Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

SEWAGE SLUDGE DISPOSAL: THE COMPOSTING OPTION

Thesis presented in fulfillment of the requirements for the Degree of Master of Technology in Biotechnology at Massey University

> Carlo Bogoni October 1988

ABSTRACT

The objective of the present studies was to explore the possibility of employing composting as a mean of sewage sludge stabilization. A series of composting experiments were performed using dewatered secondary activated sewage sludge from a domestic wastewater treatment plant in New Plymouth, New Zealand. These trials have been carried out treating the sludge in both open and closed composting systems on a laboratory scale. Two open system methods, one aerated windrow and one static pile, and three closed experiments using a compostumbler were performed. Throughout the whole study woodchips (in varying ratios) were used as a bulking agent.

An initial moisture content of nearly 60% in the sludge woodchips mixture produced the highest degree of composting activity over a three week period.

Biological drying during the process was indicated by an increase in total solids up to values between 17% and 27%.

Partial stabilization of the organic fraction was indicated by a decrease in volatile solids of 28% - 50%. In two closed system trials a total carbon decrease of 26% - 42% was observed, serving as an additional indication that there had been a reduction in organic matter.

Total nitrogen losses were substantial in all experiments. Reductions were in the range of 14% - 58% with the highest

i

losses observed in the static pile experiment.

Phosphorus was found to be stable with only minor concentration changes observed.

Temperature development in the composting material followed the well known pattern, provided that the factors influencing the composting process were close to optimal. Temperatures approaching 70°C in the initial stage of the process were measured.

Bacteriological studies indicated, that the final composted product was not free from microbial hazard. In one closed system trial, however, no entero-streptococci were observed, indicating a complete inactivation of these indicator microorganisms.

Ongoing development of the composting systems used, including improvements of methodologies employed is necessary in conducting further investigations.

ii

ACKNOWLEDGEMENTS

I acknowledge the assistance of many people within the Department of Biotechnology, Massey University, during the course of this work. In particular Dr R. Bhamidimarri and Dr G. Manderson for their advice and guidance throughout; Dr R. Chong for his suggestions concerning parts of this work; Messers J. Alger and B. Collins for their assistance in setting up the experimental equipment; Mr M. Stevens and all the laboratory technicians from the Biotechnology Department for their help in familiarizing me with the laboratory and its equipment; Mr J. Sykes for performing the carbon analyses; the laboratory staff in the Food Technology Department for their patience and never ending humour in coping with rather unfamiliar smells caused by the special and often quite unpleasant characteristics of the samples treated in their laboratory. I also acknowledge the assistance of Mr L.D. Currie and his laboratory technicians in the Soil Science Department at Massey University for sharing their competence in performing the analytical work in their laboratory.

The thesis could not have been finished in a relatively short time without the guidance of my friend Peter McAllister. His continuous support in helping me use the different software packages during thesis preparation is deeply appreciated. All our innumerable, often quite humorous and certainly always useful discussions throughout these studies will always be remembered.

iii

I also would like to acknowledge Dr L. Broad from the Dairy Research Institute for his advice concerning the statistical analysis and Beverly Hawthorn, Patty Comiskey and Lucy Cruz for their patient help in completing the final typing work.

There are many people outside Massey University who really contributed in an invaluable manner to make my stay here in New Zealand a great and successful experience. It would be impossible to mention all the names at this occasion, nevertheless I am very grateful to all of them. Among them I would particularly like to express my deepest appreciation to Mrs D. Harrison and her extended family and also to Mr W. & Mrs J. Barnett, all from Palmerston North. Finally I wish to thank my family back home for their continued encouragement and also my dear friend Dianna Tawharu, from Palmerston North, for her kind company and support during my stay in New Zealand.

This work was granted by a scholarship from the City Council of New Plymouth, New Zealand. This support is sincerely acknowledged.

TABLE OF CONTENTS

						PAGE	
	ABSTRACT					i	
ACKNOWLEDGEMENTS							
	TABLE OF CO	TENT	S			v	
	LIST OF TAB	LES				xiii	
	LIST OF FIG	URES 2	AND PLAT	TES		xiv	
	ABBREVIATION	NS AN	D SYMBOI	LS USED IN	1 THE TEXT	xvii	
	CHAPTER 1:	INTRO	ODUCTION	1		1	
	CHAPTER 2:	SLUD - AN	GE TREAT OVERVIE	IMENT AND IW	DISPOSAL	3	
		2.1	GENERAI	L ASPECTS	OF SLUDGES	5	
		2.2	MUNICIE	PAL WASTER	NATER SLUDGES	9	
			2.2.1	SOURCES 2	AND PRODUCTION	9	
				2.2.1.1	Primary Sludge	10	
				2.2.1.2	Secondary Sludge	11	
				2.2.1.3	Digested Sludge	13	
		2.3	SLUDGE	TREATMEN	Γ	14	
			2.3.1	INTRODUC	TION	14	
			2.3.2	SLUDGE C	ONDITIONING	18	
				2.3.2.1	General Considerations	18	
				2.3.2.2	Chemical Conditioning	18	
				2.3.2.3	Physical Conditioning	19	
				2.3.2.4	Thermal Pretreatment of Sludges	20	
			2.3.3	MOISTURE CONCENTR	REDUCTION AND ATION OF SOLIDS	20	
				2.3.3.1	Sludge Thickening	20	

1

CHAPTER	2:	CONTI	INUED			PAGE
					Gravity Thickening	21
					Flotation Thickening	22
				2.3.3.2	Dewatering of Sludge	22
			2.3.4	SEWAGE S AND DISI	LUDGE STABILIZATION NFECTION	23
				2.3.4.1	Chemical Sludge Stabilization	24
					Chlorine Oxidation	24
					Lime Stabilization	24
				2.3.4.2	Physical Sludge Stabilization	25
					Pasteurization	25
					Thermal Reduction	25
					Heat Drying	26
					Air Drying	27
					Irradiation	27
				2.3.4.3	Biological Sludge Stabilization	28
					Anaerobic Digestion	28
					Aerobic Digestion	30
					Composting	31
		2.4	COMPO PREVI	STING OF S OUS WORK	EWAGE SLUDGE:	33
			2.4.1	INTRODUC	TION	33
			2.4.2	PRINCIPA	L FACTORS	37
				2.4.2.1	Process Fundamentals	37
				2.4.2.2	Biochemical Aspects	39
				2.4.2.3	Microbiology	40

1

CHAPTER 2:	CONT	INUED			PAGE
			2.4.2.4	Heat Generation and Temperature	44
				Basic Reaction Pattern	44
				Heat Generation - Temperature Interactions	45
			2.4.2.5	Aeration, Heat and Moisture Removal	46
			2.4.2.6	Pathogenic Organisms	49
		2.4.3	COMPOSTI	NG TECHNOLOGIES	53
			2.4.3.1	General Aspects	53
			2.4.3.2	Conventional Windrow Process	55
			2.4.3.2	Aerated Windrow Process	56
			2.4.3.3	Aerated Static Pile Process	57
				Process Description	57
				Process Control	58
			2.4.3.4	In-Vessel Systems	60
				Vertical Flow Reactor	60
				Horizontal and Inclined Flow Reactor	61
		2.4.4	CONCLUDI	NG REMARKS	62
CHAPTER 3:	MATE	RIALS A	ND METHOD	S	64
	3.1	EQUIPM	ENT AND M	IATERIALS	64
		3.1.1	SLUDGE:	SOURCE AND CHARACTERISTIC	S 64
		3.2.1	BULKING	AGENT	65

t

CHAPTER 3:	CONT	INUED			PAGE	
		3.1.3	SITE COND	ITIONS	65	
		3.1.4	AERATION	EQUIPMENT	65	
			3.1.4.1	Piping Materials	65	
			3.1.4.2	Fan and Compressor	66	
		3.1.5	COMPOSTUM	BLER	68	
		3.1.6	TEMPERATU	RE RECORDING	68	
		3.1.7	SAMPLING		69	
	3.2	EXPERI	MENTAL PRO	CEDURE	71	
		3.2.1	MIXING OF	THE COMPONENTS	71	
		3.2.2	AERATED W	INDROW TRIAL	71	
			3.2.2.1	Windrow Constructio	n 71	
			3.2.2.2	Aeration Pattern	72	
			3.2.2.3	Sampling Procedure	73	
		3.2.3	AERATED S	STATIC PILE TRIAL	74	
			3.2.3.1	Pile Construction	74	
			3.2.3.2	Aeration Pattern	75	
			3.2.3.3	Sampling Procedure	76	
		3.2.4	DRUM TUME	BLER TRIALS	79	
			3.2.4.1	First Trial	79	
			3.2.4.2	Second Trial	80	
			3.2.4.3	Third Trial	81	
	3.3	ANALYT	ICAL METHO	DDS	82	
		3.3.1	CHEMICAL	ANALYSIS	82	
			3.3.1.1	pH - Measurement	82	
			3.3.1.2	Total and Volatile	Solids 82	

CH	APTER	3:	CONTI	INUED			PAGE
						Sludge	82
						Woodchips	82
					3.3.1.3	Total Nitrogen and Phosphorus	83
						Sample Preparation	83
						Digestion Mixture	83
						Digestion	83
						Determination	84
					3.3.1.4	Total Carbon	85
						Sample Preparation	85
						Determination	85
				3.3.2	MICROBIO	LOGICAL ANALYSIS	86
					3.3.2.1	Media	86
					3.3.2.2	Media Preparation	87
					3.3.2.3	Sterilization of Media, Glassware and Equipment	87
					3.3.2.4	Sample Preparation	87
					3.3.2.5	Analysis for Indicator Microorganisms	88
			3.4	STATIS	TICAL ANA	LYSIS	90
C	סשיייסגנ	۸.	DECIT	TTO			0.2
C	IAP IEK	4.	A 1		TNADY DEM	ADVC	92
			4.1	ODEN C	INARI KEM	IAKKS	92
			4.2	OPEN 5	ISIEMS	MT ON	93
				4.2.1	INTRODUC	NINDRON CONDOCTING	93
				4.2.2	AERATED	WINDROW COMPOSTING	94
					4.2.2.1	Analysis of Variables	95

CHAPTER 4:	CONTIN	NUED				PAGE
					Temperature Development	95
					Total Solids and Volatile Solids	99
					Total Nitrogen and Phosphorus	102
		4.2.3	AERATED	STA	ATIC PILE COMPOSTING	104
			4.2.3.1	Ar	alysis of Variables	105
					Temperature Development	105
					Total Solids and Volatile Solids	108
					Total Nitrogen and Phosphorus	108
	4.3	4.3 DRUM TUMBLE			DSTING	117
		4.3.1	INTRODUC	TIC	DN	117
		4.3.2	FIRST TR	RIAI		118
			4.3.2.1	Ar	nalysis of Variables	119
					Temperature Development	119
					Total Solids and Volatile Solids	120
					Total Nitrogen and Phosphorus	120
					Microbiological Counts	123
		4.3.3	SECOND T	RI	AL	125
			4.3.3.1	A	nalysis of Variables	125
					Temperature Development	127

CHAPTER 4:	CONT	INUED				PAGE
					Total Solids and Volatile Solids	128
					Total Nitrogen and Phosphorus	128
					Total Carbon	128
					Microbiological Counts	130
		4.3.4	THIRD TF	RIAL		132
			4.3.4.1	An	alysis of Variables	132
					Temperature Development	132
					Total Solids and Volatile Solids	134
					Total Nitrogen and Phosphorus	134
					Total Carbon	135
					Microbiological Counts	135
CHAPTER 5:	DISC	USSION				140
	5.1	INTROD	UCTORY RE	EMAR	KS	140
	5.2	OPEN S	YSTEMS			141
		5.2.1	AERATED	WIN	DROW COMPOSTING	141
			5.2.1.1	Ge	neral Observations	141
			5.2.1.2	Pr	ocess Performance	142
					Moisture Content	142
					Temperature	143
					Decomposition Activity	145
					Nutrients	146

CHAPTER 5:	CONTINUED	PAGE
	5.2.2 AERATED STATIC PILE COMPOSTING	147
	5.2.2.1 General Observations	147
	5.2.2.2 Process Performance	149
	Moisture Content	149
	Temperature	149
	Decomposition Activity	150
	Nutrients	151
	5.3 DRUM TUMBLER COMPOSTING	153
	5.3.1 PROCESS PERFORMANCE	153
	5.3.1.1 Moisture Content	153
	5.3.1.2 Temperature	155
	5.3.1.3 Decomposition Activity	155
	5.3.1.4 Nutrients	157
	5.3.1.5 pH - Value	158
	5.3.1.6 Bacteriology	159
	5.4 PRACTICAL PROBLEMS	162
CHAPTER 6:	CONCLUSIONS	164
CHAPTER 7:	RECOMMENDATIONS FOR FUTURE WORK	166
REFERENCES	3	167
APPENDIX:	EXPERIMENTAL DATA	181

xii

1

LIST OF TABLES

Table		PAGE
4.1a	Mean values of selected variables for the aerated windrow A.	96
4.1b	Mean values of selected variables for the aerated windrow B.	97
4.2	Calculated F-values for selected variables for the aerated windrow composting trial.	103
4.3	Calculated F-values for selected variables for the aerated static pile trial.	110
4.4	Mean values of selected variables for the first drum tumbler trial.	122
4.5	Microbial counts in raw dewatered activated sewage sludge including one compost sample, determined during the first drum tumbler trial.	124
4.6	Mean values of selected variables for the second drum tumbler trial.	126
4.7	Microbial counts in raw dewatered activated sewage sludge and compost samples, determined during the second drum tumbler trial.	131
4.8	Mean values of selected variables for the third drum tumbler trial.	133
4.9	Microbial counts in raw dewatered activated sewage sludge and compost samples, determined during the third drum tumbler trial.	137
4.10	F-values calculated for selected variables for all drum tumbler trials.	139
A.1	Replicate contents of total solids and volatile solids originating from both windrows in the aerated windrow trial.	182
A.2	Replicate contents of total nitrogen and phosphorus throughout the aerated windrow trial.	183
A.3	Duplicate contents of selected variables collected at different positions throughout the aerated static pile trial.	184

xiii

LIST OF TABLES: continued

LIST	OF TABLES: con	tinued	PAGE
A.4	Replicate throughout	contents of selected variables the first drum tumbler trial.	185
A.5	Replicate throughout	contents of selected variables the second drum tumbler trial.	186
A.6	Replicate throughout	contents of selected variables the third drum tumbler trial.	187

LIST OF FIGURES AND PLATES

FIGURE		PAGE
2.1	Diagram of wastewater treatment processes.	4
2.2	Unit processes and operations employed in treatment, utilization and disposal of sewage sludge.	8
2.3	Schematic representation of different activated sludge systems.	12
2.4	Schematic relationship of different alter - native sludge treatment forms.	15
2.5	Schematic overview of the composting process.	34
2.6	Schematic diagram of temperature versus time course during the composting process.	39
2.7	Generalized scheme for the composting process showing inputs of feed substrate, compost product recycle, amendment and bulking agent.	54
2.8	Biological activity of composting systems and their limitations induced by different ventilation systems.	59
3.1	Schematic representation of the aeration piping layout in the aerated windrow trial.	67
3.2	Timer configuration for the 'on - off'- regime of the aeration and the temperature measurement.	68

LIST O	F FIGURES AND PLATES: continued	PAGE
3.3	Compostumbler, used as mixing device and as equipment for the drum tumbler trials.	69
3.4	An example of a remote handling tong, a sampling device similar to the one actually used in the experiments.	70
3.5	Positions of temperature measurement in the two windrows of the aerated windrow trial.	74
3.6	Aerated static pile trial.	76
4.1	Mean temperature changes during composting in the aerated windrow A and B at various positions.	98
4.2	Changes in total solids, volatile solids, total nitrogen and phosphorus during composting in windrow A.	100
4.3	Changes in total solids, volatile solids, total nitrogen and phosphorus during composting in windrow B.	101
4.4	Temperature changes during composting monitored by thermocouples 1-6 in the aerated static pile study in two dimensional and three dimensional representation.	106
4.5	Temperature changes during composting monitored by thermocouples 7-12 in the aerated static pile study in two dimensional and three dimensional representation.	107
4.6	Changes in total solids, volatile solids, phosphorus and total nitrogen at position $\frac{1}{2}$ during aerated static pile composting.	111
4.7	Changes in total solids, volatile solids, phosphorus and total nitrogen at position $\frac{2}{2}$ during aerated static pile composting.	112
4.8	Changes in total solids, volatile solids, phosphorus and total nitrogen at position $\frac{3}{2}$ during aerated static pile composting.	113
4.9	Changes in total solids, volatile solids, phosphorus and total nitrogen at position $\frac{4}{2}$ during aerated static pile composting.	114

LIST OF	FIGURES AND PLATES: continued	PAGE
4.10	Changes in total solids, volatile solids, phosphorus and total nitrogen at position $\frac{5}{2}$ during aerated static pile composting.	115
4.11	Changes in total solids, volatile solids, phosphorus and total nitrogen at position $\underline{6}$ during aerated static pile composting.	116
4.12	Mean temperature changes during composting in the first drum tumbler trial.	119
4.13	Changes in total solids, volatile solids, total nitrogen and phosphorus during composting in the first drum tumbler trial.	121
4.14	Mean temperature changes during composting in the second drum tumbler trial.	127
4.15	Changes in total solids, volatile solids, total nitrogen and phosphorus during composting in the second drum tumbler trial.	129
4.16	Mean temperature changes during composting in the third drum tumbler trial.	134
4.17	Changes in total solids, volatile solids, total nitrogen and phosphorus during composting in the third drum tumbler trial.	136

Plate

3.1	Aeration during the aerated static pile trial was achieved using a manifold attached to four parallel distribution pipes (orifices were drilled every 0.1 m)	22
	which ran the length of the pile.	11
3.2	Manifold for air distribution into four parallel perforated pipes.	77
3.3	Compostumbler for tumbling and composting woodchips and secondary sludge.	78
3.4	Experimental aerated static compost pile comprised of woodchips and secondary sewage sludge.	78

.

ABBREVIATIONS AND SYMBOLS USED IN THE TEXT

- $B_{95\%}$: 95% confidence interval on the mean
- BEA: Bile Esculin Azide
- C: Carbon
- ^OC: Degree Celsius
- CFU: Colony Forming Units
- C/N: Carbon to nitrogen ratio
- F: F-ratio of mean sums of squares
- g: Gram
- h: Hour
- kg: Kilogram
- l: Liter
- m: Meter
- ml: Milliliter
- MPN: Most Probable Number
- N: Nitrogen
- P: Phosphorus
- PCA: Plate Count Agar
- s: Standard deviation
- TS: Total solids
- VS: Volatile solids
- v/v: Volume/Volume
- w/w: Weight/Weight