Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

HEAT-INDUCED WHEY PROTEIN REACTIONS IN MILK

KINETICS OF DENATURATION AND AGGREGATION AS RELATED TO MILK POWDER MANUFACTURE

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN FOOD TECHNOLOGY

BY

DAVID JAMES OLDFIELD

DEPARTMENT OF FOOD TECHNOLOGY MASSEY UNIVERSITY PALMERSTON NORTH

1996

ABSTRACT

The objective of this study was to gain a better understanding of the heat-induced whey protein reactions that occur during the manufacture of milk powders. Attention was focused on the preheating step, because most of the whey protein reactions that affect powder properties occur during this step.

Skim milk was heated at a range of temperatures (70 to 130°C) and times (5 s to 1800 s), normally used in powder manufacture, using a pilot-scale UHT plant equipped with direct steam injection. The temperature and time conditions were characterized by residence time distribution analysis. After heating the milk samples were analyzed by quantitative polyacrylamide gel electrophoresis under non-dissociating and dissociating conditions.

Using reaction progress data (reactant concentration versus time) determined over a range of temperatures, apparent reaction orders, reaction rates and Arrhenius parameters were determined by non-linear regression. This one-step approach gave Arrhenius parameters of considerably higher precision than the commonly used alternative of first determining the rate constants and then the Arrhenius parameters from the temperature dependence of those constants. Kinetic parameters were calculated for β -lactoglobulin A, β -lactoglobulin B, α -lactalbumin, immunoglobulin G and bovine serum albumin. Reaction orders for β -lactoglobulin varied from 1.0 to 1.6, while values for α -lactal burnin were in the range 0.9 to 1.1. The denaturation of Immunoglobulin G could be described by a 2nd order reaction, whereas bovine serum albumin followed a There was a marked change in activation energy for reaction order of 2.8. β -lactoglobulin at 90°C (51.18 to 301.73 kJ mol⁻¹) and α -lactalbumin at 80°C (52.87 to 203.26 kJ mol⁻¹). No such change was observed for Immunoglobulin G and bovine serum albumin over the temperature range 70-90°C. At temperatures <80°C the rates for β -lactoglobulin and α -lactalbumin denaturation were similar, but at higher temperatures α -lactalbumin denatured at a slower rate than β -lactoglobulin.

The aggregation of β -lactoglobulin mainly involved the formation of disulphide-linkages, whereas α -lactalbumin aggregates were formed through both hydrophobic interactions and disulphide-linkages. The kinetics of β -lactoglobulin aggregate formation followed an Arrhenius relationship similar to β -lactoglobulin denaturation, with comparable values of reaction orders, activation energies (reaction rates.

The rates of β -lactoglobulin and α -lactalbumin association with the casein micelles were slower than the corresponding rates for denaturation and aggregation. At temperatures >80°C β -lactoglobulin associated at a faster rate than α -lactalbumin, but <80°C the rates of association were similar. Under all heating conditions only a portion (\approx 55%) of the denatured β -lactoglobulin and α -lactalbumin associated with the casein micelles; the rest remained in the serum as aggregates.

Based on the interrelationships between denaturation, aggregation and association behaviour of β -lactoglobulin and α -lactalbumin a novel mechanism was proposed and a mathematical model was developed. This model could accurately predict the formation of β -lactoglobulin aggregates and their subsequent association with the casein micelles.

The extent of whey protein denaturation, aggregation and association in milk was affected by compositional factors, such as pH, whey protein concentration and total solids content. Increasing the pH of milk from 6.48 to 6.83 prior to heating had little effect on β -lactoglobulin and α -lactalbumin denaturation and aggregation, but greatly decreased their association with the casein micelles. When the whey protein concentration in milk was increased from 0.52 to 1.24 g/100 g there was a marked increase in the extent of denaturation, aggregation and association of α -lactalbumin with the casein micelles, the effect being less marked on β -lactoglobulin. As the total solids content increased from 6% to 13% the extent of β -lactoglobulin and α -lactalbumin reactions increased. Examination of whey protein reactions in milks obtained during the New Zealand dairying season, showed that the extent of denaturation, aggregation and association was greater in late season milk. This increase was possibly caused by the increased whey protein and κ -casein concentrations.

Preliminary studies were carried out on the evaporation and spray drying processing steps. Little further denaturation and aggregation of whey proteins occurred during the evaporation and spray drying steps, while the association of whey proteins with the casein micelles increased slightly during evaporation. However both these processing steps caused considerable changes in soluble minerals and calcium ion activities.

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my chief supervisor Assoc. Prof. Harjinder Singh. His expertise and advice throughout the project, especially in the writing stage, is gratefully appreciated. I am also thankful for the support and guidance provided by my co-supervisors, Dr. Mike Taylor and Dr. Kevin Pearce.

I would also like to thank Dr. David Newstead for helpful discussions in UHT processing of milk.

I am grateful to the New Zealand Dairy Board, Wellington, for providing the funding for the project.

I would like to thank all the staff of the Department of Food Technology. In particular I would like to thank Mrs. Margaret Bewley, Ms. June Latham, Mr. Hank van Til, Mr. Steve Glasgow, Mr. Alistair Young, Mr. Mark Dorsey and Mr. Byron McKillop for their technical assistance and support during experimental work carried out in the Department.

Several members of the academic staff in the Department of Food have provided invaluable assistance during the project. In particular I would like to thank, Prof. Andrew Cleland for his help on kinetics and Dr. Peter Munro for handling the administrative side of the project. In addition I would like to thank Mrs Lesley James, Miss Rebecca Baxter, Miss Leeann Wojtal, Mrs. Toni SnowBall-Kui, Miss Georgina Dykes and Mr. Bill King.

In addition I would like to thank Prof. Richard Earle and Prof. Mary Earle for their encouragement, especially on kinetics.

My thanks goes to the staff of the New Zealand Dairy Research Institute. In particular, I would like to thank Mr Gordon Groube for his patience and assistance on the UHT plant. In addition, I wish to thank Dr. Andrew Fletcher and Dr. Patrick Janssen for their help with RTD calculations. My thanks goes to Mr. Paul Webbey, Mr. John Grant, Mr. Colin Knight, Mr. Bill Barnes and Mr. Robbie Buwalda for operating the milk powder plant. I would also like to thank Mr. Derrick Goodwin, Dr. John Smith, Dr. Vijay Bhaskar and Dr. Ashley Kells for providing the various milks.

I am indebted to the staff of the Analytical Chemistry Section for the analysis they carried out. In addition, I would like to thank Mr. Garvin Filby, Mrs. Giao Truong and Mrs. Lynette D'Ath for the milk powder analysis they performed. I am also grateful for the technical assistance provided by Dr. Rex Humphries, Dr. Don Otter, Ms. Denise Hughes and Ms. Carmen Norris on the HPLC and densitometer.

In addition I would like to thank Dr. Lawrence Creamer, Dr. Jeremy Hill, Dr. Skelta Anema, Mrs. Ruth Lowe, Mr. Geoff Paterson, Mr. Len Walker, Mr. Paul Le Ceve, Mr. Tuan Truong, Mrs. Lesley Collins and Mr. Alan Gunn.

I wish to thank the staff at the ICP facility, AgResearch, for the mineral analysis they performed.

My thanks goes to all the postgraduate students and researchers I have met during my long stay at Massey, particularly, Tang, Netra, Ranjan and Mary, Rani (tee hee), Algane and Jackie, Gayatri and Sridhar, Kirsten, Tasa, Alistair, Ajay, Ram, Khalid, Magesh, Hong, Lu, Inge, Roger², Ben, Ed and Chris. Special thanks to the students visiting Massey, Annalise, Bente, Joost and Marijke, Lise and Brigitte. Thanks also to Mr. John Alger for organising the Kaimanawa postgraduate camping trip, unfortunately no horses were seen.

Finally I would like to thank family and friends for their support and patience during my studies.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION	1
CHAPTER 2: LITERATURE REVIEW	
2.1 COMPOSITION OF MILK	4
2.1.1 Caseins	5
2.1.2 Whey proteins	11
2.1.3 Minerals	14
2.1.4 Variations in milk composition	16
2.2 WHEY PROTEIN DENATURATION	18
2.2.1 Mechanism of whey protein denaturation	18
2.2.2 Methodology of the measurement of protein denaturation	18
2.2.3 Denaturation behaviour of individual whey proteins	22
2.2.4 Factors influencing whey protein denaturation	24
2.2.5 Kinetics of Whey Protein Denaturation	27
2.3 HEAT-INDUCED INTERACTIONS OF MILK PROTEINS	35
2.3.1 Interaction of whey proteins and k-casein	35
2.3.2 Heat-induced interactions of whey proteins	39
2.4 MANUFACTURE OF MILK POWDER	40
2.5 PROCESS INDUCED CHANGES	42
2.5.1 Preheating	43
2.5.2 Concentration related changes	46
OBJECTIVES	49
CHAPTER 3: TIME AND TEMPERATURE DETERMINATIONS IN A	PILOT
SCALE ULTRA-HIGH-TEMPERATURE PLANT	
3.1 INTRODUCTION	50
3.2 MATERIALS AND METHODS	51
3.2.1 Raw materials	51

	vii
3.2.2 Equipment	51
3.2.3 Determination of RTD	53
3.2.4 Effect of heating prior to the DSI and DSI heating on native whey	
proteins	57
3.2.5 Dilution of the milk by DSI	58
3.3 RESULTS AND DISCUSSION	58
3.3.1 RTD determination in a UHT plant	58
3.3.2 Temperature effects in the UHT plant	61
3.3.3 Effect of dilution by DSI on heat-induced whey protein reactions	64
3.4 CONCLUSIONS	64
CHAPTER 4: KINETICS OF HEAT-INDUCED DENATURATION	AND
INTERACTIONS OF PROTEINS IN SKIM MILK	
4.1 INTRODUCTION	66
4.2 MATERIALS AND METHODS	67
4.2.1 Milk supply	67
4.2.2 UHT processing	67
4.2.3 Milk protein analysis	68
4.2.4 Statistical analysis of kinetic data	76
4.2.5 Statistical analysis of the rate constant used in the two-step	
method	80
4.2.6 Statistical analysis used in the mathematical model	82
4.3 RESULTS AND DISCUSSION	84
4.3.1 PAGE analysis	84
4.3.2 Kinetics of whey protein denaturation in skim milk	87
4.3.3 Formation of whey protein aggregates	107
4.3.4 Heat-induced interactions between whey proteins and the casein	
micelle	118
4.3.5 Mathematical model for β -lg association with the casein micelle	125
4.4 CONCLUSIONS	132

CHAPTER 5: EFFECT OF SEASONAL VARIATIONS ON HEAT-INDUCED WHEY PROTEIN DENATURATION AND INTERACTIONS

5.1 INTRODUCTION	134
5.2 MATERIALS AND METHODS	135
5.2.1 UHT processing	135
5.2.2 Skim milk analysis	135
5.2.3 Kinetic analysis	135
5.3 RESULTS AND DISCUSSION	136
5.3.1 Composition of seasonal skim milks	136
5.3.2 Kinetics of whey protein denaturation	138
5.3.3 Effect of seasonal changes in milk composition on whey protein	
denaturation	148
5.3.4 Whey protein aggregation and association with the micelle	150
5.4 CONCLUSIONS	153

CHAPTER 6: EFFECT OF pH, WHEY PROTEIN CONCENTRATION AND TOTAL SOLIDS CONCENTRATION ON HEAT-INDUCED PROTEIN INTERACTIONS IN SKIM MILK

6.1 INTRODUCTION	154
6.2 MATERIALS AND METHODS	155
6.2.1 Effect of pH	155
6.2.2 Effect of whey protein concentration	155
6.2.3 Effect of total solids	158
6.2.4 Kinetic analysis	158
6.3 RESULTS AND DISCUSSION	159
6.3.1 Effect of pH	159
6.3.2 Effect of whey protein concentration	174
6.3.3 Effect of total solids	185
6.3.4 Effect of pH, whey protein concentration and total solids on the	
denaturation, aggregation and association mechanisms	191

	ix
6.3.5 Heat induced mineral changes	192
6.4 CONCLUSIONS	197

CHAPTER	7:	PROTEIN	AND	MINERAL	CHANGES	DURING	THE
MANUFAC	ΓUR	E OF SKIM	MILK	POWDER			
7.1 INTROD	UCT	TION					199
7.2 MATERI	ALS	AND METH	IODS				200
7.2.1	Skin	n milk powde	r proces	sing			200
7.2.2	Anal	lysis of milks	, concen	trates and pow	vders		201
7.3 RESULT	S Al	ND DISCUSS	ION				205
7.3.1	Whe	y protein den	aturation	n			207
7.3.2	Whe	y protein agg	regation	and association	on with the mi	celle	214
7.3.3	Char	nges in the mi	ineral di	stribution			218
7.4 CONCLU	JSIO	ONS					227

CHAPTER 8: GENERAL DISCUSSION

REFERENCES	241
8.4 POSSIBLE INDUSTRIAL APPLICATIONS	239
SKIM MILK	234
8.3 OVERALL MODEL FOR β -LG AND α -LA REACTIONS IN HEATED	
8.2 ASSOCIATION OF WHEY PROTEINS WITH THE CASEIN MICELLE	232
8.1 DENATURATION AND AGGREGATION OF WHEY PROTEINS	228

APPENDICES	
------------	--

269