Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A STUDY OF THE CARCASS COMPOSITION AND MEAT QUALITY

OF SOUTHDOWN SHEEP SELECTED FOR

DIFFERENCES IN BACKFAT DEPTH

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Animal Science at Massey University Palmerston North New Zealand

ISAM TAWFIK KADIM

ABSTRACT

Southdown sheep from genetic lines that have been developed at Massey University by selecting for and against weight-corrected fatdepth measurements made ultrasonically on the live sheep, were evaluated for carcass and meat quality characteristics in 4 experiments, while their crossbred offspring from Romney ewes were evaluated in 2 experiments. No significant differences were found in daily live-weight gains between the two selection lines, but the fatline animals had greater fat depths at C and to a lesser extent at J, S2, LG and L2. Tissue depth GR was also significantly greater in the fat line.

Comparisons at the same weight showed that sides from the meaty line contained more muscle and bone with less fat than those from the fat line, but the meaty-line carcasses had a relatively lower dressing-out percent. Carcass length was significantly longer for the meaty-line than the fat-line animals, but the maximum width behind the shoulder was greater for the fat line. The length of leg and several bones (femur, humerus, radius, and tibia and fibula) were greater for the meaty line than the fat line. With the exception of the higher rack cut percent in the fat line, the two selection lines did not differ in the weight distribution among the shoulder, loin, and leg cuts within the side, or in the distribution of muscle, bone and fat weights. When adjusted to the same side fat weight, the side from the fat line contained more subcutaneous fat, more intramuscular fat, and less intermuscular fat.

Based on succinic dehydrogenase staining procedures, <u>M</u>. <u>semitendinosus</u> from the fat line was found to have a significantly higher percent of red muscle fibre (βR) and a correspondingly lower percent of intermediate (αR) and white muscle fibre (αW). No significant line differences were observed for the diameter of the three muscle-fibre types.

For five adipose tissue depots (subcutaneous, intermuscular, kidney, omental and mesenteric) adipocyte size was greater for the fat line. In addition, the subcutaneous fat depot of fat-line sheep contained significantly more cells in one of the three experiments.

Equations relating side fat percent with fat percent of the rack cut (8 to 12 rib) differed significantly between the two lines with regard to intercept. This effect appeared to be due to the small overlap in fat percent values for the two lines.

Selection line differences in indices of meat quality (Warner-Bratzler shear force, sarcomere length, reflectance, expressed juice, cooking loss and pH) for four muscles (<u>Mm. longissimus, biceps femoris, semitendinosus, semimembranosus</u>) were generally small and non-significant. Meat from animals of the two selection lines did not differ significantly in the extent to which shear values decreased in response to electrical stimulation, to ageing for 15 days (<u>M. semimembranosus</u>), to the removal of cold-shortening conditions (<u>M. biceps femoris</u>), or to not trimming the subcutaneous fat over the <u>M. longissimus</u>. However, the shear force values and sarcomere lengths from both lines were significantly affected by all of these postmortem treatments.

ACKNOWLEDGEMENTS

I owe a special debt to Dr R.W. Purchas for his sound guidance, constant encouragement, enthusiasm, and conscientious supervision of this study. His contribution to this project has been immeasurable. I wish to express my sincere gratitude to Professor A.L. Rae and Mr R. A. Barton for their invaluable advice and criticisms during the experimentation, statistical analyses of the data and the preparation of the manuscript. Their willingness to provide counsel whenever required was also greatly appreciated.

Without the contribution of Professor R.D. Anderson and the cooperation and facilities of the Animal Science Department, Massey University, this project would not have been possible.

I am indebted to Messrs M.A. Wycherley and M.G. Divehall for their cheerful technical assistance.

I am also grateful to Dr A.S. Davies, Department of Physiology and Anatomy, for his valuable instruction on anatomical muscle dissection. Mr M.J. Birtles, Mr R.I. Sparksman and Mrs P. Slack who each provided invaluable technical assistance in histological evaluation, are also gratefully acknowledged.

Mrs E.J. Baxter typed this thesis; her skill and patience deserve special thanks.

The generous financial support of the Government of the Republic of IRAQ is gratefully acknowledged.

I am grateful to the people of New Zealand for their friendship and hospitality during the period of my study.

Sincere appreciation and gratitude is due to my wife Samera Kasim Kalaf and also my little world Hamsah, Yasser and Shereen for the gift of their enthusiasm and discipline throughout this study.

Finally, very special thanks are due to my family for their encouragement and support during my absence from Iraq while studying at Massey University. TABLE OF CONTENTS

		Page			
ABSTRACT		ii			
ACKNOWLEDGEMENTS					
LIST OF TAB	LIST OF TABLES				
LIST OF FIG	URES	xxiv			
CHAPTER 1.	INTRODUCTION	1			
CHAPTER 2.	REVIEW OF LITERATURE	4			
2-1	INTRODUCTION	4			
2-2	BODY AND CARCASS COMPOSITION	4			
	2-2-1 DRESSING-OUT PERCENT	4			
	2-2-1-1 Factors Affecting Dressing-				
	out Percent	5			
	2-2-2 FAT PERCENT	7			
	2-2-2-1 Factors Affecting Fat Percent	7			
	2-2-2-1-1 Animal age and weight	7			
	2-2-2-1-2 Animal genotype	8			
	2-2-2-1-3 Sex	13			
	2-2-2-1-4 Nutrition	14			
	2-2-3 FAT PARTITIONING AND DISTRIBUTION	16			
	2-2-3-1 Factors Affecting Fat Par-				
	titioning and Distribution	16			
	2-2-3-1-1 Animal age and weight	16			
	2-2-3-1-2 Animal genotype	18			
	2-2-3-1-2-1 Between breeds	18			
	2-2-3-1-2-2 Within breeds	20			
	2-2-3-1-3 Nutrition	21			
	2-2-3-1-4 Sex	23			
	2-2-4 FAT TISSUE CELLULARITY	24			
	2-2-4-1 Factors Affecting Fat Tissue				
	Cellularity	24			
	2-2-5 MUSCLE TO BONE RATIO	27			
	2-2-5-1 Factors Affecting Ratio of Muscle				
	to Bone	28			

- V

+

Ρ	ao	e
	uy	6

	2-2-6 MUSCLE WEIGHT DISTRIBUTION	32
	2-2-6-1 Factors Affecting Muscle Weight	
	Distribution	33
2-3	MEAT QUALITY AND ITS EVALUATION	36
	2-3-1 DEFINITION OF MEAT QUALITY	37
	2-3-2 EVALUATION OF MEAT QUALITY	37
	2-3-2-1 Subjective Evaluation	37
	2-3-2-2 Objective Evaluation	38
	2-3-2-2-1 Tenderness	38
	2-3-2-2 Juiciness	39
	2-3-2-2-3 Colour	40
	2-3-3 FATNESS AND MEAT QUALITY	41
	2-3-3-1 Fatness and Meat Tenderness	41
	2-3-3-1-1 Marbling and tenderness	42
	2-3-3-1-2 Subcutaneous fat and tenderness	45
	2-3-3-2 Fatness and Meat Juiciness	48
	2-3-3-3 Fatness and Meat Flavour	49
	2-3-4 MUSCLE CHARACTERISTICS AND MEAT QUALITY	52
	2-3-4-1 Muscle Fibre Parameters	52
	2-3-4-1-1 Quality characteristics affected	
	by muscle type	53
	2-3-4-1-2 Factors affecting the proportions	
	of muscle fibre types	56
	2-3-4-1-2-1 Animal age and weight	56
	2-3-4-1-2-2 Animal genotype	58
	2-3-4-1-2-3 Nutrition	62
	2-3-4-1-2-4 Sex	64
	2-3-4-1-3 Relationships between fatness	
	and muscle fibre type	65
	2-3-4-2 Connective Tissue	67
	2-3-4-2-1 Quality characteristics affected	
	by connective tissue	67
	2-3-4-2-2 Relationships between fatness and	
	connective tissue	68

2-3-4-3 Degree of Muscle Contraction	69
2-3-4-3-1 Quality characteristics affected	
by degree of contraction	70
2-3-4-3-2 Methods of controlling degree of	
contraction	72
2-3-4-3-2-1 Temperature	72
2-3-4-3-2-2 Electrical stimulation	74
2-3-4-3-2-3 Physical restraint	75
2-3-4-3-3 Relationships between fatness and	
degree of muscle contraction	77
2-3-4-4 Degree of Protein Breakdown	77
2-3-4-4-1 Quality characteristics affected	
by protein breakdown	80
2-3-4-4-2 Post-mortem factors affecting	
protein breakdown	80
2-3-4-4-2-1 Time and temperature	30
2-3-4-4-2-2 Electrical stimulation	82
2-3-4-4-2-3 Cooking temperature	83
2-3-4-4-3 Relationships between fatness and	
muscle protein breakdown	84
2-3-4-5 Rate of Glycolysis and Ultimate pH	84
2-3-4-5-1 Quality characteristics affected	
bу pH	85
2-3-4-5-2 Factors affecting muscle pH	86
2-3-4-5-3 Relationships between fatness and	
muscle pH	87
2-3-4-6 Water-holding Capacity	88
2-3-4-6-1 Quality characteristics affected	
by water-holding capacity	88
2-3-4-6-2 Factors affecting water-holding	
capacity	89
2-3-4-6-3 Relationships between fatness and	
water-holding capacity	90

		2-3-4-7 Muscle Pigment Content	91
		2-3-4-7-1 Quality characteristics affected	
		by muscle pigment content	91
		2-3-4-7-2 Factors affecting muscle pigment	
		content	92
		2-3-4-7-3 Relationship between fatness and	
		colour	94
CHAPTER	3.	MATERIALS AND METHODS	96
	3-1	ANIMALS AND EXPERIMENTAL DESIGN	96
		3-1-1 EXPERIMENT 1	96
		3-1-2 EXPERIMENT 2	98
		3-1-3 EXPERIMENT 3	98
		3-1-4 EXPERIMENT 4	99
		3-1-5 EXPERIMENT 5	100
		3-1-6 EXPERIMENT 6	100
	2 2		102
	3-2	3 2 1 SLAUGHTED DDOCEDURES	102
		3.2.1.1 Preparation and Weighing of Non-	102
		carcass Components	102
		3-2-1-1-1 Experiments 1 and 2	102
		3-2-1-1-2 Experiments 3, 4, 5 and 6	102
		3-2-1-2 Electrical Stimulation	102
		3-2-1-3 Subcutaneous Fat Trimming and	
		Temperature Measurement	104
		3-2-1-4 Temperature Treatment	104
		3-2-1-5 Ageing Treatment	106
		3-2-2 CARCASS MEASUREMENTS	106
		3-2-2-1 Linear and Area Measurements	106
		3-2-2-2 Cutting Procedures	106
		3-2-2-2-1 Experiments 1 and 2	106
		3-2-2-2 Experiments 3, 4, 5 and 6	112
		3-2-3 DISSECTION PROCEDURES	112

3-2-4 MUSCLE FIBRE TYPES	114
3-2-4-1 Collection of Samples	114
3-2-4-2 Sectioning and Staining Procedures	115
3-2-4-3 Muscle Fibre Diameter and Proportion	115
3-2-5 MUSCLE CHARACTERISTICS	116
3-2-5-1 Muscle pH	1 16
3-2-5-2 Sarcomere Length	116
3-2-5-2-1 Sample selection and preparation	116
3-2-5-2-2 Measurement procedures	116
3-2-5-2-2-1 Oil immersion microscopy	116
3-2-5-2-2 Laser diffraction method	117
3-2-5-3 Intramuscular Fat	117
3-2-6 ADIPOSE TISSUE MEASUREMENTS	119
3-2-6-1 Adipose Tissue Sampling Sites	119
3-2-6-2 Fat Histology	119
3-2-6-3 Fat Cell Volume	119
3-2-6-4 Fat Cell Number	120
3-2-6-5 Chemical Analysis of Fat	120
3-2-7 MEAT QUALITY MEASUREMENTS	120
3-2-7-1 General	120
3-2-7-2 Warner-Bratzler Shear Values	120
3-2-7-3 Water-holding Capacity	121
3-2-7-4 Reflectance Spectrophotometry	124
3-2-8 STATISTICAL METHODS	125
3-2-8-1 Experiments 1 and 2	125
3-2-8-2 Experiments 3 and 4	126
3-2-8-3 Experiment 5	127
3-2-8-4 Experiment 6	127
CHAPTER 4. RESULTS	129
4-1 SELECTION LINE EFFECTS ON CARCASS CHARACTER-	
ISTICS	129
4-1-1 GROWTH RATE	129
4-1-2 NON-CARCASS BODY COMPONENTS	133

	2 -	0	0
r	a	١y	е

	4-1-3 CARCASS DIMENSIONS	138
	4-1-3-1 Southdown X Romney Lambs	
	(Experiments 1 and 2)	138
	4-1-3-2 Southdown Rams (Experiments 3, 4,	
	5 and 6)	141
	4-1-4 SIDE DISSECTIBLE COMPONENTS	146
	4-1-4-1 Weight of Individual Cuts	146
	4-1-4-2 Dissection Data	150
	4-1-4-2-1 Physical components of sides	150
	4-1-4-2-2 Physical components of the cuts	153
	4-1-5 PARTITIONING OF FAT AMONG THE DEPOTS	161
	4-1-6 WEIGHT DISTRIBUTION WITHIN SUBCUTANEOUS	
	AND INTERMUSCULAR FAT DEPOTS	161
	4-1-6-1 Forequarter and Hindquarter Fat	
	Distribution (Experiment 3)	161
	4-1-6-2 Distribution of Subcutaneous Fat	
	(Experiments 5 and 6)	165
	4-1-6-3 Distribution of Intermuscular Fat	
	(Experiments 5 and 6)	165
	4-1-7 DISTRIBUTION OF MUSCLE	165
	4-1-8 DISTRIBUTION OF BONE	172
	4-1-9 MUSCULARITY	172
	4-1-10 ADIPOSE TISSUE CELLULARITY	177
	4-1-10-1 Adipose Cell Diameter and Volume	177
	4-1-10-2 Adipose Cell Number	177
	4-1-10-3 Diameter Distribution of Adipocytes	177
4-2	REGRESSION EQUATIONS FOR PREDICTING CARCASS COM-	
	POSITION FROM THE COMPOSITION OF THE RACK CUT	183
4-3	EFFECTS OF SELECTION LINE AND POSTMORTEM	
	TREATMENTS ON MUSCLE CHARACTERISTICS	191
	4-3-1 PHYSICAL RESPONSE TO ELECTRICAL	
	STIMULATION	191
	4-3-2 MUSCLE TEMPERATURE	191

Pa	ge
----	----

	4-3-3 ULT	IMATE pH VALUES	194
	4-3-3-1	Southdown X Romney Lambs (Experiments	
		1 and 2)	194
	4-3-3-2	Southdown Rams (Experiments 4, 5	
		and 6)	194
	4-3-4 RAT	E OF POST-MORTEM GLYCOLYSIS	200
	4-3-5 MUS	CLE FIBRE TYPE AND NUMBER	203
	4-3-5-1	Histological Evaluation	203
	4-3-5-2	Fibre Type Proportions	203
	4-3-5-3	Fibre Diameter	209
	4-3-5-4	Fibre Diameter Distribution	209
	4-3-6 REF	LECTANCE SPECTROPHOTOMETRY FOR ASSAY	
	OF	MUSCLE COLOUR	209
	4-3-7 EXP	RESSED JUICE	214
	4-3-8 SAR	COMERE LENGTH	223
	4-3-9 PER	CENT COOKING LOSS	229
	4-3-9-1	Southdown X Romney Cross Lambs	
		(Experiments 1 and 2)	229
	4-3-9-2	Southdown Rams (Experiments 4,	
		5 and 6)	229
	4-3-10 WAR	NER-BRATZLER SHEAR FORCE VALUES	233
	4-3-10-1	Southdown X Romney Cross Lambs	
		(Experiments 1 and 2)	233
	4-3-10-2	Southdown Rams (Experiments 4,	
		5 and 6)	233
4-4	CORRELATIO	INS BETWEEN FATNESS AND OTHER CARCASS	
	AND MUSCLE	CHARACTERISTICS	242
	4-4-1 COR	RELATIONS BETWEEN VARIOUS MEASURES	
	OF	FATNESS	243
	4-4-2 COR	RELATIONS BETWEEN FATNESS, CARCASS	
	LIN	EAR MEASUREMENTS AND CERTAIN NON-	
	CAR	CASS COMPONENTS	243
	4-4-3 REL	ATIONSHIPS BETWEEN THE CELLULARITY	
	OF	FIVE FAT DEPOTS AND CARCASS FATNESS	246

		4-4-4	CORRELATION BETWEEN FATNESS AND MUSCLE FIBRE PARAMETERS	246
		4-4-5	CORRELATIONS BETWEEN CARCASS FATNESS	
			MEASUREMENTS AND MEAT QUALITY PARAMETERS	249
CHAPTER	5.	DISCUSS	ION	255
	5-1	INTROD	UCTION	255
	5-2	CARCAS	S OUALITY CHARACTERISTICS	260
	0-L	5_2_1	LIVE WEIGHT CARCASS WEIGHT AND	200
		5 2 1	DRESSING OUT PERCENT	260
		5-2-2	NON-CARCASS COMPONENTS	274
		5-2-3	CARCASS LINEAR MEASUREMENTS	275
		5-2-4	CUT WEIGHT DISTRIBUTION	281
		5-2-5	CARCASS CCMPOSITION	284
		5-2-6	PARTITIONING AND DISTRIBUTION OF	
			CARCASS FAT	287
		5-2-7	MUSCLE AND BONE DISTRIBUTION	290
		5-2-8	FAT CELLULARITY CHARACTERISTICS	292
	5-3	PREDIC	TION OF CARCASS COMPOSITION FROM RACK	
	0 0	COMPOSITION		299
	5-4	MFAT O	UIALITY CHARACTERISTICS	302
	• •	5-4-1	INTRODUCTION	302
		5-4-2	pH_VALUES	303
		5-4-3	MUSCLE FIBRE PARAMETERS	306
		5-4-4	REFLECTANCE SPECTROPHOTOMETRY	310
		5-4-5	EXPRESSED JUICE	313
		5-4-6	PERCENT COOKING LOSS	315
		5-4-7	WARNER-BRATZLER SHEAR FORCE VALUES	317
		5-4-	7-1 Line Effects	317
		5-4-	7-2 Line Effects on the Response to	
			Electrical Stimulation	318

xii

	5-4-7-3	Line Effects on the Response to	
		Fat Trimming	320
	5-4-7-4	Line Effects on the Response to	
		Cold-shortening Conditions	320
	5-4-7-5	Line Effects on the Response to	
		Ageing	321
	5-4-7-6	Between Muscle Comparisons	322
CHAPTER 6.	CONCLUSIONS		323
APPENDICES			327
REFERENCES			333

Page

.

Table Page Estimates of heritability of fat depth C, and certain 2-1 other fatness measurements in sheep 11 3-1 Descriptions of experimental designs and measurements 97 3-2 Measurements that were taken at the time of slaughter and 24 h post-mortem in Experiments 3, 4, 5 and 6 103 3-3 Definitions of the carcass linear measurements 109 Comparisons of means, standard errors and intraclass 3-4 correlations (repeatabilities) between two methods (10 Kg and hand-tightened) and between three methods of calculating expressed juice values for M. biceps femoris and M. semimembranosus from 10 animals 122 3-5 Comparisons of means, standard errors and intraclass correlations (repeatability) among three methods of calculation for measuring expressed juice values of three muscles (M. longissimus [LD], M. biceps femoris [BF] and M. semimembranosus [SM]) from six animals 123 4-1 Definitions of abbreviations used in other tables 130 4-2 Least squares means for the average daily gain (g/day) over the periods indicated for the two selection lines (fat and meaty) of Southdown sheep (Experiments 3 to 6) and for their crossbred progeny out of unselected Romney ewes (Experiments 1 and 2) 133 4-3 Least squares means of live weight, carcass weight, dressing-out percent, and non-carcass component weights for two selection lines (fat and meaty) of Southdown rams in Experiment 3 134 4-4 Least squares means of live weight, carcass weight, dressing-out percent, and non-carcass component weights for two selection lines (fat and meaty) of Southdown rams of Experiment 4 135

xiv

Page 4-5 Least squares means of live weight, carcass weight, dressing-out percent, and non-carcass component weights for two selection lines (fat and meaty) of Southdown rams of Experiment 5 136 4-6 Least squares means of live weight, carcass weight, dressing-out percent, and non-carcass components for two selection lines (fat and meaty) and two pastures (White clover and Lotus) of Southdown rams of Experiment 6 137 4-7 Least squares means showing the effect of selection line, sex, and pasture on carcass characteristics of Southdown X Romney cross lambs in Experiment 1 139 4-8 Least squares means showing the effect of selection line, sex, and pasture on carcass characteristics of Southdown X Romney cross lambs in Experiment 2 140 4-9 Least squares means of carcass and metacarpal bone dimensions (mm) of Southdown rams in Experiment 3 for two selection lines (fat and meaty) 142 4-10 Least squares means of carcass and metacarpal bone dimensions (mm) of Southdown rams of Experiment 4 for two selection lines (fat and meaty) 143 4-11 Least squares means of carcass and metacarpal bone dimensions (mm) of Southdown rams of Experiment 5 for two selection lines (fat and meaty) 144 4-12 Least squares means of carcass and metacarpal bone dimensions (mm) of Southdown rams of Experiment 6 for two selection lines (fat and meaty) and within two pasture treatments (White clover and Lotus) 145 4-13 Least squares means for the dissectible components of the side of Southdown rams in Experiment 3 expressed as weights (kg) and as ratios for two selection lines (fat and meaty) 147 4-14 Least squares means for the dissectible components of the side of Southdown rams of Experiment 5 expressed as weights (kg) and as ratios for two selection lines (fat and meaty)

Page 4-15 Least squares means for the dissectible components of the side of Southdown rams of Experiment 6 expressed as weights (kg) and as ratios for two selection lines (fat and meaty) and two pastures (White clover and 149 Lotus) 4-16 Least squares means for the dissectible components of the fore-quarter (FQW) and hind-quarter (HQW) cuts of Southdown rams in Experiment 3 expressed as weights (kg) and as ratics for two selection lines (fat and 154 meaty) 4-17 Least squares means for the dissectible components of the rack cut of Southdown rams of Experiment 3 expressed as weights (kg) and as ratios for two selection lines (fat and meaty) 155 4-18 Least squares means for the dissectible components of the rack cut of Southdown rams of Experiment 4 expressed as weights (kg) and as ratios for two selection lines (fat and meaty) 156 4-19 Least squares means for the dissectible components of the shoulder and rack cuts of Southdown rams of Experiment 5 expressed as weights (kg) and as ratios for two selection lines (fat and meaty) 157 4-20 Least squares means for the dissectible components of the loin and leg cuts of Southdown rams of Experiment 5 expressed as weights (kg) and as ratios for two selection lines (fat and meaty) 158 4-21 Least squares means for the dissectible components of the shoulder and rack cuts of Southdown rams of Experiment 6 expressed as weights (kg) and as ratios for two selection lines (fat and meaty) and two pastures (White clover and Lotus) 159 4-22 Least squares means for the dissectible components of the loin and leg cuts of Southdown rams of Experiment 6 expressed as weights (kg) and as ratios for two selection lines (fat and meaty) and two pastures (White clover and Lotus) 160

Page 4-23 Least squares means for measures of fat distribution (kg) within total side fat (TSF) of Southdown rams of Experiment 3 from two selection lines (fat and 162 meaty) 4-24 Least squares means for measures of fat distribution (kg) within total side fat (TSF) of Southdown rams of Experiment 5 from two selection lines (fat and meaty) 163 4-25 Least squares means for measures of fat distribution (kg) within total side fat (TSF) of Southdown rams of Experiment 6 from two selection lines (fat and meaty) and two pastures (White clover and Lotus) 164 4-26 Least squares means for the muscle distribution within total side muscle (TSM) for two selection lines (fat and meaty) of Southdown rams of Experiment 3 169 4-27 Least squares means for the muscle distribution within total side muscle (TSM) of Southdown rams of Experiment 5 from two selection lines (fat and 170 meaty) 4-28 Least squares means for muscle distribution within total side muscle (TSM) of Southdown rams of Experiment 6 for two selection lines (fat and meaty) and within two pasture treatments (White clover and Lotus) 171 4-29 Least squares means for bone distribution within total side bone (TSB) of Southdown rams of Experiment 3 from two selection lines (fat and meaty) 173 4-30 Least squares means of bone weight distribution within total side bone (TSB) of Southdown rams of Experiment 5 from two selection lines (fat and meaty) 174 4-31 Least squares means for bone distribution within total side bone (TSB) of Southdown rams of Experiment 6 for two selection lines (fat and meaty) and within two pasture treatments (White clover and Lotus) 175

		Page
4-32	Means and standard errors of correlation coefficients	
	showing the closeness of the adipocyte diameter dis-	
	tribution to a normal distribution. Correlations were	
	calculated for each animal with high values being	
	consistent with normality	182
4-33	Regression equations relating rack cut composition to	
	side composition for fat and meaty Southdown rams of	
	Experiment 3	184
4-34	Regression equations relating rack cut composition to	
	side composition for fat and meaty Southdown rams of	
	Experiment 5	185
4-35	Regression equations relating rack cut composition to	
	side composition for fat and meaty Southdown rams of	
	Experiment 6	186
4-36	Least squares means of shear force values, percent	
	cooking losses, and pH values for four muscles from	
	two selection lines (fat and meaty) within four	
	pastures and two sexes of Southdown X Romney cross	
	lambs in Experiment 1	195
4-37	Least squares means of shear force values, percent	
	cooking losses, and pH values for two muscles from	
	two selection lines (fat and meaty) within four	
	pastures and two sexes of Southdown X Romney cross	
	lambs in Experiment 2	196
4-38	Least squares means of shear force values, expressed	
	juice, percent cooking losses, and pH values for four	
	muscles from the two selection lines (fat and meaty)	
	of Southdown rams of Experiment 4	197
4-39	The effect of post-mortem treatment on pH values for	
	four muscles from two selection lines (fat and meaty)	
	of Southdown rams of Experiment 5. Half of the car-	
	casses were electrically stimulated (least squares	
	means)	198

		Page
4-40	The effect of post-mortem treatment on pH values for	
	four muscles from two selection lines (fat and meaty)	
	of Southdown rams of Experiment 6. Half of the car-	
	casses were electrically stimulated (least squares	
	means)	199
4-41	Least squares means for percent reflectance of fresh	
	cut muscle at various wavelengths (nm) for three	
	muscles from two selection lines (fat and meaty) of	
	Southdown rams of Experiment 4	215
4-42	Percent reflectance of fresh cut muscle at various	210
7-72	wavelengths (nm) for three muscles from two selection	
	lines (fat and meaty) of Southdown name of Experiment	
	E Half of the careacter wore electrically stimulated	
	(least squares means)	216
4 4 2	(reast squares means)	210
4-43	Percent reflectance of fresh cut muscle at various	
	wavelengths for four muscles from two selection lines	
	(fat and meaty) of Southdown rams of Experiment 6.	
	Half of the carcasses were electrically stimulated	
	(least squares means)	217
4-44	The effect of post-mortem treatment on expressed juice	
	for three muscles from two selection lines (fat and	
	meaty) of Southdown rams of Experiment 5. Half of	
	the carcasses were electrically stimulated (least	
	squares means)	221
4-45	The effect of post-mortem treatment on expressed juice	
	for three muscles from two selection lines (fat and	
	meaty) of Southdown rams of Experiment 6. Half of	
	the carcasses were electrically stimulated (least	
	squares means)	222
4-46	The effect of post-mortem treatment on percent cooking	
	losses for four muscles from two selection lines (fat	
	and meaty) of Southdown rams of Experiment 5. Half	
	of the carcasses were electrically stimulated (least	
	squares means)	230

	F	age
4-47	The effect of post-mortem treatment on percent cooking	
	losses for four muscles from two selection lines (fat	
	and meaty) of Southdown rams of Experiment 6. Half	
	of the carcasses were electrically stimulated (least	
	squares means)	231
4-48	Overall means for WB shear force values and sarcomere	
	lengths for different muscles and different post-mortem	
	treatments in Experiments 5 and 6	232
4-49	Simple correlation coefficients between various	
	measures of fatness from six experiments. The numbers	
	along the top of the table correspond to the numbered	
	variables listed on the left-hand side	244
4-50	Simple correlation coefficients showing relationships	
	between fatness and carcass linear measurements and	
	certain non-carcass components for four experiments	245
4-51	Simple correlations coefficients between various	
	measures of fatness and cellularity characteristics	
	of five adipose tissue depots	247
4-52	Simple correlations coefficients between various	
	measures of fatness and muscle fibre parameters	
	for two experiments	248
4-53	Simple correlations coefficients showing the relation-	
	ship between various measures of fatness and para-	
	meters of objective quality assessment for four muscles	
	from five experiments	250
4-54	Simple correlations coefficients between shear force	
	values, percent cooking losses, pH values, sarcomere	
	lengths, and reflectance values for M. semitendinosus	
	from four experiments. The numbers along the top of the	
	table correspond to the numbered variables listed on	
	the left-hand side	251
4-55	Simple correlations coefficients between shear force	
	values, percent cooking losses, pH values, expressed	
	juice, and reflectance values for M. semimembranosus	
	from five experiments. The numbers along the top of	
	the table correspond to the numbered variables listed	
	on the left-hand side	252

- 4-56 Simple correlations coefficients between shear force values, percent cooking losses, pH values, expressed juice, sarcomere lengths and reflectance values for <u>M. biceps femoris</u> from five experiments. The numbers along the top of the table correspond to the numbered variables listed on the left-hand side 253
- 4-57 Simple correlations coefficients between shear force values, percent cooking losses, pH values, expressed juice, sarcomere lengths and reflectance values for <u>M. longissimus</u> from five experiments. The numbers along the top of the table correspond to the numbered variables listed on the left-hand side 254
- 5-1 Results from experiments in which sheep, pigs, chickens or mice have been selected for and/or against fatness 256
- 5-2 Estimates of phenotypic and genetic correlations between backfat thickness and several characteristics in sheep, including measures of growth rate, dressing-out percent, carcass linear measurements, <u>M. longissimus</u>: area, and carcass composition 262
- 5-3 Results from several studies in which growth rate differences were reported for genetically distinct groups of sheep that differed in fatness
- 5-4 Results from a sample of studies in which dressing-out percent differences were reported for genetically distinct groups of sheep that differed in fatness
- 5-5 A summary of some sheep studies in which linear carcass measurements (mm) and the cross-sectional area (cm²) of <u>M. longissimus</u> were compared between groups of carcasses which differed in level of fatness. Measurements were either adjusted to a constant carcass weight or were made at approximately the same carcass weight.

Page

271

				Page
	5-6	A summ	ary of some sheep studies in which proportions	
		of the	leg, loin, rack and shoulder cuts were compared	
		in car	casses from groups of animals which differed in	
		levels	of fatness. Measurements were either adjusted	
		to a c	onstant carcass weight or were made at approvi-	
			the same cancess weight	203
	r 7	Inatery	the same carcass weight.	203
	5-/	Exampi	es of adipose cellularity characteristics in	0.00
		groups	which differed in their level of fatness	293
	Append	dix 1.	Allometric growth coefficients (b) and their	
			standard errors (SE ^D) relating weights of non-	
			carcass components to live body weight for	
			Southdown rams of Experiments 3, 4, 5 and 6	327
	Append	dix 2.	Allometric growth coefficients (b) and their	
			standard errors (SE ^b) relating the weights of	
			each fat depot, and of depot weights within	
~			cuts to total side fat weight for Southdown	
			rams of Experiments 3 5 and 6	328
	Annene	tiv 3	Allometric growth coefficients (b) and their	520
	Append	JIX J.	standard ormore (SE ^b) relating carease side	
			standard errors (SE) relating carcass side	
			cuts to side weight and dissectible components	
			to total weight for the whole side, and for	
			each cut of Southdown rams in Experiments 3,	
			5 and 6	329
	Append	dix 4.	Allometric growth coefficients (b) and their	
			standard errors (SE ^D) relating muscle weight	
			of the side, muscle weight of each cut, and	
			the weights of individual muscles to total	
			side muscle weight	330
	Append	dix 5.	Allometric growth coefficients (b) and their	
			standard errors (SE ^b) relating bone weights	
			of the cuts, and individual bone weights to	
			total side bone weight	331

Appendix 6. Allometric growth coefficients (b) and their standard errors (SE^b) relating weights of individual muscles and muscle groups to total side muscle weight for Southdown rams of Experiment 3

Page

Figure

- 3-1 Photographs illustrating the response of a ram carcass in Experiment 6 to electrical stimulation at 30 min post-mortem. (a) Before stimulation with the earth electrode attached to the gambrel and 3 live electrodes attached to neck muscles; (b) at the start of the 90-sec stimulation period (800 V RMS, 14.28 Hz) 105
- 3-2 A diagram indicating where measurements were taken on the hanging carcass 107
- 3-3 Diagrams indicating where measurements were taken on some cut surfaces of the carcasses. The shoulder cut was made between ribs 7 and 8, the loin cut was between the 12th and 13th ribs, and the leg cut was between the last lumbar and the first sacral vertebrae
- 3-4 Diagrams indicating where measurements were taken from five bones 111
- 3-5 A side of carcass showing the position of the standardised cuts using dotted lines for Experiments 3, 4, 5 and 6 and solid lines for Experiments 1 and 2 (Devco) 113
- 3-6 Diagram showing the equipment used to measure sarcomere length by laser diffraction 118
- 4-1 Mean body weights for the two selection lines of Southdown rams from birth to just prior to the slaughter of the first lot in Experiment 5. Vertical and horizontal bars show the standard errors for body weight and date of birth, respectively
 - 131

132

4-2 Mean body weights for the two selection lines of Southdown rams from birth to just prior to the slaughter of the first lot in Experiment 6. Vertical and horizontal bars show the standard errors for body weight and date of birth, respectively

- 4-3 The proportion of muscle, subcutaneous fat (SCF), intermuscular fat (IMF), bone, and scrap in the carcass side, shoulder, rack, loin, and leg cuts for Southdown rams within two selections lines (fat [F] and meaty [M]) in Experiment 5. Values were corrected to the same cut weight for each tissue
- 4-4 The proportion of muscle, subcutaneous fat (SCF), intermuscular fat (IMF), bone, and scrap in the carcass side, shoulder, rack, loin, and leg cuts for Southdown rams within two selections lines (fat [F] and meaty [M]) in Experiment 6. Values were corrected to the same cut weight for each tissue
- 4-5 The proportion of muscle, fat, bone, subcutaneous (SCF), and intermuscular fat (IMF) in the shoulder, rack, loin, and leg cuts expressed as percentages of the total side components for Southdown rams within two selection lines (fat [F] and meaty [M]) in Experiment 5
- 4-6 The proportion of muscle, fat, bone, subcutaneous (SCF), and intermuscular fat (IMF) in the shoulder, rack, loin, and leg cuts expressed as percentages of the total side components for Southdown rams within two selection lines (fat [F] and meaty [M]) in Experiment 6
- 4-7 Least squares means for the ratios of certain muscle weights relative to lengths for Southdown rams of two selection lines (fat [F] and meaty [M]) of Experiments 3, 5, and 6 adjusted to the same side muscle plus bone weights. Standard errors bars are included, and above each set of two graphs is shown the level of significance of the fat versus the meaty lines

XXV

Page

166

167

- 4-8 Least squares means for adipocyte diameter, volume, and number of two adipose tissue depots (intermuscular [IMF] and subcutaneous [SCF]) for Southdown rams of two selection lines (fat [F] and meaty [M]) of Experiment 4. Standard error bars are included, and above each set of two histograms is shown the level of significance of the fat versus the meaty lines 178 4-9 Least squares means for adipocyte diameter (a), volume (b) and number (c) for four adipose tissue depots (intermuscular [IMF], subcutaneous [SCF], kidney [KID], and omental [OMN]) for Southdown rams of two selection lines (fat [F] and meaty [M]) of Experiment 5. Standard error bars are included, and above each set of two histograms is shown the significance of the fat and the meaty lines 179 4-10 Least squares means for adipocyte diameter (a), volume (b) and number (c) of various adipose tissue depots (intermuscular [IMF], subcutaneous [SCF], kidney [KID], mesenteric [MES], and omental [OMN]) for Southdown rams
 - of two selection lines (fat [F] and meaty [M]) of Experiment 6. Standard error bars are included, and above each pair of histograms is shown the significance of the fat and the meaty lines
- 4-11 Adipocyte diameter distributions from fat and meaty Southdown rams in five fat depots. Each graph depicts the average number included in a range of $\pm 4 \mu m$ (e.g. 80 ± 4 in the first bar)
- 4-12 Regression lines relating percent of rack cut composition to side composition for fat (F) and meaty (M) Southdown rams of Experiment 3. Regression lines are shown over the appropriate range for the fat and meaty lines with the line means shown as dots. When there was a significant line effect on the relationship, the total regression equation is also shown as a dashed line

Page

180

- 4-13 Regression lines relating percent of rack cut composition to side composition for fat (F) and meaty (M) Southdown rams of Experiment 5. Regression lines are shown over the appropriate range for the fat and meaty lines with the line means shown as dots. When there was a significant line effect on the relationship, the total regression equation is also shown as a dashed line
- 4-14 Regression lines relating percent of rack cut composition to side composition for fat (F) and meaty (M) Southdown rams of Experiment 6. Regression lines are shown over the appropriate range for the fat and meaty lines with the line means shown as dots.
- 4-15 Postmortem temperature declines within <u>M. longis-simus</u> for the side with subcutaneous fat removed (trimmed) and for the side with subcutaneous fat left on (untrimmed). Results are shown for Southdown rams from the fat and the meaty lines of Experiment 5
- 4-16 Postmortem temperature declines within <u>M. longis-</u> <u>simus</u> for the side with subcutaneous fat removed (trimmed) and for the side with subcutaneous fat left on (untrimmed). Results are shown for Southdown rams from the fat and the meaty lines of Experiment 6 193
- 4-17 Least squares means and standard errors for pH of

 <u>M. semitendinosus</u> of Southdown rams for electrically stimulated and unstimulated groups and two selection lines (fat and meaty; Experiment 5)
 201

 4-18 Least squares means and standard errors for pH of

 M. semitendinosus of Southdown rams for electrically
 - Least squares means and standard errors for pH of <u>M. semitendinosus</u> of Southdown rams for electrically stimulated and unstimulated groups and two selection lines (fat and meaty; Experiment 6) 202

189

190

4-19 (a) Photomicrograph of transverse section of <u>M.</u>
semitendinosus, stained for succinic dehydrogenase (magnification X 250)

- (b) A drawing of (a) with H, L and I indicating the high staining activity (red fibre), low staining activity (white fibre) and intermediate staining activity (intermediate fibre) respectively
- 4-20 Photomicrographs of transverse sections of <u>M. semi-</u> <u>tendinosus</u>, stained for succinic dehydrogenase (a) and for myosin ATPase (b) (magnification X 100)
- 4-21 Percents of the three muscle fibre types (high (red), moderate (intermediate), and low (white) intensity of staining reactions for succinic dehydrogenase) of <u>M. semitendinosus</u> for Southdown rams within two selection lines (fat and meaty) of Experiment 5. Standard error bars are included, and above each set of two histograms is shown the level of significance of the fat (F) versus the meaty (M) lines 206
- 4-22 Percents of the three muscle fibre types (high (red) moderate (intermediate), and low (white) intensity of staining reactions for succinic dehydrogenase) of <u>M. semitendinosus</u> for Southdown rams within two selection lines (fat and meaty) of Experiment 6. Standard error bars are included, and above each set of two histograms is shown the level of significance of the fat (F) versus the meaty (M) lines 207
- 4-23 Muscle fibre diameter and percent of two muscle fibre types (low [light] and high [dark] intensity of
 staining reactions for ATPase) of <u>M. semitendinosus</u> for Southdown rams from two selection lines (fat and
 - meaty) of Experiment 6. Standard error bars are included, and above each set of histograms is shown the level of significance of the fat (F) versus the meaty (M) lines, of the unstimulated (C) versus the electrically stimulated (ES) treatments and of the interaction

Page

204

- 4-24 Muscle fibre diameter for three fibre types (high [red], moderate [intermediate] and low [white] intensity of staining reactions for succinic dehydrogenase) within M. semitendinosus for Southdown rams within two selection lines (fat and meaty) of Experiment 5, half of which had been electrically stimulated (least squares means). Standard error bars are included, and above each set of four histograms are shown the levels of significance of the fat (F) versus the meaty (M) lines, of the unstimulated (C) versus the electrically stimulated (ES) treatments and of the interaction 210 4-25 Muscle fibre diameter for three fibre types (high [red], moderate [intermediate] and low [white] intensity of staining reactions for succinic dehydrogenase) within M. semitendinosus for Southdown rams
- within two selection lines (fat and meaty) of Experiment 6, half of which had been electrically stimulated (least squares means). Standard error bars are included, and above each set of four histograms are shown the levels of significance of the fat (F) versus the meaty (M) lines, of the unstimulated (C) versus the electrically stimulated (ES) treatments and of the interaction 211
- 4-26 Diameter distributions curves for <u>M. semitendinosus</u> red fibres (a), intermediate fibres (b), and white fibres (c) for two selection lines of Southdown rams in Experiment 5. Each point includes the average number <u>+</u> 2 (e.g. 25 <u>+</u> 2 for the first point of the red muscle fibres curve (a))
- 4-27 Diameter distributions curves for <u>M. semitendinosus</u> red fibres (a), intermediate fibres (b), and white fibres (c) for two selection lines of Southdown rams in Experiment 6. Each point includes the average number \pm 2 (e.g. 25 \pm 2 for the first point of the red muscle fibres curve (a))

xxix

Page

212

- 4-28 The reflectance spectra of different muscles for Southdown rams of Experiment 4 (right-hand scale), superimposed on curves representing the reflectance spectra of myoglobin (Mb), oxymyoglobin (MbO₂), and metmyoglobin (Met.Mb) (left-hand scale). (Source of diagram, Strange et al., 1974)
- 4-29 The reflectance spectra of different muscles for Southdown rams of Experiment 5 (right-hand scale), superimposed on curves representing the reflectance spectra of myoglobin (Mb), oxymyoglobin (MbO₂), and metmyoglobin (Met.Mb) (left-hand scale). (Source of diagram, Strange et al., 1974)
- 4-30 The reflectance spectra of different muscles for Southdown rams of Experiment 6 (right-hand scale), superimposed on curves representing the reflectance spectra of myoglobin (Mb), oxymyoglobin (MbO₂), and metmyoglobin (Met.Mb) (left-hand scale). (Source of diagram, Strange et al., 1974)
- 4-31 The effect of post-mortem temperature and of electrical stimulation on sarcomere lengths of <u>M. biceps</u> <u>femoris</u> for Southdown rams from two selection lines (fat and meaty; Experiment 5). Least squares means for the two treatments during the first 24 h and for the difference between the treatments are shown. Standard error bars are included, and above each set of four histograms are shown the levels of significance of the fat versus the meaty lines, of the unstimulated (C) versus the stimulated (ES) treatments and of the interaction

XXX

218

219

220

- 4-32 The effect of post-mortem temperature and of electrical stimulation on sarcomere lengths of <u>M. biceps</u> <u>femoris</u> for Southdown rams from two selection lines (fat and meaty; Experiment 6). Least squares means for the two treatments during the first 24 h and for the difference between the treatments are shown. Standard error bars are included, and above each set of four histograms are shown the levels of significance of the fat versus the meaty lines, of the unstimulated (C) versus the stimulated (ES) treatments and of the interaction
- 4-33 The effect of trimming the subcutaneous fat from <u>M.</u> <u>longissimus</u> of the right side and of electrical stimulation on sarcomere lengths of that muscle for Southdown rams from two selection lines (fat and meaty; Experiment 5). Least squares means for the two treatments and the difference between the treatments are shown. Standard error bars are included, and above each set of four histograms are shown the levels of significance of the fat versus the meaty lines, of the unstimulated (C) versus the stimulated (ES) treatments and of the interaction
- 4-34 The effect of trimming the subcutaneous fat from <u>M</u>. <u>longissimus</u> of the right side and of electrical stimulation on sarcomere lengths of that muscle for Southdown rams from two selection lines (fat and meaty; Experiment 6). Least squares means for the two treatments and the difference between the treatments are shown. Standard error bars are included, and above each set of four histograms are shown the levels of significance of the fat versus the meaty lines, of the unstimulated (C) versus the stimulated (ES) treatments and of the interaction

Page

225

226

- 4-35 The effect of post-mortem temperature and of electrical stimulation on sarcomere lengths of <u>M. semitendinosus</u> for Southdown rams from two selection lines (fat and meaty; Experiment 6). Least squares means for the two treatments and the difference between the treatments are shown. Standard error bars are included, and above each set of four histograms are shown the levels of significance of the fat versus the meaty lines, of the unstimulated (C) versus the stimulated (ES) treatments and of the interaction
- 4-36 The effect of electrical stimulation on shear force values of <u>M. semitendinosus</u> for Southdown rams from two selection lines (fat and meaty; Experiments 5 and 6). Half of the carcasses were electrically stimulated (least squares means). Standard error bars are included and above each set of four histograms are shown the levels of significance of the fat versus the meaty lines, of the unstimulated (C) versus the stimulated (ES) treatments and of the interaction
- 4-37 Effect of trimming the subcutaneous fat from <u>M.</u> <u>longissimus</u> of the right side and of electrical stimulation on shear force values of that muscle for Southdown rams from two selection lines (fat and meaty; Experiment 5). Least squares means for the two treatments and the difference between the treatments are shown. Standard error bars are included and above each set of four histograms are shown the levels of significance of the fat versus the meaty lines, of the unstimulated (C) versus the stimulated (ES) treatments and of the interaction

235

Page

228

- 4-38 Effect of trimming the subcutaneous fat from <u>M.</u> <u>longissimus</u> of the right side and of electrical stimulation on shear force values of that muscle for Southdown rams from two selection lines (fat and meaty; Experiment 6). Least squares means for the two treatments and the difference between the treatments are shown. Standard error bars are included and above each set of four histograms are shown the levels of significance of the fat versus the meaty lines, of the unstimulated (C) versus the stimulated (ES) treatments and of the interaction
- 4-39 The effect of post-mortem temperature and electrical stimulation on shear force values of <u>M. biceps femoris</u> for Southdown rams from two selection lines (fat and meaty; Experiment 5). Least squares means for the two treatments and the difference between the treatments are shown. Standard error bars are included and above each set of four histograms are shown the levels of significance of the fat versus the meaty lines, of the unstimulated (C) versus the stimulated (ES) treatments and of the interaction
- 4-40 The effect of post-mortem temperature and electrical stimulation on shear force values of <u>M. biceps femoris</u> for Southdown rams from two selection lines (fat and meaty; Experiment 6). Least squares means for the two treatments and the difference between the treatments are shown. Standard error bars are included and above each set of four histograms are shown the levels of significance of the fat versus the meaty lines, of the unstimulated (C) versus the stimulated (ES) treatments and of the interaction

xxxiii

Page

236

237

- 4-41 The effect of post-mortem ageing and electrical stimulation on shear force values of <u>M. semimembranosus</u> for Southdown rams from two selection lines (fat and meaty; Experiment 5). Least squares means for the two treatments and the difference between the treatments are shown. Standard error bars are included and above each set of four histograms are shown the levels of significance of the fat versus the meaty lines, of the unstimulated (C) versus the stimulated (ES) treatments and of the interaction
- 4-42 The effect of post-mortem ageing and electrical stimulation on shear force values of <u>M. semimembranosus</u> for Southdown rams from two selection lines (fat and meaty; Experiment 6). Least squares means for the two treatments and the difference between the treatments are shown. Standard error bars are included and above each set of four histograms are shown the levels of significance of the fat versus the meaty lines, of the unstimulated (C) versus the stimulated (ES) treatments and of the interaction
- 5-1 Ram carcasses of the same weight from the fat (on left) and meaty (on right) groups of Experiment 3, showing typical differences in carcass shape and appearance (Purchas, 1981)

280

240

Page