970) remerk, since Nivat and
Nolin do not explicitly state the general algorithms
for transforming Algol 60, it has not been shouwn
whether their target language adequately supports the
more difficult aspects of handling identifiers and pro-
cedures etc. Furthermore, Boyle and Grau are not con-
vinced that pushdown stacks with explicit linkages,
indirect addressing, etc., are exactly suitable for a
simple language into which Algol 60 may be transformed
in order to define it: they regard their own work as an
attempt to avoid these (and other) complexities.

Considering again the general technique of string
transformation rules to define the more complicated
parts of a program semantics, the works of van Wi jn-
gaarden et al.,1968.(e.g. section B.6.2: "calls"),
Weaner(1970), and Boyle and Grau(1970) shouw the elegance
of the method at least for the copy rule model, But not
so elegant are some of the (very ingenious) devices van

Wijngaarden(1964) used to remove functions, labels, and

51

jumps etc. For example, I consider to be only sophistry
replacing all jumps uniformly by procedure calls (to
procedures which never return) rather than have one
extra primitive operation,

String transformations can thus lead to readable and
rigorous models of certain aspects of programming language
semantics., Some other methods - such as the computastional
definitions - will try to do more: they would consider
in much more detail the precise operatiocnal steps. A
practical implementation, also, cannot efficiently
" rely on text transformations at run-time - the reuwriting
rules discussed in this section provide only an abstract
model for the operastions underlying all implementations.
So to some extent syntactic models (such as the copy
rule model) and computational models are cemplementary
rather than mutually exclusive. Wegner(1970), for example,
treats the copy rule model as the primary definition,
and then gots on to discuss a variety of equivalent

implementations of that model,

3.5.2 Date~processing by strinc rewriting rules

arkov aluorithms were oriyinally introduced to help
define and investigate problems in computability theory
(FMarkov,1962), but the transformetion scheme present
in them has found several applicetions in defining
programming langusges. This is by regarding the program
as guiding the rewriting of input strings, through all
intermediate results, into output strings: the meaning
of the program is held to be defined by these rewritings.
Applications to semantic theoty were first made by
van Wijngsarden(1962,1964), and Caracciolo(1963,1966),
using an extension of the original Markov algorithms,
In ordinary Markov algorithms there are transformation
rules, the left and right sides of which are sequences
of symbols over some given alphabet. To find out whether
8 rule is applicable to an input sequence of symbols,
the sequence is scanned for the occurence of a subsequence
uhich is identical to the left-hand side of the trans-
formation rule. If there is such a subsequence, its

first occurence is replaced by the richt-hand side of

52

the rule concerned. For example, given the rules

'0+1=1' and '1+1=2', the input string '1+0+1' will, on
applying the first rule, become '1+1', and then '2' with
the second rule being applied.

In the extended formalism, the transformation rules
contain nct only terminal symbols, but also linguistic
variables. Van Uijngoarden(1964) uses Backus notation
to represent these varisbles, and so he can define
rules such as '<diD+ Wi2®0 = ¢ui2y»<di1»', and
'Luity+=~<ui?2y = <«uily =<ui2>y', There is a corresponding
extension to the algorithm for applying such rules, in
conjunction with production rules to define which values
are possible for the variables. By using a large number
of these extended reuriting rules, with suitable variables,
one can define the rewuriting=semantics of date-processing
operations. For example, van Wijngaarden(1964) gives 44
rules for the addition and subtraction of integers, es

strings of decimgl digits of arbitary length.

03

De Bakker(1969) describes how the ideas of van Wijn=-
gaarden(1964) were used as the base for de Bakker(1967):
"An almost complete definition of- Algol 60 was given
(the only feature not treated being real arithmetic),
consisting of about 800 transformation rules. The meaning
of an Algol 60 proqgram is determined by the way in
which it is transformed by these rules. Here another
extension of the Markov algorithm scheme not yet dis-
cussed is of importance, viz.. the poséibility of having
a dynamically growing list of rules. The executicen of
a particular Algol 60 program will lead to the extension
of the list of language~defining rules with rules which
reflect the meaning of this specific program. For
instance, the occurence of the assignment statement
a t= 3 in a proctram causes the creation of a new rule
a = 3 (omitting scme details on locality), which will
be applied each time the vealue of a is needed subsequ-
ently in the execution of the procram. De Bakker(1967)
also gives a precise definition of the formal system
used, illustrated by several examples, and an imple-
mentation of an abstract machine for interpreting it."
There is the meta-rule, incorporated in the abstract
machine, that if two or more rules are applicable at
a given stage, then the rule nearest the end of the rule-list
is used. Thus the varisble list of rules is analogous
toc a machine's stack of values.
Overall, because the basic definition method is so
simple, the total definiticn of a languace like Algol &0
is very lonouwinded, the treatment of some features ~ such
as yo to statements, and identifier localities - requiring
some ingenuity. And there must be an easier way than
having 800 transformation rules, the list of which must
be searched at each step.

' 54

3.6 Semantics with structures and computations on structures

This type of meening is the one most coften used in
computer science. For computers are very much concerned
with representations, structures, and operations on
structures. On the whole, one is interested in formal-
isms which closely model, even if abstractly, the style
of computation of actual digital computers, and in
the detailed study of relations among representations
and implementations.

3.6,1 Information structures

The primary concept in structural semantics is
that of "information structure", or "state vector" :
these are objects esed to describe the state of a mach-
ine (abstract or actual) at a given instant in the
execution of its program. Fellowing lcCarthy(1962),
one says that 'the meaning of a program is defined by
its effect on the state vector'. Faurer(1972) calls
this assertion the "state vector thesis", and formulates
it, with respect to dicitzl computers, as follous:

'There exists for each program a set V of variables,
whose values at sny stage of the computation depend
only on their values a2t the previous stagej and the
entire meaning of the program is determined if we know
its effect f, where, if I is an assignment of some
legal value to each variable in V before the program
starts, f(I) is the corresponding assignment after
the program has finished.'

This model has been applied by McCarthy(1964) to
the description of a subset of Algol, and to a proof of
correctness of a compiler for a simple class of arith-
metic expressions (ficCarthy and Painter, 1967).

When structural meanings are compared with other
types, it is seen that they are the most general type
which can be represented externally. For example, one
can write doun a tree, lattice, network, vector, or
any other sort of structure, and define meanings by
relations within, and transformations of, this structure.

In mathematical logic, these types of structural meanings

55

are called "intentional", as against "extensional", That
is, meanings are implicit as relations rather than
explicit as true-or-false propositions. Although formal
logic proof technigues cannot be readily applied to
them, structural meanings have many practical advantages.
Because the meaning of a particular feature is largely
tacit - essentially being its relation to its context -
with careful design it is much easier for us to under-
stand the relevance of that feature : that part of its
meaning which is given explicitly., For to describe its
meaning using, say, propositional measnings, the context,
i.e. the state of the program, must be explicitly repre~
sented as a precondition within each propositional
formula. Proofs, both manual and automatic, would
tend to be verbose and longuinded, and would easily
obscure the relevance of the particular feature being
considered.

Weoner(1970,1971) formalises these ideas of inform-
ation structures and compuiations as fcllows:

An information structure model is a triple H:(I,IU,F)

where I is a counteble set of informaticn structures
(structured states), IC, a subset of 1, is a set of
initial representations, and F is a finitely represent-
able set of unary operations (primitive instructions)
whose domain and range is a subset of I.

Most concern is with the special case of

A deterministic (sequential) infermation structure

model is one which for all Ij in I has at most one
element f in F applicable to I..
A computotion in 'a deterministic information structure

model M = (I,ID,F) is a sequence 10,11, «es Of elements
of I such that I, is in 1%, end for j=0,1, ...

Ij+1 = f(Ij) for some f in F.

A terminating computstion is a computation which,

for some integer n, generates an In to which no element
f in F is applicable.

A complete programming language definition requires-
the sets ID and I of informatioﬁ structures to be specified
in a 'syntactic metalanguage', and the set F of primitive
instructions toc be specified in the 'semantic metalanguage'.
Syntactic definition mechanisms such as the BNF notation
of the Alcol 60 report in fact only accurately define

the set IU of initial representations, where the syntax
tree of the program is regarded. as the input, along

with any cdata, to the computation.-0On the other hand,
definitions such as those in the Vienna Definition
Language VDL (Lucas,1968 , Wegner,1972), which are

more oriented toward semantics, rather than just syntax,
specify both the set 10 of initial representations and
the set I of computational states, usinog the one meta-
language. The VDL metalzncuape was specislly designed

to specify tree structures of the same style as the
'abstract syntax' described in sections 2.4.3ff. When
applied to ALLX, there is the VDL description of all
sbstract syntaxes (initial representations) in Appendix
C, and of all computationzl states in Appendix H. This
unity of structural description metalancuages is one of
the great advantaces of programming lancuage definitions
using VOL, and makes the definition of a modern, complex
lanquage such as PL/ I (Alber et al.,1969, Walk et al.,
1969) someuhat less difficult to understand., Semantic
lencueges will be discussed in the next section, but

I remark here that one semantic metalanguage is used

in both the syntactic translation (from concrete to
absiract syntax) and the semantic computations. Compare,
for example, Appendices D and L, which are the VDL
definition of the translation and interpretation phases,

respectively,

57

3.6.2 Semantic metalanguaces

Semarntic metalanguages are those in which the basic
cperations are specified: these are the operations 'F!
of above that are the primitive instructions for trans-
forming the current information structure into its
successor, and so defining the computstional semantics
of the current section of the prooram being executed by

means of 1its effect on the stzte structure,

3.6.2.1 The Vienna Definition Language

The Vienna Definition Language (VDL) specifies the
state transitions in F in terms of conditional express~
ions of the form

f = py =3, 5Py =>a,; oo i P> a,

where for i=1,2,...5,n; p. specifies a predicate to be

satisfied by the currentlstate 1, and a; specifies the
state transition if P is the first true predicate of
the conditional expression: for the first i, Py implies
1' = ai(I).

The actions a, are gither macreo 'calls' to a sequence
of other such conditionals f (these calls having param-
eters usually), or are one of a small number of primitive
operations which return values, and may, as a 'side'
effect, modify other components of the state. The macro
instructions may be viewed as syntactic devices for
easily grouping frequently used seguences of operations,
such as procedure calls etc., into the tree structure,
whereas the value-returning instructions perform the
basic structural transformations which constitute the
semantics in terms of the computation at the level of
expression evaluation, assignment, storage allocation,
etc. To construct and modify the tree structures -
which are the heart of a VDL definition - there are used
the ug and u operators, respectively, as has been

described in section 2.4.3.1.

58

Having a metalanguace with the ccope and precision
of VDL was a decided step forward in semantic theory.
0f the long-range goals mentioned in section 3.1, the
invention of VDL has helped in work touard many of
them. Allen(1972) has considered the use of computational
definitions in investigating the properties of specific
programs and of specific lanquage constructs in their
contexts, For this goal, he considers axiomatic definilions
to be more useful than abstract interpreters, so he
tries to derive exact axioms about parts of the state
structure from the algorithmic model. These axioms,
which are independent of any implementation model, are
combined with further propositions about a given program
and then used in.proving more about the program. His
work uses propositional semantics to talk about the
particular program, but computationzl semantics is the
standard startino point for defining all pregrams in
a lancuage,

Concerning the theory of implementation, having an
abstract interpreter written in VDL at least indicates
some practicability of implementstion, although an
abstract definition can take liberties and, for example,
include implicit searches (e.g. rule 120 in Appendix 1),
or other schemes inefficient in prasctice: e.g. the idea
of stacking the whole environment and ccntrol trees in
the 'dump' component. e should remember, however, that
the abstract interpreter is mdre often only the formsal
standard: although it is a model of a possible implemen=~
tation, usually it is the reference for the correctness
of other implementation models. Thus Lucas(1968)
considers another realisation of the PL/I block concept,
and proves its eguivalence to that of the standard
(Walk et al.,1969). Wegner(1972, section 5) and Jones
and Lucas(1971) also consider proofs of interpreter
equivalence.

Another aspect of implementation theory is considered
by Lucas(1970). While VDL uses the "tree" as its basic
structure, an implementation can often well use structures
such as stacks, directories, storage arrays, etc. Lucas
(1970) looks at these various 'softuare devices', as he
calls them, and considers whether they could be usefully

59

included as primitives in the definiticnal method. It

is hoped thzst these formal studies of machine structures
(see section 3.6.3.1, and also Bekic and Walk,1971)

will help in the mechanised design of implementations
and perhaps of compilers. '

Houwever,VDL definitions are not the ultimate in
semantic descriptions. One immediate, and usually over-
riding, objection is that the Vienna Cefinition language
is very difficult to read and understand. The VDL
definition of PL/I is not widely known for its elegance,
clarity, rezadebility and douwn-to~earth sanity. This
problem has been discussed before, in section 2.6, and
it was feound that one of the difficulties with VDL is
that it violates whet may be called a 'principle of
proportional understanding'. That is, it requires a
lot of weork in ceming to know the VDL scheme and the
structures it wvorks with, before even the simplest

guestion about a programs meaning cen be ansuered.

3.6.2.2 The BASIS/1 definition of PL/1 for ECNMA/ANSI,

To try to overcome this major deficiency of VDL
definiticns, a more recent definition of PL/I (the
ECMA/ANST BASIS/1 definition,version 12, July 1974)
has used an English-like metalancuage in which to
urite the algorithme etc. for the semantics. The
cperations are expressed in a semi-formal programming
language vhich uses the grammatical flexibility of
ordinary English prose, uhile at the same time attaching
preciss measning to certain words and phrases, in order
that the flow of control and the tree manipulations be
well defined. For example, the instructions "replace",
"let","append","attach", and "delete" have specified
computational meanings for tree operations, and
instructions such as "perform", "go to", "if", "for each",
and "case" etc., are used to direct the flow of control
along the steps constituting the defined operations
(see section 1.2.3 of the BASIS/1-12 document for their
exact specifications).

It may appear thazt using English as a semantic meta-
language is a retrograde step in progressing towards
completely formalised language definitions. Certainly

60

such definitions cannot be mechanically checked,
coenverted, implemented, or otherwise asutomatically
processed, but we should remember that no-one has yet
succeeded in mechanically processing the definition of
a whole programming language written in any other
semantic metalanguage either. To date, nearly 2ll uses
of a formal definition have involved pessing through
personal knowledge before they can be checked, implemen-
ted, etc. To the formalist, this merely indicates the
primitive state of semantic theory, but to those who
want to read, understand, and use the definition in
practical ways it indicates that some compromise of
complete formalisation would be profitable. Unlike the
formalists, they do not see unbearable chaos or vagueness
necessarily following this movej; indeed, considerable
precision is attainable, as in the BASIS/1 method
introduced above, and used to define ALEX in Appendices
J,K, and L. - This precision is aided by the fact that
the operations work on precisely defined objects (a
completely fourmal notation is used to describe trees

in accordance with their syntactic definitions e.q.

as in Appendices J and K) and because the certain uwords
and phrases mentioned earlier have precisely defined
structural meanings,. Perhaps the resulting definitions

should be called 'semi-formal.,'!

3.6.2.3 The Algol 66 method

Another definition which uses a semi-formal English
metalanguage is that of the Algol 68 report (van Wijn=-
gaarden et al.,1968,1974). The degree of formality in
the English of this report is much the same as in the
BASIS/1 definition of PL/I for ECMA/ANSI, with a large
number of words and phrases being specifically defined:
sunch as "environ","notion", "proto-", "meta-", and
"hyper-notions", "designate", "produce", "elaborate",
"envelop", and many others. However, for two reasons
pricipally, the BASIS/1 definition is both more
precise and more readable than the 'semantics' sections
of the Algol 68 report. More precise, because as well
as having 2 formally defined syntactic structure to

work from (i.e. abstract syntax, or IU of section 3.6.1),

the set of a2ll possible machine states (all the I values
of section 3.6.2) is also formally defined (e.g. see
Appendix K for the set of machine states allowable during
the interpretation of ALEX programs). The Algol 68 report,
on the other hand, only describes a hypothetical
machine and its structures using a semi-formal English,
with concepts such as "objects", "names", "values",
"to refer to", etc., for data structures, and "“scopes",
"locales", "environs", and "scenes" for program structures.
While such natural-languasge descriptions ere desire-
able and useful when a new abstract model is being
intreduced, it would help the definition in many ways
if these computer structures wvere formally described as
well. Such descriptions are not difficult because they
are usually small compered with the later full semantic
specifications, and because large data structures are
becoming common in programming.

Secondly, the BASIS/1 definition is more readable
than the Algel 68 report because it is set ocut more
like a computer program. Both definitions intend to
tive rigorous algorithms for the interpretation cof
programs along with their data, but the former method
ocives a much more explicit exposition of ihese algorithms,
It uses computer-prooramming-like features, such as
subroutine operations with pezrameters and values being
returned, and its layout of steps and cases within oper-
ations = while similar in some ways to that of the Algol

68 report -~ uses less English, and is easier to follou.

62

3.6.,2.4 Linked=Forest Manipulation Systems

as semantic metalanaqueaoes

In all of the computational-metalanguages described
above, in section 3.6.2, one has had the capacity of
defining arbitarily complicated functions, transform-.
ations, etc., on the information structures, This is
because these semantic metalanguages are organised very
much like computer programs, with no restricticn on the
complexity of tests, expressions, loops and procedure
calls and so on that can be included. This pouer and
complexity is almost certainly necessary uhen defining
an intricate and epic language such as PL/I (e.g. the
BASIS and VDL definitions), and to a lesser extent
when defining Algol 68 (which is much more cleanly
organised). Houwever, our example languzge ALEX is
simpler still, and it is possible to define the inform-
tion=-structure operations of its semantics using a meta-
language without the capacity for arbitarily complicated
functions,

The metalangueoe in question is Culfk®s 'linked-
forest manipulation systems' (LFI'S), which have already
been discussed, with respsect to defining context-depend-
encies in the syntax, in section 2.4.3.2. In his 1973
paper, Culik gives a LFMS definition of his dialect ALG
of Algol 60, and this example has been followed where
possible in the LFMS definition of ALEX semantics in
Appendix N, This means that his scheme of handling
identifiers, declarations, and data cells has been
repeated: compared with the BASIS and VDL definitions,
in this abstract syntax there are no declarations to be
executed, for the translator has already made decl=-
arations of the procram into 'cells' for the abstract
syntax and for the machine execution, Variables are
'‘cell-designators' (or 'parameter-designators'), so
they link directly to their values, without the need
for environment or denotation directories of the VDL,
and subsequently of the BASIS, definition. This simplifies
many aspects - variables in function arcuments, for

example, keep pointing to their proper values even if

63 -

new variables with the same name are declared - but at
the cost of destroying any distinction between sbstract
syntax, which is usually read-only, and machine struct-
ure, which can be changed at will. One structure is now
used throughout the executicn, so & procedure-call, for
example, copies the procedure Sody and then adds it to
thie structure (Appendix N rule L16), and then one must
carefully provide for selective deletion at exit (rule
L24) so that the call statement can be reused. There is
no simple guarantee of the integrity of the program: in
complete contrast to the policy of the BASIS definition,
according to which the abstract syntax is never changed,
never copied even: only refered to by 'designators' in
the program-state . The VDL definition does copy the
syntax, because it does not have designators, only sel-
ectors, so it cennot have pointers to an arbitary stat-
ement, only to an arbitary immediate component of scme
given ncde (cf. the discussion in section 2.4.3.2).

In form, a LFMS definition, e.g. of Appendix N,
looks much like a Farkov algorithm (c¢f. section 3.5) :
it is a list of transformation rules 's -~ t' uhere s &
t are arbitary sequences of symbols standing for types
of nodes and their substructures, however, rather than
strings,., Whenever the information structure has a sequ=-
ence 's', its first occcurence is replaced by the seque=-
nce of structures 't' (both sequences have the same number
of structures in a valid rule). Rules can be selected
nondeterministically, but a system of control words is
employed to mostly tame the nondeterminism: words such
as "EXEC" or "END" or "VAL" may be dynamically attached
to any node, and the rules can test for their presence. .
Also an LFMS can use the same mechanism for sequencing
the application of rules as is used in Rosenkrantz's
(1969) 'Programmed Grammars' (section 2.3.3), but in
the ALEX semantic definition this is only employed in
rule L2 (Appendix N), to make sure the computation ends
when the program has exited. These two measures do not
eliminate all nondeterminism: it remains, for example ,
in rules L17 and L29, where parameters, and parts of

expressions, respectively, are evaluated in parallel.

64 .

The power of an LFMS definition, compared with the
Markov algorithms of section 3.5, is greatly enhanced
by the fact that an LFINS operates on trees (and 'forests',
which are set of trees), rather then linear sequences. And
furthermore these are linked trees and forests : nodes
can be 'designators' which point across the tree to
designate any other node. Thus the tree structures ,
with designators, are very similar to those of the BASIS
definition ., But the algorithms which operate on the
trees are quite different in style: whereas the BASIS
definition resembles a computer program, with local
variables and strict control of the flow of calculat-
ions, the LFMS definition uses a kind of free-format
structure matching. lioat of the time this structure
matching, however, is straioghtforuard because usually
there is only one "EXEC" control word in the tree, and
instructione require this control word to begin. Any
other nodes are reached from the EXEC~labeled node, e.q.
by desicgnators, so there is no need for a very ceneral
set of structure-mateching slcorithms to interpret LFMS
definitions,
As an example of an LFMNS rule, consider rule L21 of
Appendix N
L21 uariable:parameter1—designator
& parameterq: hame,type,argument=expression -
expression-copy
The left=hand side of this rule is the precondition:
here, a 'variable' is required which is a 'parameter'
designator, the parameter designated having as components
a "name" string, a 'type', and an 'argument' (identically
an 'expression')., If this precondition is satisfied, this
means that the "variable" node is replaced by a copy of
the expression, As part of the ALEX definition, the rule
means that a variable designating a call=by~name param-
eter representing an expression is replaced in its
context by a copy of that expression (this closely
follows the copy-rule model for call-by-name parameters).
Another example is the rule
L14 EXEC coto-stmt: label1-designator
& label1: 5tmt2—designator -3
goto-—stmt:label1 -designator & EXEC stmt2

65

In the ALEX scheme, the control word "EXECY" is the
precondition for a statement's starting execution, just
as "END" is used to signal the completion of a state-
ment so its successor can be EXECuted (e.g. rule L6),
and as "VAL(x)" is the control word indicating that
the subsumed expression has been evaluated to yield
the value x. Hence the rule above transfers control
(transfers EXEC) from the goto-statement to the state-
ment designated by the label-value denoted by the label
of the goto-statement, and leaves that statement in its
normal state, ready for subsequent use. This rule,
however, does not have the same effects as the corres-
ponding rules of the VDL and BASIS definitions. While
it is perfect for "ocal' gotos, it gives very interesting
results wuhen applied to jumps uhich lead cutside the
current bleck or procedure. This is largely dictated by
our inability to define more complex algorithms in the
LFRS semantic metalancuage., Without perhaps making the
whole definition very much more complicated, it is
difficult to define the routines required for a pro-
cedure to delete itself when it exits,and also to
delete any block copies between itself and the block
centaining the destinaticn label. In the existing
scheme it is the callino block which deletes the called
procedure; the called procedure cannot delete itself,
without the LFIRS formalism being extended to allou
more general structure-matching operations (e.g. notation
to represent a variable tree~depth in the precondition

of a rule).

3,63 Hypothetical machines

Many fermal definitions of programming lanquages use
some kind of (hypothetical) machine, to define construct-
ively the detsiled effects of a program in that language.
For example, there are the definitions of PL/I (Alber
et al.,1969 and ECMA/ANSI,1974), Algol 68 (van Wijn=-
gearden et al,,1968,1974), Basic (Lee,1972), Euler
(Wirth and Weber,1966), and a subset of Fortran (Maurer,
1972). These hypothetical machines, as well as any
compilers or interpreters using them, should be more
abstract than reslistic: the definitions should not be
involved with the many details of concrete machines:
these are irrelevant to the original lancuage because
one wants the final definition to accurately reflect
enly that language, and not a host of other contingent
details of some particular machine. This means that,
whatever level the machine is programmed at, an inter-
preter, for example, should be independent of the idic~
syncrasies of particular real machines if it is to be
put foruward as a standard definition. Garwick(1964)
proposed defining lanquages by their compilers, but even
so his "MNIC" model used an assembly-=language of very
bland characteristics (his ideas, however, did not
meet with a great deal of enthusiasm: partly for
reasons similar to those in section 3.2.2).

A definiticn with a hypothetical machine cannct be
regarded as complete unless some reasonably precise
description of that machine is given too, otheruise the
difficult problem of defining the basic actions is only
postponed, without a solution being properly attempted.
Of course, we must remember that any formal system
has primitives that cannot be defined by the system
and so must be specified elsewhere. And there are
degrees of postponement: as the primitives are made
more basic, the importance for the whole definition
of specifying them formally, rather than intuitively,
decreaseas,

The amount of deteil given to define a2 hypothetical
machine has varied widely. Normally one would not expect

By -

a very extensive formal definition for it, following
the principle that 'the metalanguage should be simpler
than the language' (cf. section 3.2). It all depends

on how novel the machine (or metal:nquage) is, and houw
much work one is prepared to put into the whole def=-
inition., For example, the machine used by Wirth and
Weber(1966) for defining Euler is sufficiently simple
that it might be considered self-explanatory, but the
abstract machine for supporting Vienna Definition
Language pregrams, on the other hand, had meny unconven-
tional features, and in Lucas(1968) a substantial, if
only semi-formal, description is given for the machine's
representation and operation. However, Wegner(1972) does
give a definition of VDL in VUDL: there is then a kind

of consistency check on any actuzl interpretation of

the VDL primitives.

3.6.3:1 Maehine structures

What kinds of structures are built into the machine
to represent states during the program's execution or
interpretation? Is the machine essentially cellular,
linear, tree-~like, or does it support arbitary structures?
Ideally these should match the kinds available in the
language being defined: so that, for example, the Basic
definition of Lee(1972) presupposes a linear storaoe,
whereas the Fortran definition of Faurer(1972) needs
only cellular storage (he does not include arrays in his
subset); and the more complex Algol 68 uses genersl
'objects', 'multiple values!, 'structured values',
and 'names' in its hypothetical machine, so that
general structures can be constructed however the
users' proorams require.

There is not always, however, a perfect match. For
example, the PL/I machine of the UDL definition (Alber
et al.,1969), though essentially tree-structured, was
required to support "goto" operations, and handle
array attributes such as "aligned", "connected", and
other archaic legacies of the IBM 360 architecture.

The definition had preat difficulty in dealing with

these conditions = which are essentially linear and not
hierarchical ~ within the architecture of a tree-
structured machine. It got around the problem by giving
only several axioms which must be satisfied by any
implementation, and leaving cpen the details after
that. The definition then makes 'unknown' in the
standard the result of many operations, for example,
those on arrays declared with the "defined" construct
(cf. the "equivalence" construct in Fortran), even for
simple cases that would give the same result in 2ll
implementations, For example, the PL/I segment

DECLARE A(10),

C(3) DEFINED A(5);

C=6 %
results, according tollalk et al.(1969), in all of the
array "A" being made "unknown", following the rule
that "since no relationships between parts of value
representations are defined, an assignment simply makes
all those parts unknoun which are not independent of
the part to which the assignment is made (with the
exception of this part itself)." (Alber et al.,1969,
section 4.2.2). In the zbove example, this means
that since no relations betwueen the "A"™ and "C" values
are defined in the standard definition, the assign-
ment makes all the "A" values "unknoun® except those
wvhich happen to be identical to “"C" values.

Goto operations are another example of a mismatch
betueen the structures implied by the language and
those supported by a machine such as that of VDL
definitions. In fact, many would argue against the
use of goto~statements in well structured programs
because they destroy the correspondence betueen the
linguistic structure of the program and the dynamic
structure of the computation : these are exactly the
same reasons why goto-operations are difficult to
support in a tree~structured machine. For such a machine,
the tree structure implies that the effect of any
particular node is defined in terms of the effects of
the subphrases of that node: this is the usual structure

69

for VDL definitions (see for example Appendices C and
I). However, as Lucas(18970) puts it:
"Goto statements have the follouwing consequence:
Parts of an expansion may become irrelevant if one
of the subphrases happens to be a goto statement. One
possibility to make an expansion irrelevant is to delete
it. In order to be able toc show the deletions, the parts
potentially to be deleted must be parts of the state.
Thus, we keep copies of program-parts in the state for
the sole purpose of being able to delete them." (p45)
RLEX does have goto statements similarly, and to
manage them I have used a schemne closely following the
PL/1 definition, of which Lucas was talking just above,
and which is described in Alber et al.(1969, section 2.6).
According to the scheme, each block component contains
a tree structure “"control information" (see specificat-
ions S1 & S4 of Appendix H), each level of uhich con-
tains a copy of the program text, copied from the
abstract syntax, as well as an index indicating which
statement or group within this program segment is
currently active. A goto statement, even a local one,
will involve trimming this treec sufficiently (rule
120: 'goto=-2' of Appendix I) so that it cen be built
up again (I22: 'goto-3') to point to the destination
statement somewuhere else in this block (123: 'goto-4').
In this way, one can support even the difficult case
mentioned earlier (section 3.4.1) of
if b then becin ...; 1:s 3 ... &nd else goto 1

Here the 'building up' of the "control information"
is into the becgin-block, so that the statement s is
reached. This building up involves cdpying the text
for that block, and an index to s, into the "control
information" tree., One cannot simply point the program
control to s because one must arrange for a normal flou
of control out of these levels of statement nesting
that have been built up.

Ideally, the operation of atree-structured machine
should follou the tree structure of the abstract syntax

70

of its program, and there should need only be one read-
only copy of this program since high-level=language

programs should not alter themselves. The mismatch of
structures resulting from having to support goto operat-
ions on such machines means that there have to be copies

of the program in the dynamic machine states, where they

cen be changed or deleted, etc., and that one cannot have

an elenant interpreter operating with simple recursive
functions. The EPL interpreter of Lucas et el.(1968) does not
support gotos, and its flow of control is much more simple
than that of the ALEX interpreter in Appendix I, because

it can use recursive functions everyuhere, even within
conditional statements such as the example above: it has

no goto statements to break the match betuween the structures

of the machine and of its programs.

(|

3.7 Conhclusion

The semantics found in this thesis to be most suitable,
in terms of the aims listed in chapter 1, for defining
full-scale programming languages is that using structures
and computations on structures. For these structural
meanings a number of semantic metalanguages have been
devised, the most comprehensive being the Vienna Definition
Language, the languacge of the Algol 68 reports, and the
language of the BASIS/1 definition of PL/I. The Vienna
Definition Language is the most mathematically oriented
of the three, striving to represent all structures,
functions, and primitive operations by an alcebraic ncotation.
While still regerding rigour as extremely important, the
later two languages aim also at readability: they use
English much more, but they do give certain words and
phrases precise computational meanings. Compzring these
two, I consider, for reasons discussed in section 3.6.2.3,
that the semi-formal English of the BASIS/1 definiticn is
to be prefered, where precision and readability are concerned,
to that of the Algol 6B reports.

WUhere the emphesis is not on such comprehensive
languages, and one does not have to define arbitarily
complicated functions and conditions, the Linked-Forest
Manipulation Systems can give concise, even elegant, defin-
itions, e.g. of ALEX semantics in Appendix N. Note that
this language does not have arrays, loop statenents, or
label expressions, neither does it have any features requir-
ing intricate or specialised semantics such as formatted
input-output or mathematical library functions etc., and
in Appendix N this simplicity of language is well matched
to the capabilities of the Linked-Forest fanipulation
Systems.

The other metalanguages for semantics I have not found
to be so successful for the situations considered in this
study. Natural semantics, for example those in natural
languaces or in compilers on real computers, although
perhaps where our ideas start and where implementations
end, are not the most suitable means for formal definitions.
This is because one would prefer definitions which are

complete, precise, and readable, and other metalanguages,

72

especially those mentioned earlier in this section, are
improvements in most of these respects.

The other types of semantics do not have the full pouer
of computational semantics, and have correspondingly
restricted applications. Propositional semantics is most
useful for defining the effects of particular programs
(i.e. not the set of all programs of some language), and
even then only certain classes of programs (e.g. programs
which can be proved to terminate) can be properly treated.
The range of applicability, though, is being increased by
further research, so one should not be bound too much by
one's first impressions.

Pure functional semantics is another type not suitable for
ing certain classes of programs: those with unavoidable
assignments or transfer statements. However, wunctional
semantics can be extended, e.g. as in Strachey(1964) or in
Aiello et al.(1974), to include these more cumputational
features. But then one finds that, in effect, one is using
coemputational semantics, and one benefits accordingly. There
is not a sharp distinction between functional and computat-
ional semantics in this case: the same written expression,
e.g. in the lambda calculus, can be interpreted either
computationally or functionally.

Semantics based on string rewriting rules can only
with great difficulty be extended to include z1l1 the
constructions of a programming language such as Algol 60.
They are most useful for defining, by syntactic preprocessing,
certain features of a lanquage in terms of more basic
statements: such as the definition in the Algol 60 report
of “"for" statements, or the various parameter mechanisms.
For nearly all other aspects of programming lancouages, the
other types of semantics, especially the structural semantics,
have been found, in this study, to be better in terms of

the criteria adopted for their comparison.

def ir

S

References

AIELLO, L. et al.(1974)
The semantics of Pascal in LCF., AI memo 221, Stanford University.

ALBER, K. et al.(1969)
Informal introduction to the abstract syntax and inter-

pretation of PL/I. TR 25.099 IBf Lab. Vienna.

ALLEN, C.D.(1972)
Derivation of axiomatic definitions of programming languages
from algorithmic definitions. S1CPLAN notices 7,1 pp15-26.

ASHCRCOFT, E.A.(1972)
Program correctness methods and languesce definition.

SIGPLAN notices 7,1 pp51-57.

ASHCROFT, E.A. and Z. Manna(1971)
Formalization of properties of parallel programs.
in fiachine Intelligence 6, Edinburgh University Press,

BAKER, J.L.(1972)
Grammars with structured vocabulary. Information and Control

20 pp351-395,

de BAKKER, J.u.(1967)
Formal definition of programming languages, Mathematical
Center Tracts Vol. 16, Mathematisch Centrum, Amsterdam.

de GAKKER, J.W.(1969)
Semantics of programming languaces. pp173-227 in Tou(ed.)
Advances in Information Systems Science, Vol 2, Plenum P,,1969,.

BARRON, D.U.(1963)
The main features of CPL. Computer Journal 6 pp134-143,

BAUER, H.R. et al.(1968)
Algol W language description. Stanford University Rep. CS 110.

BEKIC, H. and K. Walk(1971)
Formalization of storage properties. pp28-61 in Engeler(ed.)
Symposium on Semantics of Programming Languages, Springer-
Verlag, 1971. |

BOYLE, M. and A. Grau(1970)
An algorithmic semantics for Algol 60 identifier denotation.

74

CARACCIOLO, A.(1963)
Some remarks on the syntax of symbolic programming
languages, C. ACM. 6,8 pp456-460.

CARACCIOLO, A.{(1966)
Generalized lMarkov algorithms and automata. pp115-130 in
Automata Theory, E.R. Caianiello(ed.), Academic P.,1966.

CHURCH, A.(1941)
The calculi of lambds~conversion. Ann. PFMath. Stud., No. 6,

Princeton Univ. Press, 1941,1951.

cuLfk, K.(1973)
A model fer the formal definition of programming langquages.
Int. J. Computer Mathematics 3 pp315=345,
DUNCAN, F.G.(1964)
Our ultimate metalanguage. pp295-299 in Steel(ed.)(1966)
ECMA/ANST (1974)
The BASIS/1 definition of PL/I. Versicn 12, July 1974,
FELDMAN, J. and D. Gries(1968)
Translator writing systems. C. ACPM. 11 pp77-113.

FLOYD, R.W.(1967)
Assigning meanings to programs. pp19-32 in Proc, of
Symposium in Applied PMath. Vol 19, Amer. Math, Soc.

BARWICK, J.V.(1964)
The definition of programming languages by their compilers.
pp139-147 in Steel(ed.)(1966)

GREIBACH, S. and J. Hopcroft(1969)
Scattered context grammars. J. Comp. Syst. Sci. 3 pp233-247.

HOARE, C.A.R.(1969)
An axiomatic basis for computer programming., C.ACM. 12 pp576-580.

HOARE, C.A.R.(1971a)
Procedures and parameters: An axicmatic approach.
pp102-116 in Engeler(ed.)(1971).

HOARE, C.A.R.(1971b)
Proof of a program: FIND. C. ACM. 14,1 pp39-45,

I18M(1570) .
PL/I language specifications. Form no, GY33-6003-2,

HOPCROFT, J.E. and J.D. Ullman(1969)
Formal languages and their relation to automata.

Addison-Wesley, Reading, Nass.,196§.

JONES, C.B. and P. Lucas(1971)
Proving correctness of implementation techniques.

pp178-211 in Enceler(ed.)(1971).

KNUTH, D.E.(1968)
Semantics of context-free languages. Math, Syst. Theory

2,2 pp127-145,

KNUTH, D:E.(1971)

Examples of formal semantics. pp212-235 in Engeler(ed.)(1971).

KOSTER, C.H.A.(1969)
Syntax—~directed parsing of Algol 68 programs.
pp61-69 in Peck(ed.) Proc. Informal Conf. on Algol 68
Implementation, Univ, Brtish Columbia, 1969,

KOSTER, C.H.A.(1971a)
Affix grammars. pp95-109 in Peck(ed.) Algol 68 Implementation,

North-Holland,1971.

KOSTER, C.H.A.(1971b)
A compiler-compiler. MR 127/71, Mathematisch Centrum, Amsterdam.

LANDIN, P.3.(1964a)
The mechanical evaluation of expressions.
Computer Journal 6,4 pp308=320,

LANDIN, P.J.(1964b)
A formal description of Algol 60. pp266-294 in Steel(ed.)(1966).

LANDIN, P.J.(1965)
A correspondence between Algol 60 and Church's lambda notation,

C. ACM. Vol 8, nos. 2 pp89-101, 3 pp158-165.,

LEDGARD, H.F.(1974)
Production Systems: or,

LEE, J.A.N.(1972)
The formal definition of the BASIC language.

Can we do better than BNF?

Computer Journal 15,1 pp37-41.

LONDON, R.(1971)
Experience with Inductive Assertions for proving programs

correct. pp236=251 in Engeler(ed.)(1571).

76

LONDON, R.(1972)
A correctness proof of the Fisher-Galler algorithm using
Inductive Assertions. pp125-135 in Rustin(ed.)(1972).
LLCAS, P.(1968)
Two constructive realizations of the block concept, and
their equivalence, TR 25,085 IBM Lab. Viennza.
LUCAS,P.(1970)
On the semantics of programming languaces and softuare devices.
pp41-57 in Rustin(ed.)(1972).
LUCAS, P, et al.(1968)
Method and notation for the formal definition of programming
languages. TR 25.0€87 IBM Lab., Vienna.
McCARTHY, J.(1962)
Towards a mathematical science of computation., IFIP 1962 pp21-28.
McCARTHY, J.(1964)
A formal description of a subset of Alcol. pp1-12 in Steel(1966).
McCARTHY, J. et al.(1962)
The LISP 1.5 programming manual. MIT Press.
MecCARTHY, J. and J. Painter(1967)
Correctness of a compiler for arithmetic expressions.
in Proc. of Symposium in Applied Math. Vol 19, #Amer. Math. Soc.,
MANNA, Z.(1969)
Properties of pregrams and the first-order predicate calculus.
MANNA, Z.(1970)
The correctness of nondeterministic programs. Art. Intell. J
1 pp1=26.
FANNA, Z.(1971)
lathematical theory of partial correctness.
pp252-269 in Engeler(ed.)(1971).

MANNA, Z. and A. Pnueli(1970)
Formalization of properties of functional programs.

J. ARCM. 17 pp555~569.

MANNA, Z. and R.J. Waldinger(1971)
Towards automatic program syntheéis.
pp270~-310 in Engeler(ed.)(1971).

MARKOV, A.A.(1962)
The theory of algorithms. Israel Program for Scientific
Translations, Jerusalem, 1962,
MAURER, W.D.(1972)
A semantic extension of BNF, Int. J, Computer Math. 3, pp157~176.
MENDELSON, E.(1964)
Introduction to mathematical logic., Van Nostrand, MNew York,
fiILGRAf, D.L. and A. Rosenfeld(1971)

A note on scattered context grammars.

Information Processing Letters, 1 pp47-50.

NAUR, P.(1964)
discussion on p158 of Steel(ed.)(1966).

NAUR, P. et al.(1963)
Revised report on the algorithmic language Algol 60.
C. ACM. €,1 pp1-=17.

NIVAT, M. and N. Nolin(1964)
Centribution to the definition of Algol semantics.
pp148~159 in Steel(ed.)(1966).

ROSENKRANTZ, D.J.(1969)
Programmed grammars and classes of formal languages.
J. ACIM. 16,1 pp1G7-131.

SCHWUARTZ, T.(1870)
Semantic definition methods and the evolution of programming
languages. pp1=23 in Rustin(ed.)(1972).

SINTZOFF, M.(1967)
Existence of a van Wijngaarden syntax for every recursively enumer-

set. Annales de la Societe Scientifique de Bruxelles,81,115—118?hh

STEARNS, R.E. and P.M. Lewis(1969)
Property grammars and table machines.
Information and Control 14, pp524-549.
STRACHEY, C.(1964)
Towards a formal semantics. pp196-220 in Steel(ed.)(1966).
WALK, K. et al.(1969)
Abstract syntax and interpretation of PL/I.
TR 25.098 IBM Lab. Vienna.
WEGNER, P.(1968)

Programming languages, information structures, and machine
organisation, PMcGraw-Hill, Neuw York.

78

WEGNER, P.(1970)
Programming language semantics. pp149-248 in Rustin(ed.)(1972).

WEGNER, P.(1971) ‘
Operational semantics of programming languages.
pp128-=141 in SIGPLAN notices 7,1.

WEGNER, P.(1972)
The Vienna Definition Language,

Computing Surveys 4,1 pp5-63.

van UIJINGAARDEN, A.(1962)
Ceneralised Algol. pp17-26 in Annual Review on Automatic
Programming R. Goodman(ed.) Vol 3, Pergamon Press, 1963,

van WIJINGAARDEN, A.(1964)
Hecursive definition of syntax and semantics.
pp13-24 in Steel(ed.)(1966).

van WIJINGAARDEN, A. et al.(1968)
Report on the algorithmic language Algol 68,
Hunerische flathematik 14 pp79-218.

van WIJINGAARDEN, A. et al.(1974)
Revised report on the algorithmic language Algol 68,

TR 74-<3 Computer Science Dept., Universitiy of Alberta.

WIRTH, N. and H. Weber(1966)
tuler: A generalisation of Algol, and its formal definition.

C. ACM. Vol 9, nos. 1 pp11=25, 2 pp 89-99,

73

Bibliography

sources uhich have been read, but not

explicitly referenced in the text,

AHO, A.V.(1968)
Indexed grammars., J. ACM. 15,4 pp 647-671.

AHO, A.V, and J.D. Ullman(1972)
The theory of parsing, translation, and compiling. Vol I.
Prentice~Hall, 1972,
BAKER, J.L.(1970)
Acceptors from van Uijngaarden grammars.
Univ. of Washington, Computer Science Group, TR 70-02-10.

BASILI, V.R. and A.J. Turner(1973)

A hierarchical mach;ne model) for the semantics of programming
languages. SIGPLAN notices B,11 pp 152-164.

BEECH, D.(1270)

A structursl view of PL/I. Computing Surveys 2,1, pp 33-064.
BEECH, D. and M. larcotty

Unfurling the PL/I standard. SIGPLAN notices 8,10, pp 12-43,
BERRY, D.IM.(1971)

Block structure: retention or deletion?
3rd SIGACT Symposium on the Theory of Computing, FMay 1971.

BOBROW, D.G.(1966)
Symbol manipulation languages and techniques,
IFIP Working Conference 1966, North-Holland, Amsterdam,1968.
BOHM, C.(1964)
CUCH as a formal and description langusasge. pp179-197 in
Steel(ed.)(1966)

BOHM, C. and W. Gross(1966)
Introduction to the CUCH.
pp35-65 in Automata Theory, Caianello(ed.), Academic Press,1966.

BROOKER, R.A.(1963)
The compiler compiler. pp 229-275 in Annual Review in
Automatic Programming, Vol 3, R. Goodman(ed.), Pergamon Pr.,1963.

BURSTALL, R.M.(1967)
Semantics of assignment. ppS»?U in Machine Intelligence 2,
Dale & lMichie(eds.) Oliver and Boyd, 1967.

80

BURSTALL, R.M.(1970)
Formal description of program structure and semantics in

first-order logic. pp79-98 in Machine Intelligence 5,

fMeltzer and lMichie (eds.) Edinburgh Univ. Press.

de CHASTELLIER, G. and A. Colmerauer(1969)
W-grammars, Proc, ACF Nationazl Conf., 1969, pp 511-518.,

CHEATHAM, T.E. and K. Sattley(1964)
Syntax-directed compiling. AFIPS Proc. Eastern JCC, 25, pp31=57.

COHEN, K, and J.H. Uegstein(1965)
AXLE, an axiomatic langquage for string transformations.

Cc{‘lcmo 8, pp 65?_661.

ELGOT, C.C. and A. Robinson(1964)
Random-access, stored-program machines. J.ACM. 11, pp365=399,

ENGELER, E.(1967)
Algorithmic properties of structures.
Math, Systems Theory 1, pp 183-195,
ENGELER, E. (ed.)(1071)
Symposium on the semantics of progremming languages.

Springer-Verlag, 1971.

FELDFMAN, J.A.(1966)

A formal semantics for computer languacges. C.ACK, 9,1, pp3-9,
HERRIOT, R.G.(1973)

GLOSS: A high level machine. SIGPLAN notices, 8,11, pp 81-90.

IRCNS, E.T.(1961)
Syntax-directed compiler fpor Algol 60. C.ACM. 4,1, pp 51-55,

JOHNSTON, J.B.(1971)
The contour model of block-structured processes.
SIGPLAN notices, 6,2, pp 55-82,

LANDIN, P.3.(1963)
A lambda~calculus approach.
pPp97-141 in Advances in Programming and Non-numerical Comp=-
tation, L. Fox(ed.) Pergamon Press, New York, 1966.

LANDIN, P.J.(1966)
The next 700 pregramming languacges. C.ACM. 9, pp157-166.

81

LEDGARD, H.F.(1972)
Embedding Markov normal algorithms within the lambda-calculus,
Int., J. Computer Math. 3, pp131-140,.

LEEs J.AN.(1972)

Computer semantics. Van Nostrand, 1972,

LEE, J.A.N.(1973)
VDL - A definitional system for all levels.
pp41-48 in Proc. First fAnn. Symp. Computer Architecture,
Lipovski and Szygenda (eds.) IEEE & ACM,1973.
LEWIS, P.l, and R.E. Stearns(1968)
Syntax-directed transduction. J.ACM. 15,3, pp 465-488,
LCONDON, R.L.(1970)
Bibliography on proving the correctness of computer programs.
pp569-580 in Machine Intelligence 5, Meltzer and Fichie(eds.),
Edinburch Univ,., Press, 1970,
LUCAS, P. and K. Walk(1969)
On the formal definition of PL/I. Ann., Rev. Aut. Progr. 6,105-181,
LUCKHAM, D.C. et al,(1970)
On formalized computer programs.
J. Computer & System Sciences, 4, pp220-249,

FMcCARTHY, J.(1965)

Problems in the theory of computation., IFIP 1965, Vel 1, 219-222,
MAURER, W.D.(1966)

A theory of computer instructions. J.ACH. 13,2, pp 226-235.
MAYER, 0.(1972)

Some restrictive devices for context-free grammars.

Information and Control 20 pp 69-92,

NARASIMHAN, R.(1967)
Programming languages and computers: A Unified Fetatheory.
pp189=244 in Advances in Computers 8, Academic Press, 1967,

PRATT, T.(1971)
Pair grammars, graph languages, and string-to-graph translations.
J. Computer & System Sciences, 5, pp 560-595,.

RUSTIN, R.(ed.)(1972)
Formal semantics of programming languages.
Prentice-Hall,1972. Eight papers of Coutant Computer Science
Symposium No. 2, Sept. 1970.

scoTT, D.(1970)
Lattice theory, data types, and semantics. pp65-106 in Rustin(ed.)

fanma A

82

STEEL, T.B.(ed.)(1966)
Formal languace description languages. Proc. IFIP 1964 Conf.

North-Holland, 1966,1971.

URSCHLER, G.(196%)
Translation of PL/I into abstract syntax.
TR 25.087 IBM Lab. Vienna.

WILNER, W.T.(1870)
Formal semantic definition using synthesised and inherited
attributes. pp 25-39 in Rustin(ed.)(1972).

WIRTH, N.(1963)
A generalisation of Algol. C.ACM. 6, pp547-554.

ZENMANEK, H.(1966)
Semiotics and programming languaces., C.ACHM. S, pp 139-143,

83

Appendix A

Concrete syntax of ALEX: a context-free covering grammar

program sz Bloek
block ti= begin declaration-list ; stmt-list end
declaration-list :s= declaration [/
declaration-list ; declaration

declaration ::= variable-declaration / procedure-

declaration / function-declaration
varieble-declaration ti= type id-list
id-1list s:= id / id-list , id
procedure-declaration ti= procedure 1id parameters ; stmt

function-declaration ti= type function id parameters ;
stmt returns expressicon
type ::= inteqger / real / logical
parameters ::= (parameter-list) / null
parameter-list ::= parameter / parameter-list, parameter
parameter t:= value-option type 1id
value-option t:= value / null

stmt=1list t:= stmt / stmt-list; stmt

stmt ::= unlabelled-stmt / id : stmt

unlabelled-stmt ::= assignment-stmt / goto-stmt / if-stmt /
procedure~call / block /

compound-stmt / null

assignment~stmt ti= id = expression

goto~stmt t:= ooto id

if-stmt ::= if expressicon then stmt else-part fi
else-part i:i= else stmt / null

procedure-call ::= id / id (aroument-list)
argument-list ::= argument / argument-list, argument
argument ti= expression

compound-stmt :¢= begin stmt-list end

null HE
expression ::= constant / var/ function-call /
binary / unary
constant ::= integer-value / real-value [/ logical-value

logical=-value ::= true / false

84

real-value ti= (not further specified)
intecer-value e E "

var 3= did

binary ::= (expression binary-op expression)
unary t:i= unary-op expression

function-ceall ::= id / id (argument-list)
binary=-op si= (not further specified)
unary-op e "

id ::= letter / id letter / id number
letter ::= a/b/c/d/e/f/a/n/i/i/k/1/m/n/o/p/a/x/s/t/u/v/u/x]y/z
number t:= 0/1/2/3/4/5/6/7/8/9

85

Appendix B

Abstract representation of the concrete syntax in VOL

(see section 2.4.3.1)

AR1 is=-c-~progr = is-c-block
AR2 is=-c=block (<s1: is=-BEGIN),
S5t is=c-decllist),

<83 is=SEMICY,
S, is-c-stlicst),

455: is-ENDY)
ARZ is-c-decllist = (<s-del: is-SEMIC),

{s,: is-c-decl>, sl

I
I~

-

AN

AR4 is-c-decl = is-c-var-decl v is~c-proc-decl v is-c=func-dec]
ARS is-c-var-decl = (451: is-c-type),
<52: is-c=varlist?®)
AR6 is-c=varlist = (s=-del: is=COMNMAD,
<S1: is=c=-var>, ...)
AR7 is=c=var = is-c-id
ARB is~c~type = is-INT v is-LOG v is-REAL
AR9 is-c-proc-decl = (Cs1: is=-PROCY,
{(s,: is-c-id),
{s,: is-c-parlist v is=-null?>,
(sa: is=SEMIC),
S¢ ! is-c=st))
AR10 is-func~decl = (<S1: is~c~func-type?,
<52: is=-c=-id?,
<53: is-=c=parlist v is-null),
454: is=SEMIC),
<85: is~c~-st),
¢i is-RETURNSY,
O is-c-expr))
AR11 is=-c~func-type = ((31: is-c-type,<s,: is=FUNCY)
AR12 is-c-parlist = : is=LEFT=PARD,
: (Ls-del: is~COMFAY,
{s,: is-c-paramy, wsnd 4
<53: is=RIGHT~PARD)

{s
ds

N -

AR13

AR14

AR15

AR16

AR17

AR18B

AR19

ARZ20

ARZ1

AR22

AR23

AR24

AR25

B6

is-c~param = (<s1: is=VALUE v is=-nulld,
<52: is-c-typed,
{s5t is-c-id))
is=c=stlist = ({s-del: is=SEMIC)D,
<s1: ig=c=st>y sus)
is-c-st = is-c-ul-st v is-c-lab-st
is-c-lab-st = (451: is-c-id),
<52: is=COLCN),
<53: is=c=std>)
is-c-ul~-st = is-c-assign-st v is-~c~cond-st v is-c~proc-cel
v is-c=block v is-c-goto-st v
is-c~-compound=-st v is-null
is-c~assign=-st = ((51: is-c—-id),
<52: is-BECOMESY,
<5t is-c-exprd)

is=c=goto-st = (451: is~-GOTOD,
<s,: is=c~id))

is=-c-cond=st = (<51: is=1FD,
<s?: is-c-expry,

{s,: is-=THEN?,
is-c-st), |
{55: is-c~else-perty,
sgt is=FID)
is-c-else-part = (451: is-ELSEY,
. (52: is~c=-std) v is-null
is-c-compound-st = (ésq: is=-BEGIN>,
<S2: is-c-stlist),
<S3: is~ENDY)
is-c-proc-call = (<s1: is~-c-id),
{s,: is-c-arglist v is=null?)
is~c-arglist = (<s1: is=LEFT=PAR),
<82: (<s-del: is-CCOMMNAD,
<s1: is=c=argd, «..)
{s;: is=RIGHT=-PAR>)

is-c~arg = is-c=-expr

87

AR26 is=c=expr = is=c-canstant v is-c-var v is-c-func=-call v

is=c~bin v is=c=-unary

AR27 is-c-constant = is-c=~log v is-c=int v is-c-real
AR28 is-c-lecg = is-TRUE v is-FALSE
AR29 is-c-int (not further specified)
R30 is-c-real n
AR31 is=c=var = is-c~-id
AR32 is=c=bin = (<s1: is=LEFT=PARD,
482: is-c-exprd,
453: is=c=binary-op),
<54: is—-c=-expry>,
{sc: is=RIGHT-PAR))
AR33 is=-c-unary = ((sjz is-c-unary-opD,

<s,: is-c-expr>)
AR34 is-c-func-call = (K

51: is-c—id),
(82: is-c-arglist>)

AR35 is-c-binary-op (not further specified)

AR36 is-c-unary-op L

AR37 is~c-id = _ (all the 'id' of Appendix A)

AR38 is-BEGIN(begin) is-COMMA(,)
is-EnD(end) is<SEMIC(3)
is-PROC(procedure) is=COLON(:)
is=FUNC(function) is-BECOMES(:=
is=INT(intecer) is-LEFT=PAR(()
is-REAL(real) is=RIGHT-PAR())

is=L0G(logiceal)
is=RETURNS(returns)
is=IF(if)
is=THEN(then)
is-ELSE(else)
is=-FI(fi)
is=TRUE(true)
is-FALSE(false)
is=VALUE(value)
is-G0TO(goto)

88

Appendix C

Abstract syntax for the VDL definition of ALEX

A1 is=-procar is-block

A2 is-block

Il

((s-decl-part: is-decl-part>,
{s-st-list: is-st=list))
A3 is-decl-part = (Kid: is-attrd : is-id(id)})

]

A4 is-attr = is-var-attr v is-proc-attr v is-func-attr v
is=-label=attr
A5 is=-var-attr = is-type

A6 is-proc-attr = ({s-peram-list: is-param-list>,{s-st: is-st).
A7 is-func-attr = (<s-param-list: is-param=listd,<s-st: is-st),
{s-func-type: is-type),{s-result: is-expr>)

A8 is-param = (<s-value-opt: is=-VALUE v is=nulld,

<s—type: is-typed,

{s-par: is-id>)
A9 is-type = is-~INT v is-REAL v is~LOG
A10 is-label-attr = ({s=-st=loc: is-int-list))

A11 is=st = is-assign=st v is-cond-st v is~goto-st v is-null v
is-proc-call v is-st-=list v is-block
A12 is-assign-st = (<s-léft-part: is~var),
{s=-right=part: is-expr>)
A13 is-goto-st = (<s=-lahel: is=id?)
A14 is-proc-call = (&s=id: is-id),{s~arg-list: is-arg-list)>)

A15 is-cond-st = (Ls-choice: is-expr),
{s=then-st: is-stH,L{s-else=-st: is-s5t))
A16 is=-azrg. = is=expr

A17 is=-expr is-const v is-var v is-binary v is-unary

v is=func=-call

A18 is-const = is~log-c v is-int-c v is-real-c
A19 is-log-c = is~TRUE v is-FALSE
A20 is-var = is-id

A21 is=binary =({s-rd1:is-exprd,<s-op:is-binary-op),
¢{s-rd2:is-expr))
A22 is-unary = (<s-rd:is-exprd,{s-op:is-unary-op))
A23 is=-func-call = is-proc-call
A24 is-int-c¢c, is-real-c, is-unary=-op, is-binary=-op
are not further specified
A25 is=INT(INT), is-REAL(REAL) etc.

89

Appendix D

Translation from concrete to abstragt syntax

T1 translate(t) =
is=-c=proar(t) = trans-block(t,null)

T = error

T2 trans-block(cb,decs) =

N
PASS: ug(és-decl—pnrt:decpsrt>,<s—st—1ist:
trans~5tlist(sa(ch),syms,decpart, the VDL
uu(dn—st—lnc:null>))>) | order of
execution

decpart: trans-dec]list(sQ(ch),syms,neudecs)
syms: u(decs;i(id:attr} for id(neudecs):attr})

collect-declarztions(cb,neudecs)

newdecs: null

Pass 12 collecting all declarations

T3 collect-declarations(cH,neudecs) =
Collect—]abﬁls—st(si(sd(cb)},nuudﬂcs) for all i:si(sq(cb))
#null
Cnllect—dcc](si(sz(ch)),nﬁudecs) for all i :si(sz(cb))#nujl

T4 collect~-decl(decl,nd) =
is-c-proc~-decl(decl) - add-dec(nd,s2(chl),PHDE)
is—c=func-decl(decl) = add—duc(nd,a?(ﬂecl),FUhC}
is~c~var-decl(decl) -3 add—den(nd,id,sq(decl))
for all i : id=si(52(decl})¥null
TS5 collect=labels-st(st,nd) =
is=null(st) =y null
is=c=labet(st) - collect—lnhels—st(sz(st],nd)
edd-dec(nd,s1(st},LABEL)
is-c~assign-st(st) v is-c-proc-call(st) v is-c-coto-st(st)

—> noll
is-c-compound-st(st) = collect-labels-st(si(sz(st)),nd)
for all i : si(s2(st))#null
is-c-block(st) =9 null
is-c=cond-st(st) - collect-labelsﬁst(sa(st),nd)
collect—labels~st(52(ss(st)),nd)
T6 add-dec(newdecs,id,attr) =
newdecs : u(neudecs; Lid:attr?))
id(neudecs) # null -> error -

90

Pass 2: translation, checking identifiers, filling label locs

T7 trans—-decllist(decllist,syms,neudecs) =
{trans-decl(si(sé(decllist)),ayms,neudecs)
for all i : si(s?(decllist))#nullg

T8 trans-decl(decl,syms,neudecs) =
is-c=proc-decl)(decl) =3
newdecs:u(newdecs; <52(decl): uG((s-param-list:p1>,
{s-stipb>) D)
pb : trans-proc-body(sc(decl),u(syms; pl))

pl : trans-par-list(s,(decl))

is-c~func-decl(decl) - ’
newdecs:u(newdecs; 52(decl):
uu(és—param—list:pl>,
<s~stiph),
<5—func~type:51(ST(decl))>,
{s-resultired))
type%sq(s1(dec])} -5 error
re 3 traﬂs—exnr(s?(05h1),u(ﬁyms; nl),type)
pb trans—proc~bndy(&5(decl),u(syms; pl))
Bl 3 trans»par—ljst(n3(den1))
is=c=var-decl(decl) -5 null §{ already in 'neudecs'

by collect-decl

T9 trans-parlist(cpl) =
is=null(cpl) -=> null
not(3i,j) (i#j & sj(52(cp1))rsj(SQ(cpl}}%null) -
UD(%(elem(i): uD(<s—ualue-apt: 51(p)>,
{s~type 2 s,(p)Y,
{s-par . : sz(p)>)>
- p=si(52(cpl)) for all i in 1:slength(s2(cp1))})

J => error

T10 trans-proc-body(bod,syms) =

PASS: blk
blk: uD(4s-decl-Dart:decp),(s—st—list:UU((elem(1):st>)>)
decp=null —> PASS: st % no labels to worry about

o ol trans—st(hUd,syms}decp,stlnc)
stloc: uD(<51: 1)
decp: null

91

T11 trans-stlist(t,syms,decp,stloc) =
uD({(elem(i): trans—st(si(t),syms,decp,u(stloc;<sd+1:i>)$
: for all i in 1:slength(t)})
where: d=slength(t)

T12 trans-st(st,syms,decp,stloc) =
is-c-lab-st(st) —=> PASS: trans—st(sz(st),syms,decp,stloc)
decp: u(decp; 451(st):
UU(<s-st—loc:stloc)J»
is-null(st) => null
is-c-assign-st(st)] = trans—assign(s1(st),ss(st),syms)
is=c~-cond-st(st) = trans~c0nd(52(st),Sa(st),sz(sa(st)),
syms,decp,stloc)
is=c-coto-st(st) =~ PASS: uD(<s—lahel: lab))
not is-label-attr(lab(syms)) - error
is-c-block(st) => trans-block(st,synms)
is-c-compound-st(st) -> trans-stlist(s?(st),syms,decp,
stloc)

is=-c-proc-call(st) - trans-proc-call(st,syms)

T13 trans-cond(v,then,else,syms,decp,stlaoc) =
PASS: UU(<s—chDice: C)y
(s—thenhst:trans~st(then,syms,ducp,un(i,<5d+1:1))

(s-else—st:trans—st(e]se,syms,decp,uo(l, 5d+1:2>)

where: d=slencth(stloc), l=stloc

T14 trans-assign(var,cexp,syms) =
PASS: uu(és—left—part:uar),(5—right~part:aexp>)
not convertible(type,var(syms)) => error

aexp: trans-expr(cexp,syms,type)

T15° trans-proc-call(call,syms) =
PASS: u (¢ s-id: s,(call)p,{s~arg-list: 2l})
al : trans—arglist(sz(call),s—parem-list(s1(call)syms),sym
not is—proc—attr(s1(cell)(syms)) ~> error

92

T16 trans-arglist(apl,fpl,syms) =

PASS: UU({<:elem(i): trans-arg(si(apl),s.(Fpl),syms))
for all i in 1:slength(apl)§)
slength(apl) # slength(fpl) ~> error

is=null(apl) & is-null(fpl) => null

T17 trans-arg(ap,fp,syms) =
PASS : aexp

not convertible(type,s-type(fp)) => error

aexp : trans-expr(ap,syms,type)

T18 trans-expr(ex,syms,type) = % return both type & abstrac
is-c-ceonstaent(ex) —~> ex syntax
is-c-var(ex) =-> PASS : ex

not is-uaruattr(type) ~>» Eerror
type : ex(syms)

is-func-call(ex) -> trans-func-call(ex,syms,type)

is—c-tin{ex) = PHSS:UD(<s—rd1:a>,<s~rd?:b>,<3-0p:53(ex)>)
type: result—typeQ(ta,SS(ex),tb)
as trans-expr(sz(ex),syms,ta)
b:trans—expr(sa(ex},syms,tb)
is-c-unary(ex) =» FASS:UO((s—rd:a),(5-09:51(cx)>)
type: result—type?(s1(ex),ta)
a 3 trans—expr(sz(ex),syms,ta)
T19 trans-func-call(call,syms,type) =

PASS: UD(<s—id:s1(call)>,(s—arg-list:al>)
type : s=func=-type(fa)

al ¢ trans—arglist(sE(cell),S~param~list(?a),syms)

not is-func-attr(fa) - error
uhere: fa= sq(call)(syms)

T20 the follouwing functions are not further specified:

result-type1(op,arqg) : type of op(arg)

result-type2(argl,op,arg2) :
T21 conuertible(t1,t2) =

t1=t2 - true

type of op(arql,arg2)

is—INT(t1) & is-REAL(tz) - true
T = false

93

T22 slength(x) =
(Vi) is-null(s,(x)) = O

T = (Li) (not is~null(si(x))

& (Vi) (j>i implies is—null(sj(x))))

L The iota operator is used in expressions of the form
(Lx) p(x).

This expression denotes the value of x for which p(x) is

true, but has no value if no value or more than one value

in the range of x has the property p.

94

Appencdix E

Definition of ALEX syntax by a Production System

proorams
P PROGRAM b r:=null
b BLOCK beoin ci,];...;(:Im;s,1;...;sl_| end

¢ rd:=8(d1;...;dm;s1;...;sn)

r':=DUERHIDE(rd,r)

DIFF.IDLIST(DUWHIN(rd))

STATELENT(51,r'),...,STATEMENT(sn,r')
declarations

d DECLARATION vd / pd / fd

vd VARIABLE t i1,i?,...,im if m geqg 1
DEEL.«)

t TYPE inteaer / real / logical

pd FROCEDURE pracedure i pl § s
S8tk if o= PARAMS(pl) + B(s)

r':= UUEHRIDE(rp,r)
DIFF.IDLIST(DDEA[N(rp))
STATEMENT(s,r')

fd FUNCTION t function i pl § s returns e
BEGL. if PARAFMS (pl) + B(s)

r .=
p
r!:= DUEHRIDE(rD,r)
DIFF.IDLIST(DDNHIN(rp))
STATEMENT(s,r')
B(t) = CT(e,r")
pl PARAMETER (u1t1i1, cee gyt i) / null if m geg 1
LIST,
v VALUE value / null
CPTIGN

statements
s STATERENT wus / i:s
us UNLABEL. ASGT=STHT / GOTO=STKT / IF=STHT /
STRT. progc-caLL / BLOCK / null
GOTO-STMT goto i if r(i)=LABEL

95

ASGT=STMT i:=e if r(i)=INT v LOG v REAL
CONVERTIBLE(CT(e,r),r(i))
if e then s fi /
if e then s,
if CONVERTIBLE(CT(e,r),LOG)
FROC-CALL PROC / PARAM=-PROC

IF=STMT

gelse S, fi

PRCC i if r(i)=PROC()
if m geq 1

r(i):PRGC(pt1,...,ptn) , m=n
EDNUEHTIBLE(CT(ER),ptk)
for all KElgeeesm
expressions and primeries
e EXPRESSIGN ¢ / i / f / bin / un
¢ CONSTANT ic / re / le

lc LOGICAL true / false
CONST
rc REAL CONSTANT (not further specified)

ic INTEGER CONSTANT
i IDENTIFIER)4 1% £ 1 d8¢g

f FUNCTION FUN / PARAIM=FUN
CALL
FUN i if r(i)=FUN(-rt)
PARAM=F UN i(e s «os o)

if m geqg 1
r(i)=FUN(pt1,...,ptn—rt) s M=N
CENUEHTIBLE(CT(ek),ptk}
fior 811 K=1jss wpi
un UNARY EXPR UNARY=-0P e
bin BINARY EXPR (e, BINARY=OP e,)

BEINARY=-0P (not further specified)
UNARY=-0P 9
dg DIGIT 8/ 1 /2 /3 / 4785 /6 T/ 8BS 9
1t LETTER a/b/c o /z

computation of envircnments
B comgggfg B(d1;...;dm;s1;...;sn) = B(d1)+ ...+B(dm)+
. 5(51)+ ...+B(sn)
B(i:s) = (i:LABEL) +B(s)
B(null) = null

PARAIS

computed tvpes

of

96

B(i:=e) = null
B(gato i) = null

E(FROC=CALL) = null

B(if e then s fi) = B(s)

B(if e then Sy els e s, fi) = 6(31)+B(52)
B(becin d,l;...;dm;s,l;...,c:n end) =

null if m geqg 1
8(81)+"'+B(Sn) if m=0

B(procedure i pl 3 s) = (i:PRGC(B(pl)))
B(t function i pl ; s returns e) =

(i ¢ FUN(B(pl) - B(t)))
B((u1t111, iis s b X) =

m m m
B(v,)B(t,), ... ,B(v)B(t)

B(value) = VAL
B(integer) = INT
B(real) REAL
B(logical) = LGG
B(t i9is oo nd = .
PARAPS ((v b iyye0eapy b i)) =

(iq:b(t1), e ,im:B(t))

expressions

CT CCFPUTED
TYPE

CONVERTIBLE CONVERTIBLE(t

ET(ir r) = INT

CT(re,r) = REAL
CT(lc,r) = LOG
CT(i ,r) = r(i) if r(i)= INT v REAL v LUG
rt if r(i)= FUN(pt1,...,ptn~rt)
T(UNARY-0OP & , T) (not further specified)

[:T(e,| BINARY-0P ez,r) "

1? 2 1 2

miscellaneous predicates and functions

DOMAIN

DOMAIN(null) = null
BCMATIN((i,2dal ... (i :dal_)) = PR |

+ CONCATENAT= r+null = r

ICN

OVERRIDE

t2) - t1=t v t,=INT & t.=REAL

n

r+r' = " if r=(x), r'=(y), and r'"=(x,y)
DIFF.,IDLIST DIFF.IDLIST(iT,...,in) =¥ p Vg ip#i if p#q

OVERRIDE(((iy2ry)yeeey(iper)}, ((d,2s,),.

((i1zr1),...,(im:rm), list (jq=8q))
VP 1,#q

o)) =

By

Appendix F

Definition of ALEX syntax by a van Ui ingaarden crammar

procram : new block,

NEST block : begin symbol, MNEST new DEFS LABSETY declaration cof
DEFS, semicolon,
NEST new CEFS LABSETY series defining LAESETY,
end symbol.

NEST declaration of DEF DEFS : NEST declaration of DEF, semicolo
s NEST declaration of DEFS.

NEST declaration of ID has TYPE : TYFE symbol, ID token.
TYFE symbol, IDCLIST, cemicolon, TYFE symbol, ID token :

TYPE symbol, IDCLIST, comma, ID token.
NEST declaration of ID has proc(PARAINS) :

procedure symbol, 10 token, PARAMNS paramlist, semicolon,

NEST new PARAMNS procedure body.

NEST declaration of ID has func(PARANMS-~TYPE) =

TYPE symbol, function symbol, ID token,

PARAMS paramlist, semicolon,
NEST new PARAMNS procedure body,
returns symbol, TYPE NEST new PARAMS expressicn,
NEST procedure body : NEST statement;
REST new LABS statement defining LABS.

EMPTY peramlist ¢ EMPTY.,
PRMS peramlist: left paren, PRMS parms, right paren.
PRM PRMS parms: PRI pzrm, comma, PRFMS parms.
ID has TYPE parm : TYPE symbol, ID token.
ID has value TYPE parm : value symbol, TYFE symbol, ID token.

NEST eseries defining LABSETY
NEST statement defining LABSETY 3
where LABSETY is LABSETY2 LABSETY3,
NEST stztement defining LABSETY2, semicolon,
NEST series defining LAGSETY3.

o8

statements

NEST statement definino LABSETY
vhere LASSETY is EFMPTY, NEST statement;
where LABSETY is ID has label LABSETY2,
1D token, colon, NEST statement defining LABSETYZ2;
NEST compound statement defining LABSETY;
NEST conditiconal defining LABSETY,
NEST compound statement defiming LABSETY :
begin symbol, NEST series defining LABSETY, end symbol.
NEST conditional defining LAESETY :
NEST if thenpart defining LABSETY, fi symbolj
where LABSETY is LABSETY2 LABSETY3,
NEST if then part defining LABSETYZ2,
else symbol, NEST statement defining LABLETY3,
fi symbol.
NEST if then part defining LABSETY :
if symbol, logical NEST expression, then symbol,
NEST statement defining LAEBSETY.
NEST statement : NEST assignment; NEST gotoj NEST block
NEST procedure callj E[NPTY.

NEST goto : goto symbol, label NEST identifier.
NEST assignment : TYPE1 NEST identifier, becomes symbol,
TYPE2 NEST expression,
where TYPE2 is convertible to TYPE1.
NEST procedure call : proc(PARAFMS) NEST identifier,
actual NEST parameters pack matching PARAM:

actual NEST parameters pack matching EFPTY : EMNPTY.
actual NEST parameters pack matching PRMS :
left paren, actual NEST parameters matching PRMS,
richt paren.
actual NEST parameters matching PRM PRIS
actual NEST parameter for PRM, comma, actual NEST
parameters meatching PRIMS,
actual NEST parameter for ID has VALUE option TYPE1 :
TYPE2 NEST expression,
where TYPE2 is convertible to TYPE1.
VALUE option : value§ EMPTY.

99

expressions
TYPE NEST expression : TYFE constant; TYPE NEST identifier;

TYPE KEST binary; TYPE KEST unary;
TYPE NEST function call.

TYPE NEST function call :
func(PARAMS-TYFE) NEST identifier,
cctual NEST parameters pack matching PARAIS.
TYPE KEST unary : UNARY-=CP, TYPEZ2 NEST expression,
where TYPE is resulttype of UNARY--OF on TYPEZ.
TYPE NEST binery : left paren, TYPE2 NEST expression,
EINARY-CP, TYFE3 NEST expression,
right paren,
where TYFE is resulttype of EINARY=CP
on TYFE2 and TYPEZ3.
locgical constant : true symbol; false symbol.

integer constant and real constant are not further specified.

conversions and result tvpes

where TYFL is convertible to TYPE : true.
where integer is convertible to real : true.
'resulttype of .. on .. and ..' is not further specified,

but an example 1is
resulttype of plus symbol on integer and real : real.

identifiers
MODE NEST identifier : ID token,
where ID has MODE from [EST.
PROP : ID has ATTRIBUTE.
where PROP from NEST new PROPSETY
where PRCP is not in FROPSETY, where FROP from NEST;:
vhere PROP is alone in PROPSETY.
where FROP1 is alone in PRCPS PROP2:
where FROF1 is not in PROPS, where PROP1 is alone in PROP2;
where FROP1 is alone in PROFS, where PROP1 is not in PROF2.
where FROP1 is not in PROPS PROP2 :
where PROP1 is not in PROPS, where PROP1 is not in PROP2.
where ID has ATTRIBUTE is alone in ID has ATTRIBUTE : true.
where ID1 has ATTRIBUTE1 is not in ID2 has ATTRIBUTE2 :
where ID1 differs from ID2.

CIBRARY
MASSEY UNIVERSITY

100

predicates
true : EMPTY.
where NCOTETY is NCTETY : true.
where NOTETY1 ALPHA1 differs from MOTETY2 ALPHAZ :
where NCTETYT1 differs from NOTETYZ2;
where ALPHA1 precedes ALPHA2 in ALPHAEET;
uhere ALPHA2 precedes ALPHEA1 in ALPHABET.
where ALPEA1 precedes ALPHAZ in
NCTETY1 ALPHA1 KOTETY2 ALPHA2 NCTETY3 : true.
where NCTION differs from EFMPTY : true.
where EMPTY differs from KNCTIGN @ true.

metaproductions
NEST :¢ LAYER 3 NEST LAYER.
LAYER :: new DEFSETY LABSETY.
DEFSETY &% DEFS 3 EMPTY.
DEFS w3y DEF 3 DEFS OEF.
QEF % 1 as MODE.
LABSETY 24 LABS & EMPTY.
LABS :: LAB 3 LABS LAB.
LAB :: ID has lahbel.
*ATTRIBUTE :: MCDE § label.
MODE :: TYFE ; proc(PARANS) 3 func(PARAMNS=TYPE).
TYPE :: intecer ; real j logical.
ENPTY 13,
PARAMS :: PRFSETY.
PRMSETY :: PRES 3 EFPTY.
PRMS s3: PRM 3 PRMS PRM.
PRM :: ID has TYPE j ID has value TYPE.
PROPSETY :: PROPS § EFPTY.
PROPS :: PROP 3 PROPS PROP.
PROP :: ID has ATTRIBUTE,

DEF
D h

ID =¢ LETTER 3 ID LETTER 35 ID DIBIT:

IDELIST 3¢ 1D 3 1D, comms, IDELIST.

NOTETY :: NOTICN 3 ENPTY.

NOTICN :: CHAR 3 NOTION CHAR.

CHAR 22 LETTER 3 (5) 3 = &

ALPHABET :: cdefohi jklmnopqgrstuvuxyz()- .
DIGIT ¢t 0. 31 3 2 3 3 3 4.3 536 3 7 383 9.
LETTER: ¢ a3 diejfsashiisiskslsminiospsqsrisstiusviwsxsyiz,
ALPHA :: CHA

101

LETTER token : LETTER symbol.
ID LETTER token : ID token, LETTER symbol.
ID DICIT token : ID token, DIGIT symbol.

representations
begin symbol beoin
end symbol end

procedure symbol procedure

function, if, fi, then, else, returns, goto, integer,

real, logicel, value, true, and false symbols similarly.
right paren)
left paren (
semicolon H
colon :
comma ’

becomes symbol $=

plus symbol +
etc,

a symbol a

b symbol b

z symbol Z

D symbol 0

S symbol 9

102

Appendix G

Definition of ALEX syntax by a Linked=forest lManipulation Svstem

Context-free component Abstract tree component

1 program - block program: block

1.1 USED S(ERROR)F(sTCPR)

2 block = becin block: declaration-list,
declaration-list; stmt=list
stmt=list
end

. DEC tyne1:id1 & DEC tyneQ:id1 S(ERROR)F(NEXT)

249
2.10
2411

declaration1: DEC type:id2 & variable: USED id, -

declarati0n1: DEC type:id2 & variable=declaration, -
designator

parameter1:5mec,type,id? & variable: USED id2 -

parameter :spec,type,102 & variable=parameter, -

designator S(REPEAT)F (NEXT)
declaration, & stmtz:(DEC label: id),stmt4 -
declaration ,declarationzzlabel:stmt3~designator,id
& stmt, S(REPEAT)F(LEXT)
goto-stmt: L‘-SE[I)JLd.l & declaraticn=label,:
stmt-Oesignator,id, =

1

goto-stmt: label,~designator & declaraticn

S(REPEAT)F(NEXT)
goto-stmt: USED id S(ERRCOR)F(MEAT)

DEC procedure

2

1: idz,type-list3
& (procid: USED idg),argument—listd—é
DEC procedure1: id2,type-1ist3
& (procid: procedure1—designatur),argument—listd,
CHECK convertible (TYPES argument-list,~copy,
type-lists) o (REpEAT)F(NEXT)
DEC Functionq: idz,type-—list3
& (funcid: USED idz),argument-list4 -
BELC Function1: idz,typa-list
& (funcid: function

1-designainr),argument—lista,
CHECK convertible(TYPES argument-list, -copy,
type=lists) o(pppEaT)F(NEXT)
CHECK true = null
CHECK false S(ERROR)
declaration: DEC type: id =

declaration=cell: value=undefined , type
S(REPEAT)F(NEXT)

103

2.12 DEC procedure = null S(REPEAT)F(NEXT)
2.13 DEC function = null S(REPEAT)F (NEXT)
2.14 id => null S(REPEAT)F(STOP)

3 declarastion=list - declarstion-list
declaration /
declaration=list ;
declaration

4 declaration declaration : type,
type id-list id=-liest
4.1 declaration,: type,(id-list: id,,..) =
declaration,: type,(id=list: ,..) ,
declaration3: DEC type: id2 S (REPEAT)F(STCF)
5 id-list —» id / id-lict

id-list,id

6 declaration -2 procedure id declaration=procedure:

parameters ; sEmi

stmi parameters , .

DEC precedure: id,
TYPES parameters-copy

6.1 TYFES null = null
6.2 TYPES parameter-list —> (TYPL pzarameter)=-list

6.3 TYPE parameter: spec,type,id - type
6.4 Perform 2.1 to 2,14

7 declaration —> declaration=function:
type function id parameters,stmt, type,
parameters; expression ,
stat returns expression DEC function: id,

TYPES parameters-copy
7.1 Performp 6.1 to 6.4

8 type —> integer/real/logical type = int / real / log

9 parameters =-> null / parameters; null /
(parameter=-list) parameter-list
10 parameter =2 parameter: spec , type , id

value-option type id

11 value-option => value / null spec: value / name

12 parameter-list =» parameter-list
parameter /
parameter , parameter-list

13

14

15

16

1%

18

19
20

21

23

24

25

26

217

28

stmt-list = stmt /
stmt=-listjstmt
stmt = ulstmt /
id: stmt
ulstmt —» beagin
stmt-1list
end

ulstmt -
if expression then stmt fi /

if expression then stmt

-t

else stmt ii

N

ulstmt -

id := expressiaon
ulstmt -» coto id

ulstmt = null
ulstmt - id /

id(argument=-list)

argument - expression

argument=-list ~» argument /

argument~list,arqument

expression - true / false /

real-value /

integer-value

expression — id

expression =
unary=op expression

expression —é(expression1
binary-op
expressionz)

expression -» id /

id(argument-list)

(variable: USED id),expression

stmt

stmt

104

stmt-list

stmt = stmt /

'stmt: (DEC label: id),stmt

stmt = stmt-1list

stmt = if-stmt:
expression,stmt,null /
expressinn,stmtq,stmt2

stmt = assignment-stmt:

goto-stmt: USED id

null

stmt=procedure-call:

(procid: USED id),null /
(procid: USED id),

argument-list

argument = expression

arqgument-list

expressiaon
true/false/real=-value/

constant = value

integer-value

expression
USED id

expression
unary-op,expression

expression
expression, ,binary-op,

expression2

expression

variable:

unary:

binary:

function~-call:
(funcid: USEB id),null /

(funcid: USED id),
argument-list

real-~value, integer-value, unary-op,

are not further specified.

and binary=-op

105

29 (extra rules for calculating TYPES of 2.7 & 2.8)

291
29.2
29.3
29.4
2945
29.6

29,1

29.8

28,9

TYPES argument=-list -~ (TYPE argument=expression)-list

TYPE true =3 log
TYPE false => log

TYPE real-velue -» real

TYPE integer-value ~» int

TYPE variable=declaration,-designator

& declaration1: DEC type

—>type
TYPE unery: unary-op,expression =3
result-type(unary-op, TYPE expression)
TYPE binary: expression1 sy binary-op , expression2 -

result-type2(binary-op, TYFE expression,,
TYPE expressionz)

TYPE function-call: (funcid=function,-designator),..

1
& function,: parameter~list,stmt,type,expression

1
-~ type

106

Appendix H

Machine states feor the VOL definition

S1

52
53

S4

57
S8
S8

510

511

512
513

16

is-state = (<Ls=-env : is-env>, % environment directory
{s-c : is-cH, % instruction control
{s-ci : is=-ci>, % statement control
{s=d : is-d), % dump: the stack
{s-block-activation :
is-block=~name), % unigue block name
{s=-at : is-at), % attribute directory
{s=-dn : is=dny, % denctaticn directory
<{s=n : is=-nY)) %> unique-name index
is-env = ({-(id:is—q> : is—id(id)})
is=c describes the set of all program control trees
of instructions.
‘is-ci = (¢s-text : is-st v is-null),
{s-index : is-index), % index into text
{s=ci : is~ci),
<s=c : is-c)>)
v is-null
is-index = is-int v is=TRUE v is=FALSE
is-d = ((s—enu:is—end},(s—c:is—c),(s—ci:is-ci),
<s-block—actiuation:is—hluck—name),
$s=d : is=d))
v is=null
is-block=-name = is-n v is-null
is-at = (g@in:is-dntype) : is-n(n)¢)
is-dntype = is-INT v is-REAL v is-LCG v
i8=PROC v is=FUNC v is=-THUNK v is-LABEL
is~dn = ({<:n: is-value v
is=label-dn v
is-thunk=dn v
(¢s-env : is-env),
. $s=attr : (is-proc-attr v is-func-attr)>)>
i is=n(n)f)
is=label-dn = (<s—block~actiuation:is—block—name),
{s=st-loc : is-index-list))
is-thunk-dn = (4{s-env : is-envY,{s-attr : is-expr>)
is=n = is-int
The initial state for any given program t for is-progr(t)

i p0(<s-c ¢ int-proor(t)>,{s-n : 12).

States I whose control part s=c(I) is null are end-states.

Components of the current state I , s-env(1),

s-c(1), etc., may be represented by the abbreviations
Env,c, €1, 0, BA, AT, DN, and N,

107
Appendix 1

Interpretation instructions for the VOL definition

I1 int-proar(t)
int-block(t)
for: is-progr(t) - see Appendix C
I2 int-block(t)
s=d ¢ stack

s=f ¢ Bxit 3 the DL
int-st-list(s-st-list(t)) ocder of
int-decl-part(s-decl- part(t)) execution
update~env (s-decl-part(t))

- e

s=block=activation : unigue-name

I3 unigue-name =
PASS

As-n(1)
s=n : s=-n(I) + 1
14 update-env(t)

null 3

iugﬁate~id(id,n) sn:unigue-name , for all
id(t)#null}

IS wupdate-id(id,n)
s=env P(Eﬂi_; LidinY)
16 int-decl-part(t) =
null ;
fint-decl(id(ENV),id(t)) for all id(t)#null]

17 int-decl(n,attr) =
is~-var-attr(attr) -3 s-at:u(AT;<nrattr))

is-proc-attr(attr) -9 s-at:u(AT T;(n PROCY)
s—on:p(DNs<n:
G:s attr:attr?
0 s=env: ENV)75>
is=func-attr(attr) = s-at:p(AT;<4n:FUNCD)

s=dn:p(DN3<n:
G(48 -attr:attoc>
<s-env: ENU)))S

is-label-attr(attr) -5 s-at:p(AT;<n:LABEL>)

s=dn:u(DN;<n:pg(ds=-st-loc:
attr,{s-block-activation:
TR P

108

18 int-st-list(t) =
stack=-ci(1,t)

19 stack-ci(index,t) =

s=ci: fﬁ#(s-text:t),(s—index:index),
{s~-ci:Cl> ,<s-c:(>)
s=C : continue

110 continue =

int-pext~-st ;3
inst(take-st(s-index(Cl),s=-text(CI)))

111 take-st(index,t) =
is-st=1list(t) & is-int(index) & index in (1:length(t))
> elem(index) t
is-if-st(t) & is—TRUE(index)‘-é s=then-st(t)
is-if-st(t) & is-FALSE(index)-> s-else-st(t)
T -5 error

112 jint-next-st =
is=int(s-index(Cl)) & s=index(Cl) £ lenath(s~text(CI))
-~> continue ;
upd-index 3
T = s-ci : s-ci(Cl)
s-c : s=c(CI)

I13 upd=-index =
s=ci: p(LLl; {s=-index: s~index(CL)+1)>)

114 int-st(t) =
is~assign-st(t) -> int-assicn-st(t)
is-cond~st(t) -5 int-if-st(t)
is~goto=-st(t) => int-coto-st(t)
is-proc-call(t) & at =PROC = int-=proc-call(t)

is=st=list(t) => int-st-list(t)
is-block(t) ~> int-plock(t)
is=null(t) —>» null

where: at, = (s=id(t))(ENV))(ATI)

115 int-if-st(t) =
Stagk-gi(cnnuert(choice,LUGg t)
choice:int-expr(s-choice(t 5
116 int-assign-st(t) =

assign(n,v) 3
v : int-expr(s-right=-part(
n : eval-ref(s=left-part(t

t))
))
117 assign(n,v) =

s=dn: p(DN; ¢n: convert(v,n(AT))>)

109

118 int-coto-st(t) =
Coto=1(s-label(t)(ENY)(ON))

119 gotg=1(label=dn) =

is-null(BA) = error % stop at outermost block
s=-block=-activation(label=dn) = BA =3
ooto=2(s-st-loc(label=dn)) % local goto
T = s-d: u(D; {s=c: goto=-1(label-dn)?)
s=c: exit % cut stack

120 goto=-2(stlocs) =

(2 1ist) length(list) >
ci- 1ndexllut(s 01(C1)) list = stlocs —>

00to=3((ylist)(ci-indexlist(s-ci(Cl)) list
= stlocs

T = g=ci: s-ci(CL)
s-c : ooto-2(stlocs)

121 ci-indexlist(ci) =

is—~null(ci) -» npull
T =» ci~indexlist(s~ci(ci)) {s-index(ci)>

122 goto-3(indexlist) =
is-null(tail(indexlist)) = Qoto-d(indexq)
T => s-ci: pD(<s-text: s-st(st1)>,{s—c : int-next-st),
{s-ci: p(CI;<s~index: index1>)>)
s=c_: ooto=-3(teil(indexlist))

where: index, = heasd(indexlist) ,

st, = take—st(index1,s—text(gl))

123 goto-4(index) =

s=ci: mu(Cl; <s=index: index))
s=c: continue

124 int-proc=call(t) =
length(arg-listt) = length(p—listt) -
S=env: F(En“t; {argndn(elem(i) p-list, ,elem(i)

arg-listt)
: 1¢i¢length(p-list,)})
s=d : stack
s=C gxit 2
int- st(st)
T =» error
where: nt=(s—1d(t))(§ﬂy) » p-list,=s-param-list(s-attr
(n (ON)))
env,=s-env(n (DN)) , arg-list =s- ar - llst(ts 5

sty =s-st(s-attr(nt(gﬂ)))

110

125 arg-dn(fp,ap)
s=value-opt(fp)=VAL v is-const(ap) =>» %call-by=-value
PASS: PD((s—par(Fp):n));
assign(n,v)

v: int-expr(ap)
n: unigue=-name ;

is~var(ap) => % call-by-reference
PASS: po((s—par(Fp}: ap(ENV)>)
T =3 % make a thunk

PASS: pD((s—par(Fp): n>):
s=at: p(AT; <n:THUNKD);
s-dn: p(DN; <n: po(és—attr:ap>,ds-enu:ENU>})3

Nn: unigue-name

126 stack =
s~ ug(és env:ENV), ds-c:LC D, <s-d DY,&s-ci:C1>,
{s-block-activation:EBA>)

127 exit =
s-env : s=env(D)
§=C : s=c(D)”
e : s- d(g)
s=ci s s=ci(D)
s-block-activation : s~block-activation(D)

128 int-exor(t)

is-binary(t) -» int-bin-op(s-op(t),
a: int-expr(s-rdi(

b: int-expr(s=-rd2(

a

is-unary(t) -9 int-un-op(s-op(t),

)
as int—exmr(s-rd(t)) :
is-func-call(t) & at, =FUNC ->
pass~value(n) 3; .
int-=func-call(t,n) 3
n : unigue-name
is=var(t) & is—uar—attr(nt(ﬂl)) & is—ualue(nt(ﬁﬂj) -
PASS: (DN)
is=var(t) & is-var- attr(nt(AT)) & is=thunk=dn
n (DN)) <>

) -

dy
t)
t)

LT T S U‘

pass=value(n) 3
int-thunk=val(t,n)
n : unigue-name ;

is-const(t) => PASS: value(t)
T = error
where: nt=t(£ﬂi) y at,= ((s=id(t))(ENV))(AT)

and value, int-bin-op, and int-un-op are
not further specified.

117

129 pass-value(n) =
PASS: n(DN)

130 int-func-cgll(t,n) =
length(arg—listt) = length(p-listt) -

S=env: p(enut; iarg-dn(elem(i) p-list, ,
elem(i) arg—listt)

g 1$iélength(p-listt)})

s=d: stack
s=c: exit 3
assiagn(n,v) 3
v : ig;:ex_g(exprt) :
int-st(stt) :
T => error
where nt=(s—ld(t))(ENU) 5 dnt=nt(gﬂ) 3 enut=q—enu(dnt),
p-listt=$—param—1ist(swattr(dnt)) y

argwlistt=s—arg—li5t(t) :
Stt=s—st(5—attr(dnt)) 5 exprt=s-expr(sﬁttr(dnt)).

131 int=thunk=-val(t,n) =
s-env: s-env(t(ENV)(DN))
s—d stack
s=C exit 3
s=dn: p(DN; <nivy)
v: int-expr(s-attr(t(ENV)(DN))) ;
132 eval-ref(t) =
is-var(t) & is~value(t(ENV)(DN)) -> PASS: t(ENV)
is=var(t) & is-thunk~dn(t(ENU)(gﬂ)) -
PASS : n(gﬁ); 4 the returned name
int=thunk-ref(t,n) 3
n : unigue-name ;

of

T - error % all other sorts of
expressions
133 int-thunk-ref(t,n) =

S=env: env
— t

s=d : stack

s=¢c ¢ Bxit ;
s=dn: p(DN; £n:r>) 3
r: eual-ref(exprt) s

where: n = t(ENV) , env, = s—enu(nt(gﬂ)) 5
expry = s-attr(nt(gﬂ))

134 length(L) =
is—null(L) = 0
T > (vi) (elem(i,L)#null & elem(i+1,L)=null)
135 concatenation
Ll = p(L1;{<elem(1ength(L1)+i):e1em(i,L2)>
for 1£i8% length(Lz)})

112

-

Appendix J

Abstract syntax for the BASIS definition of ALEX

(assumed to be produced from the concrete syntax of
Appendix A by a translation procedure very similar
to that of Appendix D

A1
A2

A3
A4

AS
A6
A7

AB
AS
A10
A1
R12

A13

A14
A15
A6
A7
A18
A19
A20
A21

AR22

R23
A24
A25
A26
R27
A28

{program) ::= {blockd
{block) ::= <declaration-listd<{statement-list)

{declaration) ::= <identifier><{attributed

Lattributed> ::= <variable-attrd/Kprocedure-attr>/
{label-attrd> /<function-attd

{variable-attrd ::= <type>
{procedure~attrd> ::= {parameter~listd<statement?
{function-attr}y ::= {parameter-listdgstatement)

L{iyperexpressiond
{typeS> ::= INT / REAL / LOG
parametery ::= (value-optiom <typed<{identifier>
{value-option) ::= VALUE / <empty>

Lemptyy 1:=
{lebel-attr) ::= <statement-designator)

{statement) :i= <assignment-stmt?/<conditional-stmt>/
<goto~-stmty/{procedure-cally/LKblock/
{statement=list)/<emptyd

{assignment-stmt> ::= <variable><{expression)

{goto-stmty ::= Lidentifierd
{conditional-stmty ::= <choice)dthen-stmtd{else~stmtd
{Lchoice) ::i= <expressiond

{Lthen=stmty ::= {statement®
else~stmt> 1:= Lstatementd
{procecdure-calld ::= {identifier {argument=list®

{argument? ::= <expressiond

{expression) ::= <constant’ /{variable)/<binary>/
<unary?/<function-call)

{constant) ::= {valued

{variable) ::= Jidentifier)

<{binary) ::= {expressiond{binary-operator®<expression)
{unary? ::= <unary=-operator> {expression)
{function-call> ::= <identifierP<Largument=list>

{binary-operator) and{unary-operatordare not further
specified,

113
Appendix K

Machine states for the BASIS definition

M1 &machine-stated ::= (program><control-stated<program-stated

Ii2 <control-state>» !:= <operation-list>

M3 <operation> (:= ..1)

M4 <procram-statey ::= <block~state-~list>

PMS £block=statey ::= <environment-table>
<statement-control>
{statement-designator)

4(enclosing~-blocky
éreturned-value>

M6 <environment=table> ::= <identifier-possession-list>

M7 ¢identifier-possession) ::= {identifier) 4cell-designator>
M8 <statement-controld ::= &operation-listd

M9 <£enclosing-blockd> ::i= <block~state-~designator>

M10 ¢&returned=valuey ::= <valued/dcell-designatord/ null

M11 4celld ::= <denotationdédn-type>

M12 &4dn-typey :t:= INT / REAL / LOG / LABEL /
PROC / FUNC / THUHNK

M13 <denotationd ::= <4valued/&label=dnd /¢procfun-dnd/
¢thunk=dnd / null
M14 Lvalued::=TRUE/FALSE /¢(rezl-valued)/éinteger-valued
M15 4real-valuey :s:= .. 2)
M16 ¢integer-value) ::= ..2)
M17 ¢label=dny ::= <block~state-designator) {statement-designator)
M18 <&procfun=-cdny ::i= Zenvironment=tabley)<procfun-attry
M19 ¢procfun-attry ::= {procedure-attry/ <(function-attry
M20 4thunk-dny ::= <environment-table>{expression)

Notes 1 The exact structure of <operation) is left

unformalised and unspecified, but should be
sufficient to represent all the operations and
their local variables, etc., of Appendix L

2 Real~values and integer-values are not further
specified.

3 A designator is a member of a class of objects which
has the property that it can uniquely point to any
node in either the £&machine-state) or {program) trees,

and is also capable of indicating when the node to
which it points has been deleted.

Any tree which contains asingle designator as a comp-
onent is said to designate the tree to which the

designator points.

114
Appendix L

Interpretation program for the BASIS definition

B1 interpret(p)
where p is a <{program)

Step 1. Perform initialise~interpretation~state(p).
Step 2. Perform interpret-block,

B2 initialise-interpretation=state(p)
where p is a {prcgram}

Step 1. Let bd be a {statement~designator) designating
the <block) in p.
Step 2. Append to the machine-state the tree
¢procram-~state>:
4block-state~list>:
<block-state>:
{statement~designator>: bd.

B3 interpret~blaock

Step 1. Let sd be a <statement-designatord>d of the

first «statement) of the 4blockd designated

by the current <{statement-designator)>, _
Step 2. Perform stack(null, <operationy for prologue,sd).

B4 prologue
Step 1. For each {declaration)d of the current <block>,
perform steps 1.1 to 1.3:
Step 1.1. Let id be the <Jidentifier) immediately
contained in d, and let attr be the
{attributed of id in d.
Step 1.2. Peform initialise~declaration(attr) to
obtain a 4cell>c; let cd be a <cell=
designatory designating c.
Step 1.3. Append to the current €identifier—-possession-
listy an <Lidentifier):id <cell-designator>cd.
Step 2. Replace the current <statement-controld> by an
¢operationd for continue.

BS initialise-declaration(attr)
where attr is an <attribute)

Case 1. attr immediately contains a {variable-attr)
Step 1.1 Return a <4celld:<4denotationd:null
4(dntype>:iattr.
Case 2. attr immediately contains a {procedure-attr>
Step 2.1 Let type be PROC.
Step 2.2 Let et be a copy of the current
4environment-table>.
Step 2.3 Return a
¢celld :¢{denotationy :&procfun-dn>:
<&environment-tabled:et
&procfun-attrd:attr
<dn-type>:type.
Case 3. attr immediately contains a <(function=attr>
Step 3.1 Let type be FUNC.,
Step 3.2 Go to step 2.2

115

Case 4. attr immediately contains a «label-attr)

Step 4.1. Let 1lsd be the (statement-designatord in attr.
Let bsd be a ¢block-state~designator>
designating the current ¢block-state>.

Step 4.2. Return a

€celly:¢denotationd:<€label-dn>:
&<block-state-designator® ibsd

<statement-designator)ilsd
<dn~-typey»: LABEL.

B6 next-statement
This is normally the last action of each statement,

and advances the current {statement-designator)to
desicnate the next statement.

Step 1. Let st be the <statement) designated by the
current {statement-designator)>. Let stl be the
<statement~list) which contains st, but does not
contain any <statement-list)uwhich also contains st.
Step 2. Let st2 be that immediate component of stl which
either contains st or is exactly st. Then let st3
be that 4statement) wvhich immediately follous
st2 as an immediate component of stl.
Step 3. If such a st3 is non-~null, set the current <statement-
designator) to designate it, and return. Ctheruise
Step 4. Perform end-of-statement-list (stl).

B7 end-of-statement=list(stl)
uhere stl is a {statement-=1istd

P 1. Let n be the node wvhich immediately contains stl.
Case 1.1. n is a <block}, or is a <{statement) contzined
in a {procedure-attr).
Step 1.1.1 Perform exit.
Case 1.2. n is a (statement) contained in =
{function-attr) fa.
Step 1.2.1. Let e be the <expressionY in fa.
Step 1.2.2. Perform return-value(e).

Case 1.3. (otherwise) ,
Step 1.3.1. Set the current <{statement-designator)

to designate n.
Step 1.3.2. Perform next-statement.

B8 continue
This operation is the"driver" which initiates
execution of the currently designated statement.

Step 1. Perform interpret~statement.
Step 2. Go to step 1.

B9 interpret-statement

Step 1. Let st be the node immediately contained by the
{statement)> designated by the current
{statement-designatorS.

Case 1.1. st is an <assignment-stmt),
Perform interpret-assignment-statement(st),
Case 1.2, st is a <conditional-stmt),
Perform interpret-if-statement(st).
Case 1.3. st is a <Zgoto-stmt),
. Perform interpret-goto-statement(st),

Case 1.4. st is a <{procedure-call),
Perform interpret-procedure-call(st).

116

Case 1.5. st is a ¢tatement=list).

Perform interpret-statement-list(st).
Case 1.6, st is a ¢block>

Perform interpret-block,
Case 1.7. st is 4enmpty) .

Perform next-statement.

B10 interpret-assignment-statement(ast)
vhere ast is an <Lasignment=-stmtd

Step 1. Let var be the «variable) & e the {expression) in ast.
Step 2. Perform evaluate~reference(var) to obtain cd.

Step 3. Perform eveluate-expression(e) toc obtain 4valuey val.
Step 4. Perform assign(cd,val).

Step 5. Perform next-statement.

B11 assign(cd,val)
where cd is a ¢cell-designatory» and val a ¢valued

Step 1. Let ¢ be the 4cell> designated by cd.

Step 2. Let type be the <&dn~type> of c.

Step 3. Perform convert(val,type) to obtain val2
Step 4. Replace the <4valuey component of c by valZ2,

B12 interpret-if-statement(st)
wvhere st is a <conditional-stmt>

Step 1. Let e be the <expression? of the <&hoice> of st.
Step 2. Perform evaluate-expression(e) to obtain val,
Step 3. Let t be convert(val,L0G)
Case 3.1. t is TRLUE
Let s be the 4then-stmt> of st.
Case 3.2. t is FALSE
Let s be the <else~-stmt> of st.

Step 4. Set the current <statement-designator’>to
designate the <statement) of s.

B13 interpret-ooto-statement(cs)
where ¢s is a {4goto-stmt)

Step 1. Let id be the<identifier> that is in the <«label”> in gs.
Step 2. Perform id-ref(id), and obtain the designated
cell c, wvhich must be of the form

«cell> : {denotationy: &label—~dn>
éblock=state-designatory bsn
{statement~designator> lab
<dn-type» : LABEL.
Step 3. The 4block~state-list> must contain a ¢block-state»
designated by bsn (its corresponding block
contains the <statement) designated by lab).

Case 3.1. bs is the current ¢éblock-stated
Perform local-goto(lab).

Case 3.2. bs is not the current éblock-stated
Step 3.2.1. Replace the <4statement-controld of bs
by an <cperation for local-goto(lab).

Step 3.2.2, For each éblock-state>,b that occurs
after bs in the éblock-state~list?>
(including the current block),
replace the éstatement-control?® of b
by an éoperatiomy for exit.

17

B14 lucal-goto(dest)

where dest is a {(statement-designator)

Step 1. Replace the current (statement-designator) by dest
Step 2. Perform continue,

B15 interpret-procedure-call(pc)
where pc is a {procedure-call}

Step 1. Let id be the {identifier) and al the <Largument-
list) immediately contained in pc.
Step 2. Perform denotation(id) to give pd, which must be a
&procfun-dnd @ éenvironment-tabley, env
&procfun-attr>:{procedure-atto :
{parameter-list):pl;
statement>:s,
Step 3. Perform install-arguments (al,pl,env).
Step 4. Let std be a<statement-designatory designating
the <statement> s.
Step 5. Perform stack(env,<4operation® for interpret-statement,std)

B16 install=-arouments(al,pl,env)
where al is an {argument-list>, pl a <parameter-list),
and env an <4environment-table)

Step 1. If length(al) does not equal length(pl) then error.
Step 2. Otheruise,
for each i from 1 to length(al) perform
Step 2.1. Let fp be the i'th component of pl, and
ap be the i'th component of al,
Step 2.2. Perform argument-dn(ap,fp), and
append the result to the &identifier-possession-
listdcontained in the environment-table env.

rd

B17 arcument-dn(ap,fp)
where ap is an <argument) and fp is a ¢parameter

Step 1. Let aexp be the expression of ap.
Case 1.1. If aexp immediately contains a<constant), or
the <value-option) component of fp is VALUE:

Step 1.1.1. Peform evaluate-expression(aexp),
giving vel, Let c be a

&cell) (1 &denotationdi<¢valued val ;
&dn-typey inull,

Let cd be a<¢cell~designatory designating c.

Case 1.2, If zexp immediately contains a <variable), and id.
Perform id-ref(id) qiving cd.

Case 1.3. (otheruise make a thunk)
Let env be a copy of the current <4environment-
tabley. Let c be a
(celly sedenotation) : ¢thunk=-dm :
£environment=tabledenv

_ {expressiond aexp
&dn-type>: THUNK,

Let cd be adell-designator> designating c.

Step 2. Return an <«identifier-possessiom:
{identifierd fp
écell-designator> cd,

118

B18 stack(env,op,std)
where env is an<environment-table>, op an <operations,
and std a (statement-designator>

Step 1. Let bsd be a &(block=state-~designator>
designating the current &block-state>.
Step 2. Append to the ¢block=state~listda

(block=stated: envirconment-table> env
4statement-control>:
4operation=list>:
4operation>: op ;3
{statement-~designator>: std
<enclosinog~block>: bsd
{returned-value>: null.,

B19 exit
Delete the current <&block=stztedfrom the ¢block=stete=lists.

B20 interpret-statement-list(stl)

Step 1. Set the current <statement-designator) to
designate the first d{statementd in stl,
Step 2. Perform continue,

B21 evaluate-expression(e)

Step 1. Let ec be the node immediately contained in e.
Case 1.1. ec is a <pinary>:<expression> el
<binary-op> op <expressiond e2:

Perform evaluate~expression(e1) giving a,
evaluate~expression(e2) giving b,
Return evaluate~binary~op(op,a,b)

Case 1.2. ec is a {unaryy:<unary=operator> op
{expression® e1,

Perform evaluate»expressimn(e1;, giving a.
Return evaluate-unary=-op(op,a

Case 1.3. ec is a <function-calld
Perform evaluate-function-call(ec)
Return the current <&returned-value®.

Case 1.4. ec is a <{variabled :l¢identifierd id.

Case 1.4.1. Denotation(id) is a ¢valuedval
Return val.

Case 1.4.2. Denctation(id) is aé&thunk=dndthdn
Perform evaluate~thunk=val(thdn),
Return the current ¢returned-value>,
Case 1.5, ec is a {constan®
Return its <4values.

B22 id-ref(id)
where id is an <didentifier)

Step 1. Search the current <¢identifier-possession-~listd
for the last ¢identifier-possessionip containing id.
Step 2. Return the 4cell-designator® also contained in ip.

B23 denotation(id)

Return the ¢denotationd) component of the <celld
designated by id-ref(id).

%19

B24 evaluate~function-call(fc)
vhere fc is a <4£function=calld

Step 1. Let id be the <4identifierd and al the<dargument-~list)
immediately contained in fec.
Step 2. Perform denotation(id) to give fd, which must be a

(procfun~-dny t éenvironment—-table>env
éprocfun=attio
{function-attr>:
<parameter-list> pl

{statement> s
{typey t
<expression> re.

Step 3. Perform install-arguments(al,pl,env).
Step 4. Let std be a <statement-designators
designating the <«statement> s.
Step 5. Perform stack(env, <operations» for interpret-statement,
stdj.
B25 evaluate-thunk-value(dn)
where dn is a4thunk-dnd

Step 1. Let et be the ¢environment~tazble>,
and e the <Zexptession®> in dn. _
Step 2. Perform stack(et, <operation® for return-value(e),null).

B26 return=value(e)
vhere e is an <{expression)

Step 1. Perform evaluate-expression(e) and attach the
result to the 4returned-volue» component of the
4<block~state> designated by the current
&neclesing=-blockd .

Step 2. Perform exit,

B27 evaluate-reference(var)
vhere var is a <varieble}

Step 1. Let id be the dJddentifierd of var,
Case 1.1. If denotation(id) is a <vzlued
Return id-ref(id).
Case 1.2. If denotation(id) is a <thunk=dnd® thdn
Perform evaluate-thunk-reference(thdn).
Return the current <&eturned-value®
(a ¢cell-designatory).

B28 evaluate-thunk-reference(dn)
where dn is a <¢thunk-dny

Step 1. Let et be the <(environment-tabled, and
e the Zexpressio® in dn.
Step 2. Perform stack(et,é?peratiané for return~reference,
Rkl

B29 return-reference(e)
where e 1s an <expressior®

Step 1. Perform evaluate-reference(e) and attach the result
to the <4returped-value> component of the 4block-
statey designated by the current ¢enclosing=blockd.

Step 2. Perform exit,

Note: evaluate-binary-op and evaluate-unary-op
are not further specified.

120

Appendix M

Abstract syntax tree-structures for the LFFS definition

of ALEX

AL1 program : block
AL2 block : declaration-list , stmt-list

AL3 declaration = cell / procedure / function / label

AL4 cell : value , type

ALS value = real-value / integer-value / true / false / undef
AL6 type = int / reasl / loag

AL7 procedure : parameter-list , stmt

AL8 function : paremetsr-list , stmt , type , expression

ALY parameter : spec , type L argument] / cell

AL10 spec = value / name

AL11 label : stmt-designator

AL12 stmt = assignment-stmt / if-stmt / goto-stmt /
procedure~call / stmt-list / block / null

AL13 assignment-stmt : variable , expression

AL14 if-stmt : expression , stmt , stmt

AL1S coto-stmt : label-designator

AL16 procedure-call : procid , argument-list

AL17 procid = procedure-desionator

AL18 argument = expression

AL19 expression = constant / variable / unary / binary /
functicn-call

AL20 constant = value

AL21 variable = cell-designator / parameter-designator

AL22 unary : unary-op , expression

AL23 binary : expression, binary-op , expression

AL24 function-call : funcid , argument-list

AL25 funcid = function-designator

]

Notes 1. Real=-value, integer-value, unary-op, and
binary-op are not further specified.
2., undef is a terminal meaning that no value
has been defined, and attempt to use it in an
arithmetic expression will result in an error.
3. During execution, there will sometimes be
further subnodes to call statements.

121

Appendix N

Transformation rules for the Lrrg definition

L1 EXEC program: block - program: EXEC block

L2 program: END block =» END program: block S(STOP).

L3 EXEC block: stmt-list — block: EXEC stmt-list

L4 block: END stmt-list ~3 END block: stmt-list

LS5 EXEC stmt-list: stmt .. -> stmt=list: EXEC stmt ..

L6 .+« END stmt1,stmt2 on D ua stmtq, EXEC stmt2 o J
L?7 stmt-list: .. END stmt -5 END stmt-list: .. stmt

L8 EXEC assignment-stmt: variable,expression —
assignment-stmt: variable, EXEC expression

L9 assignment-stmt: uariable:cellq—designator,UHL(x) expressios

& 09111: value=y , type =

END assignment-stmt: variable expression

& cell,: ualue:cnnuert(x,types , type
L10 EXEC if-stmt: expression,stmt1,stmt -

if-stmt: EXEC expression , stm - stmt2

L11 if-stmt: VAL(true) expression , stmt, , stmt, ->
1

if-stmt: expression , EXEC stmt, , stmt

2
L12 if-stmt: VAL(false) expression, strnt,Il 3 stmt2 -—
if-stmt: expression , stmt1 s EXEC stmt?

L13 if=-stmt: ,, END stmt .. -3 END if-stmt: .. stmt ..

L14 EXEC goto-stmt: label1—dcsignator & label1: stmt?u
designator -)
goto-stmt: label1—d&signator & EXEC stmt2

L15 EXEC empty =5 END empty

L16 EXEC procedure-call:

procid=procedure,~designator , argument-list
& procedure1: parameter-list , stmt -
procedure~call:
procid , argument-list ,
MATCH (parameter-list-copy + argument-list-copy) ,
stmt-copy

L17 MATCH parameter-list =3 (FMATCH parameter)-list

L18 MATCH value,type,arqument=expression —
value,type, EXEC expression

L19 value,type, VAL(x) expression —>
MATCHED cell: value=convert(x,type) , type

L20 MATCH name,type,argument =) MATCHED name,type,argument

L21 variable=parameter,~-designator
& parameter,: name,type,argument=expression -
expression-copy

L22 (MATCHED parameter)-list — MATCHED-PRFS

122

L23 MATCHED-PRNS , stmt =) EXEC stmt
L24 procedure-call: procid , argument-list , END stmt —
END procedure-call: procid , argument-list
L25 EXEC constant=value=x =3 VAL(x) constant
L26 EXEC uariable:cell1-designator & cell1: value=x , type —>
VAL(x) variable
L27 EXEC unary: unary-op,expression =2
unary: unary-op, EXEC expression
L28 unary: unary-op:op,JAL(x) expression =>
VAL(op(x)) unary: unary-op: op ,expression
L29 EXEC binary: expression1 y binary=-opiop , expression2 o
binary: EXEC expressian1, binary-op:op , EXEC expression2
L30 binary: VAL(x) expression,,binary-op:op, VAL(y) expression,
= VAL(op(x,y)) binary: expression, , binary-op:op ,
expression2
L31 EXEC function-call:
funcid=function,~designator , argument-list
& function1: parameler—list,stmt,type,expression
function-call:
funcid , arqument-list ,
MATCH (parameter-list-copy + argument-list-copy),
stmt-copy , type , expression-copy
L32 END stmt , type , expression —>
stmt , type , EXEC expression
L33 function-call:
funcid,argument-list,stmt,type, VAL(x) expression =>
VAL(convert(x,type)) function=-call: funcid,argument-list
-list *"a’
~designator suffixes with special meanings

~Ccopy J

