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Abstract

Detection of outliers and other anomalies in multivariate datasets is a particularly difficult problem

which spans across a range of systems, such as quality control in factories, microarrays or proteomic

analyses, identification of features in image analysis, identifying unauthorized access in network

traffic patterns, and detection of changes in ecosystems. Multivariate control charts (MCC) are

popular and sophisticated statistical process control (SPC) methods for monitoring characteris-

tics of interest and detecting changes in a multivariate process. These methods are divided into

memory-less and memory-type charts which are used to monitor large and small-to-moderate shifts

in the process, respectively. For example, the multivariate χ2 is a memory-less control chart that

uses only the most current process information and disregards any previous observations; it is

typically used where any shifts in the process mean are expected to be relatively large. To increase

the sensitivity of the multivariate process control tool for the detection of small-to-moderate shifts

in the process mean vector, different multivariate memory-type tools that use information from

both the current and previous process observations have been proposed. These tools have proven

very useful for multivariate independent normal or “nearly” normal distributed processes.

Like most univariate control-chart methods, when the process parameters (i.e., the process

mean vector or covariance parameters, or both) are unknown, then MCC methods are based on
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estimated parameters, and their implementation occurs in two phases. In Phase I (retrospective

phase), a historical reference sample is studied to establish the characteristics of the in-control

state and evaluate the stability of the process. Once the in-control reference sample has been

deemed to be stable, the process parameters are estimated from Phase I, and control chart limits

are obtained for use in Phase II. The Phase II aspect initiates ongoing regular monitoring of the

process. If successive observed values obtained at the beginning of Phase II fall within specified

desired in-control limits, the process is considered to be in control. In contrast, any observed values

during Phase II which fall outside the specified control limits indicate that the process may be out

of control, and remedial responses are then required.

Although conventional MCC are well developed from a statistical point of view, they can be

difficult to apply in modern, data-rich contexts. This serious drawback comes from the fact that

classical MCC plotting statistics requires the inversion of the covariance matrix, which is typically

assumed to be known. In practice, the covariance matrix is seldom known and often empirically

estimated, using a sample covariance matrix from historical data. While the empirical estimate

of the covariance matrix may be an unbiased and consistent estimator for a low-dimensional data

matrix with an adequate prior sample size, it performs inconsistently in high-dimensional settings.

In particular, the empirical estimate of the covariance matrix can lead to inflated false-alarm rates

and decreased sensitivity of the chart to detect changes in the process.

Also, the statistical properties of traditional MCC tools are accurate only if the assumption

of multivariate normality is satisfied. However, in many cases, the underlying system is not mul-

tivariate normal, and as a result, the traditional charts can be adversely affected. The necessity

of this assumption generally restricts the application of traditional control charts to monitoring
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industrial processes.

Most MCC applications also typically focus on monitoring either the process mean vector or

the process variability, and they require that the process mean vector be stable, and that the

process variability be independent of the process mean. However, in many real-life processes, the

process variability is dependent on the mean, and the mean is not necessarily constant. In such

cases, it is more appropriate to monitor the coefficient of variation (CV). The univariate CV is the

ratio of the standard deviation to the mean of a random variable. As a relative dispersion measure

to the mean, it is useful for comparing the variability of populations having very different process

means. More recently, MCC methods have been adapted for monitoring the multivariate coefficient

of variation (CV). However, to date, studies of multivariate CV control charts have focused on

power–the detection of out-of-control parameters in Phase II, while no study has investigated

their in-control performance in Phase I. The Phase I data set can contain unusual observations,

which are problematic as they can influence the parameter estimates, resulting in Phase II control

charts with reduced power. Relevant Phase I analysis will guide practitioners with the choice of

appropriate multivariate CV estimation procedures when the Phase I data contain contaminated

samples.

In this thesis, we investigated the performance of the most widely adopted memory-type

MCC methods: the multivariate cumulative sum (MCUSUM) and the multivariate exponentially

weighted moving average (MEWMA) charts, for monitoring shifts in a process mean vector when

the process parameters are unknown and estimated from Phase I (chapters 2 and 3). We demon-

strate that using a shrinkage estimate of the covariance matrix improves the run-length performance

of these methods, particularly when only a small Phase I sample size is available. In chapter 4,
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we investigate the Phase I performance of a variety of multivariate CV charts, considering both

diffuse symmetric and localized CV disturbance scenarios, and using probability to signal (PTS)

as a performance measure.

We present a new memory-type control chart for monitoring the mean vector of a multivariate

normally distributed process, namely, the multivariate homogeneously weighted moving average

(MHWMA) control chart (chapter 5). We present the design procedure and compare the run

length performance of the proposed MHWMA chart for the detection of small shifts in the process

mean vector with a variety of other existing MCC methods. We also present a dissimilarity-based

distribution-free control chart for monitoring changes in the centroid of a multivariate ecological

community (chapter 6). The proposed chart may be used, for example, to discover when an impact

may have occurred in a monitored ecosystem, and is based on a change-point method that does

not require prior knowledge of the ecosystem’s behaviour before the monitoring begins. A novel

permutation procedure is employed to obtain the control-chart limits of the proposed charting

test-statistic to obtain a suitable distance-based model of the target ecological community through

time.

Finally, we propose enhancements to some classical univariate control chart tools for monitoring

small shifts in the process mean, for those scenarios where the process variable is observed along

with a correlated auxiliary variable (chapters 7 through 9). We provide the design structure of the

charts and examine their performance in terms of their run length properties. We compare the run

length performance of the proposed charts with several existing charts for detecting a small shift

in the process mean. We offer suggestions on the applications of the proposed charts (in chapters

7 and 8), for cases where the exact measurement of the process variable of interest or the auxiliary
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variable is difficult or expensive to obtain, but where the rank ordering of its units can be obtained

at a negligible cost.

Thus, this thesis, in general, will aid practitioners in applying a wider variety of enhanced and

novel control chart tools for more powerful and efficient monitoring of multivariate process. In

particular, we develop and test alternative methods for estimating covariance matrices of some

useful control-charts’ tools (chapters 2 and 3), give recommendations on the choice of an appropri-

ate multivariate CV chart in Phase I (chapter 4), present an efficient method for monitoring small

shifts in the process mean vector (chapter 5), expand MCC analyses to cope with non-normally

distributed datasets (chapter 6) and contribute to methods that allow efficient use of an auxiliary

variable that is observed and correlated with the process variable of interest (chapters 7 through

9).
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Chapter 1

Introduction

A common motivation for the collection of data is to monitor a system for a change in state.

Natural and human systems and measurements are usually subject to variation, which imbues

uncertainty into inferences regarding changes in state and limits our ability to determine when a

system has fundamentally altered. For example, manufacturing or production processes generally

undergo a natural or assignable cause of variations (Abbasi et al., 2015). The natural variation is an

intrinsic component of the production process and is usually unavoidable. This type of variation

occurs as a results of normal process variation, and can be addressed by process improvement

(Montgomery, 2009). In contrast, the assignable causes are not part of the process or do not affect

every occurrence of the process but are induced by specific and identifiable causes. Statistical

process control (SPC) is a set of methods used to detect (assignable) changes in a process. Among

these methods, control charts are the most popular and sophisticated tools for tracking a process

and identifying whether it is in control by monitoring essential quality characteristics of interest.

Control-chart methods are particularly useful to detect as early as possible, the occurrence of an

assignable variation in the production process so that the process can be examined and remedial
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actions can be initiated in order to minimise the number of nonconforming products (Montgomery,

2009).

Figure 1.1: Process variation plot from the two types of causes

Control charts are classified into (i) memory-less control charts and (ii) memory-type control

charts; these are useful for monitoring large and small-to-moderate shifts in the process, respec-

tively. For example, the Shewhart chart is a memory-less type control chart for a univariate

variable that uses only the current process information without referring to any past behavior of

the process. It is very effective for detecting a large shift in the process mean (i.e., δ ≥ 2, where

δ is the size of the shift in standard deviation units (Testik et al., 2003)). The homogeneously

weighted moving average (HWMA) control chart by Abbas (2018), is a memory-type chart pro-

posed for efficient monitoring of small (i.e., δ ≤ 0.5) to moderate (i.e., 0.5 < δ < 2) shifts in

the process mean. Other memory-type charts include the EWMA chart by Roberts (1959), the

CUSUM chart by Page (1961), the mixed EWMA-CUSUM chart proposed by Abbas et al. (2013)

and their multivariate extensions. These charts are capable of signalling when a process is con-
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sidered in control vs out of control (Jackson, 1991), and are applied in two monitoring phases

(Montgomery, 2009). In Phase I, a historical reference sample is analysed to establish the values

and stability of process parameters while in the in-control state. If the in-control parameter values

are unknown, the data from Phase I are used to estimate these values and their control limits

(Abbasi and Adegoke, 2018). In Phase II, the process parameters are monitored and checked for

departure from the in-control state. While Phase II values (or statistics) remain inside the Phase I

limits, the process is considered to be in control; if they go outside the control limits, this indicates

that the process may be out-of-control and remedial actions are triggered.

Univariate control charts are widely used in most of today’s industries for efficient monitoring

of a process characteristic (or variable). They have the advantages of being relatively simple to

implement and interpret, and can promptly detect process shifts. Several applications of classical

univariate control charts focus on monitoring the process in situations where the process variable

is independent of other variables. For examples, see Abtew et al. (2018); El-Din et al. (2006);

Hayes et al. (1997); Grigg, Nigel P and Daly, Jeannette and Stewart (1998); Benneyan (1998a,b);

Srikaeo and Hourigan (2002); De Vries and Conlin (2003); De Vries and Reneau (2010); Madsen

and Kristensen (2005) for a variety of applications of classical univariate control charts. In many

cases, direct measurements of the process of interest may be measured alongside some auxiliary

variables with which it is correlated. Where available, auxiliary variables may be used to improve

the efficiency of the classical univariate control chart schemes, using standard methods such as

regression (Riaz, 2008b). The concept of using supplemental information to provide a more efficient

estimate of a population parameter is popular in the field of survey sampling (Cochran, 1977).

Several researchers have studied and recommended the introduction of auxiliary variables into
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the monitoring scheme of a process variable of interest, and have proposed a variety of different

control charts tools for this purpose. For example, Abbas et al. (2014a) proposed an exponentially

weighted moving average (EWMA)-type control chart where the process mean is regressed on the

auxiliary variable. This method performed better than either the classical univariate or bivariate

EWMA control charts, particularly for detecting small-to-moderate shifts in the process mean.

In many applications, several variables are measured at each time point. Assessing each variable

independently can be inefficient and misleading; a particular observation may not look unusual

when examined on its own, but may be unusual when considering the joint multivariate structure of

the data. As a result, multivariate control charts (MCC) methods, in which several related process

parameters are jointly monitored (Seif et al., 2011), comprise a rapidly developing area of research

in SPC. Several MCC tools that use the relationships among the variables to provide efficient

monitoring schemes for identifying any changes in the quality of products have been proposed

(e.g., Hotelling (1947); Crosier (1988); Pignatiello and Runger (1990); Lowry et al. (1992)).

When the underlying process parameters of interest (e.g., the mean vector and covariance

matrix), used in the development of the MCC methods are unknown, they need to be estimated

from the historical Phase I dataset (see for example, Hotelling (1947), Crosier (1988), Pignatiello

and Runger (1990), and Lowry et al. (1992)). One of the most significant modern problems in the

use of MCC tools is the estimation of the covariance matrix. While the empirical estimate of the

covariance matrix provides an unbiased and consistent estimator for a low-dimensional data matrix

with an adequate Phase I sample, its inconsistent performance in the high-dimensional framework

is well known (Melorose et al., 2015). In circumstances where the number of variables p approaches

or exceeds the number of Phase I samples m, the performance of charts based on the empirical
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covariance estimate has been shown to be poor (Stein and Others, 1956; Schäfer and Strimmer,

2005; Giovannelli and Idier, 2015). It suffers from an distortion of its eigenstructure (Giovannelli

and Idier, 2015); specifically, the empirical covariance estimate inflates the higher eigenvalues and

deflates the lower eigenvalues, rendering it ill-conditioned, unless the sample m is much larger

than the dimension p. A standard solution to the problem of unstable estimation of the covariance

matrix from a high-dimensional data set is to regularize the estimate (Melorose et al., 2015). One

such method of regularization is to adjust the eigenvalues in a way that guarantees a positive

definite covariance matrix (Higham, 1988). Another option is to shrink the empirical covariance

matrix towards a target matrix (Stein and Others, 1956; Schäfer and Strimmer, 2005). There are

also several methods based on Gaussian graphical models (i.e., penalized likelihood and graphical

lasso) for estimating the inverse of high-dimensional covariance matrix, developed in genetics and

Bayesian networks, among other fields (Whittaker, 2009).

Most control charts focus on monitoring either the process mean or the process variability, and

they require the process mean to be stable and independent of the process standard deviation

(Yeong et al., 2016). However, in many real-life processes, the process standard deviation is

dependent on the mean, and the mean is not constant. In such cases, it is more appropriate to

monitor the coefficient of variation (CV). Several methods for monitoring multivariate CV have

been proposed in the control chart literature. However, the proposed multivariate CV control-chart

statistic, (γ), is a function of the process parameters, µ0 and Σ0. In practice, these parameters are

rarely known and, therefore, must be estimated from samples taken when the process is assumed

to be in control. The Phase II performance of the multivariate CV depends on the stability of the

estimated parameters obtained from Phase I. Optimal performance requires any changes in these
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parameters to be detected as early as possible (Riaz et al., 2011).

Control charts have proven very useful in monitoring industrial and manufacturing processes

consisting of univariate or independent (approximately) multivariate-normal data (Montgomery,

2009). The statistical properties of traditional control charts are maintained only if these as-

sumptions are satisfied. However, in some cases, the underlying process is not normal and, as a

result, the traditional charts can be inefficient (Chakraborti et al., 2001). The necessity of this

assumption has largely restricted the application of traditional control charts to industrial process

monitoring (Tuerhong and Bum Kim, 2014). For example, ecological monitoring often provides

data in the form of abundance counts of multiple species, which fail to abide by the assumptions

of multivariate normality. The extension of control chart methods to a broader range of contexts,

such as ecological monitoring, requires more robust methods that are capable of dealing with a

wider range of multivariate data.

1.1 Thesis Contribution

This thesis develops control chart methods for efficient monitoring in Phase I and Phase II, and

has two principal aims:

• to develop efficient new parametric and non-parametric multivariate control-chart methods

for detecting changes in the process parameters of interest (Chapters 2-6).

• to develop more efficient univariate control chart methods for monitoring small shifts in the

process mean when the process variable is observed along with a correlated auxiliary variable

(Chapters 7-8).
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1.2 Thesis Outline

This thesis is organised into ten self-contained chapters. We outline the content of the chapters

that comprise this thesis, including the control-chart methods examined and the specific novelty

attending the studies in each chapter below (Table 1.1).

Table 1.1: The study done including the control chart methods examined, the novelty of each
chapter and the size of the subgroup sample (n) considered. Some of the control chart methods ex-
amined include multivariate cumulative sum (MCUSUM), exponentially weighted moving average
(EWMA), multivariate EWMA (MEWMA), homogeneously weighted moving average (HWMA),
and multivariate HWMA (MHWMA).

Chapters Study Control charts n Novelty
Chapter 2 On the effect of parameters estimation MSCUSUM charts 1 Investigate and propose shrinkage estimates of covariance
Chapter 3 On the effect of parameters estimation MEWMA chart 1 Investigate and propose shrinkage estimates of covariance
Chapter 4 On the coefficient of variation (cv) charts in Phase I Multivariate CV charts n > 1 Suggest appropriate multivriate CV chart

Chapter 5 A new multivariate chart for monitoring small shifts MHWMA chart all n
Propose an efficient chart for monitoring small shift

in the process mean vector

Chapter 6 Contribution to non-normality monitoring
A changed-point

multivariate chart
all n Implement efficient tool for ecological data monitoring

Chapter 7
Contribution to control chart for negatively correlated

bivariate dataset under ranked sampling schemes
EWMA chart > 1

Implement EWMA chart under different sampling schemes
for negatively correlated bivariate dataset

Chapter 8
Contribution to control chart for correlated bivariate

dataset under ranked ranked sampling schemes
EWMA chart > 1

Implement Ranked-based EWMA chart for correlated
bivariate dataset

Chapter 9
Efficient monitoring of the process mean using an

auxiliary variable
HWMA chart all n

Propose an efficient chart for monitoring small shift of the
process mean using an auxiliary variable

Chapter 2 describes an improvement to the estimation procedure used for µ0 and Σ0 in the

development of the MCUSUM control chart, and the multivariate CUSUM #1 (MCI) control chart

proposed by Pignatiello and Runger (1990), for individual monitoring. These multivariate CUSUM

charts have been shown to have better run-length performance than other multivariate CUSUM

charts (Woodall and Mahmoud, 2005). Here, we propose the use of a shrinkage estimate of Σ0 in

Phase I, and compare the resultant MCUSUM and MCI control charts with those obtained using

some other methods of estimating Σ0. The shrinkage estimate is a weighted combination of the

empirical estimate and a target matrix. The findings from this study will provide practitioners

with a more efficient method of applying the MCUSUM and MCI charts for individual-observation

monitoring when Σ0 is unknown.
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Chapter 3 studies the relative performance of the MEWMA control chart from the empirical

estimate of the µ0 vector, and three different estimates of Σ0 from Phase I data; namely: (i)

the classical empirical estimate, (ii) the MSSD, and (iii) a shrinkage estimate of Σ0 proposed

here. This study provides control-chart practitioners with an appropriate choice of the estimated

parameters to be used in the MEWMA control charts for individual-observation monitoring, and

also with appropriate estimates of Σ0 when large Phase I datasets are not available.

Chapter 4 provides a comprehensive study of the Phase I analysis for multivariate CV con-

trol charts. We investigated the performance of a variety of multivariate CV charts in Phase I,

considering both diffuse symmetric and localized CV disturbance scenarios, and using probability

to signal (PTS) as a performance measure. The PTS performance measure was found to yield

a useful application in Phase I analysis for both location and dispersion parameters to yield an

efficient control chart for monitoring multivariate CV.

Chapter 5 proposes a new memory-type multivariate charting procedure, namely, the multi-

variate homogeneously weighted moving average (MHWMA) control chart. Like other memory-

type charts, MHWMA uses the current observation and past observations. However, previous

methods allocated equal weight across all observations, including the current one. With our pro-

posed MHWMA method, the weight of the current observation can be specified seperately, with

the remaining weight then being allocated equally across previous observations. We showed that

this approach can provide more efficient monitoring of small shifts in the process mean vector

compared to other memory-type multivariate charting procedures.

Chapter 6 proposes a new multivariate control chart for monitoring multivariate ecological

data. The proposed chart is based on a change-point method where the currently observed com-

8



munity is evaluated based on all of the previously observed communities at a given site, and does

not require prior knowledge of the ecosystem’s behavior before the monitoring begins. The method

can take the multivariate dataset or the dissimilarities between every possible pairs of samples as

input. When dissimilarities between every possible pair of the samples is available, the method first

represents these sample distances as points in a principal co-ordinates space. Then, we use these

co-ordinates to monitor and identify, as quickly as possible, any change in the mean vector of the

multivariate ecological dataset. The method does not require any parametric model assumptions,

and it can be based on any dissimilarity measure of choice. A permutation procedure is employed

to obtain the control-chart limits for a suitable distance-based model through time.

Chapter 7 proposes an improvement to the performance of the classical exponentially weighted

moving average (EWMA) control chart, by making use of auxiliary information in the form of a

variable that is negatively correlated with the process variable of interest. The charts are developed

using different sampling schemes: simple random sampling, ranked set sampling (RSS) and median

ranked set sampling (MRSS), and we evaluate their performance using average run length, and

other performance measures such as extra quadratic loss and relative average run length.

Chapter 8 proposes enhancements to the applications of the EWMA control chart for those

scenarios where the exact measurement of process units is difficult or expensive, but the visual

ordering of the units can be done easily. The proposed charts use an auxiliary variable that

is (positive or negatively) correlated with the process variable to provide efficient monitoring of

shifts in the process mean and are formulated based on ranked set sampling (RSS) and median

RSS schemes (MRSS). The proposed chart is compared with some existing charts.

Chapter 9 presents an efficient control chart method for monitoring small shifts in the process
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mean for scenarios where the process variable is observed along with a correlated auxiliary variable.

The proposed chart, called an AHWMA chart, is a homogeneously weighted moving average type

control chart that uses information from both the process variable and auxiliary variable in the

form of a regression estimator to provide an efficient and unbiased estimate of the mean of the

process variable. We provide the design structure of the chart and examine its performance in

terms of its run length properties. We provide a detailed study of the chart’s robustness to non-

normal distributions, and give some recommendations on the application of the chart when the

process parameters are unknown.

Chapter 10 presents a summary of the main findings and points to future research directions

to pursue following this thesis work.

For each chapter, we used both simulated and real-life datasets to test and compare methods.

All studies were done using the R language for statistical computing (R Core Team, 2013).
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Chapter 2

Multivariate cumulative sum control

charts for individual-observations

monitoring when parameters are

estimated

”This is the peer reviewed version of the following article: “Adegoke, N. A., Smith, A. N., Anderson,

M. J., Abbasi, S. A., & Pawley, M. D. (2018). Shrinkage estimates of covariance matrices to

improve the performance of multivariate cumulative sum control charts. Computers & Industrial

Engineering, 117, 207-216”, which has been published in final form at https://doi.org/10.1016/

j.cie.2018.02.008. This article may be used for non-commercial purposes in accordance with

Elsevier Terms and Conditions for Use of Self-Archived Versions.”
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Multivariate cumulative sum control charts require knowledge of the in-control process covari-

ance parameters. Here, we show that the performance of the multivariate cumulative sum control

charts for individual-observation monitoring is affected by the estimation of parameters unless the

Phase I sample size is large. When only a small Phase I sample size is available, we propose the

use of a shrinkage estimate. The average run length performance of multivariate cumulative sum

control charts obtained using the shrinkage estimate is superior to the other methods examined

in this study. The improved performance of the control charts using the shrinkage estimate is

also demonstrated via an illustrative case study of Bimetal data, in which measurements of four

properties of bimetal brass and steel thermostats are monitored, and a shift in the multivariate

centroid is detected earlier using the shrinkage-based method.

2.1 Introduction

The cumulative sum (CUSUM) chart, proposed by Page (1954), is a control chart used for detecting

small to moderate changes in the process measurements or the means of the process values measured

from a manufacturing or industrial process. The CUSUM control chart is an efficient tool in

process monitoring for detecting any changes that may affect the quality of a product, and serves

as an alternative control chart to the Shewhart control chart (Shewhart, 1931), which is more

useful for detecting large shifts. The CUSUM control chart is particularly useful in the context

of normally distributed process data (Duncan, 1974), and involves plotting the cumulative total

against the observation number (Johnson, 1961). Several authors have contributed to CUSUM

chart methodology, including Ewan and Kemp (1960), Brook and Evans (1972), Lucas and Crosier

(1982), and Woodall (1983), among others.
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Crosier (1988) initially proposed the multivariate cumulative sum control chart (MCUSUM),

since then, several versions of the MCUSUM charts have been suggested in the literature of Sta-

tistical Process Control (SPC). Among others, Pignatiello and Runger (1990) and Ngai and Zhang

(2001) recommended different multivariate CUSUM charts that are effective for detecting small

to moderate shifts in either process measurements or the process mean vector. Also, because the

MCUSUM control chart and its modifications combine and use information from several sam-

ples, they are particularly effective and efficient for detecting shifts in a process with individual-

observation monitoring.

In most of the practical applications of the MCUSUM chart and its modifications, it is assumed

that the in-control parameters are known from Phase I, and the in-control limits are calculated

from the assumed known in-control parameters (Crosier, 1988). The control charts are then applied

in Phase II to check whether future observed values are within the in-control limits. If successive

observed future values fall within the in-control limits, the process is believed to be in control.

Observed future values falling outside the control limits indicate that the process may be out-of-

control, and remedial responses are then required (Montgomery, 2009).

Thus, the Phase II charting schemes are based on the requirement that the process parameters

are known from Phase I. For example, when multivariate data are drawn from the multivariate

normal distribution, the in-control process parameters: mean vector (µ0), and covariance matrix

(Σ0), are assumed to be known, which simplifies the Phase II development of the control charts.

However, the process parameters are generally unknown, and control limits for Phase II are usually

based on parameters that are estimated from Phase I data. In the situation where µ0 and Σ0

are unknown, the empirical estimate of µ0 of the p-variate random variables or process data Y,
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is obtained by averaging the pooled sample obtained during Phase I. An empirical estimate of Σ0

from the pooled Phase I samples is commonly also obtained using unbiased variance and covariance

estimators.

The problem of using the empirical estimate of Σ0 for the Hotelling’s T 2 control chart is

that it leads to a chart that may not be efficient in detecting a shift in µ0, because Σ0 may be

poorly estimated (Sullivan and Woodall, 1996). Hence, Sullivan and Woodall (1996) proposed a

method of estimation that uses the differences between successive observations (hereafter called

SW). Also, Holmes and Mergen (1993) proposed the use of a mean square successive difference

(hereafter called MSSD) approach for estimating Σ0. There is almost no work on the performance

of the multivariate CUSUM control charts for individual-observation data, the situation where

these charts have found greatest application.

In this study, we propose an improvement to the estimation procedure used for µ0 and Σ0 in

the development of the MCUSUM control chart, and the multivariate CUSUM #1 (MCI) control

chart proposed by Pignatiello and Runger (1990), for individual monitoring. These multivariate

CUSUM charts have been shown to have better run-length performance than other multivariate

CUSUM charts (Woodall and Mahmoud, 2005). Here, we propose the use of a shrinkage estimate

of Σ0 in Phase I, and compare the resultant MCUSUM and MCI control charts with those obtained

using other methods of estimating Σ0, including: the empirical unbiased estimate, the MSSD, and

the SW. The shrinkage estimate is a weighted combination of the empirical estimate and a target

matrix. The results from this study will provide practitioners with a more efficient method of

applying MCUSUM and MCI control charts for individual-observation data when Σ0 is unknown.

The rest of the chapter is organized as follows: In Section 2.2, we describe multivariate cu-
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mulative sum control charts; specifically, the MCUSUM and MCI control charts. In Section 2.3,

we give the different proposed estimates of Σ0, including a shrinkage estimate. Section 2.5 shows

the effects of the different estimators on the in-control average run-length (ARL) performance

of the MCUSUM and MCI control charts for individual monitoring. Adjusted control limits for

the MCUSUM and MCI control charts from individual-observation monitoring with estimated pa-

rameters are given in Section 2.6, followed by simulation procedures to assess the out-of-control

run-length performance of the corrected limits in Section 2.7. We present the estimated corrected

limits of the charts using a shrinkage estimate of the covariance matrix and the empirical estimate

of the location parameter in Section 2.8. In Section 2.9, the procedure is applied to a Bimetal data

set, with a concluding discussion in Section 2.10.

2.2 Multivariate cumulative sum control charts

The cumulative sum (CUSUM) statistic for a univariate random variable y with mean µ0, is given

as the cumulative sum of the deviation of the sample value from the target value (Page, 1961).

The chart is obtained by plotting the CUSUM statistic

Si =
i∑

j=1

(yj − µ0) (2.1)

against the sample number i, where µ0 is the true process mean and Si is the cumulative sum up

to and including the ith sample. The chart is more effective when the sample size n = 1, and

is often used in chemical and process industries where subgroup sizes are indeed usually of size

n = 1 (Montgomery, 2009). When n > 1, the plotting statistic in Equation 2.1 can be obtained
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by replacing the sample value y by the average of the jth sample (i.e., ȳj) The one-sided upper

and lower control limits for n = 1 subgroup size are given as:

S+
i = max(0, yi − (µ0 + k) + S+

i−1) (2.2)

S−i = min(0, yi − (µ0 − k) + S−i−1) (2.3)

where S+
0 = S−0 = 0, k =

δσ

2
is the reference value, σ is the process standard deviation and δ is

the size of the shift in the process mean. If either the S+
i or S−i exceeds the decision interval h, the

process is deemed to be out of control. The value of h is chosen for a fixed performance measure

of the chart.

When a p-variate dataset is monitored, the p monitored quality characteristics can be repre-

sented by a p × 1 random vector Y. We assume that the random vector Y is independent and

identically distributed as multivariate normal with mean vector µ0 and covariance matrix Σ0. Two

multivariate CUSUM charts were proposed by Crosier (1988). The one with better ARL perfor-

mance obtains the CUSUM vector directly from the multivariate observation, and the MCUSUM

vector for the observed vector yi is given as:

Ci = [(Si−1 + yi − µ0)
pΣ−1

0 (Si−1 + yi − µ0)]
1/2, (2.4)

where

Si = 0 if Ci ≤ k

Si = (Si−1 + yi − µ0)(1− k/Ci) if Ci > k,
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S0 = 0 and k > 0. The MCUSUM control chart signals when T 2
i = [S′iΣ

−1
0 Si] > h1. The

parameters of the chart k and h1(> 0), are chosen to give the desired in-control ARL performance

of the chart (Crosier (1988)).

Two directionally invariant multivariate CUSUM charts were proposed by Pignatiello and

Runger (1990); the one with better ARL performance is the MCI chart. Here, the CUSUM

vector for the observed vector yi is given as:

Ci =
i∑

j=i−ni+1

(yj − µ0). (2.5)

Ti = max

{√
C′iΣ

−1
0 Ci − kni, 0

}
,

and

ni =


ni−1 + 1, if Ti−1 > 0

1, if otherwise

where ni is interpreted as the number of subgroups up to the most recent CUSUM statistic. The

MCI control chart signals when Ti > h2, for h2 > 0 and k > 0 . The values of k and h2 are

chosen to give the desired in-control ARL performance for the chart. Because the MCUSUM and

MCI charts are directionally invariant charts, their ARL performances depend on µ0 and Σ0 only

through the non-centrality parameter given as

δ =
√

(µ1 − µ0)
′Σ−1

0 (µ1 − µ0). (2.6)

It is recommended to choose the value of k =
δ

2
. We refer the reader to the original works by Crosier
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(1988), and Pignatiello and Runger (1990) for more comprehensive details on the development of

these charts.

2.3 Estimates of the mean vector and covariance matrix

The empirical estimate of µ0 of the p-variate random variables or process data Y, is obtained by

taking the average of the pooled sample in Phase I, given by

ȳk =
1

m

m∑
i=1

yik

where k = 1, ..., p, p is the number of quality characteristics and m is the Phase I sample size.

Thus, ȳ = (ȳ1, ȳ2, ..., ȳp)
′ is a 1× p vector of means of the p-dimensional variables.

In this case, there is no subgroup information to calculate an estimate of Σ0. A common

approach in practice is to obtain an empirical estimate of Σ0 from the m Phase I samples as:

S =
1

m− 1

m∑
i=1

(yi − ȳ)(yi − ȳ)′, (2.7)

where the main diagonal of S contains the sample variances s2
k =

1

m− 1

∑m
i=1(yik − ȳk)

2, and

the off-diagonal of S contains the sample covariances skk′ =
1

m− 1

∑m
i=1(yik − ȳk)(yik′ − ȳk′)

(Montgomery, 2009). The proposed estimator of Σ0 by Sullivan and Woodall (1996) is

Σ̂SW =

∑m
j=1 F j

m− 1
, (2.8)
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where

F i = F i−1 + (yi − ȳ)(yi − ȳ)′ where,F0 = 0, i = 1, 2, ...,m

To make the Hotelling’s T 2 control chart more sensitive to process changes, Holmes and Mergen

(1993) proposed the use of the mean square successive difference (MSSD) approach for estimating

Σ0. They used the difference among consecutive observations as follows:

ui = yi+1 − yi , i = 1, 2, ...,m− 1 (2.9)

and the MSSD estimator of Σ0 is

Σ̂MSSD =
U ′U

2(m− 1)
, (2.10)

where U is a (m− 1)× p matrix of ui, i = 1, 2, ...,m− 1.

2.4 Shrinkage estimate of the covariance matrix

The shrinkage estimator is a weighted average of the empirical unbiased estimate S given in

Equation (2.7), and a target matrix T , and is given as:

Σ̂S = λT + (1− λ)S, (2.11)
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where, λ ∈ [0, 1] denotes the shrinkage intensity. λ = 0 implies Σ̂S = S, and λ = 1 gives Σ̂S = T .

The optimal value of the shrinkage intensity, λ, is obtained by minimizing the risk function:

R(λ) = ||Σ̂S −Σ0||2F , (2.12)

where, ||.||2F is the squared Frobenius norm, which is a quadratic form associated with the inner

product. Analytically, the optimal shrinkage intensity is given as:

λ∗ =

∑p
k=1

∑p
k′=1 V ar(skk′)− Cov(tkk′ , skk′)∑p
k=1

∑p
k′=1E(tkk′ − skk′)2

, (2.13)

where tkk′ and skk′ are the observed values of T and S, respectively. This method of estimating

the optimal shrinkage intensity is shown to be consistent, and the shrinkage estimator for Σ0 is

more accurate than the empirical sample covariance matrix, even for small m and p (Ledoit and

Wolf, 2004a). Further, the shrinkage estimator is better conditioned than the empirical estimate

of the covariance matrix, and asymptotic properties hold well even with finite samples (Warton,

2008).

We followed the approach of Schäfer and Strimmer (2005) and replaced the quantities in Equa-

tion (2.13) by their unbiased estimates. This gives an estimated optimal shrinkage intensity of the

form:

λ̂∗ =

∑p
k=1

∑p
k′=1 V̂ ar(skk′)− Ĉov(tkk′ , skk′)∑p
k=1

∑p
k′=1E(tkk′ − skk′)2

. (2.14)

The estimated optimal shrinkage intensity of the diagonal covariance target T and the sample
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covariance matrix S is given as:

λ̂∗ =

∑
k 6=k′ V̂ ar(skk′)∑

k 6=k′ s
2
kk′

, (2.15)

where the target covariance T with elements

tkk′ =


skk if k = k′

0 if k 6= k′

(2.16)

is a diagonal matrix with the unbiased sample variances of the p quality characteristics along the

main diagonal, (i.e., T = diag(S)), so that shrinkage is only applied to the off-diagonal elements

(Schäfer and Strimmer, 2005).

2.5 Assessing the in-control performance of MCUSUM and

MCI control charts using simulation

2.5.1 Simulation method

We compared the in-control performance of individual-observation MCUSUM and MCI charts

based on the four methods of estimating Σ0 given by equations (2.7), (2.8), (2.10) and (2.11),

using simulated data.

The following procedures were used in our simulation study:

• Phase I
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(i) Generate m baseline observations of size n = 1 from a p-variate normal distribution

with mean vector µ0 = 0 and Σ0 = Ip. Here, p is the number of variables used, and

Ip is a p× p identity matrix.

(ii) Compute both the estimated covariance matrix and the empirical estimate of the loca-

tion parameter. These estimated parameters were used to set control limits for Phase

II.

• Phase II

(i) At each time i, generate a random vector from the p-variate normal distribution (de-

noted as yi). In this case, we applied shift of size δ to the mean vector µ0 (δ = 0 for

the in-control state).

(ii) Using the estimated parameters from Phase I and yi, compute the MCUSUM and MCI

control charts test statistic values at each step i, and compare against the corresponding

upper control limits given in Table 2.1.

(iii) Repeat steps (i-ii) and record the iteration number (run length, RL) that gives the first

out-of-control signal.

• Repeat Phase I and Phase II processes K times; where K is the number of the simulation

runs. We used K = 50, 000.

• The average of the run lengths across simulations (i.e., ARL0) was recorded.

Our simulations included number of Phase I samples m = {30, 40, 50, 70, 100, 200, 300 or 500}

(all with n = 1), having p = 2, 3, or 5 variables. For establishing control limits from Phase I, we

used three different values of the reference parameter k = {0.25, 0.50 or 1.00}. Following Mahmoud
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and Maravelakis (2013), values of the upper control limits for each simulation were determined

such that the charts would produce an ARL0 of 200 under known µ0 and Σ0 (see Table 2.1 for

examples for some selected values of p, and section 2.6 for correcting control limits to give ARL0

of 200 when the population parameters are unknown). Our study differs from that of Mahmoud

and Maravelakis (2013) in the way that we have considered methods for estimating Σ0 when there

are no subgroups within time periods. We also give the in-control ARL values of the charts for

p = 5 and k = 0.5 that produce ARL0 of 500 when parameters are known.

Table 2.1: The upper control limits: h1 and h2, of the MCUSUM and MCI charts, respectively, that
produce in-control ARL of 200 when the charts’ statistics are obtained from known parameters,
for different values of p and k

k
Chart p 0.25 0.50 1.00

MCUSUM 2 8.64 5.49 3.00
3 10.85 6.90 3.77
5 14.81 9.40 5.21

MCI 2 7.49 4.78 2.71
3 8.75 5.52 3.14
5 10.80 6.81 3.92

2.5.2 Simulation results of the in-control ARL

The in-control ARL of the MCUSUM and MCI charts, for all parameter values, was less than

the benchmark of 200 which would be achieved if the known parameters were used to establish

the control limits (given in Tables 2.2-2.4), demonstrating that having to estimate the population

parameters compromises the performance of these control charts by increasing the frequency of

false out-of-control signals. For example, when m = 30 and p = 2, the in-control ARL values of

the MCUSUM control chart ranged from 100.12 to 123.57 among the methods (see Table 2.3). For

the MCI control charts, the in-control ARL ranged from 100.55 to 127.42. However, as the value
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of m increases the number of false alarms from all methods decreases, and the differences between

in-control ARL values from the charts obtained using known parameters and those obtained using

estimated parameters get smaller.

Table 2.2: In-control ARL of the MCUSUM and MCI control charts for p = 2 or 5, when different
Phase I samples (m), of size n = 1, are used in estimating the unknown parameters. We used
k = 0.25, and the upper control limits that give in-control ARL of 200 when the parameters are
known.

m

Chart p Method 30 40 50 70 100 150 200 300 500

MCUSUM 2 Empirical 81.96 94.02 102.21 115.18 129.47 144.46 152.25 163.75 176.24
SW 82.39 93.81 102.31 115.45 129.38 143.64 153.06 164.05 174.3

MSSD 81.14 91.47 101.39 114.11 127.23 144 151.91 162.59 173.72
Shrinkage 93.61 102.67 109.13 122.17 135.19 148.41 155.14 166.22 177.62

5 Empirical 43.37 52.77 60.53 73.17 88.09 106.23 117.87 134.85 154.72
SW 43.41 52.5 60.51 73.23 87.93 105.97 118.88 135.9 154.32

MSSD 38.82 47.93 55.86 68.87 84.15 101.97 114.26 133.08 151.11
Shrinkage 54.13 63.32 70.93 83.77 96.83 114.19 126.42 141.82 159.23

MCI 2 Empirical 83.5 94.99 103.54 118.24 131.82 145.04 154.29 166.07 176.81
SW 83.09 94.99 103.3 116.18 132.03 145.83 154.19 165.85 175.82

MSSD 80.9 91.96 101.36 114.03 129.22 143 152.15 165.84 175.03
Shrinkage 93.36 104.19 110.56 123.77 136.2 149.92 158.14 167.58 177.74

5 Empirical 37.4 47.34 55.58 70.02 86.45 106.75 120.02 139 157.18
SW 37.35 47.17 56.13 69.78 86.43 107.03 121.02 137.53 156.21

MSSD 32.58 42.14 50.19 64.3 81.91 101.02 116.38 134.36 154.1
Shrinkage 50.57 59.85 68.36 83.46 99.6 118.18 131 146.53 163.69

Generally, the in-control ARL values depend on the reference parameter k, the number of

Phase I samples m, the number of quality characteristics p, and the method used to estimate

Σ0. Specifically, the charts performed better (i.e., had greater ARL0) with a greater number of

Phase I samples m, higher values of the reference parameter k, and lower dimensionality p. For

every parameter combination we considered, the in-control performance was best for our proposed

shrinkage method. The empirical estimate and the SW gave similar performance, and the MSSD

gave the highest number of false signals. As expected, the in-control ARL performance of the MCI

control chart generally performed better than the in-control behavior of the MCUSUM control
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Table 2.3: In-control ARL of the MCUSUM and MCI control charts for p = 2 or 5, when different
Phase I samples (m), of size n = 1, are used in estimating the unknown parameters. We used
k = 0.5, and the upper control limits that give in-control ARL of 200 when the parameters are
known.

m

Chart p Method 30 40 50 70 100 150 200 300 500

MCUSUM 2 Empirical 100.76 111.73 121.41 134.33 146.38 159.95 167.37 175.69 184.36
SW 100.98 110.71 121.36 134.3 145.61 159.81 166.83 174.46 182.55

MSSD 100.12 111.17 119.26 132.89 145.56 159.6 166.07 175.58 184.45
Shrinkage 123.57 134.39 138.14 147.65 157.87 168.36 172.35 180.31 187.79

5 Empirical 37.82 48.41 57.24 73.41 90.9 111.99 125.21 144.18 161.54
SW 37.65 48.84 57.7 73.51 91.3 111.8 123.77 144.09 163.35

MSSD 31.44 41.39 50.16 64.75 82.9 103.88 118.99 137.82 157.82
Shrinkage 60.32 71.52 80.82 96.52 112.97 130.3 142.12 158.05 171.5

MCI 2 Empirical 102.64 113.23 122.52 136.94 149.27 162.59 170.68 179.68 187.02
SW 102.84 112.29 123.24 136.82 150.13 162.29 169.57 177.60 185.94

MSSD 100.55 111.32 119.64 133.95 145.82 160.82 169.79 178.32 187.30
Shrinkage 127.42 136.45 143.37 151.97 162.37 172.81 176.03 184.22 190.34

5 Empirical 38.1 50.65 61.1 78.88 98.37 119.57 135.67 152.17 169.36
SW 38.09 50.8 61.27 78.88 98.66 120.13 135.58 151.47 168.11

MSSD 30.39 41.42 51.21 67.87 87.87 110.19 125.63 144.74 163.54
Shrinkage 69.86 84.56 93.8 111.72 129.56 146.13 157.71 167.94 181.39

chart. These are evident in the higher in-control ARL for the MCI chart in Tables 2.2-2.4. Also,

the ARL0 values provided in Table 2.5, for ARL0 = 500, confirmed the comparative superiority

of the shrinkage estimate over the other estimation methods. In Table 2.5, the benchmark of 500

for the in-control ARL would have been obtained if the known parameters were used to establish

control limits.

2.6 Corrected limits of the MCUSUM and MCI charts

As shown in Section 2.5, the control charts from the estimated parameters would require a very

large Phase I sample to give performance that rivals the performance of the charts based on known

parameters. Specifically, the number of Phase I samples m would need to be much larger than p,
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Table 2.4: In-control ARL of the MCUSUM and MCI control charts for p = 2 or 5, when different
Phase I samples (m), of size n = 1, are used in estimating the unknown parameters. We used
k = 1, and the upper control limits that give in-control ARL of 200 when the parameters are
known.

m

Chart p Method 30 40 50 70 100 150 200 300 500

MCUSUM 2 Empirical 134.74 144.01 150.22 158.47 167.15 175.11 180 184.29 188.49
SW 135.82 145.76 150.35 157.41 167.59 175.53 178.59 184.37 188.28

MSSD 133.33 144.28 149.72 156.09 166.47 172.95 178.44 184 189.09
Shrinkage 185.2 185.79 186.3 186.94 187.94 189.58 191.72 192.11 194.29

5 Empirical 36.27 49.26 60.85 79.64 101.13 123.74 139.94 156.02 172.61
SW 36.65 49.53 61.85 80.48 101.32 125.22 137.95 155.23 174.4

MSSD 26.92 37.94 47.52 66.14 86.11 111.8 126.02 148.25 165.76
Shrinkage 100.44 115.09 123.43 136.16 150.96 164.06 172.57 181.71 188.87

MCI 2 Empirical 132.73 142.03 148.56 160.58 169.61 177.84 183.47 189.94 194.91
SW 132.09 141.75 148.05 159.73 170.27 178.27 183.97 188.76 195.42

MSSD 131.13 140.13 145.58 157.00 167.31 174.32 181.28 187.6 193.01
Shrinkage 188.59 189.8 190.05 191.14 191.69 194.98 196.73 197.97 200.61

5 Empirical 39.78 54.72 67.55 87.27 108.45 131.52 146.88 163.16 176.03
SW 39.94 54.96 67.1 87.32 107.84 132.09 146.12 161.95 177.31

MSSD 27.78 40.35 50.92 69.55 92.62 116.25 131.69 150.82 170.45
Shrinkage 120.62 133.16 142.97 155.21 168.59 179.11 183.65 191.35 197.9

Table 2.5: In-control ARL of the MCUSUM and MCI control charts for p = 5, and some selected
values of (m). Here, we used k = 0.5, and the upper control limits that give an in-control ARL of
500 when the parameters are known.

m
Chart ucl p Method 30 50 100 300 500

MCUSUM h1 = 10.9 5 Empirical 55.91 92.20 165.71 306.96 364.50
SW 55.89 92.23 165.75 306.95 364.50

MSSD 45.42 78.80 148.84 291.69 353.38
Shrinkage 97.91 143.12 220.92 347.59 393.47

MCI h2 = 7.99 5 Empirical 60.52 105.64 194.93 340.54 395.09
SW 60.42 105.45 194.23 338.91 395.55

MSSD 46.38 86.46 167.96 317.81 374.29
Shrinkage 126.83 183.9 272.9 392.83 432.35

the number of quality characteristics monitored. Different researchers have recommended different

number of Phase I samples when parameters are estimated (e.g., Jones et al., 2001; Champ et al.,

2005). However, the recommendation of a very large m relative to p may require a very long
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initial monitoring period, during which undetected shifts in the process may occur (Mahmoud and

Maravelakis, 2013).

A preferred approach to reduce the frequency of false out-of-control signals of control charts

for which the population parameters are unknown is to use wider “corrected” control limits (Aly

et al., 2015). This section provides calculated corrected upper control limits: hc1 for the MCUSUM

chart and hc2 for the MCI chart, for the four methods of estimating Σ0, using a binary search

algorithm (see Champ et al., 2005), along with both Phase I and Phase II analyses explained in

Section 2.5. This helps to overcome the variability of the in-control ARL values that often occur

due to the use of estimated parameters.

The corrected limits that adjust the in-control ARL values to 200 are given in Tables 2.6 -

2.8. These tables show that the values of hc1 and hc2, depend on m, k and the number of quality

characteristics being monitored. Smaller values of m give bigger values of hc1 and hc2, and as m

becomes larger, the values of hc1 and hc2 approach the corresponding values of h1 and h2, i.e.,

the limits to be used when the parameters are known (given in Table 2.1, and under the column

heading of “∞” in Tables 2.6 - 2.8). In all of the cases considered, the values of hc1 and hc2 for

charts obtained using the empirical estimate and SW do not differ greatly. Our simulation results

show that the values hc1 and hc2 from the charts based on the shrinkage method are much smaller

than those obtained for the other estimation methods considered in this study.
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Table 2.6: The corrected upper control limits: (hc1) and (hc2), that produced an in-control ARL
of 200 when different Phase I samples (m), of size n = 1 are used in estimating the unknown
parameters. The value of k used here is k = 0.25.

m

Chart p method 30 40 50 70 100 150 200 300 500 ∞
MCUSUM 2 Empirical 11.76 11.23 10.85 10.32 9.94 9.59 9.37 9.17 8.96 8.64

SW 11.74 11.22 10.86 10.34 9.93 9.55 9.36 9.16 8.96
MSSD 11.79 11.25 10.89 10.39 9.97 9.61 9.38 9.19 8.97

Shrinkage 11.17 10.79 10.53 10.12 9.78 9.49 9.30 9.12 8.94
3 Empirical 17.69 16.22 15.27 14.2 13.3 12.57 12.18 11.78 11.43 10.85

SW 17.69 16.27 15.28 14.22 13.32 12.59 12.21 11.77 11.42
MSSD 17.98 16.42 15.66 14.42 13.45 12.66 12.24 11.82 11.47

Shrinkage 16.02 15.09 14.48 13.67 12.96 12.36 12.03 11.67 11.38
5 Empirical 31.24 28.76 25.9 22.73 20.38 18.55 17.65 16.72 15.97 14.81

SW 31.23 28.78 25.8 22.72 20.37 18.57 17.63 16.73 15.96
MSSD 36.3 30.45 27.14 23.5 20.89 18.84 17.84 16.84 15.98

Shrinkage 27.72 25.26 23.4 21.12 19.43 17.99 17.23 16.48 15.85

MCI 2 Empirical 10.11 9.72 9.38 8.94 8.61 8.28 8.13 7.95 7.79 7.49
SW 10.11 9.71 9.35 8.96 8.6 8.29 8.12 7.94 7.78

MSSD 10.2 9.75 9.44 8.97 8.62 8.3 8.15 7.95 7.79
Shrinkage 9.66 9.33 9.06 8.72 8.41 8.17 8.03 7.87 7.73

3 Empirical 14.07 12.88 12.16 11.2 10.55 9.98 9.67 9.38 9.15 8.75
SW 14.07 12.83 12.14 11.21 10.51 9.98 9.69 9.38 9.14

MSSD 14.62 13.24 12.43 11.45 10.69 10.07 9.73 9.41 9.14
Shrinkage 12.68 11.89 11.4 10.78 10.21 9.79 9.52 9.31 9.09

5 Empirical 24.38 20.54 18.42 16.04 14.43 13.14 12.55 11.97 11.6 10.80
SW 24.29 20.61 18.41 16.04 14.39 13.14 12.57 11.97 11.5

MSSD 26.75 22.15 19.58 16.91 15.00 13.50 12.87 12.22 11.74
Shrinkage 19.55 17.57 16.18 14.65 13.47 12.65 12.17 11.62 11.24

2.7 Out-of-control ARL performance using corrected lim-

its

In this section, we used simulations to study the zero-state and steady-state out-of-control perfor-

mance of the control charts, based on the four methods of estimating Σ0 from Phase I data, for

giving an out-of-control signal in Phase II. For the simulations, we followed the same procedures

outlined in Section 2.5, including the Phase I sample size and the number of simulations that were

run. However, here, the vector of process mean is shifted for Phase II, giving a new vector of
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Table 2.7: The corrected upper control limits: (hc1) and (hc2), that produced an in-control ARL
of 200 when different Phase I samples (m), of size n = 1 are used in estimating the unknown
parameters. The value of k used is k = 0.5.

m

Chart p method 30 40 50 70 100 150 200 300 500 ∞
MCUSUM 2 Empirical 6.46 6.31 6.19 6.02 5.9 5.78 5.71 5.63 5.57 5.49

SW 6.45 6.31 6.19 6.03 5.89 5.77 5.7 5.64 5.58
MSSD 6.52 6.38 6.28 6.07 5.9 5.78 5.71 5.65 5.58

Shrinkage 6.13 6.05 6.00 5.90 5.81 5.72 5.68 5.62 5.56
3 Empirical 9.28 8.78 8.45 8.05 7.72 7.46 7.32 7.17 7.07 6.90

SW 9.28 8.76 8.44 8.04 7.74 7.46 7.33 7.18 7.06
MSSD 9.54 9 8.6 8.18 7.83 7.54 7.36 7.2 7.09

Shrinkage 8.26 8.04 7.87 7.68 7.49 7.31 7.22 7.11 7.03
5 Empirical 15.97 14.28 13.29 12.18 11.36 10.7 10.38 10.06 9.79 9.40

SW 15.98 14.29 13.3 12.21 11.36 10.7 10.39 10.05 9.79
MSSD 17.42 15.27 14.04 12.67 11.67 10.9 10.52 10.14 9.84

Shrinkage 12.87 12.17 11.76 11.16 10.73 10.33 10.1 9.89 9.76

MCI 2 Empirical 5.68 5.53 5.41 5.28 5.14 5.04 4.99 4.93 4.86 4.78
SW 5.68 5.52 5.41 5.27 5.15 5.04 4.98 4.92 4.86

MSSD 5.69 5.54 5.43 5.29 5.17 5.05 4.99 4.93 4.87
Shrinkage 5.31 5.23 5.18 5.08 5.01 4.95 4.9 4.85 4.83

3 Empirical 7.45 7.01 6.74 6.41 6.16 5.96 5.84 5.74 5.65 5.52
SW 7.44 7.02 6.72 6.42 6.17 5.95 5.85 5.73 5.66

MSSD 7.74 7.25 6.93 6.55 6.26 6.03 5.9 5.77 5.67
Shrinkage 6.55 6.39 6.25 6.08 5.94 5.82 5.76 5.70 5.64

5 Empirical 11.42 10.14 9.43 8.62 8.06 7.63 7.41 7.20 7.03 6.81
SW 11.41 10.15 9.44 8.61 8.06 7.62 7.41 7.19 7.03

MSSD 12.6 10.94 10.02 9.04 8.33 7.80 7.54 7.28 7.09
Shrinkage 8.92 8.45 8.18 7.81 7.53 7.30 7.18 7.06 6.98

means: µ1. We used shifts of size δ = {0.5, 1, 1.5, 2, 2.5 or 3}.

The performance of the control charts are evaluated by comparing the out-of-control ARL

(denoted by ARL1) for the different methods. The zero-state ARL1 is the out-of-control ARL

obtained under the assumption that the process shift occurred during the initial stage, while the

steady-state ARL1 is the out-of-control ARL under the assumption that the process shift occurred

after the process had been in control for some time (Lucas and Saccucci, 1990; Golosnoy et al.,

2009; Kim, 2014; Wang and Huang, 2016). For the steady-state, we adopted the scheme employed

by Siegmund (1985), and Ngai and Zhang (2001), by assuming that for a fixed integer q, the
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Table 2.8: The corrected upper control limits: (hc1) and (hc2), that produced an in-control ARL
of 200 when different Phase I samples (m), of size n = 1 are used in estimating the unknown
parameters. The value of k used is k = 1.

m

Chart p method 30 40 50 70 100 150 200 300 500 ∞
MCUSUM 2 Empirical 3.22 3.19 3.18 3.14 3.13 3.1 3.09 3.06 3.05 3.00

SW 3.21 3.19 3.18 3.14 3.13 3.09 3.08 3.07 3.05
MSSD 3.28 3.22 3.18 3.15 3.12 3.1 3.08 3.07 3.05

Shrinkage 3.07 3.06 3.05 3.05 3.05 3.05 3.04 3.04 3.03
3 Empirical 4.54 4.37 4.27 4.13 4.03 3.95 3.91 3.86 3.82 3.77

SW 4.52 4.37 4.27 4.12 4.03 3.95 3.9 3.85 3.82
MSSD 4.67 4.47 4.35 4.21 4.09 3.98 3.93 3.88 3.83

Shrinkage 3.96 3.95 3.94 3.91 3.88 3.86 3.85 3.83 3.81
5 Empirical 7.46 6.88 6.54 6.16 5.86 5.63 5.52 5.41 5.32 5.21

SW 7.47 6.89 6.55 6.15 5.85 5.63 5.52 5.4 5.31
MSSD 8.16 7.39 6.94 6.43 6.04 5.76 5.62 5.47 5.36

Shrinkage 5.84 5.73 5.65 5.54 5.46 5.38 5.35 5.3 5.27

MCI 2 Empirical 2.96 2.92 2.89 2.86 2.82 2.79 2.78 2.75 2.74 2.71
SW 2.96 2.92 2.89 2.85 2.82 2.79 2.78 2.75 2.74

MSSD 2.99 2.94 2.9 2.86 2.83 2.8 2.77 2.76 2.74
Shrinkage 2.77 2.75 2.74 2.73 2.72 2.72 2.71 2.7 2.69

3 Empirical 3.82 3.67 3.57 3.46 3.37 3.29 3.26 3.22 3.19 3.14
SW 3.83 3.67 3.58 3.46 3.37 3.29 3.25 3.21 3.19

MSSD 3.99 3.83 3.68 3.53 3.42 3.33 3.28 3.23 3.21
Shrinkage 3.31 3.29 3.27 3.25 3.23 3.21 3.20 3.19 3.18

5 Empirical 5.66 5.19 4.91 4.6 4.37 4.22 4.13 4.06 4.01 3.92
SW 5.66 5.18 4.9 4.62 4.38 4.21 4.14 4.06 4.01

MSSD 6.31 5.65 5.27 4.85 4.55 4.32 4.21 4.10 4.05
Shrinkage 4.3 4.23 4.17 4.11 4.06 4.01 3.99 3.97 3.95

process is under control for the first q − 1 samples, and out-of-control after the (q − 1)th sample.

Hence, the steady-state out-of-control ARL is obtained by subtracting q− 1 from a simulated run

length (Ngai and Zhang, 2001). Without loss of generality, we used q = 16. Table 2.9 and Table

2.10 present the zero-state and steady-state ARL1 values, respectively, of both the MCUSUM and

MCI charts when p = 5, m = {30, 50 or 200}, and k = 0.5. In both tables, the corrected control

limits of the competing charts are chosen to give an ARL0 of 200 when there was no shift in the

process. The ARL1 values of both charts for the known parameter case are given in the rows with

m =∞.
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Table 2.9: The zero-state ARL1 of the MCUSUM and MCI charts from different methods of
estimating the covariance matrix, for p = 5, different values of m and k = 0.5.

δ

Methods m 0.5 1 1.5 2 2.5 3

MCUSUM Empirical 30 63.28 21.45 12.91 9.32 7.33 6.04
SW 63.21 21.45 12.96 9.34 7.3 6.03

MSSD 64.22 22.07 13.38 9.66 7.59 6.28
Shrinkage 57.66 18.96 11.39 8.18 6.43 5.32
Empirical 50 52.73 18.56 11.25 8.11 6.38 5.28

SW 53.18 18.57 11.28 8.12 6.39 5.29
MSSD 53.68 19.05 11.54 8.34 6.56 5.43

Shrinkage 49.88 17.32 10.48 7.53 5.92 4.92
Empirical 200 39.85 14.92 9.16 6.65 5.25 4.37

SW 39.81 14.97 9.18 6.65 5.25 4.37
MSSD 40.1 15.02 9.21 6.7 5.29 4.39

Shrinkage 39.62 14.75 9.02 6.55 5.17 4.3
known parameter ∞ 35.57 13.57 8.38 6.14 4.84 4.04

MCI Empirical 30 56.43 17.15 9.7 6.85 5.37 4.45
SW 55.08 17.23 9.65 6.86 5.38 4.45

MSSD 58.19 17.92 10.1 7.2 5.65 4.66
Shrinkage 49.48 14.75 8.25 5.86 4.61 3.82
Empirical 50 45.86 14.78 8.36 5.95 4.67 3.88

SW 46.01 14.78 8.37 5.95 4.68 3.89
MSSD 47.2 15.17 8.59 6.13 4.81 4.00

Shrinkage 42.65 13.47 7.62 5.43 4.27 3.56
Empirical 200 38.83 11.9 6.87 4.92 3.89 3.24

SW 38.67 11.95 6.86 4.91 3.88 3.24
MSSD 38.06 12.08 6.95 4.96 3.92 3.28

Shrinkage 37.69 11.69 6.73 4.83 3.82 3.18
known parameter ∞ 35.32 11.01 6.39 4.59 3.64 3.03

For all of the estimation methods considered here, the results in Tables 2.9 and 2.10 show

increases in the ARL1 for charts relying on estimated parameters compared to charts with known

parameters. However, the results show that the shrinkage estimate has an even better out-of-

control ARL performance than any of the other methods considered. As expected, the MCI chart

gives better zero-state ARL performance than the MCUSUM chart. This is evident in the lower

ARL1 values for the MCI chart in Table 2.9. However, the MCI chart shows poor steady-state

ARL performance (see Table 2.10). We refer interested readers to Crosier (1988), Pignatiello

and Runger (1990), Ngai and Zhang (2001) , Golosnoy et al. (2009), Kim (2014), and Wang and
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Table 2.10: The steady-state ARL1 of the MCUSUM and MCI charts from different methods of
estimating the covariance matrix, for p = 5, different values of m and k = 0.5.

δ

Methods m 0.5 1 1.5 2 2.5 3

MCUSUM Empirical 30 54.75 18.62 11.37 8.18 6.47 5.39
SW 57.63 18.69 11.28 8.22 6.47 5.4

MSSD 56.51 19.11 11.69 8.51 6.72 5.62
Shrinkage 50.00 16.31 9.86 7.13 5.63 4.68
Empirical 50 47.59 16.26 10 7.23 5.71 4.74

SW 47.08 16.43 9.9 7.19 5.72 4.76
MSSD 47.5 16.68 10.23 7.39 5.86 4.87

Shrinkage 43.99 15.25 9.21 6.68 5.28 4.38
Empirical 200 36.04 13.25 8.16 5.93 4.68 3.92

SW 35.9 13.3 8.2 5.94 4.7 3.91
MSSD 36.54 13.32 8.19 5.96 4.72 3.94

Shrinkage 35.6 13.12 8.04 5.85 4.61 3.85
known parameter ∞ 31.58 12.09 7.4 5.42 4.37 3.4

MCI Empirical 30 61.41 18.78 11.3 8.3 6.78 5.77
SW 63.2 18.59 11.38 8.37 6.77 5.81

MSSD 63.07 19.15 11.51 8.55 6.95 5.87
Shrinkage 56.19 16.22 9.83 7.34 5.96 5.05
Empirical 50 53.19 16.82 10.22 7.59 6.16 5.26

SW 53.37 16.61 10.18 7.59 6.16 5.27
MSSD 54.16 17.87 10.38 7.7 6.24 5.28

Shrinkage 50.78 15.6 9.44 7.04 5.74 4.88
Empirical 200 42.5 14.09 8.74 6.54 5.33 4.56

SW 42.21 14.16 8.75 6.53 5.3 4.56
MSSD 43.01 14.31 8.81 6.61 5.35 4.57

Shrinkage 41.48 14 8.56 6.42 5.25 4.51
known parameter ∞ 38.86 13.39 8.14 6.17 5.11 4.27

Huang (2016), for the zero-state and steady-state properties and comparisons of MCUSUM and

MCI control charts.

2.8 Estimation of the corrected limits from the shrinkage

estimate

We estimated the corrected limits from the charts based on the shrinkage estimate of Σ0, using

linear models so that control-chart practitioners may obtain estimated corrected limits when using
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the shrinkage method beyond the values of m considered in this study. The least squares models

are given in Tables 2.11 and 2.12 for the MCUSUM and MCI control charts, where the logarithm

of m (with base 10) are used as the explanatory variables in the models. These models are

obtained from the values of the corrected upper control limits, hc1 and hc2, given in Tables 2.6 -

2.8. By using these estimates, a chart with ARL0 ≈ 200 should be obtained. The coefficients of

determination R2 were at least 86% and 89% for the linear models for MCUSUM and MCI control

charts, respectively.

Table 2.11: Simple linear models that may be used to estimate the corrected upper control limit
hc1 that will give an in-control ARL ≈ 200 for a shrinkage-MCUSUM control chart, for different
values of p and reference parameter k. The coefficient of determination for each model is given in
parentheses.

k
p 0.25 0.5 1
2 13.67− 1.85× log(m) (95%) 6.80− 0.48× log(m) (98%) 3.10− 0.03× log(m) (86%)
3 20.99− 3.79× log(m) (94%) 9.62− 1.02× log(m) (95%) 4.15− 0.13× log(m) (98%)
5 40.03− 9.62× log(m) (91%) 16.10− 2.53× log(m) (92%) 6.45− 0.47× log(m) (93%)

Table 2.12: Simple linear models that may be used to estimate the corrected upper control limit hc2
that will give an in-control ARL ≈ 200 for a shrinkage-MCI control chart, for different values of p
and reference parameter k. The coefficient of determination for each model is given in parentheses.

k
p 0.25 0.5 1
2 5.86− 0.41× log(m) (95%) 5.86− 0.41× log(m) (95%) 2.84− 0.10× log(m) (90%)
3 16.41− 2.90× log(m) (92%) 7.54− 0.76× log(m) (93%) 3.45− 0.11× log(m) (95%)
5 27.59− 6.56× log(m) (89%) 10.87− 1.55× log(m) (90%) 4.67− 0.28× log(m) (91%)

2.9 Illustrative example

We illustrate the performance of the shrinkage method using the bimetal thermostat dataset taken

from Santos-Fernandez (2012). Bimetal thermostats have a bimetallic strip, composed of two strips
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of different metals, which convert changes in temperature to a mechanical displacement via thermal

expansion, so that the temperature may be read (Santos-Fernandez, 2012). The dataset contains

measurements of the deflection, curvature, resistivity, and hardness: in low and high expansion

sides, of brass and steel bimetal thermostats. Data for both Phase I and Phase II are used, each

of size m = 28, and with p = 5 variables. The process parameters µ0 and Σ0 were estimated

from the Phase I data. We applied each of the four methods for estimating Σ0 and compared

their performances. We used k = 0.5 with two different control limits: the upper control limits

h that give an in-control ARL of 200 when parameters are known (Table 2.1), and the corrected

upper control limits hc1 and hc2 that give an in-control ARL of 200 (Table 2.7) when parameters

are unknown.

Results were very consistent across the methods when using the upper control limit h; for

both the MCUSUM and MCI control charts: the empirical estimate, SW, and shrinkage estimate

methods all detected the signal after the 11th observation, whereas the MSSD method detected it

after the 12th observation (Figures 2.1 and 2.2). In contrast, for the MCUSUM control charts with

the corrected upper control limits hc1, the shrinkage estimate method detected the signal after the

19th observation, the empirical estimate and the SW methods both detected the signal after the

23rd observation, and the MSSD method failed to detect the signal at all. Similarly, for the MCI

control charts with hc2 limits, the shrinkage estimate method detected the first signal after the

14th observation, the empirical estimate and SW methods both detected the signal after the 23rd

observation, and the MSSD method failed to detect the signal. We recommend the use of hc1, and

hc2 rather than h for this example, because the Phase II development of the charts used estimated

rather than known parameters.
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Figure 2.1: The MCUSUM control chart of the Bimetal II data set. The estimated covariance
matrices are obtained from the Bimetal I data set. The reference parameter used is k = 0.5 and
p = 5. The upper control limit h, for the known parameters case (Table 2.1) and the corrected
upper control limit hc1; (Table 2.7) used here are the ones that give an in-control ARL of 200.
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Figure 2.2: The MCI control chart of the Bimetal II data set. The estimated covariance matrices
are obtained from the Bimetal I data set. The reference parameter used is k = 0.5 and p = 5. The
upper control limit h, for the known parameters case (Table 2.1) and the corrected upper control
limit hc1 (Table 2.7) used here are the ones that give an in-control ARL of 200.

2.10 General conclusions

In this chapter, we investigated the performance of the multivariate cumulative sum control chart

methods, MCUSUM and MCI control charts, for individual-observation monitoring when process
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parameters are unknown and estimated from Phase I data. We propose the use of a shrinkage

estimate for the covariance matrix and present the results of simulation studies to compare the

performance of control charts obtained using this estimate versus those obtained using several

alternative methods for estimating the covariance matrix.

We demonstrate that, if the upper control limits of the charts are used, the in-control perfor-

mance of the MCUSUM and MCI control charts are negatively affected by estimating the process

parameters unless a large Phase I sample is available. For different Phase I sample sizes (m), we

calculated the values of the corrected control limits that give the desired in-control ARL when

using estimated parameters, and have provided least-squares models that can be used to estimate

the corrected limits for values of m that were not considered in this study. Our simulations showed

that the control charts obtained using the shrinkage estimate of the covariance matrix are su-

perior to those obtained using other methods of estimating the covariance matrix. The relative

performance of the control charting schemes, including the superiority of the shrinkage estimation

method, was also readily illustrated in a particular example - the analysis of a multivariate Bimetal

dataset.
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Chapter 3

Multivariate exponentially weighted

moving average (MEWMA) control

charts for individual-observations

monitoring when parameters are

estimated

This chapter has been submitted for publication

Multivariate exponentially weighted moving average (MEWMA) control charts for individual mon-

itoring require a priori knowledge of the in-control parameters. In practice, this assumption is not

always tenable, and estimated parameters are generally obtained from an in-control reference sam-
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ple of m preliminary observations (Phase I sample). Here, we compared the Phase II performance

of MEWMA control charts using different methods for estimating the covariance matrix when the

in-control covariance structure is unknown, and only a small Phase I sample (m) is available. The

performance of the MEWMA control charts varied among the methods. For simulated data with

small m, the performance of MEWMA control charts using a shrinkage estimate of the covari-

ance matrix was superior to the alternative methods considered in this study. Specifically, the

MEWMA chart obtained using the shrinkage estimate gave a longer average run length (ARL) for

in-control processes and shorter ARL for out-of-control processes. The improved performance of

MEWMA control charts using the shrinkage estimate was also demonstrated via illustrative case

studies of bimetal thermostat and gene expression applications; changes were detected earlier by

the shrinkage-based MEWMA method.

3.1 Introduction

Control charts are statistical process-control (SPC) methods, used to monitor and detect changes

in the uniformity of a process (Aslam et al., 2015; Khan et al., 2017). Control charts typically

involve two phases (Jensen et al., 2006). In Phase I, a reference sample of measurements from

a process known to be in control is analyzed to establish the expected behavior of the process,

estimate the process population parameters (if they are unknown), and determine control limits for

a reference statistic. Subsequent measurements are then collected during Phase II and monitored

for significant deviations from the in-control state. Any values of the statistic outside the control

limits established in Phase I generate an out-of-control signal, prompting some remedial response

(Abbasi and Adegoke, 2018). A common measure used to evaluate the performance of control

39



charts is the “average run length” (ARL), given as the average number of Phase II iterations

that occur before the first out-of-control signal occurs (Riaz et al., 2014; Khaliq et al., 2016). An

efficient control chart maximizes the ARL when the process is in control while minimizing the

ARL when the process is out of control (Jones et al., 2001).

Control chart methods can be classified broadly into two types (Sanusi et al., 2017b; Ajadi

et al., 2016). Firstly, memoryless control charts, such as the Shewhart method Shewhart (1931),

evaluate data at only a single time point, disregarding any past behavior of the process during

Phase II. These methods are typically used where any shifts in the process mean are expected to

be relatively large. In contrast, memory-based control charts use both the current and recent data

to provide greater power to identify small to moderate shifts. Examples include the exponentially

weighted moving average (EWMA) (Roberts, 1959), the cumulative sum (CUSUM) (Page, 1954),

the homogeneously weighted moving average (HWMA) (Abbas, 2018), and their multivariate

counterparts, i.e., the MEWMA chart (Lowry et al., 1992), the MCUSUM charts (Crosier,

1988; Pignatiello and Runger, 1990), and the MHWMA chart Adegoke et al. (2019), respectively.

Because the memory-type control charts combine information from several time points, they are

particularly effective at detecting small to moderate shifts in the process, and are highly efficient

for individual-observation (n = 1) processes (Montgomery, 2009).

Multivariate control chart analyses are relatively simple to implement in cases where the in-

control process parameters are known a priori, allowing desired control limits to be calculated

with certainty. However, in most cases, the process parameters are unknown and control limits

are calculated based on parameters that have been estimated from Phase I data. The uncertainty

introduced by estimating the process parameters typically reduces the in-control ARL of the charts.
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Several authors have investigated the performance of the multivariate Shewhart control chart for

individual-observation monitoring, when parameters are unknown and are estimated from Phase

I. An empirical estimate of the in-control covariance matrix (Σ0) may be calculated directly from

the m multivariate Phase I data points (Montgomery, 2009). Sullivan and Woodall (1996) showed

that the empirical estimate of Σ0 leads to poor performance of the Hotelling T 2 control chart

for detecting shifts in the mean vector. Holmes and Mergen (1993) showed that the empirical

estimate of Σ0 is insensitive to out-of-control shifts, and proposed the use of a mean square

successive difference (MSSD) approach to estimate the variance-covariance matrix. In all of these

studies, the effects of having to estimate the in-control parameters may be minimized by having a

large Phase I dataset (m) (Jones et al., 2001; Mahmouda and Maravelakisb, 2010).

Different methods for estimating Σ0 have been used with MEWMA control charts for individual-

observation monitoring Zhang and Chang (2008); Aly et al. (2016). Yet, the performance of

MEWMA charts for individual-observation monitoring when parameters are estimated have not

been directly compared in the SPC literature. Such comparisons are required in order to determine

the most appropriate methods for estimating the covariance parameters, and to make recommen-

dations to practitioners, particularly when the number of Phase I samples m is small. In this

study, we investigated the performance of the MEWMA control chart for individual-observation

monitoring when the process parameters (i.e., mean vector µ0 and the covariance matrix Σ0) are

to be estimated from a small number of Phase I samples (m).

We compared the performance of MEWMA control charts using three different methods of

estimation for Σ0. Two methods are currently in use: the empirical estimate and the MSSD.

The third method, proposed here, is a shrinkage estimate, given as a weighted combination of the
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empirical estimate and a target matrix. This study provides a guide for practitioners to make

an appropriate choice regarding the estimation of Σ0 for MEWMA control charts for individual-

observation monitoring when a large Phase I dataset is not available. We refer the reader to Champ

and Jones-Farmer (2007); Aly et al. (2016); Saleh, Nesma A and Mahmoud (2017), and references

therein, for comparisons of the performance of the MEWMA control charts based on estimated

parameters when multiple observations are taken at each time point (i.e., n > 1).

The article is organized as follows. In Section 3.2, we describe the MEWMA control chart,

review methods of estimating parameters for individual-observation monitoring, and propose a

shrinkage estimate of Σ0 in Section 3.3. Section 3.4 compares the performance of MEWMA control

charts when Σ0 is estimated using different methods, by comparing their in-control ARL. Corrected

control limits for the MEWMA chart for individual-observation monitoring when estimation of Σ0

is required are presented in Section 3.4.2, followed by a comparison of the overall out-of-control

ARL performance under these corrected limits, using simulated data, in Section 3.4.2. In Section

3.5, we show examples of the applications of the methods, and a discussion is given in Section 3.6.

3.2 Multivariate exponentially weighted moving average

control chart (MEWMA)

3.2.1 General framework

Rapid development in data-acquisition and online monitoring have led to increased interest in

multivariate control chart methods, which monitor several features of a process simultaneously

(Ou et al., 2015). For most practical applications, a p × 1 vector X of p quality characteristics
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is recorded from a single randomly sampled unit at each of m regularly spaced time points. In

some cases, n > 1 are available at each time point (Mahmouda and Maravelakisb, 2010). Here, we

consider only the individual-observation case, where n = 1. The X are assumed to be independent

and identically distributed as multivariate normal (MVN) random variables with mean vector µ0

and covariance matrix Σ0 (Montgomery, 2009).

The MEWMA control chart, proposed by Lowry et al. (1992), is a multivariate extension of the

EWMA chart, a memory-type method that accumulates information across time points. Let the

p monitored features at time-point i be represented by a p× 1 random vector, xi. The MEWMA

statistics are given as:

wi = Rxi + (I −R)wi−1, (3.1)

where, i = 1, 2, ..., t, w0 = µ0 and R is a p×p diagonal square matrix with smoothing constants rk,

k = 1, 2, ..., p along the diagonal such that 0 < rk ≤ 1, which determines the relative importance of

“older” data towards the calculation of the MEWMA statistic. The matrix I is a diagonal matrix

of 1′s on its main diagonal. The chart gives an out-of-control signal when:

T 2
i = (wi − µ0)TΣi

−1(wi − µ0) > h, (3.2)

where h and R are chosen to achieve a desired in-control performance measure (such as, a desired

value of in-control ARL), and Σi is the covariance matrix at time point i. In practice, there is

generally no reason to employ different values of the smoothing parameters at different time points

(Lowry et al., 1992). If the values of the smoothing parameter, which determine the weight of each

prior observation, are equal across variables, i.e., r1 = r2 = ... = rp = r, then the MEWMA vector
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becomes:

wi = rxi + (1− r)wi−1, (3.3)

Lowry et al. (1992) provided two alternative forms of Σi: the exact covariance matrix is given

as Σi =
r[1− (1− r)2i]

2− r
Σ0, and the asymptotic covariance matrix is given as Σ =

r

2− r
Σ0.

Using simulated data, they showed that the MEWMA chart is more efficient in detecting small to

moderate shifts than a memoryless control chart based on the Hotelling T 2 statistic. The MEWMA

chart is a directionally invariant chart. As such, the performance of the chart depends on the

mean vector and the covariance matrix only through the non-centrality parameter δ (Alkahtani

and Schaffer, 2012), given as:

δ =
√

(µ− µ0)
TΣ−1

0 (µ− µ0). (3.4)

where µ, is the location parameter for the out-of-control process. The use of small values for the

smoothing parameter increases the power of the control chart. If r = 1, the chart is identical to

the memoryless control chart based on Hotelling’s T 2.

3.3 Estimating the Phase I parameters

Here, we provide details of the methods used in this study to estimate the mean vector and

covariance matrix. We assume that the population parameters, µ0 and Σ0, are to be estimated

from a Phase I sample values, xki, with a single observation (n = 1) taken for each of k = 1, . . . , p

variables at each of i = 1, . . . ,m time points.
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3.3.1 Estimating the mean vector

For all methods herein, the empirical estimate of the mean vector µ0, is obtained by taking the

average across m Phase I in-control samples, namely x̄ is a p× 1 length vector of elements:

x̄k =
1

m

m∑
i=1

xki. (3.5)

3.3.2 Estimating the covariance matrix

Empirical estimate

The classical unbiased empirical estimate of the covariance matrix, Σ0, of the p-variate random

variables is given as:

S =
1

m− 1

m∑
i=1

(xi − x̄)(xi − x̄)T , (3.6)

where the main diagonal of S contains the sample variances s2
k =

1

m− 1

∑m
i=1(xik−x̄k)2, and the off

diagonal elements of S are the sample covariances given as: skk′ =
1

m− 1

∑m
i=1(xik−x̄k)(xik′−x̄k′),

for k = 1, ..., p, k′ = 1, ..., p and k 6= k′ (Montgomery, 2009).

Mean Square Successive Difference (MSSD)

To make the Hotelling T 2 control chart more sensitive to process changes, Holmes and Mer-

gen (1993) proposed the mean square successive difference (MSSD) approach for estimating the

variance-covariance matrix. This method uses the differences between consecutive observations:

vi = xi+1 − xi , i = 1, 2, ...,m− 1 (3.7)
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The MSSD estimator of Σ0 is one-half the sample covariance matrix of the matrix of the differences,

and is given as:

Σ̂MSSD =
VTV

2(m− 1)
, (3.8)

where V is given as:

V =



vT1

vT2

...

vT(m−1)


Shrinkage estimate

The shrinkage estimator is a weighted average of the empirical unbiased estimate S given in

equation (3.6), and a target matrix T = (tik)1≤i,k≤p, and is given as:

Σ̂S = λT + (1− λ)S, (3.9)

where, λ ∈ [0, 1] denotes the shrinkage intensity: λ = 0 implies Σ̂ = S, and λ = 1 gives Σ̂ = T .

The estimator is better conditioned than the empirical estimate of the covariance matrix, and

asymptotic properties hold well even with finite samples (Warton, 2008; Ledoit and Wolf, 2004a).

It does not make any distributional assumption about the data, such as multivariate normality

(Ullah et al., 2017).

Several studies have proposed different methods to estimate the optimal value (i.e., λ∗) of

the shrinkage intensity parameter (λ) given in Equation (3.9). For example, Ledoit and Wolf

(2004a), and Schäfer and Strimmer (2005) gave analytic approaches for determining λ∗. Friedman
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(1989) proposed a computationally intensive approach to estimate λ∗ using cross-validation. Morris

(1983), and Greenland (2000) estimate λ∗ in an empirical Bayes context. Here, we followed the

approach in Ledoit and Wolf (2004a), and Schäfer and Strimmer (2005), and derived the optimal

intensity parameter analytically. The optimal shrinkage intensity, λ∗, is obtained consistently by

considering the Frobenius norm of the difference between the shrinkage estimator and the true

covariance matrix given as:

L(λ) = ||Σ̂S −Σ0||2 (3.10)

The Frobenius norm difference is a quadratic measure of distance between the true and the esti-

mated covariance matrices, (i.e., a loss function). Using Equation (3.9), Equation (3.10) can be

written as:

L(λ) = ||λT + (1− λ)S −Σ0||2 (3.11)

The squared Frobenius norm of the p × p symmetric matrix T with entries (tkk′) where k and

k′ = 1, ..., p is given as:

||T ||2 =

p∑
k=1

p∑
k′=1

t2kk′ (3.12)

where ||.||2 is the squared Frobenius norm, which is a quadratic form associated with the inner

product Strang (2009). Hence, the loss function in Equation (3.11) becomes:

L(λ) =

p∑
k=1

p∑
k′=1

(λtkk′ + (1− λ)skk′ − σkk′)2
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where, tkk′ , skk′ , and σkk′ are the (k, k′)th entry of T , S, and Σ0, respectively. The optimal

shrinkage intensity (λ∗), is obtained by minimizing the expected value of L(λ) given as:

R(λ) = E(L(λ)) =

p∑
k=1

p∑
k′=1

E(λtkk′ + (1− λ)skk′ − σkk′)2 =

p∑
k=1

p∑
k′=1

(
MSE(λtkk′ + (1− λ)skk′)

)

R(λ) =

p∑
k=1

p∑
k′=1

(
λ2Var(tkk′) + (1− λ)2Var(skk′) + 2λ(1− λ)Cov(tkk′ , skk′) + (λE(tkk′ − skk′) + bias(skk′))

2
)

where bias(skk′) = 0

R(λ) =

p∑
k=1

p∑
k′=1

(
λ2Var(tkk′) + (1− λ)2Var(skk′) + 2λ(1− λ)Cov(tkk′ , skk′) + λ2(E(tkk′ − skk′))2

)

The optimal shrinkage parameter is obtained by minimizing the risk function. The goal is to

minimize R(λ) with respect to λ. This is done by calculating the first two derivatives of R(λ)

subject to λ. The first derivative is given as:

R′(λ) = 2

p∑
k=1

p∑
k′=1

(
λVar(tkk′)− (1− λ)Var(skk′) + (1− 2λ)Cov(tkk′ , skk′) + λ(E(tkk′ − skk′))2

)

Setting R′(λ) = 0, we have:

λ

p∑
k=1

p∑
k′=1

Var(tkk′ − skk′) + (E(tkk′ − skk′))2 =

p∑
k=1

p∑
k′=1

Var(skk′)− Cov(tkk′ , skk′)),

48



and solving for λ gives:

λ∗ =

∑p
k=1

∑p
k′=1 Var(skk′)− Cov(tkk′ , skk′)∑p

k=1

∑p
k′=1 Var(tkk′ − skk′) + (E(tkk′ − skk′))2

(3.13)

Since R′′ given as:

R′′(λ) = 2

p∑
k=1

p∑
k′=1

(
Var(tkk′ − skk′) + (E(tkk′ − skk′))2

)
,

is positive everywhere, the solution given in Equation (3.13), is verified as a minimum of the

risk function (Ledoit and Wolf, 2003). The estimated optimal shrinkage intensity is obtained by

replacing the parameters (i.e., tkk′ , skk′ , and σkk′) in Equation (3.13) by their unbiased estimates.

λ̂∗ =

∑p
k=1

∑p
k′=1 V̂ar(skk′)− Ĉov(tkk′ , skk′)∑p
k=1

∑p
k′=1 E(tkk′ − skk′)2

. (3.14)

Selecting a suitable target covariance matrix T is an important step in the estimation of the

shrinkage estimate for the covariance matrix given in Equation (3.9). The choice of a target

should be guided by the presumed lower-dimensional structure in the data set as this determines

the increase in efficiency over that of the empirical covariance estimator (Schäfer and Strimmer,

2005). Several researchers have proposed various target matrices, T , and every target matrix has

a different variance-bias trade-off with respect to the unknown covariance matrix; thus, there is no

ideal target for reducing the MSE (Lancewicki and Aladjem, 2014). Here, we consider the following

four potential T matrices (see Table 3.1) that are commonly used in the literature (Schäfer and

Strimmer, 2005). The target matrix, T 1, is the perfect positive correlation model given by Ledoit

and Wolf (2003). T 2 is the constant correlation model given by Ledoit and Wolf (2004b). The
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target matrices T 3 and T 4 shrink the diagonal of the sample covariance matrix to the mean Ledoit

and Wolf (2004a) and median Opgen-rhein and Strimmer (2007) of the sample variances across all

variables, respectively. See Table 3.1 for the resulting optimal shrinkage intensities for each of the

four target matrices. The parameter Φkk′ in Equations (3.15) and (3.16), is given as (Schäfer and

Table 3.1: Table of target matrices and their optimal shrinkage intensities. The terms avg(.) and
Med(.) (in Equations (3.17) and (3.18)) are used to denote the mean and median of the sample
variances across all variables, respectively.
Target matrix (T ) Expression Optimal shrinkage intensity

T 1 tkk′ =

{
σkk, if k = k′
√
σkkσk′k′ , if k 6= k′

λ̂∗ =

∑
k 6=k′ V̂ar(σkk′)− Φkk′∑

k 6=k′(σkk′ −
√
σkkσk′k′)2

(3.15)

T 2 tkk′ =

{
σkk, if k = k′

ρ̄
√
σkkσk′k′ , if k 6= k′

λ̂∗ =

∑
k 6=k′ V̂ar(σkk′)− ρ̄Φkk′∑

k 6=k′(σkk′ − ρ̄
√
σkkσk′k′)2

(3.16)

T 3 tkk′ =

{
avg(σkk), if k = k′

0, if k 6= k′
λ̂∗ =

∑
k 6=k′ V̂ar(σkk′) +

∑
kk V̂ar(σkk)∑

k 6=k′(σ
2
kk′ +

∑
kk(σkk − avg(σkk))2

(3.17)

T 4 tkk′ =

{
Med(σkk), if k = k′

0, if k 6= k′
λ̂∗ =

∑
k 6=k′ V̂ar(σkk′)∑

k 6=k′(σ
2
kk′ −Med(σkk))2

(3.18)

Strimmer, 2005):

Φkk′ =
1

2

{√
σkk
σk′k′

Ĉov(σkk, σkk′) +

√
σk′k′

σkk
Ĉov(σk′k′ , σkk′)

}

We refer the reader to Schäfer and Strimmer (2005); Ledoit and Wolf (2003, 2004b,a); Opgen-rhein

and Strimmer (2007); Ardia, David and Boudt, Kris and Gagnon Fleury (2017) for more detailed

descriptions of target matrices.
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3.4 Simulation study of the performance of MEWMA con-

trol charts

3.4.1 Methods

We compared the in-control and out-of-control performance of individual-observation (n = 1)

MEWMA control charts based on each of three methods to estimate the variance-covariance matrix,

described in Section 3.3.2, using simulated data. Methods were compared using the Average Run

Length (ARL) before an out-of-control signal was produced.

For each simulation, the Phase I population consisted of a p-variate normal distribution with

mean vector, µ0, and covariance matrix, Σ0. From Phase I to Phase II, a shift of size δ (as defined

in Equation 3.4) was applied to µ0. Note, to estimate the in-control Average Run Length (ARL0),

a null shift (i.e., δ = 0) was applied to simulate no difference in population parameters between

Phase I and Phase II.

For each set of simulations, the following procedure was repeated 50,000 times:

• Phase I

(i) Generate a sample of i = 1, . . . ,m Phase I baseline observations, xi, each a vector of length

p, from the in-control population, where m is the number of Phase I time points.

(ii) Estimate the covariance matrix (Σ0) and location (µ0) parameters from the Phase I sample,

and use these to estimate the MEWMA control chart statistic T̂ 2 in Phase II.

• Phase II

(i) Set j = 1, where j indexes the Phase II time points.
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(ii) Generate a random vector xj from the Phase II population and adjoin it to samples from

the previous time points, xj−1. Estimate the MEWMA control chart statistic T̂ 2
i .

(iii) If T̂ 2
j > h∗ (the upper control limit), stop and record j − 1 as the Run Length for this

simulation, indicating the time point before the control chart statistic first signals an out-of-

control state. If T̂ 2 <= h∗, update j = j + 1 and return to step (ii).

At the conclusion of 50,000 simulations, the average run length (ARL) was obtained by taking

the average across the recorded values of RL.

Without loss of generality, we used µ0 = 0 and considered covariance matrix, Σ0, with variances

given as:

σkk′ =


1, if k = k′

b, if k 6= k′.

(3.19)

We examined the performance of the methods under both independent and AR(1) covariance

structures, by setting b = 0 (i.e., independent covariance structure), and b = 0.8|k−k
′| for 1 ≤

k, k′ ≤ p (i.e., AR(1) covariance structure), respectively. Our simulations included Phase I sample

sizes of m = 30, 40, 50, 70, 100, 200, 300, and 500.

For each simulation, the values of the upper control limit h were chosen such that the chart

would produce an ARL0 of 200 for known µ0 and Σ0. For establishing control limits from Phase

I, we used three different values of the smoothing parameter: r = 0.05, 0.1, or 0.2. The MEWMA

chart is known to work well with these choices of r, and they are popular choices in practice

(Montgomery, 2009).

A common approach to reducing the frequency of false out-of-control signals of control charts

for which the population parameters are estimated is to use wider, “corrected” control limits, hc
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(Aly et al., 2015). See Table 3.2 for the pairs of the values of r and h that fixed ARL0 to 200 for

the known parameter case, and Section 3.4.2 for correcting control limits that give ARL0 of 200

(approximately) when population parameters are unknown. A binary search algorithm similar to

the one given in Champ et al. (2005) and Mahmouda and Maravelakisb (2010) was used to obtain

the corrected limits (hc). We refer to the results obtained using target matrices T 1, T 2, T 3, or

T 4, as shrinkage(T1), shrinkage(T2), shrinkage(T3), and shrinkage(T4), respectively.

Table 3.2: The upper control limit, h, that produces AARL0 of 200 when the MEWMA chart
statistic is obtained from known parameters, for different values of p and r.

r
p 0.05 0.1 0.2
2 7.36 8.67 9.67
3 9.41 10.77 11.87
4 11.21 12.72 13.86
5 12.97 14.54 15.75

3.4.2 Results of the simulation study

In-control performance

The in-control performance is shown in plots of the (ARL0) for simulated MEWMA charts under

the independent covariance structure and the AR(1) covariance structure, respectively (Figures 3.1

and 3.2), when r = 0.05, for p = 2, 3, 4, or 5 and different values for m. In all cases, the ARL0 of

the MEWMA charts was substantially less than the benchmark of 200, which would be achieved if

the known parameters were used to establish the control limits. This demonstrates how estimating

the population parameters compromises the performance of the chart by increasing the frequency

of false out-of-control signals. The ARL0 performance of the chart depended on the parameters

used (m, and p) and the method used to estimate the covariance structure. The shrinkage(T4) and
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MSSD covariance estimates had the highest and lowest ARL0 values, respectively. Unsurprisingly,

as the value of m increased, the (ARL0) value increased, regardless of the method used to estimate

Σ0. In particular, the ARL0 of all the methods approached the nominal ARL0 value (200) for

large values of m. Tables 3.3 and 3.4 give the ARL0 values of the MEWMA charts under the

independent and AR(1) covariance structures, respectively, when r = 0.1.

For every parameter combination we considered, the ARL0 performance was best for the

shrinkage(T4) method, and the improvement of the shrinkage(T4) method was most evident with

small m and higher p. In these scenarios, the shrinkage(T4) method ARL0 values were up to three

times as high as the worst estimator (see Tables 3.3 and 3.4, or Figures 3.1 and 3.2). When p=2,

the shrinkage(T3) method consistently had the lowest ARL0, but for p > 2, the MSSD estimator

typically had the lowest ARL0. The performance of the MEWMA charts based on the empirical

estimate, and MSSD covariance estimates were consistent in terms of ARL0 across both covariance

structures examined here. On the other hand, the ARL0 performance of the MEWMA chart based

on shrinkage estimates varied across the two different covariance structures, with higher ARL0

values obtained for the AR(1) covariance structure compared to those obtained for the identity

covariance matrix.
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Table 3.3: AARL0 values when different Phase I samples (m), of

size n = 1 are used in estimating the unknown parameters under

independent covariance structure. The AARL0 is fixed at 200, and

r = 0.1.

m

p Method 30 40 50 70 100 150 200 300 500

2 Empirical 92.47 106.35 114.29 127.74 141.78 155.08 164.27 174.49 183.95

MSSD 90.96 100.6 111 124.8 139.39 154.57 163.33 174.83 183.59

Shrinkage(T1) 93.32 104.26 113.44 127.15 141.17 154.88 164.51 173.78 183.9

Shrinkage(T2) 84.73 97.14 107.19 122.3 136.96 151.63 161.33 172.82 182.97

Shrinkage(T3) 84.12 97.33 106.89 122.17 137.05 151.9 161.52 171.92 183.55

Shrinkage(T4) 111.67 121.24 128.35 139.87 150.51 162.6 169.59 178.65 187.94

3 Empirical 62.38 74.36 85.57 101.94 117.69 136.74 147.42 160.2 173.25

MSSD 55.52 67.47 79.26 95.66 112.33 131.18 142.34 157.49 170.26

Shrinkage(T1) 73.08 85.47 95.77 110.46 126.14 142.13 152.77 164.38 175.98

Shrinkage(T2) 65.16 77.91 88.76 104.8 121.27 137.96 148.17 162.75 174.75

Shrinkage(T3) 58.14 71.24 81.61 97.28 114.44 133.01 144.86 158.93 172.11

Shrinkage(T4) 87.98 99.92 108.3 122.18 135.94 149.93 158.61 169.5 179.77

4 Empirical 46.37 58.55 69.59 85.5 102.85 124.51 136.14 153.36 169.74

MSSD 39.2 50.84 60.72 77.61 96.74 115.93 130.53 147.38 163.82

Shrinkage(T1) 62.2 74.69 84.96 100.82 117.09 135.12 146.46 160.19 173.95

Shrinkage(T2) 55.24 67.7 78.06 94.79 112.15 130.7 143.21 157.81 171.42

Shrinkage(T3) 45.36 57.07 67.07 83.02 101.19 120.96 134.39 150.72 167.24

Shrinkage(T4) 74.6 86.95 96.91 111.24 126.68 143.39 152.71 165.51 176.55

5 Empirical 36.5 47.2 56.91 73.64 91.62 112.9 125.54 144.45 162.04

MSSD 29.31 38.97 48.4 63.7 81.62 104 117.81 136.3 158.18
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Shrinkage(T1) 54.71 66.81 76.78 93.26 110.63 129.65 141.63 157.32 171.71

Shrinkage(T2) 48.55 60.56 70.97 87.5 104.9 125.53 137.63 154.67 168.98

Shrinkage(T3) 38.34 48.39 57.54 72.58 90.69 111.66 126.11 143.91 162.01

Shrinkage(T4) 66.28 78.08 88.11 104.16 120.11 137.35 148.54 162.35 175.32

Table 3.4: AARL0 values when different Phase I samples (m), of

size n = 1 are used in estimating the unknown parameters under

AR(1) covariance structure. The AARL0 is fixed at 200, and r =

0.1.

m

p Method 30 40 50 70 100 150 200 300 500

2 Empirical 92.42 104.43 114.31 127.54 141.4 155.86 164.2 174.96 183.48

MSSD 90.19 102.63 111.8 125.65 139.63 153.77 162.81 173.13 183.28

Shrinkage(T1) 92.79 105.04 113.84 127.02 141.13 154.95 164.17 174.23 183.98

Shrinkage(T2) 84.1 97.34 106.68 121.97 136.83 151.76 161.56 172.44 182.93

Shrinkage(T3) 79.61 92.83 103.48 119.28 134.61 149.72 160.23 170.81 182.31

Shrinkage(T4) 153.8 154.95 157.45 162.57 167.94 175.43 180.03 185.49 190.99

3 Empirical 62.22 75.89 85.71 101.93 118.62 135.74 147.09 161.01 173.61

MSSD 55.7 68.48 79.17 95.27 112.35 131.12 142.97 157.63 171.53

Shrinkage(T1) 68.07 78.28 86.11 98.28 109.93 121.44 129.05 137.52 145.16

Shrinkage(T2) 63.04 75.06 84.55 100.86 120.17 143.68 158.25 173.98 184.98

Shrinkage(T3) 55.01 67.59 78.28 95.28 112.77 131.02 143.28 157.56 171.92

Shrinkage(T4) 134.2 137.93 141.38 148.62 156.72 165.09 171.21 178.55 185.34

4 Empirical 46.87 59.1 69.23 85.64 104.13 123.94 136.82 152.85 168.65

MSSD 39.09 50.77 60.71 77.3 95.58 116.47 130.2 147.06 164.71

Shrinkage(T1) 54.96 63.19 69.71 79.33 88.78 98.56 103.19 110.13 116.25
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Shrinkage(T2) 55.89 69.53 81.9 104.47 129.2 152.7 163.96 176.68 186.6

Shrinkage(T3) 44.55 56.28 66.4 82.42 101.07 121.3 134.2 151.14 167.89

Shrinkage(T4) 117.51 123.95 128.81 137.6 147.93 159.35 166.5 174.96 182.65

5 Empirical 36.51 47.45 57.35 73.49 92 113.5 127 145.73 163.38

MSSD 29.38 39.34 48.46 64.19 82.5 103.83 119.09 138.31 158.7

Shrinkage(T1) 46.51 53.72 59.2 67.23 75.13 82.57 86.67 92.04 96.6

Shrinkage(T2) 53.5 69.68 84.27 108.58 132.36 153.59 164.98 176.99 185.75

Shrinkage(T3) 38.67 49.63 58.9 74.94 93.2 113.93 127.7 145.22 162.96

Shrinkage(T4) 106.46 113.19 119.56 129.41 140.71 154.17 161.77 171.3 181.08

The shrinkage(T4) method of estimating the covariance matrix consistently outperformed the alter-

natives for the in-control simulations examined here. Thus, we restrict our attention to the shrinkage(T4)

method for the remainder of this paper, and henceforth refer to it as the “shrinkage covariance estimate”.

Corrected limits

As shown in Table 3.5, the corrected upper control limits (hc) depend on the Phase I sample size, m,

smoothing parameter, r, and the number of quality characteristics being monitored, p. Smaller values of m

give bigger values of hc, and as m becomes larger, the values of hc in all cases approach the corresponding

values of h when the parameters are known (given in Table 3.2). Our simulation results show that the

corrected values hc for the chart based on the shrinkage-MEWMA method were much smaller than those

based on other methods used to estimate the covariance matrix. In section 3.4.2, we used the values of

hc obtained here to measure and compare the out-of-control performance of the MEWMA control charts

using simulations.
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Table 3.5: The corrected upper control limit (hc), that produced

AARL0 of 200 when different Phase I samples (m), of size n = 1

are used to estimate the unknown parameters.

m

r p Method 30 40 50 70 100 150 200 300 500

0.05 2 Empirical 10.3045 9.802 9.4882 9.0669 8.6452 8.2891 8.1037 7.8911 7.6796

MSSD 10.331 9.8457 9.5528 9.0807 8.6884 8.3135 8.1286 7.8742 7.6834

Shrinkage 9.6936 9.3792 9.135 8.7997 8.4731 8.1793 8.0089 7.8216 7.6638

3 Empirical 14.8071 13.7325 13.0491 12.2132 11.4761 10.854 10.5344 10.2145 9.8794

MSSD 15.3062 14.1393 13.3982 12.4574 11.6538 10.9725 10.6354 10.2375 9.919

Shrinkage 13.1039 12.5825 12.1187 11.5759 11.0457 10.5956 10.3357 10.0421 9.7923

4 Empirical 19.4159 17.6778 16.5469 15.164 14.202 13.2499 12.7834 12.2821 11.8679

MSSD 20.7546 18.6235 17.2884 15.7353 14.472 13.4902 12.9557 12.397 11.9454

Shrinkage 16.4152 15.5326 14.9511 14.1624 13.4278 12.8067 12.4389 12.0815 11.7468

5 Empirical 24.2795 21.6406 20.0546 18.175 16.7421 15.5848 14.9614 14.2996 13.7754

MSSD 26.663 23.3208 21.2897 19.018 17.257 15.93 15.1996 14.4738 13.8642

Shrinkage 19.4002 18.3263 17.5732 16.5382 15.6169 14.8838 14.4205 13.9927 13.6046

0.1 2 Empirical 10.8482 10.4845 10.2244 9.8796 9.5922 9.2919 9.1673 8.9986 8.8688

MSSD 10.8606 10.4994 10.2522 9.92 9.6283 9.3244 9.1816 9.014 8.8862

Shrinkage 10.1993 9.9722 9.8344 9.614 9.3926 9.1959 9.0686 8.944 8.8279

3 Empirical 14.9746 14.2128 13.64 12.9718 12.3835 11.8999 11.6567 11.3997 11.1584

MSSD 15.6048 14.6293 14.0138 13.2095 12.559 12.0309 11.7482 11.4381 11.187

Shrinkage 13.2097 12.8836 12.6017 12.2196 11.8971 11.5441 11.427 11.2052 11.0673

4 Empirical 19.3746 17.8772 16.9523 15.8482 14.9785 14.2791 13.9232 13.5324 13.232

MSSD 20.6208 18.8435 17.7037 16.3796 15.3575 14.5307 14.1056 13.659 13.2747

Shrinkage 16.1222 15.5268 15.1761 14.6301 14.1421 13.7581 13.5238 13.2634 13.0532
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5 Empirical 23.855 21.5848 20.2327 18.7175 17.495 16.5624 16.0867 15.569 15.1711

MSSD 26.1712 23.2595 21.5371 19.5862 18.1059 16.9168 16.3738 15.7235 15.285

Shrinkage 18.7201 17.97 17.497 16.8198 16.2627 15.7648 15.4659 15.1851 14.9572

0.2 2 Empirical 11.1606 10.9116 10.7398 10.5191 10.274 10.1044 10.0032 9.9033 9.811

MSSD 11.0874 10.9242 10.7311 10.5328 10.3165 10.1194 10.016 9.9133 9.8058

Shrinkage 10.4287 10.3257 10.2948 10.1379 10.074 9.9424 9.8857 9.7967 9.7598

3 Empirical 15.1319 14.4709 14.0211 13.495 13.0492 12.7005 12.5097 12.2801 12.1339

MSSD 15.7713 14.9017 14.38 13.7495 13.2664 12.8158 12.5937 12.3468 12.1493

Shrinkage 13.2171 13.0026 12.8544 12.6789 12.4821 12.3081 12.2149 12.1013 12.0143

4 Empirical 19.2106 17.9314 17.1904 16.3061 15.5966 15.0579 14.7689 14.4689 14.2336

MSSD 20.5207 18.9568 18.0405 16.8761 16.0205 15.3038 14.9591 14.6297 14.319

Shrinkage 15.8131 15.5067 15.2599 14.9462 14.68 14.4334 14.3041 14.174 14.0642

5 Empirical 23.3851 21.5063 20.3793 19.0875 18.0828 17.294 16.9229 16.5205 16.214

MSSD 25.8751 23.2379 21.7234 19.994 18.7472 17.7318 17.2322 16.7384 16.3304

Shrinkage 18.1071 17.7156 17.3851 16.9978 16.6953 16.4062 16.2625 16.0835 15.9355

We provide R-code (R Core Team, 2013) (in the supplementary material) which practitioners can use

to obtain corrected limits, (hc), for MEWMA charts based on different covariance estimators, different

structures for Σ0, or for Phase I sample sizes (m) that differ from those considered in this study. Also,

practitioners can use the R-code to obtain corrected limits (hc) for MEWMA charts that fix the in-control

ARL at a value different from the one considered in this study (i.e., ARL0 = 200). We adopted the ARL

numerics algorithm for a MEWMA chart Knoth (2017), implemented in the package spc Knoth (2018),

to obtain an arbitrary start value (say h′c), and used a binary search algorithm to search for the corrected

limit.
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Out-of-control performance using corrected limits

The corrected limits given in Section 3.4.2 allowed us to standardize the in-control performance to ARL0 =

200 for each of the methods. However, when estimating parameters, there will be an increase in the mean

out-of-control ARL compared with charts that use a priori known process parameters. In this section,

we compare the performance of control charts, using each of the methods of estimating Σ0 from Phase

I data, with respect to detecting an out-of-control process in Phase II. The simulation procedure is

outlined in Section 3.4.2, with the process mean vector shifted between Phases I and II by values of size

δ = 0.5, 1, 1.5, 2, 2.5 or 3.

We used a modification of the extra quadratic loss (EQL) to measure performance over a range of

shift values (Wu et al., 2009; Ahmad et al., 2013; Adegoke et al., 2018b). EQL is the weighted average

of the ARL over the entire set of shifts observed across the charting structure, using δ2 as the weights

(Ahmad et al., 2013). The modified EQL (MEQL) performance of each control chart was evaluated by

first calculating ARLδ (i.e., ARL of the chart based on the different methods), for each set of simulation.

We then took the difference between the ARLδ for each method with ARLBδ (the ARL of a benchmark

control chart based on known Phase I population parameters µ0 and Σ0). These differences were then

converted into an overall measure of performance by calculating the extra quadratic loss, weighted by δ2,

of the ARL scores across values of δ. This Modified Extra Quadratic Loss is given by:

MEQL =
1

δmax − δmin

∫ δmax

δmin

δ2(ARLδ −ARLBδ) d(δ). (3.20)

where δ2 is the square of the shift size δ, and δmax and δmin are the maximum and minimum shifts, re-

spectively. The integral was solved numerically. A chart with a very low MEQL is, on average, considered

to perform almost as well as the benchmark chart.

Of the different methods used to estimate Σ0, the shrinkage(T4) method consistently gave the best
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Table 3.6: The Modified Average Quality Loss (MAQL) for control charts using various methods
of estimating the covariance matrix. Results are shown for dimensionality p = 2, 3, 4 or 5 and
smoothing parameter r = 0.05. The corrected limits presented in Table 3.5, which standardized
the AARL0 to 200, were used.

m
p Methods 30 40 50 70 100 150 200 300 500
2 Empirical 3.79 3.12 2.68 2.10 1.62 1.18 0.99 0.69 0.44

MSSD 3.53 2.97 2.61 2.06 1.60 1.18 0.94 0.72 0.45
Shrinkage 3.50 2.93 2.46 1.93 1.53 1.15 0.90 0.66 0.42

3 Empirical 5.36 4.32 3.67 2.83 2.13 1.55 1.22 0.86 0.55
MSSD 5.18 4.29 3.73 2.87 2.23 1.58 1.25 0.86 0.54

Shrinkage 4.40 3.70 3.20 2.49 1.86 1.38 1.09 0.74 0.45
4 Empirical 6.55 5.47 4.59 3.53 2.65 1.94 1.50 1.08 0.67

MSSD 6.55 5.52 4.69 3.72 2.78 1.97 1.56 1.09 0.69
Shrinkage 5.53 4.50 3.94 3.03 2.34 1.67 1.32 0.93 0.57

5 Empirical 7.86 6.42 5.38 4.09 3.07 2.21 1.71 1.14 0.76
MSSD 7.76 6.70 5.68 4.34 3.27 2.29 1.77 1.24 0.76

Shrinkage 6.16 5.10 4.40 3.41 2.57 1.90 1.47 1.01 0.62

overall out-of-control performance. The superiority of the shrinkage method was most pronounced for

smaller values of m; as m increased, the performance of all methods converged to that of the benchmark

chart. (Table 3.6).

3.5 Illustrative examples

In this section, we illustrate the performance of the MEWMA chart obtained using the proposed shrinkage

estimate and the other methods for estimating the covariance matrix using two different real data sets.

The first dataset is a bimetal thermostat data set (5 variables); the second is a high-dimensional gene

expression data set (271 variables). We applied each of the methods for estimating Σ0 (Section 3.3.2)

and compared the performance of control charts derived from them. In each analysis, µ0 and Σ0 were

estimated from Phase I data. We used r = 0.05 with two different control limits: the upper control limits

h that give ARL0 of 200 when parameters are known, and the corrected upper control limits hc that give
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ARL0 of 200 when parameters are estimated from the Phase I sample. These values (i.e., the hc’s) were

obtained using the binary search algorithm referred to above in Section 3.4.2.

3.5.1 Example 1: Bimetal thermostat dataset

Bimetal thermostats have a bimetallic strip, composed of two strips of different metals, which together con-

vert changes in temperature to a mechanical displacement via thermal expansion, so that the temperature

may be read (Santos-Fernandez, 2012). The dataset contains measurements of deflection, curvature, resis-

tivity and hardness for each of the low-and-high expansion sides, from brass and steel bimetal thermostats.

These data were given in Santos-Fernandez (2012), and Santos-Fernandez, Edgar and Santos-Fernandez

(2016). The data are divided into two Phases, each comprised of m = 28 time points and p = 5 variables.

When the upper control limits h (given in Table 3.2) were used, the control charts using the empirical

estimate of the covariance matrix or MSSD both detected the first signal after the 14th observation (see

Figure 3.3). However, the control chart based on the shrinkage estimate detected the first signal after the

12th observation. When the corrected upper control limits hc were used, the empirical estimate of the

covariance matrix or MSSD failed to detect a shift. In contrast, the shrinkage method detected the first

signal after the 20th observation. Here, the values of the hc used were 27.7269, 25.0551 and 19.7351, for

the MSSD, empirical and shrinkage estimates of the covariance matrix, respectively.

3.5.2 Example 2: Gene expression dataset

We also illustrate the performance of the methods on the gene expression dataset from two studies by

Pawitan et al. (2005), and Miller et al. (2005). These two studies both took samples from women being

treated for breast cancer in Sweden, but they span different time periods, 1987− 1989 and 1995− 1996,

respectively. Gene expression in breast cancer tumors was measured using H133A affymetrics chips.

Measurements of low quality or without associated survival data were eliminated, which yielded 232
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Figure 3.3: The MEWMA control charts of the Bimetal II data set. The estimated covariance
matrices are obtained from the Bimetal I data set. The smoothing parameter used is r = 0.05
and p = 5. The upper control limit h, for the known parameters case; given in Table 3.2, and the
corrected upper control limit hc; given in Table 3.5, used, are the one that give AARL0 of 200.
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cases for the earlier data collection period and 159 for the later one. There are some differences in the

descriptions of the protocols used to collect the tissues; the earlier samples (232 patients) are described as

“frozen” while the later ones (159 samples) are “frozen immediately on dry ice or in liquid nitrogen and

stored in −70
◦
C freezers”. We treated the differences between the groups as examples of differences that

might arise if a protocol was altered or if a different protocol was used by mistake. Also, we used only a

subset of the gene expression measurements, namely, the 271 genes associated with the erbB-2 pathway

(Thor et al., 1998). These were measured on 391 patients in total. We used the data from 1987 − 1989

as Phase I, and data from 1995− 1996 as Phase II (Ullah, 2015).

We first reduced the dimensionality of the dataset using principal component analysis (PCA), and then

constructed the control charts using the PC axes. Following the Kaiser-Guttman criterion, we retained

only these PC axes whose corresponding eigenvalue, λ, was greater than one (Legendre and Legendre,

1988). Only 55 of the original p = 271 axes had λ > 1. Hence, we retained and used these 55 PC axes

for the Phase I data set. The Phase II data set was projected onto the axes defined by these 55 PC axes

of the Phase I data set. See Ferrer Ferrer (2007, 2014) for the analytical expressions for this projection.

We give the MEMWA charts results for the shrinkage and empirical estimates of the covariance matrices

in Figure 3.5.

When the upper control limit h = 78.43 was used, the control charts from both methods (i.e., the

shrinkage and empirical estimates of the covariance matrix) that estimated the covariance matrix from

Phase I detected the first signal after the 5th (see Figure 3.5). When the corrected upper control limits hc

were used, the empirical estimate of the covariance matrix detected out-of-control behavior after the 7th

observation. In contrast, the shrinkage method detected the first signal after the 5th observation. The

values of the hc used are 122.99 and 89.12, for the empirical and shrinkage estimates of the covariance

matrix, respectively.

Because the PC axes are linear combinations of the original variables, the interpretation of out-of-

66



Figure 3.4: The scree plot of the gene expression data set

control signals can be difficult. Hence, we also considered control charts using the raw gene expression

dataset. Due to the high-dimensionality of the Phase I data set, we were unable to calculate the inverse

of the covariance matrices for either the empirical or the MSSD estimates. This was not true for the

shrinkage method, however, so we can report the results of a MEWMA control chart for the Phase I and

Phase II gene expression datasets using this method (Figure 3.6). All of the Phase I samples were plotted

within the control-chart limit, implying that all of the Phase I samples were in-control. In Phase II, the
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Figure 3.5: The MEWMA control charts of the gene expression data set. The estimated covariance
matrices are obtained from the gene expression Phase I. The smoothing parameter used is r = 0.05
and the number of PC axes k = 55. The logarithms of upper control limit h, and the corrected
upper control limit hc are shown. 68



chart gave an out-of-control signal after the first sample (using h = 323.21 and hc = 369.79).

Figure 3.6: The Shrinkage-based MEWMA control chart of the gene expression for both Phase I
and Phase II data set. The estimated shrinkage covariance matrices are obtained from the gene
expression Phase I data set. The smoothing parameter used is r = 0.05 and p = 271. The
logarithms of upper control limit h, and the corrected upper control limit hc are shown.

3.6 General conclusions

In this paper, we studied the performance of a MEWMA control chart for individual-observation moni-

toring when the in-control parameters (specifically, the mean vector and covariance matrix) are estimated

empirically from Phase I data, including cases where only a small Phase I sample is available. We

propose the use of shrinkage methods for estimating the covariance matrix in MEWMA control charts,

where the diagonal of the unbiased empirical estimate is shrunk towards its median. The performance

of these proposed shrinkage methods were compared with two alternative methods that are in common

usage: MEWMA control charts using either an unbiased empirical estimator or a mean square successive
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difference (MSSD) estimator.

We showed, through simulation, that the in-control performance of the MEWMA control chart is

strongly affected by the estimation procedure unless the Phase I sample is large. We calculated the

corrected control-chart limits for different Phase I sample sizes m, such that they give a standardised

ARL0 when using estimated parameters. In simulations, MEWMA control charts obtained using the

shrinkage estimate of the covariance matrix consistently performed better than other methods, especially

when small Phase I samples were available from the monitoring. On average, the shrinkage estimate had

longer ARL0 for in-control processes and shorter ARL for out-of-control processes. We also demonstrated

superiority of the shrinkage method with real datasets, where it detected true shifts earlier than the

alternatives. The shrinkage method also has the advantage of being applicable for high-dimensional data,

in contrast with the alternative methods, which cannot be used when p > m.
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Chapter 4

Multivariate coefficient of variation

(CV) control charts in Phase I of

statistical process control (SPC)

”This is the peer reviewed version of the following article: “Abbasi, S. A., & Adegoke, N. A. (2018).

Multivariate coefficient of variation control charts in phase I of SPC. The International Journal of

Advanced Manufacturing Technology, 99(5-8), 1903-1916”, which has been published in final form at

https://doi.org/10.1007/s00170-018-2535-3. This article may be used for non-commercial purposes

in accordance with Springer Terms and Conditions for Use of Self-Archived Versions.”

Multivariate control charts are mostly available for monitoring the process mean vector or the covariance

matrix. Recently, work has been done on monitoring the multivariate coefficient of variation (CV) in

Phase II of the statistical process control (SPC). However, no study has investigated the performance

of the Multivariate CV charts in Phase I. The Phase I procedures are more important and involves the
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estimation of the charts’ limits from a historical or reference dataset that represents the in-control state

of the process. In real life, contaminations are mostly present in the historical samples, hence, the Phase

I procedures are mostly adopted to get rid of these contaminated samples. In this study, we investigate

the performance of a variety of multivariate CV charts in Phase I considering both diffuse symmetric

and localized CV disturbance scenarios, using probability to signal as a performance measure. A real-life

application, concerning carbon fiber tubing, is also provided to show the implementation of the proposed

charts in Phase I. The findings of this study will be useful for practitioners in their selection of an efficient

Phase I control chart for monitoring multivariate CV.

4.1 Introduction

Control charts are one of the statistical process control (SPC) problem-solving tools, used to ensure process

uniformity (Montgomery, 2009). The basic purpose of the implementation of control chart procedures

is to detect abnormal/un-natural variations in process parameters. Control charts are mostly employed

in a two-phase procedure (Jensen et al., 2006). In Phase I (retrospective phase), they are used to study

a historical reference sample, which involves establishing the in-control state and evaluating the process

stability to ensure that the reference sample is representative of the process (Zhou et al., 2007). Once

the in-control reference sample is determined, the process parameters, if unknown, are estimated from

Phase I, and control chart limits are obtained for used in Phase II. The Phase II aspect involves online

monitoring of the process. If there occurs any shift in process parameters, it needs to be detected quickly

so that corrective actions can be taken at an early stage.

Most of the works on control charts focus on monitoring either the process mean or the process vari-

ability, and are based on the requirements that the process mean is stable, and independent of the process

standard deviation (cf. (Yeong et al., 2016)). However, in many real-life processes, the process standard
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deviation is dependent on the mean, and the mean is not constant. In such operations, monitoring the

process mean using the X̄ chart; or using S or R charts for monitoring process variability, seem to be

improper. In such cases, it is more appropriate to monitor the coefficient of variation (CV).

The univariate CV is the ratio of the standard deviation to the mean of a random variable, i.e., γ =
σ

µ
.

As a relative dispersion measure to the mean, it is useful for comparing the variability of populations

with really diverse means, and considerably straightforward to interpret in practice (Aerts et al., 2015).

The use of the CV is prevalent in many applications in science, medicine, engineering, economics, etc.

For example, it can be used to measure the reliability of an assay in medicine and chemistry (Reed et al.,

2002). Also, in clinical trials, to account for baseline variability of measurements (Pereira et al., 2004),

and in quality control, to seek production processes with minimal dispersion (George Box, 1988).

Several univariate CV control charts have been adopted in many practical applications. A primary

criterion for the usage of the univariate CV chart is that the standard deviation needs to be proportional

to the mean so that the CV is constant. This is usually checked by plotting the rational group CV against

the mean (Kang et al., 2007). In most cases, the plot is supplemented with a regression line and is also

followed by a formal test of the regression slope. If the CV is constant, the CV is independent of the

mean. We refer the interested reader to Kang et al. (2007); Calzada and Scariano (2013); Zhang et al.

(2014); Castagliola et al. (2013), and Yeong et al. (2017) for some work on univariate CV charts. Also,

see Yeong et al. (2016) for a comprehensive review of CV charts that monitor the CV for univariate data.

When a p−dimensional normal random vector Y with mean vectorµ0 and the covariance matrix (Σ0)

is available, the calculation of the univariate CV of each random variable is not suitable, since no account

is made for the correlation structure. Various multivariate extensions of the univariate CV have been

proposed, all of which reduce to univariate CV when the number of variables (p) is equal to one and the

mean is positive. However, as soon as p is greater than one, they do not measure the same quantity (Aerts

et al., 2015). Reyment (1960) was the first to generalize the univariate theory of the relative variation to
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multivariate CV. He gave a definition where the denominator denotes the squared norm of the mean, and

the numerator signifies the geometric average of the eigenvalues of Σ0.

Van Valen (1974) examined the approach by Reyment (1960), argued that the determinant of Σ0 will

be null or close to zero if one of its eigenvalues is zero or very small. This determinant measures the area

of the ellipsoids of the distribution under consideration and expresses in terms of the correlation structure

of the data matrix. Voinov, V. G. and Nikulin (1996) established that a generalization of the multivariate

CV can be obtained from the well-known Mahalanobis distance. They showed that this measure of

variation between µ0 and Σ0 becomes bigger in the sense of positive definiteness as µT0 µ0 becomes big.

Their definition has the characteristic of being unchanged under linear transformations. Hence, changing

the scale of some or all of the variables will not affect their multivariate CV. More recently, Albert and

Zhang (2010) reviewed the existing multivariate CV and proposed a new multivariate CV. Their proposed

scheme is well suited for high-dimensional problems, as it does not require matrix inversion, only involves

the calculation of the mean vector, covariance matrix and simple quadratic forms. To check whether CV

is constant for multivariate datasets, it is usually recommended to plot the square of the rational group

estimated multivariate CV against Ȳ
T
Ȳ , where Ȳ is the sample mean vector. This is also followed by a

formal test of the regression slope (Kang et al., 2007).

Yeong et al. (2016) proposed two one-sided multivariate CV charts in Phase II. They adopted the

multivariate CV definition by Voinov, V. G. and Nikulin (1996), and presented the distributional prop-

erties of the multivariate CV in Phase II, using average run length (ARL). They also employed expected

average run length (EARL) when the shift size is unknown. ARL is defined as the average number of

samples that is plotted on a control chart until an out-of-control signal is issued by the chart while EARL

is the expected value of the ARL, integrated over the density function of the shift size. However, a major

setback of the proposed two one-sided multivariate CV by Yeong et al. (2016), is that the charts are slow

in detecting multivariate CV shift in the Phase-II process. To overcome this problem, Lim et al. (2017)
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proposed two one-sided run sum charts for monitoring the multivariate CV in the Phase-II process. The

charts are simultaneously utilized to detect positive and negative shifts in multivariate CV.

In all of the proposed multivariate CV charts, the multivariate CV statistics (γ), is given as functions

of the process parameters, µ0 and Σ0. For example, the multivariate CV statistic by Voinov, V. G. and

Nikulin (1996) given as (µT0 Σ−1
0 µ0)−1/2, depends on the in-control process parameters. In practice, these

parameters are usually unknown, and therefore, must be estimated from samples taken when the process

is assumed to be in control. Specifically, the process parameters are generally estimated by the sample

mean vector Ȳ , and sample covariance matrix S, respectively, given as follows: Ȳ =
1

n

∑n
i=1 yi and

S =
1

(n− 1)

∑n
ij=1 (yi − ȳ)(yj − ȳ)T , where n is the sample size from the process at each time point

i = 1, 2, . . . , n. The Phase II performance of the multivariate CV depends on the stability of the estimated

parameters obtained from Phase I. An optimal performance requires any changes in these parameters to

be detected as early as possible (Riaz and Schoonhoven, 2011). Thus, it is important to study the Phase

I analysis of the multivariate CV chart.

This chapter aims to provide a comprehensive study of the Phase I analysis of the multivariate

CV charts for monitoring multivariate CV. We investigate the Phase I performance of the charts using

different multivariate CV expressions proposed in the literature. We use probability to signal (PTS) as

a performance measure. The PTS performance measure has found great application in Phase I analysis

of the control charts for both location and dispersion parameters. The rest of the chapter is organized

as follows. In Section 4.2, we present the different multivariate CV expressions and their estimates. This

section also provides the design structure of the multivariate CV charts in Phase I. We describe the

simulation study in Section 4.3, and present our results and discussion in Section 4.4. In Section 4.5, we

offer an illustrative example using real data and give conclusions and recommendations in Section 4.6.
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4.2 Multivariate CV in Phase I

Reyment (1960), Voinov, V. G. and Nikulin (1996), and Albert and Zhang (2010), respectively, proposed

different multivariate extensions of the univariate CV, which have received significant attention in the

literature. Reyment (1960) proposal (hereafter denoted by γRR) is given as:

γRR =
(
det(Σ0)1/p/µT0 µ0

)1/2
(4.1)

The denominator of γRR represents the squared norm of the mean, given as µT0 µ0 =
∑p

i=1µ
2
0. The γRR

requires positive definiteness and full rank of Σ0. Voinov, V. G. and Nikulin (1996) established multi-

variate CV as a generalization of the Mahalanobis distance. Their proposed multivariate CV (denoted

hereafter by γV N ) is given as:

γV N =
(
µT0 Σ−1

0 µ0

)−1/2
(4.2)

The γV N expression is invariant under change of scale, require full rank and positive definite of Σ0. Thus,

it is not-well suited for high-dimensional data because it relies on the inverse of Σ0. However, the proposed

multivariate extension of the univariate CV (denoted hereafter as γAZ) by Albert and Zhang (2010) given

as:

γAZ =
(
µT0 Σ0µ0/(µ

T
0 µ0)2

)1/2
(4.3)

is well-suited for high-dimensional, as it does not require the inverse of Σ0 and always exist. Specifically,

γAZ does not need the full rank of Σ0.

When the parameters are unknown, we obtain m samples each of size n observations on the quality

characteristics in Phase I. Let Y 1,Y 2,Y 3, . . . ,Y n be the random sample of size n from the p−variate

normal distribution with parameters µ0 and Σ0. To estimate the multivariate CV in Equations (4.1),

(4.2) and (4.3), we replaced µ0 and Σ0, by their estimated values from the m samples. Specifically, we
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replaced the vector µ0 by the sample mean vector (Ȳ ), and the Σ0 matrix is replaced by the sample

covariance matrix S0. The estimated CV from Reyment (1960); Voinov, V. G. and Nikulin (1996), and

Albert and Zhang (2010) are respectively given as:

γ̂RR =
(
det(S)1/p/Ȳ

T
Ȳ
)1/2

(4.4)

γ̂V N =
(
Ȳ
T
S−1Ȳ

)−1/2
(4.5)

γ̂AZ =
(
Ȳ
T
SȲ /(Ȳ

T
Ȳ )2

)1/2
(4.6)

Hence, the control charts for the multivariate CV in Phase I are time-ordered plots of the estimated CV

from a given number of historical samples.

To obtain the one-sided upper control limit used in this study, we define a statistic Vj =
γ̂j
γ

; ∀ j =

RR, V N,AZ, where γ̂j ; ∀ j = RR, V N,AZ is the estimated coefficient of variation defined above, and γ

is the process coefficient of variation value. By taking the expectation Vj on both sides, we get E(Vj) =

E(γ̂j)

γ
= d2,j,m,n. Where, for a specific multivariate CV estimator, d2 entirely depends on sample size

(n), and the number of Phase I samples (m). The E(γ̂j) can be replaced with the average of sample

γ̂j ’s (given as

(
¯̂γj =

∑m
i=1 γ̂j,i
m

)
) computed from the Phase I samples. Hence, an unbiased estimator of

multivariate CV can be defined as ˆgamma =
¯̂γj

d2,j,n
; ∀ j = RR, V N,AZ.

Using these notations, we set the one-sided upper probability limits for the Phase I multivariate CV

charts, considered in this study as ÛCLj,m,n = Vm,n,j
¯̂γj

d2,j,m,n
, where Vm,n,j is a control chart constant,

used to fix the false alarm probability (α) at a particular level. Let Wi be the event that γ̂i is above ÛCL.

Hence, P (Wi|γ̂) is the probability that sample i generates a signal given γ̂, i.e., P (γ̂i > ÛCL|γ̂) = α∗;
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where α∗ is the probability to signal for a single sample. The overall false alarm probability (FAP) is

calculated as α = 1 − (1 − α∗)m. For the rest of this chapter, control chart structures based on the

multivariate CV estimators γ̂RR, γ̂V N , and γ̂AZ will be referred as MCVR, MCVV N , and MCVAZ charts,

respectively.

4.3 Performance evaluation in Phase I

For the performance evaluation of control charts, the two well-known measures are average run length

(ARL) and probability to signal (PTS). ARL is well suited for Phase II control charts while for Phase I

charts (Adegoke et al., 2018b), one is mostly interested in the probability of detecting inconsistent/contaminated

samples (or observations). Hence, in this study, PTS is used to compare the performance of the three

multivariate CV control charts in Phase I. At first, we need to simulate the in-control process for obtaining

control chart constants d2,m,n and Vm,n to achieve the desired FAP (α) using the control limits for Phase

I reference samples. For finding these constants at different levels of m and n, the following steps are

taken:

• 100,000 Phase I datasets comprising m samples of size n are generated from the in-control multi-

variate normal process, i.e., Np(µ0,Σ0(γ)).

• The sample mean vector Ȳ and the sample covariance matrix S are estimated for the m samples

in each set.

• Using these Ȳ and S for the m samples, the multivariate CV is estimated by all the three estimators

(defined in Equations (4.4-4.6)).

• d2,m,n values are obtained as the mean of these 100, 000 estimated multivariate CV’s and are pro-

vided in Table 4.1 for m = 30 and 75 using n = 5, 10 and 15.
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• Moreover, for each set, the estimated CV’s are plotted against the upper control limit (defined in

Section 4.2).

• The control limit constant Vm,n is chosen to set the desired FAP (α). The Vm,n choices for m = 30

and 75 using n = 5, 10 and 15 are also provided in Table 4.1, considering α = 0.01.

After fixing the control limits for specific choices of m and n, the performance of the three charts

is evaluated using probability to signal in the presence of localized CV and diffuse symmetric CV dis-

turbances, following Riaz and Schoonhoven (2011). These contaminated scenarios are briefly described

below:

• A model for localized CV disturbances in which m0 (out of m) samples are drawn from in-control

process Np(µ0,Σ0(γ)), and the remaining m1 = m − m0 samples are drawn from out-of-control

process Np(µ0,Σ0(δγ)).

• A model for diffuse symmetric CV disturbances in which each observation in m subgroups of size

n has a% probability of being drawn from Np(µ0,Σ0(γ)), and b = 100 − a% probability of being

drawn from Np(µ0,Σ0(δγ)).

Here, δ refers to the size of the shift in the in-control multivariate CV. The probability to signal is computed

for both these scenarios considering a variety of shift levels. The steps taken for the computation of PTS

are given below:

• 100, 000 Phase I datasets comprising m samples of size n are simulated from the contaminated

scenarios at each level of shift δ.

• The multivariate CV estimates were computed for each dataset using Equations (4.4-4.6) and plotted

against the upper control limit using the control chart constants d2,m,n and Vm,n provided in Table

4.1
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Table 4.1: The d2(n) and Vn values for different values of m and n for all the three charts when
α = 0.01

m = 30 m = 75
n V N AZ R V N AZ R
5 Vn 2.175 2.295 1.776 2.297 2.425 1.866

d2(n) 0.79846 0.94060 0.83156 0.79892 0.94105 0.83169
10 Vn 1.793 1.849 1.551 1.864 1.921 1.598

d2(n) 0.91455 0.97329 0.92879 0.91423 0.97301 0.92851
15 Vn 1.626 1.664 1.443 1.696 1.729 1.481

d2(n) 0.94532 0.98234 0.95438 0.94549 0.98249 0.95463

• The PTS is then computed as the proportion of sample CV’s plotted above the upper control limit.

A chart with higher probability to detect inconsistencies/contaminations in the Phase I samples will

be treated better than others. For the localized CV disturbances, the probability of signaling values are

calculated using m1 = 3, 6, 9 and 12, when m = 30, and m1 = 7, 15, 22 and 30, when m = 75. For the

diffuse symmetric CV disturbances, the PTS is calculated using a = 5, 10, 15 and 20, for m = 30 and 75.

These PTS results are provided in Tables 4.2 - 4.3 and Tables 4.4 - 4.5, for the localized CV and diffuse

symmetric CV disturbances, respectively. Moreover, for better visual comparison, the PTS of the three

multivariate CV charts are compared in Figures 4.1 - 4.3. In each graph, the PTS of each multivariate CV

chart is plotted against shift δ. Figures 4.1 - 4.2 presents the comparison using n = 10, m = 30 at different

levels of m1 and a in presence of localized CV and diffuse symmetric CV disturbances, respectively. The

effect of sample size on the performance of the MCVVN chart, is presented in Figure 4.3 using m = 30

at different levels of n, in presence of localized CV (using m1 = 6) and diffuse symmetric CV (b = 10%)

disturbances. Similar comparisons can be made for the MCVR and MCVV Z charts.

4.4 Results and discussion

In this section, we provide a comprehensive study of the Phase I analysis of the multivariate CV control

charts considered in this study. For a fixed FAP α = 0.01, the chart that yields the highest probability
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of signaling is considered better than the other control charts. We aim to recommend the choice of the

multivariate CV control chart that gives the best Phase I performance. The effects of the shift size, the

sample size (n) and m1 on the proposed charts are also studied. The significant findings of the Phase I

analysis are summarized below:

1 In the presence of localized CV disturbances, the MCVR chart, followed by the MCVV N chart,

dominantly performed better than the MCVAZ chart, especially for small to moderate shift in the

in-control CV. This is true for all values of n, m, and m1. For example, when n = 10, δ = 1.6,

and m1 = 6, in Table 4.2, the PTS values are 0.3629, 0.4048 and 0.6440, for the MCVAZ , MCVV N

and MCVR charts, respectively. Figure 4.1 provides a graphical comparison of the three charts in

presence of localized CV disturbances for n = 10 and m = 30, when m1 = 6 and 12, respectively.

2 In the presence of diffuse symmetric CV disturbances, the MCVV N chart, followed very closely by

the MCVR, chart, dominantly performed better than the MCVAZ chart, also for small to moderate

shift in the in-control CV value and small values of b. For example, when n = 10, δ = 1.6, and

b = 10, in Table 4.4, the PTS values are 0.0014, 0.0572 and 0.0460, for the MCVAZ , MCVV N and

MCVR charts, respectively. Figure 4.2 provides a graphical comparison of the three multivariate

CV charts in presence of diffused symmetric CV disturbances for n = 10 and m = 30, for b(%) = 10

and 15, respectively.

3 Clearly observed from Figures 4.1 - 4.2 the probability of signaling for all the multivariate CV charts

approaches one, as the size of the shifts increases in the presence of both localized CV and diffuse

symmetric CV disturbances.

4 It can be observed from Figure 4.3 that for any given value of m1 or b%, greater PTS is observed

when large values of n are used (also see Tables 4.2- 4.5).

5 Increasing the size of m increases the PTS of all the multivariate CV charts.
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Table 4.2: The PTS values of the localized CV disturbances model for m = 30 , α = 0.01 at
different levels of n and m1

V N AZ R
n m1 m1 m1

5 δ 3 6 9 12 3 6 9 12 3 6 9 12
1.0 0.0103 0.0100 0.0100 0.0098 0.0095 0.0096 0.0103 0.0102 0.0098 0.0100 0.0096 0.0096
1.2 0.0162 0.0207 0.0254 0.0258 0.0154 0.0183 0.0199 0.0210 0.0229 0.0298 0.0302 0.0311
1.4 0.0599 0.0786 0.0781 0.0722 0.0430 0.0565 0.0587 0.0519 0.0915 0.1148 0.1128 0.1025
1.6 0.1490 0.1853 0.1784 0.1513 0.1084 0.1337 0.1271 0.1122 0.2321 0.2798 0.2670 0.2192
1.8 0.2680 0.3267 0.2997 0.2501 0.1961 0.2404 0.2237 0.1849 0.4002 0.4761 0.4482 0.3627
2.0 0.3950 0.4676 0.4313 0.3570 0.3001 0.3566 0.3294 0.2689 0.5540 0.6439 0.6073 0.5061
2.5 0.6461 0.7362 0.6995 0.5955 0.5361 0.6150 0.5697 0.4682 0.7858 0.8762 0.8548 0.7671
3.0 0.7806 0.8669 0.8447 0.7513 0.6881 0.7752 0.7352 0.6273 0.8720 0.9502 0.9444 0.8909
4.0 0.8829 0.9529 0.9456 0.8966 0.8273 0.9056 0.8863 0.8070 0.9276 0.9841 0.9859 0.9687
5.0 0.9149 0.9746 0.9733 0.9448 0.8792 0.9462 0.9375 0.8832 0.9422 0.9912 0.9936 0.9859

10 1.0 0.0102 0.0096 0.0103 0.0103 0.0104 0.0097 0.0104 0.0105 0.0103 0.0100 0.0097 0.0096
1.2 0.0266 0.0346 0.0395 0.0358 0.0246 0.0327 0.0346 0.0334 0.0429 0.0574 0.0567 0.0516
1.4 0.1323 0.1685 0.1623 0.1340 0.1148 0.1462 0.1432 0.1201 0.2460 0.2955 0.2756 0.2283
1.6 0.3390 0.4048 0.3747 0.3088 0.2954 0.3629 0.3328 0.2686 0.5602 0.6440 0.6037 0.4994
1.8 0.5527 0.6444 0.6033 0.4973 0.5044 0.5874 0.5441 0.4495 0.7707 0.8644 0.8400 0.7432
2.0 0.7105 0.8063 0.7735 0.6642 0.6663 0.7601 0.7188 0.6104 0.8726 0.9505 0.9448 0.8871
2.5 0.8821 0.9573 0.9522 0.8987 0.8599 0.9397 0.9290 0.8618 0.9414 0.9926 0.9954 0.9877
3.0 0.9284 0.9859 0.9878 0.9685 0.9170 0.9796 0.9802 0.9510 0.9534 0.9970 0.9992 0.9981
4.0 0.9503 0.9956 0.9980 0.9949 0.9465 0.9940 0.9965 0.9908 0.9571 0.9984 0.9998 0.9998
5.0 0.9547 0.9972 0.9992 0.9983 0.9531 0.9965 0.9987 0.9968 0.9574 0.9986 0.9999 0.9999

15 1.0 0.0104 0.0097 0.0102 0.0097 0.0099 0.0101 0.0097 0.0101 0.0098 0.0098 0.0099 0.0101
1.2 0.0436 0.0588 0.0617 0.0581 0.0416 0.0585 0.0630 0.0573 0.0730 0.0993 0.0972 0.0844
1.4 0.2344 0.2898 0.2793 0.2301 0.2165 0.2728 0.2622 0.2194 0.4358 0.5106 0.4738 0.3811
1.6 0.5301 0.6221 0.5855 0.4890 0.5028 0.5930 0.5583 0.4635 0.7733 0.8700 0.8495 0.7540
1.8 0.7490 0.8490 0.8226 0.7241 0.7227 0.8216 0.7969 0.6944 0.9004 0.9717 0.9718 0.9370
2.0 0.8559 0.9417 0.9339 0.8708 0.8394 0.9282 0.9175 0.8465 0.9383 0.9917 0.9947 0.9862
2.5 0.9369 0.9908 0.9939 0.9839 0.9320 0.9885 0.9914 0.9777 0.9559 0.9980 0.9997 0.9996
3.0 0.9520 0.9965 0.9989 0.9974 0.9502 0.9959 0.9984 0.9960 0.9574 0.9986 0.9999 1.0000
4.0 0.9569 0.9983 0.9998 0.9998 0.9564 0.9981 0.9997 0.9996 0.9576 0.9987 1.0000 1.0000
5.0 0.9574 0.9986 0.9999 0.9999 0.9572 0.9985 0.9999 0.9999 0.9576 0.9988 1.0000 1.0000
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Table 4.3: The PTS values of the localized CV disturbances model for m = 75 , α = 0.01 at
different levels of n and m1

V N AZ R
n m1 m1 m1

5 δ 7 15 22 30 7 15 22 30 7 15 22 30
1.0 0.0101 0.0103 0.0105 0.0096 0.0101 0.0096 0.0101 0.0104 0.0096 0.0098 0.01 0.01
1.2 0.0230 0.0265 0.0282 0.0290 0.0215 0.0239 0.0264 0.0244 0.0275 0.0366 0.0402 0.0387
1.4 0.0883 0.1160 0.1128 0.0968 0.0697 0.0905 0.0864 0.0738 0.1398 0.1771 0.1699 0.1435
1.6 0.2360 0.2937 0.2716 0.2220 0.1752 0.2242 0.2090 0.1717 0.3593 0.4317 0.4020 0.3232
1.8 0.4292 0.5058 0.4626 0.3786 0.3307 0.3972 0.3635 0.2948 0.6092 0.6896 0.6458 0.5290
2.0 0.6147 0.6963 0.6479 0.5324 0.4976 0.5705 0.5277 0.4277 0.7890 0.8607 0.8237 0.7091
2.5 0.8792 0.9332 0.9067 0.8118 0.7917 0.8605 0.8177 0.6972 0.9586 0.9865 0.9788 0.9353
3.0 0.9584 0.9859 0.9773 0.9321 0.9136 0.9574 0.9355 0.8539 0.9880 0.9984 0.9975 0.9872
4.0 0.9904 0.9987 0.9980 0.9896 0.9776 0.9942 0.9902 0.9650 0.9971 0.9999 0.9999 0.9992
5.0 0.9956 0.9997 0.9996 0.9975 0.9901 0.9985 0.9975 0.9887 0.9984 1.0000 1.0000 0.9999

10 1.0 0.0098 0.0101 0.0104 0.0102 0.0101 0.0104 0.0097 0.0099 0.01 0.0103 0.01 0.0099
1.2 0.0401 0.0535 0.0551 0.0526 0.0351 0.0486 0.0494 0.0483 0.0620 0.0843 0.0849 0.0748
1.4 0.2127 0.2679 0.2430 0.2009 0.1846 0.2389 0.2209 0.1812 0.3919 0.4664 0.4311 0.3427
1.6 0.5305 0.6182 0.5740 0.4595 0.4804 0.5615 0.5190 0.4105 0.7899 0.8662 0.8290 0.7085
1.8 0.7933 0.8667 0.8271 0.7087 0.7437 0.8217 0.7767 0.6527 0.9514 0.9837 0.9752 0.9233
2.0 0.9196 0.9652 0.9469 0.8696 0.8905 0.9448 0.9192 0.8271 0.9877 0.9984 0.9976 0.9860
2.5 0.9900 0.9989 0.9983 0.9892 0.9851 0.9977 0.9962 0.9797 0.9983 1.0000 1.0000 0.9999
3.0 0.9972 0.9999 0.9999 0.9992 0.9959 0.9998 0.9998 0.9979 0.9991 1.0000 1.0000 1.0000
4.0 0.9989 1.0000 1.0000 1.0000 0.9987 1.0000 1.0000 1.0000 0.9993 1.0000 1.0000 1.0000
5.0 0.9992 1.0000 1.0000 1.0000 0.9991 1.0000 1.0000 1.0000 0.9993 1.0000 1.0000 1.0000

15 1.0 0.0099 0.0095 0.0103 0.0096 0.0103 0.0102 0.0102 0.0099 0.0097 0.0102 0.01 0.0103
1.2 0.0578 0.0804 0.0826 0.0719 0.0527 0.0739 0.0754 0.0660 0.1105 0.1459 0.1403 0.1170
1.4 0.3508 0.4326 0.4062 0.3216 0.3160 0.3935 0.3696 0.2898 0.6420 0.7281 0.6828 0.5570
1.6 0.7456 0.8302 0.7923 0.6698 0.7090 0.7920 0.7470 0.6239 0.9505 0.9842 0.9754 0.9219
1.8 0.9349 0.9745 0.9613 0.8946 0.9165 0.9626 0.9440 0.8619 0.9930 0.9995 0.9994 0.9951
2.0 0.9825 0.9971 0.9953 0.9757 0.9765 0.9949 0.9916 0.9627 0.9980 1.0000 1.0000 0.9998
2.5 0.9978 1.0000 1.0000 0.9997 0.9973 0.9999 0.9999 0.9993 0.9993 1.0000 1.0000 1.0000
3.0 0.9990 1.0000 1.0000 1.0000 0.9989 1.0000 1.0000 1.0000 0.9993 1.0000 1.0000 1.0000
4.0 0.9993 1.0000 1.0000 1.0000 0.9993 1.0000 1.0000 1.0000 0.9994 1.0000 1.0000 1.0000
5.0 0.9993 1.0000 1.0000 1.0000 0.9993 1.0000 1.0000 1.0000 0.9994 1.0000 1.0000 1.0000

4.5 Illustrative example

In this section, we provide an illustrative example to show the applications of the proposed multivariate

CV charts in real life situation, using the carbon fiber tubing dataset. The carbon fiber tubes are

mostly composed of carbon atoms and have numerous properties which include high stiffness, high tensile

strength, high chemical resistance, high-temperature tolerance, low weight, and low thermal expansion

(Zhang et al., 2016). These features have made carbon fiber prevalent in aerospace, beam constructions,
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Table 4.4: The PTS values of the diffused symmetric CV disturbances model for m = 30 , α = 0.01
at different levels of n and b

V N AZ R
n b% b% b%
5 δ 5 10 15 20 5 10 15 20 5 10 15 20

1.0 0.0098 0.0097 0.0097 0.0104 0.0100 0.0101 0.0103 0.0099 0.0099 0.0099 0.0102 0.0095
1.2 0.0101 0.0104 0.0114 0.0117 0.0000 0.0000 0.0000 0.0000 0.0139 0.0142 0.0146 0.0155
1.4 0.0167 0.0221 0.0240 0.0269 0.0001 0.0002 0.0002 0.0001 0.0178 0.0220 0.0265 0.0307
1.6 0.0350 0.0493 0.0548 0.0579 0.0002 0.0006 0.0011 0.0015 0.0288 0.0410 0.0507 0.0583
1.8 0.0616 0.0912 0.1036 0.1060 0.0012 0.0025 0.0025 0.0035 0.0445 0.0694 0.0838 0.0993
2.0 0.1046 0.1544 0.1665 0.1679 0.0028 0.0062 0.0087 0.0090 0.0654 0.1095 0.1341 0.1498
2.5 0.2425 0.3302 0.3468 0.3370 0.0150 0.0327 0.0407 0.0426 0.1503 0.2396 0.2825 0.3062
3.0 0.3962 0.5036 0.5084 0.4849 0.0399 0.0787 0.1005 0.1073 0.2547 0.3798 0.4338 0.4624
4.0 0.6347 0.7259 0.7196 0.6751 0.1289 0.2273 0.2645 0.2719 0.4528 0.6029 0.6580 0.6837
5.0 0.7680 0.8369 0.8204 0.7760 0.2422 0.3794 0.4267 0.4335 0.6029 0.7343 0.7809 0.8020

10 1.0 0.0103 0.0100 0.0098 0.0103 0.0097 0.0099 0.0103 0.0101 0.0103 0.0104 0.0103 0.0098
1.2 0.0108 0.0112 0.0130 0.0142 0.0000 0.0000 0.0000 0.0000 0.0101 0.0113 0.0116 0.0125
1.4 0.0177 0.0265 0.0298 0.0335 0.0000 0.0003 0.0002 0.0002 0.0161 0.0221 0.0254 0.0275
1.6 0.0381 0.0572 0.0642 0.0707 0.0005 0.0014 0.0014 0.0020 0.0301 0.0460 0.0538 0.0598
1.8 0.0776 0.1136 0.1260 0.1264 0.0028 0.0056 0.0066 0.0067 0.0595 0.0885 0.1094 0.1170
2.0 0.1380 0.1903 0.2036 0.2020 0.0065 0.0143 0.0163 0.0167 0.1031 0.1556 0.1821 0.1956
2.5 0.3420 0.4210 0.4304 0.3984 0.0430 0.0720 0.0816 0.0768 0.2599 0.3727 0.4165 0.4270
3.0 0.5488 0.6197 0.6092 0.5648 0.1229 0.1904 0.2031 0.1821 0.4365 0.5712 0.6185 0.6196
4.0 0.7999 0.8417 0.8108 0.7569 0.3415 0.4637 0.4751 0.4323 0.7039 0.8118 0.8389 0.8304
5.0 0.9063 0.9229 0.8937 0.8430 0.5362 0.6670 0.6717 0.6192 0.8404 0.9075 0.9248 0.9151

15 1.0 0.0102 0.0102 0.0100 0.0103 0.0100 0.0099 0.0103 0.0097 0.0097 0.0097 0.0096 0.0101
1.2 0.0134 0.0149 0.0156 0.0168 0.0001 0.0000 0.0001 0.0001 0.0124 0.0141 0.0138 0.0147
1.4 0.0250 0.0326 0.0369 0.0407 0.0003 0.0003 0.0004 0.0007 0.0198 0.0276 0.0303 0.0334
1.6 0.0486 0.0694 0.0808 0.0855 0.0010 0.0018 0.0020 0.0027 0.0362 0.0610 0.0709 0.0765
1.8 0.0948 0.1335 0.1492 0.1490 0.0051 0.0080 0.0081 0.0101 0.0702 0.1163 0.1346 0.1475
2.0 0.1611 0.2233 0.2349 0.2283 0.0132 0.0225 0.0246 0.0238 0.1209 0.1938 0.2198 0.2332
2.5 0.3921 0.4768 0.4766 0.4434 0.0650 0.1104 0.1160 0.1064 0.3228 0.4455 0.4782 0.4773
3.0 0.6124 0.6815 0.6613 0.6084 0.1754 0.2575 0.2620 0.2313 0.5296 0.6624 0.6922 0.6710
4.0 0.8594 0.8815 0.8492 0.7907 0.4659 0.5801 0.5607 0.4889 0.8042 0.8821 0.8895 0.8688
5.0 0.9437 0.9485 0.9195 0.8668 0.6882 0.7771 0.7501 0.6634 0.9124 0.9532 0.9536 0.9379

and motorsports, among others.

Pultrusion or filament winding process is commonly used to manufacture the carbon fiber tube. The

pultrusion is a continuous process of fabricating composite materials. Pultruded tubes are the most cost-

effective approach to making continuous hollow tubes, which can be achieved by following a sequence of

operations. The first step in the operations is continuous fiberglass reinforcement, which involves rolling of

the filament or fabric to maintain strength across the profile. The fabrics are then attached to a machine

known as a tension roller, which will help to shape it as intended. The process is then introduced into
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Table 4.5: The PTS values of the diffused symmetric CV disturbances model for m = 75 , α = 0.01
at different levels of n and b

V N AZ R
n b% b% b%
5 δ 5 10 15 20 5 10 15 20 5 10 15 20

1.0 0.0104 0.0100 0.0100 0.0102 0.0101 0.0099 0.0098 0.0104 0.0100 0.0103 0.0100 0.0103
1.2 0.0118 0.0142 0.0152 0.0162 0.0001 0.0001 0.0001 0.0001 0.0132 0.0138 0.0145 0.0160
1.4 0.0244 0.0316 0.0404 0.0430 0.0002 0.0001 0.0001 0.0003 0.0196 0.0256 0.0312 0.0359
1.6 0.0545 0.0791 0.0968 0.0990 0.0004 0.0008 0.0010 0.0015 0.0388 0.0556 0.0697 0.0813
1.8 0.1063 0.1613 0.1829 0.1822 0.0016 0.0038 0.0051 0.0054 0.0677 0.1057 0.1340 0.1482
2.0 0.1922 0.2628 0.2924 0.2848 0.0047 0.0087 0.0116 0.0145 0.1076 0.1754 0.2200 0.2432
2.5 0.4416 0.5481 0.5656 0.5447 0.0311 0.0552 0.0692 0.0740 0.2666 0.4015 0.4715 0.5030
3.0 0.6613 0.7593 0.7602 0.7303 0.0846 0.1552 0.1857 0.1879 0.4479 0.6124 0.6811 0.7105
4.0 0.8909 0.9361 0.9263 0.9018 0.2666 0.4186 0.4763 0.4793 0.7243 0.8530 0.8970 0.9125
5.0 0.9625 0.9799 0.9725 0.9560 0.4650 0.6384 0.6992 0.7009 0.8646 0.9412 0.9630 0.9696

10 1.0 0.0103 0.0096 0.0096 0.0104 0.0101 0.0104 0.0101 0.0100 0.0102 0.0102 0.0097 0.0104
1.2 0.0136 0.0162 0.0173 0.0183 0.0000 0.0000 0.0000 0.0000 0.0121 0.0145 0.0156 0.0182
1.4 0.0284 0.0381 0.0448 0.0499 0.0001 0.0002 0.0004 0.0003 0.0214 0.0309 0.0373 0.0438
1.6 0.0634 0.0949 0.1047 0.1136 0.0007 0.0017 0.0021 0.0026 0.0453 0.0748 0.0926 0.1081
1.8 0.1352 0.1920 0.2094 0.2126 0.0028 0.0072 0.0088 0.0102 0.0984 0.1580 0.1921 0.2079
2.0 0.2461 0.3230 0.3395 0.3362 0.0114 0.0226 0.0283 0.0272 0.1749 0.2739 0.3230 0.3435
2.5 0.5787 0.6688 0.6681 0.6252 0.0757 0.1307 0.1453 0.1359 0.4429 0.6008 0.6606 0.6700
3.0 0.8136 0.8692 0.8554 0.8117 0.2145 0.3298 0.3516 0.3213 0.6908 0.8258 0.8634 0.8637
4.0 0.9717 0.9813 0.9706 0.9471 0.5720 0.7153 0.7269 0.6749 0.9257 0.9731 0.9807 0.9781
5.0 0.9950 0.9965 0.9921 0.9804 0.8012 0.9028 0.9011 0.8607 0.9818 0.9950 0.9968 0.9955

15 1.0 0.0100 0.0097 0.0098 0.0102 0.0101 0.0104 0.0101 0.0101 0.0097 0.0098 0.0103 0.0098
1.2 0.0147 0.0162 0.0180 0.0200 0.0000 0.0000 0.0000 0.0000 0.0121 0.0137 0.0134 0.0162
1.4 0.0286 0.0401 0.0456 0.0486 0.0001 0.0002 0.0001 0.0004 0.0213 0.0337 0.0388 0.0450
1.6 0.0656 0.0967 0.1121 0.1187 0.0010 0.0013 0.0020 0.0024 0.0532 0.0842 0.1011 0.1162
1.8 0.1436 0.1967 0.2156 0.2218 0.0043 0.0081 0.0091 0.0104 0.1134 0.1797 0.2185 0.2336
2.0 0.2624 0.3375 0.3549 0.3477 0.0145 0.0272 0.0287 0.0312 0.2104 0.3129 0.3722 0.3827
2.5 0.6180 0.6992 0.6874 0.6498 0.0988 0.1578 0.1639 0.1523 0.5388 0.6863 0.7296 0.7245
3.0 0.8626 0.8934 0.8734 0.8281 0.2904 0.3989 0.3985 0.3472 0.7980 0.8959 0.9128 0.9008
4.0 0.9860 0.9885 0.9780 0.9542 0.7132 0.8074 0.7838 0.6978 0.9714 0.9907 0.9915 0.9872
5.0 0.9984 0.9983 0.9945 0.9836 0.9083 0.9518 0.9324 0.8739 0.9954 0.9989 0.9989 0.9977

a resin mixture, which will soak and permeate it, and the resin base is exposed to a heat source. After

it, the profile is moved along a pull mechanism to meet the cutting saw, where it is cut into appropriate

lengths. This completes the pultrusion process. The pultrusion process and filament winding approach,

although are the most common, but are not the only way to manufacture the tubes. Some other methods

like bladder molding, vacuum infusion, compression molding, and autoclave processing can also be used

to manufacture carbon fiber tubes.

The data used for illustration was adopted by Santos-Fernandez (2012); Santos-Fernandez, Edgar and
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Figure 4.1: PTS comparison of the Multivariate CV charts in presence of localized CV disturbances
when n = 10, m = 30 and α = 0.01 at different levels of m1.

Figure 4.2: PTS comparison of Multivariate CV charts in presence of diffuse CV disturbances
when n = 10, m = 30 and α = 0.01 at different levels of b.

Santos-Fernandez (2016), and comprises three variables, among which we have used the inner diameter

of the tubes (Y 1) and the tubes’ length (Y 2), which are measured in a specific carbon fiber tube. The
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Figure 4.3: PTS comparison for the Multivariate VN chart when m = 30 and aα = 0.01 at different
levels of n.

mean vectors and covariance matrix of each sample are represented as follows:

µ0 =

µ1t

µ2t

 , and Σ0 =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

where, 1, 2, . . . , 30,

where µ1 and µ2 are the population mean vectors, σ2
1 and σ2

1 are the population variance for (Y 1) and

(Y 2), respectively. These parameters are usually unknown (as is the case in our example) and needs to

be estimated from sample information. In this study, we used 30 Phase I samples of size n = 5. The

estimated mean vectors (Ȳ 1t, and Ȳ 2t), the statistics Ȳ
T
Ȳ , the estimated variances-covariances (S1 and

S2), and multivariate CV estimates (γ̂RR, γ̂V N , and γ̂AZ) for each sample are provided in Table 4.6. The

subscript t is used to denote a given time point (or the sample number).

The first step for the implementation of CV charts is to check the constancy of multivariate CV for

the given Phase I dataset. For this, it is usually recommended to plot Ȳ
T
Ȳ against γ̂2 (Lim et al.,

2017). Figure 4.4 shows the scatter plots of the Ȳ
T
Ȳ against the estimated CV-squared for all the three

multivariate CV charts based on the statistics defined in Equations (4.4) - (4.6). We observe from Figure
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Table 4.6: Sample information and CV estimators for the carbon fiber tubing data

SampleNo. Ȳ1 Ȳ2 Ȳ
T
Ȳ S2

1 S2
2 S12 γ̂V N γ̂AZ γ̂RR

1 1.026 50.152 2516.276 0.00153 0.02642 0.00201 0.003149 0.003245 0.001548
2 0.976 49.96 2496.954 0.00663 0.0714 0.01395 0.004275 0.005367 0.002586
3 1.024 50.172 2518.278 0.00103 0.02672 0.00369 0.002491 0.003266 0.001217
4 0.998 49.978 2498.796 0.00337 0.03037 -0.00676 0.002494 0.00347 0.001736
5 0.96 49.788 2479.767 0.0049 0.03772 0.01275 0.001425 0.003925 0.001379
6 1.004 50.012 2502.208 0.00233 0.01657 0.00104 0.002557 0.002576 0.001565
7 0.97 50.036 2504.542 0.00195 0.02963 -0.00047 0.003408 0.003438 0.00174
8 1.02 50.12 2513.055 0.00185 0.06355 -0.00723 0.003463 0.005016 0.001794
9 0.992 50.032 2504.185 0.00227 0.02542 -0.00268 0.002908 0.003179 0.001685
10 0.994 50.13 2514.005 0.00218 0.0576 0.0003 0.004774 0.004786 0.002111
11 1.004 49.972 2498.209 0.00203 0.05387 0.002615 0.004592 0.004647 0.002013
12 1.016 49.97 2498.033 0.00153 0.0204 0.00305 0.002491 0.002866 0.001369
13 0.978 50.086 2509.564 0.00207 0.11663 0.012215 0.004738 0.00683 0.001956
14 0.99 49.96 2496.982 0.00035 0.07615 0.000325 0.005383 0.005522 0.001436
15 1.008 50.062 2507.22 0.00212 0.04632 0.009105 0.001856 0.004314 0.001249
16 0.968 49.942 2495.14 0.00177 0.03277 0.005905 0.002444 0.003636 0.001388
17 1.002 49.998 2500.804 0.00027 0.10237 0.001255 0.006323 0.006398 0.001429
18 1.01 50.036 2504.621 0.00085 0.05338 0.006275 0.001968 0.004627 0.000989
19 1.014 49.986 2499.628 0.00023 0.07333 -0.00106 0.004562 0.005414 0.00126
20 1.008 50.024 2503.417 0.00057 0.00793 -0.00097 0.001531 0.001775 0.00087
21 0.962 49.846 2485.549 0.00307 0.06803 0.01406 0.001327 0.005252 0.00116
22 0.98 50.162 2517.187 0.00275 0.10812 0.01605 0.002701 0.006572 0.001582
23 0.934 49.828 2483.702 0.00253 0.00717 0.00096 0.001667 0.001703 0.001293
24 0.992 50.092 2510.193 0.00237 0.04467 0.007645 0.003011 0.004232 0.001656
25 0.988 49.956 2496.578 0.00377 0.04123 0.00664 0.003558 0.004076 0.002056
26 0.978 49.896 2490.567 0.00087 0.11368 0.00754 0.005227 0.006764 0.001614
27 0.974 49.746 2475.613 0.00293 0.09543 0.00912 0.005515 0.006219 0.002379
28 1.016 49.954 2496.434 0.00088 0.03273 0.00132 0.003593 0.003623 0.001444
29 1.014 50.044 2505.43 0.00173 0.03513 0.003105 0.003552 0.003751 0.001689
30 1.02 49.996 2500.64 0.0011 0.05213 0.0053 0.003595 0.004574 0.001471

4.4 that the assumption of the constant multivariate CVs is appropriate for the real-life dataset under

consideration, as the plots of against Ȳ
T
Ȳ is constant for all the multivariate CV estimators. Specifically,

there is no apparent correlation between γ̂2 and Ȳ
T
Ȳ hence, the notion of constant multivariate CV

assumption is reasonable. Also, the results of the regression test provided in Table 4.5, which are conducted

based on the null hypothesis which supports the assumption that the multivariate CV is constant, gives

p−values which are higher than 0.05 significance level. Hence, the regression tests are not significant.

Therefore, the null hypothesis is accepted, i.e., the assumption that the multivariate CV holds. This

88



Figure 4.4: Scatter plot of the square multivariate CV statistics γ̂RR, γ̂V N , and γ̂AZ against γ̂2 for
the carbon fiber tubing data.

confirms that there is no evidence of the dependency of the multivariate CV on means.

The in-control multivariate CV is estimated by using all the three estimators i.e. γ̂V N = 0.00335,

γ̂AZ = 0.00437 and γ̂RR = 0.00159. Based on these estimated CV’s, the control limits were estimated and

the control chart displays are presented in Figure 4.5. All the three charts indicate that the process CV

is in-control as the monitoring statistic for all the charts are all within the control limits. To investigate

the detection ability of the charts, shifts of size δ = 4 was applied to the last m1 samples of the Phase
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Table 4.7: Regression test results for the carbon fiber tubing data
Source of Variation Dof Sum of Squares Mean Square F-value p-value

VN Model 1 2.75E-11 2.75E-11 0.280 0.6010
Error 28 2.75E-09 9.84E-11
Total 29 2.78E-09

AZ Model 1 1.12E-11 1.12E-11 0.069 0.7941
Error 28 4.50E-09 1.61E-10
Total 29 4.50E-09

R Model 1 4.38E-13 4.38E-13 0.243 0.6261
Error 28 5.05E-11 1.80E-12
Total 29 5.09E-11

I dataset. We consider m1 = 6 and 9, and the control chart displays are presented in Figure 4.6. As

shown in these Figures, for both choices of m1, the multivariate MCVR and MCVV N charts show better

detection ability as compared to MCVAZ chart. Specifically, the multivariate MCVV N chart gives the best

performance in detecting shift in the process CV. This superiority of the MCVV N chart is in accordance

with the findings of Section 4.4, considering localized CV disturbances.

Figure 4.5: Control Chart plots for the three Multivariate CV charts for the carbon fiber tubing
data, showing in-control state of the process.
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Figure 4.6: Control Chart plots for the three Multivariate CV charts in presence of localized CV
disturbances for the carbon fiber tubing data.

4.6 Summary and conclusion

In this chapter, we investigated the choice of an appropriate CV control charting structure for efficient

monitoring of multivariate CV in Phase I of SPC. We examined the performance of different multivariate

CV charts under both localized CV and diffuse symmetric CV disturbance scenarios, using probability

to signal (PTS) as a performance measure. It has been observed that, for all the multivariate CV

charts, the PTS increases with an increase in sample size and the amount of shift in multivariate CV.

The comparative analyses showed that the MCVAZ chart exhibits the worst performance under both

contaminated scenarios. The MCVV N chart outperformed other competing charts in the presence of

diffuse symmetric CV disturbances. The performance of the MCVR chart is not too bad compared to

the MCVV N chart but significantly better than the MCVAZ chart. On the other hand, the MCVR chart

appears to be the best choice in the presence of localized CV disturbances, as compared to both MCVV N

and MCVAZ charts. The superiority of these charts is also demonstrated with a real-life example using

inner diameter and length of carbon tubes. We recommend the use of MCVR chart in Phase I of SPC due

to the fact that the MCVR chart is performing best for the detection of localized CV disturbances and its

performance is very close to MCVV N chart when it comes to detection of diffuse symmetric disturbances.
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This study will help quality practitioners to choose an efficient multivariate CV control chart in Phase I.
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Chapter 5

A new multivariate control chart based

on homogeneously weighted moving

average

”This is the peer reviewed version of the following article: “Adegoke, N. A., Abbasi, S. A., Smith,

A. N., Anderson, M. J., & Pawley, M. D. (2019). A Multivariate Homogeneously Weighted Moving

Average Control Chart. IEEE Access, 7, 9586-9597”, which has been published in final form at https:

//doi.org/10.1109/ACCESS.2019.2891988. This article may be used for non-commercial purposes in

accordance with IEEE Terms and Conditions for Use of Self-Archived Versions.”

This chapter presents a multivariate homogeneously weighted moving average (MHWMA) control

chart for monitoring a process mean vector. The MHWMA control chart statistic gives a specific weight to

the current observation, and the remaining weight is evenly distributed among the previous observations.

We present the design procedure and compare the average run length (ARL) performance of the proposed
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chart with multivariate Chi-square, multivariate EWMA, and multivariate CUSUM control charts. The

ARL comparison indicates superior performance of the MHWMA chart over its competitors, particularly

for the detection of small shifts in the process mean vector. Examples are also provided to show the

application of the proposed chart.

5.1 Introduction

Rapid developments in data-acquisition in industry have led to increased interest in the joint monitoring

of several related process parameters (Bersimis et al., 2007). As a result, multivariate process control

(MPC) methodology, in which several related process parameters are jointly monitored (Seif et al., 2011),

is one of the most rapidly developing areas in statistical process control (SPC). Several MPC tools that use

the relationships among the variables to provide efficient monitoring schemes for identifying any changes

in the quality of the products have been proposed. These tools are capable of giving information as to

when the process is in-control, provide diagnostic procedures for out-of-control situations, and are able to

provide guidance on the overall process when it is out-of-control (Jackson, 1991). They are currently used

in a range of scientific and technological application domains, including health-related monitoring, quality

improvements, ecological monitoring, spatiotemporal surveillance, and profile monitoring (Montgomery,

2009).

MPC tools are generally applied in two monitoring phases (Montgomery, 2009). In Phase I, a historical

reference sample is analysed to establish the values and stability of process parameters while in the in-

control state. If the in-control parameter values are unknown, the data from Phase I are used to estimate

these values and their control limits (Abbasi and Adegoke, 2018). In Phase II, the process parameters are

monitored and checked for departure from the in-control state. If Phase II values (or statistics) remain

inside the in-control Phase I limits, the process is believed to be in control; if they go outside the control
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limits, this indicates that the process may be out-of-control and remedial actions are triggered.

Hotelling (1947) was the first to propose and employ a multivariate process control tool; his χ2 statistic

represented the weighted Mahalanobis distance of the sample point from the center of the cloud and is

known as the multivariate χ2 control chart. This chart signals whenever the χ2 values obtained from the

process variable are greater than the chart’s control limit h = χ2
p,α (where χ2

p,α is the αth upper percentage

point of the chi-square distribution and p is the number of quality characteristics being monitored). The

multivariate χ2 chart is a memoryless-type chart that uses only the most current process information

and disregards any previous observations, and very efficient in detecting large shifts in the process mean

vector.

To increase the sensitivity of the multivariate process control tool for the detection of small-to-

moderate shifts in the process mean vector, different multivariate memory-type tools that use information

from both the current and previous process observations have been proposed. For example, Crosier (1988)

and Pignatiello and Runger (1990) proposed different possible multivariate extensions of the univariate

cumulative sum (CUSUM) chart proposed by Page (1961). The multivariate exponentially weighted

moving average (EMWA) control chart proposed by Lowry et al. (1992) is a multivariate extension of the

univariate EWMA chart proposed by Roberts (1959). The memory-type charts are particularly effective

for individual-observation monitoring (Montgomery, 2009).

In this chapter, we propose a new memory-type multivariate charting procedure, namely, the mul-

tivariate homogeneously weighted moving average (MHWMA) control chart. Like other memory-type

charts, MHWMA uses the current observation and past observations. However, previous methods al-

locate equal weight across the observations, including the current one. With our proposed MHWMA

method, the weight of the current observation can be specified, with the remaining weight then allocated

equally across previous observations. We will show that this can provide more efficient monitoring of small

shifts in the process mean vector, when compared to other memory-type multivariate charting procedures.
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The remainder of this article is organised as follows. A review of the design structures of the multi-

variate exponentially weighted moving average (MEWMA) chart by Lowry et al. (1992), the multivariate

cumulative sum #1 (MCI) chart by Pignatiello and Runger (1990), and the multivariate cumulative sum

(MCUSUM) chart by Crosier (1988), respectively, are provided in Section 5.2. The design of the MHWMA

chart is discussed in Section 5.3, and the run length performance of the chart is evaluated in Section 5.4.

The ARL comparisons of the MHWMA chart with that of the χ2 chart, MEWMA chart, MCUSUM chart,

and MCI chart, respectively, are provided in Section 5.5. Illustrative examples concerning the application

of the proposed MHWMA chart are given in Section 5.6. Finally, conclusions and directions for future

work are presented in Section 5.7.

In Appendix B.1, we derive the covariance matrix of the vector of HWMAs used with the MHWMA

procedure. This matrix is used in Section 5.3 to obtain the MHWMA control-chart statistic. In Appendix

B.2, we provide the proof of the dependency of the ARL performance of the MHWMA chart on the mean

vector and covariance matrix only through the non-centrality parameter.

5.2 Literature review: the memory-type control charts

Suppose we have p × n independently and identically distributed multivariate normal random variables

Y1,Y2, ..., with mean vector µ0 and covariance matrix Σ0. For monitoring the mean vector (µ0) of an

individual-observation (i.e., n = 1), the design structures of the memory-type charts are briefly described

below:

5.2.1 The MCUSUM chart

Crosier (1988) proposed two multivariate CUSUM charts. The one with better ARL performance obtains

the CUSUM vector directly from the multivariate observation, and the MCUSUM vectors for the observed
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vector yi are given as:

Ci = [(Si−1 + yi − µ0)pΣ−1
0 (Si−1 + yi − µ0)]1/2 (5.1)

where

Si = 0 if Ci ≤ k

Si = (Si−1 + yi − µ0)(1− k/Ci) if Ci > k

S0 = 0 and k > 0. The MCUSUM control chart signals when T 2
i = [S′iΣ

−1
0 Si] > h.

5.2.2 The MCI chart

Two directionally invariant multivariate CUSUM charts were proposed by Pignatiello and Runger (1990);

the one with better ARL performance is the MCI chart. Here, the CUSUM vectors for the observed

vector yi are given as:

Ci =
i∑

j=i−ni+1

(yj − µ0) (5.2)

Ti = max

{√
C′iΣ

−1
0 Ci − kni, 0

}

and

ni =


ni−1 + 1, if Ti−1 > 0

1, if otherwise

where ni (i = 1, 2, ...), is interpreted as the number of subgroups up to the most recent cumulative sum

statistic. The MCI control chart signals when Ti > h, for positive values of h > 0 and k > 0. The

parameters of the MCUSUM and MCI charts, k and h, are chosen to give the desired in-control ARL
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performance of the chart Crosier (1988); Pignatiello and Runger (1990).

5.2.3 The MEWMA chart

The MEMWA control chart, proposed by Lowry et al. (1992), is a multivariate extension of the EWMA

chart. It is a memory-type method that accumulates information from previous observations. The

MEWMA statistics for the observed vector yi are given as:

Pi = ryi + (1− r)Pi−1 (5.3)

The use of small values for the smoothing parameter increases the power of the control chart and, if r = 1,

the chart is identical to the memoryless control chart based on Hotelling’s T 2.

The MEWMA chart gives an out-of-control signal when:

T 2
i = (Pi − µ0)′ΣPi

−1(Pi − µ0) > h (5.4)

where h and r are chosen to achieve a desired in-control performance measure (such as a desired value

of in-control ARL), and ΣPi is the covariance matrix at time point i. Lowry et al. (1992) provided two

alternative forms of ΣPi : the exact covariance matrix is given as:

ΣPi =
r[1− (1− r)2i]

2− r
Σ0 (5.5)

and the asymptotic covariance matrix is given as:

ΣP =
r

2− r
Σ0 (5.6)
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The MEWMA, MCUSUM and MCI charts are directionally invariant charts; the ARL performance of

the charts depend on µ0 and Σ0, only through the non-centrality parameter given as:

δ =

√
(µ1 − µ0)′Σ−1

0 (µ1 − µ0) (5.7)

where µ1 is the mean vector for the out-of-control process.

Several enhancements of these memory-type control charts in detecting small-to-moderate shifts have

been proposed in SPC and related literature. For example, Hawkins, Douglas M and Maboudou-Tchao

(2007) proposed a self-starting MEWMA control charting for monitoring the process mean vector. Also,

a self-starting control chart for multivariate individual observations monitoring was proposed by Sulli-

van and Jones (2002). Kramer and Schmid (1997) proposed EWMA charts for multivariate time series

observation monitoring. Ngai and Zhang (2001) proposed a MCUSUM control chart based on projec-

tion pursuit. Park and Jun (2015) investigated a MEWMA control chart via multiple testing. Qiu and

Hawkins (2003) proposed a nonparametric MCUSUM procedure for detecting shifts in all directions. Qiu

and Hawkins (2001) proposed a rank-based MCUSUM Procedure. A multivariate sign EWMA control

chart was proposed by Tsung and To (2012). A cumulative sum control charts for monitoring the covari-

ance matrix (Chan, Lai K and Zhang, 2001). A MEWMA control chart that can handle a non-constant

smoothing parameter of the chart was proposed by Yumin (1996). An adaptive multivariate CUSUM

control chart for signaling a range of location shifts was proposed by Wang and Huang (2016). The

performance of multivariate memory-type control charts with estimated parameters are investigated by

Jones et al. (2001); Mahmouda and Maravelakisb (2010); Aly et al. (2016); Champ and Jones-Farmer

(2007); Mahmoud and Maravelakis (2013).

99



5.3 The multivariate homogeneously weighted moving av-

erage (MHWMA) control chart

To increase the sensitivity of the memory-type charts given in Section 5.2 in monitoring small shifts in

the process mean vector, we propose a MHWMA control chart. The MHWMA control chart statistic

gives a specific weight to the current observation, and the remaining weight is evenly distributed among

the previous observations. The monitoring statistic of the proposed MHWMA chart is defined as:

Hi = Wyi + (I −W )ȳi−1 (5.8)

where, i = 1, 2, ..., , ȳi−1 represents the sample average of the previous information up to and including

the i − 1 observation, and ȳ0 = µ0. W is a p × p diagonal square matrix with smoothing or sensitivity

parameters wk, k = 1, 2, ..., p, along the diagonal such that 0 < wk ≤ 1. The matrix I is a diagonal matrix

of 1′s. If the values of the smoothing parameter, which determine the weight of each prior observation,

are equal across variables, then the MHWMA vector becomes:

Hi = wyi + (1− w)ȳi−1 (5.9)

The MHWMA chart gives an out-of-control signal when

T 2
i = (Hi − µ0)′ΣHi

−1(Hi − µ0) > h (5.10)

Here, h and w are chosen to achieve a desired in-control ARL performance measure, and ΣHi is the

100



covariance matrix at time point i. From Appendix A, we have

ΣHi =


w2Σ0 if i = 1

w2Σ0 + (1− w)2 Σ0

i− 1
if i > 1

(5.11)

The MHWMA chart is a directionally invariant chart. In Appendix B, we give a proof that shows the

relationship between the ARL performance and the non-centrality parameter given in equation 5.7.

Special cases

• If w = 1, the monitoring statistic in equation (5.9) becomes:

Hi = yi (5.12)

and, ΣHi in equation (5.11) becomes:

ΣHi = Σ0 (5.13)

In this case, the MHWMA chart is identical to the memoryless χ2 control chart, and we recommend

monitoring either the χ2 chart or the MHWMA chart (with w = 1).

• If p = 1, the monitoring statistic in equation (5.9) becomes:

Hi = wyi + (1− w)ȳi−1 (5.14)
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and, the variance of the monitoring statistic Hi in equation (5.14) becomes:

σHi =


w2σ2

0 if i = 1

w2σ2
0 + (1− w)2 σ2

0

i− 1
if i > 1

(5.15)

where σ2
0 is the variance of a normally distributed univariate random variable. In this case, we

recommend monitoring the proposed chart by Abbas (2018).

• When n > 1, the vector y in the plotting statistic for the MHWMA vector in equation (5.9) can be

replaced by the average of the ith sample (i.e, ȳ). Hence, the covariance structure of the MHWMA

chart becomes

ΣHi =


w2

n
Σ0 if i = 1

w2

n
Σ0 + (1− w)2 Σ0

n(i− 1)
if i > 1

(5.16)

5.4 Performance evaluation

In this section, we evaluate the performance of the proposed MHWMA chart by using different run

length characteristics such as the average run length and standard deviation of the run length (SDRL)

distribution. ARL is the most commonly used performance measures for control chart procedures. The

in-control ARL (denoted by ARL0), is the average number of plotted samples until an out-of-control signal

is detected by a control chart when the process is in control. The out-of-control ARL (denoted by ARL1),

is the average number of plotted points until an out-of-control signal is detected by a control chart when

the process is out of control (Aldosari et al., 2018; Aslam et al., 2018; Aslam, 2018; Adegoke et al., 2017;

Abbasi et al., 2013). It is generally desirable to have large values of ARL0 and small values of ARL1 for

any control-chart setting. The SDRL measures the spread of the run length distribution (Human et al.,

2011). Similarly, SDRL0 and SDRL1 can be defined.
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Table 5.1: ARL Values for MHWMA Charts (p = 2).
w

0.03 0.05 0.2 0.4 0.6 0.8
δ ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL
0 199.26 202.01 199.35 182.57 202.99 186.06 201.63 192.36 200.54 201.62 200.39 199.06

0.05 166.24 197.29 173.00 157.48 186.94 169.67 193.77 189.26 194.31 190.36 199.62 198.50
0.10 115.64 132.81 129.55 119.99 154.16 136.29 177.88 173.09 184.99 185.98 192.07 194.5
0.25 43.05 44.91 53.32 46.28 74.00 60.41 107.64 102.17 139.03 137.16 161.6 160.77
0.50 15.80 14.3 19.87 15.56 27.50 19.5 41.84 36.4 64.86 62.32 91.91 90.24
0.75 8.56 6.83 10.65 7.7 14.50 9.24 19.25 15.5 31.66 29.95 50.15 49.11
1.00 5.70 4.09 6.91 4.52 9.23 5.31 10.94 7.96 16.54 14.56 27.24 26.23
1.50 3.32 2.04 3.90 2.22 4.85 2.48 5.05 3.05 6.3 4.8 9.69 8.71
2.00 2.32 1.4 2.67 1.49 3.19 1.49 3.13 1.62 3.41 2.2 4.54 3.63
2.50 1.74 1.06 1.99 1.16 2.35 1.12 2.22 1.05 2.26 1.2 2.66 1.79
3.00 1.37 0.79 1.53 0.9 1.81 0.9 1.7 0.76 1.7 0.79 1.86 1.07
5.00 1.00 0.08 1.01 0.09 1.03 0.17 1.03 0.16 1.03 0.18 1.03 0.17

h
5.40 6.79 10.19 10.56 10.61 10.62

The results are based on 105 Monte Carlo simulations, and δ denotes the shift size (given in equation

(5.7)). The appropriate values of h are also obtained using simulation. Table 5.1 reports the ARL and

SDRL results for the case when p = 2 at varying levels of smoothing parameter (w) and shift (δ). See

Appendix C.2 for the R code used in obtaining the ARL and SDRL of the proposed chart. The chart’s

parameters in Table 5.1 are chosen to fix the ARL0 at 200. Visual representation of the logarithm of the

ARL values in Table 5.1 are also provided in Figure 5.1. From the reported results in Table 5.1 (and/or

Figure 5.1), we observe that:

• Smaller values of w are more effective in detecting shifts in the mean vector. Specifically, the use

of small values for the smoothing parameter increases the power of the MHWMA control chart.

• The proposed MHWMA chart is ARL unbiased, i.e., for any combinations of h and w, the ARL1

values from the chart are always lesser than the ARL0.

• The higher the ARL values of the chart, the higher the SDRL value as well.

• It is apparent that both ARL and SDRL decrease as the size of the shift increases. This indicates

that larger shifts can be detected quickly and will result in a smaller spread in the run length
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distribution.

Figure 5.1: Plot of the logarithms of the ARL values given in Table 5.1.

Tables 5.2-5.3 report the ARL and SDRL results for the case when w = 0.1 but with varying levels

of p (i.e., p = 2, 3, and 4), and δ. The values shown for parameter h, in each case, are chosen such that

the ARL0 is fixed at 50, 100, 500, or 1, 000, respectively. We used w = 0.10, because small values of w

are effective at detecting small shifts in the mean vector. From the reported results in Tables 5.2-5.3, we

observe that:

• The ARL and SDRL performance of the chart depend on the number of quality characteristics (p).

Specifically, the performance of the chart increases with the small value of p.

• The logarithm of the in-control ARL is very close to a linear function of the chart’s upper limits.
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This property of the MHWMA chart can be used to approximate the appropriate value of the

chart’s control limits for other in-control ARL′s.

• Larger shifts are detected quickly and result in a smaller spread in the run-length distribution.

Table 5.2: ARL values for MHWMA charts (w = 0.1).
p = 2 p = 3 p = 4

h
δ 5.27 7.01 11.52 13.31 7.02 9.02 13.86 15.75 8.60 10.8 16.01 17.98
0 51.04 102.17 500.23 1000.53 51.01 103.07 502.15 997.44 50.07 102.32 498.68 1001.21

0.05 48.99 95.51 419.86 753.6 49.46 96.37 422.95 789.64 49.65 97.48 434.69 790.14
0.1 44.75 81.68 282.59 439.03 45.06 84.3 297.86 475.59 45.22 85.66 313.6 497.17
0.25 27.74 43.66 96.55 123.65 29.54 47.15 105.34 137.94 30.03 48.93 113.53 150.3
0.5 13.31 18.56 33.7 40.35 14.38 20.66 37.18 44.56 15.44 22.34 40.61 47.83
0.75 7.81 10.39 17.39 20.52 8.51 11.56 19.17 22.52 9.2 12.44 20.87 24.13

1 5.27 6.84 10.86 12.49 5.83 7.59 11.98 13.79 6.2 8.12 12.9 14.74
1.5 3.08 3.85 5.74 6.43 3.42 4.21 6.23 6.97 3.6 4.51 6.65 7.51
2 2.15 2.63 3.78 4.2 2.38 2.87 4.08 4.53 2.49 3.09 4.32 4.8

2.5 1.64 1.96 2.8 3.1 1.77 2.15 3.02 3.35 1.9 2.27 3.21 3.51
3 1.3 1.51 2.17 2.41 1.41 1.66 2.34 2.61 1.49 1.78 2.5 2.77
5 1 1.01 1.06 1.1 1.01 1.01 1.09 1.15 1.01 1.03 1.12 1.2

Table 5.3: SDRL values for MHWMA charts (w = 0.1).
p = 2 p = 3 p = 4

h
δ 5.27 7.01 11.52 13.31 7.02 9.02 13.86 15.75 8.60 10.8 16.01 17.98
0 47.77 85.58 415.84 869.58 48.22 87.45 423.09 872.89 48.39 88.1 428.78 895.68

0.05 45.55 80.29 344.37 648.49 46.31 82.71 349.15 688.85 46.86 83.06 364.29 678.68
0.1 41.98 68.54 224.9 356.51 43.11 71.44 237.45 386.67 43.22 72.95 251.34 408.2
0.25 25.48 35.21 67.11 82.15 26.96 38.13 72.29 92.24 27.35 39.51 77.69 100.23
0.5 11.15 13.9 20.31 23.13 11.88 15 22.06 25.13 12.7 16.1 23.85 26.82
0.75 5.98 7.13 9.81 10.92 6.47 7.79 10.59 11.72 6.94 8.37 11.3 12.28

1 3.71 4.36 5.81 6.29 4.04 4.79 6.28 6.8 4.35 5.13 6.66 7.17
1.5 1.89 2.16 2.72 2.9 2.08 2.32 2.9 3.14 2.16 2.45 3.09 3.32
2 1.28 1.42 1.64 1.73 1.37 1.5 1.73 1.81 1.43 1.57 1.8 1.9

2.5 0.96 1.1 1.25 1.26 1.03 1.17 1.27 1.3 1.1 1.21 1.3 1.29
3 0.68 0.85 1.07 1.09 0.77 0.93 1.09 1.11 0.84 0.98 1.11 1.11
5 0.05 0.09 0.28 0.37 0.09 0.14 0.35 0.45 0.11 0.19 0.42 0.52
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5.5 Average run length comparisons

In this section, the (zero-state) ARL performance of the MHWMA chart is compared with that of the χ2

chart, the MCUSUM chart by Crosier (1988), the MCI chart by Pignatiello and Runger (1990), and the

MEWMA chart by Lowry et al. (1992). Since, the MEWMA, the MCUSUM, the MCI and the Hotelling’s

χ2 charts are all directional invariant; these charts can be compared with each other and with the proposed

MHWMA chart. We consider both the time-varying and the asymptotic limits MEWMA control chart.

The ARL values of the charts are presented in Tables 5.4 to 5.9, for p = 2, 3, 4, 5, 10 and 20, respectively.

To allow reasonable comparisons of the proposed chart with the other charts, each chart is designed to

give ARL0 of approximately 200. We observed from Tables 5.4 to 5.9 that:

• The Hotelling’s χ2 chart, the MCUSUM chart, the MCI chart, and the MEWMA chart based on

the asymptotic covariance structure (given in equation (5.6)), respectively, are all inferior to the

proposed MHWMA chart (i.e., the MHWMA chart resulted in smallest values of the ARL1) across

all shifts.

• The simulation results show that the MHWMA chart detects shifts more rapidly than the MEWMA

chart based on the exact covariance structure when δ ≤ 0.5. However, the ARL performance the

MEWMA chart (given in equation (5.5)) is superior to the ARL performance of the proposed chart

when there is a moderate-to-large shift in the mean vector. Specifically, the ARL1 value of MEWMA

chart based on the varying limit is smaller than the proposed chart when δ > 0.5 is considered.

5.6 Illustrative example

In this section, we provide a couple of examples for illustrating the application of the proposed MHWMA

chart. The first example is based on a simulated dataset following Crosier (1988), whereas, the second
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Table 5.4: ARL comparisons for p = 2.

MCI MCUSUM; MEWMA (5.5); MEWMA (5.6); MHWMA;
χ2 ; k1 = 0.50, k2 = 0.5, r = 0.1, 0 r = 0.1, w = 0.1,

δ h = 10.60 h = 4.75 h = 5.50 h = 8.79 h = 8.66 h = 8.965
0.00 201.08 202.27 201.34 202.01 200.54 202.64
0.05 198.13 190.92 192.48 187.92 190.68 181.90
0.10 194.47 169.74 166.02 159.35 163.79 144.53
0.25 171.97 91.65 83.85 73.69 77.20 64.12
0.50 117.39 31.40 29.91 25.08 28.02 24.94
0.75 71.04 15.00 15.11 12.62 15.21 13.49
1.00 41.95 9.44 9.92 7.76 10.14 8.61
1.50 15.78 5.26 5.78 4.06 6.09 4.63
2.00 6.80 3.69 4.11 2.60 4.41 3.15
2.50 3.56 2.90 3.24 1.90 3.50 2.32
3.00 2.14 2.42 2.69 1.50 2.94 1.78
5.00 1.03 1.58 1.82 1.01 1.97 1.02

Table 5.5: ARL comparisons for p = 3.

MCI MCUSUM MEWMA (5.5); MEWMA (5.6); MHWMA
χ2 k1 = 0.50 k2 = 0.5 r = 0.10 r = 0.1 w = 0.1

δ h = 12.85 h = 5.48 h = 6.88 h = 10.97 h = 10.79 h = 11.09
0.00 200.90 198.29 199.07 199.38 200.08 198.91
0.05 198.49 192.56 189.36 189.23 190.41 182.28
0.10 196.50 173.47 165.69 164.35 164.96 148.01
0.25 179.66 99.52 86.58 83.57 85.22 70.22
0.50 130.17 34.17 31.70 29.04 32.07 27.26
0.75 83.78 16.33 16.78 14.23 17.00 14.84
1.00 52.27 10.08 11.18 8.78 11.20 9.47
1.50 19.94 5.70 6.74 4.48 6.72 5.06
2.00 8.81 4.04 4.84 2.88 4.85 3.41
2.50 4.42 3.18 3.81 2.07 3.82 2.51
3.00 2.54 2.65 3.18 1.61 3.20 1.96
5.00 1.05 1.80 2.03 1.03 2.04 1.03

example is based on the bimetal dataset given in Santos-Fernandez (2012).

5.6.1 Simulated example

The dataset (see Table 5.10) is from a similar example given by Crosier (1988), and also used for illustration

in Lowry et al. (1992). The data consists of 10 observations, the mean is in-control at µ0 = (0, 0) for

the first five observations and out-of-control at µ0 = (1, 2) for the last five observations. This example is
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Table 5.6: ARL comparisons for p = 4.

MCUSUM; MEWMA; (5.5); MEWMA (5.6); MHWMA;
χ2; k2 = 0.5, r = 0.10, r = 0.1, w = 0.1,

δ h = 14.86 h = 8.15 h = 12.93 h = 12.73 h = 13.11
0.00 199.67 198.82 200.35 201.31 202.48
0.05 199.22 189.39 192.01 192.38 185.14
0.10 196.49 166.35 170.33 170.00 157.64
0.25 182.25 86.83 90.02 94.14 74.38
0.50 139.90 33.24 31.94 35.25 30.01
0.75 94.32 18.28 15.54 18.40 16.32
1.00 61.12 12.46 9.45 12.05 10.21
1.50 24.27 7.57 4.83 7.23 5.42
2.00 10.77 5.47 3.07 5.17 3.62
2.50 5.16 4.33 2.21 4.09 2.71
3.00 2.93 3.61 1.71 3.41 2.09
5.00 1.07 2.20 1.04 2.11 1.05

Table 5.7: ARL comparisons for p = 5.

MCI; MCUSUM; MEWMA (5.5); MEWMA (5.6); MHWMA;
χ2; k1 = 0.50, k2 = 0.5, r = 0.10, r = 0.1, w = 0., 1

δ h = 16.75 h = 6.81 h = 9.46 h = 14.74 h = 14.56 h = 14.92
0.00 201.27 204.29 200.10 201.17 201.09 201.25
0.05 199.91 194.57 191.99 192.94 193.66 187.90
0.10 198.00 178.31 175.26 172.87 174.92 159.04
0.25 184.88 109.22 91.95 95.63 99.13 77.97
0.50 143.82 38.74 35.81 34.40 38.35 31.38
0.75 102.37 17.72 19.95 16.71 19.83 17.08
1.00 68.25 11.04 13.71 10.12 12.91 10.78
1.50 28.44 6.39 8.47 5.16 7.65 5.79
2.00 12.27 4.60 6.16 3.24 5.47 3.85
2.50 6.00 3.64 4.87 2.34 4.31 2.82
3.00 3.35 3.03 4.05 1.80 3.60 2.23
5.00 1.10 2.01 2.53 1.06 2.20 1.08

illustrative of a moderate-to-large shift in the process mean vector, as the size of δ (in equation (5.7)) is

approximately 2.65.

The first two columns of Table 5.10 give the sample of bivariate observations for the random variables

Y1 and Y2. The columns H1 and H2 are the corresponding values of the MHWMA vector as provided in

equation (5.9) using w = 0.10. The T 2 values obtained from equation (5.10) are given in the last column.

For a fair comparison, the control limits were selected to give the desired ARL0 of 200 for all the charts
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Table 5.8: ARL comparisons for p = 10.

MCUSUM; MEWMA (5.5); MEWMA (5.6); MHWMA;
χ2; k2 = 0.5, r = 0.10, r = 0.1, w = 0.1,

δ h = 25.19 h = 14.90 h = 22.91 h = 22.67 h = 23.08
0.00 200.03 198.63 195.71 204.11 199.09
0.05 199.15 192.01 194.58 197.11 190.02
0.10 198.4 170.55 173.78 182.80 162.23
0.25 190.45 96.34 114.45 117.35 89.52
0.50 162.01 42.89 45.20 47.94 37.53
0.75 124.50 25.96 21.47 24.94 20.86
1.00 92.80 18.62 12.60 15.85 13.05
1.50 44.70 11.92 6.38 9.19 6.87
2.00 20.60 8.80 3.97 6.57 4.52
2.50 9.90 7.02 2.78 5.15 3.36
3.00 5.20 5.86 2.13 4.28 2.64
5.00 1.24 3.63 1.12 2.69 1.19

Table 5.9: ARL comparisons for p = 20.

MCUSUM; MEWMA (5.5); MEWMA (5.6); MHWMA;
χ2; k2 = 0.5, r = 0.10, r = 0.1, w = 0.1,

δ h = 40.00 h = 24.70 h = 37.32 h = 37.01 h = 37.59
0.00 202.01 199.21 198.61 200.78 202.12
0.05 199.98 193.02 194.59 197.51 193.61
0.10 198.73 175.36 185.65 187.59 173.59
0.25 193.11 109.37 130.76 135.51 102.77
0.50 173.05 55.99 58.31 63.09 46.24
0.75 145.62 36.65 27.89 32.27 25.60
1.00 116.96 27.18 16.32 20.16 16.34
1.50 66.53 17.94 7.99 11.28 8.50
2.00 34.46 13.50 4.90 8.00 5.47
2.50 17.26 10.81 3.40 6.26 4.01
3.00 9.07 9.05 2.59 5.20 3.13
5.00 1.58 5.57 1.29 3.19 1.44

using w = 0.10. A plot of the MCUSUM chart with the same ARL0 of 200, given by Crosier (1988) (also

reproduced in Figure 5.2), signals after the tenth observation. Plots of the MEWMA charts based on

the exact and asymptotic limits of the same in-control ARL, given by Lowry et al. (1992), signals after

the ninth and tenth observation, respectively. The plot of the MCI and MHWMA charts also signal an

out-of-control situation after the tenth observation.
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Table 5.10: The simulated dataset.

Observation MHWMA vector
n Y1 Y2 H1 H2 T 2

1 -1.19 0.59 -0.12 0.06 3.29
2 0.12 0.9 -1.06 0.62 3.52
3 -1.69 0.4 -0.65 0.71 4.47
4 0.3 0.46 -0.80 0.61 7.15
5 0.89 -0.75 -0.46 0.45 3.97
6 0.82 0.98 -0.20 0.39 2.07
7 -0.3 2.28 -0.14 0.62 4.47
8 0.63 1.75 -0.07 0.80 7.45
9 1.56 1.58 0.11 0.90 8.71
10 1.46 3.05 0.26 1.12 13.85∗

h 8.965

∗ Out-of-control signal

5.6.2 Bimetal thermostat dataset example

For the second example, we used the bimetal thermostat dataset taken from Santos-Fernandez (2012).

The dataset contains measurements of the deflection, curvature, resistivity, and hardness for each of the

low and high-expansion sides of brass and steel bimetal thermostats (Adegoke et al., 2018b). The process

was employed in Phase I and Phase II, and data from the process at each phase consisted of sample size

m = 28, and with p = 5 variables. The Phase I process is used to study a historical reference sample,

which involves establishing the in-control state and evaluating the process stability to ensure that the

reference sample is representative of the process. After this, the process parameters µ0 and Σ0, are

estimated from Phase I, and control chart limits are obtained to be used in Phase II. The Phase II aspect

involves on-line monitoring of the process. In essence, any shift in the process needs to be detected quickly

in Phase II, so that corrective actions can be taken at an early stage.

The estimated mean vector (µ̂0) and covariance matrix (Σ̂0) are shown below.

µ̂0 = (21.01607, 40.01607, 15.19214, 22.02393, 26.01214)
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Figure 5.2: Plots of the memory-type charts of the simulated dataset

Σ̂0 =

D C R HL HH



0.091877 0.025443 0.037909 0.027931 0.026753 D

0.025443 0.018543 0.026342 0.016131 0.016998 C

0.037909 0.026342 0.106284 0.016439 0.023377 R

0.027931 0.016131 0.016439 0.05444 0.011088 HL

0.026753 0.016998 0.023377 0.011088 0.021477 HH

Considering these estimates as the known parameters, we generated 20 Phase II observations from

111



a multivariate normal distribution with mean µ1 and covariance matrix Σ̂0, such that the size of δ (in

equation (5.7)) is approximately 0.087, which is a small shift in the mean vector. Specifically, we used,

µ1 = (21.12, 40.12, 15.29, 22.12, 26.11). The inspiration for generating data in such manner is taken from

Sanusi et al. (2017b); Singh, Ravindra and Mangat (2013). The simulated bimetal Phase II data is given

in Table 5.11.

The first five columns of Table 5.11 give the sample number (n) and the observations of the random

variables: the deflection (D), curvature (C), resistivity (R), Hardness low side (HL), and Hardness high

side (HS). The columns H1,H2, H3, H4, and H5 are the corresponding values of the MHWMA vector

from equation (5.9) with w = 0.10. The T 2 values obtained from equation (5.10) are given in the last

column. The values of the control limits and w were used to give an ARL0 of 200. The control limits are

obtained from Table 5.7 for all of the charts. The MEWMA chart with time-varying structure and the

MCUSUM chart failed to detect the out-of-control signal (see Figure 5.3). The MCI chart detected the

signal after the twentieth observation, while the MHWMA chart detected the shift in the mean vector

after the nineteenth observation.

Table 5.11: Simulated bimetal Phase II dataset.
Observation MHWMA vector

n D C R HL HH H1 H2 H3 H4 H5 T 2

1 21.37514 40.25279 15.36849 22.22992 26.28214 21.05198 40.03974 15.20978 22.04453 26.03914 3.848
2 20.74688 39.9778 14.95244 21.97061 25.94238 21.31232 40.22529 15.32689 22.20399 26.24817 3.727
3 21.47224 40.06028 15.344 22.18321 26.0622 21.10213 40.10979 15.17882 22.10856 26.10726 1.998
4 20.91048 40.10609 15.19133 21.95731 26.01251 21.16933 40.09787 15.21861 22.11085 26.08727 1.832
5 21.5028 40.04228 15.14889 22.16699 26.09236 21.16385 40.09355 15.20755 22.09343 26.07656 2.429
6 21.40367 40.23477 15.4103 22.36709 26.26783 21.22173 40.10254 15.22196 22.12816 26.09727 3.909
7 21.53276 40.23035 15.32421 22.16859 26.27788 21.26496 40.12414 15.24474 22.14813 26.1267 6.781
8 21.14701 40.1041 14.79022 21.71361 26.26096 21.26464 40.12669 15.20269 22.10555 26.14661 10.135
9 21.44861 40.16828 15.59713 22.16583 26.17052 21.2801 40.13028 15.23182 22.10178 26.15186 11.516
10 20.32414 39.9469 14.69693 22.21045 25.84648 21.18637 40.11237 15.18239 22.11336 26.12153 8.933
11 21.47476 40.33704 16.09065 22.44353 26.34193 21.21521 40.13483 15.27322 22.14638 26.14357 10.719
12 21.22772 40.02005 15.25308 22.12308 25.89487 21.2141 40.12152 15.26377 22.14135 26.11689 8.983
13 20.99839 40.07298 15.38705 22.26694 26.12767 21.19231 40.11835 15.27628 22.15421 26.12167 9.271
14 21.24963 40.15326 15.23967 22.36554 26.06599 21.20251 40.12289 15.27006 22.17274 26.11597 10.869
15 21.12245 39.97848 15.3732 21.93203 25.95203 21.19316 40.10758 15.28124 22.14316 26.101 8.131
16 21.82112 40.15864 15.32999 22.24247 26.27943 21.25831 40.11699 15.28305 22.16013 26.12381 13.387
17 20.94721 40.07874 15.3307 22.26007 26.03262 21.2061 40.11161 15.28606 22.16704 26.10885 10.957
18 20.73335 40.06492 15.37731 22.12997 26.00501 21.16948 40.10829 15.29335 22.1595 26.10161 9.724
19 21.35438 40.34669 15.51139 22.18066 26.35229 21.20736 40.13406 15.31142 22.16293 26.13097 15.388
20 21.3523 40.17716 15.04093 21.97396 26.14652 21.21489 40.1283 15.2749 22.14319 26.12204 15.37
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Figure 5.3: Plots of the memory-type charts of the bimetal dataset.

Although the MEWMA chart generally performed better than the other memory-type control charts

to detect moderate-to-large shifts in the mean vector, the MHWMA chart was superior to the other

methods when interest lies in detecting a small shift in the mean vector. Furthermore, the HWMA vector

elements (in Tables 5.10, and 5.11) give an indication of the direction that the mean has shifted. This

indication of the direction of the shift is common among memory-type control chart.

The interpretation of out-of-control signals from multivariate control charts can be quite difficult. For

a univariate control chart, an out-of-control state can be easily detected and interpreted, since a univariate

chart is associated with only a single variable. However, this is not the case for the multivariate charts.
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Because the charts involve a number of correlated variables, the identification and interpretation of any

out-of-control signals are not straightforward and has been an interesting topic in SPC literature. We

refer the interested reader to Bersimis et al. (2007) for guidance and recommendation on interpreting

out-of-control signals in multivariate control charts. In line with Lowry et al. (1992), we recommend

monitoring the principal components if these are interpretable. Different researchers, including Jackson

(1991), Kourti and Macgregor (1996), and Maravelakis et al. (2002), among others, have proposed various

principal-component methods to aid interpretation of out-of-control signals. For example, an MHWMA

chart based on the first k principal components or the joint univariate control charts with standard or

Bonferroni control limits across the p variables can be plotted.

5.7 Conclusion

In this chapter, a new multivariate chart, namely, multivariate homogeneously weighted moving average

(MHWMA) control chart, is proposed for the monitoring of process mean vector. The performance of the

chart is evaluated and compared with multivariate χ2, MEWMA, MCI and MCUSUM charts considering

a variety of charting parameters. The run length comparison revealed that the proposed MHWMA chart

is superior to the compared charts, particularly for the detection of small shifts in the process mean vector.
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Chapter 6

A new distribution-free multivariate

control chart for ecological applications

This chapter is about to be submitted for publication. Also, the chapter will be implemented in a

statistical package.

Environmental monitoring programmes have been established across the globe to monitor whole com-

munities of species through time. It is vitally important that such programmes be empowered to detect

significant changes in sustainable ecosystems quickly, so that deeper investigations and remedial restora-

tion measures, if necessary, can be implemented directly. In industrial monitoring, a commonly used tool

for an analogous purpose is the control chart. The construction of the traditional control chart is equiva-

lent to the plotting of the acceptance regions from a sequence of parametric models over time. A system

is considered to be out of control when an observed value falls outside the control-chart limits obtained

when there is no impact on the system. When this occurs, it suggests that the system has changed, and

appropriate investigations should be initiated. Analogous to the industrial monitoring, in this work, we
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propose a multivariate control chart for monitoring ecological data sets. The monitoring aims to discover

when (and where) an impact may have occurred in the ecosystem. Our proposed charting method is based

on a change point method which does not require prior knowledge of the ecosystem’s behavior before the

monitoring can begin. Also, the method does not require any parametric model assumptions, as it can

be based on any dissimilarity measure of choice. A permutation procedure is employed to obtain the

control-chart limits for a suitable distance-based model through time. We provide examples to show the

applications of the method in detecting shifts in ecological community structure. Our simulation results

and results of the application of proposed method show that the method detects shifts in the ecosystem

earlier than the already available method based on the distance to centroid of the multivariate ecological

dataset.

6.1 Introduction

Baseline ecological monitoring has become essential for ecological and environmental sciences, due to the

increase in anthropogenic pressure on ecosystems (Anderson and Thompson, 2004). Such monitoring

is particularly important where there is concern about potential anthropogenic impacts on ecosystems.

Baseline monitoring provides the necessary background information for assessing changes in the ecosys-

tem, and enables ecological impact assessments. As commented by Anderson and Thompson (2004),

“one might argue that the role of monitoring (as the name suggests) is to provide a “signal” or “alarm

bell” to the presence of an impact, if, where, and when it does occur. That is, we should hope that a

reasonable monitoring program would provide us with a way of assessing, at any particular time, whether

a measurement we observe is unusual, given what we would expect from our observations of the naturally

variable system up until that time.”

The monitoring of changes in production processes is a similar problem with many real-life applications
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such as industrial and manufacturing applications. The demands for high product quality have led to

the development of many shifts detection methods in the industrial and manufacturing applications (Cui

et al., 2008). Statistical process control (SPC) is a fundamental methodology consisting of many standard

methods that have been proven useful in quality and productivity improvement of products and processes.

Among these methods, the control chart is the most popular and sophisticated tool for tracking and

keeping processes in control by monitoring essential quality characteristics of interest (Yen and Shiau,

2010). The construction of the traditional control chart is equivalent to plotting the acceptance regions of

a sequence of parametric models over time. A process is considered to be out of control when an observed

value or future obtained value of the process falls outside the control-chart limits obtained when there

is no changes in the process. When this occurs, it suggests that the process may have been affected by

some factors, and thus, appropriate investigation of the process should be initiated.

Control charts as monitoring tools have proven very useful for both the univariate and multivariate

independent normal or “approximately” normal distributed data (Montgomery, 2009). The statistical

properties of the traditional control charts are accurate only if this assumption is satisfied. However, in

some cases, the underlying system is not normal, and as a result, the traditional charts can be very affected

in such situations (Chakraborti et al., 2001). Also, tests for normality may be impossible to achieve on

a routine basis. “I cannot believe that there are tests for multivariate normality with sufficient power

for practical sample sizes that I would even bother to use them; distribution-free multivariate SPC is

what we need” (Coleman as cited in Montgomery and Woodall (1997)). The necessity of this assumption

has almost restricted the applications of the traditional control charts to industrial process monitoring

(Tuerhong and Bum Kim, 2014).

To address this problem, many distribution-free control charts have been proposed. See Chakraborti

et al. (2001) for a detailed review of works on distribution-free univariate control charts. Also, several

nonparametric multivariate principal components analysis (PCA) based control charts have been pro-
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posed by different authors, including Phaladiganon et al. (2013), Martin and Morris (1996), Babamoradi

et al. (2016). The PCA based control charts have the ability to handle large numbers of highly correlated

variables, measurement errors and missing data (Jackson, 1991). They can improve the ability to detect

faults early and detect changes in the process variables (MacGregor et al., 1994; Kourti, 2005), and have

found great application in monitoring chemical processes. Moreover, several multivariate non-parametric

control charts have been proposed by different authors, including Tsung and To (2012); Zou et al. (2012);

Phaladiganon et al. (2013); Qiu (2008). These nonparametric charts are designed for processes, char-

acterized by continuous quality characteristics, and are suitable only for industrial and manufacturing

process or product monitoring (Tuerhong and Bum Kim, 2014). They cannot handle multivariate obser-

vations of species abundance data; like those obtained for monitoring ecological communities (Anderson

and Thompson, 2004).

To make control charts more useful for ecological monitoring, what is needed is a robust non-parametric

method which is capable of dealing with multivariate observations of species abundance. Few researchers

have proposed different control charts tools for monitoring the ecosystems. Schipper et al. (1997) pro-

posed the use of a sequential probability ratio test (SPRT). Also, Pettersson (1998) investigated the use

of statistical surveillance in the form of Hoteling’s T 2 and the Shannon-Wiener index for monitoring bio-

diversity. However, their approaches cannot handle multivariate species abundance data, and also, they

required distributional assumptions of the datasets.

Recently, Anderson and Thompson (2004) proposed a distance-based multivariate control chart tool for

ecological monitoring. Their method was designed to detect impacts at several spatial scales in hierarchical

designs. Moreover, the method allowed any dissimilarity measure of choice, as it does not require any

distributional assumptions, since, the control-limits of the chart were obtained using a bootstrap approach.

However, because their proposed charting methodology is based on distances to centroid, it failed to

account for anisotropic variation in the multivariate data (see Figure 6.1). That is, their control chart
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method considered equidistant points from the centroid of the baseline data to be equivalent, even if one

point was unsual with respect to the baseline distribution.

Figure 6.1: Two observations may be equidistant from the centroid - this does not mean they will
both lie within (or outside) the baseline data cloud.

Hence, in this work, we propose a more useful multivariate control chart tool for ecological monitoring.

Here, the proposed tool is based on a change point method where the present observed ecological data point

is evaluated based on all of the previous data points. The method can take either multivariate dataset,

or, the dissimilarities between every possible pair of samples as input. When dissimilarities between every

possible pair of the samples are available, the method first represents these sample distances as points

in coordinate space. Then, these coordinates are used to monitor and identify, as quickly as possible,

changes in the mean vector of the multivariate ecological dataset. Importantly, the proposed method can

handle anisotropic variability by accounting for the directionality of variation. We use a permutation

procedure to obtain the proposed chart limits.
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The remainder of the chapter is organized as follows. We present relevant background methodology

in Section 6.1.1. Section 6.2 describes the design of the proposed charting tools under both parametric

and non-parametric cases, followed by a review of a useful tool for ecological monitoring in Section 6.3.

Simulation studies are provided in Section 6.4, followed by ecological application in Section 6.5, and

conclusion and discussion is given in 6.6

6.1.1 Background methodologies

6.1.2 The multivariate chi-square chart

Given yt (t = 1, 2, . . . , n) as a data matrix of a sequence of observations that is distributed as a multivariate

normal distribution with mean vector µ, and covariance matrix Σ, i.e., yt ∼ N(µ,Σ). The leading

diagonal of Σ contains the variances of the columns of y’s and the off-diagonal elements are the covariances.

To detect change in the mean vector, µ, of the multivariate data matrix yt, Hotelling (1947) proposed a

multivariate control chart tool which represents the weighted Mahalanobis distance of the sample points

from the center of the cloud. The tool is known as the multivariate χ2 control chart, and is given as:

χ2
t = (yt − µ)′Σ−1(yt − µ) (6.1)

The chart signals whenever the χ2
t values obtained from the observation at time t is greater than the

chart’s constant control limit χ2
p,α. The quantity χ2

p,α is the αth upper percentage point of the chi-square

distribution and p is the number of columns of the data matrix yt.

The chart has been found useful in a range of scientific and technological application domains, includ-

ing health-related monitoring, quality improvements, ecological monitoring, spatiotemporal surveillance,

and profile monitoring. Hotelling (1947) employed the chart to bombsight data during World War II.

Since then, sevaral papers dealing with control procedures for several related variables have appeared in
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literature and include Anderson and Thompson (2004), Crosier (1988), Pignatiello and Runger (1990),

Roberts (1959), Jackson (1991), Woodall and Ncube (1985), Golosnoy et al. (2009), Zhang and Chang

(2008), Phaladiganon et al. (2013), Ngai and Zhang (2001), and Hawkins (1991). We refer to Bersimis

et al. (2007) for a recent review in multivariate control charting procedures.

The multivariate χ2 chart is only applicable when the parameters µ and Σ are known. In practice,

the parameters are generally unknown and they need to be estimated from historical in-control behaviour

of the system. In this case, the chart is applied in a two-phase scheme, called, Phase I and Phase II.

The Phase I scheme is used to model the in-control performance of the process based on the historical

sample dataset, whereas in Phase II, new observations (not used in model building) are checked against

the chart’s performance obtained from Phase I. A direct approach to estimate the parameters is to

obtain their empirical estimates. However, the empirical estimate of the covariance matrix leads to a

chart that may not be efficient in detecting a shift in the mean vector, because the parameter may be

poorly estimated (Sullivan and Woodall, 1996). To enhance the performance of the chart under estimated

parameters, different estimates of the covariance matrix have been suggested. For example, Sullivan and

Woodall (1996) proposed a method of estimation that uses the differences between successive observations.

Also, Holmes and Mergen (1993) proposed the use of a mean square successive difference approach for

estimating Σ0.

When the parameters are unknown and estimated from Phase I, to avoid estimation bias during the

model building in Phase I and make chart sensitivity to change in the mean vector, the chart parameters

µ and Σ, need to be estimated from a large in-control reference sample. However, in some practical

applications, information about the Phase I behaviour of the system may not be available, or it may not

be possible to wait and gather a reasonably large historical in-control sample about the process before

commencing the monitoring process. To solve this problem, Quesenberry (1991, 1997) proposed methods

that update the parameter estimators of the mean vector and covariance matrix with new observations
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and simultaneously monitor the process to determine whether the new observation is in control or not. A

variant of these methods based on sample distances is employed in the multivariate control charts tools

for ecological and environmental monitoring by Anderson and Thompson (2004).

6.2 Description of the proposed method

6.2.1 Parametric case

To detect change in the mean vector µ of the multivariate data matrix Y , following Anderson and

Thompson (2004), at any particular time t, we assess the extent to which the observation, yt, is unusual,

given previous values up to (and including) time (t− 1). That is, we define a vector, zt, as the weighted

deviation of the observation t from the average of all the previous observations. This is given as:

zt = (yt − ȳt−1)

√
t− 1

t
(6.2)

where ȳt−1 =
1

t− 1

∑t−1
j=1 yj , and y0 = 0.

We calculate the estimate of the mean vector of Y at each value of t using the updated formulas in

Quesenberry (1991, 1997), given as:

ȳt =
1

t
((t− 1)ȳt−1 + yt), (6.3)

where t = 2, 3, 4, . . . for the estimated mean vector. Hence, the ȳt−1 in Equation(6.2) are calculated using

the formula given in Equation (6.3). We assume that the system is “in control”, and that the yt are

stochastic with a common expected value, estimated by ȳt−1. Hence, under this null hypothesis, the zt

are stochastic deviations with an expected value of zero, and are independent and identically distributed

as a multivariate normal distribution with mean vector 0 and covariance matrix Σ, i.e., zt ∼ N(0,Σ).
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An unusually large value of zt signals that the system is “out of control” at time t.

When the process is in-control, the vector zt can be transformed to give:

Q′(zt) = Φ−1

[
Fp, t−p−1

(
(t− p− 1)

p(t− 2)

)
×
(
zTt S

−1
zt−1

zt

)]
(6.4)

where p is the number of variables in Y , t = p + 2, p + 3, . . . , Fp, t−p−1 is the cumulative distribution

function (cdf) of F distribution with p and t − p − 1 degrees of freedom, and Φ−1 is the inverse of

the cdf of the standard normal distribution (Quesenberry, 1991, 1997). Using the transformation in

Equation (6.4), the in-control transformed chart statistic Q′(zt) follows a standard normal distribution

(i.e, Q′(zt) ∼ N(0, I)). Szt in Equation (6.4) is the sample (or empirical) covariance matrix of zt at time

t, and is obtained as follows:

Szt =
1

t− 1
Ht (6.5)

where Ht given by Ht = Ht−1 + ztz
T
t , t = 3, 4, . . . , and H0 = 0k×k (Quesenberry, 1991, 1997).

The squared standardized (generalized) distance of zt to its expected value (i.e., the Hotelling’s T 2

statistic of zt), is given as:

T 2
t = zTt S

−1
zt−1

zt (6.6)

Because the T 2
t statistic in Equation (6.6) is based on updating formulas for the estimators of the mean

vector and covariance matrix, the T 2
t statistic is not distributed as a Fp, t−p−1

(
(t− p− 1)

p(t− 2)

)
. Hence, we

transformed the T 2
t statistic to

Q′(T 2
t) = (χ2

1)−1

[
Fp, t−p−1

(
(t− p− 1)

p(t− 2)

)
× T 2

t

]
(6.7)

where (χ2
1)−1 is the inverse of the cdf of a chi-square distribution with one degree of freedom. When the

process is in control, then, the value of the Q′(T 2
t) should be less than the upper control limit χ2

α,1, where
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χ2
α,1 is the upper (α)th percentage point of the chi-square distribution with one degree of freedom. The

chart gives out-of-control signal whenever the Q′(T 2
t) value is greater than the chart upper control limit

(i.e., χ2
α,1). Here, we recommend plotting the transformed statistic Q′(T 2

t) in Equation (6.7), when the

data matrix yt is distributed as a multivariate normal with unknown mean vector and covariance matrix.

We refer to the proposed chart based on the Q′(T 2
t) as a change point monitoring tool based on a chi

square distribution with one degree of freedom.

6.2.2 Non-parametric case

Retrospective analysis

Here, Yt is a multivariate observation obtained from discrete sequential time points, t = 1, 2, . . . , and

consists of counts of abundance ytk on each of k = 1, 2, . . . , p species or taxa. In this case, we first

represent the species abundance data matrix, yt, as points in multivariate ordination space Qtk′ (here, k′

is the dimension of Qtk′), using appropriate ordination tool. These tools are based on pattern extraction

(Legendre and Legendre, 1988), and have found significant applications in Ecology. They used the rela-

tionships among the original variables to build new variables which describe and carry a dominant part

of the global pattern in the original variables (McCune, Bruce and Grace, James B and Urban, 2002).

An important ordination method is the metric multidimensional scaling (MDS); a method initially

proposed by Kruskal (1964a,b). For a given configuration, the degree to which the MDS inter-points

distances is a function of the experimentally observed dissimilarity is expressed by a measured called stress

(S). A large value of S symbolizes a poor fit, whereas a small stress value means a good fitting solution

(Legendre and Legendre, 1988). Also, Gower (1966) described a method to represent a multivariate sample

of size n, as points in a Euclidean space. This method, known as principal coordinate analysis (PCO),

takes an input matrix giving dissimilarities between n pairs of samples. We refer the interested reader to

Legendre and Legendre (1988); Kruskal (1964a); Anderson and Willis (2003); McCune, Bruce and Grace,
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James B and Urban (2002); Frontier (1976); Bajorski (2011); Franklin et al. (1995); Paul and Anderson

(2013); Jackson (1993) for literature on a number of important ordinations tools commonly applied in

practice, and on the determination of the number of nontrivial ordination axes, k′, to be retained in Qtk′ .

Using the Qtk′ , we define the statistic zt given as:

zt = (qt − q̄t−1) ∗
√
t− 1

t
(6.8)

where qt is the tth row of the matrix Qtk′ , q̄t−1 =
1

t− 1

∑t−1
j=1 q̄j and q0 = 0. The monitoring statistic is

given as:

T 2
t = zTt Σ̂

−1
zt−1

zt (6.9)

In some cases, the number columns of the matrix Qtk′ (i.e., k′), would be close to the number of

rows (say, n). This makes the usage of the empirical estimate (say M t) of the covariance matrix of

Qtk′ unsuitable, for relatively small t. This is because, the inverse of empirical estimate of the covariance

matrix would not exist unless a reasonable number of samples are gathered before the monitoring schemes

begins. Hence, the matrix Σ̂zt in Equation (6.9) is given as:

Σ̂zt =
1

t− 1
W t (6.10)

where W t = W t−1 + ztz
T
t and W 0 = 0k′×k′

The matrix W t (in Equation (6.10)) is a shrinkage estimate of the covariance matrix and its usage

particularly helps to commence the monitoring scheme for relatively small samples. It is a weighted

average of the empirical estimate M t and a target matrix T = (tij)1≤i,j≤r; is given as:

W t = λT + (1− λ)M t, (6.11)
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where λ ∈ [0, 1] denotes the shrinkage intensity: λ = 0 implies W t = M t, and λ = 1 gives W t = T .

The estimator is well conditioned for small sample, and does not make any distributional assumption

about the underlying distribution of the data. Its performance advantages are, therefore, not restricted

to multivariate normal data (Ledoit and Wolf, 2004a, 2003; Schäfer and Strimmer, 2005; Ullah et al.,

2017; Adegoke et al., 2018b). The target matrix, T , used is the one that shrinks the diagonal elements

(i.e., the sample variances) of the empirical estimate of the covariance matrix towards their median and

shrinks the off-diagonal entries to zero. Other targets (see Ledoit and Wolf (2004a); Schäfer and Strimmer

(2005)) like shrinking the diagonal against zero or towards mean can also be considered. Opgen-rhein and

Strimmer (2007) showed that these two alternatives turned out to be either less efficient (zero target) or

less robust (mean target) than shrinking towards the median. The shrinkage covariance matrix has the

the effect of reducing the larger eigenvalues and increasing the smaller ones, thereby counteracting biases

inherent in sample-based estimation of eigenvalues (Friedman, 1989; Opgen-rhein and Strimmer, 2007).

A key question to the usage of the shrinkage estimate in Equation (6.11) is the determination of the

optimal shrinkage intensity parameter (λ∗). Several studies have proposed different methods to estimate

this parameter. For example, Ledoit and Wolf (2004a); Schäfer and Strimmer (2005); Opgen-rhein and

Strimmer (2007) gave analytic approach for determining the optimal shrinkage intensity parameter. Fried-

man (1989) proposed a computationally very intensive approach to estimate λ∗ using cross-validation.

Morris (1983), and Greenland (2000) estimated λ∗ in an empirical Bayes context. We follow the approach

in Ledoit and Wolf (2004a); Opgen-rhein and Strimmer (2007), and derive the estimated optimal intensity

parameter analytically. Here, the optimal value of the shrinkage intensity, λ∗, is obtained by minimizing

the risk function:

R(λ) = ||W t −Σ||2F (6.12)

where Σ is the true covariance matrix, and ||.||2F is the squared Frobenius norm, which is a quadratic
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form associated with the inner product. The optimal intensity parameter in this case is given as:

λ̂∗ =

∑p
t=1

ˆV ar(mtt)∑p
t=1(mtt −median(m))2

(6.13)

where median(m) is the median of the sample variances of M t (Opgen-rhein and Strimmer, 2007; Ul-

lah et al., 2017). The T 2
t statistic in Equation (6.9) (obtained based on the shrinkage estimate of the

covariance) is defined for t = 4, 5, ..., n, otherwise, we recommend accumulating suitable samples before

commencing the monitoring scheme.

Control limits

Here, our aim is to compare the realization of the ecosystem at the time t against the system behaviour

prior to the time t. Under the null hypothesis (i.e., if the system is “in-control”), the distribution of the yt

space can be modeled as stochastic process through time. We propose a method to obtain the chart limit

at any particular time t, using a permutation procedure. The permutation tests are very useful to obtain

reliable statistical inferences without making strong distributional assumptions (Hessainia et al., 2013),

except for the exchangeability of the observational data (Anderson, 2001). We refer interested reader to

Anderson and Ter Braak (2003); Anderson (2001) for different permutation strategies commonly used in

practice.

In addition to the null hypothesis, we obtain the limit by assuming that any of the observations (in

Qtk′) prior to time t, can occur at time t− 1. Under this assumption, the limit is obtained by permuting

the rows of Qtk′ up to and including the (t − 1)th row, and calculating T 2
t−1. The T 2

t−1 is the value of

the proposed charting statistic (given in Equation 6.9) for the last permuted observation (at time t− 1).

Repeat this permutation procedure many times to get the distribution values of 95% percentile of T 2
t−1.

We refer to this 95% percentile of the distribution of T 2
t−1 as δT

2
t−1 . The δT

2
t−1 is used as the upper control
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limit of the chart for monitoring the system at time t. In the derivation of the chart’ limit, because the

T 2
t is defined for t = 4, 6, . . . , n, the limits vary with time, are defined only for t ≥ 5, and hence, the

monitoring scheme begins at t = 5.

6.2.3 Progressive analysis

When the proposed chart is based on the ordination axis Qtk′ , an important question with the calculation

of the proposed charts given in Section 6.2.2, is how to interpret the control chart’s behaviour at time t

given that the system is already out of control at time t−1. That is, given that the behaviour of the system

at time t−1, calculated from Qtk′ , gives an out of control signal, then, it is expected that the observation

at time t − 1 should not be included in the calculation of the chart’s limit at time t. Hence, instead of

calculating the proposed chart statistic and limits on the matrix, Qtk′ , obtained from all the rows of the

data matrix yt, we recommend calculating separate matrices Qt∗k′ for each time t∗ = 5, 6, 7, . . . , n. Here,

the matrix Qt∗k′ used for monitoring the observation at time t∗, is obtained from only the first t∗ samples

(or rows) of yt.

As a result, the proposed chart statistic for monitoring the observation at time, t∗, is calculated only

from the last observation in Qt∗k′ , and is given as:

zt∗ = (qt∗ − q̄t∗−1)

√
t∗ − 1

t∗
(6.14)

where qt∗ is the last row of Qt∗k′ , q̄t∗−1 =
1

t∗ − 1

∑t∗−1
j=1 q̄j and q0 = 0. In this case, the monitoring

statistic (for time t∗) is standardized by the dimension of matrix Qt∗k′ (at time t∗), and is given as:

T 2
t∗ =

1

k′
zTt∗Σ̂

−1
zt∗−1

zt∗ (6.15)

where k′ is the dimension ofQt∗k′ at time t∗, Σ̂zt∗ =
1

t∗ − 1
W t∗ , W t∗ = W t∗−1+zt∗z

T
t∗ andW 0 = 0k′×k′ .
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Also, the control limit for monitoring the behaviour at time t∗ is calculated from the Qt∗k′ (and T 2
t∗ given

in Equation (6.15)), using the control chart limit procedure explained in Section 6.2.2. We refer to the

proposed chart given in this Section as the change point chart based on the permutation limit (or chart

based on the permutation limit).

In all of the analysis in this study, at any particular time t (or t∗), the dimension of the matrix Qtk′ (or

Qt∗k′) was obtained such that the linear correlation between the distances of the matrix Qtk′ (or Qt∗k′)

and the original data matrix is 0.999.

6.3 Distance to centroid approach

At any particular t, the distance to the centroid of all previous observations (dt) method by Anderson

and Thompson (2004) is given as:

dt =

√
t

(t− 1)
(SSt − SSt−1) (6.16)

where, SSt =
1

t

∑t−1
i=1

∑t
j=i+1D

2
ij , and SSt−1 =

1

(t− 1)

∑t−2
i=1

∑t−1
j=i+1D

2
ij are sum of squared interpoints

dissimilarities among all points up to time t divided by t and the sum of squared interpoint dissimilarities

among all points up to time (t− 1), divided by (t− 1), respectively. The control chart’s upper confidence

limit for dt was obtained using a bootstrapping procedure. The upper bound of dt (in Equation (6.16))

was formulated to deal with the situations where there are more than one sites by using the average of

the 95th percentile of the empirical distribution of dt across the entire set of sites in the spatial array

(Anderson and Thompson, 2004). As the dt statistic was based on distances from centroid calculated

from all previous observations, the confidence bound of dt change through time. Detailed information on

the derivations of the upper bound of dt is given in Anderson and Thompson (2004).

Here, we give the following steps for obtaining the upper bound of dt at time t, when there is only
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one site:

1 Take y∗ as a random sample point from y1,y2, . . . ,yt−1.

2 Take a bootstrap sample with replacement from y1,y2, . . .yt−1, call this matrix y[b]. Note, here,

the random sample y∗ is excluded from the matrix y1,y2, . . . ,yt−1 from whichy[b] was obtained.

3 Obtain distance to centroid of y∗ from y[b], call this, d
[b]
t .

4 Repeat steps 1 to 3 many times, and obtain 95% quantile of the empirical distribution of d
[b]
t .

6.4 Performance of the new method and results

We first examined the performance of the methods using two different simulation studies. The first

was based on data drawn from multivariate normal distribution while the second simulation involves

a simulated ecological dataset. For the multivariate normal simulated dataset, the performance of the

proposed charts: the chart based on the chi-square distribution with one degree of freedom (Section 6.2.1)

and the chart based on the permutation limit (Section 6.2.2), are compared with both the control charts

based on distance to the centroid of all previous observations (dt) by Anderson and Thompson (2004) and

the multivariate chi-square by Hotelling (1947) explained in Sections 6.3 and 6.1.2, respectively. For the

ecological simulated data set, the performance of the proposed chart based on the progressive analysis

(Section 6.2.3), is only compared with the distance to the centroid of all previous observations (dt) charting

tool. The proposed chart and dt statistics were obtained on the basis of the Euclidean distance measure

and Bray-Curtis dissimilarity measure for the normally and ecological simulated datasets, respectively.

In both simulations, n1 (out of n = n1 + n2) observations were drawn from in-control distribution,

and the remaining n2 = 1 observation was drawn from out-of-control distribution. We considered n1 =

5, 7, 10, 15, 20, 25, 30, 40, or 50 in our simulations. In both cases, the charts were designed such that the
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false alarm probability was fixed at 0.05. For each of the control chart under investigation, the false

alarm rate and power were calculated, respectively, as the percentage of the l (number of simulations)

calculated plotting statistic for in-control observations that exceeded the control limit of the chart and the

percentage of the l calculated plotting statistic values for out-of-control observations that exceeded the

control limit of the chart. The false alarm rate and power were calculated from l = 10, 000 simulations.

6.4.1 Multivariate normal simulation description and results

We drew the n observations from p−variate (p = 2, or 5) normally distribution with mean vector µ

and covariance matrix Σ, i.e., yt ∼ Np(µ,Σ). Without loss of generality, we used µ = 0 and considered

exchangeable covariance matrices Σ with variances given as:

σtk′ =


1, if t = k′

b, if t 6= k′.

(6.17)

We examined the performance of the methods under both independent and AR(1) covariance structures,

by setting b = 0 (i.e., independent covariance structure), and b = 0.8|k−k
′| for 1 ≤ k, k′ ≤ p (i.e., AR(1)

covariance structure), respectively.

To obtain the power from the different charting schemes, we simulated the n2 = 1 observation from the

distribution where the mean vector (i.e., µ) was shifted by (size) δ relative to the n1 dataset. Following,

Ullah et al. (2017), we considered three different scenarios for the directions of this shift, along: the first

eigenvector, the last eigenvector, and all eigenvectors. In each of these cases, δ was selected so that the

simulation was useful in discriminating between the methods. The values of δ used were: 2
√
pλ1 along

the first eigenvectors, 2
√
pλp along the last eigenvectors, and 2

√
λk along all eigenvectors, where λk is the

kth eigenvalue of Σ. The results in Figures 6.2 and 6.3 represent the multivariate normally distributed
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simulation results (for p = 2 and 5) under both the independent and the AR(1) covariance structures,

respectively.

As shown in Figure 6.2, the proposed chart method based on the permutation limit and the distance

to the centroid of all previous observations (dt) charting tool gave higher false alarm probabilities than

expected for relatively small values of n1. In particular, when p = 2, the distance to centroid approach

gave false alarm probabilities values higher than the expected for all values n1 ≤ 30, also, the proposed

chart method based on the permutation limit consistently gave the required false alarm probabilities for

n1 ≥ 20. Hence, the proposed chart based on the permutation limit required fewer sample to achieve the

required false alarm probability. However, the chi-sqaure chart and the proposed chart based on the chi

square with one degree of freedom consistently gave the required false alarm probabilities for all values of

n1. Similarly, power probabilities from the chart based on the distance to centroid were invariably higher

than the power from the proposed chart based on the permutation for all values of n1 ≤ 30, however, for

n1 > 30, the chart based on the permutation limit gave higher power. Similar conclusion can be made

for the case of p = 5.

Figure 6.3 presents the simulation results under the AR(1) structures considered. As shown on the

Figure, the power from the distance to centroid depends on the direction of the shift. For both p = 2 and

5, when the direction of the shift is along the first eigenvector, the new method consistently gives higher

power than expected (i.e., the results of the chart based on the chi-square with p degrees of freedom (the

multivariate chi-square chart)), this is evident in Figure 6.3. Intermediate powers were obtained when

the shift is along all the eigenvector. Meanwhile, when the shift is along the last eigenvector, the power

probabilities from the method were consistently minimal. The results of the proposed charts based on

the chi-square with one degree limit and the permutation limit give almost similar patterns in-terms of

their false alarm probabilities and power, for the values of p considered.
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6.4.2 Ecological simulated data set and results

Here, we used the multivariate dataset on the putative impact of a shoreline sewage outfall on the

structure of molluscan assemblages in a Mediterranean rocky subtidal habitat. The study area is located

along the south-western coast of Apulia (Ionian Sea, SE, Italy), and is characterised by wave-exposed

calcarenitic rocky plateaus extending from the water surface to about 10m depth on fine sand with a

gentle-medium slope (Terlizzi et al., 2005b,a). Sampling was undertaken in November 2002 at the outfall

location (hereafter indicated as I) and two control or reference locations (C1 and C2, hereafter indicated

as Cs). The control locations were chosen at random from a set of eight possible locations separated by

at least 2.5km and providing comparable environmental conditions to those occurring at the outfall (in

terms of slope, wave exposure, type of substrate). They were also chosen to be located on either side of

the outfall. At each of the three locations (I and Cs), three sites, separated by 80m−100m were randomly

chosen. At I, one site was located immediately adjacent to the point of discharge and the remaining other

two were on its right and left, respectively. For each site, assemblages were sampled at a depth of 3m−4m

on sloping rocky surfaces. Nine random replicates were collected at each of the three sites within each

location, yielding a total of 81 samples. The number of species p = 151.

The n1 and n2 observations were randomly drawn from the control groups and the impacted group,

respectively, using the simulation procedure described in Anderson et al. (2019). We randomly drew the

n1 samples from the control groups, and the n1 = 1 was randomly drawn from the impacted group. Here,

the plotting statistic and control limits of our proposed chart were obtained using the progressive analysis

of the method given in Section 6.2.3. The matrix Qt∗k′ (MDS axes) used for monitoring the observation

at time t was metric MDS axes obtained from the square root transformation of simulated datasets from

the control and impacted groups. We provide false alarm probability plot, power plot and a plot of the

ratio of the power to the false alarm for both the full dataset and a reduced dataset in Figure 6.4. The

reduced data contains a subset of the full dataset with positive covariances.
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As shown in the figure (Figure 6.4), the false alarm probabilities from both method were greater than

the required 0.05 level. However, the figure shows that the proposed chart required fewer n1 sample to

achieve the required probability level than the method based on the distance to centroid. As expected, the

powers obtained from the distance to centroid were higher than those obtained from the proposed chat.

Meanwhile, as n1 becomes larger, the power from the proposed method converges to 1 faster than the

method based on the distance to centrid. This is more evident in the power plot results for the reduced

dataset. Importantly, the plot of the ratio of the power to the false alarm shows that the proposed method

is relatively better than its competitor.

6.5 Ecological example

Here, we used the dataset on fish species sampled annually during the summer by the Department of

Fisheries and Oceans (DFO), Canada, for 41 years (1970-2010) in the Scotian Shelf, Northwest Atlantic

bottom trawl studies. The studies used a stratified random design to provide unbiased, and independent

fishing indices of soil fish abundance and recruitment for the region of Fundy’s Scotian Shelf. The data

were mainly benthic fish species, although other species were also routinely captured, including small

pelagic fish. All fish caught were classified at species level except for redfish, which were classified as

”unspecified redfish ” because of uncertainties in their taxonomy (Ellingsen et al., 2015).

The Scotian Shelf covers latitudes 42− 47◦N and is divided into an eastern region (sub-areas 1− 3)

and a western region (sub-areas 4 − 5, including the Bay of Fundy), corresponding to divisions of the

Northwest Atlantic Fisheries Organization (NAFO) with a total area of 172, 000km2 Figure 6.5. The total

area was divided into five sub-areas (Figure 6.5) after the original division into strata by DFO (based on

bathymetry, Shackell and Frank (2003)). There are two spatially discrete, reproductively isolated stocks

of cod on the Scotian Shelf, one in the eastern half of the shelf and the other in the west. In the early
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1990s, only the eastern stock collapsed, and the fishing industry closed there (Frank et al., 2005). Despite

being severely depleted, the stock of cod in the western region was never closed to fishing and persisted

in a depleted state (Shackell et al., 2010). Cod on the eastern Scotian shelf failed to recover unexpectedly

(Frank et al., 2005), although limited recovery was evident after 20 years (Frank et al., 2011). Slow

recovery was linked to fundamental changes in the structure of the ecosystem due to excessive rates of

use (Frank et al., 2006, 2007, 2011).

Slow recovery has also been linked to predation by gray seals and/or the lack of reproductive success

through predator-prey reversals, where forage fish such as herring or capelin consume the eggs, larvae or

young-of-the-year cod (Bundy, 2005; Steneck, 2012). While several other commercially exploited ground-

fish species have also declined in this region (Frank et al., 2005), the benthic community’s primary prey

has increased, including small benthic and pelagic fish and benthic crustaceans (e.g. snow crab and north-

ern shrimp) (Zwanenburg, 2000; Worm and Myers, 2003; Choi et al., 2004; Frank et al., 2005). Similar

ecosystem responses to declining groundfish abundances have also been observed on the western half of

the Scotian Shelf, but only minor changes in benthic crustaceans were evident (Shackell et al., 2010).

The data analyses were done on the basis of Bray-Curtis dissimilarity measure (using non-metric

MDS), and multivariate control charts based on the distance to centroid of (t−1) observations by Anderson

and Thompson (2004), and the proposed chart were provided for the Area 1. The charts from our proposed

charting method were based on the progressive analysis given in Section 6.2.3, and the matrix Qt∗k′ used

for monitoring the system behaviour at time t∗ was MDS axes calculated from the first-t∗ observations

of the data matrix. At any particular time t∗, the dimension of the matrix Qt∗k′ was obtained such that

the linear correlation between the distances of the matrix Qt∗k′ and the original data matrix is 0.999. At

any particular time t∗, when the plotting statistic values (or points) are below the chart’s control limits,

then we assume that the observation at the time t∗ is in-control given what were observed prior to that

time.
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Figures 6.6 presents the results for the Area 1. Addition of a new observation increases dimension of

the MDS axes by one unit for the first few years. However, subsequent changes in the dimension of the

MDS axes occur on average after every two observations. This indicates that inclusion of an addition

observation into the data matrix from which the MDS axes were obtained increases the dimension of the

data matrix Qt∗k′ used in our proposed charting scheme. For this area, the method based on distance

to centroid of (t − 1) observations gives the first ”out-of-control” prior to the stock collapse in 1991. In

particular, the method shown the first out-of-control point in 1974. However, the proposed chart gives

the first ”out-of-control” in immediately after the collapse in 1991.

6.6 Conclusion and discussion

In this chapter, we proposed a multivariate control chart tool for ecological monitoring. The proposed

chart was based on a change point method where the present observed ecological data point was evalu-

ated based on all of the previous data points. The method was designed to take both the multivariate

dataset, and also, the dissimilarities between every possible pairs of samples as input. A permutation

procedure was employed to obtain the control-chart limits for a suitable distance-based model through

time. Simulation results showed that the method performed better than already available tool used for

the same purpose especially when there are structures in the ecological dataset. We provided examples

to show the applications of the procedure in detecting real shifts in ecological community structure.

136



Figure 6.2: Probability plot of the different methods from identity covariance matrix
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Figure 6.3: Probability plot of the different methods from the ar(1) covariance matrix
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Figure 6.4: Simulation results for the ecological dataset

139



Figure 6.5: Study area and delineation of five sub-areas on the Scotian Shelf off Nova Scotia,
Canada
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Figure 6.6: Results of the Area of the Scotian Shelf. The figure includes the non-metric MDS 2D
plot, the number of dimension retained at any time t∗, the control chart for the area based on the
distance to centroid, and the proposed chart together in a figure.
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Chapter 7

EWMA control chart for monitoring the

mean of a process that is negatively

correlated with an auxiliary variable

under some ranked sampling schemes

”This is the peer reviewed version of the following article: “Adegoke, N. A., Riaz, M., Sanusi, R. A., Smith,

A. N., & Pawley, M. D. (2017). EWMA-type scheme for monitoring location parameter using auxiliary

information. Computers & Industrial Engineering, 114, 114-129”, which has been published in final

form at https://doi.org/10.1016/j.cie.2017.10.013. This article may be used for non-commercial

purposes in accordance with Elsevier Terms and Conditions for Self-Archiving.”

Control charts are statistical methods used to detect shifts in the location parameter of a process that

is monitored over time. Here, we propose an improvement to the performance of the classical exponen-
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tially weighted moving average (EWMA) control charts, by making use of auxiliary information that is

correlated with the process variable. We present an EWMAP and its modifications: EWMA-type control

charts based on a product estimator where the location parameter of the process is monitored using an

auxiliary variable. The charts are developed using different sampling schemes: simple random sampling,

ranked set sampling (RSS) and median ranked set sampling (MRSS), and we evaluate their performance

using average run length, and other performance measures such as extra quadratic loss and relative av-

erage run length. It is observed that the proposed control charts are performing better than the classical

EWMA control chart in monitoring shifts in the location parameter of a process, especially when a strong

negative correlation exists between the process and the auxiliary variables. They are particularly efficient

in detecting small to moderate shifts in the process.

7.1 Introduction

Statistical process control (SPC) involves the application of control charts to monitoring the variation in

some quantity of interest, such as a measurement taken from goods produced by an industrial process

(May and Spanos, 2006). Variation in the process may be classified into two groups: the natural variation

and the assignable variation (Abbasi et al., 2015). The natural variation is an intrinsic component of the

production process and is usually unavoidable. The purpose of SPC is to quickly detect the occurrence

of the assignable causes of variation in the production process so that the process can be examined and

remedial actions are initiated to minimise the number of nonconforming products (Montgomery, 2009).

The performance of control charts in identifying the assignable alterations in the production process has

been shown to depend on, among other things, the sampling scheme used in their development (Mehmood

et al., 2013). Several new techniques and modifications to existing techniques have been proposed. Some

of these modifications rely on the utilization of a simple random sampling (SRS) scheme during the
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monitoring process; yet, SRS has been shown to be less powerful than some alternative schemes in

estimating the population mean. This is due to the fact that estimates from SRS can be highly skewed,

causing wide control margins and low control efficiency (Pongpullponsak and Sontisamran, 2013), when

compared with some other sampling methods, such as ranked set sampling (RSS) and its modifications

(Abujiya and Muttlak, 2004).

McIntyre (1952) originally proposed RSS and demonstrated its superiority over SRS. RSS can im-

prove process control by producing narrower control margins, while being generally cheaper and faster to

implement (Pongpullponsak and Sontisamran, 2013). RSS is most useful when the variable of interest is

highly difficult or costly to measure, but the ranking can be easily done at negligible cost (Patil et al.,

2002; Alamand, Md Sarwar and Sinha, Arun Kumar and Ali, 2016). Even if the ordering is difficult but

there is an easily ranked concomitant variable, then it may be used to “judgement order” the original

variable (Stokes, 1977; Chen and Shen, 2003). Regardless of how the ranking is done, the efficiency of RSS

is expected to be better than SRS, or at least as accurate as SRS with an equal number of quantifications.

This is because more information is contained in the RSS than a simple random sampling of the same size

(Halls, Lowell K and Dell, 1966; Dell and Clutter, 1972). For further work demonstrating the superiority

of RSS (and some modifications) over classical SRS, see Abujiya and Muttlak (2004), Al-Sabah (2010),

Mehmood et al. (2013), Pongpullponsak and Sontisamran (2013).

In many cases, direct measurements of the process of interest may be measured alongside some auxil-

iary variables with which it is correlated. Where available, auxiliary variables may be used to improve the

efficiency of control chart schemes, using standard methods such as regression (Riaz, 2008b). Recently,

Abbas et al. (2014a) proposed an exponentially weighted moving average (EWMA)-type control chart

where the process mean is regressed on the auxiliary variable. This method performed better than both

the classical univariate and bivariate EWMA control charts, particularly for detecting small to moderate

shifts in the process mean. Thus far, research in this area has focused on cases where the relationship

144



between the process variable and the auxiliary information is assumed to be positive (Sanusi et al., 2017a).

Yet, this is not always the case; the process variable and the auxiliary information may be negatively

correlated (Shabbir and Awan, 2016; and others Ahmad, Shabbir and Lin, Zhengyan and Abbasi, Saddam

Akber and Riaz, 2012).

Despite the improved efficiency of RSS over SRS, only a few works in the monitoring of the pro-

cess mean have adopted the use of the RSS, and its modification, especially where the process variable

is correlated or observed with another variable (Mehmood et al., 2013; Abujiya, Mu’azu Ramat and

Farouk, Abbas Umar and Lee, Muhammad Hisyam and Mohamad, 2013). In this work, we propose an

improvement to the performance of the classical EWMA control chart for monitoring shift in the location

parameter, using auxiliary information that is negatively correlated with the process variable. Specifically,

we present an EWMAP and its modifications: EWMA-type control charts based on product estimator,

where the location parameter of a process is monitored using one auxiliary variable. We develop the charts

using different sampling schemes: SRS, RSS and median ranked set sampling (MRSS). We evaluate the

proposed charts’ performance using average run length (ARL). ARL is the expected number of plotted

statistics or samples until we have the first out-of-control signal (Balakrishnan et al., 2010; Haq et al.,

2016). We also consider other performance measures such as extra quadratic loss (EQL) and relative

average run length (RARL) (Khaliq et al., 2016; Sanusi et al., 2016).

The rest of the chapter is organized as follows: in Section 7.2, we describe the RSS and MRSS

procedures, followed by the description of the product estimator, and the efficiency measures of the

product estimator from different sampling schemes in Section 7.3. In Section 7.4, we describe the basic

structure of the classical EWMA control chart and propose extensions of the classical EWMA control

chart to the case where another variable that is negatively correlated with the process variable. Section

7.6 presents the design, performance measure and comparison of the proposed charts with the classical

EWMA control chart. We provide illustrative examples in Section 7.7, with a concluding discussion in
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Section 7.8.

7.2 The ranked set sampling (RSS) and median ranked set

sampling (MRSS) procedures

Ranked set sampling was introduced by McIntyre (1952), as a more efficient and cost-effective method

than the commonly used SRS in the situations where the exact measurement of the units is difficult and

expensive, but the visual ordering of the sample units can be done easily (Du and Maceachern, 2008;

Alodat et al., 2010). The RSS scheme can be described as follows: Select a random sample of size n2

units from a given population, and randomly divide the selected n2 units into n sets, each of size n. The n

units within each set are then ordered based on a judgement of relative importance. This can be achieved

using a covariate measure that is correlated with the process variable (Patil et al., 2002). Then, the n

samples are obtained by choosing the first unit from the first set, the second unit from the second set,

and so on. The process may be cycled m ways, until k = nm units are chosen. The nm units constitute

the ranked set sample units.

Analytically, let Y1, Y2, Y3...,Yn be a random sample of size n, from the density function f(y). The

simple random sampling estimator of the mean of the study variable Y is given as Ȳ =
1

n

∑n
i=1 Yi, with

standard error sd(Ȳ ) =
σY√
n

. Let Y11, Y12, ..., Y1n, Y21, Y22, ..., Y2n,..., Yn1, Yn2, ...Ynn be n independent SRS

each of size n. Also, let Yi(1:n), Yi(2:n), ...Yi(n:n) represent the order statistics of the ith sample (Haq et al.,

2013). The measured ranked set sampling units are denoted by Y1(1:n), Y2(2:n), ...Yn(n:n). Let g(i:n)(y) be

the probability density function of the ith order statistic Y(i:n), i = 1, 2, ..., n, from a random sample of
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size n. It can be shown that:

g(i:n)(y) = n

n− 1

i− 1

 {F (y)}i−1{1− F (y)}n−if(y) −∞ < y < +∞ (7.1)

where F (y) is the cumulative distribution of Y (David, H and Nagaraja, 2003; Haq et al., 2013; Alamand,

Md Sarwar and Sinha, Arun Kumar and Ali, 2016). The mean and variance of Y(i:n) are given by:

µ(i:n) =

∫ +∞

−∞
yg(i:n)(y)dy and σ2

(i:n) =

∫ +∞

−∞
(y − µ(i:n))

2g(i:n)(y)dy (7.2)

The ranked set sampling of the mean and variance of the process variable Y are given as (David, H and

Nagaraja, 2003; Haq et al., 2013):

ȲRSS =
1

n

n∑
i=1

Yi{i:n}, (7.3)

and

V ar(ȲRSS) =
1

n2

n∑
i=1

σ2
{i:n} =

σ2
Y

n
− 1

n2

n∑
i=1

(µ(i:n) − µY )2 (7.4)

Yi{i:n} represents the order statistics of the ith sample, and µY is the population mean of Y .

Several modifications of the RSS have been proposed in practice. These include but are not limited

to MRSS by Muttlak (1997), while Samawi, Hani M and Ahmed, Mohammad S and Abu-Dayyeh (1996)

investigated the extreme ranked set sample (ERSS); also see Samawi and Tawalbeh (2002) for a literature

on different double stage RSS. The MRSS is a modification of the RSS which involves: select n2 samples

from a population, and divide this sample as in the case of RSS, to n sets, each of size n. The n units

within each set are then ordered based on a judgement of relative importance. The n measurements are

obtained depending on whether the set size is odd or even. If the size is even, draw the (n2 )th smallest

element from the first half, and draw the (n+2
2 )th smallest element from the remaining sets (second half).
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If the size is odd, select the (n+1
2 )th elements from each ranked set (Abujiya, Mu’azu Ramat and Farouk,

Abbas Umar and Lee, Muhammad Hisyam and Mohamad, 2013). The process may be cycled m rounds,

until k = nm units are chosen. The k = nm units constitute the median set sample units.

Analytically, the means and variances of Y of the MRSS for both even and odd sample size n are

given as (David, H and Nagaraja, 2003; Haq et al., 2013):

Ȳ Even
MRSS =

1

k

m∑
j=1

n/2∑
i=1

Yi{(n/2):n}j +

n∑
i=(n/2)+1

Yi{(n/2)+1:n}j

 and Ȳ Odd
MRSS =

1

k

m∑
j=1

n∑
i=1

Yi{(n+1)/2:n}j

Ȳ Even
MRSS and Ȳ Odd

MRSS are unbiased estimates of µY , for any symmetric distribution. Their variances, re-

spectively, are given as:

V ar(Ȳ Even
MRSS) = E(Ȳ Even

MRSS − µY )2 − 1

kn

n/2∑
i=1

σ2
Y {(n/2):n} +

n∑
i=(n/2)+1

σ2
Y {(n/2)+1:n}



V ar(Ȳ Odd
MRSS) = E(Ȳ Odd

MRSS − µY )2 − 1

kn

n∑
i=1

σ2
Y {(n+1)/2:n}

7.3 The product estimator

Assume that Y and X are positive, and can be obtained in paired form for each sample. More so,

we assume that Y and X are correlated, and are obtained from bivariate normally distributed random

variables, that is, (Y,X) ∼ N2(µY , µX , σY , σX , ρXY : −1 ≤ ρXY ≤ 1), where N2 represents the bivariate

normal distribution. The product estimator was proposed by Robson (1957), and is given as:

Ȳp =
Ȳ X̄

µX
, (7.5)
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where X̄ and Ȳ are the average of the X and Y , respectively, and µX is the population mean of X, which

is assumed to be known. The mean and MSE of Ȳp are given as:

E(Ȳp) = µY (1 +

(
1

n

)
ρY XCY CX), (7.6)

MSE(Ȳp) =

(
1

n

)
µ2
Y (C2

Y + C2
X + 2ρY XCY CX), (7.7)

where in Equations (7.6) and (7.7): CX = σX/µX and CY = σY /µY , are the population coefficients of

variations for X and Y , respectively, and ρY X is the correlation coefficient between the variables. Note

that sampling with replacement and approximation up to the first order are assumed.

7.3.1 Efficiency of the product estimator based on the different sam-

pling schemes

We study the efficiency of the product estimator based on the different sampling schemes with respect to

the conventional estimator of Y . Specifically, we want to find the range of ρXY , such that:

MSE(Ȳ ∗(ρXY )) ≤ V ar(Ȳ ), (7.8)

where we have used MSE(Ȳ ∗(ρXY )) to represent the mean square error of a particular sampling scheme

besides the conventional approach, and V ar(Ȳ ) is the variance of the conventional approach.

For the conventional product estimator based on simple random sampling, Murthy (1964) showed

that when the relationship between Y and X is linear through the origin, and Y is inversely proportional

to X, the product estimator will be more efficient than the conventional approach (i.e., Ȳ ) (Adebola, FB

and Adegoke, 2015; Adebola, F.B. and Adegoke, N.A. and Sanusi, 2015). Using the relation in Equation

(7.8), Murthy (1964) showed that the Ȳp in Equation (7.5) for the SRS case is more efficient than the
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corresponding variance of Ȳ given as σ2
Y /n, if:

ρY X ≤ −
CX
2CY

. (7.9)

An important question in RSS and its modifications where an auxiliary variable has been used is on

which of the two variables should the ordering be based (Samawi, Hani M and Muttlak, 1996), as ordering

both is not possible in practice, or it might be more straightforward to order one variable rather than the

other. We consider the case of correctly applying the schemes on one variable at a particular time, while

the ranking on the other variable is done with errors, and obtaining numerically the range of values of ρXY

under which the different sampling schemes considered are more efficient than the conventional approach,

for different values of n (i.e., n = 5 and 15). In the first case, we draw (yi, xi) from bivariate normal

distribution, that is, (Y,X) ∼ N2(µY = 100, µX = 50, σY = 10, σX = 5, ρXY : −1 ≤ ρXY ≤ 1); here,

CX = CY . For all values of ρXY , we estimate the standard error from all the different sampling schemes

and compare these values against the standard error of the conventional approach. The simulation results

in Figure 7.1 show that the condition given in Equation (7.9) for the efficiency of Ȳp in relation to the

conventional estimator becomes ρXY ≤ −0.5. As shown on the plot in Figure 7.1, this condition appears

to be independent of the sample size n.

However, in all of the other sampling schemes considered in this study, the efficiency of the methods

in relation to the conventional approach are functions of the sample size n. Specifically, the bigger the

sample size, the bigger the range of the values of ρXY with which a particular sampling scheme is more

efficient than the conventional approach. An example is when we can only rank (i.e., correctly apply RSS)

Y while the ranking on X has errors. The exact form of the MSE of the product estimator for the RSS
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Figure 7.1: The estimated standard error plots of the product estimator from different sampling
schemes when CX = CY .

on Y, with error sampling on X (i.e, Ȳrp1), is given as:

MSE(Ȳrp1) =

(
1

n

)
µ2
Y

C2
Y + C2

X + 2ρY XCY CX −
1

n

 n∑
i=1

Z2
x[i] +

n∑
i=1

Z2
y(i) + 2

n∑
i=1

Zx[i]Zy(i)




where, Zx[i] =
µx[i] − µx

µx
and Zy(i) =

µy(i) − µy
µy

. We replace (.) by [.] for the case when ranking is made

with errors. That is MSE(Ȳrp1) is given as

MSE(Ȳrp1) = MSE(Ȳp)−

(
µ2
Y

n2

) n∑
i=1

(Zx[i] + Zy(i))
2

 . (7.10)

Using the condition in Equation (7.8), the Ȳrp1 will be more efficient than the conventional estimator Ȳ

if:

MSE(Ȳrp1) < V ar(Ȳ ). (7.11)
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Analytically, this condition holds when:

ρY X ≤ k −
CX
2CY

, (7.12)

where k is defined as:

k =
1

2

(
µ2
Y

n2CY CX

)
n∑
i=1

(
Zx[i] + Zy(i)

)2
. (7.13)

Since k in Equation (7.13) is a function of n2, then an increase in the sample size n leads to an increase

in the range of the values of the correlation with which the sampling scheme is more efficient than the

conventional approach. For both RSS and MRSS (when CX = CY ), on which of the two variables the

sampling schemes are applied seems to be less important, because the behavior of their MSE follows the

same patterns. Generally, the MRSS, independent of which of the two variables the MRSS is applied, is

more efficient than the other sampling schemes.

Lastly, we draw (yi, xi) from two different bivariate normal distributions. In the first case, we draw

(yi, xi) from (Y,X) ∼ N2(µY = 100, µX = 50, σY = 14, σX = 5, ρXY : −1 ≤ ρXY ≤ 1); here, CX < CY .

In the second case, we draw (yi, xi) from (Y,X) ∼ N2(µY = 100, µX = 50, σY = 10, σX = 7, ρXY : −1 ≤

ρXY ≤ 1); here, CX > CY . When CX < CY , for both the MRSS and RSS in Figure 7.2, applying the

schemes on the process variable Y leads to more efficiency than applying them on the auxiliary variable.

These are shown in the lower MSE for both the RSS on Y and Median on Y in Figure 7.2. Specifically,

for all values of ρXY , there is greater efficiency in the MSE when the RSS and MRSS are applied on Y.

However, when CX > CY ; in Figure 7.3, applying the schemes on the process variable Y leads to less

efficiency than applying them on the auxiliary variable. This is also evident in the lower MSE for both

the RSS on X and Median on X in Figure 7.3. That is, for all values of ρXY , there is greater efficiency in

the MSE when the RSS and MRSS are applied on X. In both Figure 7.2 and Figure 7.3, an increase in

the sample size n also leads to an increase in the range of correlation for which both the RSS and MRSS
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are more efficient than the conventional approach. However, increasing the sample size n seems not to

have greater effects on the SRS scheme.

Figure 7.2: The estimated standard error plots of the product estimator from different sampling
schemes when CX < CY .

In all of our simulation results, irrespective of which of the variables the MRSS or RSS was applied on,

the RSS or MRSS is at least as efficient as the product estimator based on the SRS. The numerical results

in this section show that the product estimator is much more efficient than the conventional approach

when the relationship or correlation between the variables is negative. Specifically, when −1 ≤ ρXY <

−0.5CX/CY , this result conforms with the conditions in Murthy (1964). However, our simulation results

suggest that the range of correlation between X and Y is increased for the product estimator based on

the MRSS and RSS.
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Figure 7.3: The estimated standard error plots of the product estimator from different sampling
schemes when CX > CY .

7.4 The classical EWMA control chart

Let Y be an independent process variable from a normal distribution with mean µY and variance σ2
Y .

The EWMA statistics for monitoring a process shift in the location parameter is given as:

Wi = λYi + (1− λ)Wi−1, (7.14)

where λ is the smoothing parameter and it must be chosen such that 0 < λ ≤ 1 (Roberts, 1959). W0

represents the initial value required with i = 1 and it is generally chosen to be the process target mean

(i.e., W0 = µY ). When µY is unknown, the average of the samples (i.e., W0 = Ȳ ), is used as the starting

value. When choosing the value of λ, it is recommended to use small values to detect small shifts. An

EWMA chart with λ = 1.0 corresponds to a memoryless control chart (Montgomery, 2009). The mean
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and variance of Wi are given as:

E(Wi) = µY , (7.15)

V ar(Wi) = σ2
Y

{
λ

2− λ
(1− (1− λ)2i)

}
, (7.16)

where, µY and σ2
Y are the mean and variance of Y , and are estimated when they are unknown.

The control limits of Wi are given as:

LCLi = µY − LσY

√{
λ

2− λ
(1− (1− λ)2i)

}
, (7.17)

CL = µY ,

UCLi = µY + LσY

√{
λ

2− λ
(1− (1− λ)2i)

}
. (7.18)

The EWMA chart is very effective in detecting a small process shift. The design parameters of EWMA

chart are L and the value of λ (Roberts, 1959; Cheng, Smiley W. and Thaga, 2006). These parameters

are chosen to give the desired in-control ARL performance for the chart (Montgomery, 2009; Teoh, Wei

Lin and Khoo, Michael BC and Castagliola, Philippe and Lee, 2016).

The term (1 − (1 − λ)2i) in Equation (7.17) and Equation (7.18), approaches unity as i gets larger

(May and Spanos, 2006), and the LCL and UCL approach the steady state values given by (Sanusi et al.,

2017b):

LCL = µY − LσY

√(
λ

2− λ

)
, (7.19)

UCL = µY + LσY

√(
λ

2− λ

)
. (7.20)

The control limits given in Equation (7.19) and Equation (7.20), are called constant limits. The limits
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given in Equation (7.17) and Equation (7.18), are called the time varying limits. The time varying limits

are more robust than the constant limits in detecting the initial out-of-control conditions (Abbas et al.,

2014a).

7.5 The proposed charts

7.5.1 The proposed EWMAP control chart based on SRS

The proposed modified estimator is given as:

Wi = λȲpi + (1− λ)Wi−1, (7.21)

where, Ȳpi is the value of the statistic Ȳp (given in Equation (7.5)) for the ith sample observation, and

Wi−1 represents the past information, with an initial value given as: W0 = E(Ȳp). The varying control

limits for the proposed control chart: EWMAP , are given as:

LCLi = E(Ȳp)− Lc
√
MSE(Ȳp)

√{
λ

2− λ
(1− (1− λ)2i)

}
, (7.22)

CL = E(Ȳp),

UCLi = E(Ȳp) + Lc

√
MSE(Ȳp)

√{
λ

2− λ
(1− (1− λ)2i)

}
. (7.23)

As the product estimator is a biased estimator of the mean of Y , the design parameter Lc is adjusted to

accommodate for the biasedness of the estimator, and it determines the width of the control limits. The

value of Lc is chosen along with the smoothing parameter λ to give the desired in-control ARL of the

chart.
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7.5.2 The proposed EWMAPRY and EWMAPRX control charts based

on RSS

We consider the case when we can correctly apply the ranked set sampling scheme on one variable at a

particular time, while the ranking on the other variable is applied erroneously, and propose the EWMAPRY

and EWMAPRX control charts based on RSS. We use EWMAPRY for when we can correctly rank on

the process variable Y with error ranking on the auxiliary variable X, and EWMAPRX for when we can

correctly rank X with error ranking on the process variable Y .

Assuming that we can only correctly rank Y , while the ordering onX is applied erroneously, (Y(r), X[r]);

where r = i : n, is an ith order elements in the nth sample for the process variable Y, and the ith judge-

mental ranking in the nth sample for X. The product estimator for the RSS data with errors in ordering

of X for the mth circle (without loss of generality, we use m = 1) is given by:

Ȳrp1 =
Ȳ(n)mX̄[n]m

µX
, (7.24)

where Ȳ(n)m =
1

n

∑n
i=1 Y(r)m and X̄[n]m =

1

n

∑n
i=1X[r]m are the means of the perfect RSS for the variable

Y , and error in ranking X, respectively. The mean and MSE of Ȳrp1 in Equation (7.24) are given as:

E(Ȳrp1) = µY (1 +
1

n
ρY(r)X[r]

CY(r)CX[r]
), (7.25)

MSE(Ȳrp1) =

(
1

n

)
µ2
Y (C2

Y(r)
+ C2

X[r]
+ 2ρY(r)X[r]

CY(r)CX[r]
). (7.26)

where CX[r]
=
σX[r]

µX
and CY(r) =

σY(r)
µY

are the coefficients of variations for X[r] and Y(r), respectively,

σX[r]
=
√
σ2
X[r]

and σY(r) =
√
σ2
Y(r)

. In addition, σ2
X[r]

= E[(X[r] − E(X[r]))
2] and σ2

Y(r)
= E[(Y(r) −

E(Y(r)))
2] are the variances of X[r] and Y(r), respectively.
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The modified EWMA statistic in this case is given as:

W 1
i = λȲrp1i + (1− λ)W 1

i−1, (7.27)

where, Ȳrp1i is the value of the statistic Ȳrp1 for the ith sample observation, and W 1
i−1 represents the

past information, with the initial value given as: W 1
0 = E(Ȳrp1). The time varying control limits of the

proposed control chart EWMAPRY are given as:

LCLi = E(Ȳrp1)− Lc
√
MSE(Ȳrp1)

√(
λ

2− λ
(1− (1− λ)2i)

)
, (7.28)

CL = E(Ȳrp1),

UCLi = E(Ȳrp1) + Lc

√
MSE(Ȳrp1)

√(
λ

2− λ
(1− (1− λ)2i)

)
. (7.29)

However, when we can only correctly order X, while the ordering on Y is applied with errors, then

(Y[r], X(r)) is the ith judgemental ordering in the nth sample for Y , and ith order elements in the nth

sample for X. The product estimator for the RSS data with errors in ordering of Y for the mth circle is

given by:

Ȳrp2 =
Ȳ[n]mX̄(n)m

µX
, (7.30)

where Ȳ[n]m =
1

n

∑n
i=1 Y[r]m and X̄(n)m =

1

n

∑n
i=1X(r)m are the means of the perfect RSS for the variable

X, and error in ranking Y , respectively. The mean and MSE of Ȳrp2 in Equation (7.30) are given as:

E(Ȳrp2) = µY (1 +
1

n
ρY[r]X(r)

CY[r]CX(r)
), (7.31)

MSE(Ȳrp2) =

(
1

n

)
µ2
Y (C2

Y[r]
+ C2

X(r)
+ 2ρY[r]X(r)

CY[r]CX(r)
). (7.32)
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where CX(r)
=
σX(r)

µX
and CY[r] =

σY[r]
µY

are the coefficients of variations for X(r) and Y[r], respectively,

σX(r)
=
√
σ2
X(r)

and σY[r] =
√
σ2
Y[r]

. In addition, σ2
X(r)

= E[(X(r) − E(X(r)))
2] and σ2

Y[r]
= E[(Y[r] −

E(Y[r]))
2] are the variances of X(r) and Y[r], respectively.

The modified EWMA statistic in this case is given as:

W 2
i = λȲrp2i + (1− λ)W 2

i−1, (7.33)

where Ȳrp2i is the value of the statistic Ȳrp2 for the ith sample observation, and W 2
i−1 represents the

past information, with the initial value given as: W 2
0 = E(Ȳrp2). The time varying control limits of the

proposed control chart EWMAPRX are given as:

LCLi = E(Ȳrp2)− Lc
√
MSE(Ȳrp2)

√(
λ

2− λ
(1− (1− λ)2i)

)
, (7.34)

CL = E(Ȳrp2),

UCLi = E(Ȳrp2) + Lc

√
MSE(Ȳrp2)

√(
λ

2− λ
(1− (1− λ)2i)

)
. (7.35)

7.5.3 The proposed EWMAPMY and EWMAPMX control charts based

on MRSS

We also consider when we can correctly apply the MRSS on one variable at a particular time, while

the ranking on the other variable is applied erroneously, and propose the EWMAPMY and EWMAPMX

control charts based on the MRSS scheme. We use EWMAPMY for when we can correctly apply MRSS

on Y with error ranking on X, and EWMAPMX for when we can correctly apply MRSS on X with error

ranking on Y .

The product estimator of the MRSS sample with error in ranking of X for the mth circle is given by:
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Ȳrp1 =
Ȳ(n)mX̄[n]m

µX
, (7.36)

where Ȳ(n)m =
1

n

∑n
i=1 Y(rmd)m and X̄[n]m =

1

n

∑n
i=1X[rmd]m are the means of the correct MRSS for the

variable Y , and error in ranking X in the mth circle, respectively. Using MRSS (Y(rmd), X[rmd]); where

rmd = i : n, is an ith MRSS observation in the nth sample for the variable Y and the ith judgemental

ordering in the nth sample for the auxiliary variable X. The mean and MSE of the estimator are given

as:

E(Ȳrp3) = µY (1 +
1

n
ρY(rmd)

X[rmd]
CY(rmd)

CX[rmd]
), (7.37)

MSE(Ȳrp3) =

(
1

n

)
µ2
Y (C2

Y(rmd)
+ C2

X[rmd]
+ 2ρY(rmd)

X[rmd]
CY(rmd)

CX[rmd]
). (7.38)

where CX[rmd]
=
σX[rmd]

µX
and CY(rmd)

=
σY(rmd)

µY
are the coefficients of variations for X[rmd] and Y(rmd),

respectively, σX[rmd]
=
√
σ2
X[rmd]

and σY(rmd)
=
√
σ2
Y(rmd)

. In addition, σ2
X[rmd]

= E(X[rmd] − E(X[rmd]))
2

and σ2
Y(rmd)

= E(Y(rmd) − E(Y(rmd)))
2 are the variances of X[rmd] and Y(rmd), respectively.

The modified EWMA statistic in this case is given as:

W 3
i = λȲrp3i + (1− λ)W 3

i−1, (7.39)

where Ȳrp3i is the value of the statistic Ȳrp3 for the ith sample observation, and W 3
i−1 represents the

past information, with the initial value given as: W 3
0 = E(Ȳrp3). The time varying control limits of the
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proposed control chart EWMAPMY are given as:

LCLi = E(Ȳrp3)− Lc
√
MSE(Ȳrp3)

√(
λ

2− λ
(1− (1− λ)2i)

)
, (7.40)

CL = E(Ȳrp3),

UCLi = E(Ȳrp3) + Lc

√
MSE(Ȳrp3)

√(
λ

2− λ
(1− (1− λ)2i)

)
. (7.41)

When we can only correctly apply MRSS on X, while the ordering on Y is with errors, then

(Y[rmd], X(rmd)) is the ith judgemental ordering in the nth sample for Y , and ith MRSS elements in the nth

sample for X. The product estimator of the MRSS sample with error in the ranking of Y for the mth

circle is given by:

Ȳrp1 =
Ȳ[n]mX̄(n)m

µX
, (7.42)

where Ȳ[n]m =
1

n

∑n
i=1 Y[rmd]m and X̄(n)m =

1

n

∑n
i=1X(rmd)m are the means of the correct MRSS for the

variable X, and error in ranking Y in the mth circle, respectively. Using MRSS (Y[rmd], X(rmd)); where

rmd = i : n, is an ith MRSS observation in the nth sample for the variable X and the ith judgemental

ordering in the nth sample for the auxiliary variable Y . The mean and MSE of the estimator are given

as:

E(Ȳrp4) = µY (1 +
1

n
ρY[rmd]

X(rmd)
CY[rmd]

CX(rmd)
), (7.43)

MSE(Ȳrp4) =

(
1

n

)
µ2
Y (C2

Y[rmd]
+ C2

X(rmd)
+ 2ρY[rmd]

X(rmd)
CY[rmd]

CX(rmd)
). (7.44)

where CX(rmd)
=
σX(rmd)

µX
and CY[rmd]

=
σY[rmd]

µY
are the coefficients of variations for X(rmd) and Y[rmd],

respectively, σX(rmd)
=
√
σ2
X(rmd)

and σY[rmd]
=
√
σ2
Y[rmd]

. In addition, σ2
X(rmd)

= E(X(rmd) − E(X(rmd)))
2

and σ2
Y[rmd]

= E(Y[rmd] − E(Y[rmd]))
2 are the standard deviations of X(rmd) and Y[rmd], respectively.
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The modified EWMA statistic in this case is given as:

W 4
i = λȲrp4i + (1− λ)W 4

i−1, (7.45)

where Ȳrp4i is the value of the statistic Ȳrp4 for the ith sample observation, and W 4
i−1 represents the past

information, with the initial value given as: W 4
0 = E(Ȳrp4). The time varying control limits of the the

proposed control chart EWMAPMX are given as:

LCLi = E(Ȳrp4)− Lc
√
MSE(Ȳrp4)

√(
λ

2− λ
(1− (1− λ)2i)

)
, (7.46)

CL = E(Ȳrp4),

UCLi = E(Ȳrp4) + Lc

√
MSE(Ȳrp4)

√(
λ

2− λ
(1− (1− λ)2i)

)
. (7.47)

where Lc determines the width of control limits, and it is chosen along with the smoothing parameter λ

to give a desired in-control ARL of the chart.

7.6 Performance measures and comparison

We perform a complete evaluation of the proposed charts in terms of average run length (ARL). When the

process is in control, a control chart is expected to have a large ARL so that the chart is rarely expected

to signal. Conversely, when the process is out of control, a chart is supposed to have a small ARL as it

should identify the out-of-control condition promptly (Montgomery, 2009). Specifically, the performance

measures are made by creating the charts to have the same in-control ARL and then comparing the

out-of-control ARLs for a given process shift. For the given process shift, the chart with the smaller

out-of-control ARL is regularly considered to perform better (Jones et al., 2001).

We assume that the parameters are unknown, and the proposed charts are employed in a two-phase
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procedure (Jensen et al., 2006); in Phase I, they are used to study a historical reference sample. The

modified EWMA means and mean square errors are estimated from the Phase I data, and control limits

are obtained for use in Phase II. During Phase II, future data points are checked for deviations from the

in-control state. While successive observed future values (or statistics) are within the in-control Phase I

limits, the process is believed to be in control. Values that are outside the control limits are indications

that there may be an assignable cause, and remedial responses are required in the process. We choose

the proposed charts’ design parameters Lc and λ to fix the in-control ARL (ARL0) to 500; this makes it

reasonable to compare the proposed charts with other existing charts of the same ARL0. The values of

Lc when the correlation between the variables (i.e., ρXY ) are −0.25,−0.5,−0.75, −0.95, and λ = 0.05, are

2.641, 2.643, 2.646 and 2.650, respectively.

The following procedures are used in our simulations

• Phase I

(i) For each sampling scheme, we generate n pairs of bivariate normally distributed random

variables (yi, xi) from (Y,X) ∼ N2(µY , µX , σY , σX , ρXY ). In line with the results in Section

7.3.1, the following conditions are used: we restrict the range of the correlation between the

variables to −0.95 ≤ ρXY ≤ −0.25, and used three different choices of n; that is, n = 5, 10 and

15. We draw the data sets from three different choices of the bivariate normal distributions.

In case I, we obtained (yi, xi) from (Y,X) ∼ N2(µY = 100, µX = 50, σY = 10, σX = 5, ρXY );

here CX = CY . In the second case, we obtained (yi, xi) from (Y,X) ∼ N2(µY = 100, µX =

50, σY = 14, σX = 5, ρXY ); here CX < CY . In the third case, we obtained (yi, xi) from

(Y,X) ∼ N2(µY = 100, µX = 50, σY = 10, σX = 7, ρXY ); here CX > CY .

(ii) We compute the product estimators from the n bivariate samples.

(iii) We repeat steps i and ii 5000 times, and compute the estimated parameters, that is, the
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estimated mean and standard error of the product estimators. These are used to set the

control limits in phase II.

• Phase II

(i) At each time i, we generate a pair of random variables (yi, xi) from bivariate population with

(Y,X) ∼ N2(µ1 = µY + δ ∗ (σY /
√

(n), µX , σY , σX , ρXY : −0.95 ≤ ρXY ≤ −0.25) for each

sampling scheme, where δ is the size of the shift that we were interested in detecting.

(ii) We compute the product estimators from the n Phase II bivariate samples, call this Ypi.

(iii) Using the estimated parameters from phase I, we compute the modified EWMA control charts

statistics, and compare the modified EWMA statistics against the estimated control limits.

(iv) We repeat steps (i-iii) and record the iteration number (or RL) that gives the first out-of-

control signal.

• We repeat Phase I and Phase II processes K times; where K is the number of the simulation trials.

We used K = 100, 000 in our case.

• The average of the run lengths across simulations (i.e., ARL) was reported.

The results in Tables 7.1 to 7.3 (for n = 5), show that the out-of-control ARLs (i.e., when δ > 0) of

the charts depend on the size of ρXY . The larger the absolute size of the correlation between the study

variable and the auxiliary variable, the better the efficiency of the modified EWMA control charts over

the classical EWMA control chart, especially for smaller values of the shifts (i.e., δ). Also, the out-of-

control ARLs of the charts depend on the size of the coefficients of variation of X relative to Y . For

example, when CX = CY , the efficiency of the proposed charts over the classical chart are pronounced

when ρXY ≤ −0.5. In all of the cases considered, the modified control charts based on the MRSS, followed
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by the RSS schemes, are more efficient in detecting the out-of-control behavior than the modified control

charts based on the simple random sampling and the classical control chart.

Table 7.1: The ARL values of the modified EWMA control charts along with the ARL values
of classical EWMA control chart when CX = CY , and n = 5 for ρXY = −0.25,−0.5,−0.75 and
−0.95.

δ

Method ρXY 0 0.25 0.5 0.75 1 1.5 2 2.5 3 4 5

Classical EWMA -0.25 500.01 77.75 23.71 11.87 7.31 3.77 2.43 1.77 1.41 1.09 1.01
EWMAP 499.98 106.41 34.27 16.71 10.3 5.26 3.33 2.38 1.86 1.32 1.1
EWMAPRY 500.39 85.46 26.35 13.28 8.16 4.21 2.7 1.97 1.57 1.18 1.04
EWMAPRX 500.01 88.85 26.86 13.4 8.24 4.22 2.71 1.96 1.55 1.15 1.03
EWMAPMY 500.43 85.56 26.04 12.92 7.99 4.11 2.65 1.94 1.53 1.16 1.04
EWMAPMX 500.12 83.41 25.71 12.88 7.93 4.08 2.62 1.9 1.51 1.13 1.02

Classical EWMA -0.50 500 77.75 23.71 11.87 7.31 3.77 2.43 1.77 1.41 1.09 1.01
EWMAP 499.94 77.25 23.66 11.84 7.35 3.81 2.45 1.81 1.45 1.11 1.02
EWMAPRY 500 68.32 20.62 10.29 6.41 3.34 2.18 1.62 1.33 1.07 1.01
EWMAPRX 500.01 65.64 20.04 10.17 6.3 3.28 2.14 1.6 1.29 1.05 1
EWMAPMY 499.96 64.13 19.78 9.96 6.17 3.25 2.13 1.6 1.3 1.06 1.01
EWMAPMX 500.01 65.08 19.86 10.02 6.2 3.23 2.11 1.57 1.28 1.04 1

Classical EWMA -0.75 499.02 77.75 23.71 11.87 7.31 3.77 2.43 1.77 1.41 1.09 1.01
EWMAP 500 43.34 13.16 6.70 4.18 2.25 1.54 1.22 1.07 1 1
EWMAPRY 500.01 39.81 12.19 6.23 3.91 2.13 1.47 1.18 1.06 1 1
EWMAPRX 500.96 40.68 12.34 6.23 3.9 2.11 1.45 1.16 1.04 1 1
EWMAPMY 499.69 39.17 12.03 6.15 3.86 2.11 1.46 1.18 1.05 1 1
EWMAPMX 500 39.99 12.15 6.17 3.85 2.09 1.44 1.15 1.04 1 1

Classical EWMA -0.95 500 77.75 23.71 11.87 7.31 3.77 2.43 1.77 1.41 1.09 1.01
EWMAP 500.01 11.17 3.61 1.98 1.38 1.03 1 1 1 1 1
EWMAPRY 499.97 10.78 3.47 1.91 1.34 1.02 1 1 1 1 1
EWMAPRX 500 10.86 3.46 1.91 1.34 1.02 1 1 1 1 1
EWMAPMY 500.43 10.77 3.46 1.91 1.34 1.02 1 1 1 1 1
EWMAPMX 500 10.86 3.48 1.9 1.33 1.02 1 1 1 1 1

Furthermore, the choice of which variable the MRSS or RSS is to be applied also depends on the size

of the estimated value of CX relative to CY . When CX = CY in Table 7.1, it is less important whether

the schemes are applied to X or Y . However, in Table 7.2, where CX < CY , applying the scheme on the

process variable Y gives more efficiency to out-of-control performance than applying the schemes on the

auxiliary variable X for both RSS and MRSS. Specifically, our simulation results show that applying the

RSS or MRSS on the variable with the larger value of the coefficient of variations gives better efficiency to

the out-of-control performance. These results are supported by the output in Table 7.3, where CX > CY
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Table 7.2: The ARL values of the modified EWMA control charts along with the ARL values
of classical EWMA control chart when CX < CY , and n = 5 for ρXY = −0.25,−0.5,−0.75 and
−0.95.

δ

Method ρXY 0 0.25 0.5 0.75 1 1.5 2 2.5 3 4 5

Classical EWMA -0.25 500.34 77.75 23.71 11.87 7.31 3.77 2.43 1.77 1.41 1.09 1.01
EWMAP 500.01 85.5 26.44 13.34 8.26 4.26 2.72 1.98 1.56 1.17 1.03
EWMAPRY 500.03 56.62 17.52 8.93 5.54 2.94 1.95 1.48 1.23 1.03 1
EWMAPRX 499.98 79.29 24.13 12.07 7.46 3.86 2.47 1.81 1.44 1.1 1.01
EWMAPMY 500.43 53.53 16.59 8.4 5.26 2.78 1.86 1.42 1.19 1.03 1
EWMAPMX 500.01 76.16 23.56 11.82 7.31 3.77 2.43 1.78 1.42 1.1 1.01

Classical EWMA -0.50 500.65 77.75 23.71 11.87 7.31 3.77 2.43 1.77 1.41 1.09 1.01
EWMAP 499.23 63.57 19.36 9.75 6.06 3.16 2.08 1.55 1.27 1.04 1
EWMAPRY 500.1 45.31 13.85 7.02 4.39 2.36 1.61 1.26 1.09 1.01 1
EWMAPRX 500.45 63.32 19.15 9.56 5.92 3.09 2.02 1.51 1.24 1.03 1
EWMAPMY 500.32 42.99 13.15 6.7 4.2 2.27 1.55 1.23 1.08 1 1
EWMAPMX 500.25 61.45 18.78 9.44 5.82 3.06 2 1.5 1.23 1.03 1

Classical EWMA -0.75 500.32 77.75 23.71 11.87 7.31 3.77 2.43 1.77 1.41 1.09 1.01
EWMAP 500.37 38.7 11.81 5.97 3.75 2.05 1.41 1.14 1.03 1 1
EWMAPRY 499.98 27.78 8.57 4.4 2.81 1.6 1.18 1.04 1 1 1
EWMAPRX 500.01 38.47 11.76 5.95 3.74 2.04 1.41 1.13 1.03 1 1
EWMAPMY 500 27.11 8.24 4.24 2.71 1.56 1.16 1.03 1 1 1
EWMAPMX 499.96 38.87 11.76 5.97 3.73 2.03 1.41 1.13 1.03 1 1

Classical EWMA -0.95 500.1 77.75 23.71 11.87 7.31 3.77 2.43 1.77 1.41 1.09 1.01
EWMAP 500.04 15.97 4.99 2.62 1.72 1.11 1.01 1 1 1 1
EWMAPRY 500 9.82 3.15 1.75 1.24 1.01 1 1 1 1 1
EWMAPRX 499.96 12.72 3.98 2.14 1.46 1.04 1 1 1 1 1
EWMAPMY 500.01 9.07 2.95 1.65 1.2 1 1 1 1 1 1
EWMAPMX 499.95 12.31 3.88 2.09 1.44 1.03 1 1 1 1 1

is used. In all cases, the out-of-control ARL values approach 1 as shift increases.

The overall ARL performance of the modified control charts for different values of n and ρXY are

studied using the extra quadratic loss (EQL) and the relative average run length (RARL) (Abujiya,

Mu’azu Ramat and Farouk, Abbas Umar and Lee, Muhammad Hisyam and Mohamad, 2013; Wu et al.,

2009). The EQL and RARL measure the efficiency of the modified charts over all values of the shifts

considered. EQL is the weighted average of the ARL over the entire shifts of the charting structure, and

makes use of the squares of the shifts (i.e., δ2) as the weights. The AEQL is given as:

EQL =
1

δmax − δmin

∫ δmax

δmin

δ2ARL(δ)d(δ). (7.48)
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Table 7.3: The ARL values of the modified EWMA control charts along with the ARL values
of classical EWMA control chart when CX > CY , and n = 5 for ρXY = −0.25,−0.5,−0.75 and
−0.95.

δ

Method ρXY 0.25 0.25 0.5 0.75 1 1.5 2 2.5 3 4 5

Classical EWMA -0.25 500 77.75 23.71 11.87 7.31 3.77 2.43 1.77 1.41 1.09 1.01
EWMAP 499.98 142.33 47.88 24.46 14.44 7.35 4.6 3.25 2.48 1.68 1.32
EWMAPRY 500.01 130.56 42.53 21.13 13.03 6.62 4.15 2.97 2.27 1.57 1.25
EWMAPRX 500.1 105.22 32.25 16.14 9.9 5.05 3.19 2.29 1.79 1.28 1.08
EWMAPMY 500 127.92 41.56 20.68 12.69 6.48 4.07 2.9 2.23 1.55 1.24
EWMAPMX 499.98 95.68 29.78 14.98 9.24 4.73 3.02 2.18 1.7 1.23 1.06

Classical EWMA -0.50 500 77.75 23.71 11.87 7.31 3.77 2.43 1.77 1.41 1.09 1.01
EWMAP 500.01 112.98 35.08 17.45 10.71 5.43 3.45 2.47 1.92 1.37 1.13
EWMAPRY 499.98 106.03 33.2 16.63 10.24 5.25 3.34 2.4 1.87 1.35 1.12
EWMAPRX 500.01 77.95 24.36 12.26 7.54 3.91 2.51 1.85 1.47 1.12 1.02
EWMAPMY 500.07 106.27 33.4 16.6 10.22 5.25 3.34 2.39 1.87 1.34 1.12
EWMAPMX 499.97 77.94 23.68 11.83 7.27 3.75 2.42 1.78 1.42 1.1 1.01

Classical EWMA -0.75 500 77.75 23.71 11.87 7.31 3.77 2.43 1.77 1.41 1.09 1.01
EWMAP 500.01 68.87 20.99 10.54 6.51 3.41 2.23 1.66 1.35 1.09 1.02
EWMAPRY 500 69.98 21.15 10.55 6.5 3.4 2.22 1.66 1.35 1.08 1.01
EWMAPRX 500.01 49.95 15.15 7.62 4.76 2.54 1.71 1.32 1.12 1.01 1
EWMAPMY 500 67.31 20.57 10.38 6.43 3.37 2.2 1.65 1.34 1.08 1.01
EWMAPMX 500 47.85 14.51 7.32 4.56 2.44 1.65 1.28 1.1 1.01 1

Classical EWMA -0.95 500.56 77.75 23.71 11.87 7.31 3.77 2.43 1.77 1.41 1.09 1.01
EWMAP 499.97 28.56 8.68 4.43 2.84 1.64 1.23 1.08 1.02 1 1
EWMAPRY 500 22.22 6.89 3.59 2.33 1.39 1.1 1.02 1 1 1
EWMAPRX 500.06 17.16 5.41 2.85 1.88 1.2 1.03 1 1 1 1
EWMAPMY 500 21.7 6.69 3.47 2.27 1.36 1.09 1.01 1 1 1
EWMAPMX 500 16.11 5 2.66 1.77 1.15 1.02 1 1 1 1

The chart with a smaller EQL is said to be superior than its counterpart chart (Wu et al., 2009).

The RARL measures the overall performance of a chart on a benchmark chart and is given as:

RARL =
1

δmax − δmin

∫ δmax

δmin

ARL(δ)

ARLbenchmark(δ)
d(δ). (7.49)

We use the chart from the classical EWMA chart as the benchmark chart, and ARLbenchmark(δ) is the

ARL of the benchmark chart with shift δ. The chart with a RARL smaller than 1 is said to be superior to

the benchmark chart (Abujiya, Mu’azu Ramat and Farouk, Abbas Umar and Lee, Muhammad Hisyam

and Mohamad, 2013; Abbasi et al., 2015). The EQL and RARL are solved using numerical integration,
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and δmax and δmin are the maximum and minimum shifts, respectively.

The results of the overall performance measures in Tables 7.4 and 7.5 show that the integration of

an auxiliary variable, in the form of a product estimator, to the plotting statistic of the classical EWMA

control chart, improves the overall performance of the classical EWMA control chart for values of the

correlation within −0.95 to −0.5CX/CY .

For any value of n and values of ρXY in this range (within −0.95 to −0.5CX/CY ), the modified

control charts are more efficient than the classical EWMA control chart in detecting out-of-control signals.

These efficiencies of the proposed charts over the classical chart are more pronounced as the value of the

correlation coefficient between Y and X tends to −0.95. For any values of ρXY in the range, an increase

in the value of n leads to an improvement in the out-of-control detection ability of the proposed control

charts, as well as the EWMAP control chart. For the EWMAP control chart, increases in the value of

n do not substantially reduce the out-of-control ARL of the chart.

7.7 Illustrative examples

We provide illustrative examples of the proposed charts to show their application in real situations, using

both simulated and real data sets. For the simulated example, we followed the approach in Abbas et al.

(2014a), and generated a data set from a bivariate population. For the real data example, we used the

nonisothermal continuous stirred tank chemical reactor model (CSTR), where the data set was originally

given by Marlin (2000), and has been widely used as benchmark in fault detection and diagnosis (Abbasi

and Riaz, 2013; Shi et al., 2013; Yoon and Macgregor, 2001). Specifically, our knowledge of the usage of

the CSTR data set by Riaz (2015) prompted us to use the data for the real data validation.

168



Table 7.4: The EQL of the modified EWMA control charts along with the EQL of the classical
EWMA control chart for different choices of the size of CX and CY , different values of n and ρXY .

CV n ρXY EWMA EWMAP EWMAPRY EWMAPRX EWMAPMY EWMAPMX

CX < CY 5 -0.25 9.69 10.65 8.21 9.84 7.96 9.70
-0.50 9.69 8.60 7.26 8.46 7.09 8.39
-0.75 9.69 6.74 6.12 6.73 6.06 6.73
-0.95 9.69 5.53 5.32 5.41 5.30 5.40

10 -0.25 9.69 10.63 7.70 9.66 7.48 9.47
-0.50 9.69 8.58 6.91 8.42 6.78 8.38
-0.75 9.69 6.73 5.98 6.72 5.93 6.73
-0.95 9.69 5.53 5.27 5.38 5.26 5.37

15 -0.25 9.69 10.62 7.46 9.50 7.30 9.55
-0.50 9.69 8.58 6.80 8.37 6.69 8.35
-0.75 9.69 6.73 5.92 6.72 5.88 6.73
-0.95 9.69 5.53 5.26 5.38 5.24 5.37

CX = CY 5 -0.25 9.69 12.67 10.64 10.61 10.46 10.29
-0.50 9.69 9.74 8.97 8.80 8.78 8.70
-0.75 9.69 7.07 6.88 6.85 6.85 6.82
-0.95 9.69 5.37 5.35 5.35 5.35 5.35

10 -0.25 9.69 12.66 10.07 10.00 9.90 9.86
-0.50 9.69 9.74 8.68 8.59 8.57 8.52
-0.75 9.69 7.06 6.80 6.79 6.81 6.78
-0.95 9.69 5.36 5.35 5.35 5.35 5.35

15 -0.25 9.69 12.65 9.85 9.84 9.74 9.68
-0.50 9.69 9.73 8.59 8.47 8.51 8.48
-0.75 9.69 7.06 6.80 6.77 6.79 6.76
-0.95 9.69 5.36 5.35 5.35 5.35 5.35

CX > CY 5 -0.25 9.69 16.99 15.57 12.26 15.28 11.60
-0.50 9.69 13.00 12.77 9.98 12.74 9.71
-0.75 9.69 9.05 9.11 7.54 9.03 7.38
-0.95 9.69 6.17 5.76 5.49 5.74 5.45

10 -0.25 9.69 16.97 15.13 10.87 14.92 10.46
-0.50 9.69 13.00 12.58 9.31 12.67 8.99
-0.75 9.69 9.05 9.07 7.20 8.98 7.04
-0.95 9.69 6.17 5.76 5.49 5.74 5.45

15 -0.25 9.69 16.96 15.00 10.51 14.73 10.07
-0.50 9.69 12.99 12.55 9.01 12.49 8.70
-0.75 9.69 9.01 9.02 7.04 8.96 6.98
-0.95 9.69 6.15 5.74 5.45 5.72 5.42
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Table 7.5: The RARL of the modified EWMA control charts along with the RARL of the classical
EWMA control chart for different choices of the size of CX and CY , different values of n and ρXY .

CV n ρXY EWMA EWMAP EWMAPRY EWMAPRX EWMAPMY EWMAPMX

CX < CY 5 -0.25 1 1.11 0.82 1.02 0.79 1.00
-0.50 1 0.87 0.70 0.85 0.68 0.84
-0.75 1 0.64 0.55 0.63 0.54 0.63
-0.95 1 0.47 0.43 0.45 0.43 0.44

10 -0.25 1 1.10 0.76 1.00 0.73 0.97
-0.50 1 0.87 0.66 0.85 0.64 0.84
-0.75 1 0.63 0.53 0.63 0.52 0.64
-0.95 1 0.47 0.42 0.44 0.42 0.44

15 -0.25 1 1.10 0.73 0.98 0.71 0.97
-0.50 1 0.87 0.64 0.84 0.63 0.84
-0.75 1 0.63 0.52 0.63 0.52 0.63
-0.95 1 0.46 0.42 0.44 0.42 0.44

CX = CY 5 -0.25 1 1.34 1.10 1.11 1.08 1.07
-0.50 1 1.01 0.91 0.89 0.89 0.88
-0.75 1 0.68 0.65 0.65 0.65 0.65
-0.95 1 0.44 0.44 0.44 0.44 0.44

10 -0.25 1 1.33 1.04 1.03 1.02 1.02
-0.50 1 1.00 0.88 0.87 0.86 0.86
-0.75 1 0.68 0.64 0.64 0.64 0.64
-0.95 1 0.44 0.44 0.44 0.44 0.44

15 -0.25 1 1.33 1.01 1.02 1.00 1.00
-0.50 1 1.00 0.87 0.85 0.86 0.86
-0.75 1 0.68 0.64 0.64 0.64 0.64
-0.95 1 0.44 0.44 0.44 0.44 0.44

CX > CY 5 -0.25 1 1.82 1.65 1.29 1.61 1.21
-0.50 1 1.39 1.34 1.03 1.34 1.00
-0.75 1 0.93 0.93 0.74 0.91 0.72
-0.95 1 0.56 0.50 0.46 0.50 0.45

10 -0.25 1 1.80 1.60 1.13 1.58 1.09
-0.50 1 1.37 1.32 0.96 1.34 0.92
-0.75 1 0.92 0.92 0.70 0.91 0.67
-0.95 1 0.56 0.50 0.46 0.50 0.45

15 -0.25 1 1.78 1.59 1.10 1.56 1.04
-0.50 1 1.37 1.31 0.92 1.31 0.88
-0.75 1 0.92 0.92 0.67 0.91 0.67
-0.95 1 0.55 0.50 0.45 0.49 0.45

7.7.1 Simulated dataset

We generate 20 data sets each of n2 = 25 from (Y,X) ∼ N2(µ1 = µY + δ ∗ (σY /
√

(n), µX = 50, σY =

14, σX = 5, ρXY = −0.75), where µY = 100. From each data set of size n2 = 25, we draw a sample of
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size n = 5 using different sampling schemes considered in the study. The smoothing parameter used is

λ = 0.05, L = 2.639 for the classical chart, and Lc = 2.646 for the proposed charts. These values are

chosen to fix the in-control ARL of the charts at 500. The results are given in Figures 7.4 to 7.9.

Figure 7.4: The classical EWMA control chart with time varying limits of the simulated data from
the bivariate normal distribution with µY = 100 , µX = 50, σY = 14, σX = 5, ρXY = −0.75 and
δ = 0.5, where the parameters of the chart are λ = 0.05 and Lc = 2.646 with ARL0 = 500.

As shown in Figures 7.4 to 7.9, the classical EWMA control chart fails to detect the shift in the

process mean. However, all of the proposed charts detect out-of-control signals in the process mean. The

EWMAP gives the first out-of-control signal after the 17th sample, while the EWMAPRX gives the first

out-of-control signal after the 14th sample. The proposed EWMAPMX detects the first out-of-control

signal after the 10th sample; however, the chart later gives an in-control condition after the 15th sample.

Both the EMWAPRY and EWMAPMY detect the first shift after the 11th and 10th samples. Since

CX < CY , the proposed charts based on MRSS and RSS schemes on Y are more efficient than the

proposed charts based on MRSS and RSS on X in detecting the shift.
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Figure 7.5: The proposed EWMAP control chart with time varying limits of the simulated data
from the bivariate normal distribution with µY = 100 , µX = 50, σY = 14, σX = 5, ρXY = −0.75
and δ = 0.5, where the parameters of the chart are λ = 0.05 and Lc = 2.646 with ARL0 = 500.

Figure 7.6: The proposed EWMAPRX control chart with time varying limits of the simulated data
from the bivariate normal distribution with µY = 100 , µX = 50, σY = 14, σX = 5, ρXY = −0.75
and δ = 0.5, where the parameters of the chart are λ = 0.05 and Lc = 2.646 with ARL0 = 500.
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Figure 7.7: The proposed EWMAPMX control chart with time varying limits of the simulated data
from the bivariate normal distribution with µY = 100 , µX = 50, σY = 14, σX = 5, ρXY = −0.75
and δ = 0.5, where the parameters of the chart are λ = 0.05 and Lc = 2.646 with ARL0 = 500.

Figure 7.8: The proposed EWMAPRY control chart with time varying limits of the simulated data
from the bivariate normal distribution with µY = 100 , µX = 50, σY = 14, σX = 5, ρXY = −0.75
and δ = 0.5, where the parameters of the chart are λ = 0.05 and Lc = 2.646 with ARL0 = 500.

7.7.2 Real dataset

The CSTR process comprises nine process variables, among which we have used the outlet concentration

(CA in kmole/m3) as the process variable Y . Many authors have also used this variable as the process
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Figure 7.9: The proposed EWMAPMY control chart with time varying limits of the simulated data
from the bivariate normal distribution with µY = 100 , µX = 50, σY = 14, σX = 5, ρXY = −0.75
and δ = 0.5, where the parameters of the chart are λ = 0.05 and Lc = 2.646 with ARL0 = 500.

variable, for example, see Abbasi and Riaz (2013), and flow rate of reactant (FA in m3/min) as X. The

data set originally contains 1024 samples, collected on a sampling interval of half minute. Details of other

variables may be found in Yoon and Macgregor (2001) and Shi et al. (2013).

The first 512 values are obtained when the process was in an in-control state, and are used as the

Phase I data set. The parameters of the Phase I samples are µY = 0.8033647, σY = 0.05699951,

σX = 0.007082823, µX = 0.0988881 and the correlation between the variables is ρXY = −0.5860537.

The coefficient of variations of the Phase I samples are CX = 0.07162462, and CY = 0.07095098. In this

case, we have CX > CY . These parameters are used to estimate the product estimator from a sample of

size n = 5, using different sampling schemes considered in this study, and the parameters are estimated

from 100, 000 simulations of the product estimators.

For the Phase II monitoring, we used the first 500 of the last 512 samples as Phase II. Our initial

investigation showed that a shift of size δ =
|µY − µ1|
σY /
√
n

= 0.2744592, was introduced in Phase II, where

µ1 is the Phase II mean, and n = 5 is the selected sample size used in calculating the product estimator
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at each time point in Phase II. Thus, the 500 Phase II data set is grouped into 20 data sets each of

n2 = 25. For the SRS, we select n = 5 random samples of the study variable from each of these 20 data

sets. Hence, for an actual value of the study variable, we select the corresponding value of the auxiliary

variable. However, for both the MRSS and RSS, we divide each of the 20 data sets randomly into five

sets of size 5. By visual inspection, we assign rank to each set with respect to the auxiliary variable

(since CX > CY ), and draw a sample of size n = 5 samples of the auxiliary variable, using each of the

schemes. For an actual value of the auxiliary variable obtained from the MRSS and RSS, we select the

corresponding value of the study variable. At each time point in Phase II, these n = 5 samples are used

in calculating the product estimator used in the modified EWMA statistic for each chart. The results are

given in Figures 7.10-7.15.

As shown in Figures 7.10 to 7.15, the classical EWMA, EWMAP , EMWAPRY and EWMAPMY con-

trol charts fail to detect the shifts in the process mean. However, both the EMWAPRX and EWMAPMX

detect shifts. The EWMAPRX gives the first out-of-control signal after the 15th sample, while the

EWMAPMX gives the first out-of-control signal after the 14th sample. The results of the real life exam-

ple support the results in Tables 7.4 and 7.5. When CX > CY , the performance of the proposed charts

based on RSS and MRSS on X are more efficient in detecting the out-of-control signals than the classical

EWMA control chart, for values of ρXY < −0.5CX/CY .

7.8 General conclusions

In this study, modifications of the classical EWMA control chart are proposed to suit the situation where

the process variable is negatively correlated with the auxiliary information. The control charts for different

sampling schemes, that is, simple random sampling, ranked set sampling, and median ranked set sampling,

are developed. Also, recommendations are given on which of the variables the ranked set sampling and
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Figure 7.10: The classical EWMA control chart with time varying limits of the real life example,
where the parameters of the chart are λ = 0.05 and Lc = 2.646 with ARL0 = 500.

Figure 7.11: The proposed EWMAP control chart with time varying limits of the real life example,
where the parameters of the chart are λ = 0.05 and Lc = 2.646 with ARL0 = 500.

the median ranked set sampling should be applied. We showed, through simulation, that the proposed

charts are more efficient than the classical EWMA chart in detecting shifts in the location parameter of
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Figure 7.12: The proposed EWMAPRX control chart with time varying limits of the real life
example, where the parameters of the chart are λ = 0.05 and Lc = 2.646 with ARL0 = 500.

Figure 7.13: The proposed EWMAPMX control chart with time varying limits of the real life
example, where the parameters of the chart are λ = 0.05 and Lc = 2.646 with ARL0 = 500.

a production process where the process variable is negatively correlated with the auxiliary variable, for

some range of correlation between the variables. The efficiency of the proposed charts over the classical
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Figure 7.14: The proposed EWMAPRY control chart with time varying limits of the real life
example, where the parameters of the chart are λ = 0.05 and Lc = 2.646 with ARL0 = 500.

Figure 7.15: The proposed EWMAPMY control chart with time varying limits of the real life
example, where the parameters of the chart are λ = 0.05 and Lc = 2.646 with ARL0 = 500.

EWMA control chart is more pronounced when there is a large negative correlation between the variables.

Furthermore, the proposed charts are very efficient in detecting small shifts. Our simulation results show
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that the proposed charts based on the median ranked set sampling, followed by the ranked set sampling

are more efficient than the proposed charts based on simple random sampling. The performance of the

proposed control charts is also illustrated with examples.

In Sanusi et al. (2017b) (see Appendix A.1 for reference), we extend the research, here, to the case

of positive correlations between the variables and proposed an EWMA-type chart, called an MrEWMA,

uses the auxiliary variable in the form of ratio estimator. There, the auxiliary variable must be strongly

positively related to the study variable for the proposed MrEWMA chart to perform better than its

existing counterparts. Except for the case of weak correlation value, it was shown that the proposed

MrEWMA chart outperforms the classical EWMA chart in detecting small to moderate shifts in the

location parameter of a control process. Also, the proposed MrEWMA chart performs better than the

mixed EWMA-CUSUM chart when ρXY ≥ 0.50.
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Chapter 8

EWMA control chart for monitoring the

mean of a process that is correlated with

an auxiliary variable under some ranked

sampling scheme

”This is the peer reviewed version of the following article: “Adegoke, N. A., Abbasi, S. A., Dawod,

A. B., & Pawley, M. D. Enhancing the performance of the EWMA control chart for monitoring the

process mean using auxiliary information. Quality and Reliability Engineering International”, which

has been published in final form at https://doi.org/10.1002/qre.2436. This article may be used for

non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.”

When using control charts to monitor manufacturing processes, the exponentially weighted moving average

(EWMA) control chart is useful for detecting persistent shifts in the process parameter. This paper
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proposes enhancements to the applications of the EWMA control chart for those scenarios where the

exact measurement of process units is difficult and expensive, but the visual ordering of the units can be

done easily. The proposed charts use an auxiliary variable that is correlated with the process variable to

provide efficient monitoring of shifts in the process mean, and are formulated based on ranked set sampling

(RSS) and median ranked set sampling schemes (MRSS). Simulation results showed that the proposed

charting schemes are more efficient in detecting a shift in the process mean than the classical EWMA

control chart and its modification. An example is provided to show the application of the proposed charts

using a simulated benchmark process: the continuous stirred tank reactor (CSTR).

8.1 Introduction

Control charts are classified into memoryless-type and memory-type control charts (Ajadi et al., 2016).

The Shewhart control chart is a memoryless-type control chart that utilizes only the current information

without referring to the previous information in the monitoring process (Shewhart, 1931); it is useful

for detecting large shifts in the process parameter. The EWMA control chart (Roberts, 1959), and the

cumulative sum (CUSUM) control chart (Page, 1954), are the two most commonly adopted memory-type

control charts. They use both the previous and current information in the monitoring process and are

well suited for detecting small to moderate shifts in process parameters.

Control charts have been used in situations where the process variables are observed with another

variable. Many researchers have investigated the importance of using this information to enhance the

performance of the traditional control charts, and several forms of the models that incorporate both the

process and auxiliary variables have been proposed in SPC literature (see Shabbir and Awan (2016);

Abbasi and Riaz (2013); Haq et al. (2016); Riaz et al. (2013)). One such practical model is based on the

regression estimation procedures (Cochran, 1977). For example, Riaz (2008a,b) utilized regression-type
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estimators to monitor the location and dispersion parameters, respectively. Their results outperformed

the Shewhart-type control charts used for the same purposes, i.e., R, S and S2 charts for monitoring the

variability, and X̄ chart for monitoring the location parameter.

More recently, Abbas et al. (2014a) proposed an EWMA-type control chart (called the MXEWMA

chart) in the form of a regression estimator for monitoring shifts in the location parameter. In their

work, both the process and auxiliary variables were obtained using a simple random sampling (SRS)

scheme. The MXEWMA chart used the extra information to provide an efficient estimator of the location

parameter. Their proposed chart out-performed the classical EWMA control chart for monitoring shifts

in the location parameter when there was a large correlation between the variables.

The performance of control charts in identifying assignable shifts in the production and manufacturing

process depends on the sampling scheme used in their development (Abbas et al., 2014a). Developing

control charts using more efficient sampling schemes, such as ranked set sampling (RSS), or median ranked

set sampling (MRSS), can enhance productivity and reduce production costs (Haq et al., 2016). In this

paper, we propose a EWMA-type control charts based on a regression estimator, for monitoring shifts in

the process mean using an auxiliary variable that is correlated with the process variable. The proposed

charts are formulated using RSS and MRSS, and use the extra information along with the process variable

in the monitoring process. Practitioners will be able to apply the proposed EWMA control charts in those

situations where exact measurements of units are difficult and expensive, but the visual ordering of units

can be done easily. The performance of the proposed charts is examined using average run length (ARL)

properties; ARL is the average number of plotted statistics until a shift is detected.

The rest of the chapter is organized as follows: Section 8.2 reviews the RSS and MRSS schemes. Section

8.3 describes the proposed charts. A simulation study is discussed in Section 8.4. Section 8.5 discusses

the main finding of the simulation study. Section 8.6 presents an illustrative example. Conclusions and

recommendations are presented in Section 8.7.
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8.2 The ranked set sampling and median ranked set sam-

pling schemes

Let Y1,Y2, . . . , Yn be a random sample of size n, from probability density function f(y). The SRS estimator

of the mean of the process variable, Y , is given as Ȳ =
1

n

∑n
i=1 Yi, with standard error sd(Ȳ ) =

σY√
n

.

Let Y11, Y12, . . . , Y1n, Y21, Y22, . . . , Y2n, , . . . , Yn1, Yn2, . . . , Ynn be n independent SRS each of size n, and

Y(i(1:n)), Y(i(2:n)), Y(i(3:n)), . . . , Y(i(n:n)) represent the order statistics of the ith sample. The RSS starts with

n2 units and divides the units into n sets, each of size n. Then, rank the samples in each set with respect

to the process variable. Pick the smallest value from the first set, the second-smallest from the second

set, etc, until we reach the nth set. This results in a sample of size n which represents the RSS data

(McIntyre, 1952). The process may be cycled m ways until k = nm units are chosen. The nm units

constitute the RSS units.

The measured RSS units are denoted by Y1(1:n), Y2(2:n), Y3(3:n), . . . , Yn(n:n). Let g(i:n)(y) be the proba-

bility density function of the ith order statistics Y(i:n), i = 1, 2, 3, . . . , n, from a random sample of size n.

It can be shown that:

g(i:n)(y) = n

n− 1

i− 1

 {F (y)}i−1{1− F (y)}n−if(y) −∞ < y < +∞ (8.1)

where F (y) is the cumulative distribution of Y (David, H and Nagaraja, 2003; Haq et al., 2013). The

mean and variance of Y(i:n) are given by:

µ(i:n) =

∫ +∞

−∞
yg(i:n)(y)dy and σ2

(i:n) =

∫ +∞

−∞
(y − µ(i:n))

2g(i:n)(y)dy (8.2)
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Following Takahasi and Wakimoto (1968), the mean and the variance of the RSS are given by::

Ȳrss,k =
1

n

n∑
i=1

Yi{i:n}, k = 1, 2, . . . , r (8.3)

and

V ar(ȲRSS) =
1

n2

n∑
i=1

σ2
{i:n} =

σ2
Y

n
− 1

n2

n∑
i=1

(µ(i:n) − µY )2 (8.4)

Yi{i:n} represents the order statistics of the ith sample, and µY is the population mean of Y .

The MRSS scheme is a modified version of the RSS scheme (Muttlak, 1997), and can be summarized

as follows: after ranking each set on the interest variable, we have two possibilities depending on whether

the n is even or odd. If the sample size is odd, choose (n+1
2 )th value of each ranked set. If the sample size

is even, partition the units into two equal parts and select [(n2 )th smallest ranked values from each set in

the first half, and (n+2
2 )th smallest ranked values from each set in the second half. This process may be

cycled m times until k = nm units are chosen. The nm units constitute the MRSS units. Analytically,

the mean and variance of the MRSS at the kth cycle for both the even and odd sample size n are given

as:

Ȳ Even
MRSS =

1

k

m∑
j=1

n/2∑
i=1

Yi{(n/2):n}j +

n∑
i=(n/2)+1

Yi{(n/2)+1:n}j

 and Ȳ Odd
MRSS =

1

k

m∑
j=1

n∑
i=1

Yi{(n+1)/2:n}j (8.5)

Ȳ Even
MRSS and Ȳ Odd

MRSS are unbiased estimates of µY , for any symmetric distribution (David, H and Nagaraja,

2003; Haq et al., 2013). Their variances, respectively, are given as:

V ar(Ȳ Even
MRSS) = E(Ȳ Even

MRSS − µY )2 − 1

kn

n/2∑
i=1

σ2
Y {(n/2):n} +

n∑
i=(n/2)+1

σ2
Y {(n/2)+1:n}



V ar(Ȳ Odd
MRSS) = E(Ȳ Odd

MRSS − µY )2 − 1

kn

n∑
i=1

σ2
Y {(n+1)/2:n}
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The RSS and MRSS estimates of the mean and standard deviation in this section and other sections

are obtained numerically. In all cases, we used m=1. We refer the reader to David, H and Nagaraja

(2003), for detailed analytical theory on RSS and MRSS.

8.3 The proposed charts

Assume that Yi and Xi are respectively, a process and auxiliary variable that jointly occur in pairs at

each time i with correlation ρXY . We assume the joint distribution of Y and X can be modelled using a

bivariate normal distribution. Following Adegoke et al. (2017), we examined the case of correctly applying

the RSS and MRSS schemes on one variable at a particular time. We refer to the scenario where Y is

correctly ranked while the ranking on X is done with error, as case I. In contrast, the case of correctly

applying the ranking on X while the ranking on Y is done with error, is referred to as case II.

For case I, we define (Y(i:n)k, X([i:n]k)) to be the ith smallest observation of Y , associated with the

corresponding value of X, obtained from the ith set in the kth cycle. The regression estimate of the

population mean (µY ) under the RSS is given as follows:

SY = Yrss,k + β̂1,k(µX − X̄) (8.6)

where Ȳrss,k is defined in Equation (8.3), and β̂1,k =

∑n
i=1(Y(i:n)k − Ȳrss,k)(X(i:n)k − X̄)

E(X(i:n)k − X̄)2
. The mean and

variance of SY are given as:

E(SY ) = µY , σ2
SY

=
σ2
X̄mrss,k

n
(1− ρ2

XY ) (8.7)

Considering the proposed estimator SY in Equation (8.6), the plotting statistic for the proposed chart
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based on RSS (hereafter SXEWMA) at time i is given as:

Wi = ΦSY i + (1− φ)W(i−1), where W0 = µY . (8.8)

where W(i−1) represents past information with W0 = µy and φ, (0 < φ ≤ 1) is the smoothing parameter

which determines the rate at which past information is incorporated into the calculation of the EWMA

statistic (Abbas et al., 2014a). The control limits of the SXEWMA chart are given as:

LCL = µY − LσSY

√
φ

2− φ
(1− (1− φ)2i)

CL = µY

UCL = µY + LσSY

√
φ

2− φ
(1− (1− φ)2i)

(8.9)

Under the MRSS scheme, the regression estimate of the population mean (µY ) is given as:

TY = Ymrss,k + β̂2,k(µX − X̄) (8.10)

where Ȳmrss,k is defined in Equation (8.5), and β̂2,k =

∑n
i=1(Y(i:n)k − Ȳmrss,k)(X(i:n)k − X̄)

E(X(i:n)k − X̄)2
. The mean

and variance of SY are given as:

E(TY ) = µY , σ2
TY

=
σ2
X̄mrss,k

n
(1− ρ2

XY ) (8.11)

The plotting statistic for the proposed chart based on MRSS (hereafter TXEWMA) at time i is given as:

Pi = ΦTY i + (1− φ)T(i−1), where T0 = µY . (8.12)

where T(i−1) represents past information with T0 = µy and φ, (0 < φ ≤ 1) is the smoothing parameter
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which determines the rate at which past information is incorporated into the calculation of the EWMA

statistic (Abbas et al., 2014a). The control limits of the TXEWMA chart are given as:

LCL = µY − LσTY

√
φ

2− φ
(1− (1− φ)2i)

CL = µY

UCL = µY + LσTY

√
φ

2− φ
(1− (1− φ)2i)

(8.13)

where L is a constant, selected arbitrarily to manipulate the width of the control limits, (the values of

L and φ are chosen to fix the in-control ARL to the desired value) (Maravelakis et al., 2004; Abbasi

et al., 2015). Analogous to the derivation defined for case I, the limits for case II can be obtained by

defining (Y[i:n]k, X(i:n)k) to be ith smallest observation of X, associated with the corresponding value of

Y , obtained from the ith set in the kth cycle.

We studied the efficiency of the regression estimators based on the different sampling schemes over

the conventional estimator of Y for both case I and II. Specifically, we found the range of such that:

sd(Ȳ ∗(ρXY )) < sd(Ȳ ) (8.14)

where we have used sd(Ȳ ∗(ρXY )) to represent the standard error of the regression estimator from a

particular sampling scheme, i.e., the SRS, RSS, and MRSS, besides the conventional estimator (i.e., Ȳ ),

and sd(Ȳ ) ) is the standard error of the conventional estimator. We generated n ∈ {5, 10} bivariate

normally distributed data using the parameters and simulation procedures (of Phase I) given in Section

8.3, and estimated the standard error of the estimator from each of the sampling schemes.

The simulation results in Figure 8.1 and Figure 8.2 show that the standard error of the regression

estimator based on each of the sampling schemes is more efficient than the conventional estimator for

all values of ρXY . For case I, we found both RSS and MRSS are more efficient than SRS when (see
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Figure 8.1). However, for case II, neither RSS nor MRSS performed better than SRS (see Figure 8.2).

The simulation results in Figure 8.1 affirm the results in Patil, GP and Sinha, AK and Taille (1993) for

RSS, where it was also shown that the RSS regression estimator was considerably more efficient than the

SRS regression estimator unless the correlation between the auxiliary variable and the process variable

was greater than or equal to 0.85 (i.e., |ρXY | ≥ 0.85). Figure 8.2 shows that when ranking is done by the

auxiliary variable, the performance of RSS and SRS are comparable. We refer interested readers to Patil,

GP and Sinha, AK and Taille (1993) for a comprehensive study of the efficiency of both cases I and II.

Based on the preliminary investigation in Figure 8.1 and Figure 8.2, Section 4 describes a comprehensive

study of ARL performance of the proposed charts from case I.

Figure 8.1: The estimated standard error plots of the regression estimator from the case I.

8.4 Simulation study

We assessed the performance of the proposed charts based on case I using ARL and standard deviation of

the run length (SDRL). ARL0 is the value of the ARL when a process is in-control (IC), while ARL1 is the
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Figure 8.2: The estimated standard error plots of the regression estimator from the case II.

value of the ARL when the process is out-of-control (OOC) (Adegoke et al., 2018b). We considered small

to moderate values of φ (i.e., φ ∈ {0.05, 0.10, or0.25}), and used corresponding values of that fixed ARL0

to 500. This ensured a fair comparison of the proposed charts with other existing charts (i.e., the classical

EWMA and the MXEWMA control charts), using the same ARL0. The ARL values of the classical

EWMA control chart with time-varying limits are given in Table 8.1. We define the size of shifts that we

are interested in detecting, as δ =
|µ1 − µY |
(σY /

√
n)

, where µ1 is the OOC mean. The run length properties of

the charts were investigated for different shifts, we considered δ ∈ {0, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 5}.

Table 8.1: ARL values for the classical EWMA chart with ARL0 = 500
δ

φ L 0 0.25 0.5 0.75 1 1.5 2 2.5 3 4 5
0.05 2.639 500 77.75 23.71 11.87 7.31 3.77 2.43 1.77 1.41 1.09 1.01
0.10 2.824 500 103.3 28.81 13.61 8.21 4.17 2.66 1.92 1.51 1.12 1.01
0.25 3.001 500 169.5 47.38 19.32 10.41 4.78 2.94 2.09 1.62 1.16 1.20

The simulation study and methodology of the proposed charts are listed for both Phase I and Phase

II as follows:

• In Phase I:

i For each sampling scheme, we generated n pair of bivariate normally distributed random vari-
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able with parameters: (µY = 100, µX = 50, σY = 14, σX = 5, ρXY : ρXY ∈ {0.05, 0.25, 0.50, 0.75, or0.95}).

n is the sample size at each time i. We used n ∈ {3, 5, 7, or10}, this enabled us to examine

the performance of the proposed charts with different sample sizes.

ii We computed the regression estimators in Equations (8.6) and (8.10), from the n bivariate

samples.

iii We repeated step (i) and (ii) 20, 000 times and computed the estimated parameters, i.e., the

estimated mean and standard error of the regression estimators in Equations (8.7) and (8.11).

These were used to set control limits in phase II.

• In Phase II:

i At each time i, we generated a pair of a random variable (yi, xi) from a bivariate population

with (Y,X) N2(µY + (σY /
√

(n)), µX , σ
2
Y , σ

2
X , ρXY ).

ii We computed the plotting statistics: Wi and Pi, given in Equations (8.8) and (8.12), respec-

tively.

iii Using the estimated parameters from Phase I, we constructed the estimated time-varying

control limits using Equations (8.9) and (8.13), and compared Wi and Pi, against the set

control limits.

iv If Wi or Pi fell within the control limits, the process was considered to be IC, and the process

repeated steps (i−iii) of Phase II, for the monitoring of the next test sample i+1. Alternatively,

if Wi or Pi fell outside the control limits, the process was considered to be shifted to an OOC

state. Consequently, the monitoring process was terminated for the chart, and we recorded

the iteration number (or run length) that gave the first OOC signal.

We repeated Phase I and Phase II process 100, 000 times. The average of the run lengths across simulations
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(i.e., ARL) was reported. The ARL values are given in Tables 8.2 - 8.3, and the SDRL values are given

in Tables 8.4 - 8.5, for n ∈ {3, 10}.

Table 8.2: ARL values of the proposed charts when n = 3.

δ
Charts ρXY (φ, L) 0.00 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 4.00 5.00

SXEWMA 0.05 (0.05, 2.639) 501.32 44.68 13.63 6.87 4.29 2.30 1.56 1.22 1.07 1.00 1.00
(0.10, 2.824) 500.43 59.45 15.96 7.78 4.79 2.53 1.68 1.28 1.09 1.00 1.00
(0.25, 3.001) 499.60 101.38 23.36 9.73 5.56 2.77 1.81 1.35 1.13 1.01 1.00

0.25 (0.05, 2.639) 500.18 46.16 13.80 6.93 4.32 2.31 1.56 1.22 1.07 1.00 1.00
(0.10, 2.824) 499.73 56.74 15.55 7.61 4.70 2.49 1.66 1.27 1.09 1.00 1.00
(0.25, 3.001) 500.72 98.45 23.00 9.60 5.49 2.75 1.80 1.34 1.12 1.01 1.00

0.50 (0.05, 2.639) 501.30 42.58 12.81 6.46 4.04 2.18 1.49 1.18 1.05 1.00 1.00
(0.10, 2.824) 499.86 54.48 14.73 7.22 4.48 2.37 1.59 1.23 1.07 1.00 1.00
(0.25, 3.001) 501.59 93.63 21.25 8.95 5.18 2.61 1.71 1.29 1.10 1.00 1.00

0.75 (0.05, 2.639) 499.78 31.49 9.59 4.90 3.09 1.72 1.24 1.05 1.01 1.00 1.00
(0.10, 2.824) 500.07 39.22 10.87 5.45 3.42 1.87 1.30 1.08 1.01 1.00 1.00
(0.25, 3.001) 499.43 66.17 14.59 6.42 3.84 2.03 1.38 1.11 1.02 1.00 1.00

0.95 (0.05, 2.639) 500.25 10.31 3.30 1.82 1.29 1.01 1.00 1.00 1.00 1.00 1.00
(0.10, 2.824) 499.93 11.56 3.61 1.96 1.36 1.02 1.00 1.00 1.00 1.00 1.00
(0.25, 3.001) 498.78 15.83 4.08 2.13 1.44 1.03 1.00 1.00 1.00 1.00 1.00

TXEWMA 0.05 (0.05, 2.639) 499.99 38.94 11.86 6.01 3.77 2.06 1.42 1.14 1.03 1.00 1.00
(0.10, 2.824) 501.45 50.92 13.80 6.82 4.23 2.25 1.52 1.19 1.05 1.00 1.00
(0.25, 3.001) 500.72 85.60 19.59 8.26 4.83 2.46 1.63 1.24 1.07 1.00 1.00

0.25 (0.05, 2.639) 503.38 39.31 12.03 6.12 3.82 2.08 1.43 1.14 1.04 1.00 1.00
(0.10, 2.824) 498.24 50.09 13.77 6.82 4.23 2.26 1.53 1.19 1.05 1.00 1.00
(0.25, 3.001) 500.60 88.86 20.08 8.44 4.89 2.50 1.65 1.25 1.07 1.00 1.00

0.50 (0.05, 2.639) 501.32 38.91 11.82 5.97 3.74 2.04 1.41 1.13 1.03 1.00 1.00
(0.10, 2.824) 499.76 49.96 13.56 6.69 4.16 2.22 1.50 1.18 1.04 1.00 1.00
(0.25, 3.001) 500.69 83.94 19.05 8.10 4.72 2.42 1.61 1.23 1.06 1.00 1.00

0.75 (0.05, 2.639) 499.03 30.20 9.25 4.73 2.99 1.68 1.21 1.04 1.00 1.00 1.00
(0.10, 2.824) 500.76 38.52 10.59 5.29 3.32 1.82 1.28 1.07 1.01 1.00 1.00
(0.25, 3.001) 499.53 61.87 13.79 6.12 3.68 1.96 1.34 1.09 1.01 1.00 1.00

0.95 (0.05, 2.639) 501.05 10.11 3.25 1.80 1.28 1.01 1.00 1.00 1.00 1.00 1.00
(0.10, 2.824) 501.74 11.49 3.59 1.96 1.35 1.02 1.00 1.00 1.00 1.00 1.00
(0.25, 3.001) 500.72 15.66 4.05 2.12 1.43 1.03 1.00 1.00 1.00 1.00 1.00

8.5 Results and discussion

We summarize the major findings (given in Tables 8.2 - 8.5) from our proposed charts as follows:

• The use of the RSS and MRSS improve the performance of the EWMA chart for all values of ρXY

considered in this study. These improvements are evident from the ARL1 values in Tables 8.2 - 8.3.
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Table 8.3: ARL values of the proposed charts when n = 10.

δ
Charts ρXY (φ, L) 0.00 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 4.00 5.00

SXEWMA 0.05 (0.05, 2.639) 501.96 20.42 6.33 3.28 2.15 1.29 1.04 1.00 1.00 1.00 1.00
(0.10, 2.824) 499.05 24.48 7.07 3.64 2.33 1.36 1.06 1.00 1.00 1.00 1.00
(0.25, 3.001) 499.02 38.76 8.69 4.10 2.55 1.45 1.09 1.01 1.00 1.00 1.00

0.25 (0.05, 2.639) 500.33 23.02 7.10 3.66 2.37 1.39 1.08 1.01 1.00 1.00 1.00
(0.10, 2.824) 500.47 27.40 7.89 4.03 2.57 1.47 1.11 1.01 1.00 1.00 1.00
(0.25, 3.001) 499.07 45.99 10.10 4.66 2.86 1.58 1.14 1.02 1.00 1.00 1.00

0.50 (0.05, 2.639) 499.52 28.03 8.61 4.40 2.80 1.59 1.17 1.03 1.00 1.00 1.00
(0.10, 2.824) 499.57 34.29 9.71 4.88 3.09 1.71 1.22 1.04 1.00 1.00 1.00
(0.25, 3.001) 499.18 58.61 12.88 5.73 3.45 1.86 1.28 1.06 1.01 1.00 1.00

0.75 (0.05, 2.639) 500.52 26.79 8.21 4.20 2.69 1.53 1.14 1.02 1.00 1.00 1.00
(0.10, 2.824) 499.94 32.68 9.21 4.64 2.93 1.65 1.19 1.03 1.00 1.00 1.00
(0.25, 3.001) 499.71 55.25 12.03 5.41 3.29 1.77 1.24 1.05 1.00 1.00 1.00

0.95 (0.05, 2.639) 499.64 9.88 3.19 1.77 1.26 1.01 1.00 1.00 1.00 1.00 1.00
(0.10, 2.824) 500.48 11.17 3.50 1.92 1.33 1.01 1.00 1.00 1.00 1.00 1.00
(0.25, 3.001) 501.36 15.16 3.95 2.08 1.41 1.02 1.00 1.00 1.00 1.00 1.00

TXEWMA 0.05 (0.05, 2.639) 499.21 15.46 4.85 2.57 1.72 1.12 1.01 1.00 1.00 1.00 1.00
(0.10, 2.824) 499.70 18.14 5.42 2.82 1.86 1.16 1.01 1.00 1.00 1.00 1.00
(0.25, 3.001) 499.79 27.32 6.38 3.12 2.01 1.21 1.02 1.00 1.00 1.00 1.00

0.25 (0.05, 2.639) 500.27 18.86 5.82 3.05 2.00 1.23 1.03 1.00 1.00 1.00 1.00
(0.10, 2.824) 501.49 22.82 6.60 3.39 2.19 1.30 1.04 1.00 1.00 1.00 1.00
(0.25, 3.001) 500.76 34.84 7.90 3.77 2.37 1.37 1.06 1.00 1.00 1.00 1.00

0.50 (0.05, 2.639) 500.08 24.84 7.72 4.00 2.57 1.48 1.12 1.02 1.00 1.00 1.00
(0.10, 2.824) 500.42 31.61 8.91 4.47 2.84 1.59 1.16 1.02 1.00 1.00 1.00
(0.25, 3.001) 499.42 51.88 11.35 5.15 3.14 1.72 1.21 1.04 1.00 1.00 1.00

0.75 (0.05, 2.639) 500.63 26.00 7.94 4.06 2.61 1.49 1.12 1.02 1.00 1.00 1.00
(0.10, 2.824) 500.16 31.20 8.86 4.47 2.85 1.60 1.17 1.03 1.00 1.00 1.00
(0.25, 3.001) 500.04 52.75 11.50 5.21 3.17 1.73 1.22 1.04 1.00 1.00 1.00

0.95 (0.05, 2.639) 500.33 9.93 3.18 1.77 1.26 1.01 1.00 1.00 1.00 1.00 1.00
(0.10, 2.824) 501.82 11.27 3.51 1.92 1.33 1.01 1.00 1.00 1.00 1.00 1.00
(0.25, 3.001) 500.21 15.39 3.97 2.08 1.41 1.02 1.00 1.00 1.00 1.00 1.00

• For small values of ρXY , the proposed TXEWMA chart has smaller ARL1 values (and smaller SDRL

values, cf. Tables 8.4 - 8.5) than the proposed SXEWMA chart, especially for small values of δ.

That is, when there is a small-to-moderate correlation between the variables, the TXEWMA chart

can detect small to moderate shifts quicker than the SXEWMA chart. However, the performance

of the charts is similar when a large value of ρXY is used (cf. Tables 8.2 - 8.3).

• The charts are ARL unbiased for any combinations of φ, L and ρXY . That is, the charts’ ARL0

values are bigger than their ARL1 values, for any choice of δ (cf. Tables 8.2 - 8.3).
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Table 8.4: SDRL values of the proposed charts when n = 3.

δ
Charts ρXY (φ, L) 0.00 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 4.00 5.00

SXEWMA 0.05 (0.05, 2.639) 498.04 37.15 9.54 4.42 2.56 1.20 0.71 0.44 0.25 0.05 0
(0.10, 2.824) 499.86 53.51 11.47 4.89 2.78 1.29 0.76 0.49 0.30 0.06 0
(0.25, 3.001) 499.98 98.33 19.97 7.01 3.45 1.42 0.82 0.54 0.34 0.08 0

0.25 (0.05, 2.639) 500.00 38.54 9.65 4.45 2.59 1.21 0.70 0.44 0.25 0.04 0
(0.10, 2.824) 497.68 50.34 11.15 4.78 2.73 1.28 0.75 0.48 0.29 0.06 0
(0.25, 3.001) 498.43 95.47 19.60 6.82 3.38 1.42 0.82 0.53 0.33 0.07 0

0.50 (0.05, 2.639) 499.68 35.09 8.88 4.12 2.39 1.12 0.66 0.40 0.21 0.03 0
(0.10, 2.824) 498.43 48.21 10.42 4.48 2.58 1.19 0.71 0.45 0.25 0.04 0
(0.25, 3.001) 500.00 90.74 17.92 6.29 3.14 1.32 0.77 0.50 0.30 0.06 0

0.75 (0.05, 2.639) 497.99 24.85 6.42 3.01 1.74 0.82 0.46 0.23 0.09 0.01 0
(0.10, 2.824) 500.00 33.13 7.27 3.23 1.87 0.88 0.51 0.27 0.11 0.01 0
(0.25, 3.001) 499.10 62.94 11.43 4.13 2.15 0.96 0.56 0.31 0.13 0.01 0

0.95 (0.05, 2.639) 498.74 6.97 1.88 0.88 0.50 0.11 0.01 0 0 0 0
(0.10, 2.824) 499.73 7.81 2.00 0.94 0.55 0.13 0.01 0 0 0 0
(0.25, 3.001) 498.32 12.69 2.34 1.02 0.60 0.16 0.01 0 0 0 0

TXEWMA 0.05 (0.05, 2.639) 499.93 31.92 8.20 3.82 2.23 1.04 0.61 0.36 0.18 0.02 0
(0.10, 2.824) 499.23 44.78 9.63 4.18 2.40 1.12 0.66 0.41 0.22 0.03 0
(0.25, 3.001) 498.43 82.58 16.22 5.67 2.87 1.22 0.71 0.46 0.26 0.04 0

0.25 (0.05, 2.639) 497.65 31.88 8.32 3.86 2.24 1.05 0.61 0.36 0.19 0.02 0
(0.10, 2.824) 497.32 44.01 9.66 4.18 2.41 1.13 0.67 0.41 0.22 0.03 0
(0.25, 3.001) 496.04 85.48 16.79 5.81 2.92 1.25 0.73 0.46 0.27 0.04 0

0.50 (0.05, 2.639) 498.32 31.65 8.12 3.76 2.19 1.03 0.60 0.35 0.17 0.02 0
(0.10, 2.824) 497.49 43.80 9.40 4.10 2.36 1.10 0.65 0.40 0.21 0.03 0
(0.25, 3.001) 498.30 80.97 15.77 5.55 2.79 1.20 0.70 0.44 0.25 0.03 0

0.75 (0.05, 2.639) 497.42 23.78 6.19 2.88 1.68 0.79 0.43 0.21 0.07 0 0
(0.10, 2.824) 498.23 32.47 7.05 3.12 1.80 0.85 0.49 0.25 0.09 0.01 0
(0.25, 3.001) 498.32 58.60 10.75 3.88 2.04 0.92 0.53 0.29 0.11 0.01 0

0.95 (0.05, 2.639) 499.00 6.80 1.85 0.87 0.50 0.10 0 0 0 0 0
(0.10, 2.824) 498.23 7.73 1.98 0.94 0.54 0.13 0.01 0 0 0 0
(0.25, 3.001) 498.34 12.51 2.31 1.01 0.59 0.16 0.01 0 0 0 0

• As δ increases, the ARL and SDRL values approach 1 and 0, respectively (cf. Tables 8.2 - 8.5).

That is, for all values ρXY of the proposed charts detect large shifts promptly (cf. Tables 8.2 - 8.3).

• For fixed values of ρXY and δ, the proposed charts are more efficient using smaller values of φ (cf.

Tables 8.2 - 8.3).

• For a fixed value of δ, the efficiency did not monotonically increase with ρXY . The performance of

the charts tended to decrease for values of in the interval 0.25 ≤ ρXY ≥ 0.75 especially for large

values of n (cf. Tables 8.2 - 8.3). For case I, the patterns of dependency of the RSS and MRSS
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Table 8.5: SDRL values of the proposed charts when n = 10.

δ
Charts ρXY (φ, L) 0.00 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 4.00 5.00

SXEWMA 0.05 (0.05, 2.639) 499.03 15.14 4.02 1.87 1.1 0.5 0.2 0.05 0.01 0 0
(0.10, 2.824) 498.74 19.11 4.38 2.02 1.17 0.55 0.25 0.06 0.01 0 0
(0.25, 3.001) 499 35.26 6.04 2.35 1.28 0.6 0.28 0.08 0.01 0 0

0.25 (0.05, 2.639) 497.64 17.33 4.59 2.13 1.25 0.58 0.27 0.09 0.02 0 0
(0.10, 2.824) 499.49 21.84 5 2.28 1.33 0.63 0.31 0.11 0.03 0 0
(0.25, 3.001) 500 42.42 7.33 2.74 1.49 0.69 0.36 0.14 0.03 0 0

0.5 (0.05, 2.639) 498.04 21.77 5.69 2.66 1.55 0.73 0.39 0.17 0.05 0 0
(0.10, 2.824) 498.34 28.54 6.36 2.84 1.66 0.79 0.44 0.21 0.07 0 0
(0.25, 3.001) 499.01 54.96 9.83 3.58 1.88 0.85 0.49 0.25 0.09 0 0

0.75 (0.05, 2.639) 498.3 20.6 5.4 2.5 1.47 0.69 0.36 0.14 0.03 0 0
(0.10, 2.824) 497.32 26.72 5.99 2.68 1.55 0.74 0.4 0.18 0.05 0 0
(0.25, 3.001) 498.3 51.71 9.07 3.33 1.76 0.8 0.46 0.21 0.07 0 0

0.95 (0.05, 2.639) 497.89 6.66 1.81 0.85 0.48 0.1 0 0 0 0 0
(0.10, 2.824) 498.2 7.52 1.92 0.91 0.53 0.12 0.01 0 0 0 0
(0.25, 3.001) 499.01 12.04 2.24 0.99 0.58 0.15 0.01 0 0 0 0

TXEWMA 0.05 (0.05, 2.639) 499.23 11.01 2.95 1.39 0.82 0.33 0.08 0.01 0 0 0
(0.10, 2.824) 498.75 13.36 3.23 1.49 0.88 0.38 0.11 0.01 0 0 0
(0.25, 3.001) 498.23 24.01 4.1 1.66 0.95 0.42 0.13 0.02 0 0 0

0.25 (0.05, 2.639) 499.23 13.79 3.66 1.72 1 0.45 0.16 0.03 0 0 0
(0.10, 2.824) 498.04 17.58 4.06 1.85 1.08 0.5 0.2 0.04 0.01 0 0
(0.25, 3.001) 499 31.32 5.38 2.11 1.17 0.55 0.23 0.06 0.01 0 0

0.5 (0.05, 2.639) 498.34 18.95 5.07 2.37 1.39 0.65 0.33 0.12 0.03 0 0
(0.10, 2.824) 499.23 25.88 5.74 2.57 1.49 0.71 0.38 0.15 0.04 0 0
(0.25, 3.001) 499.03 48.34 8.45 3.13 1.67 0.77 0.42 0.19 0.05 0 0

0.75 (0.05, 2.639) 499 19.91 5.22 2.42 1.41 0.66 0.34 0.13 0.03 0 0
(0.10, 2.824) 499 25.31 5.71 2.56 1.5 0.71 0.38 0.16 0.04 0 0
(0.25, 3.001) 496.34 49.13 8.6 3.16 1.69 0.78 0.43 0.19 0.06 0 0

0.95 (0.05, 2.639) 496.54 6.67 1.8 0.85 0.48 0.09 0.01 0 0 0 0
(0.10, 2.824) 497.3 7.6 1.93 0.91 0.53 0.12 0.01 0 0 0 0
(0.25, 3.001) 498.34 12.21 2.23 0.99 0.58 0.15 0.01 0 0 0 0

regression estimators on ρXY are shown in Figure 8.1.

• The ARL performance of the proposed charts depends on the size of the sample size (n). Specifically,

as n increased, the OOC ARL values decreased, especially for small to moderate shifts. For example,

Figure 8.3 shows the ARL values of the proposed SXEWMA and TXEWMA charts for different

values of n. The smoothing parameter used was φ = 0.05, and L = 2.639, the correlation between

the variables was ρXY = 0.05. As shown in the Figure 8.3, the ARL performance of the proposed

charts increased as n increased.
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Figure 8.3: The plots of the proposed SXEWMA and TXEWMA charts for different values of n.

Abbas et al. (2014a) proposed the MXEWMA control chart to improve the performance of the EWMA

control chart when the process variable is observed along with an auxiliary variable. Tables 8.6 - 8.7 give
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the ARL performance of the MXEWMA chart for n ∈ {3, 10}, and corresponding values of φ and L

given in Tables 8.1. The results in Tables 8.6 - 8.7, affirm that the MXEWMA chart is more efficient in

detecting shifts in the mean of a process than the classical EWMA chart (see Tables 8.1). The efficiency

of the MXEWMA chart over the classical EWMA is greater with larger values of ρXY . The performance

of the MXEWMA chart seems to be less dependent on sample size. Our proposed charts found that

the application of RSS and MRSS improves the performance of the classical EWMA and MXEWMA,

especially when there is a small to a moderate correlation between process and auxiliary variables (i.e.,

ρXY ≤ 0.75 ). This is shown by the lower ARL1 values of the SXEWMA and TXEWMA charts given in

Tables 8.2 - 8.3.

Table 8.6: ARL values of the MXEWMA chart for n = 3.
δ

ρXY (φ, L) 0.00 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 4.00 5.00
0.05 (0.05, 2.639) 499.96 77.48 23.71 11.84 7.38 3.76 2.42 1.77 1.41 1.09 1.01

(0.10, 2.824) 501.44 103.32 29.36 13.74 8.30 4.19 2.66 1.92 1.51 1.12 1.01
(0.25, 3.001) 501.66 168.28 47.80 19.46 10.47 4.77 2.95 2.09 1.62 1.16 1.02

0.25 (0.05, 2.639) 501.19 74.18 22.51 11.30 6.95 3.59 2.32 1.70 1.36 1.07 1.01
(0.10, 2.824) 500.22 98.80 27.21 12.94 7.82 3.97 2.53 1.84 1.46 1.10 1.01
(0.25, 3.001) 500.59 159.17 43.63 17.81 9.68 4.50 2.78 1.99 1.55 1.13 1.02

0.50 (0.05, 2.639) 501.96 61.23 18.52 9.33 5.76 3.01 1.97 1.48 1.22 1.02 1.00
(0.10, 2.824) 500.29 80.47 21.93 10.58 6.44 3.32 2.16 1.59 1.28 1.04 1.00
(0.25, 3.001) 501.96 138.50 34.99 14.24 7.86 3.74 2.35 1.71 1.36 1.05 1.00

0.705 (0.05, 2.639) 500.34 39.35 11.86 5.99 3.76 2.04 1.41 1.13 1.03 1.00 1.00
(0.10, 2.824) 501.97 48.65 13.36 6.61 4.11 2.20 1.50 1.18 1.04 1.00 1.00
(0.25, 3.001) 500.56 84.53 19.04 8.09 4.71 2.41 1.60 1.23 1.06 1.00 1.00

0.95 (0.05, 2.639) 500.09 10.70 3.42 1.88 1.32 1.02 1.00 1.00 1.00 1.00 1.00
(0.10, 2.824) 500.50 12.17 3.77 2.04 1.40 1.02 1.00 1.00 1.00 1.00 1.00
(0.25, 3.001) 501.28 16.87 4.27 2.22 1.48 1.04 1.00 1.00 1.00 1.00 1.00

The ARL performance measures the effectiveness of a chart at a particular shift point. We used the

extra quadratic loss (EQL) and the relative average run length (RARL) to measure the overall performance

of the charts. These measure the efficiency of the modified charts over all shifts (Abujiya, Mu’azu Ramat

and Farouk, Abbas Umar and Lee, Muhammad Hisyam and Mohamad, 2013; Wu et al., 2009). The EQL
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Table 8.7: ARL values of the MXEWMA chart for n = 10.
δ

ρXY (φ, L) 0.00 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 4.00 5.00
0.05 (0.05, 2.639) 500.69 77.42 23.62 11.85 7.30 3.76 2.42 1.77 1.41 1.09 1.01

(0.10, 2.824) 501.38 103.00 829.39 13.68 8.27 4.20 2.66 1.92 1.51 1.12 1.01
(0.25, 3.001) 499.66 167.60 46.82 19.18 10.32 4.75 2.92 2.08 1.61 1.16 1.02

0.25 (0.05, 2.639) 499.19 73.19 22.43 11.19 6.91 3.58 2.31 1.70 1.36 1.07 1.01
(0.10, 2.824) 500.12 97.69 27.07 12.84 7.78 3.96 2.54 1.84 1.45 1.09 1.01
(0.25, 3.001) 499.01 162.00 44.31 17.96 9.71 4.50 2.78 1.99 1.55 1.13 1.02

0.50 (0.05, 2.639) 499.59 61.19 18.53 9.29 5.74 3.00 1.97 1.47 1.21 1.02 1.00
(0.10, 2.824) 500.43 81.72 22.16 10.63 6.47 3.33 2.15 1.59 1.28 1.04 1.00
(0.25, 3.001) 500.56 133.90 34.40 14.09 7.75 3.71 2.35 1.70 1.35 1.05 1.00

0.75 (0.05, 2.639) 499.21 38.23 11.66 5.92 3.72 2.02 1.40 1.13 1.03 1.00 1.00
(0.10, 2.824) 500.19 48.82 13.48 6.64 4.12 2.21 1.50 1.17 1.04 1.00 1.00
(0.25, 3.001) 499.46 84.79 19.14 8.12 4.72 2.42 1.60 1.23 1.06 1.00 1.00

0.95 (0.05, 2.639) 499.58 10.56 3.40 1.87 1.31 1.02 1.00 1.00 1.00 1.00 1.00
(0.10, 2.824) 499.91 12.02 3.74 2.03 1.39 1.02 1.00 1.00 1.00 1.00 1.00
(0.25, 3.001) 500.96 16.85 4.26 2.22 1.49 1.04 1.00 1.00 1.00 1.00 1.00

is the weighted average of the ARL over all shifts and uses δ2 as the weights. The EQL is given as:

EQL =
1

δmax − δmin

∫ δmax

δmin

δ2ARL(δ)d(δ). (8.15)

where δmax and δmin are the maximum and the minimum values of shifts, respectively, ARL(δ) is the

ARL of a particular chart at a shift size δ in the process mean. A chart with a smaller EQL is said to be

better than its counterpart chart (Adegoke et al., 2017).

The RARL measures the overall performance of a chart on a benchmark chart and is calculated by:

RARL =
1

δmax − δmin

∫ δmax

δmin

ARL(δ)

ARLbenchmark(δ)
d(δ). (8.16)

ARLbenchmark(δ) is the ARL of the benchmark chart with shift δ. Charts with an RARL less than one are

considered superior to the benchmark chart (Abbasi et al., 2015). The EQL and RARL were solved using

numerical integration. The EQL and RARL of the charts with φ = 0.05 and L = 2.639, for n ∈ {3, 5, 10},

are given in Tables 8.8 - 8.9, respectively.
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Table 8.8: EQL values of the control charts.

n = 3 n = 5 n = 10
ρXY 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

Classical EWMA 9.688 9.688 9.688 9.688 9.688 9.688 9.688 9.688 9.688 9.688 9.688 9.688 9.688 9.688 9.688
MXEWMA 9.675 9.354 8.317 6.742 5.346 9.68 9.292 8.308 6.706 5.345 9.673 9.326 8.299 6.71 5.344
SXEWMA 7.132 7.157 6.954 6.29 5.333 6.365 6.433 6.513 6.167 5.325 5.729 5.856 6.108 6.034 5.322
TXEWMA 6.756 6.788 6.733 6.22 5.328 6.038 6.128 6.313 6.092 5.327 5.522 5.66 5.966 5.99 5.322

The EQL and RARL values in Tables 8 and 9 show that the classical EWMA and MXEWMA control

charts are inferior to the proposed charts for all values of ρXY , especially when ρXY ≤ 0.75 . Moreover,

the efficacy of our new charting schemes increases with n.

Table 8.9: RARL values of the control charts.

n = 3 n = 5 n = 10
ρXY 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

EWMA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MXEWMA 1 0.961 0.836 0.636 0.436 0.999 0.952 0.835 0.63 0.435 0.998 0.957 0.834 0.631 0.435
SXEWMA 0.687 0.691 0.664 0.575 0.434 0.585 0.594 0.605 0.557 0.432 0.495 0.513 0.549 0.539 0.432
TXEWMA 0.637 0.641 0.634 0.565 0.433 0.539 0.552 0.577 0.547 0.432 0.463 0.484 0.529 0.533 0.432

8.6 Illustrative examples

We provide illustrative examples of the proposed charts using a simulated benchmark process: the contin-

uous stirred tank reactor (CSTR) datasets. The non-isothermal CSTR was originally described in Marlin

(2000) and has been widely used as a benchmark in fault detection and diagnosis (see Shi et al. (2013);

Yoon and Macgregor (2001)). The CSTR process comprises of nine study variables, amongst which we

chose the outlet temperature as the process variable (Y ), and the inlet temperature as the auxiliary

information (X).

The dataset originally contained 1024 samples; the first 512 values occurred when the process was

in an IC state. These are used as the Phase I dataset. The parameters of the Phase I sample are:

µY = 368.2328, σ2
Y = 0.2185915, µX = 369.8789, σ2

X = 0.3180327 and the correlation between the variables
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is ρXY = 0.08974039. These parameters were used to estimate the regression estimator from a sample of

size n=5, and the control charts limits parameters were estimated. Considering these estimates as known

parameters, we generated 20 paired observations of size n = 5 from a bivariate normal distribution using

the different sampling schemes considered in this study. A shift (δ) was introduced to the mean of the

process variable after the fifth observations. This shifted the process mean to µ1 = 368.4419.

Figure 8.4: The Classical EWMA and the MXEWMA control charts CSTR dataset.

The classical EWMA and MXEWMA charts detect the first OOC signal after the 10th sample (Figure

8.4). However, the proposed charts: SXEWMA and TXEWMA, give an initial OOC signal after the 7th

sample (see Figure 8.5).

8.7 Summary and conclusion

In this chapter, we proposed improvements to the performance of the classical EWMA control chart for

those scenarios where measuring the process variable is expensive, but ranking of units according to process
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Figure 8.5: The SXEWMA and TXEWMA control charts for the CSTR dataset.

variable is relatively easy and cheap, and the process variable is observed with auxiliary information. We

developed control charts based on RSS, and MRSS and compared the results of our proposed charts: the

SXEWMA chart and the TXEWMA charts, with the results of the charts based on SRS (i.e., MXEWMA)

and the classical EWMA. The performance of the proposed chart was evaluated in terms of ARL and

overall performance measures. We showed, through simulation, that our proposed charts are more efficient

than the classical EWMA and the MXEWMA charts in detecting a shift in the location parameter of

the process variable, even when there is only a small to moderate correlation between the variables. Our

simulation results also showed that the proposed TXEWMA charts are more efficient than the proposed

SXEWMA chart, especially for small to moderate shifts in the location parameter.
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Chapter 9

Efficient monitoring of a process mean

using an auxiliary variable under simple

random sampling

”This is the peer reviewed version of the following article: Adegoke, N. A., Smith, A. N., Anderson, M.

J., Sanusi, R. A., & Pawley, M. D. (2019). Efficient Homogeneously Weighted Moving Average Chart

for Monitoring Process Mean Using an Auxiliary Variable. IEEE Access, 7, 94021-94032, which has been

published in final form at https://doi.org/10.1109/ACCESS.2019.2926533. This article may be used

for non-commercial purposes in accordance with IEEE Terms and Conditions for Self-Archiving.”

In this chapter, we propose an efficient control chart for monitoring small shifts in a process mean for

scenarios where the process variable is observed with a correlated auxiliary variable. The proposed chart,

called an AHWMA chart, is an homogeneously weighted moving average type control chart that uses

both the process and auxiliary variables in the form of a regression estimator to provide an efficient and
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unbiased estimate of the mean of the process variable. We provide the design structure of the chart and

examine its performance in terms of its run length properties. Using a simulation study, we compare its

run length performance with several existing methods for detecting a small shift in the process mean.

Our simulation results show that the proposed chart is more efficient in detecting a small shift in the

process mean than its competitors. We provide a detailed study of the chart’s robustness to non-normal

distributions and shown that the chart may also be designed to be less sensitive to non-normality. We

give some recommendations on the application of the chart when the process parameters are unknown,

and provide an example to show the implementation of the proposed new technique.

9.1 Introduction

Monitoring programmes are designed to detect unnatural changes in process variables for a wide variety of

applications, particularly in industrial and manufacturing settings. Control charts are the most popular

and sophisticated tools for tracking processes of interest, ensuring they are kept in control by monitoring

essential quality characteristics (Yen and Shiau, 2010). To date, several univariate control charts have been

proposed in statistical process control (SPC) literature; they are classified into (i) memory-less control

charts and (ii) memory-type control charts; these are useful for monitoring large and small-to-moderate

shifts in the process, respectively. For example, the Shewhart chart is a memory-less type control chart

that uses only the current process information without referring to past behavior of the process. It is

very effective for detecting a large shift in the process mean (i.e., δ ≥ 2, where δ is the size of the shift in

standard deviation units (Testik et al., 2003)). The homogeneously weighted moving average (HWMA)

control chart by Abbas (2018), is a memory-type chart proposed for efficient monitoring of small (i.e.,

δ ≤ 0.5) to moderate (i.e., 0.5 < δ < 2) shifts in the process mean. Other memory-type charts include

the EWMA chart by Roberts (1959), the CUSUM chart by Page (1961), and the mixed EWMA-CUSUM
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chart proposed by Abbas et al. (2013).

These univariate classical charts are widely used in most of today’s industries; their attractiveness is

motivated by their simplicity of construction, implementation, and interpretation, as well as their prompt

detection of small, moderate, or large shifts in a process mean. These techniques have been implemented

by Abtew et al. (2018) to monitor the quality of garments produced on the sewing floor, by El-Din et al.

(2006) to monitor and control steam boiler generation for vacuum degassing processes, and by Hayes

et al. (1997) to evaluate critical control point hygiene data. Also, see Benneyan (1998a,b); Srikaeo and

Hourigan (2002); De Vries and Conlin (2003), and Madsen and Kristensen (2005) for some other industrial

applications of these classical charts.

Several applications of classical charts focus on monitoring the process in situations where the process

variable is independent of other variables; however, in some cases, the process variable may be observed

along with another correlated auxiliary variable. The concept of using supplemental information to provide

an efficient estimate of a population parameter is popular in the field of survey sampling (Cochran, 1977).

Several researchers have studied and recommended the introduction and application of auxiliary variables

into the monitoring scheme of a process variable of interest, and have proposed a variety of different

control charts tools for this purpose.

For example, Mandel (1969) proposed a regression control chart, while Zhang (1985) proposed a

cause-selecting control chart. Recently, Riaz (2008b) proposed a Shewhart-type chart in the form of

a regression-based estimator, called a Vr chart, for monitoring process variability. He compared the

proposed Vr chart with some other existing charts (specifically, R, S and S2 charts for the same purpose),

and showed that the Vr chart was effective in detecting moderate to large shifts in the process variability

under certain conditions on the correlation between the process variable and auxiliary variable. Similarly,

a Shewhart-type control chart using a regression-based estimator (Mr chart) for monitoring a process

mean (proposed by Riaz (2008a)), was shown to be more powerful at detecting shifts in the process mean.
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This work was later extended to an EWMA chart for detecting small-to-moderate changes in the process

mean under different correlation structures between the process and auxiliary variables (see Adegoke et al.

(2018a, 2017); Ridwan A. Sanusi (2017); Abbas et al. (2014b)).

Here, we propose a more efficient control chart for monitoring the process mean when the process vari-

able is observed along with an auxiliary variable. The proposed chart, called an auxiliary homogeneously

weighted moving average (AHWMA) chart, is an HWMA-type control chart that uses both the deviation

of the process mean from its target value (whether known apriori or estimated from historical reference

samples), as well as a regression estimator for the process mean provided through its relationship (or

estimated relationship) with an auxiliary variables with which it is known to be correlated. The rest of

the chapter is organized as follows: in Section 9.2, we provide the design structure of the chart. Section

9.3 compares the AHWMA chart (run length) performance in detecting a small shift in the process mean

with several other existing charts. Section 9.4 gives a detailed study of the chart’s robustness to non-

normality. We give recommendations regarding the application of the chart when the process parameters

are unknown in Section 9.5. Section 9.6 provides an example to demonstrate practical implementation of

the chart, followed by a conclusion and discussion in Section 9.7.

9.2 The AHWMA Control Chart

Consider constructing control chart based on observations zij of the quality characteristics Zij , for each

of i = 1, . . . ,m time-points and j = 1, . . . , n sampling units per time-point (i.e., n is the sample size).

Assume that these quality characteristics (Zij), are identically distributed as normal random variables

with an in-control known mean (µZ) and standard deviation (σZ), i.e., Zij ∼ N(µZ , σ
2
Z) and represents

the main process variable. The HWMA statistic, Hi (in Equation (9.1)), at time-point i, gives a specific

weight to the current sample and the remaining weight is equally distributed among the previous samples,
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and is given as:

Hi = wz̄i + (1− w)¯̄zi−1 (9.1)

where z̄i is the sample average for the ith sample, and w is a smoothing constant (also called the sensitivity

parameter) selected such that 0 < w ≤ 1. The HWMA structure becomes the Shewhart plotting structure

whenever w = 1. ¯̄zi−1 is the average of the sample means of all of the previous samples (i.e., up to and

including the (i− 1)th sample), and is given as ¯̄zi−1 =
1

n

∑i−1
k=1 z̄k. The mean and variance of the HWMA

statistic in Equation (9.1) are given as µH = µZ , and

σ2
Hi

=


1

n
w2σ2

Z if i = 1

1

n

(
w2σ2

Z + (1− w)2 σ2
Z

i− 1

)
if i > 1

(9.2)

where µH = µZ and σ2
Z are the mean and variance of the normally distributed random variable Z (Abbas,

2018).

Let an auxiliary variable Yij be correlated with the main variable of interest, Zij , with correlation ρ.

We assume the observations of Zij and Yij are observed in pairs from a bivariate normal distribution,

given as, (Z, Y ) ∼ N2(µZ , µY , σ
2
Z , σ

2
Y , ρ), where N2 is the bivariate normal distribution, µY and σ2

Y , are

the the population mean and variance of Y , respectively. We assume the linear relationship between the

variables can be modelled using a linear least squares obtained by adjusting the process mean at time i,

zi, to reflect its known relationship with the auxiliary variable, yielding the regression-informed estimator

(i.e., Ri) for the process mean given as:

Ri = z̄i + b(µY − ȳi) (9.3)

where b is the slope of the regression line; given as the change in the process variable, Z, due to a unit
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change in the auxiliary variable, Y , (Cochran, 1977). The mean and variance of R are given as:

µR = µZ and σ2
R =

σ2
Z

n
(1− ρ2), (9.4)

respectively.

Using Equation (9.3), the plotting statistic (Ti) of the AHWMA chart is given as:

Ti = wRi + (1− w)R̄i−1 (9.5)

where w is the smoothing parameter of the chart (selected such that 0 ≤ w ≤ 1), Ri is the regression-

informed estimate of the process variable, given in Equation (9.3) for the ith sample, and R̄i−1 is the

average of the sample means of all of the previous samples (i.e., up to and including the (i− 1)th sample)

of the plotting statistic, and is given as R̄i−1 =
1

n

∑i−1
k=1Rk. The mean and variance of the plotting

statistic in Equation (9.5) are given as µH = µZ (also called the centre line of the AHWMA chart), and

σ2
Ti =


(1− ρ2)

n
w2σ2

Z if i = 1

(1− ρ2)

n

(
w2σ2

Z + (1− w)2 σ2
Z

i− 1

)
if i > 1,

(9.6)

respectively. The time varying lower (Li) and upper (Ui) control chart limits of the plotting statistic

given in Equation (9.5) are given as:

Li =


µZ − CσZ

√
w2

n
(1− ρ2) if i = 1

µZ − CσZ

√√√√(w2

n
+

(1− w)2

n(i− 1)

)
(1− ρ2) if i > 1

(9.7)
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and

Ui =


µZ + CσZ

√
w2

n
(1− ρ2) if i = 1

µZ + CσZ

√√√√(w2

n
+

(1− w)2

n(i− 1)

)
(1− ρ2) if i > 1,

(9.8)

respectively, where, C determines the width of the control limits; the values of C and w are chosen to

achieve a desired in-control ARL for the chart. We provide R-code (R Core Team, 2013) (in the appendix

C.3.1) which practitioners can use to obtain the value of C, given w, that fix the in-control ARL of the

chart to a desired value. We adopted the ARL numerics algorithm for the EWMA chart Knoth (2017);

implemented in the spc (R) package Knoth (2018), to obtain an arbitrary start value (say Cstart) of the

AHWMA chart limit, and used a binary search algorithm to search for the corrected limit (C) for the

chart.

9.3 Performance assessments and comparisons

Performance assessments

Here, we provide a comprehensive assessment of the AHWMA chart in detecting a shift in the process

mean in terms of the chart’s average run length (ARL) and standard deviation of run length (SDRL). ARL

is the average number of plotted samples on the control chart before a shift is detected. The in-control

ARL, denoted by ARL0, is the value of the ARL when a process is in control, while the out-of-control

ARL, denoted by ARL1, is the value of the ARL when the process is out of control. SDRL is used

to determine the variation of the run length distribution for a given value of shift. Similarly, SDRL0

and SDRL1 can be defined as SDRL for the in-control and out-of-control process, respectively. When

comparing two charts, the ARL0 is fixed to a specific value, and a chart having a smaller value of ARL1

than another is said to be more efficient in detecting the shift in the process (Adegoke et al., 2019; Abbasi
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et al., 2018; Abbas et al., 2018; Khan et al., 2018).

To ensure a fair comparison of the AHWMA chart with existing charts of the same ARL0, we examined

the performance of the chart with w ∈ {0.03, 0.05, 0.10, 0.25, 0.5, 0.75}, and the corresponding values of

C that fix ARL0 to 500 are used, the R-code provided in the appendix C.3.1 finds the value of C

(for each value of w), that fixes ARL0 to 500. We examined the ARL performance of the chart under

different correlation values between the process and the auxiliary variables; in particular, we considered

ρ ∈ {0.05, 0.25, 0.5, 0.75, 0.95}. The ARL values of the AHWMA chart are given in Tables 9.1 - 9.5. In

these tables, δ is the size of shifts, and is calculated δ =
n1/2|µZ − µ1|

σZ
, where n is the sample size at

each time i (here, we assume n = 1 across i), and µZ and µ1 are the in-control and out-of-control mean,

respectively.

Table 9.1: ARL and SDRL values of the AHWMA chart when the correlation between the variables
is ρ = 0.05. The values of C are chosen to fix the chart’s ARL0 to 500 for each chosen value of w.

w
0.03 0.05 0.1 0.25 0.5 0.75

δ ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL
0.000 502.98 428.85 498.7 371.79 502.95 410.23 501.41 483.52 497.28 495.4 500.09 495.64
0.050 363.45 326.86 382.76 296.57 396.35 325.16 438.68 420.99 478.99 475.17 488.54 490.08
0.075 273.65 250.5 295.14 231.71 317.18 255.34 384.78 368.41 452.28 449.05 476.29 473.72
0.100 206.62 187.81 228.92 180.9 250.84 199.77 326.26 309.14 417.58 417.27 454.29 452.94
0.125 159.27 141.92 180.75 140.23 198.63 154.81 272.98 256.67 383.76 385.05 436.42 435.91
0.150 126.43 111.15 144.81 110.84 162.37 123.83 226.05 209.25 346.85 345.27 411.53 413.32
0.175 102.59 89.67 119.59 89.15 132.35 98.6 185.95 169.49 309.12 304.8 389.93 388.13
0.200 84.61 72.93 100.41 74.29 111.43 80.63 156.47 139.98 276.56 274.03 362.66 359.46
0.250 60.59 51.6 72.93 52.75 81.49 56.88 112.27 97.75 217.59 213.85 313.11 312.89
0.500 20.05 15.71 24.89 17.02 28.54 17.71 33.81 25.21 68.28 64.33 132.08 131.2
0.750 10.31 7.41 12.74 8.25 14.88 8.74 16.13 10.66 27.82 24.51 57.82 56.92
1.000 6.57 4.25 8.01 4.82 9.33 5.16 9.67 5.8 14.09 11.49 28.26 26.74
1.500 3.74 2.13 4.42 2.31 4.96 2.43 4.93 2.54 5.62 3.82 9.19 8.01
2.000 2.55 1.45 2.98 1.52 3.31 1.52 3.19 1.48 3.2 1.82 4.21 3.18

C
2.272 2.608 2.938 3.075 3.089 3.09

The main findings of the AHWMA chart (cf. Tables 9.1 - 9.5) are:

• For fixed values of δ and ρ, the chart is more efficient for smaller value of w. For example, where

ρ = 0.05 (Table 9.1), when δ = 0.5, the values of the ARL1 when w = 0.03 and 0.75 were 20.05 and
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Table 9.2: ARL and SDRL values of the AHWMA chart when the correlation between the variables
is ρ = 0.25. The values of C are chosen to fix the chart’s ARL0 to 500 for each chosen value of w.

w
0.03 0.05 0.1 0.25 0.5 0.75

δ ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL
0 502.5 429.42 498.92 372.53 502.19 411.15 501.01 488.82 499.07 492.39 500.98 496.82

0.050 358.21 321.07 378.19 292.9 391.86 321.41 437.22 418.88 476.3 469.57 489.51 490.58
0.075 264.91 242.15 288.01 226.75 311.24 252.59 376.49 360.73 451.69 446.04 471.6 472.85
0.100 199.08 180.8 221.19 173.23 243.62 193.54 317.17 302.38 413.08 413.82 457.88 455.84
0.125 153.2 136.33 174.67 135.14 191.55 148.78 263.92 246.52 379.53 378.61 432.72 430.93
0.150 121.43 106.87 139.66 106.8 155.22 117.75 218.69 201.72 338.72 336.89 409.57 409.29
0.175 98.06 85.24 114.52 85.74 128.19 94.54 179.98 164.52 304.51 300.64 381.68 379.18
0.200 81.18 69.62 95.62 70.28 106.39 77.07 148.91 133.53 268.09 263.87 356.45 358.04
0.250 58.11 49.05 69.54 50.26 77.88 54.35 106.9 92.35 208.71 206.16 305 303.75
0.500 19.02 15 23.88 16.33 27.25 16.85 31.91 23.63 64.32 60.14 125.44 123.43
0.750 9.74 6.92 12.21 7.83 14.16 8.25 15.32 9.99 25.75 22.63 53.68 52.13
1.000 6.29 4 7.65 4.53 8.85 4.84 9.16 5.39 13 10.42 26.05 24.65
1.500 3.57 2.02 4.19 2.17 4.72 2.3 4.68 2.37 5.27 3.49 8.38 7.23
2.000 2.45 1.4 2.86 1.46 3.18 1.47 3.03 1.4 3.03 1.69 3.93 2.91

C
2.272 2.608 2.938 3.075 3.089 3.09

Table 9.3: ARL and SDRL values of the AHWMA chart when the correlation between the variables
is ρ = 0.5. The values of C are chosen to fix the chart’s ARL0 to 500 for each chosen value of w.

w
0.03 0.05 0.1 0.25 0.5 0.75

δ ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL
0 502.09 428.04 498.36 371.62 501.47 406.7 504.88 486.43 498.55 497.01 496.55 498.91

0.050 333.66 301.2 354.43 276.58 373.92 302.68 425.24 405.64 471.88 466.32 487.38 486.56
0.075 240.95 220.02 263.31 207.91 285.65 231.4 354.88 339.89 435.63 429.98 469.55 466.55
0.100 174.83 156.92 197.66 153.49 216.45 170.81 290.14 273.78 397.54 393.99 445.34 446.92
0.125 132.93 117.26 151.91 115.44 168.43 129.25 234.95 218.49 357.17 354.94 419.21 419.54
0.150 104.06 90.67 120.7 91.47 135.03 100.63 190.51 174.88 312.66 310.1 390.07 387.53
0.175 83.71 71.86 98.45 72.9 110.08 80.03 153.84 138.3 275.08 270.88 363.64 363.96
0.200 69.32 59.15 81.65 59.65 91.18 65.05 127.81 112.89 239.37 235.41 331.84 333.34
0.250 49.08 41.15 59.23 42.45 65.89 44.93 89.86 76.3 180.91 176.47 276 276.42
0.500 15.75 12.08 19.73 13.38 22.63 13.72 25.77 18.3 50.43 46.59 101.74 100.72
0.750 8.23 5.64 10.12 6.38 11.79 6.7 12.52 7.87 19.87 16.95 40.79 39.3
1.000 5.35 3.28 6.44 3.67 7.43 3.97 7.59 4.31 10.06 7.75 19.11 17.68
1.500 3.1 1.73 3.61 1.84 4.04 1.89 3.95 1.91 4.21 2.63 6.12 4.98
2.000 2.1 1.23 2.43 1.3 2.72 1.29 2.61 1.19 2.5 1.29 3 2.03

C
2.272 2.608 2.938 3.075 3.089 3.09

132.08, respectively. Thus, the chart detects a shift in the process mean faster when a small value

of w is used.
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Table 9.4: ARL and SDRL values of the AHWMA chart when the correlation between the variables
is ρ = 0.75. The values of C are chosen to fix the chart’s ARL0 to 500 for each chosen value of w.

w
0.03 0.05 0.1 0.25 0.5 0.75

δ ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL
0 501.65 430.15 498.97 374.39 499.57 404.52 504.97 490.17 493.17 493.87 497.6 500.41

0.050 271.72 248.22 297.52 234.08 315.26 256.33 385.37 369.96 450.49 449.65 476.24 477.56
0.075 178.17 160.77 201.34 156.45 222 174.13 296.36 278.87 398.8 400.65 450.12 449.58
0.100 125.55 110.22 144.11 109.47 160.49 122.96 223.57 207 343.09 341.7 410.87 406.97
0.125 91.66 79.47 108.24 79.75 120.11 88.2 171.01 155.54 290.88 287.62 375.59 373.21
0.150 70.54 60.2 84 61.41 93.52 66.57 131.78 115.65 245.44 239.44 336.11 332.07
0.175 55.94 47.27 67.61 49.08 75.41 52.08 103.9 89.92 201.67 198.62 298.92 297.8
0.200 45.3 37.77 54.88 39.25 61.84 41.94 83.18 70.42 169.04 164.22 262.48 262.96
0.250 31.95 25.93 39.23 27.61 44.38 28.8 55.98 44.86 117.61 113.89 203.97 203.6
0.500 10.24 7.26 12.66 8.17 14.71 8.57 15.96 10.46 27.41 24.28 56.59 55.52
0.750 5.5 3.42 6.68 3.83 7.64 4.08 7.79 4.42 10.53 8.18 19.97 18.55
1.000 3.69 2.11 4.35 2.28 4.91 2.39 4.86 2.49 5.53 3.72 8.94 7.78
1.500 2.16 1.26 2.52 1.33 2.8 1.31 2.67 1.21 2.57 1.35 3.11 2.14
2.000 1.45 0.85 1.65 0.96 1.86 0.99 1.76 0.84 1.66 0.73 1.76 0.92

C
2.272 2.608 2.938 3.075 3.089 3.09

Table 9.5: ARL and SDRL values of the AHWMA chart when the correlation between the variables
is ρ = 0.95. The values of C are chosen to fix the chart’s ARL0 to 500 for each chosen value of w.

w
0.03 0.05 0.1 0.25 0.5 0.75

δ ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL
0 502.44 429.19 499.63 372.3 501.08 409.78 501.37 483.01 504.2 502.97 503.71 503.15

0.050 115.73 101.52 133.96 101.16 148.56 112.37 209.06 193.55 332.14 328.99 401.56 398.62
0.075 65.13 55.07 77.2 55.89 86.73 61.75 120.3 105.64 228.82 223.07 322.7 323.39
0.100 41.61 34.64 50.65 35.8 56.68 37.78 74.83 62.18 155.76 152.02 247.89 248.76
0.125 28.84 23.43 35.68 25.06 40.43 26.11 50.99 40.33 105.88 102 187.84 185.45
0.150 21.43 17.04 26.85 18.37 30.69 19.2 36.25 27.29 75.21 71.06 140.91 139.68
0.175 16.54 12.67 20.62 13.88 23.92 14.67 27.41 19.86 54.38 50.75 107.39 106.69
0.200 13.35 10.06 16.58 11.01 19.31 11.63 21.51 14.81 39.96 36.15 81.86 80.94
0.250 9.32 6.55 11.5 7.33 13.41 7.75 14.43 9.32 23.77 20.57 49.83 48.49
0.500 3.43 1.91 4.01 2.07 4.5 2.16 4.45 2.23 4.93 3.23 7.68 6.53
0.750 1.99 1.18 2.33 1.25 2.59 1.24 2.46 1.12 2.34 1.19 2.76 1.8
1.000 1.33 0.75 1.52 0.88 1.69 0.92 1.62 0.77 1.53 0.66 1.6 0.79
1.500 1.01 0.12 1.02 0.19 1.04 0.24 1.04 0.21 1.04 0.2 1.04 0.21
2.000 1 0 1 0.01 1 0.02 1 0.02 1 0.02 1 0.02

C
2.272 2.608 2.938 3.075 3.089 3.09

• For fixed values of δ, w and C, the chart is more efficient for large values of ρ are used. For example,

when w = 0.03, L = 2.272, and δ = 0.5, ARL1 values were 20.05 and 3.43 (in Tables 9.1 and 9.5)
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for ρ = 0.05 and ρ = 0.95, respectively. Thus, increases in the correlation structure between the

process variable and the auxiliary variable leads to an increase in the chart’s ability to detect a

shift.

• The chart is ARL unbiased. That is, the ARL1 values never exceed the corresponding ARL0 for

any choice of δ examined.

• As δ increases, the ARL1 and SDRL1 values approach 1 and 0, respectively, especially for large

values of ρ; that is, the charts detect large shifts promptly.

Comparisons

We provide detailed comparisons of the proposed AHWMA chart with some existing control charts: the

classical HWMA chart by Abbas (2018), the classical EWMA chart by Roberts (1959), the classical

CUSUM chart by Roberts (1959), the auxiliary-based EWMA chart (i.e., MXEWMA) by Abbas et al.

(2014b), and the auxiliary-based CUSUM chart (i.e, AuxCUSUM2 by Ridwan A. Sanusi (2017), in terms

of their ARL values. The auxiliary-based EWMA and CUSUM charts provide efficient applications of

the classical EWMA and CUSUM charts, respectively, in those situations where the process variable is

observed along with an variable; they are also based on a regression estimator. For comparison with the

MXEWMA and AuxCUSUM2 charts, we considered three different values of ρ: namely, ρ ∈ {0.05, 0.5,

0.95}. In all cases, the charts’ parameters were set to values that fix ARL0 at 500. We provide the charts’

ARL results that optimized δ at w ∈ {0.05, 0.1, 0.2}.

The results of the comparisons are provided in Table 9.6. As shown on the table, the AHWMA chart

outperformed the classical CUSUM, EWMA and HWMA charts in detecting shifts in the mean, especially

when ρ > 0.05. For fixed values of w and ρ, the AHWMA chart was more efficient than the AuxCUSUM2

chart, especially for small-to-moderate values of δ (i.e., δ < 2). For fixed values of w and ρ, the AHWMA

chart was less efficient than the MXEWMA chart in detecting moderate-to-large shifts (i.e, δ > 0.5) in
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Table 9.6: ARL comparisons of the charts.
AuxCUSUM2 MXEWMA AHWMA

Classical chart ρ ρ ρ
w δ CUSUM EWMA HWMA 0.05 0.5 0.75 0.95 0.05 0.5 0.75 0.95 0.05 0.5 0.75 0.95

0.03 0 497.95 500.3 501.2 498.9 497.43 501.98 501.22 502.7 500.82 503.52 498.71 502.98 502.09 501.65 502.44
0.050 399.33 389.49 365.09 400.21 374.31 319.5 149.88 388.63 362.25 304.3 131.56 363.45 333.66 271.72 115.73
0.075 320.31 304.9 273.63 322.98 287.25 222.65 88.09 303.73 271.43 205.42 70.58 273.65 240.95 178.17 65.13
0.100 254.31 233.62 205.84 252.59 219.7 161.3 60.28 236.25 201.31 143.61 44.75 206.62 174.83 125.55 41.61
0.125 201.09 181.26 159.07 200.39 170.07 121.51 45.42 182.06 151.38 103.07 30.82 159.27 132.93 91.66 28.84
0.150 161.81 143.7 125.81 162.17 135.08 95 36.36 144.63 117.7 77.65 22.71 126.43 104.06 70.54 21.43
0.175 133.45 116.37 102.08 133.18 110.83 77.63 30.2 114.6 93.03 60.51 17.48 102.59 83.71 55.94 16.54
0.200 111.78 94.55 84.62 112.05 92.38 65.02 25.94 94.25 75.25 49.1 14.07 84.61 69.32 45.3 13.35
0.250 83.19 66.23 61.21 83.33 69.13 48.66 20.16 66.71 52.69 33.91 9.66 60.59 49.08 31.95 9.32
0.500 34.63 21.26 20.01 34.65 29.26 21.5 9.59 21.42 16.69 10.62 3.12 20.05 15.75 10.24 3.43
0.750 21.67 10.75 10.29 21.62 18.45 13.76 6.37 10.71 8.44 5.4 1.75 10.31 8.23 5.5 1.99
1.000 15.75 6.63 6.61 15.74 13.5 10.16 4.82 6.63 5.23 3.4 1.26 6.57 5.35 3.69 1.33
1.500 10.27 3.44 3.72 10.24 8.85 6.75 3.3 3.44 2.78 1.88 1.01 3.74 3.1 2.16 1.01
2.000 7.64 2.25 2.55 7.64 6.62 5.1 2.67 2.23 1.85 1.33 1 2.55 2.1 1.45 1

0.05 0 499.43 497.84 497.55 498.96 497.14 500.21 497.54 499.34 499.04 496.68 499.39 498.7 498.36 500.95 499.63
0.050 425.38 412.14 380.67 420.29 404.36 355.01 175.78 410.96 388.75 334.74 154.71 382.76 354.43 297.52 133.96
0.075 355.89 336.92 297.09 355.33 326.01 260.3 97.17 335.44 302.76 236.23 83.31 295.14 263.31 201.34 77.2
0.100 291.22 266.23 230.76 289.35 253.87 187.5 61.51 267.56 231.69 168.05 51.09 228.92 197.66 144.11 50.65
0.125 234.83 213.89 180.59 235.22 198.79 139.53 43.36 210.55 177.37 121.77 34.75 180.75 151.91 108.24 35.68
0.150 189.47 168.75 146.07 190.51 157.49 106.35 33.11 168.53 137.9 91.73 25.44 144.81 120.7 84 26.85
0.175 154.72 136.38 119.93 154.38 126.25 83.45 26.58 134.81 108.29 70.33 19.44 119.59 98.45 67.61 20.62
0.200 128.86 110.55 100.46 127.41 103.56 67.15 22.14 110.86 88.48 56.2 15.57 100.41 81.65 54.88 16.58
0.250 91.21 77.73 73.05 90.94 72.8 47.31 16.57 77.52 60.93 38.44 10.65 72.93 59.23 39.23 11.5
0.500 31.14 23.73 24.86 31.28 25.52 17.83 7.39 23.73 18.45 11.72 3.4 24.89 19.73 12.66 4.01
0.750 18.06 11.91 12.81 17.9 15.03 10.9 4.83 11.83 9.31 5.96 1.87 12.74 10.12 6.68 2.33
1.000 12.63 7.28 8.06 12.59 10.66 7.87 3.65 7.27 5.75 3.73 1.32 8.01 6.44 4.35 1.52
1.500 7.94 3.77 4.42 7.93 6.78 5.12 2.52 3.76 3 2.03 1.02 4.42 3.61 2.52 1.02
2.000 5.85 2.42 2.98 5.82 5.03 3.86 2.01 2.43 1.98 1.4 1 2.98 2.43 1.65 1

0.1 0 501.58 501.67 500.39 501.92 502.21 501.54 498.63 500.99 497.33 499.62 502.92 502.95 501.47 499.57 501.08
0.050 471.36 437.93 397.64 469.78 461.18 437.92 298.48 439.33 420.52 377.94 199.61 396.35 373.92 315.26 148.56
0.075 438.67 380.9 318.89 438.02 422.52 374.37 190.06 377.32 350.23 287.74 110.71 317.18 285.65 222 86.73
0.100 397.64 318.94 249.81 398.67 372.84 311.88 119.6 318.25 281.56 213.89 66.65 250.84 216.45 160.49 56.68
0.125 354.81 262.15 200.21 356.1 320.97 253.42 78.24 260.83 227.52 159.78 43.91 198.63 168.43 120.11 40.43
0.150 312.61 215.56 161.03 315.18 277.04 204.92 53.32 216.54 181.54 121.34 30.94 162.37 135.03 93.52 30.69
0.175 273.9 178.62 133.14 273.86 233.99 164.5 37.95 177.41 145.27 94.14 23.26 132.35 110.08 75.41 23.92
0.200 237.27 146.13 111.78 235.96 200.4 132.38 28.07 147.45 118.36 73.99 18.16 111.43 91.18 61.84 19.31
0.250 179.15 102.97 81.64 178.76 143 88.48 17.08 103.48 80.95 48.77 12.15 81.49 65.89 44.38 13.41
0.500 48.81 28.7 28.51 48.63 35.23 19.31 5.01 28.64 21.95 13.41 3.75 28.54 22.63 14.71 4.5
0.750 19.62 13.6 14.87 19.66 14.55 8.64 2.95 13.59 10.52 6.59 2.03 14.88 11.79 7.64 2.59
1.000 10.93 8.21 9.34 10.93 8.43 5.43 2.17 8.25 6.42 4.14 1.4 9.33 7.43 4.91 1.69
1.500 5.5 4.17 4.96 5.47 4.48 3.15 1.46 4.15 3.32 2.22 1.02 4.96 4.04 2.8 1.04
2.000 3.69 2.65 3.32 3.67 3.09 2.3 1.04 2.65 2.15 1.5 1 3.31 2.72 1.86 1

0.25 0 503.87 501.19 498.41 499.91 498.65 496.72 499.94 499.65 500.9 497.9 497.83 501.41 504.88 502.97 501.37
0.050 473.65 464.89 440.22 476.76 467.82 443.37 316.9 469.38 454.7 429.18 284.8 438.68 425.24 385.37 209.06
0.075 447.21 433.74 382.85 440.66 430.85 390.87 211.47 433.41 413.71 368.59 179.31 384.78 354.88 296.36 120.3
0.100 411.5 390.42 324.23 412.17 387.72 334.12 138.29 387.97 361.12 298.88 114.37 326.26 290.14 223.57 74.83
0.125 374.92 344.94 271.63 372.42 343.61 277.01 91.75 342.65 310.56 241.79 75.25 272.98 234.95 171.01 50.99
0.150 335.01 300.26 224.11 333.73 297.96 228.79 62.32 301.25 265.16 194.2 51.62 226.05 190.51 131.78 36.25
0.175 296.57 263.35 187.63 295.29 258.58 184.72 44.02 260.14 224.89 156.58 37.1 185.95 153.84 103.9 27.41
0.200 260.28 225.42 157.86 261.6 221.65 152.31 31.91 226.33 190.14 126.5 27.39 156.47 127.81 83.18 21.51
0.250 199.46 168.99 113.14 200.01 162.65 101.91 19.06 169.1 136.54 83.92 16.88 112.27 89.86 55.98 14.43
0.500 57.14 47.4 33.79 56.76 40.9 21.68 4.89 47.02 34.6 18.99 4.24 33.81 25.77 15.96 4.45
0.750 22.16 19.34 16.25 21.95 15.9 8.94 2.81 19.19 14.13 8.1 2.22 16.13 12.52 7.79 2.46
1.000 11.57 10.45 9.71 11.56 8.69 5.36 2.04 10.39 7.77 4.73 1.49 9.67 7.59 4.86 1.62
1.500 5.42 4.77 4.93 5.42 4.34 3 1.3 4.75 3.72 2.42 1.04 4.93 3.95 2.67 1.04
2.000 3.55 2.93 3.18 3.54 2.93 2.16 1.02 2.94 2.34 1.6 1 3.19 2.61 1.76 1
C 13.15029 2.483 2.272 13.15029 13.15029 13.15029 13.15029 2.483 2.483 2.483 2.483 2.272 2.272 2.272 2.272

the process mean. However, the chart shows greater efficiency than the MXEWMA chart in detecting

small shifts (i.e, δ ≤ 0.5) in the mean.
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9.4 Robustness to non-normality of the chart

The AHWMA chart described in Section 9.2 relies on the assumption that the process variable and

the auxiliary variable are bivariate normally distributed. In practice, this assumption does not always

hold. Non-normality is not a major concern with a large sample size because the central limit theorem

warrants that the sample mean will be approximately normally distributed for any continuous variables

(Stoumbos and Sullivan, 2002). When n = 1, however, it is important to check the sensitivities of control

charts to departures from normality (Testik et al., 2003). We refer readers to Stoumbos and Reynolds

(2000); Maravelakis et al. (2005); Human et al. (2011), and Borror et al. (2018) for detailed studies on

the robustness of the EWMA control chart to non-normality.

Here, we investigate the robustness of the AHWMA chart to non-normality. As mentioned by Human

et al. (2011) “a control chart is robust if its in-control run-length distribution remains stable (unchanged

or nearly unchanged) when the underlying distributional assumption(s) (e.g. normality) are violated”.

Following previous investigators (Stoumbos and Reynolds, 2000; Maravelakis et al., 2005; Human et al.,

2011; Borror et al., 2018; Aslam et al., 2019), we considered a heavy-tailed bivariate distribution - the

bivariate Student’s t-distribution, and a skewed distribution - the bivariate gamma distribution. We

denote the bivariate t-distribution with v degrees of freedom by t2(v). The probability density function

of a bivariate t-distribution is given by

f(x) =
[Γ(v + 2)/2]

Γ(v/2)vπ|Σ|1/2

[
1 +

1

v
(x− µ)TΣ−1(x− µ)

]−(v+2)/2

(9.9)

where x ∈ R2, µ = [µ1, µ2]T is the 2× 1 vector of location parameters, Σ is a 2× 2 positive-definite (or

covariance) matrix, v is the number of the degrees of freedom, and Γ(n) = (n− 1)! for n = 1, 2, . . . . The

mean vector and covariance matrix are given as µ (if v > 1, else, undefined), and
v

(v − 2)
Σ (when v > 2,

else, undefined), respectively.
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We denote the bivariate gamma distribution with shape parameter, α1p, and scale parameter, β1p,

by G2(α1p, β1p,Σ), where 1p is a column vector of ones of size p = 2. The probability density function

of the bivariate gamma distribution is given as:

f(x) =
|Σ|−α

β2αΓ2(α)
|x|α−3/2 exp

(
tr

(
1

β
Σ−1x

))
(9.10)

where α > 0 is the scale parameter, β > 0 is the shape parameter, and Γ2 is the bivariate gamma function

given as Γ2(α) = π1/2ΓαΓ(α − 1/2). See Ronning (1977) and Gupta, Arjun K and Nagar (2018) for

detailed information on the bivariate gamma distribution and its properties.

We studied the chart’s robustness under a large range of degrees of freedom (v) for the bivariate

t-distribution; namely, v ∈ {4, 6, 8, 10, 15, 20, 30, 40, 50, 100, 1000}. For the bivariate gamma distribution,

without loss of generality, we considered scale parameter, β = 1, and a range of values of the shape

parameter, i.e., α ∈ {1, 2, 3, 4, 5, 10, 50, 100, 1000}. Hence, we denote the bivariate gamma distribution as

G2(α), for short. The ARL0 values of the chart for ρ ∈ {0.25, 0.5, 0.95}, and w ∈ {0.03, 0.05, 0.25, 0.75}

for the bivariate t and bivariate gamma distributions are given in Tables 9.7 and 9.8, respectively.

Table 9.7: ARL0 with bivariate t−distirbution
w ρZY AHWMA t2(4) t2(8) t2(10) t2(15) t2(30) t2(50) t2(100) t2(1000)

0.03 0.25 502.5 268.66 346.71 372.71 413.4 454.92 472.15 485.14 499.74
0.5 502.09 268.16 346.42 372.37 413.24 454.77 472.99 485.93 499.36
0.95 502.44 268.4 346.48 372.04 413.12 454.27 472.85 485.4 499.98

0.05 0.25 498.92 223.83 306.24 332.44 375.3 433.23 454.27 476.72 494.77
0.5 498.36 223.1 305.14 332.2 375.7 432.25 455.71 477.37 494.7
0.95 498.97 223.74 305.58 332.1 375.69 432.53 455.09 477.4 494.65

0.25 0.25 504.01 103.84 163.35 188.54 237.89 328.6 381.05 433.02 489.41
0.5 504.88 103.87 163.21 188.52 237.59 328.94 381.32 433.3 489.25
0.95 504.97 104.53 163.6 188.42 237.36 328.48 381.82 433.04 489.66

0.75 0.25 497.98 84.55 137.14 163.15 213.72 307.88 366.82 429.93 485.26
0.5 496.55 84.37 137.01 163.27 213.11 307.99 366.91 429.73 485.26
0.95 497.6 84.29 137.96 163 213.55 307.67 366.43 429.51 485.68

The ARL0 results in Tables 9.7 and 9.8 are summarized below:
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Table 9.8: ARL0 with bivariate gamma distirbution

w ρZY AHWMA G(1) G(2) G(3) G(4) G(5) G(50) G(100) G(1000)
0.03 0.25 502.5 318.96 375.58 403.3 423 429.81 490.83 499.57 501.11

0.5 502.09 276.22 331.92 366.38 388.89 402.29 486.64 495.02 499.28
0.95 502.44 203.56 260.01 301 326.33 345.62 474.14 486.89 499.52

0.05 0.25 498.92 260.97 316.67 348.37 377.24 391.84 484.87 496.06 498.53
0.5 498.36 228.92 281.5 321.79 345.27 366.05 482.82 482.17 496.23
0.95 498.97 169.00 222.22 260.75 285.58 308.43 457.36 480.23 495.58

0.25 0.25 504.01 91.82 120.34 139.28 159.94 174.75 394.77 444.34 492.63
0.5 504.88 87.9 117.06 139.89 159.19 175.89 398.25 438.8 492.79
0.95 504.97 65.44 95.52 117.63 139.88 160.81 386.1 436.85 485.02

0.75 0.25 497.98 61.61 82.27 98.38 115.33 127.7 352.01 410.57 491.43
0.5 496.55 59.7 82.53 96.01 114.57 125.31 351.67 409.13 484.35
0.95 497.6 46.52 71.75 92.58 113.61 122.13 344.77 410.59 480.14

• For a fixed value of w, the ARL0 values of the bivariate t-distributions are the same for all the

correlation values (i.e., ρZY = 0.25, 0.5, or 0.95) examined. This result is due to the symmetric

nature of the t-distribution.

• However, for the bivariate gamma distributions, for a fixed value of w, the ARL0 differ across all

the values of ρZY examined. Here, the chart appears to be more robust to non-normality only for

smaller values of ρZY .

• For both non-normal distributions, as expected, the ARL0 value increases, and tends to converge to

the required nominal ARL0 of the AHWMA chart, for large degrees of freedom (v) or larger values

of the shape parameter (i.e., α ≥ 50), especially when w = 0.3 or 0.05 is used.

• Importantly, the chart’s ARL0 value is more robust to non-normality only when a small value of w

(i.e., w = 0.03 or 0.05) is used. This implies that small values of w (i.e., w = 0.03 and 0.05) are

fairly useful when the underlying distribution is not normal.

Table 9.9 displays the ARL1 values for the AHWMA chart under bivariate normal, t and gamma

distributions for various values of δ when w = 0.03, or 0.75, and ρZY = 0.25. The results in Table 9.9
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indicate that the chart’s ARL1 values tend to approach values obtained for bivariate normal data when

a smaller value of w (i.e., w = 0.03) is used. For example, when w = 0.03, v = 50, β = 50, and δ = 0.5,

the ARL1 for the AHWMA were 19.02 (normal distribution), 19.65 (t-distribution), and 19.18 (gamma

distribution). The percentage deviation of the ARL1 values obtained under the t or gamma distributions

from ARL1 values obtained under normal distribution are 3.13% and 0.84%, respectively. On the other

hand, when w is large (i.e., w = 0.75), and other parameters are unchanged (i.e., v = 50, β = 50, and

δ = 0.5), then the ARL1 for the AHWMA under normal, t and gamma distributions were 125.44, 118.63,

and 68.10, respectively; the percentage deviation of these ARL1 values from obtained under the normal

distribution were −5.43% and −45.71% for the t and gamma distributions, respectively.

9.5 Step by step algorithm for constructing the AHWMA

chart when parameters are unknown

The AHWMA chart in Section 9.2 was formulated assuming parameters associated with the process

variable and auxiliary variable are all known; however, these parameters are generally unknown in practice

and need to be estimated. In this case, the regression model in Equation (9.3) would be based on estimated

parameters, and is given as:

R̂i = z̄i + b̂(µ̂Y − ȳi) (9.11)

where b̂ is the estimated slope of the regression line; given as the estimated change in the process variable

Z due to a unit change in the auxiliary variable Y (Cochran, 1977), and µ̂Y (µ̂Y =
1

m

∑m
i=1 Ȳi) is the

unbiased estimate of the mean of the auxiliary variable (i.e., µY ). The estimated mean and variance of

R̂ are given as
¯̂
R = µ̂Z , and S2

R̂
=

σ̂2
Z

n
(1 − r2), where r is the estimated value of the correlation size

between the variables, µ̂Z and σ̂2
Z are the unbiased estimates of µZ and σ2

Z , respectively. The µ̂Z and
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Table 9.9: ARL1 with bivariate t and gamma Distributions
δ

w ρ 0.1 0.2 0.25 0.5 1 2
0.03 0.25 AHWMA 199.08 81.18 58.11 19.02 3.57 2.45

t2(4) 208.67 121.2 92.89 33.63 10.79 3.92
t2(8) 207.97 95.66 71.22 24.01 7.83 2.97
t2(10) 206.5 92.86 68.27 22.93 7.47 2.83
t2(15) 204.56 88.88 63.92 21.42 7.05 2.71
t2(30) 202.67 84.32 61.18 20.23 6.64 2.57
t2(50) 201.41 83.31 59.57 19.65 6.54 2.53
t2(100) 201.33 82.01 59.37 19.39 6.44 2.49
t2(1000) 201 81.45 58.84 18.91 6.32 2.45
G(1, 1) 145.21 71.65 54.11 19.54 7.07 2.98
G(2) 154.77 73.77 54.64 19.53 6.79 2.84
G(3) 162.67 74.64 55 19.39 6.63 2.77
G(4) 163.66 75.48 56.17 19.33 6.62 2.72
G(5) 169.73 75.68 56.08 19.23 6.62 2.7
G(50) 186.67 80.17 57.93 19.18 6.39 2.55
G(100) 187.92 80.29 57.8 19.2 6.36 2.49
G(1000) 196.47 80.52 58.36 19.09 6.39 2.46

0.75 0.25 AHWMA 457.88 356.45 305 125.44 8.38 3.93
t2(4) 84.1 81.67 80.5 71.4 46.83 13.02
t2(8) 134.59 125.99 121.83 87.94 35.57 6.16
t2(10) 157.11 147.49 140.22 92.84 32.98 5.48
t2(15) 205.46 187.12 171.97 103.76 30.63 4.85
t2(30) 291.42 246.38 224.29 114.43 28.34 4.28
t2(50) 344.22 285.82 251.86 118.63 27.08 4.17
t2(100) 391.79 312.18 274.8 120.82 26.45 4.05
t2(1000) 448.32 354.74 299.77 124.34 25.83 3.89
G(1) 47.75 38.57 34.32 21.5 9.77 3.68
G(2) 63.26 49.67 44.14 26.01 11.04 3.68
G(3) 75.12 57.82 52.45 29.26 11.86 3.7
G(4) 87.47 66.01 57.66 32.31 12.48 3.7
G(5) 95.62 72.83 63.7 34.49 13.01 3.66
G(50) 250.86 177.39 150.4 68.1 18.63 3.77
G(100) 303.73 215.39 179.48 79.03 20.29 3.8
G(1000) 407.08 296.01 258.56 106.41 23.41 3.87

σ̂2
Z are calculated from a specified set of sample values measured when the process was known to be in

control, and are given as µ̂Z =
1

m

∑m
i=1 Z̄i, and σ̂Z =

sp
c4,m

, where sp =

(∑m
i=1

∑n
j=1(Zij − Z̄i)2

m(n− 1)

)1/2

,
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and c4,m =

21/2Γ

(
m(n− 1) + 1

2

)
(m(n− 1))1/2

(
m(n− 1)

2

) is an un-biasing constant (Jones et al., 2001; Abbas, 2018).

Using Equation (9.11), the plotting statistic for the AHWMA control chart based on estimated pa-

rameters is given as:

T̂i = wR̂i + (1− w)
¯̂
Ri−1 (9.12)

The estimated mean and variance of the plotting statistic in Equation (9.12) are given as µ̂T = µ̂Z , and

σ̂2
T̂i

=


(1− r2)

n
w2σ̂2

Z if i = 1

(1− r2)

n

(
w2σ̂2

Z + (1− w)2 σ̂2
Z

i− 1

)
if i > 1

(9.13)

The upper and lower control limits for the (plotting statistic given in Equation (9.12)) estimated time

varying control chart are given as:

L̂i =


µ̂Z − C ′σ̂Z

√
w2

n
(1− r2) if i = 1

µ̂Z − C ′σ̂Z

√√√√(w2

n
+

(1− w)2

n(i− 1)

)
(1− r2) if i > 1

(9.14)

Ûi =


µ̂Z + C ′σ̂Z

√
w2

n
(1− r2) if i = 1

µ̂Z + C ′σ̂Z

√√√√(w2

n
+

(1− w)2

n(i− 1)

)
(1− r2) if i > 1

(9.15)

where C ′ determines the width of the estimated control limits. Also, the estimated centre line (CL) of

the AHWMA chart is given by:

ĈL = µ̂Z (9.16)

When the chart is based on estimated parameters, implementation occurs in two phases. In phase I
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(retrospective phase), a historical reference sample is studied to establish the in-control state and to

evaluate the stability of the process (Jensen et al., 2006; Abbasi and Adegoke, 2018). Once the in-control

reference sample is characterised, the process parameters are estimated from phase I, and control chart

limits are obtained for use in phase II. The phase II aspect initiates ongoing regular monitoring of the

process. If successive observed values obtained at the beginning of Phase II fall within the in-control

limits calculated from Phase I, the process is considered to be in control. In contrast, any observed values

during Phase II which fall outside the control limits indicate that the process may be out of control, and

remedial responses are then required (Montgomery, 2009; Adegoke et al., 2018b). A shift in a process

parameter needs to be detected quickly so that corrective actions can be taken at an early stage.

We give below a step-by-step algorithm to implement chart in phase I and phase II (Abbas, 2018;

Mahmouda and Maravelakisb, 2010).

• Phase I

1. Simulate m bivariate samples (Z, Y ) each of size n from the in-control historical process.

2. Calculate the sample means, (Z̄i, Ȳi), and the sample variances (S2
Zi, S

2
Y i), where S2

Zi =∑n
j=1(Zij − Z̄i)2

(n− 1)
, and S2

Y i =

∑n
j=1(Yij − Ȳi)2

(n− 1)
, for each sample i = 1, 2, . . . ,m.

3. Repeat steps 1 and 2, many times, and compute estimates for the means, (µ̂Z , µ̂Y ) and vari-

ances (σ̂2
Z , σ̂

2
Y ). These are used to set the control limits in phase II.

• Phase II

4. At each time i, simulate a bivariate samples of size n from the process.

5. Compute the estimated regression estimator in Equation (9.11), and use this to compute the

chart’s plotting statistic, T̂i, in Equation (9.12).

6. Use the estimated parameters from phase I (from step 3 above), and construct the estimated
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control limits given in Equation (9.14) through Equation (9.15). Compared T̂i, against these

control limits.

7. If T̂i falls within the control limits, the process is declared to be in control. Alternatively, if

T̂i falls outside the control limits, the process is declared to have shifted to an out-of-control

state.

9.6 Industrial application

In this section, we provide an illustrative example to show an application of the AHWMA chart, using

a dataset from a similar study by Abbas et al. (2014b). The data were obtained by simulating m = 20

samples each of size n = 1 from (Z, Y ) ∼ N2(µZ + δσZ , µY , σ
2
Z , σ

2
Y , ρ). The values of the parameters

used for the simulation were: µZ = 0, µY = 0, σ2
Z = 1, σ2

Y = 1, ρ = 0.5, and δ = 0.5, where δ is the

size of the shift applied to the in-control mean, µZ , of the process variable of interest, and ρ is the size

of the correlation between the process variable and the auxiliary variable. We examined the ability of

the AHWMA chart to detect a shift in the process variable and compared this to the MXEWMA chart,

as well as the classical EWMA and HWMA charts. In all cases, the chart parameters: w and C, were

chosen to fix ARL0 to 500. The parameters for the classical EWMA and MXEWMA were w = 0.03 and

C = 2.483 (see Table 9.6); for the classical HWMA and AHWMA charts, we used w = 0.03 and C = 2.272

(see Table 9.6). We give the calculations for the AHWMA chart in Table 9.10, and the results for all the

control charts are shown graphically in Figure 9.1.

The AHWMA chart detected the shift in the process mean faster than any of the other methods. In

particular, it detected the shift after the 14th sample, whereas the MXEWMA chart detected the shift

after the 15th sample, and the classical EWMA, and HWMA charts both detected the shift only after

the 18th sample.
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Table 9.10: Calculation of the AHWMA chart statistic and its limits
i Zi Yi Ri Ti LCLi UCLi
1 0.39 -0.865 0.8225 0.0247 -0.059 0.059
2 -0.242 -1.686 0.601 0.8159 -1.9095 1.9095
3 -0.919 -1.046 -0.396 0.6785 -1.3509 1.3509
4 -1.22 -1.366 -0.537 0.3161 -1.1035 1.1035
5 2.01 0.574 1.723 0.1706 -0.9561 0.9561
6 1.395 1.61 0.59 0.4471 -0.8556 0.8556
7 1.66 1.542 0.889 0.4799 -0.7814 0.7814
8 -0.514 0.816 -0.922 0.484 -0.7238 0.7238
9 -0.213 -0.907 0.2405 0.3431 -0.6774 0.6774
10 -0.588 -1.923 0.3735 0.3357 -0.6389 0.6389
11 0.074 0.132 0.008 0.3285 -0.6064 0.6064
12 1.673 1.64 0.853 0.3247 -0.5785 0.5785
13 1.765 0.575 1.4775 0.3875 -0.5541 0.5541
14 0.061 -0.008 0.065 0.429 -0.5326 0.5326
15 1.537 -1.084 2.079 0.4634 -0.5135 0.5135
16 -0.519 -0.52 -0.259 0.5010* -0.4963 0.4963
17 1.198 -0.246 1.321 0.5009* -0.4808 0.4808
18 1.853 0.028 1.839 0.5646* -0.4666 0.4666
19 0.733 1.715 -0.1245 0.5765* -0.4537 0.4537
20 0.108 -0.6 0.408 0.5556* -0.4418 0.4418

∗ Out-of-control signal

9.7 Conclusion and Discussion

We propose here a new efficient control-chart method, for monitoring small shifts in the process mean

where the process variable of interest is correlated with and observed alongside an auxiliary variable. Based

on the homogeneously weighted moving average, the proposed chart uses both the process and auxiliary

variable to form a regression estimator that yields an efficient and unbiased estimate of the mean of the

process variable. We provided the design structure of the chart and examined its performance in terms of

its run length properties. Our simulation results showed that the chart detects a shift in the process mean

more rapidly than other methods. Also, the ARL comparisons showed that the chart we propose here is

generally more efficient than existing control charts used for the same purpose, especially when interest

lies in detecting a small shift in the process mean. We provided a detailed study of the chart’s robustness
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Figure 9.1: Application of the EWMA, HWMA, MXEWMA, and AHWMA charts.

to non-normality and showed how it can be designed to reduce sensitive to non-normality. The chart’s

ARL values showed that the chart is more robust to non-normality when a smaller value of w is used.

In particular, when a small value is chosen for the chart’s smoothing parameter (for example w ≤ 0.05),

the proposed chart can be designed to have an in-control ARL that is reasonably close to the ARL for

the chart under a normally distributed process. We gave some recommendations on the application of

the chart when the process parameters are unknown, and provided a step-by-step algorithm to construct

the chart for phase I and phase II of SPC. Also, we applied the chart to a simulated dataset and showed
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that it detected a small shift in the process mean faster than other examined charts including EWMA,

HWMA, MXEWMA, and AuxCUSUM2 methods. We consider that the effect of estimating parameters

during phase I of the process on subsequent performance of the AHWMA chart warrants further study.
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Chapter 10

Summary and Recommendations for

Future Research

10.1 Summary

This doctoral thesis develops and improves control chart methods for applications in statistical, ecological,

and industrial fields by proposing new methods and also by improving currently available methods for

efficient detection of (unusual) signals in monitored systems.

The study presented in chapter 2 demonstrates that, if the mean vector and covariance matrix param-

eters of the multivariate cumulative sum (MCUSUM) and the multivariate CUSUM #1 (MCI) control

charts for individual-observation sample size (i.e., n = 1) are unknown, the in-control performance of the

charts are negatively affected by estimating the process parameters during Phase I, unless a large number

of Phase I observations (m > 300) are available. Control charts obtained using a shrinkage estimate of

the covariance matrix along with an empirical estimate of the mean vector were found to be superior

(in terms of run-length properties) to those obtained using other estimation methods. The study also
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provided the values of the corrected control limits that will give a desired in-control ARL performance

when parameters are estimated, along with a least-squares model that can be used to estimate these

corrected limits for new situations. The relative performance of the control charting schemes, including

the superiority of the shrinkage estimation method, was also readily illustrated in a particular example -

the analysis of a multivariate Bimetal dataset.

The study in chapter 3 showed that the in-control performance of the multivariate exponentially

weighted moving average (MEWMA) control chart is also strongly affected by the estimation procedure

used, unless the Phase I sample is large. The findings from this study mainly showed that MEWMA

control charts which used the shrinkage estimate of the covariance matrix consistently performed better

than other methods, especially when only a small number of Phase I samples (i.e., m ≤ 300) were available.

On average, the shrinkage estimate had longer ARL0 for in-control processes and shorter ARL for out-

of-control processes. The study demonstrated superiority of the shrinkage estimation method with two

real datasets. In both cases, the shrinkage-based chart detected true shifts earlier than the alternative

methods. The shrinkage method also has the advantage of being applicable for high-dimensional data, in

contrast with alternative methods, which cannot be used when the number of variables (p) exceeds the

number of Phase I samples m. We recommend the use of the shrinkage estimate of the covariance matrix

in situations where the parameter of the covariance matrix used in the development of the MEWMA,

MCUSUM or MCI charts are unknown.

The study in chapter 4 showed that, for all the multivariate coefficient of variation (CV) charts

examined in the chapter, the probability to signal (PTS) increases with an increase in sample size and

the amount of shift in the multivariate CV. The findings from the study showed that the multivariate

CV chart based on quadratic form (i.e., the MCVAZ chart) exhibited the worst performance under both

diffuse symmetric and localized CV disturbances. The multivariate CV chart based on a generalized

Mahalanobis distance (i.e., the MCVV N ) chart outperformed other competing charts in the presence of
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diffuse symmetric CV disturbances. The multivariate CV chart based on the geometric average of the

eigenvalues of the covariance structure of the process (i.e., the MCVR chart) performed very close to the

MCVV N chart and significantly better than the MCVAZ chart. The MCVR chart appeared to be the best

choice in the presence of localized CV disturbances, as compared to either the MCVV N or the MCVAZ

charts. The superiority of the MCVR chart was also demonstrated with a real-life example using inner

diameter and length of carbon tubes. We recommend the use of the MCVR chart in Phase I of SPC,

due to the fact that this chart performed the best for the detection of localized CV disturbances and its

performance was very close to the MCVV N chart in detecting diffuse symmetric disturbances.

Chapter 5 presented a new multivariate chart, namely, the multivariate homogeneously weighted

moving average (MHWMA) control chart, for efficient monitoring of small shifts in the process mean

vector. The performance of the chart was evaluated and compared with multivariate χ2, MEWMA, MCI

and MCUSUM charts, across a variety of different possible charting parameters. The findings revealed

that the proposed MHWMA chart is superior to the multivariate χ2, MEWMA, MCI and MCUSUM

charts, particularly for the detection of small shifts in the process mean vector. Thus, we recommend the

use of the MHWMA chart when interest lies in monitoring small shifts in the process mean vector.

Chapter 6 presented a new multivariate a distribution-free control chart tool for ecological monitoring.

The proposed charting method does not require prior knowledge of the ecosystem’s behavior before the

monitoring begins, and was based on a change-point method where the currently observed ecological

community was evaluated relative to previous measures of the community at a given site. The method

was designed to take either the original multivariate dataset in Euclidean space, or the dissimilarities

between every possible pair of samples using a dissimilarity measure of interest, as input. A permutation

procedure was employed to obtain the control-chart limits for a suitable distance-based model through

time. The findings showed that the method performed better than a previously described technique that

uses distance to centroid of the multivariate ecological dataset, especially when there are association
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among species variables in the ecological dataset. Examples were provided to show the application of the

new proposed chart in detecting real shifts in ecological community structure.

Chapter 7 described the methods to enhance classical EWMA control charts for scenarios where

the process variable is observed and is negatively correlated with an auxiliary variable under different

sampling schemes: simple random sampling (SRS), ranked set sampling (RSS), and median ranked set

sampling (MRSS). The findings from the study showed that the proposed charts are more efficient than

the classical EWMA chart in detecting shifts in the mean of a process where the process variable is

negatively correlated with the auxiliary variable, for some range of correlations (ρXY ). In particular, the

efficiency of the proposed charts over the classical EWMA control chart was more pronounced when there

was a large negative correlation (i.e., ρXY ≤ −0.5) between the variables, and these charts were also

very efficient in detecting small shifts. Also, the findings showed that the proposed charts based on the

MRSS, followed by the RSS, were more efficient than the proposed charts based on SRS. The proposed

charts based on the MRSS or RSS are more applicable to those scenarios where measuring the process

variable is expensive, but ranking of units according to the relative size of the process variable is easy.

The performance of the proposed control charts was also illustrated with examples.

Chapter 8 extended the findings in chapter 7 to a more general correlation structure (positive or

negative) between the process variable and the auxiliary variable. The performance of the proposed

SXEWMA and TXEWMA charts based on the RSS and MRSS, respectively, were compared with available

results (in the literature) based on simple random sampling (i.e., MXEWMA). The findings showed

that the proposed charts were more efficient than the classical EWMA and the MXEWMA charts in

detecting a shift in the location parameter of the process variable, even when there was only a small to

moderate correlation (i.e., |ρXY | ≤ −0.5) between the process variable and the auxiliary variable. Also,

the findings showed that the proposed TXEWMA chart was more efficient than the proposed SXEWMA

chart, especially for small to moderate shifts in the process mean. Moreover, the proposed SXEWMA
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and TXEWMA charts performed better than the proposed charts based on RSS or MRSS in chapter 7,

respectively.

Chapter 9 proposed a more efficient control chart for monitoring small shift in the process mean under

simple random sampling (SRS), under scenarios where the process variable is correlated and observed with

an auxiliary variable. The ARL comparison of the chart with several existing charts showed that the chart

is more efficient than its competitors, especially when interest lies in detecting a small shift in the process

mean. We provided a detailed study of the chart’s robustness to non-normal distributions and showed

that the chart also can be designed to be insensitive to non-normality. The chart’s ARL values showed

that the chart is more robust to non-normality when a smaller value of w is used. In particular, in the case

of non-normality, when a small value of the chart’s smoothing parameter is used (for example w ≤ 0.05),

the proposed chart can be designed to have an in-control ARL that is reasonably close to the ARL for

the chart under a normally distributed process. We gave some recommendations on the application of

the chart when the process parameters are unknown, and provided step-by-step algorithms to construct

the chart in Phase I and Phase II of SPC. Also, application of the chart to a dataset showed that the

proposed chart detected a small shift in the process mean faster than the other charts it was compared

to. When interest lies in detecting small shift in the mean of a process that is (positively or negatively)

correlated with another variable, under SRS, we recommend the proposed chart in this chapter because

it outperformed the proposed charts in Chapters 7 and 8.

In general, the methods developed and examined in the thesis will aid practitioners in applying control

charts for efficient monitoring.

10.2 Future Work

We consider that the following topics deserve further thought and directed research.
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• The inertia property and the robustness to non-normality of the MHWMA chart in chapter 5 needs

to be investigated. Also, the effect of parameter estimates on the Phase II performance of the

MHWMA chart needs to be investigated.

• The proposed control charts in chapters 7 - 8, are only based on simple random sampling, ranked

set sampling or median ranked set sampling. We recommend the proposed schemes be extended to

other sampling schemes, such as double-stage sampling. Double-stage sampling involves applying

the ranked set sampling and median ranked set sampling at different stages of monitoring.

• Extensions of the proposed chart in chapter 9 to ranked-based sampling schemes require further

investigation. Also, the effect of estimating parameters on the AHWMA chart (in chapter 9) needs

further study.
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Appendix B

Formulas and Derivations

B.1 Derivation of the mean vector and covariance matrix

of Hi

From equation (5.9), we have that for an in-control situation the mean vector of Hi is given as:

E(Hi) = wE(Yi) + (1− w)E(Ȳi−1)

E(Hi) = w(µ0) + (1− w)(µ0)

E(Hi) = µ0.

The covariance matrix of Hi is given as: when i = 1, we have

H1 = wy1 + (1− w)µ0

V ar(Hi) = w2Σ0 + (1− w)2V ar(µ0)
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V ar(Hi) = w2Σ0

when i > 1, we have:

V ar(Hi) = w2V ar(Yi) + (1− w)2V ar(Ȳi−1) + 2w(1− w)Cov(Yi, Ȳi−1)

where, we have assumed that Yi are independent and identical distributed. Hence, Cov(Yi, Ȳi−1) = 0 for

all pair of i and i− 1.

V ar(Hi) = w2Σ0 + (1− w)2 Σ0

(i− 1)
,

Hence, the covariance matrix of Hi is given as:

Σ2
Hi

=


w2Σ0 if i = 1

w2Σ0 + (1− w)2 Σ0

(i− 1)
if i > 1

(B.1)

B.2 Proof of the non-centrality parameter

This proof that the distribution of the MHWMA test statistic Hi depends only on the value of the non-

centrality parameter is based on the proof in Crosier (1988) and Lowry et al. (1992). The basic idea is to

show that the values of Hi are invariant to any full-rank transformation of the data. That is, if M is a

p × p full rank matrix and y∗ = My, then the MHWMA statistics H i, and also, the T 2 value, have the

same value when calculated from y∗ as when calculated from y. Hence, H∗ = MH. Crosier (1988) have

chosen an orthogonal matrix M that diagonalizes Σ0. From equation (5.9), when i = 1, we have

H∗1 = M(wy1 + (1− w)µ0) = MH1
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Hence, it follows that

T ∗21 = H∗′1 Σ−1
H1
H∗1

T ∗21 = H ′1M
′(M ′−1Σ−1

H1
M−1)MH1

where, M ′M ′−1 = M−1M = I

T ∗21 = H ′1Σ−1
H1
H1 = T 2

1

When i > 1, we have:

H∗i = M(wyi + (1− w)ȳi−1) = MHi

Hence, it follows that

T ∗2i = H∗′i Σ−1
Hi
H∗i ,

T ∗2i = H ′iM
′(M ′−1Σ−1

Hi
M−1)MHi

T ∗2i = H ′iΣ
−1
Hi
Hi = T 2

i

The results in Crosier (1988) can now be applied.
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Appendix C

R Scripts

C.1 R code for the corrected limits in Chapter 3

library(spc)

library("mvtnorm")

library("MASS")

library("corpcor")

library("Matrix")

library(RiskPortfolios)

lmb=c(0)

mewma2<-function(sim,r,p,ucl,row,

cov_method=c("empir", "MSSD", "SW", "shrinkMedian"),

struct_mat =c("identity", "struct")){

col=p ; meansmodule <- rep(0,p)

if(struct_mat=="identity"){

V =diag(p)

262



}else{

A <- matrix(0.8, p, p)

V <- A^matrix(abs(col(A) - row(A)), p, p)

}

rlt=matrix(0,sim,1);arl=c();sdt=c()

for(b in 1:length(lmb)) {

rl<-c()

for(i in 1:sim){

mmk=matrix(0, nrow=row, ncol=p)

for(v in 1:row){

mmk[v,]<- rmvnorm(1,mean=meansmodule,sigma=V)

}

if(cov_method=="empir"){

covariance= cov(mmk)

}else if(cov_method=="MSSD"){

H <- matrix(0, row - 1, p)

w1 = mmk

for (ki in 1:row - 1) {

H[ki, ] <- w1[ki + 1, ] - w1[ki, ]

}

covariance <- 0.5 * t(H) %*% H/(row - 1)

}else if(cov_method=="SW"){

sw <- matrix(0, p, p)

w1 <- sweep(mmk, 2, (apply(mmk, 2, mean)))
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for (ki in 1:row) {

sw <- sw + w1[ki, ] %*% t(w1[ki, ])

}

covariance = sw/(row - 1)

}else {

covariance= cov.shrink(mmk, verbose = "FALSE")

}

szi<- (r/(2-r))*covariance ; ii<-solve(szi)

zo<- colMeans(mmk); m1=sqrt(lmb[b]^2/p) ; mean = rep(m1,p)

vi<-c();x<-c(); xb<-c()

cnt<-0; k1<-0; k2<-1

x<-rmvnorm(1,mean=mean,sigma=V)

xbar = t(x)

z<-r*(xbar)+(1-r)*zo

vi1<- t(z-zo)%*%ii%*%(z-zo)

if(vi1>ucl){cnt<-1}

while(cnt<1){

x<-rmvnorm(1,mean=mean,sigma=V)

xbar = t(x)

z<-r*(xbar)+(1-r)*z

vi<- t(z-zo)%*%ii%*%(z-zo)

if(vi>ucl){cnt<-1}

k1<-k1+1

k2<-k2+1
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}

rl[i]<-k2

}

rlt[,b]=rl ; arl[b] = mean(rl); sdt[b]=sd(rl)

}

return(arl)

}

BiSearch <- function(AARL, sim,r,p,row, cov_method=c("empir", "MSSD", "SW",

"shrinkMedian"), struct_mat =c("identity", "struct")) {

L0=AARL; c2 = mewma.crit(l=r, L0=AARL, p=p, hs=0, r=50)

L2 = mewma2(sim,r, p, ucl= c2,row, cov_method, struct_mat);

while(L2 < L0){

c1 = c2; L1 = L2; c2 =c2+ 1.;

L2 = mewma2(sim,r, p, ucl= c2,row, cov_method, struct_mat);

# print(round(c(c1,c2,L2),3))

}

c3 = c1 + (L0-L1)/(L2-L1) * (c2-c1);

L3 = mewma2(sim,r, p, ucl= c3,row, cov_method, struct_mat);

dc = c3 - c2;c1 = c2; L1 = L2; c2 = c3; L2 = L3;

while((abs(L0-L3)> 0.1)){

c3 = c1 + (L0-L1)/(L2-L1) * (c2-c1);

L3 = mewma2(sim,r, p, ucl= c3,row, cov_method, struct_mat);

dc = c3 - c2; c1 = c2; L1 = L2; c2 = c3; L2 = L3;
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# print(round(c(c3,L0, L3),3))

}

xn=matrix(round(cbind(c3, L0, L3),4),1,3)

colnames(xn)=c("corrected limit", "ARL of the known parameter", "ARL of the corrected limit")

rownames(xn)=row

return(xn)

}

sim1=20000;

# The parameters below should be modified to appropriately.

AARL1=200; # this fix ARL to 200

r1=0.05; # the MEWMA chart smoothing parameter

p1=2; # number of variables

row1=30 # number of Phase I sample

p2_row_30=BiSearch(AARL=AARL1, sim=sim1,r=r1,p=p1,row=row1, cov_method="empir",

struct_mat ="identity")

C.2 R code of the results (including ARL and SDRL) of

the MHWMA chart in Chapter 5

library(mvtnorm)

Norm=function(p, mu,sig0,w,UCL,sim){

shift= c(0, 0.05, 0.1, 0.25,0.5, 0.75,1, 1.5,2,2.5,3,5)

rlt=matrix(0,sim,length(shift));arl=c();sdt=c()

mdn=c(); perc25=c(); perc75=c(); perc90=c()
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for(b in 1:length(shift)) {

m1=sqrt(shift[b]^2/p) ; mu1=rep(m1,p)

rlen = c()

for(i in 1:sim){

x=matrix(0, nrow=100000,ncol= p)

ewma=matrix(0, nrow=100000,ncol= p)

vi1=c()

cnt = 0; rl = 1

x[1,]= rmvnorm(1,mu1, sig0)

ewma[1,]= w*x[1,]+ (1-w)*mu0

szi<-w^2*sig0 ; ii<-solve(szi)

vi1[1]<-sum( ewma[1,]*(ii%*% ewma[1,]))

if(vi1[1] > UCL) {cnt = 1}

while(cnt < 1){

rl = rl + 1

x[rl,]= rmvnorm(1,mu1, sig0)

summs=apply(x[1:rl,], 2, cumsum)

ewma[rl,]= w*x[rl,]+ (1-w)* (summs[rl-1,]/(rl-1)) #colMeans(x[-i,]) #

szi<-(w^2*sig0) + (1-w)^2*(sig0/(rl-1))

ii<-solve(szi)

vi1[rl]<-sum( ewma[rl,]*(ii%*% ewma[rl,]))

if(vi1[rl] > UCL) {cnt = 1}

}

rlen[i] = rl
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#print(mean(rlen))

}

rlt[,b]= rlen

arl[b] = mean(rlen)

sdt[b]=sd(rlen)

mdn[b]=median(rlen)

perc25[b]=quantile(rlen,0.25)

perc75[b]=quantile(rlen,0.75)

perc90[b]=quantile(rlen,0.90)

}

xn=matrix(round(cbind(arl,sdt, mdn,perc25, perc75, perc90),2),length(shift),6)

colnames(xn)=c("ARL", "SDARL", "MDRL", "Per25", "Per75", "Per90")

rownames(xn)=shift

yn= rlt

list(xn,yn)

}

p1=2; w1=0.03; UCL1=5.40

mu0 = rep(0,p1); sig0=diag(p1)

sim1=5000

results=Norm(p=p1,mu=mu0, sig0=sig0,w=w1, UCL=UCL1, sim =sim1)[[1]]

results

268



C.3 R-codes for the analysis in Chapter 9

C.3.1 R-codes Classical CUSUM, EWMA and HWMA charts

Classical CUSM

library(MASS); library(spc)

CUSUM=function(K,H,sigy, muy, n,sim){

shift= c(0, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.25, 0.5, 0.75, 1, 1.5, 2)

ybar= c() ; rlt=matrix(0,sim,length(shift));arl=c();sdt=c() ; mdn=c();

perc25=c(); perc75=c(); perc90=c() ; mup=muy; sdp = sqrt((sigy^2/n))

for(b in 1:length(shift)) {

rlen=c()

for(j in 1:sim)

{

m1= muy + shift[b]*(sigy/sqrt(n))

c1 = c2 =c()

for(i in 1:100000)

{

y = rnorm(n, m1, sigy); ybar = mean(y)

ybar= (ybar-mup)/sdp

if(i==1)

{

c1[i] = max(0,(ybar-0) - K + 0)

c2[i] = max(0,-(ybar-0) - K + 0)

}
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else

{

c1[i] = max(0,(ybar-0) - K + c1[i-1])

c2[i] = max(0,-(ybar-0) - K + c2[i-1])

}

if(c1[i] > H || c2[i]>H)

{

rlen[j]=i

#print(cbind(length(rl),rl[j],mean(rl)))

break

}

else

{

rlen[j]=100000

}

}

}

rlt[,b]= rlen

arl[b] = mean( rlen)

sdt[b]=sd( rlen)

mdn[b]=median( rlen)

perc25[b]=quantile( rlen,0.25)

perc75[b]=quantile( rlen,0.75)

perc90[b]=quantile( rlen,0.90)
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}

xn=matrix(round(cbind(arl,sdt, mdn,perc25, perc75, perc90),2),length(shift),6)

colnames(xn)=c("ARL", "SDARL", "MDRL", "Per25", "Per75", "Per90")

rownames(xn)=shift

yn= rlt

list(xn,yn)

}

sim1=50000; muy1=0; sigy1=1 ; mux1=0; sigx1=1 ;n1=1

K1=0.125; H1=xcusum.crit(k=K1, L0=500, mu0 = 0, hs = 0, sided = "two", r = 30)

K1_0_125=CUSUM(K=K1,H=H1,sigy=sigy1, muy=muy1, n=n1, sim=sim1)[[1]]

Classical EWMA chart

EWMA=function(muy,sigy ,lmb,L,sim, n){

shift= c(0, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.25, 0.5, 0.75, 1, 1.5, 2)

rlt=matrix(0,sim,length(shift));arl=c();sdt=c() ; mdn=c(); perc25=c(); perc75=c(); perc90=c()

CL = UCL = LCL= double()

mu0=muy; s0 = sqrt((sigy^2/n)) ; t = 1:1e5

LCL[t] = mu0 - L * s0*sqrt(lmb*(1-(1-lmb)^(2*t))/(2-lmb))

UCL[t] = mu0 + L * s0*sqrt(lmb*(1-(1-lmb)^(2*t))/(2-lmb))

for(b in 1:length(shift)) {

mu = muy + shift[b]*(sigy/sqrt(n)) ; rlen = c()

for(i in 1:sim){

wt = ybar_Std = double(); cnt = 0; rl = 1

y = rnorm(n, mu, sigy); ybar_Std[1] = mean(y)
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wt[1] = lmb * ybar_Std[1] + (1-lmb)*mu0

if(wt[1] > UCL[1] | wt[1] < LCL[1]) {cnt = 1}

while(cnt < 1){

rl = rl + 1

y = rnorm(n, mu, sigy); ybar_Std[rl] = mean(y)

wt[rl] = lmb * ybar_Std[rl] + (1-lmb)*wt[rl-1]

if(wt[rl] > UCL[rl] | wt[rl] < LCL[rl]) {cnt = 1}

}

rlen[i] = rl

}

rlt[,b]= rlen

arl[b] = mean( rlen)

sdt[b]=sd( rlen)

mdn[b]=median( rlen)

perc25[b]=quantile( rlen,0.25)

perc75[b]=quantile( rlen,0.75)

perc90[b]=quantile( rlen,0.90)

}

xn=matrix(round(cbind(arl,sdt, mdn,perc25, perc75, perc90),2),length(shift),6)

colnames(xn)=c("ARL", "SDARL", "MDRL", "Per25", "Per75", "Per90")

rownames(xn)=shift

yn= rlt

list(xn,yn)

}
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sim1=50000 ;muy1=0; sigy1=1 ;n1=1 ;lmb1=0.03; L1=2.483

w1_03=EWMA(muy=muy1,sigy=sigy1,lmb=lmb1,L=L1,sim=sim1, n=n1)[[1]]

Classical HWMA chart

HWMA=function(muy,sigy ,lmb,L,sim, n){

shift= c(0, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.25, 0.5, 0.75, 1, 1.5, 2)

rlt=matrix(0,sim,length(shift));arl=c();sdt=c() ; mdn=c(); perc25=c(); perc75=c(); perc90=c()

CL = UCL = LCL= double()

####### Regresion parameters

mu0=muy; s0 = sqrt((sigy^2/n))

LCL[1] = mu0 - L*s0*sqrt(lmb^2);

UCL[1] = mu0 + L*s0*sqrt(lmb^2)

t = 2:1e5

LCL[t] = mu0 - L * s0*sqrt(lmb^2+(1-lmb)^2/((t-1)))

UCL[t] = mu0 + L * s0*sqrt(lmb^2+(1-lmb)^2/((t-1)))

for(b in 1:length(shift)) {

mu = muy + shift[b]*(sigy/sqrt(n))

rlen = c()

for(i in 1:sim){

wt = ybar_Std = double(); cnt = 0; rl = 1

y = rnorm(n, mu, sigy); ybar_Std[1] = mean(y)

wt[1] = lmb * ybar_Std[1] + (1-lmb)*mu0

if(wt[1] > UCL[1] | wt[1] < LCL[1]) {cnt = 1}

while(cnt < 1){
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rl = rl + 1

y = rnorm(n, mu, sigy); ybar_Std[rl] = mean(y)

wt[rl] = lmb * ybar_Std[rl] + (1-lmb)*mean(ybar_Std[-rl])

if(wt[rl] > UCL[rl] | wt[rl] < LCL[rl]) {cnt = 1}

}

rlen[i] = rl

}

rlt[,b]= rlen

arl[b] = mean( rlen)

sdt[b]=sd( rlen)

mdn[b]=median( rlen)

perc25[b]=quantile( rlen,0.25)

perc75[b]=quantile( rlen,0.75)

perc90[b]=quantile( rlen,0.90)

}

xn=matrix(round(cbind(arl,sdt, mdn,perc25, perc75, perc90),2),length(shift),6)

colnames(xn)=c("ARL", "SDARL", "MDRL", "Per25", "Per75", "Per90")

rownames(xn)=shift

yn= rlt

list(xn,yn)

}

sim1=50000 ;muy1=0; sigy1=1 ;n1=1 ;lmb1=0.03; L1=2.272

w1_03=HWMA(muy=muy1,sigy=sigy1,lmb=lmb1,L=L1,sim=sim1, n=n1)[[1]]
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AuxCUSUM2 chart

library(MASS); library(spc)

MxCUSUM=function(K,H,sigy, muy, n, rho,sigx,mux,sim){

shift= c(0, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.25, 0.5, 0.75, 1, 1.5, 2)

ybar= c(); covxy=rho*sigy*sigx; beta=covxy/sigx^2

rlt=matrix(0,sim,length(shift));arl=c();sdt=c() ; mdn=c(); perc25=c(); perc75=c(); perc90=c()

mup=muy; sdp = sqrt((sigy^2/n)*(1-rho^2))

for(b in 1:length(shift)) {

rlen=c()

for(j in 1:sim)

{

m1= muy + shift[b]*(sigy/sqrt(n)) ; c1 = c2 =c()

for(i in 1:100000)

{

z1 = rnorm(n); z2 = rnorm(n)

x = sqrt(1-rho^2)*sigx*z1 + rho*sigx*z2 + mux; y = sigy*z2 + m1

ybar = mean(y)+ beta*(mux-mean(x)) ; ybar= (ybar-mup)/sdp

if(i==1)

{

c1[i] = max(0,(ybar-0) - K + 0)

c2[i] = max(0,-(ybar-0) - K + 0)

}

else

{
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c1[i] = max(0,(ybar-0) - K + c1[i-1])

c2[i] = max(0,-(ybar-0) - K + c2[i-1])

}

if(c1[i] > H || c2[i]>H)

{

rlen[j]=i

#print(cbind(length(rl),rl[j],mean(rl)))

break

}

else

{

rlen[j]=100000

}

}

}

rlt[,b]= rlen

arl[b] = mean( rlen)

sdt[b]=sd( rlen)

mdn[b]=median( rlen)

perc25[b]=quantile( rlen,0.25)

perc75[b]=quantile( rlen,0.75)

perc90[b]=quantile( rlen,0.90)

}

xn=matrix(round(cbind(arl,sdt, mdn,perc25, perc75, perc90),2),length(shift),6)
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colnames(xn)=c("ARL", "SDARL", "MDRL", "Per25", "Per75", "Per90")

rownames(xn)=shift

yn= rlt

list(xn,yn)

}

sim1=50000 ; muy1=0; sigy1=1 ; mux1=0; sigx1=1 ;rho1=0.05 ;n1=10

K1=0.125; H1=xcusum.crit(k=K1, L0=500, mu0 = 0, hs = 0, sided = "two", r = 30)

MXWWMA chart

M$_X$EWMA=function(muy,sigy,mux,sigx, rho, lmb,L,sim, n){

shift= c(0, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.25, 0.5, 0.75, 1, 1.5, 2)

rlt=matrix(0,sim,length(shift));arl=c();sdt=c() ; mdn=c(); perc25=c(); perc75=c(); perc90=c()

CL = UCL = LCL= double() ; mu0=muy; s0 = sqrt((sigy^2/n)*(1-rho^2))

covxy=rho*sigy*sigx; beta=covxy/sigx^2

t = 1:1e5

LCL[t] = mu0 - L * s0*sqrt(lmb*(1-(1-lmb)^(2*t))/(2-lmb))

UCL[t] = mu0 + L * s0*sqrt(lmb*(1-(1-lmb)^(2*t))/(2-lmb))

for(b in 1:length(shift)) {

mu = muy + shift[b]*(sigy/sqrt(n))

rlen = c()

for(i in 1:sim){

wt = ybar_Std = double(); cnt = 0; rl = 1

z1 = rnorm(n); z2 = rnorm(n)

x = sqrt(1-rho^2)*sigx*z1 + rho*sigx*z2 + mux ; y = sigy*z2 + mu
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ybar_Std[1] = mean(y)+ beta*(mux-mean(x)) ## regression equation

wt[1] = lmb * ybar_Std[1] + (1-lmb)*mu0

if(wt[1] > UCL[1] | wt[1] < LCL[1]) {cnt = 1}

while(cnt < 1){

rl = rl + 1

z1 = rnorm(n); z2 = rnorm(n)

x = sqrt(1-rho^2)*sigx*z1 + rho*sigx*z2 + mux ; y = sigy*z2 + mu

ybar_Std[rl] = mean(y)+ beta*(mux-mean(x)) ## regression equation

wt[rl] = lmb * ybar_Std[rl] + (1-lmb)*wt[rl-1]

if(wt[rl] > UCL[rl] | wt[rl] < LCL[rl]) {cnt = 1}

}

rlen[i] = rl

}

rlt[,b]= rlen

arl[b] = mean( rlen)

sdt[b]=sd( rlen)

mdn[b]=median( rlen)

perc25[b]=quantile( rlen,0.25)

perc75[b]=quantile( rlen,0.75)

perc90[b]=quantile( rlen,0.90)

}

xn=matrix(round(cbind(arl,sdt, mdn,perc25, perc75, perc90),2),length(shift),6)

colnames(xn)=c("ARL", "SDARL", "MDRL", "Per25", "Per75", "Per90")

rownames(xn)=shift
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yn= rlt

list(xn,yn)

}

sim1=50000 ;muy1=0; sigy1=1 ; mux1=0; sigx1=1 ;rho1=0.05; n1=10

lmb1=0.03; L1=2.483

w1_03=M$_X$EWMA(muy=muy1,sigy=sigy1,mux=mux1,sigx=sigx1, rho=rho1,lmb=lmb1,L=L1,sim=sim1, n=n1)[[1]]

HWMAY chart

HWMA_Y=function(muy,sigy,mux,sigx, rho, lmb,L,sim, n){

shift= c(0, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.25, 0.5, 0.75, 1, 1.5, 2)

rlt=matrix(0,sim,length(shift));arl=c();sdt=c() ; mdn=c(); perc25=c(); perc75=c(); perc90=c()

CL = UCL = LCL= double()

####### Regresion parameters

mu0=muy; s0 = sqrt((sigy^2/n)*(1-rho^2))

covxy=rho*sigy*sigx; beta=covxy/sigx^2

########## UCLlimit

LCL[1] = mu0 - L*s0*sqrt(lmb^2);

UCL[1] = mu0 + L*s0*sqrt(lmb^2)

t = 2:1e5

LCL[t] = mu0 - L * s0*sqrt(lmb^2+(1-lmb)^2/((t-1)))

UCL[t] = mu0 + L * s0*sqrt(lmb^2+(1-lmb)^2/((t-1)))

for(b in 1:length(shift)) {

mu = muy + shift[b]*(sigy/sqrt(n))

rlen = c()
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for(i in 1:sim){

wt = ybar_Std = double(); cnt = 0; rl = 1

z1 = rnorm(n); z2 = rnorm(n)

x = sqrt(1-rho^2)*sigx*z1 + rho*sigx*z2 + mux ; y = sigy*z2 + mu

ybar_Std[1] = mean(y)+ beta*(mux-mean(x)) ## regression equation

wt[1] = lmb * ybar_Std[1] + (1-lmb)*mu0

if(wt[1] > UCL[1] | wt[1] < LCL[1]) {cnt = 1}

while(cnt < 1){

rl = rl + 1

z1 = rnorm(n); z2 = rnorm(n)

x = sqrt(1-rho^2)*sigx*z1 + rho*sigx*z2 + mux ; y = sigy*z2 + mu

ybar_Std[rl] = mean(y)+ beta*(mux-mean(x)) ## regression equation

wt[rl] = lmb * ybar_Std[rl] + (1-lmb)*mean(ybar_Std[-rl])

if(wt[rl] > UCL[rl] | wt[rl] < LCL[rl]) {cnt = 1}

}

rlen[i] = rl

}

rlt[,b]= rlen

arl[b] = mean( rlen)

sdt[b]=sd( rlen)

mdn[b]=median( rlen)

perc25[b]=quantile( rlen,0.25)

perc75[b]=quantile( rlen,0.75)

perc90[b]=quantile( rlen,0.90)
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}

xn=matrix(round(cbind(arl,sdt, mdn,perc25, perc75, perc90),2),length(shift),6)

colnames(xn)=c("ARL", "SDARL", "MDRL", "Per25", "Per75", "Per90")

rownames(xn)=shift

yn= rlt

list(xn,yn)

}

sim1=50000;muy1=0; sigy1=1 ; mux1=0; sigx1=1 ;rho1=0.05;n1=1

lmb1=0.03; L1=2.272

w1_03=classical_HWMA(muy=muy1,sigy=sigy1,mux=mux1,sigx=sigx1, rho=rho1,

lmb=lmb1,L=L1,sim=sim1, n=n1)[[1]]

Corrected limit of the AHWMA chart

library(spc)

AHWMA=function(muz,sigz,muy,sigy, rho, w,L,sim, n){

shift= c(0)

rlt=matrix(0,sim,length(shift));arl=c();sdt=c() ; mdn=c(); perc25=c(); perc75=c(); perc90=c()

CL = UCL = LCL= double()

####### Regresion parameters

mu0=muz; s0 = sqrt((sigz^2/n)*(1-rho^2))

covxy=rho*sigz*sigy; beta=covxy/sigy^2

##########

LCL[1] = mu0 - L*s0*sqrt(w^2);

UCL[1] = mu0 + L*s0*sqrt(w^2)
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t = 2:1e5

LCL[t] = mu0 - L * s0*sqrt(w^2+(1-w)^2/((t-1)))

UCL[t] = mu0 + L * s0*sqrt(w^2+(1-w)^2/((t-1)))

for(b in 1:length(shift)) {

mu = muz + shift[b]*(sigz/sqrt(n))

rlen = c()

for(i in 1:sim){

wt = ybar_Std = double(); cnt = 0; rl = 1

z1 = rnorm(n); z2 = rnorm(n)

x = sqrt(1-rho^2)*sigy*z1 + rho*sigy*z2 + muy ;

y = sigz*z2 + mu

ybar_Std[1] = mean(y)+ beta*(muy-mean(x)) ## regression equation

wt[1] = w * ybar_Std[1] + (1-w)*mu0

if(wt[1] > UCL[1] | wt[1] < LCL[1]) {cnt = 1}

while(cnt < 1){

rl = rl + 1

z1 = rnorm(n); z2 = rnorm(n)

x = sqrt(1-rho^2)*sigy*z1 + rho*sigy*z2 + muy ; y = sigz*z2 + mu

ybar_Std[rl] = mean(y)+ beta*(muy-mean(x)) ## regression equation

wt[rl] = w * ybar_Std[rl] + (1-w)*mean(ybar_Std[-rl])

if(wt[rl] > UCL[rl] | wt[rl] < LCL[rl]) {cnt = 1}

}

rlen[i] = rl

}
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rlt[,b]= rlen

arl[b] = mean( rlen)

sdt[b]=sd( rlen)

mdn[b]=median( rlen)

perc25[b]=quantile( rlen,0.25)

perc75[b]=quantile( rlen,0.75)

perc90[b]=quantile( rlen,0.90)

}

xn=matrix(round(cbind(arl,sdt, mdn,perc25, perc75, perc90),2),length(shift),6)

colnames(xn)=c("ARL", "SDARL", "MDRL", "Per25", "Per75", "Per90")

rownames(xn)=shift

yn= rlt

list(xn,yn)

}

BiSearch <- function(ARL, muz,sigz,muy,sigy, rho, w, sim, n) {

h2 = sapply(c(ARL), l=w, sided="two",xewma.crit) - 0.5

ARL2 = AHWMA(muz,sigz,muy,sigy, rho, w, h2, sim, n)[[1]][1]

while(ARL2 < ARL){

h1 = h2; ARL1 = ARL2; h2 =h2+ 1.

ARL2 = AHWMA(muz,sigz,muy,sigy, rho, w,h2,sim, n)[[1]][1]

}

h3 = h1 + (ARL-ARL1)/(ARL2-ARL1) * (h2-h1)
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ARL3 = AHWMA(muz,sigz,muy,sigy, rho, w,h3,sim, n)[[1]][1]

dc = h3 - h2;h1 = h2; ARL1 = ARL2; h2 = h3; ARL2 = ARL3;

while((abs(ARL-ARL3)> 0.5)){

h3 = h1 + (ARL-ARL1)/(ARL2-ARL1) * (h2-h1);

ARL3 = AHWMA(muz,sigz,muy,sigy, rho, w,h3,sim, n)[[1]][1];

h1 = h2; ARL1 = ARL2; h2 = h3; ARL2 = ARL3

}

xn=matrix(round(cbind(w, h3, ARL3),4),1,3)

colnames(xn)=c("smoothing parameter", " C", "ARL")

return(xn)

}

ARL=500 ## the in-control Average run length (ARL).

muz=0; sigz=1 # the mean and sigma parameters of the process variable of interest

muy=0; sigy=1 # the mean and sigma parameters of the auxiliary variable

rho=0.05 # the correlation size

w=0.03 # the smoothing parameter-- this need to be changed to the required value

sim=500 #the simulation size use to obtain the value of the ARL.

#We recommend that the "sim" should be large for

#correctness (sim size should not be less than 50,000).

C=BiSearch(ARL, muz,sigz,muy,sigy, rho, w, sim, n=1) # this gives the width of the

#proposed chart when the smoothing parameter is 0.03
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