Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Characterisation of adhesion of a probiotic bacterium *Lactobacillus rhamnosus* HN001 to extracellular matrix proteins and the intestinal cell line Caco-2

A thesis presented to Massey University in partial fulfilment of the requirement for the degree of Master of Science in Microbiology

ASTRID AUTHIER

2003

ACKNOWLEDGEMENTS

I would like to thank my supervisors Dr. Mark Lubbers and Dr. Michael Collett from Fonterra Research Centre for all their time, expertise, and support that made this study possible. I would like to thank my supervisors Dr. Paul O'Toole for his time and expertise during the first year of this study and Prof. Pat Sullivan for his assistance in the final stage of this study. I would like to thank John Lumsden from the Institute of Veterinary Science, Massey University, for the preparation of the antisera used in this study. I would like to thank Ellen Hausman for her assistance with the enumeration of Caco-2 cells and the Caco-2 cell line maintenance, and Nini Ripandelli for her assistance with the Caco-2 cell maintenance. Finally, I would like to thank all the members of the Microbial Genetics group at Fonterra Research Centre for their wonderful support during this study. I would like to acknowledge the financial support of Fonterra Research Centre, which made this study possible.

ABSTRACT

This study focuses on *Lactobacillus rhamnosus* HN001, a potential candidate for use as a probiotic. Probiotics are microorganisms that can exert a beneficial effect on a host. It is believed that the ability of a probiotic to colonise gastrointestinal surfaces is important in its ability to exert a beneficial effect on the host. In order to do so, it is thought the microorganism must be able to adhere to molecules found on intestinal cells. HN001 has been shown to adhere to human intestinal cell lines (Gopal *et al.*, 2001). This study characterises the molecular species involved in the adherence of HN001 to intestinal molecules and cell lines, which may be important in the ability of HN001 to exert health benefits in a host.

Both liquid and solid-phase binding assays were used to characterise HN001 binding to extracellular matrix (ECM) components found in intestinal tissues. Of the ECM components investigated, HN001 bound fibronectin with the highest affinity. This interaction was specific, saturable and dependent on the growth phase of HN001. HN001 bound immobilised fibronectin in preference to soluble fibronectin through a protein-dependent interaction. HN001 was also found to bind to the N-terminal heparin binding domain of fibronectin and the C-terminal part of the first type III repeat in the fibronectin molecule (III₁-C). HN001 adhered to the human intestinal cell line, Caco-2, in a dose-dependent manner that was enhanced by a pH-sensitive factor present in the spent culture supernatant.

Since fibronectin-binding was identified as a possible mechanism for adherence of HN001 to intestinal tissues, HN001 genome DNA sequence was examined for genes encoding putative fibronectin-binding proteins. Fbl (Fibronectin-binding like) was identified through its similarity to fibronectin-binding proteins from *Streptococcus pneumoniae* (Holmes *et al.*, 2001) and *S. pyogenes* (Courtney *et al.*, 1994). Fbl was expressed by a GST fusion system and used to compete with HN001 adhesion in liquid-phase binding assays to ascertain its function. Since difficulties were experienced when expressing and purifying soluble Fbl, an insertional disruption of the *fbl* gene was created and its phenotype investigated in liquid-phase, solid-phase and Caco-2 binding assays to determine Fbl function.

ABBREVIATIONS

BLAST	Basic Local Alignment Search Tools
BSA	Bovine Serum Albumin
cFn	Cellular fibronectin
cfu	Colony forming units
CIII	C-terminal part of the first type III repeat in fibronectin
cpm	Counts per minute
Da	Dalton
ECM	Extracellular matrix
EDTA	Ethylenediaminetetra Acetic Acid Disodium salt
ELISA	Enzyme-Linked Immunosorbent Assay
Em	Erythromycin
Fbl	Fibronectin-binding-like protein
Fn	Fibronectin
FRC	Fonterra Research Centre
FPLC	Fast Performance Liquid Chromatography
GST	Glutathione S-transferase
HRP	Horseradish Peroxidase
IAA	Iso Amyl Alcohol
IPTG	Isopropylthio-β-D-galactoside
LAB	Lactic acid bacteria
LTA	Lipoteichoic acid
NEB	New England Biolabs
OD	Optical density
ORF	Open reading frame
ori	Origin of replication
PCR	Polymerase chain reaction
pFn	Plasma fibronectin
SCS	Spent culture supernatant
SDS-PAGE	SDS-polyacrylamide gel electrophoresis
sFn	Super fibronectin
Tm	Melting temperature
TMB	3,3',5,5' tetramethylbenzidine
WT	Wild type

TABLE OF CONTENTS

ABS	TRACT	i
ABBREVIATIONS		ii
TABLE OF CONTENTS		iii
LIST OF FIGURES		ix
LIST	OF TABLES	xi
CHAP	PTER ONE: INTRODUCTION	1
1.1	Lactic Acid Bacteria	1
1.1.1	General characteristics of lactic acid bacteria	1
1.1.2	Lactobacilli	1
1.1.2.	1 Surface characteristics of lactobacilli	3
1.2	Probiotic bacteria	5
1.2.1	Definition	5
1.2.2	Selection of probiotic strains	5
1.2.3	L. rhamnosus HN001 (DR20™)	7
1.3	Gastrointestinal surfaces available for bacterial adhesion	9
1.3.1	Why is adhesion important to bacteria?	9
1.3.2	The gastrointestinal surface	9
1.3.3	The extracellular matrix and basement membrane	13
1.3.3.	1 Fibronectin	14
1.3.4	The Caco-2 cell line	16
1.3.4.	1 Adhesion of lactobacilli to Caco-2 cells	16
1.4	Mechanisms of adhesion of bacteria	17
1.4.1	General model for adhesion of bacteria	17
1.4.2	Bacterial adhesins	18
1.4.2.	1 Fibronectin-binding proteins	19
1.4.2.	2 Characteristics of cell surface proteins	20
1.5	Characterised adhesins of Lactobacillus species	21
1.6	Aims of this study	23
CHAP	TER 2: MATERIALS AND METHODS	24
2.1	Bacterial strains and plasmids	24

	Media and Buffers	24
2.2.1	Media	24
2.2.2	Buffers and Solutions	28
2.2.3	Protein solutions	32
2.3	Bacteriological methods	34
2.3.1	Culture conditions	34
2.3.2	Storage of strains	35
2.3.3	Determination of bacteria numbers	35
2.3.4	Preparation of HN001 spent culture supernatant	35
2.4	DNA manipulation	36
2.4.1	Preparation of plasmid DNA from <i>E. coli</i> DH5α	36
2.4.2	Preparation of total genomic DNA from HN001	36
2.4.3	Purification of genomic DNA from HN001	37
2.4.4	Storage of DNA	38
2.4.5	Quantitation of DNA	38
2.4.6	Agarose gel electrophoresis of DNA	38
2.4.7	Restriction digestion of DNA	39
2.4.8	Sequencing genomic DNA	39
2.5	PCR amplification of DNA	40
2.5.1	Oligonucleotide primer design	40
2.5.2	PCR amplification of DNA targets	43
2.5.3	Purification of PCR products	44
2.5.4	Sequencing of PCR products	44
2.6	Characterisation of <i>fbl in silico</i>	44
2.6 2.6.1	Characterisation of <i>fbl in silico</i> Use of ORF prediction tools, BLASTP and sequence alignments	44 44
2.6 2.6.1 2.6.2	Characterisation of <i>fbl in silico</i> Use of ORF prediction tools, BLASTP and sequence alignments Use of Motif search engines	44 44 45
 2.6 2.6.1 2.6.2 2.7 	 Characterisation of <i>fbl in silico</i> Use of ORF prediction tools, BLASTP and sequence alignments Use of Motif search engines Cloning of DNA into plasmid vectors 	44 44 45 45
 2.6 2.6.1 2.6.2 2.7 2.7.1 	 Characterisation of <i>fbl in silico</i> Use of ORF prediction tools, BLASTP and sequence alignments Use of Motif search engines Cloning of DNA into plasmid vectors Vectors 	44 44 45 45 45
 2.6 2.6.1 2.6.2 2.7 2.7.1 2.7.2 	 Characterisation of <i>fbl in silico</i> Use of ORF prediction tools, BLASTP and sequence alignments Use of Motif search engines Cloning of DNA into plasmid vectors Vectors Primer design and PCR amplification for cloning into plasmid vectors 	44 44 45 45 45 45
 2.6 2.6.1 2.6.2 2.7 2.7.1 2.7.2 2.7.3 	 Characterisation of <i>fbl in silico</i> Use of ORF prediction tools, BLASTP and sequence alignments Use of Motif search engines Cloning of DNA into plasmid vectors Vectors Primer design and PCR amplification for cloning into plasmid vectors Ligation of inserts into plasmid vectors 	44 44 45 45 45 46 46
 2.6 2.6.1 2.6.2 2.7 2.7.1 2.7.2 2.7.3 2.7.4 	 Characterisation of <i>fbl in silico</i> Use of ORF prediction tools, BLASTP and sequence alignments Use of Motif search engines Cloning of DNA into plasmid vectors Vectors Primer design and PCR amplification for cloning into plasmid vectors Ligation of inserts into plasmid vectors Transformation of <i>E.coli</i> DH5α or TOP10 cells 	44 44 45 45 45 46 46 46
 2.6 2.6.1 2.6.2 2.7 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 	 Characterisation of <i>fbl in silico</i> Use of ORF prediction tools, BLASTP and sequence alignments Use of Motif search engines Cloning of DNA into plasmid vectors Vectors Primer design and PCR amplification for cloning into plasmid vectors Ligation of inserts into plasmid vectors Transformation of <i>E.coli</i> DH5α or TOP10 cells Screening of transformants 	44 44 45 45 45 46 46 46 47 47
 2.6 2.6.1 2.6.2 2.7 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.8 	 Characterisation of <i>fbl in silico</i> Use of ORF prediction tools, BLASTP and sequence alignments Use of Motif search engines Cloning of DNA into plasmid vectors Vectors Primer design and PCR amplification for cloning into plasmid vectors Ligation of inserts into plasmid vectors Transformation of <i>E. coli</i> DH5α or TOP10 cells Screening of transformants Expression of gene products 	44 44 45 45 45 46 46 46 47 47
 2.6 2.6.1 2.6.2 2.7 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.8 2.8.1 	 Characterisation of <i>fbl in silico</i> Use of ORF prediction tools, BLASTP and sequence alignments Use of Motif search engines Cloning of DNA into plasmid vectors Vectors Primer design and PCR amplification for cloning into plasmid vectors Ligation of inserts into plasmid vectors Transformation of <i>E. coli</i> DH5α or TOP10 cells Screening of transformants Expression of gene products Expression conditions 	44 44 45 45 45 46 46 46 47 47 47 48 48
 2.6 2.6.1 2.6.2 2.7 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.8 2.8.1 2.8.2 	 Characterisation of <i>fbl in silico</i> Use of ORF prediction tools, BLASTP and sequence alignments Use of Motif search engines Cloning of DNA into plasmid vectors Vectors Primer design and PCR amplification for cloning into plasmid vectors Ligation of inserts into plasmid vectors Transformation of <i>E. coli</i> DH5α or TOP10 cells Screening of transformants Expression of gene products Expression conditions Lysis of <i>E. coli</i> cells 	44 44 45 45 45 46 46 46 46 47 47 47 47 48 48 48

2.8.2.	2 Freeze/thaw	49
2.8.2.	3 French Press	49
2.8.3	Protein gel electrophoresis	49
2.9	Purification of fusion proteins	50
2.10	Insertional disruption of gene targets	51
2.10.1	Vectors for insertional disruption	51
2.10.2	Transformation of HN001 cells	51
2.10.3	HN001 colony PCR	52
2.11	Southern Blot	52
2.11.1	Southern transfer	52
2.11.2	Probe labelling and Hybridisation	53
2.11.3	Washing and Signal detection	54
2.12	Preparation of crude HN001 cell envelope	54
2.13	Immunoblotting	55
2.13.1	Inoculation of rabbits	55
2.13.2	Preparation of SDS-PAGE gels for Western Blotting	55
2.13.3	Western transfer	56
2.13.4	Immunodetection	56
2.14	Purification of IgG from anti-serum	57
2.14.1	Purification of lgG using FPLC	57
2.14.2	Desalting and Storage of purified IgG	58
2.15	Liquid-phase binding assays for ECM proteins	58
2.15.1	¹²⁵ I labelling of proteins	58
2.15.2	¹²⁵ I fibronectin binding assays	59
2.16	Solid-phase binding assays	60
2.16.1	Coating microtitre plates with protein or bacterial cells	60
2.16.2	Binding of bacteria to immobilised proteins	60
2.16.3	Detection of HN001 cells by ELISA	60
2.16.3	.1 Crisscross serial dilution	61
2.16.4	Detection by radioisotope labelling	61
2.16.5	Detection by Crystal violet staining	62
2.16.6	Detection by Phase contrast microscopy	62
2.16.7	Detection by OD ₄₀₃	63
2.16.8	Glass slide binding assays	63

2,17	Binding to Caco-2 cells	64
2.17.1	Growth and Maintenance of the intestinal cell line Caco-2	64
2.17.2	Estimation of number of Caco-2 cells per well in 6-well plate	64
2.17.3	Adhesion assay	65
2.17.3	.1 Metabolic labelling of HN001 grown on MRS agar plates	65
2.18	Pre-treatment of HN001 cells	65
2.18.1	Protease treatment	65
2.18.2	Periodate treatment	66
СНАР	TER THREE: RESULTS	67
3.1	Liquid-phase binding assays for intestinal molecules	67
3.1.1	HN001 binds soluble fibronectin	67
3.1.2	HN001 binding to ¹²⁵ I-fibronectin is saturable	68
3.1.3	HN001 binding to ¹²⁵ 1-fibronectin is dependent on growth phase	70
3.1.4	HN001 binding to ¹²⁵ I-fibronectin is specific	70
3.2	Solid-phase binding assays for intestinal molecules	73
3.2.1	Detection of rabbit anti-HN001 cell envelope antibody titre by Immunoblotting	7 3
3.2.2	Purification of rabbit anti-HN001 cell envelope lgG	75
3.2.3	Optimisation of detection of HN001 cells	76
3.2.4	HN001 binding to extracellular matrix components in solid-phase	77
3.2.5	Dose-dependent binding of HN001 to fibronectin	78
3.2.6	Binding of HN001 to different fragments of fibronectin	79
3.2.7	Specificity of interaction between HN001 and fibronectin	81
3.2.8	Evaluation of different methods to detect HN001 cells	84
3.2.8.	Crystal violet detection	84
3.2.8.2	OD ₄₀₃ detection	85
3.2.8.3	Phase-contrast microscopy detection	85
3.2.8.4	Slide-binding assays	85
3.2.8.5	Radioisotope labelling	85
3.2.9	Binding of protease and periodate treated cells to fibronectin	87
3.3	Caco-2 adhesion assays	89
3.3.1	There are approximately 7×10 ⁶ Caco-2 cells per adhesion assay	89
3.3.2	Dose-dependent adhesion of HN001 to Caco-2 cells	89
3.3.3	A factor in HN001 SCS promotes HN001 adhesion to Caco-2 cells	91
3.3.4	Role of HN001 spent culture supernatant in fibronectin binding	93
3.3.5	Competition of HN001 adhesion to Caco-2 with IgG	94
3.3.6	Competition of HN001 adhesion to Caco-2 by fibronectin	96

3.3.7	Adhesion of surface-treated HN001 cells to Caco-2 cells	98
3.4 Chara	acterisation of <i>fbl</i>	99
3.4.1	Identification of Fbl as a putative fibronectin-binding protein	99
3.4.2	Sequencing of <i>fbl</i>	99
3.4.3	In silico characterisation of <i>fbl</i>	99
3.4.3.1	Use of BLASTP and sequence alignments	99
3.4.3.2	Use of motif search engines	104
3.4.4	Biochemical characterisation of Fbl function	105
3.4.4.1	Expression of Fb1	105
3.4.4.2	Purification of Fb1 fusion proteins	108
3.4.4.2	Competition of HN001 binding to ¹²⁵ I-fibronectin with Fbl4-GST	110
3.4.5	Genetic characterisation of Fbl function	111
3.4.5.1	Creation of integration construct	111
3.4.5.2	HN001 colony PCR	112
3.4.5.3	Southern Blot	112
3.4.5.4	Phenotype of HN001D/b/	116
СНАРТ	TER FOUR: DISCUSSION	119
4,1	HN001 binds fibronectin	119
4.2	HN001 binds Caco-2 cells	123
4.3	Characterisation of Fbl	129
4.3.1	ls Fbl likely to be a fibronectin-binding protein?	129
4.3.2	Characterisation of Fbl function	131
СНАРТ	ER FIVE: SUMMARY AND FUTURE DIRECTIONS	133
4.1	Summary	133
5.2	Future directions	134
REFER	ENCES	136
APPEN	DIX 1: FORMULAE USED	147
APPEN	DIX 2: MAPS OF VECTORS USED	148
APPEN	DIX 3: IN SILICO CHARACTERISATION	150

Sequence assembly of <i>fbl</i>	150
Prediction of a signal peptide	150
BLASTP results	151
Dot Plot results	152

153

APPENDIX 4: ENUMERATION OF CACO-2 CELLS

LIST OF FIGURES

Figure 1 Representation of the typical cell wall architecture of lactobacilli	4
Figure 2 Surface of small intestine of humans	10
Figure 3 Surface of the large intestine of humans	11
Figure 4 Diagram of an epithelial cell	12
Figure 5 Structure of fibronectin	15
Figure 6 Alignment of the fibronectin-binding repeat region (R2)	20
Figure 7 HN001 binding to ¹²⁵ I-fibronectin is saturable	71
Figure 8 Stationary-phase binds more ¹²⁵ I-Fn than exponential-phase HN001	71
Figure 9 HN001 binding to ¹²⁵ I-fibronectin is specific	72
Figure 10 Antiserum has high reactivity to HN001 cell envelope at 1/1000 dilution	74
Figure 11 Purification of rabbit anti-HN001 cell envelope IgG	75
Figure 12 Immunoblot	76
Figure 13 HN001 binds three forms of fibronectin in the solid-phase	77
Figure 14 Dose-dependent binding of HN001 to fibronectin	78
Figure 15 Structure of plasma fibronectin	79
Figure 16 HN001 binds ClfI and p30 fragments of fibronectin	80
Figure 17 Super fibronectin and CIII disrupt HN001 binding to immobilised plasma fibronectin	82
Figure 18 CIII disrupts HN001 binding to super fibronectin (sFn)	83
Figure 19 Super fibronectin has small effect on HN001 binding to CIII	83
Figure 20 Crystal violet staining not suitable for detecting HN001 cells	84
Figure 21 Slide-binding assay	86
Figure 22 Protease treatment of HN001 cells decreases binding to fibronectin	87
Figure 23 Periodate oxidation of HN001 cell surfaces increases non-specific binding	88
Figure 24 Dose-dependent adhesion of HN001 to Caco-2 cells	90
Figure 25 A factor in HN001 SCS promotes adhesion of HN001 to Caco-2 cells	92
Figure 26 HN001 spent culture supernatant does not have a positive influence on fibronectin binding	; 93
Figure 27 lgG appears to increase HN001 adhesion to Caco-2 cells	95
Figure 28 No support for role of fibronectin in HN001 adhesion to Caco-2 cells	97
Figure 29 fbl genomic region	100
Figure 30 Predicted amino acid sequence of Fbl	101
Figure 31 Multiple sequence alignment of Fbl against PavA and Fbp54	104
Figure 32 Plasmid maps of pFbl2 and pFbl4	105
Figure 33 Expression of soluble Fbl2-GST	106
Figure 34 Expression of soluble FbI4-GST	107
Figure 35 Purification of Fbl2 by cleavage	108
Figure 36 Purification of Fbl4-GST by elution	109
Figure 37 Role of Fb14 in fibronectin binding unclear	110

Figure 38	Plasmid map of pBeryFb11	111
Figure 39	HN001 colony PCR	313
Figure 40	Southern Blot	114
Figure 41	Disruption of <i>fbl</i> did not decrease HN001 binding to ¹²³ I-Fn	116
Figure 42	HN001Dfbl and WT HN001 have similar binding to intestinal molecules in the solid-phase	117
Figure 43	Disruption of <i>fbl</i> does not decrease adhesion of HN001 to Caco-2 cells	118
Figure 44	Proposed model of action of factor in HN001 SCS	126

LIST OF TABLES

Table 1 Bacterial strains used in this study	25
Table 2 Plasmids used in this study	26
Table 3 Oligonucleotide primers used in this study	41
Table 4 ¹²⁵ I-Fn binding of various strains	69
Table 5 Predicted and actual restriction fragments detected in Southern Blot	115
Table 6 Summary of the BLASTP results (top five)	151