Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Dynamic NMR Microscopy

動態核磁顯微成像

VOLUME I

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Physics at Massey University

by

Yang Xia 夏陽

1992

Abstract

The theory and practice of Dynamic NMR Microscopy are described in detail. The description consists of a brief presentation of k-space imaging which includes the 2-D filtered back-projection (PR) reconstruction algorithm as well as the influence of various image contrast factors, a detailed discussion of q-space imaging which employs the Pulsed-Gradient Spin-Echo (PGSE) sequence and a thorough description of Dynamic NMR Microscopy which combines both k-space and q-space mapping. The velocity and self-diffusion image artifacts and errors associated with Dynamic NMR Microscopy have also been investigated extensively.

As part of this work, various modifications to and developments of the existing imaging system have been made. These include the probe design for 'non-trivial' flow imaging experiments and software programming using assembly, BASIC, FORTRAN and PASCAL languages. Several instrument-related issues in NMR microscopy have also been investigated. They include the attempt to improve spatial resolution by scaling down the receiver coil, the zero-frequency 'glitch' artifact in images and the effect of induced eddy current in imaging experiments.

The results of the comprehensive water capillary flow experiments have shown that simultaneous measurement of velocity and self-diffusion coefficient can be made both accurately and precisely using Dynamic NMR Microscopy. Imaging experiments which investigate molecular motion of relevance to plant physiology, fluid dynamics and polymer physics have been carried out. In the *in vivo* botanical studies, velocities of approximately 10 μ m/s in the castor bean experiment and 45 μ m/s in the *Stachys* experiment have been measured. In the rheological studies, induced secondary flow (eddy) around the abrupt junction in a tube was observed, which has agreed well with numerical simulation of the Navier-Stokes equation. In the studies of unusual rheological properties of high molar mass polymer solutions, velocity profiles for WSR301 polyethylene oxide (PEO)/H₂O in capillary flow were measured and fitted using the power law model. The measurement of self-diffusion profiles for monodisperse PEO standards in D₂O has shown clear evidence for the breakdown of molecular entanglements in semi-dilute solutions once the shear rate exceeds the equilibrium tube renewal rate, τq^{-1} .

Acknowledgments

First of all, I wish to express my sincere gratitude to my parents for their constant encouragement from the early years of my education by creating an environment conducive to study and thinking, also for their great sacrifices during the years of my study abroad.

I would like to thank my chief supervisor, Professor Paul T. Callaghan, for providing continuing guidance and careful instruction throughout the project and for his great patience while this manuscript has been written. I would also like to thank my cosupervisors, Professor David A.D. Parry and Associate Professor Rod K. Lambert, for their support especially during Paul's six-month leave to Europe.

I wish to express my sincere thanks to the following people:

Professor Ken R. Jeffrey of the Physics Department, University of Guelph, Ontario, Canada for his help in the manufacturing of the plant-imaging probe, for his computer simulation of the induced eddies in the stepped tube using Navier-Stokes equation and for his advice during his six-month visit at Massey University;

Associate Professor Rod K. Lambert of the Physics and Biophysics Department, Massey University for his advice on PEO rheology measurements and other rheological issues;

Dr Ella Campbell of the Plant Biology Department, Massey University for her various advice regarding botanical samples, and for identifying the species, *Stachys sylvatica* L.;

Walter Köckenberger of University of Bayreuth, Bayreuth, Germany for his advice on the castor bean imaging experiments;

Vasil Sarafis of University of Western Sydney, Sydney, Australia for his advice on the *Equisetum* and moss velocity imaging experiments;

Dr Al Rowland of the Plant Biology Department, Massey University for photographing several plant samples using an optical microscope; Associate Professor Graeme Midwinter of the Chemistry and Biochemistry Department, Massey University for supplying the HPLC tubing in the polymer flow experiment;

Dr Colin Jenner of the Waite Agricultural Research Institute, The University of Adelaide, Australia for his advice on the preparation of wheat grain samples;

Ian R. Brooking of the Fruit and Trees Division of DSIR, Palmerston North for supplying the wheat samples used in the wheat grain experiments;

Dr Rosie Wang of Brisbane, Queensland, Australia for carrying out the GPS analysis for the WSR 301 PEO sample;

My father, Professor Chen-Au Hsia of Shanghai Institute of Plant Physiology, Academia Sinica, Shanghai, China, for his advice on various botanical issues during his recent visit to New Zealand while this manuscript was being written;

Other overseas visitors to the department and the NMR research group for their advice and friendship during their visits: Dr Milo Shott, Open University, UK; Dr M. Iko Burgar of BHP Melbourne Research & New Technology, Australia; Associate Professor Jim Pope of University of New South Wales, Kensington, Australia; Dr Ted M. Garver of Lakehead University, Ontario, Canada; Professor Wilmer G. Miller of Department of Chemistry, University of Minnesota, Minneapolis, USA; Sharon L. Umbach, Department of Food Technology, University of Minnesota, St Paul, USA;

Fellow colleagues and post-graduate students in the NMR research group: Dr Phil Back, Andrew Coy, Craig Rofe and Lucy Forde for their friendship;

The staff of the mechanical workshop and electronic workshop at Massey University for providing technical assistance on a number of occasions.

The staff of the Physics and Biophysics Department, Massey University for their support and friendship;

Massey University for providing financial support in the form of a Graduate Assistantship.

Finally I would like to express my deep appreciation and special thanks for the unfailing encouragement and support given to me by my wife, Ping.

Contents

Abstr	act	••••	i
Ackn	owle	dgment	isii
Con	ten	t s	i v
List	of	Figur	esi x
List o	f Tal	bles	xvi
List o	of Sy	mbols.	xvii
Ch1	Int	roduc	tion
	1.1	An int	roduction
	1.2	Organi	zation of the thesis
		0.8	
Ch2	Nuc	lear N	Aagnetic Resonance Imaging5
	2.1	Nuclea	r magnetic resonance
		2.1.1	Nuclear magnetism
		2.1.2	Macroscopic magnetization7
		2.1.3	Excitation of a spin system 10
		2.1.4	Spin relaxation processes12
		2.1.5	Bloch equation 13
		2.1.6	Signal detection 13
		2.1.7	The signal-to-noise ratio 15
		2.1.8	Spin-echo, stimulated-echo and phase cycling17
	2.2	Theory	of NMR imaging
		2.2.1	Spatially encoding nuclear spin magnetization 22
		2.2.2	Selective excitation 24
		2.2.3	k-space imaging 27
		2.2.4	Filtered back-projection reconstruction 30
		2.2.5	S/N, resolution and its limits - NMR microscopy 33
	2.3	The in	fluence of contrast factors in NMR imaging 35
		2.3.1	Relaxation processes, T ₁ and T ₂ 36
		2.3.2	Chemical shift
		2.3.3	Susceptibility
		2.3.4	Flow and diffusion 40
	2.4	Summ	ary 41
Ch3	Dyn	amic	NMR Imaging
	3.1	A revie	ew of imaging dynamic processes using NMR

	3.1.1	Contrast and spatial mapping 43	
	3.1.2	Classification and comparison of velocity imaging techniques 44	
	3.1.3	Classification and comparison of self-diffusion imaging	
		techniques 47	
	3.1.4	Static signal suppression in dynamic imaging	
	3.1.5	Limitations of measurements	
	3.1.6	Imaging biological samples 50	
3.2	q -spac	e imaging	
	3.2.1	PGSE technique	
	3.2.2	q-space imaging	
3.3	The	ory of Dynamic NMR Microscopy	
	3.3.1	Combined k-space and q-space imaging 57	
	3.3.2	Digital Fourier transform and interpretation	
	3.3.3	Velocity-compensated Dynamic NMR Microscopy	
3.4	Precisi	ion and accuracy of the velocity map obtained in Dynamic NMR	
	Micro	scopy	
	3.4.1	The influence of the instrument	
	3.4.2	The influence of the slice selection gradient	
	3.4.3	Gradient-dependent phase shifts72	
	3.4.4	The influence and artifact due to the 'dynamic' inhomogeneity of	
		the sample 7 2	
3.5	Precisi	ion and accuracy of the diffusion map obtained in Dynamic NMR	
	Microscopy		
3.5.1 The influence of instrum		The influence of instrumental system errors in calculations75	
	3.5.2	Digital broadening due to zero-filling and signal truncation78	
	3.5.3	Systematic errors in diffusion coefficients measured in the	
		presence of a velocity shear	
	3.5.4	The influence of transverse velocity and diffusion	
	3.5.5	The influence of PGSE gradient non-uniformity	
	3.5.6	The influence of temperature variation in the sample	
3.6	Altern	ative data analysis methods available for Dynamic NMR	
	Micro	scopy	
	3.6.1	Analysis of velocity and diffusion using the moment method90	
	3.6.2	Least squares fit analysis method95	
3.7	'One-s	hot' velocity microscopy	
	3.7.1	Gradient phase cycling and 'z-storage' rf pulse	
	3.7.2	High order stationary signal suppression103	
	3.7.3	Velocity computation104	

V

		3.7.4 Precision and accuracy of the measurements106
	3.8	Conclusion
Ch4	Dev	elopment of the FX-60 NMR Micro-Imaging System108
	4.1	The FX-60 NMR micro-imaging system108
	4.2	'Super-Gy' gradient imaging probe114
		4.2.1 Design considerations115
		4.2.2 Calculation of the gradients
		4.2.3 Construction and calibration121
	4.3	Imaging probe for plants
		4.3.1 Design considerations125
		4.3.2 Construction and calibration
	4.4	Software development for the TI-980A and Hitachi computers132
		4.4.1 Software developments on the TI-980A computer132
		4.4.2 Software developments on the Hitachi computer135
	4.5	Software development for the Macintosh computer: ImageShow [™] 136
		4.5.1 An introduction to the development of ImageShow TM
		4.5.2 A broad description of ImageShow [™] 138
		4.5.3 Description of image presentation and display routines141
		4.5.4 Description of image processing routines144
		4.5.5 Description of arithmetic and mathematic routines148
		4.5.6 Description of statistical routines
		4.5.7 Description of flow/diffusion analysing routines151
	4.6	Summary
Ch5	Stat	ic NMR Microscopy: Experimental Results156
	5.1	Designing experiments in the FX-60 micro-imaging system156
	5.2	An attempt to improve spatial resolution: 0.9 mm id rf coil158
	5.3	The zero-frequency 'glitch' in image reconstruction160
	5.4	Induced eddy current effect in imaging166
		5.4.1 Induced eddy current problem
		5.4.2 Measurement of induced eddy currents167
		5.4.3 Simulation and discussion175
	5.5	Static microscopic imaging experiments
		5.5.1 Microslide phantom
		5.5.2 Imaging using the new 'super- G_y ' probe
		5.5.3 Imaging using the new plant-imaging probe
	5.6	H ₂ O and oil separation, T ₁ contrast in imaging
	5.7	Summary

vi

Ch6	Wa	ter Capillary Flow1	87
	6.1	Designing experiments for dynamic imaging1	87
		6.1.1 Dynamic NMR Microscopy experimental design	87
		6.1.2 'One-shot' velocity microscopy experimental design	91
	6.2	Capillary flow studied using Dynamic NMR Microscopy	94
		6.2.1 Poiseuille flow	94
		6.2.2 Using the velocity-compensated Dynamic NMR Microscopy2	10
		6.2.3 Opposite-signed flow	10
		6.2.4 Using a 'one-projection' image reconstruction algorithm2	14
	6.3	Capillary flow studied using 'one-shot' velocity microscopy	15
		6.3.1 Poiseuille flow	15
		6.3.2 Discussion of velocity image artifacts2	16
	6.4	Conclusion	23
Ch.7	T.	ning Detering L Ctudies	~ 4
Cn/	<i>In</i>	An emplication of land check wells site mission and the subscription of land check wells site mission	24
	1.1	An application of one-shot velocity microscopy, <i>Stachys sylvalica</i> 2	24
		7.1.2 Regults and discussions	24
	7 2	Other betanical applications using 'one shot' technique	20
	1.2	7.2.1 Horsetail: Equisatum hyangl	28
		7.2.1 Morse Dandrolizatrichum daudroidas	20
	73	Wheat grain velocity and diffusion imaging	27
	1.5	7.3.1 Experimental preparation and arrangement 2	33
		7.3.2 Imaging results	34
		7 3 3 Discussions	38
	74	Castor bean velocity and diffusion imaging 2	40
		7.4.1 An introduction of the sample 2	41
		7.4.2 Experimental arrangement	43
		7.4.3 Results and discussions	46
	7.5	Conclusion	49
Ch8	Flu	id Dynamics: Water Flow through an Abrupt Stepped Tube2	50
	8.1	An introduction to flow through abrupt stepped tubes2	50
	8.2	An outline of the numerical simulation method2	53
	8.3	Experimental arrangement2	55
	8.4	'Air bubble' imaging2	59
	8.5	Results of the flow through an abrupt contraction2	61
	8.6	Results of the flow through an abrupt enlargement2	72

8.7	Discussion and conclusion
Ch9 Pol	ymer Physics: Shear Thinning in a Non-Newtonian Fluid278
9.1	An introduction to polymer and polymer flow
9.2	Experimental details
9.3	Stationary self-diffusion measurement using PGSE
9.4	Experimental results in comparison with the power-law model
9.5	Self-diffusion enhancement due to high shear
9.6	Conclusion
Ch10	Summary and Future Work

viii

References	
Publications	

<u>VOLUME TWO</u> Appendices: Software development

A 1	TI-980	A software development1	
	A1.1	Quadrant phase compensation1	
	A1.2 'One-shot' velocity microscopy		
	А	1.2.1 The phase cycling routine of the calibration version4	
	А	1.2.2 The phase cycling routine of the v-sensitive version	
	А	1.2.3 Other modifications in the 'one-shot' software	
	A1.3	Flow imaging at transverse direction (x-direction) 11	
	A1.4	128×128 image reconstruction	
A 2	Hitach	12 ii computer software	
	A2.1	128×128 back-projection subroutine at 360°	
	A2.2	128×128 back-projection subroutine at 180°	
	A2.3	128×128 PR image reconstruction program	
	A2.4	Program in simulation of the square Helmholtz coil 28	
A3	Macint	tosh computer software: ImageShow™	
	A3.1	ImageShow.p 34	
	A3.2	ImageShow.r	
	A3.3	ImageShow.make190	

List of Figures

Figure	2.1	A spin half system
Figure	2.2	B ₁ field in laboratory frame and rotating frame 11
Figure	2.3	Macroscopic magnetization vector in laboratory frame and
		rotating frame12
Figure	2.4	The response of a spin system to the application of a $90^{\circ}I_{X'}$ rf
		pulse14
Figure	2.5	Fourier transform of the FID signal 15
Figure	2.6	Two common configurations for the transverse rf receiver coil $\dots 17$
Figure	2.7a	$90^{\circ}I_{x'}-\tau-180^{\circ}I_{y'}$ pulse sequence and spin-echo19
Figure	2.7b	$90^{\circ}I_{x'}-\tau-180^{\circ}I_{x'}$ pulse sequence and spin-echo19
Figure	2.8	Stimulated-echo pulse sequence
Figure	2.9	RF phase cycling
Figure	2.10	The effect of the magnetic field gradient in NMR22
Figure	2.11	Magnetic field gradient (along the axes)
Figure	2.12	Pulse sequences for selective excitation24
Figure	2.13	The laboratory frame and two rotating frames used in the analysis .25
Figure	2.14	Basic relationships in the slice excitation
Figure	2.15	Polar raster sampling in k space
Figure	2.16	Cartesian raster sampling in k space
Figure	2.17	Pulse sequence employed in the filtered PR reconstruction31
Figure	2.18	The filtered PR reconstruction
Figure	2.19	The interpolation process in PR method32
Figure	2.20	Resolution scale in NMR imaging
Figure	2.21	The application of the inversion-recovery sequence in NMR
		imaging 37
Figure	3.1	Effect of magnetic field gradient in NMR experiments
Figure	3.2	A pulse sequence used in Dynamic NMR Microscopy59
Figure	3.3	The Fourier relationship in Dynamic NMR Microscopy60
Figure	3.4	Experimental procedures in Dynamic NMR Microscopy62
Figure	3.5	A pulse sequence used in the velocity-compensated Dynamic
		NMR Microscopy
Figure	3.6	Phase shift in dynamic displacement profiles
Figure	3.7	Cross sectional profiles through simulated velocity images
		showing the artifact due to the initial phase offsets

Figure	3.8	The influence of experimental noise on velocity images
Figure	3.9	The 'PGSE-like' effect of the slice selection gradient71
Figure	3.10	Simulation of the artifact due to the 'dynamic' inhomogeneity of
		the sample
Figure	3.11	Cross sectional profiles through the noise-affected diffusion
		images
Figure	3.12	The influence of experimental noise on diffusion images77
Figure	3.13a	Zero-filling in q space results in a broadened Ps due to the
		SINC modulation
Figure	3.13b	Simulation of the extra broadening due to the zero-filling of P_{S} 79
Figure	3.14	The path of one molecule moving during Δ
Figure	3.15	Simulation results comparing the peak-offset method and
		the moment method
Figure	3.16	A pulse sequence used in the 'one-shot' velocity microscopy99
Figure	3.17	The evolution of the magnetization vector during the experiment . 101
Figure	3.18	Experimental procedures in the 'one-shot' velocity microscopy 105
Figure	4.1	The geometry of the magnet system
Figure	4.2	Massey FX-60 NMR micro-imaging system
Figure	4.3	A schematic cross sectional top view of the existing
		imaging probe116
Figure	4.4	Opposed Helmholtz coil geometry117
Figure	4.5	Magnetic field strength117
Figure	4.6	Planar coil geometry120
Figure	4.7	Three-layer G_y gradient coil for the new 'super- G_y ' probe 122
Figure	4.8	Photos showing the new 'super- G_y ' imaging probe
Figure	4.9	Photos showing the new plant-imaging probe127
Figure	4.10a	A schematic diagram showing imaging the 'hook' of
		a castor bean
Figure	4.10b	A schematic diagram showing imaging the hypocotyl of
		a castor bean
Figuro		
riguie	4.10c	A schematic diagram showing imaging a mature castor bean 131
Figure	4.10c 4.11	A schematic diagram showing imaging a mature castor bean 131 A brief flow chart for the imaging software in TI-980A computer 133
Figure Figure	4.10c 4.11 4.12	A schematic diagram showing imaging a mature castor bean 131 A brief flow chart for the imaging software in TI-980A computer 133 Flow chart for the phase cycling loop in the velocity-sensitive
Figure Figure	4.10c 4.11 4.12	A schematic diagram showing imaging a mature castor bean 131 A brief flow chart for the imaging software in TI-980A computer 133 Flow chart for the phase cycling loop in the velocity-sensitive version
Figure Figure Figure	4.10c 4.11 4.12 5.1	A schematic diagram showing imaging a mature castor bean131 A brief flow chart for the imaging software in TI-980A computer 133 Flow chart for the phase cycling loop in the velocity-sensitive version

•

Figure	5.3	Symmetrical and asymmetrical profiles in time and frequency
		domains161
Figure	5.4	Simulation of the zero-frequency 'glitch' artifact in NMR
		imaging163
Figure	5.5	Experimental results comparing imaging using 180° and
		360° PR165
Figure	5.6	The pulse distortion due to induced eddy currents
Figure	5.7	A pulse sequence used in the measurement of eddy current effect 167
Figure	5.8	FT plots from FIDs for the G_z of the plant-imaging probe168
Figure	5.9	FT plots from FIDs for the G_y of the standard imaging probe 169
Figure	5.10	FT plots from FIDs for the G_x of the 'super- G_y ' probe
Figure	5.11	Measurements of B ₀ shift due to induced eddy currents
Figure	5.12	Logarithm of 'eddy gradients' as a percentage of the
		desired gradients174
Figure	5.13	The wiggles signal
Figure	5.14	The change of the peak width due to different Ta' 176
Figure	5.15	The change of the peak position due to different c
Figure	5.16	Simulation of the effect due to induced eddy currents 178
Figure	5.17	The influence of the factor b in Eq[5.4] during simulation 179
Figure	5.18	A microslide
Figure	5.19	Static proton density image using the existing probe183
Figure	5.20	Static proton density image using the 'super- G_y ' probe183
Figure	5.21	Static proton density image using the plant-imaging probe183
Figure	5.22	A pulse sequence used in T_1 contrast imaging
Figure	5.23	The images of T_1 contrast experiment: oil/water separation 185
Figure	6.1a	A pulse sequence for Dynamic NMR Microscopy experiments 189
Figure	6.1b	A stimulated-echo pulse sequence for Dynamic NMR
		Microscopy experiments189
Figure	6.1c	A pulse sequence for velocity-compensated Dynamic NMR
		Microscopy experiments192
Figure	6.2	A stimulated-echo pulse sequence for the 'one-shot' velocity
		microscopy experiments
Figure	6.3	A relay circuit for the gradient switching
Figure	6.4	A typical set of q-slice data images for Poiseuille flow
		(q direction: axial)
Figure	6.5	An example of a Stejskal-Tanner plot and its corresponding
		FFT plot

xi

Figure	6.6	A typical set of velocity, FWHM and diffusion maps for
Figure	6./	Stacked profile plots of velocity and diffusion maps for
		capillary flow experiments
Figure	6.8	Cross sectional profiles through the centres of the velocity maps. 199
Figure	6.9	Cross sectional profiles through the centres of the
		self-diffusion maps
Figure	6.10	1-D projection profiles acquired using the pulse sequence
		shown in Figure 6.1a203
Figure	6.11	The effect of P0 phase compensation in flow imaging
		experiments 204
Figure	6.12	1-D projection profiles acquired using the pulse sequence
		shown in Figure 6.2
Figure	6.13	Velocity profiles of Poiseuille flows using the 'classical'
-		dynamic imaging pulse
Figure	6.14	Velocity profiles of Poiseuille flows using the 'one-shot'
0		dynamic imaging pulse
Figure	6.15	A cross sectional profile through the centre of the velocity map
8		at $h = 60$ mm and using the 'super-G.,' imaging probe 208
Figure	6 16	Stacked profile plots of velocity and diffusion maps for
- Bare	0.10	capillary flow experiments (using the double PGSE pulse) 211
Figure	6 17	Stacked profile plots of velocity and diffusion maps for the
Inguie	0.17	opposite signed capillary flow experiments
Figure	6 19	V and EWUM many from the land Engineering DD
Figure	0.10	v and FWHM maps from the one-projection PR214
rigure	0.19	The averaged D map from D maps constructed using the
D ¹	(20	one-projection PR
Figure	0.20	peven, podd and velocity maps using the one-shot velocity
		microscopy
Figure	6.21	Velocity profiles of Poiseuille flows using the 'one-shot'
		technique 218
Figure	6.22	Azimuthal-averaged velocity profiles shown in Figure 6.21218
Figure	6.23	The 'fold-back' effect in the 'one-shot' velocity microscopy 220
Figure	6.24a	1-D projection profiles of $\rho_{even}(\mathbf{r})$
Figure	6.24b	1-D projection profiles of $\rho_{odd}(\mathbf{r})$
Figure	7.1	The sample assembly in the Stachys sylvatica experiment
Figure	7.2	In vivo NMR images of the Stachys experiment
Figure	7.3	Optical micrograph of the stem of the Stachys sample

Figure	7.4	In vivo NMR images of the Equisetum experiment
Figure	7.5	Optical micrograph of the stem of the Equisetum sample230
Figure	7.6	The proton map of a moss sample231
Figure	7.7	1-D images of the moss using the 'one-shot' technique
Figure	7.8	A schematic diagram of a wheat ear
Figure	7.9	The sample arrangements for the wheat grain experiment235
Figure	7.10	Maps of an <i>in vivo</i> wheat grain experiment
Figure	7.11	Wheat grain tissue diffusion coefficient vs moisture content239
Figure	7.12	D-corrected proton map using the data in Figure 7.10 and 7.11239
Figure	7.13	Schematic diagrams of a castor bean seedling
Figure	7.14	Photos showing experimental arrangements for the castor
		bean experiment
Figure	7.15	Optical photo of the stem of a castor bean sample245
Figure	7.16	In vivo NMR images of the castor bean experiment
		(one-week old seedlings)
Figure	7.17	In vivo NMR images of the castor bean experiment
		(a mature seedling)
Figure	8.1	Abrupt stepped tube
Figure	8.2	The stepped sample tube256
Figure	8.3	A pulse sequence for measuring transverse flow (x-direction) 258
Figure	8.4	'Air bubble' imaging
Figure	8.5	Axial V and FWHM maps at +9mm above the abrupt contraction 261
Figure	8.6	Axial V and FWHM maps at -18mm below the abrupt
		contraction
Figure	8.7	Axial velocity and diffusion maps at the abrupt contraction263
Figure	8.8	Enhanced diffusion coefficient at the abrupt junction
Figure	8.9	Axial velocity profile at the abrupt junction using PGSE
		gradient upto 1.22T/m
Figure	8.10	q-slices at the abrupt junction for radial flow
Figure	8.11	Encoding radial velocity using a 1-D linear gradient
Figure	8.12	Radial velocity and diffusion maps at the abrupt contraction267
Figure	8.13	The axial and radial velocities for flow through an abrupt
		contraction
Figure	8.14a	A comparison of the experimental and theoretical axial velocities
		for flow through an abrupt contraction
Figure	8.14b	A comparison of the experimental and theoretical radial velocities
		for flow through an abrupt contraction

ĺ

xiii

Figure	8.15	Comparison of 256 FFT and 1024 FFT in flow analysis
		(radial velocity at +1mm)
Figure	8.16	Radial FWHM profiles at the abrupt junction using272
Figure	8.17	Velocity and diffusion maps at the abrupt enlargement
		(axial and radial)
Figure	8.18	The axial and radial velocities for flow through an abrupt
		enlargement
Figure	8.19a	A comparison of the experimental and theoretical axial velocities
		for flow through an abrupt enlargement 275
Figure	8.19b	A comparison of the experimental and theoretical radial velocities
		for flow through an abrupt enlargement
Figure	9.1	Entangled polymer chains
Figure	9.2	A virtual 'tube' formed by entangled polymer chains
Figure	9.3	The relationship of shear rate vs shear stress
Figure	9.4	Doi-Edwards relaxation function
Figure	9.5	Velocity profile in simple Couette flow
Figure	9.6	Velocity profile in Poiseuille flow
Figure	9.7	Schematic of the experimental arrangement for PEO capillary
		flow imaging
Figure	9.8	Double-logarithmic plot of polymer self-diffusion vs molar mass
		for PEO standards at 5.0% w/v concentration in D_2O at 30°C 288
Figure	9.9	Double-logarithmic plot of polymer self-diffusion vs concentration
		(% w/v) for WSR301 PEO in D_2O at 30°C 288
Figure	9.10	Velocity and self-diffusion maps for a 0.5% w/v WSR301
		PEO/water in flow
Figure	9.11	Profiles of the velocity and self-diffusion maps shown in
		Figure 9.10
Figure	9.12	Normalized velocity profiles for different concentration
		solutions of WSR301 PEO in water
Figure	9.13	Double-logarithmic plot of V_{max} vs the pressure for different
		concentrations of WSR301 PEO in water 291
Figure	9.14	Stacked plots of V and D maps for a 4.5% w/v PEO/H2O
		solution in flow (at 2100 kPa pressure head) 292
Figure	9.15	Profiles of the velocity and diffusion maps shown in Figure 9.14 293
Figure	9.16a	Velocity profile of 4.5% w/v PEO/H2O solution at 1000kPa
		pressure head 294
Figure	9.16b	Velocity profile of 4.5% w/v PEO/H2O solution at 1400kPa

		pressure head 295
Figure	9.17	Comparison of velocity profiles of 1.5% and 2.5% WSR301
		PEO/H_2O solutions in flow through 0.7mm and 2.9mm tubes 296
Figure	9.18	V_{max} vs Pressure for 2.5% w/v PEO/H2O flow $\ldots 297$
Figure	9.19	Polymer self-diffusion profiles for semidilute WSR301 PEO
		(4.5% w/v in D ₂ O) under flow through a 0.7mm capillary 299
Figure	9.20	Schematic model of polymer stretching under velocity shear 303
Figure	9.21	Relationship between the e^{-1} relaxation time, τ_c , and the length
		of the end tube, L_c , in the Doi-Edwards model
Figure	9.22	Experimental and theoretical polymer diffusion profiles for
		4.5% w/v WSR301 PEO/D_2O in flow307

x v

a.

List of Tables

Table	3.1	Classification of velocity imaging44
Table	3.2	Classification of self-diffusion imaging47
Table	3.3	Fourier relationships for static and dynamic imagings
Table	3.4	Digital 'quantization' effect of diffusion calculation76
Table	3.5	Phase cycling table for the 'one-shot' velocity imaging 100
Table	3.6	Alternative phase cycling table for the 'one-shot' velocity imaging 102
Table	4.1	Characteristics of the KEPCO Power Supplies 113
Table	4.2	Characteristics of the gradient systems (standard probe) 113
Table	4.3	Characteristics of rf coils
Table	4.4	Choice of the coil length for a Gy planar coil119
Table	4.5	Characteristics of the Gradients ('super- G_y ' probe) 124
Table	4.6	Characteristics of the Gradients (plant-imaging probe) 126
Table	5.1	Measurement of time constant of eddy current 173
Table	6.1	Summary of experimental parameters in Poiseuille flow 194
Table	6.2	Comparison of the theoretical calculation and the experimental
		results in Poiseuille flow 199
Table	6.3	Averaged-diffusion values using FFT and Stejskal-Tanner methods 201
Table	6.4	Comparison of the theoretical calculation and the experimental
		results (using the 'classical' and 'one-shot' pulses) 205
Table	6.5	Summary of experimental results using the 'super-Gy' probe 208
Table	6.6	Experimental results using 51.6 G cm ⁻¹ A ⁻¹ for the 'super-G _y ' probe 209
Table	6.7	Averaged-diffusion values using FFT and Stejskal-Tanner methods
		(velocity-compensated Dynamic NMR Microscopy) 210
Table	6.8	Summary of experimental parameters in 'one-shot' experiments 216
Table	6.9	Comparison of the theoretical calculation and the experimental
		results (using 'one-shot' velocity imaging) 216
Table	7.1	Summary of Stachys sylvatica experimental parameters 226
Table	7.2	Summary of experimental parameters for wheat flow imaging 234
Table	7.3	Summary of the wheat grain velocity imaging results 236
Table	9.1	Poly(ethylene oxide) samples

List of Symbols

а	RF coil radius
a _m	Complex admixture amplitudes of a spin system
В	Magnetic field 5
B ₀	Amplitude of the main magnetic field 5
B ₁	Amplitude of the transverse rf field $B_1(t)$ 10
B ₁ (t)	RF field (in the transverse plane)10
с	Concentration
cp	Specific heat at the constant pressure
c*	Critical concentration
D	Self-diffusion coefficient40
Ds	Centre-of-mass self-diffusion coefficient
D ₀	Zero concentration self-diffusion coefficient
D	Self-diffusion tensor
E(m)	Energy eigenvalues of a spin system
$E_{c}(\mathbf{r})$	Normalized contrast factor
E(g,δ,Δ)	Echo signal amplitude54
f ₀	Resonant frequency
F	Noise figure of an instrument16
F[]	Fourier transform of the function in []
g	Field gradient in q space53
gm	Maximum gradient employed in dynamic imaging
G	Field gradient
Н	Hamiltonian operator 5
Ι	Spin quantum number
Ι	The dimensionless spin angular momentum operator5
Ie	Induced eddy currents
Iz	The z component of I
j	90° shift of the phase102
k	Thermal conductivity of the fluid
k	Static reciprocal space vector27
k _B	Boltzmann constant9
k _{FWHM}	Digital self-diffusion coefficient value
kv	Digital velocity value
1	Length of the capillary tube
L	Length of the conductor

m	Azimuthal quantum numbers
Μ	Molar mass of macro-molecules
Μ	Macroscopic magnetization vector8
M _n	Number-averaged molar mass of macro-molecules
M_w	Weight-averaged molar mass of macro-molecules 279
M ₀	Magnitude of M in the equilibrium state9
M_{\perp}	Transverse component of M
n _D	Maximum number of q slices in addition to the $q=0$ slice
Ν	Number of spins per unit volume8
Np	Number of projections
Nacc	Number of accumulations per projection
р	Perimeter of the conductor16
Ps	Self-correlation function of the nuclear spin54
P*	Filtered profile
q	Dynamic reciprocal space vector56
Q	Quality factor of the coil 159
r	Static displacement (position vector)22
R	Dynamic displacement
Re	Reynolds' number
S(k)	Signal in k space
S(t)	Time domain signal
S(k)*	Complex conjugate of S(-k)
tp	Duration of the pulse12
Т	Absolute temperature of a spin system9
T _c	Coil temperature16
T _e	Entrance temperature of the fluid
T _E	Echo time
T _R	Repetition time
Tw	Temperature at the wall of the capillary90
T ₁	Spin-lattice (or longitudinal) relaxation time12
T ₂	Spin-spin (transverse) relaxation time12
Tr()	Trace of the operator in ()
U(t)	Evolution operator
v	Velocity
γ	Gyromagnetic ratio
δ	Duration of the PGSE pulse
δi	Chemical shift

δ	Delta function
Δ	Separation of the PGSE pulses
η	Dynamic viscosity of the fluid
η_0	Zero-shear viscosity of the fluid
λ	q-space attenuation factor
μ	Magnetic dipole moment5
μ _r	Relative permeability
μο	Absolute permeability (of free space)
ν	Kinematic viscosity of the fluid
ρ	Density matrix operator
ρ	Density of the fluid
ρ_{T}	Resistivity of the conductor16
ρ(r)	Nuclear spin density27
σ	RF coil proximity factor16
σ_t	Thermal noise power16
σ_{xy}	Shear stress
τ	Short time interval18
τ _d	Tube renewal time of macro-molecules
φ	Rotation angle of the magnetization vector1 2
Φ	Stream function of the fluid 254
χm	Magnetic susceptibility
ω	Larmor precession frequency
ω	Vorticity of the fluid254
ω0	Larmor precession frequency due to B_0 11
ω_1	Larmor precession frequency due to B_1 11
ΔE	Energy difference between two adjacent eigenstates
∆f	Bandwidth of the receiver
∆h	Height difference
ΔP	Pressure difference along the length of the tube
ΔVS	Velocity spread within one pixel79
ΔX	Transverse resolution
ΔZ	Slice thickness
۵۵	Difference of chemical shifts
Δφ	Angle increment size in imaging experiment
ħ	Planck's constant divided by 2π
Y	Shear rate