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Do hotter temperatures increase the incidence of self-harm 
hospitalisations? 

 

Abstract 

A relationship between air temperature and the incidence of suicide has been established in a 

number of previous studies. Interestingly, the relationship between geographical variation in 

temperature and suicide incidence has generally been found to be negative, while the 

relationship between temporal variation in temperature and suicide incidence has generally 

been found to be positive. It is less clear, however, how temperature relates to the incidence 

of self-harm. This topic is of particular importance given the presence of ongoing global 

warming. This study investigated the relationship between temperature and the incidence of 

self-harm resulting in hospitalisation in New Zealand. Self-harm hospitalisations by date and 

district for 1993–2009 were obtained from the Ministry of Health. Meteorological data was 

obtained from NIWA. Generalized linear mixed models were used to estimate the effects of 

three different components of variation in temperature: Geographical, seasonal, and irregular. 

Irregular (random) daily variation in temperature had a modest positive relationship with the 

incidence of acts of self-harm resulting in hospitalisation, with about 0.7% extra incidents for 

every 1°C increase in temperature. However, there was no strong evidence for a positive 

effect of either seasonal or geographical variation in temperature. We conclude that 

temperature does appear to bear some relation to the incidence of self-harm, with irregular 

daily variation in temperature having a positive effect. However, inconsistencies in the effects 

of different components of variation in temperature make it challenging to accurately predict 

how global warming will influence the incidence of self-harm. 
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Introduction 

The effect of temperature on the incidence of fatal self-harm (i.e., suicide) has been 

studied since at least the late 1800s (Morselli, 1882). Interestingly, studies comparing 

different geographical regions have tended to find that colder areas have higher suicide rates 

(Lester, 1999; Rotton, 1986; Souêtre, Wehr, Douillet, & Darcourt, 1990), while studies 

investigating the effects of temporal variation in temperature within individual regions have 

tended to find positive effects (Ajdacic-Gross et al., 2007; Deisenhammer, Kemmler, & 

Parson, 2003; Helama, Holopainen, & Partonen, 2013; Kim, Kim, & Kim, 2011; Page, Hajat, 

& Kovats, 2007). What has been studied less is how temperature relates to the incidence of 

acts of self-harm more generally, including non-fatal self-harm. The issue of the effects of 

temperature on self-harm is of particular importance given the presence of ongoing 

anthropogenic global warming (IPCC, 2013). 

The small number of studies that have attempted to investigate the relationship 

between temperature and the incidence of self-harm have tended to focus on the effects of 

temporal variation in temperature. Furthermore, the focus has tended to be on seasonal 

variation. For example, a study of admissions to an emergency department in Turkey 

(Doganay et al., 2003) found a strong correlation, r  = .81, between the average number of 

suicide attempts in each month of the calendar year and temperature. An Italian study of 

suicide attempts for 1974–1994 also found a strong and positive (but not significant) 

correlation between mean temperature and the number of suicide attempts across the twelve 

months of the calendar year, r = .49 (Preti, 1997). These findings are consistent with studies 

of the seasonal distribution of self-harm, which tend to find peaks in the warmer months of 

spring (Jessen et al., 1999; Jessen, Steffensen, & Jensen, 1998; Rock & Hallmayer, 2008) or 

summer (Masterton, 1991). 

A study of 12,379 parasuicide admissions in Oxford for 1976–1989 (Barker, Hawton, 

Fagg, & Jennison, 1994) took the alternative approach of analysing data at the daily level. 

This meant that their study estimated the combined effects of both seasonal and irregular 

(random) variation in temperature. A significant but small correlation between parasuicide 

admissions and maximum temperature was found for women, r = .04, but not men. A study 

of hospital admissions in Helsinki attempted to directly estimate the effect of irregular 

variation in temperature on suicide attempts by calculating the difference between daily 

observed temperatures and seasonal norms (Hiltunen et al., 2012). The resulting estimated 

effect of temperature was small and not statistically significant. 
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In general, the effect of irregular daily variation in temperature on the incidence of 

self-harm is as yet not well established. Similarly, we were unable to find any study that 

specifically assessed the effect of geographical variation in temperature on the incidence of 

self-harm. These two components of variation in temperature are of particular interest for 

different reasons. The effects of irregular variation in temperature are a valuable object of 

study because, due to its random and unpredictable nature, irregular daily variation is less 

likely to be subject to important confounds than other components of temperature variation. 

On the other hand, while the effects of geographical variation in temperature may be difficult 

to separate from demographic or cultural differences between populations living in different 

areas, investigation of the relationship between geographical variation in temperature and 

self-harm is still valuable: It may help to inform inferences about the effects of long-term, 

sustained differences in climate, such as those occurring due to anthropogenic climate 

change. 

The current study therefore aims to specifically estimate the effects geographical, 

seasonal, and irregular variation in temperature on the incidence of acts of self-harm resulting 

in hospitalisation in New Zealand. Furthermore, this study aims to discuss what this 

information can (and cannot) tell us about how the incidence of self-harm is likely to be 

affected by anthropogenic climate change. 

 

Methods 

Description of setting 

New Zealand is an island nation with approximately 4.5 million inhabitants 

(MacPherson, 2014). Its climate ranges from warm and subtropical in the north, to cool and 

temperate in the south, with severe alpine conditions in some mountainous regions 

(Mackintosh, 2001). The most common ethnicities are European (74% in 2013), Māori 

(15%), Asian (12%), and Pacific peoples (7%) (Statistics New Zealand, 2014). 

Hospitalisations Data 

The New Zealand Ministry of Health provided nationwide data listing public hospital 

discharges with a discharge date between 1 January 1993 and 31 December 2009 for which at 
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least one of the causes of hospitalisation was self-harm (ICD-9 codes E950-E958). These data 

were collated by date of injury and the patient’s territorial local authority area (hereafter 

“district”) of domicile. 67 districts currently exist in New Zealand. 462 hospitalisations with a 

district of “overseas/other” listed were included in the national descriptive statistics reported, 

but excluded from analyses of the effects of temperature.  

The date of injury for each incident was not necessarily the date of admission to 

hospital. Where multiple acts of self-harm contributed to a single hospitalisation, the date of 

the most recent act of self-harm was utilised as the date of injury. Furthermore, where the 

same act of self-harm appeared to have caused multiple hospitalisations (i.e., when the patient 

and the most recent date of injury was the same), only the first admission was counted. In 

fewer than 1% of cases, the patient died in hospital. These cases were included in our 

analyses. 

The original source of the hospitalisation data was the National Minimum Dataset for 

hospital events. A problem with this dataset was inconsistency in terms of whether or not 

short emergency department stays were recorded, with different reporting practices used by 

different district health boards, as well as changes in reporting practices over time. We 

followed the practice of the Ministry of Health (2012) in excluding emergency department 

stays of less than two days from analysis, resulting in the exclusion of 24,906 incidents. 

These incidents excluded, there were a total of 47,265 incidents of self-harm resulting in 

hospitalisation over the study period of 17 years. 

Meteorological Data 

Meteorological data was obtained from NIWA’s virtual climate network rather than 

physical weather stations. This network covers New Zealand in an interpolated regular 5km 

grid  (see NIWA, n.d.; Tait, Henderson, Turner, & Zheng, 2006). The use of the virtual 

climate network avoided problems with missing data, or with finding appropriate physical 

stations to represent every district. The virtual weather station closest to the city centre of the 

largest town or urban area within each district was used to represent that district. A virtual 

climate station was not available for one district, the (offshore) Chatham Islands; the 

Chathams AWS station was used for this district. Mean daily temperatures were calculated by 

taking the mean of the daily minimum and daily maximum temperatures.  



6 
 

Population and Demographic Data 

Annual population data by district was obtained from Statistics New Zealand, and 

interpolated to produce daily estimates. The percentages of the population in each district 

falling into various ethnicities and age groups were obtained from Statistics New Zealand 

(n.d.) for the censuses of 1996, 2001, and 2006. These percentages were then averaged across 

these time points within each district for use as controls in geographical comparison analyses. 

Data Analysis 

Data analysis was completed using R version 3.0.2 (R Core Team, 2013), with the 

package lme4 version 1.0–5 used for fitting linear mixed models (Bates, Maechler, Bolker, & 

Walker, 2013). The Poisson model was used for most analyses. The Poisson model assumes 

that the conditional variance of the response variable is equal to the mean. Where variance in 

excess of the mean (i.e., overdispersion) was present the negative binomial model was used. 

Overdispersion was tested for by calculating the ratio of the Pearson chi-square fit statistic to 

the residual degrees of freedom, χ2/df (Coxe, West, & Aiken, 2009). There was no evidence 

of temporal autocorrelation in any of the analyses used (e.g., lag 1 r < 0.03 in each case), 

meaning that an assumption that model errors were independent seemed reasonable. 

Confidence intervals for mixed models were calculated using the Wald method. 

Ethical Approval 

Ethical approval was obtained from the authors’ host institution. Further information 

about the study’s methods can be found in the Electronic Supplementary Materials. 

Results 

Excluding short emergency department stays, there were a total of 47,265 self-harm 

incidents resulting in hospitalisation in the study period. Of these, 64% were by females. The 

overall rate of self-harm incidents was 70.5 per 100,000 per annum. 
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Effects of geographical variation in temperature 

The mean temperature by district varied from 15.8°C in the Far North district to 9.5°C 

in Queenstown-Lakes. A simple correlation suggested that there was no evidence of a reliable 

relationship between self-harm rate per 100,000 and mean temperature across districts, r = 

.071, 95% CI [-.172, .306]. Negative binomial models were also estimated in which the 

number of self-harm incidents resulting in hospitalisation within each district over the entire 

study period was the response variable. In the first model, the only predictor variables were 

the mean temperature within each district over the entire study period, and the logarithm1 of 

mean population. In this model, the slope for geographical mean temperature was negative 

and very small.  

The results differed somewhat when a second model was estimated with additional 

controls: Radiation, the percentage of European, Asian and Māori residents in each district, 

and the percentages aged 15–39, 40–64 and 65 plus. Radiation was included as a control 

because the quantity of sunlight is a plausible third variable that might be related to both self-

harm and temperature (see Doganay et al., 2003). In the controlled model, the point estimate 

of the effect of temperature was strongly positive, but the 95% confidence interval spanned 

zero. The coefficients for both models are displayed in Table 1. 

                                                 
1 Given the use of a logarithmic link function as part of the negative binomial model, the log 

transformation allowed population size to have an additive effect. Specifically, one would expect the logarithm 
of population size to have a coefficient near 1, if self-harm incidence was directly proportional to population. 
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Table 1 

Coefficients for Geographical Variation Models 

 Uncontrolled model Controlled model 
  95% CI  95% CI 
Coefficient Est. lower upper Est. lower upper 
Intercept 6.654 6.557 6.754 6.581 6.472 6.694 
Log population* 1.109 1.026 1.193 1.037 0.921 1.155 
Temperature (°C) -0.004 -0.062 0.054 0.050 -0.035 0.135 
Radiation (MJ/m2)    0.007 -0.098 0.112 
Percentage European    -0.026 -0.060 0.005 
Percentage Māori    -0.020 -0.045 0.004 
Percentage Asian    -0.081 -0.166 0.004 
Percentage aged 15–39    0.067 -0.002 0.137 
Percentage aged 40–64    -0.001 -0.076 0.074 
Percentage aged 65+    0.103 0.044 0.163 

Notes. *Each variable was centered around its mean across districts, except for population which was centered 

around the logarithm of the mean population estimate. Generalized linear model with negative binomial 

distribution and log link used. N = 67 districts. 

 

Effect of seasonal variation in temperature 

There was relatively little seasonal variation in self-harm incidence, as is visible in 

Figure 1. The peak month was February (summer), with just 11.4% more self-harm incidents 

than the nadir in July (winter). For use in multivariable analyses, the seasonal norm 

temperature was operationalised as the mean temperature for each day of the 365 days of the 

calendar year, as averaged over the entire study period within each district. The total number 

of acts of self-harm resulting in hospitalisation occurring on the 17 occurrences of each day 

of the year for each district was then used the response variable. February 29 was excluded, 

given that this day occurred just 4 times over the study period. A generalized linear mixed 

model with a Poisson distribution and log link was then fit, with population size was 

controlled, and the intercept free to vary across districts. The resulting estimated effect of 

seasonal variation in temperature was modest (see Table 2), suggesting around 0.5% extra 

self-harm incidents resulting in hospitalisation per °C. Table 2 also includes estimates from a 

model with solar radiation controlled, resulting in the estimated effect of temperature 
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becoming approximately zero. Seasonal variation in temperature and radiation were strongly 

correlated in our data (mean r = 0.8 across districts). 

 

 
Figure 1. Self-harm incidents and temperature by month. The effect of number of days is 

controlled. Emergency department stays of 1 day or less are excluded. 

 

Table 2 

Coefficients for Seasonal Variation Models 

 
Model without radiation 

controlled 
Model with radiation 

controlled 
  95% CI  95% CI 
Coefficient Est. Lower Upper Est. Lower Upper 
Fixed effects       
Intercept 0.699 0.602 0.796 0.699 0.603 0.796 
Seasonal norm temperature (°C) 0.005 0.002 0.008 0.001 -0.004 0.005 
Log population* (log transformed) 1.106 1.028 1.184 1.106 1.028 1.184 
Radiation (MJ/m2)    0.003 1.9x10-4 0.005 
       
Random effects (SDs)       
Intercept | District 0.326 - - 0.325 - - 

Notes. *Each variable was grand mean centered, apart from log population which was centered around the 

logarithm of the mean population estimate. Model: Poisson generalized linear mixed model with log link. N = 

365 calendar days x 67 districts = 24,455. The response variable is the number of self-harm incidents occurring 

on a given day of the calendar year for a given district over the full 17 years of the study period. 
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Effects of irregular daily variation in temperature 

Irregular variation in temperature was captured by calculating temperature anomalies. 

These anomalies were the difference between the temperature observed on a given date in a 

particular district, and the seasonal norm temperature for that district and day of year (as 

defined previously). These anomalies were then entered into a mixed model, with the number 

of self-harm incidents resulting in hospitalisation occurring on each date and district as the 

response variable, and population controlled. 

In the mixed model, a random intercept across both districts and years within districts 

was specified. This provided a flexible control for both regional differences in self-harm rate 

as well as for any potential time-varying confounds producing long-term trends in self-harm 

incidence. The coefficients for this model are shown in Table 3. Irregular daily variation in 

temperature appeared to have a moderate positive relationship with self-harm incidence, with 

the model implying an extra 0.7% acts of self-harm resulting in hospitalisation for every 1°C 

increase in temperature. Controlling for radiation in an alternative model resulted in no 

observable change to the coefficient for temperature (at 3 decimal places). 

 



11 
 

Table 3 

Coefficients for Irregular Daily Variation Models 

 

Model without radiation 

controlled 

Model with radiation 

controlled 

  95% CI  95% CI 

 

Est. Lower Upper Est. Lower Upper 

Fixed effects       

Intercept -2.197 -2.294 -2.101 -2.198 -2.294 -2.101 

Temperature anomaly (°C) 0.007 0.003 0.011 0.007 0.003 0.012 

Log Population* 1.059 0.982 1.135 1.058 0.981 1.135 

Radiation (MJ/m2)    0.002 4.9x10-4 0.003 

       

Random effects (SDs)       

Intercept | District 0.319 - - 0.318 - - 

Intercept | District/Year 0.265 - - 0.265 - - 

Notes. Each variable centered around its mean, except for log population which was centered around the 

logarithm of the mean population. Model: Poisson generalized linear mixed model with log link. Intercepts 

permitted to vary within districts, and within years within each district. N = 6209 calendar days x 67 districts 

less 69 days with missing temperature data = 415,934 for model without radiation controlled. N for model with 

radiation controlled = 415,857 due to an additional 77 cases with missing radiation measurements. The response 

variable is the number of self-harm incidents occurring on a given date in a specific region. 

Trends in Temperature and Self-Harm 

Figure 2 shows changes over time in the mean temperature and self-harm rate in New 

Zealand. Over the course of the study period, mean temperatures increased in New Zealand, 

with an average increase of 0.01°C per year. On the other hand, self-harm incidents resulting 

in hospitalisation declined markedly, with a linear model suggesting a downward trend of 1.8 

fewer incidents of self-harm resulting in hospitalisation per 100,000 per year. 
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Figure 2. Trends in temperature and self-harm resulting in hospitalisation in New Zealand, 

1993–2009. *Emergency department stays of one day or less are excluded. 

 

Discussion 

Our findings indicate that irregular daily variation in temperature had a small but 

positive relationship with the incidence of self-harm. In other words, days with hotter 

temperatures than the norm for that area and time of year tended to be associated with higher 

rates of self-harm. The size of this effect was about 0.7% extra incidents of self-harm 

resulting in hospitalisation per °C. This finding is similar to that of a recent study of suicides 

in New Zealand, which also found a small positive effect of irregular variation in temperature 

(Williams, Hill, & Spicer, in press). Of the components examined, the effects of irregular 

daily temperature variations are the least likely to be confounded. This finding thus might 

suggest that higher daily temperatures occurring as part of climate change will exert a small 

increasing effect on self-harm incidence (around 0.4 extra acts of self-harm per 100,000 p.a. 

resulting in hospitalisation per °C, given the self-harm rate in 2009). 

However, this conclusion is weakened somewhat by the lack of strong evidence for a 

positive effect of either seasonal or geographical variation in temperature. Seasonal variation 

in temperature did appear to have a positive relationship with self-harm incidence, but the 

relationship was small. This finding is consistent with a previous study that found limited 

(univariate) seasonality in suicide deaths in New Zealand (Yip, Chao, & Ho, 1998) . 

Furthermore, the estimated effect of temperature was not robust to a control for radiation. 

Changes in solar radiation are the major factor driving seasonality in temperatures, but 
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seasonal variation in radiation and temperature are not perfectly correlated. This meant that 

the independent effects of the two variables could be estimated. The fact that radiation had a 

positive coefficient when both variables were included as predictors suggests that seasonal 

variation in radiation may exerts some influence on self-harm incidence via a pathway other 

than by affecting temperature. 

We were unable to confidently establish the direction or size of the relationship 

between geographical variation in temperature and the incidence of acts of self-harm 

resulting in hospitalisation. In a negative binomial model the estimated effect of geographical 

variation in temperature (i.e., mean temperature by district over the entire study period) had a 

very wide confidence interval, ranging from a strong negative effect to a strong positive one. 

This analysis was limited both by the small effective sample size in terms of geographical 

areas (just 67 districts), and the possibility of confounding by uncontrolled economic or 

demographic variables. This said, geographical comparison analyses do allow for at least 

some insight into the effects of long term differences in climate, as opposed to short-term 

variation in weather, and as such further research on this topic over larger geographical 

regions may be useful. 

It was interesting to note that self-harm incidents resulting in hospitalisation 

(excluding short emergency department stays) declined over the study period, despite an 

increase in temperatures. It seems likely, however, that the downward trend in self-harm 

hospitalisations may be at least partially due to changes in medical practice and 

administration, such as increased use of community-based rather than inpatient mental health 

care (Ministry of Health, 2012). 

This study did not attempt to uncover the causal mechanism of the relationship 

between temperature and self-harm. Little theoretical work has been attempted in this area, 

although the related topic of suicide seasonality has drawn far greater theoretical attention 

(for a review see Ajdacic-Gross, Bopp, Ring, Gutzwiller, & Rossler, 2010). It is also worth 

acknowledging that our study focused only on the most serious cases of self-harm: those 

resulting in hospitalisation. 

Overall, it remains challenging to predict how climate change will affect the incidence 

of self-harm in New Zealand. While the estimated effect of irregular daily variation in 

temperature appears to suggest that global (and regional) warming may increase self-harm 

incidence slightly, this conclusion would be more strongly justified were we able to show that 

seasonal and geographical variation had similar effects. A lack of consistency in the apparent 

effects of different components of variation in temperature raises the concern that humans 
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may react differently to long-term, sustained differences in temperature than they do to short-

term variation in temperature. This lack of consistency makes it more difficult to infer the 

future impact of a sustained increase in temperatures. None of the analyses in isolation are 

ideal as a basis for drawing inferences about climate change: The effects of irregular daily 

variation in temperature may not adequately approximate the effects of more sustained 

temperature changes, while analyses of the effects of seasonal and geographical variation are 

vulnerable to confounding. There is also the possibility that climate change may affect mental 

health via causal pathways not examined in this study (see Berry, Bowen, & Kjellstrom, 

2010). 

In conclusion, this study demonstrates that irregular daily variation in temperature is 

positively related to the incidence of self-harm resulting in hospitalisation in New Zealand. 

However, predicting how climate change will affect self-harm remains challenging. Future 

research focused on issues such as the relationship between geographical variation in 

temperature and self-harm, and the mechanism of the relationship between temperature and 

self-harm, may facilitate firmer conclusions about how climate change will affect self-harm 

rates. 
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Electronic Supplementary Materials 

The following supplementary materials provide extra information about the method 

and results of the study that is not included in the main text of the article due to space 

restrictions. 

Additional Information about Methods 

Meteorological data 

As mentioned in the article text, a virtual climate station was selected for each district 

by choosing the virtual station closest to the town centre of the most populous urban area or 

town within that district. Specifically, this was accomplished by obtaining the estimated 

resident population by urban area in New Zealand for 1996 to 2007 from Statistics New 

Zealand’s InfoShare website (Statistics New Zealand, 2012), and linking each district with 

the most populous urban area within it. In the cases of four districts (Chatham Islands, 

Hurunui, Kapiti Coast, and Tasman), manual selection of the largest town was necessary due 

either to no centre defined as an “urban area” being listed in the Infoshare data, or the largest 

urban area not corresponding with the largest distinct town in the district (e.g., due to an 

“urban area” encompassing two towns in different districts). Secondly, the centre of the 

largest town or urban area was defined as per Google Maps, and its geographical co-ordinates 

obtained from the iTouchMaps tool. Finally, the virtual climate station within the district 

nearest the town centre was identified using the NIWA CliFlo database (NIWA, n.d.). In a 

very small number of cases, the virtual climate station nearest the town centre fell outside the 

boundaries of the district itself; in these cases the station nearest to the town centre but within 

the district was used. The climate stations used to represent the climate of each district are 

listed in ESM Table 1. 

As mentioned in the text, there was one district for which virtual climate station data 

was not available: The Chatham Islands. This was due to the Chathams, which are 

approximately 680km southeast of the North Island, falling outside the range of the virtual 

climate network. A physical station were therefore utilised for the territory: the Chatham 

AWS station. There was a small quantity of missing data for this station: 69 days with 

missing temperature measurements, and 116 with missing radiation measurements. Missing 

data was dealt with by listwise deletion given its small quantity. 
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ESM Table 1 

Virtual Climate Stations Used 

District Biggest urban area 

VCN1 
agent 

no. Latitude Longitude 

Km 
from 
town 

centre 
Ashburton District Ashburton Urban Area 19146 -43.925 171.725 2.6 
Auckland Auckland Urban Area 25396 -36.875 174.775 3.1 
Buller District Westport Urban Area 18772 -41.775 171.625 2.8 
Carterton District Carterton Urban Area 30879 -41.025 175.525 0.5 
Central Hawke's Bay District Waipukurau Urban Area 31069 -39.975 176.575 2.8 
Central Otago District Alexandra Urban Area 12937 -45.225 169.375 2.7 
Chatham Islands Territory Waitangi 61912 -43.95 -176.567 0.5 
Christchurch City Christchurch Urban Area 20810 -43.525 172.625 1.2 
Clutha District Balclutha Urban Area 13350 -46.225 169.725 1.8 
Dunedin City Dunedin Urban Area 19446 -45.875 170.475 2.2 
Far North District Kaitaia Urban Area 20661 -35.125 173.275 1.1 
Gisborne District Gisborne Urban Area 30645 -38.675 177.975 4.0 
Gore District Gore Urban Area 13152 -46.075 168.925 3.1 
Grey District Greymouth Urban Area 19694 -42.475 171.225 3.0 
Hamilton City Hamilton Urban Area 30829 -37.775 175.275 1.4 
Hastings District Hastings Urban Zone 29002 -39.625 176.825 2.0 
Hauraki District Waihi Urban Area 29897 -37.375 175.825 2.3 
Horowhenua District Levin Urban Area 30825 -40.625 175.275 1.0 
Hurunui District Amberley 21366 -43.175 172.725 2.1 
Hutt City Lower Hutt Urban Zone 30748 -41.225 174.925 2.3 
Invercargill City Invercargill Urban Area 7643 -46.425 168.375 2.1 
Kaikoura District Kaikoura Urban Area 28055 -42.375 173.675 2.9 
Kaipara District Dargaville Urban Area 28571 -35.925 173.875 1.8 
Kapiti Coast District Paraparaumu 30219 -40.925 175.025 1.8 
Kawerau District Kawerau Urban Area 30029 -38.075 176.725 2.5 
Mackenzie District Twizel Community Urban Area 13690 -44.275 170.125 2.4 
Manawatu District Feilding Urban Area 30341 -40.225 175.575 0.6 
Marlborough District Blenheim Urban Area 27021 -41.525 173.975 1.7 
Masterton District Masterton Urban Area 28285 -40.975 175.675 3.0 
Matamata-Piako District Morrinsville Urban Area 30887 -37.675 175.525 2.0 
Napier City Napier Urban Zone 27434 -39.475 176.875 3.7 
Nelson City Nelson Urban Area 20719 -41.275 173.275 0.9 
New Plymouth District New Plymouth Urban Area 21442 -39.075 174.075 2.2 
Opotiki District Opotiki Urban Area 30066 -38.025 177.275 2.2 
Otorohanga District Otorohanga Urban Area 29745 -38.175 175.225 2.0 
Palmerston North City Palmerston North Urban Area 28276 -40.375 175.625 2.9 
Porirua City Porirua Urban Zone 27590 -41.125 174.825 1.6 
Queenstown-Lakes District Queenstown Urban Area 14372 -45.025 168.675 1.2 
Rangitikei District Marton Urban Area 27156 -40.075 175.375 0.7 
Rotorua District Rotorua Urban Area 27868 -38.125 176.225 2.5 
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Ruapehu District Taumarunui Urban Area 28702 -38.875 175.275 1.5 
Selwyn District Rolleston Urban Area 20052 -43.575 172.375 1.8 
South Taranaki District Hawera Urban Area 21610 -39.575 174.275 1.5 
South Waikato District Tokoroa Urban Area 30961 -38.225 175.875 0.9 
South Wairarapa District Featherston Urban Area 28201 -41.125 175.325 0.9 
Southland District Winton Urban Area 10729 -46.125 168.325 2.1 
Stratford District Stratford Urban Area 21605 -39.325 174.275 1.5 
Tararua District Dannevirke Urban Area 27324 -40.225 176.125 3.0 
Tasman District Richmond 20430 -41.375 173.175 4.1 
Taupo District Taupo Urban Area 30999 -38.675 176.075 1.3 
Tauranga City Tauranga Urban Area 29942 -37.675 176.125 3.8 
Thames-Coromandel District Thames Urban Area 28786 -37.125 175.575 3.3 
Timaru District Timaru Urban Area 19840 -44.375 171.225 3.4 
Upper Hutt City Upper Hutt Urban Zone 30228 -41.125 175.075 0.4 
Waikato District Huntly Urban Area 30253 -37.575 175.175 2.4 
Waimakariri District Rangiora Urban Area 19946 -43.325 172.575 2.9 
Waimate District Waimate Urban Area 19832 -44.725 171.025 2.0 
Waipa District Cambridge Urban Zone 28244 -37.875 175.475 1.9 
Wairoa District Wairoa Urban Area 31126 -39.025 177.425 1.3 
Waitaki District Oamaru Urban Area 19617 -45.075 170.975 2.5 
Waitomo District Te Kuiti Urban Area 27114 -38.325 175.175 1.3 
Wanganui District Wanganui Urban Area 28141 -39.925 175.025 2.0 
Wellington City Wellington Urban Area 28602 -41.275 174.775 1.3 
Western Bay of Plenty District Te Puke Community Urban Area 29452 -37.775 176.325 1.2 
Westland District Hokitika Urban Area 19484 -42.725 170.975 1.1 
Whakatane District Whakatane Urban Area 27972 -37.975 176.975 2.8 
Whangarei District Whangarei Urban Area 21619 -35.725 174.325 0.1 

Notes. 1VCN = Virtual Climate Network. 2Physical weather station utilised (Chatham Islands AWS). 

 

Geographical units/districts 

The territorial authority areas (“districts) recorded in the hospitalisations database 

corresponded to the territorial authority areas existing in New Zealand prior to the creation of 

the Auckland “supercity” in 2010. In order to use a district classification corresponding to the 

current districts of New Zealand, the seven previous districts corresponding to the current 

Auckland supercity were amalgamated into one Auckland district in the analyses performed. 

These districts were Auckland city, Manukau city, Waitakere City, North Shore City, 

Rodney, Franklin, and Papakura.  

One point of complication was that the Franklin district was actually split between the 

Auckland, Waikato and Hauraki districts during the creation of the Auckland supercity. 
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However, since the actual street addresses of patients in the hospitalisation database were not 

available, it was impossible to determine whether patients listed with domiciles in the 

Franklin district in fact resided in an area of the district later to become part of Auckland, part 

of Waikato, or part of Hauraki. All patients listed as living in Franklin were therefore 

classified as living in the (amalgamated) Auckland district. 

One other district amalgamation occurring toward the end of the study period was that 

of Banks Peninsula with Christchurch City in 2006. These two districts were also 

amalgamated for the purposes of the current study. 

Our usage of the term “district” is technically at odds with the way this term is used in 

local government in New Zealand. We use the term to refer to all territorial authority areas, 

while in local government parlance there is a distinction between “district councils” and “city 

councils”, both being types of territorial local authority. We use “district” as a generic term to 

refer to all types of territorial authority areas for the sake of brevity. 

Population estimates 

The fact that subnational population estimates were required for a longer period than 

that readily available in any single data source using consistent boundaries necessitated 

several adjustments. The following steps were used to obtain daily population estimates by 

district for the full study period (1993 to 2009). 

1. Annual resident population estimates by district (using 1995 boundaries) as at 

30 June 1995 to 2000 were obtained from Statistics New Zealand (R. Speirs, 

personal communication).  

2. The estimates for Auckland city, Manukau city, Waitakere City, North Shore 

City, Rodney, Franklin, and Papakura were amalgamated into a single 

Auckland district. Similarly, the Christchurch City and Banks Peninsula 

estimates were combined to reflect the amalgamation of these two districts in 

2006. 

3. Annual resident population estimates by district (using 2013 boundaries) for 

2001 to 2009 were obtained from the Statistics New Zealand Infoshare 

database. 

4. The population estimates by district (with 2013 boundaries) were adjusted to 

apply to the 1995 boundaries. The 1995 boundaries were used (bar the district 

amalgamations noted above) as these boundaries were likely to be the most 
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representative of those used when districts of domicile were actually recorded 

in the national minimum dataset for hospital events. The adjustment was 

accomplished by calculating the ratio of the 1995-boundary estimate to the 

2013-boundary estimate for each district in 2000 (the latest year for which 

estimates were available for both sets of boundaries). The 2001-2010 

population estimates were multiplied by this ratio to adjust for the very minor 

boundary differences occurring. 

5. Finally, linear interpolation was used to convert the annual population 

estimates to daily estimates. 

 

National population estimates were also required for the brief analysis of trends in 

self-harm and temperature reported at the end of the results section. National resident 

population estimates were obtained from the Statistics New Zealand Infoshare database for 

1993 to 2009 (mean of year ending 31 December). 

The size of the populations of the districts studied varied widely. For example, the 

mean population over the study period ranged from over 1.2 million in Auckland to just 707 

in the Chatham Islands. Five districts had a mean population of over 100,000 (averaged over 

the study period), these districts being Hamilton City, Wellington City, Christchurch City, 

Dunedin City, and Auckland. Over the study period, the population of New Zealand 

increased from approximately 3.6 million in 1993 to 4.3 million in 2009.  

Additional Information about Results 

The following additional information about the results focuses primarily on issues 

relating to the distributional assumptions of the methods employed. In addition, the final 

subsection provides a re-analysis of the study data using Bayesian rather than frequentist 

methods. 

Effects of geographical variation in temperature 

As mentioned in the article text, overdispersion was checked for all the models 

reported in the results section by calculating the ratio of the Pearson chi-square statistic to its 

degrees of freedom for each fitted model. This ratio should be close to one in the absence of 

overdispersion. In the case of the geographical comparison analysis, the use of a negative 

binomial model (as reported in the article text) was used in order to avoid overdispersion that 
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was present when a simpler Poisson model was used. A Poisson model for counts of self-

harm across districts implied a negative effect of temperature,  B = -0.081, 95% CI [-0.087, -

0.074], but the chi-square to degrees of freedom ratio was 52.9:1, indicating very substantial 

overdispersion (this ratio should be close to one). A negative binomial model was used 

instead, and reported in the article text.  

The chi-square to degrees of freedom ratio of 1.09 for this model suggested that the 

negative binomial was reasonably successful in combating overdispersion. However, a 

negative binomial model is not the only model that can be used in the presence of 

overdispersion. Another possibility is the quasi-Poisson model. Whereas the negative 

binomial model specifies the predicted variance as a quadratic function of the predicted mean 

of the response variable (for a given level of the predictor variables), the quasi-Poisson model 

specifies the conditional variance as a multiplicative function of the predicted mean. The 

quasi-Poisson model tends to give greater weight to observations with large counts of the 

response variable (Ver Hoef & Boveng, 2007). This means that a quasi-Poisson model would 

give greater weight to districts with larger populations and therefore more incidents of self-

harm. 

Because both the negative binomial model and the quasi-Poisson model are plausible 

choices for the analysis of geographical variation, we include coefficients from the estimated 

models with a quasi-Poisson distribution (see ESM Table 2). The results shown can be 

compared with the coefficients when using the negative binomial distribution in Table 2 of 

the main text. In the uncontrolled model for geographical variation reported in the main text 

and using a negative binomial model, the estimated effect of temperature was negative, B = -

0.004, but with a confidence interval spanning zero. With a quasi-Poisson distribution, the 

estimated effect of temperature in the uncontrolled model is much more strongly negative, B 

= -0.081, 95% CI [-0.128, -0.032]. However, in the controlled model, the point estimate of 

the effect of temperature is positive but with a confidence interval spanning zero in both the 

negative binomial and quasi-Poisson analyses, indicating greater consistency in substantive 

results across the two methods used.   
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ESM Table 2 

Coefficients for quasi-Poisson Geographical Variation Models 

 Uncontrolled model Controlled model 
  95% CI  95% CI 
Coefficient Est. lower upper Est. lower upper 
Intercept 6.652 6.577 6.726 6.599 6.516 6.679 
Log population* 0.953 0.902 1.005 1.023 0.926 1.120 
Temperature (°C) -0.081 -0.128 -0.032 0.025 -0.052 0.102 
Radiation (MJ/m2)    0.010 -0.083 0.103 
Percentage European    -0.018 -0.045 0.011 
Percentage Māori    -0.008 -0.029 0.014 
Percentage Asian    -0.091 -0.154 -0.027 
Percentage aged 15–39    0.095 0.043 0.147 
Percentage aged 40–64    0.011 -0.059 0.081 
Percentage aged 65+    0.103 0.054 0.152 

Notes. *Each variable was centered around its cross-district mean, except for population which was centered 

around the logarithm of the cross-district mean population estimate. Generalized linear model with quasi-

Poisson distribution and log link used. N = 67 districts. Quasi-Poisson dispersion parameter = 52.9 for 

uncontrolled model, and 30.4 for controlled model. 

 

 

Effect of seasonal variation in temperature 

Centering procedure. 

As noted in the text, the method for capturing seasonal variation in temperature in a 

statistical model was to calculate a mean temperature for each of the 365 days of the calendar 

year for each district. This calculation does in fact include both geographical and seasonal 

variation in the resulting temperature estimates for each calendar day and district. However, 

the use of random intercepts across districts in the linear mixed model means that in effect the 

influence of geographical variation in temperature—and all other geographical factors 

influencing self-harm rate—were controlled. Thus, the resulting estimate for the effect of 

temperature refers solely to seasonal variation in temperature. Effectively identical results 

were found if the seasonal norm temperatures were group-mean centered around the mean 

temperature within each district. 

Partial dates 

There was an apparent excess of self-harm incidents on the first day of each year 

(mean 11.5 incidents per day), and, to a slight extent, the first days of the remaining months 
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(mean 8.1 incidents per day). In comparison, there were 7.6 incidents per day in the 

remainder of the calendar year. This was likely due to the fact the National Minimum Dataset 

allows partial dates to be entered for dates of injury. When an injury date is entered with a 

month and year but no day, it is recorded in the database as having occurred on the first day 

of the month. When a date is entered with no month or day, but with a year, it is recorded as 

having occurred on the first day of the year. This was a potential problem given the 

substantial excess of self-harm incidents that appeared to have happened on New Year’s Day, 

a particularly warm day of the calendar year in New Zealand. However, adding a control for 

first day of year, and first day of month, to the models reported in the seasonal variation 

subsection, resulted in no substantial change to the results shown. (i.e., coefficients changed 

by less than 0.001). 

Effects of irregular variation in temperature 

One potential point of concern with relation to distributional assumptions in the 

analysis of the effects of irregular daily variation in temperature was that the mean number of 

self-harm incidents per date and district was quite low (M = 0.11), with the majority (91%) of 

dates within each district having no self-harm incidents resulting in hospitalisation. The 

Poisson model is well suited to counts of rare events, however, and the χ2/df ratio of 0.97 (in 

both the model without radiation controlled as well as the model with radiation controlled) 

indicated no evidence of violation of the assumptions of the Poisson model. Inspection of a 

plot of nationally averaged daily temperature anomalies vs. daily self-harm rate, with a line of 

best fit estimated using a loess smoother, also showed no evidence of non-linearity in the 

relationship between temperature anomalies and self-harm rate. 

Alternative Bayesian analysis 

The analyses in the main text are reported without any use of statistical significance 

testing, given the many known problems with such tests (Cohen, 1994; Gigerenzer, Krauss, 

Vitouch, & Kaplan, 2004; Gill, 1999; Wagenmakers, 2007). Instead, confidence intervals 

were used as the primary inferential tool. Nevertheless, the analyses used were frequentist in 

nature. In the frequentist interpretation of probability, probability refers to the limit of the 

relative frequency of some event over a large number of trials. Frequentist confidence 

intervals have a rather unintuitive interpretation: If we were to repeat a study a very large 

number of times, with a new dataset each time, and calculate a 95% confidence interval for a 
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parameter in each case, then 95% of these intervals should include the true population 

parameter. We technically cannot say, however, that that there is a 95% probability that a 

specific calculated 95% confidence interval actually contains the true population parameter. 

The true parameter is a fixed quantity, unchanging over multiple trials, and thus the 

frequentist interpretation of probability does not allow us to make probability statements 

about whether or not it falls in a specific interval. Similarly, a frequentist interpretation of 

probability does not permit statements about the probability that some hypothesis is true or 

false. 

Another interpretation of probability is the Bayesian interpretation, where probability 

refers to a degree of belief in some proposition. This broader interpretation of probability 

allows for the making of probability statements about whether a particular hypothesis is true, 

or about whether a parameter falls within some interval. The Bayesian interpretation of 

probability is linked to Bayes’ theorem, which shows how prior (existing) knowledge or 

beliefs can be combined with new observed data to produce a posterior probability 

distribution. This posterior probability distribution may simply be a figure indicating the 

probability that a proposition is true, or it may be a continuous probability distribution. One 

might obtain, for example, a continuous posterior distribution for the effect of temperature on 

self-harm incidence, with this distribution indicating which values of the effect of 

temperature are more and less probable (taking into account both prior knowledge and the 

data observed). A general introduction to Bayesian data analysis can be found in Kruschke 

(2010). 

As an alternative to the analyses reported in the main text, Bayesian analyses were 

also performed. The main outputs reported from these analyses are credible intervals. 

Credible intervals are the Bayesian analog of frequentist confidence intervals, but unlike 

confidence intervals they have a very intuitive interpretation: There is a 95% probability that 

the true parameter falls within the 95% credible interval (given the priors specified and data 

observed). This is one major advantage of Bayesian data analysis, although in some cases 

(e.g., when an uninformative2 prior distribution is used), frequentist confidence intervals will 

approximate Bayesian credible intervals (see Greenland & Poole, 2013). 

                                                 
2 An uninformative prior distribution for a parameter is one that gives no or very limited information 

about which values of the parameter are more probable than others. It indicates a state of ignorance about the 
value of the parameter (prior to seeing the data at hand). For example, a (very) uninformative prior for a 
regression coefficient would be a uniform distribution on [-∞, ∞], indicating that the parameter can fall 
anywhere on the real number line, with all values being equally probable. 
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In the main text, frequentist models estimating the effects of geographical, seasonal, 

and irregular variation in temperature were reported. For each of the three components of 

variation, two models were reported: One with just population controlled, and one with 

additional control variables (including radiation). Bayesian versions of each of these models 

were also estimated, with their key outputs reported here, and exactly the same control 

variables and random effects specified in each case as in the main article. Bayesian 

generalized linear models were fit for the geographical analysis using the bayesglm function 

in the R package arm version 1.7–03 (Gelman et al., 2014). The quasi-Poisson distribution 

was used in the geographical analysis instead of the negative binomial, given that the 

negative binomial distribution is not as readily implemented in R without using additional 

software. Bayesian generalized linear mixed models were estimated using the package 

MCMCglmm version 2.21 (Hadfield, 2010). 

One of the main challenges in a Bayesian analysis is the specification of appropriate 

prior distributions. The prior probability distributions specified for the models reported 

incorporated informative priors only for the effect of temperature (the output of most 

interest), and the effect of population (a particularly important control variable for which 

strong prior information was available). For the effect of temperature (regardless of whether 

geographical, seasonal, or irregular), a normal distribution was specified with mean zero and 

standard deviation of 0.01, indicating that an increase in self-harm incidence of between -1 

and +1% for every 1°C was most plausible, and an effects of more than 3% in either direction 

was very implausible. In other words, the effect of temperature was expected to be reasonably 

small, given the findings previously reported in this area, and the relatively small effects of 

temperature on suicide found in a similar study in New Zealand (Williams, Hill, & Spicer, in 

press). The prior for the effect of log population was a normal distribution with M = 1, and 

SD = 0.03, given that it seemed reasonable to expect the incidence of self-harm to be 

approximately proportional to population size. Uninformative priors (M = 0, variance = 

1.0x1010) were specified for the other fixed effects (the intercepts, and the demographic 

controls in the geographical analysis). In other words, essentially no pre-existing knowledge 

or beliefs about the likely values of these parameters were incorporated into the analysis. The 

default uninformative prior in the MCMCglmm package was also used for random effects, 

being an (improper) inverse Wishart with parameters nu = 0 and V = 1. 

Coefficients from the Bayesian models are reported in ESM Table 3. For brevity, we 

report only the point estimates and credible intervals for the effect of temperature from each 

model, and provide the frequentist confidence interval from the corresponding original 
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analysis in the main text for comparison. For the most part, the results of the Bayesian and 

frequentist analyses are very similar: The point and interval estimates for the effect of 

seasonal and irregular daily variation in temperature are nearly identical, for example. In the 

geographical analysis, the point estimate and credible interval limits for the effect of 

temperature are shrunk toward zero in comparison to the frequentist analysis. This reflects the 

fact that the smaller sample size (N = 67 districts) in the geographical analysis meant that the 

prior distribution—and its assumption that small effects of temperature were most 

plausible—exerted a stronger effect on the results than was the case for the seasonal and 

irregular analyses. 
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ESM Table 3 

Comparing Bayesian and Frequentist Models: Coefficients For Temperature 

 Frequentist model Bayesian model 

  

95% confidence 

interval 

 95% credible 

interval 

Model Est. Lower Upper Est. Lower Upper 

Geographical variation 

in temperature       

Temp effect in 

uncontrolled model -0.004 -0.062 0.054 -0.002 -0.008 0.005 

Temp effect in controlled 

model 0.050 -0.035 0.135 2.5x10-4 -0.006 0.007 

Seasonal variation in 

temperature       

Temp effect in model 

without radiation 0.005 0.002 0.008 0.005 0.002 0.007 

Temp effect in model with 

radiation 0.001 -0.004 0.005 0.001 -0.003 0.006 

Irregular daily variation       

Temp effect in model 

without radiation 0.007 0.003 0.011 0.006 0.002 0.010 

Temp effect in model with 

radiation 0.007 0.003 0.012 0.007 0.001 0.011 

Notes. Bayesian generalized linear model (quasi-Poisson, log link) used for geographical variation models. 

Bayesian generalized linear mixed model (Poisson, log link) used for remaining models. The specification of 

control variables and random effects was the same as in the corresponding frequentist models reported in the 

main text. 
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