Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Reformer Tube Internal Diameter Measuring System

A Thesis in the partial fulfilment of the requirements for the Degree of

Master of Engineering

In

Mechatronics

At Massey University, Turitea Campus Palmerston North New Zealand.

> Morio Fukuoka 2010

ABSTRACT

A Reformer Tube is a device used in chemical engineering, commonly in the fuel cell technology, used to perform chemical reactions to produce chemicals products. Commonly the process involves heating the introduced chemicals in the tube to ultra-high temperatures at pressures around 20 bars encouraging rapid reactions. Reformer tube construction is described within which both the desired endothermic catalysed chemical reaction and heat transfer from the reaction products to the incoming reactants are accomplished [10]. The service life of these devices is primary ended when Creeps Shear damage is detected. Due to the complex combination of multiple factors between temperature, stress and aggressive environment during service influencing the generation of Creep damage, it is of significant benefit for process companies using condition-based assessment rather than time-based estimation to judge the retirement of reformer tubes.

The aim of this research is to investigate a low-cost, mechatronic reformer tube inspection system that can replace the conventional expensive laser based system employed by New Zealand Methanex Ltd. The system must be a non-destructive examination (NDT) instrument capable of making a full inspection of a vertically standing, 110mm bore, 14m reformer tube within 5 minutes duration. Specification requirements set by the company state that the new system must be able to make measurement of at least 2 diametrical axes at axial increments of 25mm. The measurements are to be of 0.5mm accuracy or better. The nature of the tube stands to handle processing of Methanol stored at temperature of 500 degrees Celsius, gathering internal pressure of up to 20 bars. Due the cyclic repetition of these thermal and pressure changes, the tube will overtime result in internal cavity adaption causing tube failure through Creeping Shear. The device will be used to inspect the internal diameter change caused by creep damage and thus forecast the remaining service life of the tubes to help schedule the retirement of the reformer tubes at the most efficient timing.

The project commended with a research investigating the variety of reformer tube inspection techniques available for modern furnaces and reviewed the application methodologies and limitations. Based on the findings, the project proceeded to develop a low cost, mechanical reformer tube inspection system. The new system is branded Reformer Tube Internal Diameter Measuring (RTIDM) system. In the final part of this research, field testing was conducted at the Methanex Ltd furnace to examine the RTIDM systems performance. Analysis performed on the collected data from the field test revealed that the RTIDM system is a working system capable of making diametrical measurement at the precision of +/-0.1668mm.

Documented in this thesis is an in-depth discussion on the development of the Reformer Tube Internal Diameter Measuring (FTIDM) system. Conclusively, the RTIDM system developed in this research provided new method for reformer tube inspection. With the cost of the prototype is under \$2000 NZD, the design is a much cost friendly instrument compared with its rival devices while capable of making diametrical inspection at competitive precision and accuracy.

ACKNOWLEDGEMENTS

I would like to express my appreciation and gratitude to my supervisor Dr Liquong Tang who has given valued guidance, suggestions and greatly appreciated enthusiasm throughout this research. I have been fortunate to have a supervisor who possess so great a knowledge of her subject areas, and who were always willing to spend the time to import that knowledge.

I would also like to extend my thanks to Mrs Trish O'Grady, Mrs Linda Lowe, Mr Colin Plaw and Mr Bruce Collins for their assistance in compiling this research. And also, much thanks to the technicians at the Massey University Institute of Technology and Engineering workshop for their help and support.

Finally, I would like to owe my deepest gratitude to my wife and parents for their unconditional love, support and encouragements. And importantly, would like to thanks the Massey University and TechNZ foundation for their continuing efforts in providing opportunities and experience for students such as myself.

Table of Contents

ABSTRACTI			
ACKNOWLEDGEMENTS III			
LIST OF F	IGUR	ES	/11
LIST OF T	ABLE	S	.Х
CHAPTER	1	INTRODUCTION	.1
CHAPTER	2	LITERATURE REVIEW	. 3
2.1	Refo	ormer Tube Inspection	. 3
2.2	Lase	r Profilometry	.6
2.3	Phot	to Profilometry	.7
2.5	Liter	ature Review Conclusions	.7
CHAPTER	3	RTIDM SYSTEM DESIGN PROPOSAL	.9
3.1	RTID	0M system layout	.9
3.2	Driv	e Module	10
3.3	Sens	ory Module	11
CHAPTER	4	INTERNAL DIAMETER MEASURING UNIT	15
4.1	Mec	hanical Design	15
4.1.1	L	Linear-to-Rotary Transducer	16
4.1.2	2	Digital Absolute Rotary Encoder	19
4.2	Theo	pretical precision	21
4.2.1	L	Tolerance Stack up	21
4.2.2	2	Sensory Precision	24
4.2.3	3	IDMU Tolerance	25
4.3	IDM	U Precision & Accuracy Experiment	26
CHAPTER	5	SENSOR MODULE	31
5.1	Mec	hanical Construction	31
5.2	Refo	ormer Tube End Detection	34
5.2.1	L	End Detect Sensor	34
5.2.2	2	SONAR	36
5.3	Sens	ory Module Circuit Design	38
5.3.1	L	PICAXE Microcontroller	38
5.3.2		Sensory Circuit Design	39
5.3.3		Code Description	11
CHAPTER 6		DRIVE MODULE	15

6.	1	Mec	hanical Construction45
	6.1.2	1	Spool Design47
	6.1.2	2	Traversing Pulley System49
6.	2	DC N	Aotor Control
	6.2.2	1	LMD18200
	6.2.2	2	Circuit Design
	6.2.3	3	Program
СНА	PTER	7	RADIO
7.	1	Radi	o59
	7.1.2	1	Closed Wave Guide
7.	2	X-be	e Radio61
	7.2.2	1	Circuit Design
7.	3	Pica	xe Code65
	7.3.2	1	PICAXE-40X Transmitter Module65
	7.3.2	2	PICAXE-18x Receiver Module
CHA	PTER	8	LABVIEW SOFTWARE
8.	1	Nati	onal Instrument LabVIEW69
8.	2	Lab\	/IEW Virtual Instrument69
8.	3	Grap	phical User Interface (GUI)72
	8.3.2	1	Data Display panel73
	8.3.2	2	Control Panel76
	8.3.3	3	System Configuration78
8.	4	Bloc	k Diagram
	8.4.2	1	RS232 Data Input/output82
	8.4.2	2	State Control
	8.4.3	3	Real-time Data Acquisition and Logging86
СНА	PTER	9	TESTING OF THE RTIDM SYSTEM89
9.	1	Field	Testing Structure
9.	2	Simp	ble Analysis and Data Interpolation92
9.	3	Αςςι	iracy & Precision
	9.3.2	1	Diametrical Precision analysis97
	9.3.2	2	Depth Precision analysis99
9.	4	Expe	eriment Conclusion
10	С	onclu	sion103

10.1	Comparison	
10.2	Future Development	
REFERENC	ICE	
APPENDIX	IX	
Append	ndix A LabVIEW VI and PICAXE Code	
Sens	sory Module: Radio Transmit Code	
Drive	e Module: Radio Receive Code	
Moto	tor Control: Motor Driver Code	110
LabV	VIEW Code: State Control	111
LabV	VIEW Code: Motor Control	112
LabV	VIEW Code: Duty Cycle Generator	113
LabV	VIEW Code: Depth Calculation	114
LabV	VIEW Code: Update Shift Register	115
LabV	VIEW Code: Log Session	116
Append	ndix B Field Testing Raw Data and Plot	117
Trial	l 17 - Raw data	118
Trial	l 19 Raw data	134
Raw	<i>v</i> Data Plot	151
Inter	rpolated Data Plot	154
Append	idix C Datasheet	158

LIST OF FIGURES

Figure 2.1 Reformer Cell at Methanex Ltd3
Figure 2.2 Retired Reformer Tubes
Figure 2.3 Creep Strain vs Time [5]5
Figure 2.4 Illustration of Laser Profilometry mechanisms
Figure 3.1 Prototype Design – Partial section view9
Figure 3.2 Simple RTIDM Diagram
Figure 3.3 Drive Module & Reformer Tube11
Figure 3.4 Sensory Module – CAD Model12
Figure 3.5 An illustration of a possible deformed reformer tube cross-section profile12
Figure 4.1 Internal Diameter Measuring Unit15
Figure 4.2 IDMU Assembly16
Figure 4.3 Linear-to-Rotary Transducer assemblies16
Figure 4.4 Mechanical Construction17
Figure 4.5 Diameter (mm) vs Encoder Position (°)19
Figure 4.7 MAE3 Encoder Output graph (Voltage vs Angular Position)20
Figure 4.8 MAE3 Sensory Assembly
Figure 4.9 MAE3 Encoder Output (V) vs Diameter (mm)21
Figure 4.10 Encoder Shaft construction drawing23
Figure 4.11 IDMU Tolerance distributions23
Figure 4.12 Precision Distribution24
Figure 4.13 IDMU Tolerance vs Diameter plot25
Figure 4.14 Segment of Reformer Tube26
Figure 4.15 Histogram of Collected Diameter29
Figure 5.1 Sensory Module
Figure 5.2 Sensory Module Technical Drawing32
Figure 5.3 Sensory Module – Assembly Drawing (ISO View)
Figure 5.4 Battery Cell
Figure 5.5 Sensory Module End Detect Mechanism
Figure 5.6 Ultrasonic Bottom End Detect
Figure 5.7 Active sonar illustration
Figure 5.8 LV-MaxSonar [®] –EZ4
Figure 5.9 Sensory Circuit block diagram
Figure 5.12 PICAXE & XBee Radio Circuitry photo

Figure 5.13 Sensory Circuit diagram4	10
Figure 5.14 PICAXE Download Cable4	11
Figure 5.15 Power Supply Circuit4	11
Figure 5.16 Sensory output format4	12
Figure 6.1 Driver Module	15
Figure 6.2 Drive Module Assemblies4	16
Figure 6.3 Spool Dimension4	17
Figure 6.4 Linear Motion Components4	19
Figure 6.5 Traversing Carriage Assembly4	19
Figure 6.6 Steel Wire Path Illustration4	19
Figure 6.7 Simple Motor Control Block Diagram5	50
Figure 6.8 Motor Driver Circuitry Components5	50
Figure 6.9 Driver Circuitry Layout5	51
Figure 6.10 Motor Driver data flow diagram5	51
Figure 6.11 Motor Command format5	52
Figure 6.12 LMD182005	53
Figure 6.13 Lock Anti-phase PWM control5	54
Figure 6.14 Signal/Magnitude PWM Control5	54
Figure 6.15 Motor Drive Circuit5	55
Figure 7.1 Radio Implementation Block Diagram5	59
Figure 7.1 Type of Wave Guide6	50
Figure 7.3 X-Bee RF Module6	51
Figure 7.4 XBee Multipoint/Star Configurations (Appendix C)6	52
Figure 7.5 Radio transmitter circuit6	53
Figure 7.6 Radio Receiver circuit6	53
Figure 7.7 Sample Receiver Output6	58
Figure 8.1 RTIDM system block diagram7	70
Figure 8.2 RTIDM Control Program front panel & block diagram7	71
Figure 8.3 Software Interface7	72
Figure 8.4 Display Panel indicator locality7	73
Figure 8.5 Control Panel7	76
Figure 8.6 Routine Characteristic Diagrams7	77
Figure 8.7 System Configuration Panel7	78
Figure 8.8 RTIDM Control Program block diagram subtasks8	32

Figure 8.9 Serial Communication Setup and Read/Write83
Figure 8.10 Serial Communication Setup VI Block Diagram84
Figure 8.11 State Control block diagram
Figure 8.12 Automatic Operation state Diagram85
Figure 8.13 Manual Operation state diagram85
Figure 8.14 Register Update & Data Log Block Diagram
Figure 8.15 Update Shift Register Code
Figure 8.16 Log Data code
Figure 8.17 Log Data VI sample output88
Figure 9.1 Fielding Testing Site Photo
Figure 9.2 Specimen Reformer Tube Extraction End90
Figure 9.3 Trial 4 data plot91
Figure 9.4 Reformer Tube plot Characteristic92
Figure 9.5 Bottom detect Error Percentage94
Figure 9.6 Measuring Layer Deviation94
Figure 9.7 Trial 16 - Interpolated95
Figure 9.8 Data Collect Point97
Figure 9.9 Diameter Histogram98
Figure 9.10 Diameter Histogram

LIST OF TABLES

Table 4.1 Linear-to-Angular Transducer Parts List	16
Table 4.2 Geometric characteristics [17]	22
Table 4.2	27
Table 5.1 Sensory Module wire list	34
Table 6.1 Drive Module Part List	46
Table 7.1 XBee module configurable components	64
Table 7.2 XBee Module Configurations	64
Table 8.1 Control Variable	85
Table 8.2 Bundle Data Elements	86
Table 9.1 Table of Failed Trials	91
Table 9.2 Raw Data from Trial 4	91
Table 9.3 Bottom Detect depth	93
Table 9.4 Data Collection point Description	97
Table 9.5 Diametrical Data	98
Table 9.6 Diametrical Data	100