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Abstract 

This research focused on improving the performance of the Ad-hoc On-demand Distance Vector 

(AODV) routing protocol over multiple hop routes. The two specific areas that this research addressed 

were the dramatic decrease in throughput over multiple hop IEEE 802.·11 wireless routes and the 

problems caused by the use of hello messages by AODV implementations to detect broken routes. To 

help ensure that this research was suitable for real world scenarios, only off-the-shelf software and 

hardware was used for both the implementations and the tests. 

This thesis firstly presents an overview of IEEE 802.11 based wireless networking and the AODV 

protocol , along with wireless networking and networking in general within the Linux operating system. 

The thesis then presents the problems caused by hello messages and shows how the IEEE 802.11 

wireless standard contributes to the dramatic decrease in throughput over multiple hop routes. 

To overcome the hello message problems, an AODV implementation was developed which used 

existing mechanisms on the data link layer, specifically the transmit retry limit, rather then hello 

messages to detect broken links. To address the multiple hop route throughput problem, the use of two 

and four IEEE 802.11 based wireless network interfaces per node were investigated , rather than using 

just a single wireless interface per node. These proposed solutions, and the AODV implementation that 

was developed as part of this research, were then tested in the areas of functionality and throughput 

performance improvements. 

The thesis concludes by presenting the performance improvements resulting from using multiple 

interfaces per node and the non hello message based AODV implementation along with outlining 

possible future research in this area. 
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1 Introduction 

Ad-hoc wireless networking is an exciting technology with huge potential. It allows networks to form 

without the need for any fixed infrastructure already in place, permitting clients to be completely mobile 

while remaining connected , and allowing networks to form in locations and over areas not easily 

possible for wired networks. Previous research by the author [1] looked at the Ad-hoc On-demand 

Distance Vector (AODV) routing protocol , a routing protocol commonly used worldwide to provide 

multiple hop routing capabilities to ad-hoc wireless networks. From this research two areas were 

identified as needing improvement to make AODV a more efficient and effective routing protocol. The 

two problem areas were: 

1. The use of hello messages in AODV implementations resulting in increased network interference, 

decreased throughput and the possible creation of unusable routes 

2. The rapid throughput decrease per hop over multiple hop routes 

The focus of this research was to find solutions to these two problems; specifically to find an alternative 

route error detection technique to hello messages and improve throughput over multiple hop routes. 

The general research structure is shown in Figure 1.1. 

Firstly, this thesis gives a brief introduction on wireless networking with more detail on the AODV 

routing protocol and networking within the Linux kernel. The thesis then focuses on finding an 

alternative to hello messages and the throughput decrease over multiple hop routes, proposing 

solutions to both problems. The solutions were: using the transmit retry limit, a feature of IEEE 802.11 

based wireless networking, instead of hello messages, to detect broken routes and using multiple 

wireless interfaces per node to address the problem of throughput decrease over multiple hop routes. 

The thesis then covers the implementation stage of the research, which involved creating an AODV 
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AODV ROUTING PROTOCOL PROBLEM AREAS 

Hello messages causing increased network 
interference, decreased throughput and 

creating unusable routes 

Research Data Link Layer feedback techniques to 
remove the need for Hello messages 

.. 
Logical Link Control sublayer 

techniques 
Medium Access Control (MAC) 

sublayer techniques 

Beacons MAC Acknowledgments 

""' Implementation 

., 
Testing 

., 
Conclusion 

Figure 1.1 Research structure 

• 

Decreased throughput per hop over 
multiple hop routes 

' 
Research area of multiple wireless interfaces I 

per node to increase throughput 

implementation suitable for testing which uses feedback from the transmit retry limit on the data link 

layer to detect broken routes and is also capable of working with multiple wireless interfaces. Next the 

testing methodology is covered, followed by the results and finally conclusions are drawn. 
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2 Wireless Networking 

Overview 

Wireless networking is about giving devices, such as computers, the ability to communicate with each 

other by using radio frequencies as the communication medium rather then wires. Wireless networking 

has meant devices don't need to be fixed by the networking medium and can now be mobile while still 

remaining part of network. Wireless networks provide a type of network that is less restricted by the 

surrounding terrain, resulting in the ability to form over areas and in locations not readily possible by 

fixed networks. It also provides a network which users can join and leave with ease and can also be 

easily installed and then removed as the networking medium is already present and the networking 

device already connected wherever the user goes. 

Wireless networks also have disadvantages over fixed networks. Wireless networks are affected by 

random radio activity in the surrounding area, which means the behavior of wireless networks is harder 

to predict and model than the behavior of fixed networks. Furthermore, due to the nature of wireless 

networks, and the fact that users can easily connect and leave, wireless networks can be more prone to 

security issues than fixed networks. 

2.1 Wireless Network Types 

The types of wireless networks that currently exist can be grouped by the sr.ale of the network that they 

offer. Large scale wireless networks include satellite and cellular telephone networks and cover global 

sized areas. Wireless Metropolitan Area Networks (WMANs) range from 5 to 90km and are commonly 

used for applications such as cable television . Bluetooth is a common WPAN (Wireless Personal Area 
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Networks) which cover the much smaller area of 1 to 10m. Between the WMAN and WPAN is the 

WLAN or Wireless Local Area Network. WLAN's generally have a maximum range of about 500m but 

this is purely dependent on the wireless networking equipment used. Currently the two major WLAN 

technologies is the High Performance Radio Local Area Network (HIPERLAN) protocol and the IEEE 

802.11 protocol. HIPERLAN is most common WLAN standard in Europe, whereas IEEE 802.11 is used 

globally, making it the most popular wireless networking protocol of the two. 

Two main network configurations exist within an IEEE 802.11 WLAN . Firstly there is the Basic Service 

Set (BSS) configuration , also known as Infrastructure mode. This configuration requires a central 

management node, usually known as the Access Point (AP), which controls communication between all 

the other client nodes in the network. For this to be possible, all wireless traffic from one client node to 

another is routed through the AP. APs can link up with other APs, creating an Extended Basic Service 

Set (EBSS), allowing the client nodes to be able to roam from the supervision of one AP to another, or 

likewise, from one BSS to another BSS. Generally APs are dedicated hardware devices whereas a 

wireless client node would usually be a wireless device installed in a computer. APs are also often 

fixed in place as they can be connected to a wired LAN. Within a BSS or EBSS, the coverage area of 

the wireless network equals the coverage provided by all the APs in the network. 

The second main network configuration within an IEEE 802.11 WLAN is the Independent Basic Service 

Set (IBSS). This configuration doesn't require a central management node, instead, the wireless nodes 

themselves takes turns providing synchronization for the network, and nodes can connect directly to 

each other rather than through a central management node. This type of network configuration is also 

known as Ad-hoc mode, as it is the most common configuration used to form an ad-hoc wireless 

network. Figure 2.1 shows the differences between the IEEE 802.11 network types. 
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The IBSS configuration, or ad-hoc mode, is the type of WLAN that this research focuses on. The Ad­

hoc WLAN has more potential of being able to be a fully mobile network, and therefore; a more flexible 

type of wireless network, as it not restricted by the fixed nature of a central management node, as is the 

case with the Infrastructure mode (BSS) WLAN. If wireless nodes are added some extra routing 

capabilities, especially the ability to form multihop routes to destination nodes by going through 

intermediate nodes, Ad-hoc WLANs have even more potential to be able to cover large areas and have 

more flexibility when finding a route to a destination node in comparison to an Infrastructure mode 

WLAN. Having increased flexibility when finding a route to a destination node means physical 

obstacles that inhibit or block radio signals, can be overcome easily by using a route that goes around 

it. This is shown in Figure 2.2. For the Infrastructure type WLAN, the area of the network relates to the 

number of APs in the network, but for an Ad-hoc type WLAN, with multihop routing capabilities, the 

potential area covered by the network grows as more nodes join the network. 
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Network before node 
movement 

Key: ..A.. -Access e -Wireless 
Point Node 

1 - Obstacle 

Network after node 
movement 

- Network 
Coverage 
Area 

• 
• 

..,,, - Data Flow 

Figure 2.2 An infrastructure, standard ad-hoc and ad-hoc with routing capable nodes type wireless 

networks before and after node movement around an obstacle 

2.2 Wireless Networking in the Linux 2.4 Kernel 

Due to its open source nature, the Linux operating system with the kernel version 2.4 was chosen as 

the operating system for all testing and software implementations that were made as result of this 

research. The Linux 2.4 kernel was researched to see how it handled wireless networking and 

networking in general. The reason for choosing Linux was due to it's open source nature allowing easy 

modification of the kernel. 

2.2.1 General Network Operation 

The Linux kernel contains a network stack which is a series of stages that the network data passes 
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through as it moves up from the networking device to the software application or vice versa. At each 

stage the network data is processed for a different reason and the outcome determines the next stage 

the network data will move to. In this research, a Linux networking feature called Netfilters, was also 

compiled into the kernel. Netfilters adds several extra stages within the IP Handler section of the 

network stack at specific points, which allows applications outside the kernel to view and control the 

OSI Model Layers 
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Figure 2. 3 Basic Linux Networking Stack for the Kernel Version 2. 4 
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network data as it passes through the network stack. 

Figure 2.3 shows the basic Linux network stack with the data flow going from the networking device to 

the software application. When the network device driver receives a complete network packet from the 

network device, the data is placed in memory along with an associated socket buffer structure (SKB). 

The SKB is a structure which contains pointers to the relevant sections of the network packet in 

memory, such as the MAC, IP, and UDP or TCP headers. Pointers to the SKBs in memory are kept 

within a list and processes within the network stack work through the SKB list, using the pointers within 

the list to access the actual SKBs in memory. This way, only pointers are passed around the network 

stack allowing the actual SKBs and network data to stay in the same location in memory throughout the 

whole process, improving memory efficiency and usage. Figure 2.4 shows in more details the 

functions within the IP Handler section of the network stack, including the Netfilter hook functions. 

When a SKB reaches a Netfilter hook, it is passed to any programs registered with the hook. The 

program that the SKB is passed to can then decided to either keep the SKB, process the SKB and then 

pass it back to the hook so that is can continue through the network stack, or else simply pass the SKB 

straight back to the hook without processing it at all. 

2.2.2 Wireless Network Operation 

While the SKB structure supports IP headers, TCP headers and UDP headers, the only MAC header 

currently supported (as of the Linux kernel version 2.4) is the DIX (Digital, Intel and Xerox) Ethernet 

type MAC header which is also known as Ethernet II. IEEE 802.11 wireless network data uses an IEEE 

802.11 MAC header which is significantly different to the DIX Ethernet header. Figure 2.5 shows the 

difference between the IEEE 802.11 , IEEE 802.3 Ethernet and DIX Ethernet headers. Both the IEEE 

802.11 and IEEE 802.3 MAC headers require the IEEE 802.2 LLC header to operate, while the DIX 

Ethernet header does not. To make wireless networking in Linux possible, the IEEE 802.11 wireless 

network device driver converts the IEEE 802.11 packets received from the wireless device to a DIX 

Ethernet packet before encapsulating them within SKB structures. To do this conversion, the driver 

simply removes the IEEE 802.11 MAC header and replaces it with a DIX Ethernet header where all the 

relevant sections in the DIX Ethernet header are filled in by using information from the IEEE 802.11 

MAC header. Because of this, the Linux network stack sees and treats a wireless network as an 

Ethernet network. The wireless device driver is responsible for converting the DIX Ethernet network 

packets sent to it by the network stack, to IEEE 802.11 packets, before sending them to the wireless 

- 9 - Massey University 



Performance Improvements to the AODV Routing Protocol and Multiple Hop Wireless Routes 
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Ethernet II / DIX Header (no LLC Header required) 

Figure 2.5 Difference between the IEEE 802.11, IEEE 802.3 and Ethernet II Frame Headers 

device to be transmitted and vice versa for packets being received. This process works well for basic 

wireless networking needs, but as explained later, it creates some limitations for more advanced 

wireless networking needs such as those encountered in this research. 

2.3 The Ad-Hoc On-demand Distance Vector (AODV) Routing Protocol 

AODV is an ad-hoc, routing protocol capable of forming multiple hop routes. A route is a pathway from 

a start to a destination, while a routing protocol is a standard that defines how the correct pathway is 

found and maintained. Within a WLAN, the process of routing involves addressing the network data 

with an address obtained by the routing protocol so that the network data travels by the correct path 

from one wireless device to another until it reaches the destination. 

Before wireless networks, the majority of routing protocols for LANs were designed for wired networks 

with fixed clients. With wired networks, such as Ethernet, dedicated hardware such as Ethernet 

routers, control all routing between the network clients. For these types of networks, the behavior of 

the networking medium - the wire cables - is generally reliable, easy to predict and constant. The 

overall network topology in an Ethernet network is also usually constant. The routing protocols 

designed for these types of networks reflected these features - they were designed to be operated by 

dedicate~ hardware in a network where the topology stayed relatively constant and the networking 

medium was relatively error free. These areas are quite different when applied to an ad-hoc WLAN. 

The topology of an ad-hoc WLAN can be changing constantly as nodes join and leave the network. 
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Radio signals, the networking medium used by WLANs, can be affected by the surrounding atmosphere 

and physical objects, creating a more error prone and unreliable medium than wire networking cables. 

To complicate matters more, if an ad-hoc WLAN is made up of nodes capable of forming multihop 

routes, every node is then acting as a router but is usually far from being dedicated hardware as 

apposed to routers in a wired network. Because of these reasons, routing protocols designed for wired 

networks are not as suitable for a multihop capable ad-hoc WLANs, and this has lead to the design of 

routing protocols such as the Ad-hoc On-demand Distance Vector (AODV) routing protocol. 

AODV is one of a number of IP level ad-hoc routing standards being standardized by the Internet 

Engineering Task Force (IETF) Mobile Ad-hoc Networks (MANET) working group. AODV currently has 

RFC status [2] along with the DSR (Dynamic Source Routing), OLSR (Optimized Link State Routing) 

and TBRPF (Topology Broadcast Based on Reverse-Path Forwarding) ad-hoc routing protocols, all 

being worked on by the MANET group. There are also a number of other proposed ad-hoc routing 

protocols, although AODV has seen the most maturity due to some of the other proposed protocols 

having patent protection or no implementations which can be used for testing [3] . There are a number 

of AODV implementations with some currently being used by major wireless ad-hoc routing projects 

such as Locust World [4] . It was due to its popularity, maturity and rendily available open source 

implementations that AODV was chosen as the routing protocol to focus on in this research . 

AODV is classed as an on-demand routing protocol as opposed to a table based protocol. Table 2. 1 

describes the function and the advantages and disadvantages of both on-demand and table based 

routing protocols. AODV is a distance vector type routing protocol , which means the protocol sees the 

shortest (or fastest) route as the best route to use. Because of th is, AODV could potentially encounter 

problems like the "counting to infinity" problem where endless loops arise after a route is broken and 

nodes in the network receive out-of-date routing information from each other resulting in them seeing 

each other being an alternative route to the destination, but in reality there being no alternative route at 

all. To overcome this , AODV has incorporated the use of sequence numbers. Each AODV node has a 

sequence number that starts at zero and is incremented whenever routing information is sent to other 

nodes. The sequence number is added to the routing information that is sent, so that a receiving node 

can compare the sequence number that is included in the routing information, with the sequence 

number that it already has for the node in it's own route table, and so determining if the routing 

information is new information or not. 
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Type 

Description 

Advantages 

Disadvantages 

Table 2. 1 Differences Between On-Demand and Table Based Routing Protocols 

On-Demand Table based 
Obtains routing information only on-demand, Stores and maintains all routing information. 
and discards the information once it is no 
longer needed. 

Routing tables are smaller and easier to Once in the table, routes are quick to find. 
manage, requiring less memory. Fresh 
routes are always used. , 

New routes can take longer to find than table Routing tables are larger and more complex to 
based protocols maintain. Sometimes a route may be used from 

the table but instead there is a newer and better 
route available. 

The AODV routing protocol is self starting, requiring no initial setup to fit in with an existing AODV 

network. AODV has low processing power requirements, has low memory overhead and also 

according to the AODV RFC, is quick to adapt to dynamic network conditions and has low network 

utilization, although these last two features depend a lot on the overall network conditions. 

The basic operation of the AODV routing protocol is based around three routing message types that are 

used to find, create and maintain routes. The operation of the first message, the Route Request 

(RREQ) is shown in Figure 2. 6. In order to find a route to a destination node, the source node will 

broadcast a RREQ, which is forwarded on any intermediate nodes, until it reaches the destination 

node. Each intermediate node saves a reverse route back to the source node as it forwards on the 

RREQ. This reverse route is created by setting the IP address of the node that the RREQ was received 

from as the gateway back to the source node specified in the RREQ. Each RREQ received by a node 

can be uniquely identified by the combination of an identification number that is included in the RREQ 

message and the IP address of the the source node that the RREQ originally came from. Being able to 

uniquely identify each RREQ controls the broadcast of the message across the network, as each node 

will know if the RREQ is new, or one that it has already forwarded on. If the RREQ is identified as 

being old information, then it will be discarded. 
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Figure 2. 6 The route request process 
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When the first RREQ reaches the destination node, the destination node firstly creates a route back to 

the source node by setting the node that the RREQ was received from as the gateway back to the 

source node. As each RREQ can be uniquely identified, after receiving the first RREQ from the source 

node, the destination node discards any duplicate RREQs that have taken a longer path and are 

received at a later point. By responding to the first RREQ received shows the distance vector nature of 

AODV as it uses the shortest or fastest route as the preferred route. 

The destination node then generates the second major AODV message, the Route Reply (RREP). See 

Figure 2. 7. The destination node sends the RREP to the next hop node in the route back to the source 

node. The RREP then travels back along the reverse route to the source node, with all the 

intermediate nodes using the RREP to create a route back to the destination node, in the same way as 

the RREQ was used to create a route to the source node. When the RREP reaches the source node, 

the source node creates a route back to the destination node and the route formation is complete. 

Source. 
Node • 

RREP 

Intermediate Nodes 

RREP 

Figure 2. 7 The route reply process 
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Source A 
NodeW'f 

RERR 

Intermediate Nodes 
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Figure 2. 8 The route reply process 

The third type of AODV routing message is the Route Error (RERR). As shown in Figure 2.8, when a 

link to another node is detected by a node as being broken, the node will firstly remove all routes that 

use the broken link, generate a RERR, and then broadcast it to all neighboring nodes so that they also 

can remove any affected routes. Only the nodes that receive the RERR, and are part of a route that 

includes the broken link, will rebroadcast the RERR. This way the RERR eventually makes it back to 

the sources of any routes that include the broken link, without flooding the network by simply sending it 

to every node. After receiving the RERR message identifying the broken route, the source node will 

start the route request process again to find an alternative route to the destination node. This is shown 

in Figure 2.9. 

RREQ 

Source·• 
Node 

RREP 

RREQ 

Intermediate Nodes 

RREQ 

RREP RREQ 

RREP 

Figure 2. 9 Finding an alternate route after receiving a RERR 
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3 The Hello Message 

Problem 

The AODV routing protocol has been designed to be able to adapt quickly to dynamic link conditions . If 

a node detects that the link to another node is broken, AODV responds by: deleting routes in the node's 

route table that use the broken link; notifying affected nodes about the route changes; and then finding 

an alternate route to the destination node. A node that can detect broken links, does so by monitoring 

connectivity to any surrounding nodes that are part of active routes and are a single hop away. The 

AODV protocol doesn't define a single mechanism to monitor connectivity, but instead suggests using 

any of the following : 

• Hello messages. Every node in the network periodically broadcasts a hello message. Nodes can 

then determine connectivity by listening for hello messages from neighboring nodes. When a node 

first receives a hello message from a neighboring node, the neighboring node is added to a list and 

from there forth , the connectivity to the neighboring node is monitored . If no hello messages are 

received from the neighboring node within a timeout period, then the link to the neighboring node is 

considered broken. 

• Data link layer notifications. These are mechanisms provided by the IEEE 802.11 standard. 

Notifications available on the data link layer include the data link layer acknowledgment (ACK) 

packet sent from the receiving node after every data packet received from the transmitting node, or 

the clear-to-send (CTS) packet from the receiving node after the transmitting node has sent a 

request-to-send (RTS) packet. By listening for either the data link layer ACK or the CTS, 

connectivity to the node can be monitored. 

• Passive acknowledgments when the next hop is expected to forward a packet. After a node 

forwards a packet to the next hop in a route, it can then listen for any transmission attempts by this 
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next hop node to determine if the link is still usable. If no transmission attempts are made within a 

timeout, or the next hop is the destination node (and therefore the packet is never supposed to be 

forwarded), then the following methods can be used to determine connectivity: 

• receiving any packet (including a hello message) from the next hop 

• detecting a RREQ being broadcast by the next hop 

• sending an ICMP echo request to the next hop 

All the popular implementations of the AODV routing protocol [5,6,7,8] that were investigated for this 

research currently used hello messages to monitor connectivity. Hello messages is currently the only 

method used in AODV implementations to monitor connectivity according to Chakeres and Belding­

Royer [9]. Many other ad-hoc routing protocols also use techniques similar to hello messages to 

monitor connectivity. As described next, past research has shown that the use of hello messages is not 

an ideal mechanism to monitor connectivity. 

3.1 Gray Zone Problems 

Lundgren, Nordstrom, and Tshudin [10] showed that using hello messages with the AODV routing 

protocol can lead to the formation of unusable routes due to what is known as gray zone problems. 

They identified four factors involving hello messages that can create gray zones and result in unusable 

routes. 

• Different transmission rate. When AODV is used with IEEE 802.11 wireless devices, 

broadcast packets such as hello messages are transmitted at the slower rate of 1 Mbps as 

compared to data packets, which are usually transmitted at a faster rate, such as 11 Mbps 

for IEEE 802.11 b devices. This results in hello messages being able to travel further than 

data packets, which means a node may think a link is usable, since hello messages are 

being received on it, but in reality the link is too long for data packets being transmitted at 

the higher rates. 

• No acknowledgments. With the IEEE 802.11 standard, broadcast packets such as hello 

messages require no data link layer ACK to be transmitted back by the receiving device. 

This means hello messages could potentially be sent over a unidirectional link, meaning a 

node that receives hello messages, may not be able to send data back across the same 

link. 
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• Small packet size. The AODV hello message is small in comparison to an average data 

packet. This has the same effect as the different transmission rate factor, where the small 

hello message will be more likely to travel further than the larger data packets. This in turn 

will result in a link that appears usable but is actually too long for large data packets. 

• Fluctuating links. The range for which a device can transmit fluctuates and is not constant. 

At the transmission borderline of a device, communication is not reliable. A device 

operating on the transmission borderline of another may receive a hello message from this 

device, but the received hello message doesn't properly represent the quality of the link. 

As a result long reliable links may be replaced by shorter unreliable links. 

Lundgren, Nordstrom, and Tshudin's research proposed three solutions to help overcome the above 

problems: 

• Exchanging neighbor sets. This addresses the unidirectional link related problems. By 

adding an extension to the hello message, nodes could include in it their current set of 

neighbors (other nodes they had received hello messages from) . Nodes could then 

compare neighbor sets when a hello message is received , so as to determine if the link is 

bidirectional. 

• SNR Threshold. Signal-to-noise ratio (SNR) information from the IEEE 802.11 driver could 

be used to filter out weak links. By only processing hello messages that are received with 

a signal quality above a threshold, AODV will be forced to use routes with stronger signals, 

reducing the chances of a link where hello messages can get through but not data 

packets. 

• N-Consecutive hello messages. This will help address the fluctuating link problem. If at 

least two or three hello messages have to be received from a source before being 

accepted, it will help remove the problem of routes being set up across unreliable links 

such as on transmission borderlines. 

In the experiments where these solutions were implemented, it was found all reduced packet loss, with 

the SNR threshold solution being the most promising. 
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3.2 Transmission Rate and Packet Size Problems 

Chakeres and Belding-Royer [11] also found that because the packet size of a hello message is small 

in comparison to an average data packet, along with the slower transmission rate that hello messages 

are transmitted at, unreliable routes can form, resulting in large packet losses. Their solution was to 

have the same transmission rates for both broadcast and data packets, as well as increasing the 

packet size of the hello message from 20 bytes to 512 bytes. Experiments where they varied the data 

transmission rate from 11 Mbps to 1 Mbps (the same as hello messages), increased the packet delivery 

rate from 60.7% to 84.5% and when the hello message packet size was varied from 20 bytes to 512 

bytes, the delivery rate increased from 60.7% to 80.8%. 

3.3 Overhead and Power Related Problems 

A more obvious downside of hello messages, is the fact they increase the overhead of the network due 

to every node having to broadcast a hello message periodically. The periodic transmission rate by 

default for most AODV implementations is once every second. Network routing protocols are designed 

to keep overhead to a minimum in order to increase the maximum data throughput possible. The 

increased overhead from the hello messages may not be noticeable for a smaller network, but the 

impact could much larger for a large network. Past research [3] as stated that the ideal scenario where 

a hundred nodes can communicate with each other in a conference room using AODV routing, is in 

reality not possible as the hello messages from all the nodes would kill AODV along with all other 

AODV based communication . There is also the increased power usage resulting from hello messages. 

Although power usage is generally not an issue for fixed computers or most modern mobile laptops, it 

could be an issue if the AODV protocol was ever used in tiny networking devices that operated on small 

amounts of power. As well as each hello message requiring power to transmit, every hello message 

received needs to be processed which in turn requires power. In a large network, the number of hello 

messages having to process every second could be large. 

3.4 Past Research about Data Link Layer Notifications and AODV 

The other method to monitor connectivity which AODV supports is through data link layer detection. 
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This is where IEEE 802.11 mechanisms are used to notify AODV of broken links. Past research [12, 

13, 14, 15] that has simulated AODV using link layer feedback to detect broken links, has shown that in 

the simulations, the AODV-LL (the AODV implementation using link layer feedback) performed better 

than the AODV-HM (the AODV implementation using hello messages). As well as performing better, 

the AODV-LL wasn't subject to the gray zone problems described earlier, which were a result of using 

hello messages. Despite the apparent benefits of AODV-LL over AODV with hello messages, there are 

currently no implementations of AODV that make use of data link layer feedback to detect broken links. 

The reason for the lack of AODV-LL implementations, is that it is believed it is currently not possible for 

the upper network layers which AODV operates on , to be able to access the link layer information that 

would enable the detection of broken links [9, 16, 3] . Research by Lundgren, Nordstrom, and Tshudin 

[3] which looked at implementing ad-hoc routing protocols in real scenarios, commented that the ease 

of being able to simulate AODV-LL, along with the better performance that it delivers, has meant there 

have been a number of research experiments which have compared AODV-LL (rather than AODV-HM) 

to other ad-hoc routing protocols, even through currently AODV-LL hasn't been able to be implemented. 

Based on experience with testing with real world implementations of AODV, along with carrying out 

AODV simulations, their research also stated that simulations using AODV were often significantly 

different to how AODV behaved in a real scenario. For example, the gray zone problems described 

earlier were found as a result of real world testing rather than through simulations. One reason for this, 

was because the popular simulation models being used simulated all packets being sent at the slower 

transmission rate of 2Mbps, regardless of whether it was a control or data packet. This meant the 

problem of the hello messages traveling further than the data packets never existed. 

Hello messages is currently the only technique used by AODV implementations to monitor connectivity 

with surrounding nodes. Hello messages have been found to cause problems in many common 

scenarios, whereas in simulations, AODV implementations using link layer feedback have performed 

better and have not had the same problems as hello messages. A goal of this research was that using 

off-the-shelf IEEE 802.11 b devices, a real (non-simulated) and usable AODV implementation that uses 

link layer feedback to detect broken routes could be created. 
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4 Data Link Layer Feedback 

The Open Systems Interconnection (OSI) networking model shows the data link layer being located 

between the physical and network layers. The data link layer is then divided into two sublayers when 

defining LAN and MAN networking protocols. On the bottom half is the medium access control (MAC) 

sublayer and on the top half is the logical link control (LLC) sublayer. The MAC sublayer controls how 

the physical networking device accesses the network medium in an organized way so that all the 

physical network devices that are part of the network can cooperate with each other so that the network 

is usable and not a random mess. The LLC sublayer is responsible for providing services that allow 

upper layers, specifically the network layer, to communicate with the MAC sublayer and vice versa. As 

shown in Figure 4.1, for every LAN/MAN physical network device supported by the IEEE committee, 

there is a different IEEE MAC sublayer standard. This is because each physical networking device 

either uses a different network medium which has to be accessed in a different manner, or the same 
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Figure 4. 1 IEEE LAN/MAN Standards within the Physical and Data Link layers - numbers are the IEEE standard 

number. 
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network medium is used but requires a different way of accessing it. Each MAC definition provides 

common services to the LLC sublayer which allows for a common LLC sublayer standard to act as an 

interface between the network layer and MAC sublayers. Since part of this research focused on data 

link layer feedback for AODV, the IEEE 802.11 MAC wireless LAN standard and the IEEE 802.2 LLC 

standard were investigated for ways by which feedback about link status could be obtained. 

4.1 Logical Link Control Sublayer 

The IEEE 802.2 LLC (logical link control) sublayer provides an interface for the network layer to access 

the MAC (medium access control) sublayer. This research was based around the IEEE 802.11 

wireless standard which operates on the MAC sublayer, and therefore; the IEEE 802.2 LLC sublayer 

standard was researched to identify any possible ways by which the network layer could access 

feedback from the IEEE 802.11 MAC sublayer about the status of transmitted packets. By achieving 

this, network layer protocols such as AODV, could monitor the connectivity status of links without the 

need for hello messages. 

The IEEE 802.2 LLC sublayer acts as an interface by providing services to the network layer that can 

be used to access the MAC sublayer. It provides three forms of services to the network layer: 

1. Unacknowledged connectionless-mode services 

2. Connection-mode services 

3. Acknowledged connectionless-mode services 

The unacknowledged connectionless-mode services are fairly limited and provide no means of 

obtaining transmission status feedback from the MAC layer. Within the connection-mode services, the 

LLC sublayer establishes a data connection with the destination LLC and manages the connection itself 

in terms of error recovery and flow control. For this type of service, the LLC provides no information to 

the network layer about individually transmitted packets or though it does notify the network layer if the 

connection has been terminated using the DL-DISCONNECT indication service. The form of service 

that would provide the most information concerning link connectivity status, is the acknowledged 

connectionless-mode services. For this type of service , the LLC sublayer provides a primitive known 

as DL-DATA-ACK-STATUS indication. This primitive is passed from the LLC sublayer to the network 

layer after the network layer has sent data to the LLC sublayer to be transmitted. As it includes the 
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result of the data transmission - whether it was successful or not - the DL-DATA-ACK-STATUS 

indication primitive could be used by the routing protocol on the network layer to identify whether a link 

is still operational or whether it is broken. Unfortunately, as explained earlier, all wireless packets within 

the Linux 2.4 kernel are converted to DIX Ethernet packets, which unlike the IEEE 802.3 Ethernet 

packet, do not make use of the IEEE 802.2 LLC header, or any of the IEEE 802.2 LLC sublayer 

services. Therefore, since the Linux operating system was needed to be used for any implementations 

and rewriting the Linux kernel so that it included a LLC sublayer and handled wireless packets correctly 

was far beyond the goal of this research, the IEEE 802.2 LLC sublayer services were researched no 

further. Instead the IEEE 802.11 MAC sublayer was researched for ways by which it could provide 

feedback directly to the network layer. 

4.2 Medium Access Control Sublayer 

The IEEE 802.11 MAC standard controls how the physical wireless device accesses the wireless 

medium. The standard was researched for possible functions that could be used to provide feedback 

to the network layer about the status of a link. Any possible functions were then investigated in order to 

identify if it would be possible to use them in a real implementation with the wireless hardware used in 

this research. Since this research focuses on ad-hoc wireless networks, only the functions for the IBSS 

type (ad-hoc) IEEE 802.11 networks were researched . Two functions within the IEEE 802.11 standard 

were identified as being possible means of providing feedback to the network layer about the status of 

a link. They were the MAC sublayer acknowledgments (ACKs) and the MAC sublayer beacons. 

Beacons are used to maintain synchronization over the whole IBSS wireless network. The beacon 

generation is distributed, which means every node in the network participates in beacon generation, 

rather than just a single node. The node which starts the network, starts sending beacons and sets the 

beacon interval. After every beacon interval, each node in the network will wait until the medium is free 

(no other transmissions taking place) then wait a random amount of time (the backoff period) where the 

node listens to the medium for any activity. If there is no activity after the end of the backoff period, the 

node transmits a beacon, but if during the backoff period a beacon is received from another node 

(which happened to have a shorter backoff period) then the node aborts transmitting a beacon until the 

next beacon interval. If during the backoff period, other activity is heard, the node waits until the 

medium is free and then waits another backoff period before attempting to send a beacon. This 
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distributed approach to beacon generation results in every node in the network having a chance at 

sending a beacon every beacon interval. But since a random length backoff is involved, only one node 

each beacon interval actually results in sending a beacon. The beacon frame contains information 

which allows the receiving node to synchronize to the other nodes in the network. Since the beacon 

frame also contains the address of the node that transmitted it, beacons could be used in a similar way 

to hello messages, where by listening for beacons from a particular node could determine whether a 

link to that node is usable or not. For the hardware used in this research, the beacon interval was 0.1 

seconds. 

The operation of MAC sublayer ACKs is less complicated then the beacon operation. The IEEE 802.11 

standard defines that for every frame transmitted, the receiving node must transmit back a MAC 

sublayer ACK. Unlike the beacon frame format, ACK frames only contain the address of the sender 

node that initially transmitted the frame. When the MAC transmits a frame, it waits till the ACK for the 

frame is received. When it receives an ACK addressed to itself, the MAC then knows it is the ACK it 

has been waiting for. A node could listen for an expected ACK after transmitting a frame to determine if 

the link is usable or not, therefore using the ACKs as a feedback technique concerning the status of a 

link. Table 4.1 shows the advantages and disadvantages of both the beacon technique and the MAC 

sublayer ACK technique. 

Table 4.1 Advantages and Disadvantages of Beacons and MAC Acknowledgments 

Link Notification 
Technique 

Beacons 

Advantages - Happening all the time 
- Frame contains more information the the MAC ACK. 

Disadvantages - Beacons are normally only processed by the MAC 
chipset on the wireless network device. If the Network 
protocol started processing every beacon this would 
mean more extra work than processing hello messages 
(Hello messages normally sent every second, beacons 
every 0.1 seconds). 

- Due to the random backoff, for small networks , the time 
between each node having a turn to transmit a beacon 
will be quite small. For larger networks, the time 
between each node having a turn to transmit a beacon 
could be larger, resulting in the misinterpretation of 
broken links to certain nodes, due to the absence of 
beacons from them. 
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- Only used when a packet is 
transmitted making them more suited 
to on-demand type protocols 

- ACK frames only contain the original 
frame sender address. This means 
the Network protocol would need to do 
some extra work to determine which 
node the ACK came from to determine 
which link or route information to 
update. 
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Based on the advantages and disadvantages of both link notification techniques, it was decided that 

MAC sublayer Acknowledgments would be the technique used to monitor the status of links. 

4.3 Using the Transmit Retry Limit 

Past research [16] has stated that for current IEEE 802.11 hardware, the MAC sublayer ACKs are not 

accessible by the upper network layers, making it impossible to use them for link notification purposes. 

For the IEEE 802.11 hardware used in this research, it was found in the implementation stage that the 

IEEE 802.11 device driver, which provided the interface between the network layer and the physical 

device, had no way of directly accessing the MAC sublayer ACKs. A method was found though that 

could be used to indirectly access the MAC sublayer ACKs and provided more useful information then 

using the ACKs themselves. This method was to monitor the transmit retry limit (TRL) . 

The IEEE 802.11 standard states that within an IBSS wireless network, for every data frame 

transmitted, the receiving node must acknowledge the reception of the data frame by transmitting back 

a MAC sublayer acknowledgment (ACK) control frame. If the original transmitting node does not 

receive back an ACK after a set period of time, then it will retry transmitting the data frame. There are 

limits though to how many times a node can retry transmitting a data frame, else a node might continue 

to retry forever, which could happen if a node receiving the data left the wireless network. The IEEE 

802.11 standard specifies two retry limits along with two corresponding retry limit counters: the short 

retry limit (SRL) and the short retry count (SRC) as well as the long retry limit (LRL) and the long retry 

count (LRC) . Whenever an ACK isn't received after a data frame transmission, then one of the 

counters is incremented. Which counter is incremented is determined by whether the size of the data 

frame in the failed transmission is larger or smaller than a preset threshold . If the data frame size is 

smaller, then the SRC is incremented, otherwise the LRC is incremented. If either counter reach their 

corresponding limit, then the retry attempts are ceased and the data frame is discarded . If a MAC 

sublayer ACK is received after transmitting a data frame, then the corresponding counter is reset based 

on the data frame size. Both retry limits are configurable parameters and having two limits with the 

threshold based on the data frame size can help improve reliability. For example the LRL may be set 

higher than the SRL since larger packets are more prone to transmission failure than smaller packets. 

If configured correctly, the short and long TRLs provide notification of a broken link whereas failing to 
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receive a MAC sublayer ACK only provides notification of a failed transmission. After failing to receive 

an ACK, the ACKs still need to be monitored, since it is only after several failed transmissions that it 

can be assumed that the link is broken. Monitoring the result of several transmission attempts is what 

the TRL process already does, making it more useful feedback than straight ACKs (see Figure 4.2). 

r Failed l 
)rra~s~~ssio_~. ~ 

NoACK7 
Receive~J 

No ACK I 
Received 

-,n~, ,,. 

-- Broken 
Link 

Transmit 
¢ Retry Limit 

Exceeded 

Figure 4.2 Difference between the information implied by not receiving a MAC sublayer ACK and the transmit 

retry limit being exceeded. 

4.4 Comparing Hello Messages and Data Link Layer Feedback as Error 

Detection Techniques 

Using hello messages or data link layer feedback represents two significantly different styles of 

detecting broken links. Firstly it is important to note that within this research, the term "detecting a 

broken link" is simply the process of determining that the actual connection to a neighboring node one 

hop away no longer exists. This is different to receiving an AODV route error (RERR) message which 

informs the node that the route to a destination node is broken. A whole route is broken due to a single 

link being broken, and it is the broken link that a node must be able to detect to inform other nodes with 

a RERR that the route is broken. Hello messages represent a constant polling style of detecting broken 

links, whereas using data link layer feedback with the transmit retry limit technique as proposed in this 

research, represents a more variable method but with a much more "on-demand" characteristic that 
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suits the AODV protocol. 

The default settings, set by the AODV protocol, specify that hello messages are transmitted once every 

second, and once two hello messages are not received from a neighboring node, then the link to that 

node is considered broken. With data link layer feedback, and the transmit retry limit, if the MAC layer 

on the wireless interface within a set timeout period fails to receive a MAC layer acknowledgment after 

transmitting a data packet, then the wireless interface will retry transmitting the packet. If still no 

acknowledgments are received and the number of retry attempts exceed the transmit retry limit, then 

the link is considered broken . The time a wireless interface waits for an acknowledgment to arrive back 

after transmitting a data packet is not specified by the IEEE 802.11 protocol, instead it is set by the 

wireless interface vendors. Results of tests done as part of this research though showed that the time 

between attempting to transmit a data packet, detecting the link is broken and then the data link layer 

generating feedback as a result to inform AODV, was around 0.13 seconds. 

Data link layer feedback, using the transmit retry limit, results in fast detections of broken links, but it is 

only through an attempt to send data across the broken link that the broken link can be detected, giving 

the transmit retry limit technique a variable and on-demand style. In comparison, hello messages, 

result in longer times to detect broken links, but since they are always being transmitted, hello 

messages are capable of detecting broken links despite whether data is being transmitted over the link 

or not, resulting in them being a more constant error detection technique. These characteristics could 

result in the following scenarios occurring: 

1. A link is broken while data is being transferred across it. The data link layer feedback based 

AODV implementation (AODV-LL) would quickly detect the broken link and respond by finding 

an alternative route around it. The hello message based AODV implementation (AODV-HM) 

using default settings would take at least two seconds to detect the broken link and respond 

by finding the same alternative route as the AODV-LL implementation. Assuming the process 

of finding the new route takes the same for both AODV types, then overall the AODV-LL 

implementation would detect and repair the broken link and have the data transaction up and 

running again the fastest. 

2. A link is broken while no data is being transferred across it but ten seconds later the link is 

needed again to transfer data. The AODV-LL implementation doesn't detect the broken link 
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until ten seconds after it is broken when it attempts to send data across it. The AODV-LL 

implementation now has to halt the data transfer until it finds an alternative route around the 

broken link. The AODV-HM implementation detects the broken link two seconds after it is 

broken as in the first scenario. An alternative route is then found before the link is needed, 

causing no disruptions to the data transfer. Overall the AODV-HM implementation would be 

the fastest to detect, repair and start the data transaction . 

These two scenarios show more clearly the constant nature of hello messages compared to the more 

variable and on-demand nature of data link layer feedback. From the second scenario, it appears that 

the AODV-LL is at a disadvantage by detecting the broken link only when it is needed . Using default 

AODV values through, the result of the second scenario would actually be different Part of the AODV 

protocol is an active route timeout to keep routing tables current and up-to-date. If no data is received 

or transmitted across a route within the timeout period, then the route expires and is later deleted. If 

the node tries to then connect to any nodes that are part of the expired route, the normal route finding 

process is required to set up a new route. The default active route timeout is two seconds. This means 

that in the case of scenario two, since the route is not used for more then ten seconds, then it would be 

deleted anyway, which would result in the AODV-HM implementation having to go through the same 

route finding process as the AODV-LL implementation . The only time then the AODV-HM 

implementation would save, is that it would already know the link is broken and so immediately go 

about the route finding process, whereas the AODV-LL implementation would first have to detect the 

route is broken. If an active route time less then ten seconds was being used by the AODV-LL 

implementation as well then it would also immediately go about finding a new route and the AODV-HM 

implementation would be no faster. 

Theoretically therefore; an AODV implementation using data link layer feedback and the transmit retry 

limit to detect broken routes should be able to detect and respond to a broken route faster or just as 

fast as a hello message based AODV implementation. Evidence of this is shown later in the research 

results. 
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5 The Multiple Hop Route 

Throughput Problem 

Within an ad-hoc IEEE 802.11 wireless network, the throughput over multiple hop routes decreases 

rapidly as the number of hops in the route increase. This decrease in the throughput is mostly caused 

by the IEEE 802.11 overhead operations that take place at each hop. As the number of hops in a route 

increases, the overhead for the data being transmitted across the route increases and the overall 

throughput decreases. This problem severely affects the number of hops in a route possible before the 

route becomes usable due to the throughput being so low. It was recognized that this was a problem 

that needed to be addressed for a multiple hop routing protocol such as the AODV routing protocol to 

be feasible in a real world, wireless, ad-hoc network. To understand the cause of the rapid throughput 

decrease, the IEEE 802.11 MAC sublayer ad-hoc wireless network access method was researched. 

5.1 The Access Method for the IEEE 802.11 IBSS Wireless Network 

The MAC sublayer is responsible for controlling how the the network medium is accessed. For an IEEE 

802.11 IBSS wireless network, the fundamental access method used by the MAC sublayer is a 

distributed coordination function (DCF) known as Carrier Sense Multiple Access with Collision 

Avoidance (CSMA/CA). The CSMA/CA algorithm ensures that nodes in the network can access and 

use the wireless medium in an organized manner. The following describes how the CSMA/CA 

algorithm operates (see also Figure 5.1). 

When a node in the network wants to transmit, it will firstly sense or listen for any activity on the 

medium. If the medium is sensed as being busy, then the node will wait. If no activity is sensed on the 
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medium for a length of time called the DCF lnterframe Space (DIFS), then the node will be able to 

contend for the medium. To contend for the medium the node will wait for a random amount of time 

known as the random backoff period, sensing the medium while it is waiting. The random backoff 

period helps ensure that each node in the network has a fair chance of accessing the network medium 

and decreases the chances of two or more nodes trying to transmit at the same time, resulting in a 

collision. If during the random backoff period, activity on the medium is sensed, then the node will start 

over - waiting until the activity has stopped and the medium is free for a duration equal to a DIFS. If 

during the random backoff period no activity is sensed, then the node will immediately transmit the data 

frame. The node that receives the data frame will wait for a length of time called a Short lnterframe 

Space (SIFS) before sending a acknowledgment (ACK) frame back to the original transmitting node. 

The SIFS is deliberately shorter than the DIFS to help ensure that a node should always be able to 

transmit an ACK without resulting in a collision and the ACK being lost. If the original transmitting node 

doesn't receive an ACK from the receiving node within a set length of time, then it will retry transmitting 

the data frame using the CSMA/CA method. The IEEE 802.11 standard defines a refinement to the 

access method to further help avoid collisions which uses Request To Send (RTS) and Clear To Send 

(CTS) control frames. The RTS and CTS control frames are used by the transmitting and receiving 

nodes to determine if the medium is free and also to help notify surrounding nodes of the data 

Transmitting Node 

DIFS 
• • 

I Busy medium I Random back-off window Data frame 

Defer Access Contention window Transmission 

• •• •• • 

Receiving Node 

SIFS 
• • 

Defer Access Transmission 

• •• • 

Figure 5.1 The basic IEEE 802.11 MAC sublayer CSMA!CA operation 

- 29 - Massey University 



Perfom,ance Improvements to the AODV Routing Protocol and Multiple Hop Wireless Routes 

transmission about to occur. This IEEE 802.11 standard states this is an optional method and was not 

used in this research. 

5.1.1 The CSMA/CA Algorithm over a Multiple Hop Route 

To help understand how the CSMA/CA algorithm affected throughput over a multiple hop route, a 

theoretical scenario involving the transfer of a single TCP data packet over a two hop route was 

researched . The two hop wireless route consisted of a source node; an intermediate node; and the 

destination node. To simplify the scenario, the following assumptions were made: 

- The network is an IEEE 802.11 b IBSS type network 

- Frames are transmitted at 11 Mbps 

- The RTS/CTS collision avoidance method was not used 

- The random backoff period always equaled zero 

- A simple TCP connection model was used where for each TCP data packet transmitted, a 

TCP ACK is transmitted back 

- It took zero time for the node to process all data 

- The IEEE 802.11 b long preamble was used 

The theoretical throughput was calculated as part of the scenario research. To calculate the 

throughput, the entire data transaction over the two hop route was firstly broken down into the different 

operations that took place. The time taken for each operation to execute was then calculated. Using 

these times, the entire data transaction duration was calculated and then multiplied by the amount of 

actual data transferred to give the overall throughput rate. The data transaction was broken down into 

five operations: 

1. DIFS wait period 

2. SIFS wait period 

3. TCP data packet transmission 

4. TCP ACK packet transmission 

5. MAC ACK transmission 

For this scenario the IEEE 802.11 b standard was used, which is an extension of the IEEE 802.11 

standard. The IEEE 802.11 b standard is the same as the original IEEE 802.11 standard but instead 

allows transmission rates of up to 11 Mbps as apposed to only 2Mbps which is the maximum for the 
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IEEE 802.11 standard. For every frame transmitted , the IEEE 802.11 standard specifies that a 

Physical Layer Convergence Protocol (PLCP) preamble and header is transmitted before every frame. 

The PLCP preamble and header is transmitted at 1 Mbps regardless of what rate the following frame is 

transmitted at so as to ensure that the IEEE 802.11 and IEEE 802.11 b standard are compatible with 

each other. For this scenario the long PLCP preamble and header is used as this is the default for 

most IEEE 802.11 b wireless devices. The IEEE 802.11 standard states that the long PLCP preamble 

and header combined is 192bits long, which when transmitted at 1 Mbps, will take 192µS to transmit. 

The following shows the calculations involved to find the time taken for each operation to execute: 

1. SIFS wait period: 10µS (from the IEEE 802.11 standard) 

2. DIFS wait period: 50µS (from the IEEE 802.11 standard) 

3. TCP data packet transmission: 

IEEE 802.11 MAC frame size with TCP data packet encapsulated : 1536bytes 

28 8 20 20 1460 
SNAP 

IEEE 802.11 MAC Header Encapsulation IP Header TCP Header Data 
Header 

Data frames are transmitted at 11 MbiUs which is 1375bytes/s. Time taken to transmit IEEE 

802.11 MAC frame with TCP data packet encapsulated: 

1536 bytes = 1118 µ s 
1375 bytes Is 

Total time to transmit TCP data packet including PLCP preamble and header: 

1118 µ s + 192 µ s = 131 0 µ s 

4. TCP ACK packet transmission: 

IEEE 802.11 MAC frame size with TCP ACK packet encapsulated: 76bytes 

28 8 
SNAP 

20 

IEEE 802.11 MAC Header Encapsulation IP Header 
Header 

20 

TCP Header 

Time taken to transmit IEEE 802.11 MAC frame with TCP ACK encapsulated: 
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76 bytes = 56 s 
1375bytesls µ 

Total time to transmit TCP ACK packet including PLCP preamble and header: 

56µ s+192µ s=248µ s 

5. MAC ACK frame transmission: 

IEEE 802.11 MAC ACK frame size: 14 bytes (from IEEE 802.11 standard) 

Time to transmit IEEE 802.11 MAC ACK frame: 

14 bytes 11 µ s 
1375 bytes Is 

Total time to transmit IEEE 802.11 MAC ACK frame including PLCP preamble and header: 

11 µ s + 192 µ s = 203 µ s 

Table 5.1 shows the time taken for each operation to execute based on the previous calculations. 

Table 5.1 Execution times for the different operations in a simple wireless transaction 

Operation 

SIFS wait period 

DIFS wait period 

TCP data packet transmission 

TCP ACK packet transmission 

MAC ACK frame transmission 

Time taken to execute 

10µS 

50µS 

1310µS 

248µS 

203µS 

Using these times the theoretical throughput for the scenario could be calculated by dividing the total 

duration of the wireless transaction by 1460bytes (11680bits) which is the amount of actual data 

transmitted in a single transaction. Figure 5.2 shows an example setup of the scenario while Figure 5.3 

shows how the scenario, consisting of a single TCP data packet transaction over a two hop wireless 

route using a single wireless IEEE 802.11 device in each node, would take place. 

Source 
Node 

Intermediate 
Node 

Destination 
Node 

IEEE 802.11 Frequency 1 IEEE 802.11 Frequency 1 IEEE 802.1 1 
Interface • • Interface • • Interface 

Figure 5.2 Example setup using a single IEEE 802.11 per node 
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'f • • ACK • • DATA 

'f SIFS MAC DIFS TCP 
• • ACK • • ACK 
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SIFS MAC I 
.a. • • ACK 

SIFS MAC DIFS TCP 
• • ACK • • ACK 

Figure 5.3 Operations taking place in a single data transaction over a two hop wireless route using a single IEEE 802.11b 

device per node 

11680bits =2.BOMb s 
4168µ s p 

The total time for the transaction to take place is: 4168µ5. Therefore the throughput is: 2.80Mbps 

Table 5.2 shows the theoretical duration and throughput rates for the same scenario but over a range of 

hops in the route. 

Table 5.2 Duration of a single TCP data transaction and the throughput rate for a range of multiple hop routes 

Number of hops in the route Total duration of the transaction (µSJ Throughput rate (Mbps) 

2084 5.60 

2 4168 2.80 

3 6252 1.87 

4 8336 1.40 

5 10420 1.12 

6 12504 0.93 

7 14588 0.80 

8 16672 0.70 

9 18756 0.62 

10 20840 0.56 

As shown by Figure 5.4 the duration of the TCP transaction in the example scenario is directly 

proportional to the number of hops in the route, while Figure 5.5 shows how the throughput rate is 

proportional to 1/n where n is the number of hops in the route. In a real scenario, the throughput rates 

could be even lower due to factors not included in this example scenario, such as the random backoff 

and the occurrence of collisions causing repeated transmissions. Between one and four hops in the 
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Total Theoretical Duration of a Single TCP Data Transaction 
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Figure 5.4 Duration of a single TCP data transaction over a range of multiple hop routes 

Throretical Throughput Rate of a Single TCP Data Transaction 
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Figure 5. 5 Throughput rate of a TCP data transaction over a range of multiple hop routes 

route, the decrease in throughput is quite dramatic, with the throughput decreasing by 75% of the 

original throughput rate, whereas from four hops onwards the decrease in throughput is more gradual. 

From this example scenario the duration for a single data transaction for n hops in a route equaled: 

2048n 

and the throughput rate for n hops in a route equaled: 

5.06 
n 
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5.2 Using Multiple IEEE 802.11 Wireless Interfaces Per Node 

For a route with n nodes in an IEEE 802.11 wireless network, the throughput rate is proportional to 1 /n 

due to the overhead operations created by the CSMA/CA algorithm. Even after adding just a few hops 

to a route, the rapid decrease in throughput rate meant that this was an area that needed to be 

addressed to make AODV a feasible multiple hop routing algorithm in a real world scenario. Rewriting 

a new wireless network standard or even changing the IEEE 802.11 standard to address this problem 

was beyond the scope of this research and also impractical as it would mean the resulting new wireless 

standard would be incompatible with the well established IEEE 802.11 standard. A solution proposed 

by this research is using multiple IEEE 802.11 based wireless network interfaces per node, specifically 

two or four interfaces per node as opposed to using just a single interface per node. With the 

decreasing cost of typical IEEE 802.11 wireless devices, using multiple interfaces per node is feasible 

in a practical sense and also directly improves the operation of two areas of the CSMA/CA algorithm, 

resulting in improved throughput rates over multiple hop routes. Using multiple wireless interfaces can 

also improve the performance of the TCP transport protocol , one of the most common transport 

protocols used in computer networking. 

5.2.1 Areas of the CSMA/CA Algorithm Improved by Using Multiple Wireless Interfaces per 

Node 

From Figure 5.3 there are two areas of the CSMA/CA algorithm that decrease the throughput rate and 

could be improved by using two and four interfaces per node. The first area is when an intermediate 

node in the route receives the data packet from the previous node in the route. Before the intermediate 

node can pass on the data packet to the next node in the route, it must firstly wait a SIFS period and 

send a MAC sublayer ACK back to the previous node in the route. If the intermediate node was 

equipped with two IEEE 802.11 wireless network interfaces, both operating on non-conflicting 

frequencies, then the intermediate node could use one interface to send the MAC ACK back to the 

previous node, and at the same time use the second interface to carry on forwarding the data packet to 

the next node in the route. As shown in Figure 5. 6, using two interfaces per node , configured in this 

way, allows each hop in the route to be non-conflicting and independent of each other. Figure 5.7 

shows what the resulting CSMA/CA operations would look like for the same example scenario 
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Figure 5. 6 Example setup using two IEEE 802.11 interfaces per node 
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Figure 5. 7 Operations taking place in a single data transaction over a two hop wireless route using two IEEE 802.11 

interfaces per node 

previously described. Based on the calculations used for the example scenario, using two IEEE 

802.11 wireless interfaces per node in the route would result in the data transaction taking 37 42µ8 and 

the having the increased throughput rate of 3.12Mbps. 

The second area from Figure 5.3 that can be improved is at the destination node. With a single 

interface, a node must wait until the MAC ACK is sent back to the previous node in the route before 

sending back the TCP ACK. If each node in the route used four interfaces, each configured to operate 

on non-conflicting frequencies, each hop in the route would have two channels to communicate on and 

with each channel operating in a different direction. This is shown more clearly in Figure 5.8. Using four 

interfaces per node would allow the destination node to transmit back the TCP ACK without having to 

wait for the MAC ACK to be sent first, as well as allowing the intermediate nodes to forward on the data 

without having to wait for the MAC ACK to be sent like with the two interface configuration. Figure 5.9 

shows what the resulting C8MA/CA operations would look like using four interfaces per node. Based 

on these calculations, using four IEEE 802.11 wireless interfaces per node in the route would result in 

the data transaction taking 3529µ8 and having the increased throughput rate of 3.31 Mbps. 
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Source Intermediate Destination 
Node Node Node 

Frequency 1 IEEE 802.11 IEEE 802.11 Frequency 5 IEEE 802.11 • Interface 1 • Interface 1 Interface 1 

Frequency 2 IEEE 802.11 IEEE 802.11 Frequency 6 IEEE 802.11 • • Interface 2 Interface 2 Interface 2 

IEEE 802.11 Frequency 3 IEEE 802.11 IEEE 802.11 Frequency 7 
Interface 3 • Interface 3 Interface 3 • 

IEEE 802.11 Frequency 4 IEEE 802.11 IEEE 802.11 Frequency 8 

Interface 4 • Interface 4 Interface 4 • 

Figure 5.8 Example setup using four IEEE 802.11 interfaces per node 
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Figure 5. 9 Operations taking place in a single data transaction over a two hop wireless route using four IEEE 802. 11 

interfaces per node 

Table 5. 3, Figure 5.10 and Figure 5.11 following compare the duration of a single TCP data transaction 

and the throughput rate over a range of multiple hop routes for one, two and four IEEE 802.11 

interfaces per node. These theoretical throughput rates were based on the conditions of the example 

scenario described previously. The calculations show using four IEEE 802.11 interfaces per node has 

a significant improvement over using two IEEE 802.11 interfaces per node but only for routes with a 

small number of hops. As the number of hops in the route increases, the difference in the throughput 

rate between using two or four interfaces per node is minimal as the only difference between the two 

configurations is that using four interfaces per node decreases the turnaround time at the destination 

node which stays constant for any size route. Therefore based on the scenario conditions, the extra 

performance provided from using four interfaces in this way is only significant for a routes with a small 
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Table 5.3 Duration of a single TCP data transaction and the throughput rate for a range of multiple hop routes and interfaces 

per node. 

I Number of One Interface Per Node Two Interfaces Per Node Four Interfaces Per Node I 
I hops in route Duration Throughput Duration l Throughput Duration Throughput l 

2 

3 
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10 
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20000 

vi 15000 
::I. 

Q) 

E 
I j:: 10000 

5000 

0 

2084 

4168 

6252 

8336 

10420 

12504 

14588 

16672 

18756 

20840 

2 

I 
5.60 2084 I 5.60 

2.80 3742 I 3.12 

1.87 5400 2.16 

1.40 7058 1.65 

1.12 8716 1.34 

0.93 10374 1.13 

0.80 12032 0.97 

0.70 13690 0.85 

0.62 15348 0.76 

0.56 17006 0.69 

Total Theoretical Duration of a Single TCP Data Transaction 

3 4 5 6 7 8 9 10 

Number of hops in the route 

1871 

3529 

5187 

6845 

8503 

10161 

11819 

13477 

15135 

16793 

6.24 

3.31 

2.25 

1.71 

1.37 
j._ 

I 1.15 

I 0.99 
I 

0.87 

0.77 

0.70 

One IEEE 802.11
1 lnerface Per 

Node 
- - - - Two IEEE 802.11 

lnerfaces Per 
Node 

- - - - - - - Four IEEE 802.11 
lnerfaces Per 
Node jl 

Figure 5. 1 O Duration of a single TCP data transaction for a range of multiple hop routes and IEEE 802.11 interfaces per 

node 

number of hops and it would seem that from these figures, using two IEEE 802.11 interfaces per node 

seems to be the best cost vs throughput rate performance solution. As explained in the next section 

though, the TCP connection model used in the scenario to calculate these throughput rates was kept 
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Figure 5. 11 Throughput rate of a TCP data transaction for a range of multiple hop routes and IEEE 802. 11 interfaces per 

node 

very simple in order to simplify the calculations and highlight the effects of the CSMA/CA algorithm. In 

reality, the TCP connection model used in Linux is far more complex and would much more likely 

benefit from using four wireless interfaces per node. 

5.2.2 Multiple Wireless Interfaces and the Transport Control Protocol 

A major assumption used in the previous example scenario was that a simple TCP connection model 

was used. With this simple model, for every TCP segment (the TCP data packet) transmitted, the 

source node would wait until a TCP acknowledgment arrived back before transmitting the next TCP 

segment. In reality, TCP uses a much more complex data flow control process. 

The TCP implemented in Linux is defined by RFC 793 [17], RFC 1122 [18] and RFC 2001 [19]. TCP 

uses data flow control in order to use the network more efficiently. Part of the flow control process is 

the use of buffers; a sender buffer which is located at the source node, and a receiving buffer that is 

located at the destination node. The receiver buffer is more important in terms of flow control. The 

buffers are simply space in the node's memory which can be used by TCP to store segments for 
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different purposes, such as: waiting to be transmitted in the case of the source node, or waiting to be 

processed by the receiving application as in the case of the destination node. 

TCP also uses acknowledgments in order to help maintain flow control. Every TCP segment 

transmitted is assigned a sequence number by the sender, and the receiver can then acknowledge 

which segments it has received by transmitting back an acknowledgment specifying the sequence 

number of the next segment it is expecting to receive. This is basically the receiver saying that it has 

received every segment up to the one with the sequence number specified in the acknowledgment. For 

example, a receiver transmitting back an acknowledgment containing the segment sequence number 

five, means that is has received segments zero to four. 

The receiver can also specify a new window size within the acknowledgment that is sent back. The 

window size is how much space is left in the TCP buffer before it is full. Since a receiving application 

may not be able to constantly keep the receiving TCP buffer empty, it is important the the receiver can 

inform the sender of the buffer status to prevent a buffer overflow and data being lost. As well as 

knowing the receiver window size, the sender also has a process which calculates what is known as the 

congestion window size, which is a calculation of how many segments the network can take before 

congestion occurs. 

The minimum out of the receiver window and the congestion window specifies how many segments the 

sender can transmit across the network to avoid network congestion and also prevent a buffer overflow 

at the receiver end. More importantly though in terms of this research, the minimum of these two 

window sizes specify how many segments the sender can transmit before it must wait for an 

acknowledge back from the receiver. This means that the sender doesn't actually wait for an 

acknowledgment for every segment before transmitting the next segment, but instead the sender can 

transmit as many segments as specified by the minimum of either the congestion or receiver window 

before it must stop and wait for an acknowledgment. 

The time when the receiver transmits acknowledgments though is independent of the rate at which the 

sender transmits segments, but instead is triggered by the occurrence of a number of events defined in 

RFC 813 [20]. The main events that result in acknowledgments being transmitted is a pause in the 

TCP segment stream from the sender (often indicating the sender is waiting for an acknowledgment), 

but more commonly, a significant change in the receiver window size caused by the receiving 
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application being able to remove the TCP segments from the buffer memory to process. While a TCP 

segment stream is being transmitted, the receiver window size will grow and shrink in proportion to how 

fast the receiving application removes the TCP segments from the buffer. As a result, for each 

significant change in the window size, the receiver will transmit an acknowledgment which will also be 

used to inform the sender of the new receiver window size. The sender, since it has now received an 

acknowledgment, can adjust both windows sizes, the receiver window from the information in the 

acknowledgment, and the congestion window due to the event of receiving an acknowledgment. The 

sender can then also decrease it's record of how many segments it has transmitted since the last 

acknowledgment was received. This process ultimately results in a continuous flow of TCP segments 

and the full duplex behavior of TCP. 

The critical difference between the basic TCP connection model specified in the scenario in Section 

5.1, and the actual TCP model used in Linux, is that TCP can operate with full duplex capabilities, 

whereas the TCP model used in the example scenario was essentially only operating with half duplex 

capabilities. Using four wireless interfaces per node is the only configuration with full duplex 

capabilities but the performance benefits from this wasn't reflected in the theoretical throughput 

calculations since only a half duplex TCP model was being used. Being full duplex means the TCP 

acknowledgments can be transmitted from the receiver to the source while the TCP segment stream is 

taking place, reducing the overall time of the transaction. Also, for multiple hop routes, as soon as one 

segment has left the first hop and is being transmitted across the second hop, then the next segment 

can be transmitted across the first hop without interfering. This also reduces the overall transaction 

time. Since each hop operates on a separate channel preventing interference, this type of behavior 

could also occur when using two wireless interfaces per node. This behavior could occur when using 

just a single interface per node although it would only work once two different hops are out of radio 

range of each other, as all hops are on the same channel and interfere with each other. 

The congestion window feature within TCP that Linux implements, is part of the slow start process. The 

slow start process is when initially the sender only transmits one TCP segment, waits for an 

acknowledgment, transmits two TCP segments, waits for both to be acknowledged and then transmits 

four segments and so on. This process of doubling the congestion window, which results in doubling 

the number of segments transmitted each time, is continued until a certain threshold is reached where 

the number of segments transmitted each time still increases but only by one segment each time. This 

continues until the number of segments being transmitted at a time equals the receiver window size. If 
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the sender fails to receive an acknowledgment for a segment before a timeout period, then the 

congestion window is set back to one and the slow start process begins again. 

It would be difficult to calculate accurate theoretical throughput rates using an actual TCP throughput 

model with multiple wireless interfaces due to the complex nature of the TCP flow control algorithm and 

random occurrences like collisions on the network resulting in repeated transmissions. This section 

outlined the general flow control process used by TCP in Linux and how it could affect the throughput 

performance when using a full duplex configuration such as four wireless interfaces per node. 
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6 Implementation 

The implementation stage of this research focused on modifying the original hello message based 

AODV implementation (AODV-HM) to create a data link layer feedback based AODV implementation 

(AODV-LL). The original AODV-HM implementation used in this research was Kernel AODV v2.2 by L 

Klein-Berndt from NIST, USA [5] . Currently, a number of AODV implementations are available, but 

Kernel AODV was used due to it being the implementation that we had the most experience with and it 

being Linux based. The AODV-LL implementation was created by significantly modifying Kernel AODV 

rather then creating a completely new AODV implementation from scratch. The basic structure and 

operation of Kernel AODV when creating the AODV-LL implementation didn't change apart from the 

key areas listed in this section. 

Implementation was carried out in four stages: 

1. The IEEE 802.11 device driver was modified to make use of the transmit retry limit and 

provide feedback to AODV. 

2. The original AODV-HM implementation was modified to remove the use of hello messages 

and instead use information provided by the IEEE 802.11 device driver on the data link layer 

resulting in the new AODV-LL implementation. 

3. The AODV-LL implementation was designed so that it was able to operate correctly with 

multiple interfaces. The AODV-LL implementation could operate correctly without any 

changes when using two wireless interfaces, but had to be modified to work with four 

interfaces correctly. 

4. The AODV-LL implementation was then designed to be backwards compatible with the 

original AODV-HM implementation. It was decided this would be an important feature if the 

AODV-LL implementation was used in a real world scenario. 
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6.1 Basic Operation of the AODV-HM Implementation 

Overall, the basic structure of the AODV-LL implementation remained unchanged from the AODV-HM 

implementation. The following describes the basic operation of Kernel AODV, the original AODV-HM 

implementation used in this research. 

Kernel AODV is run as a kernel module rather then being compiled directly into the Linux kernel. The 

user inserts the Kernel AODV module into the kernel to start it and removes the module to stop it. User 

configured parameters can be passed in when the module is inserted. When the module is inserted by 

the user, Kernel AODV starts up by performing several initialization tasks. These tasks include 

initializing any processes, initializing tables or lists such as the AODV route table and initializing all the 

network interfaces that are being used, by setting up a route for each one in the AODV route table and 

the kernel route table. Another important initialization task is registering the AODV module with the 

different Netfilter hooks in the network stack. This allows the Netfilter hooks to know which network 

packets should be passed to the AODV module to process. After the initialization tasks, the main 

AODV process is then started. 

The main AODV thread or process sits in memory "asleep" until it it is "kicked" or interrupted by another 

AODV process and is given a "task" to do. A task is a specific data structure defined by Kernel AODV. 

The structure contains what type of task it is, for example a TASK_RREQ used for processing RREQ 

messages, all the necessary data needed to complete the task, like the received AODV message, and 

also some other extra information that is required. The main AODV thread takes the task, determines 

which AODV process the task is intended for, sends the task to this process and then goes back to 

sleep. The AODV process that does the "kicking" is the task_queue process. The task_queue process 

is given tasks to queue up from either the the packet_in process or the timer_queue process. The 

packet_in process gets network packets passed to it by the Netfilters pre-routing hook which are 

addressed to the AODV port number. The packet_in process checks for the AODV message in the 

network packet and then passes it to the task_queue process to create a task for it. The timer_queue 

process takes care of assigning timers to tasks, as well as sending a task to the task_queue process 

when the timer for a task has expired. Using timers makes periodic tasks such checking the AODV 

route table for expired routes simple. To do this, when AODV starts up, a timer for the task to check the 
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route table is put into the timer queue. Later when the timer runs out, the task is passed to the main 

AODV thread which then prompts the appropriate process to check the route table. Before finishing, the 

main AODV thread reinserts a timer in the timer queue for the same task and so continues the cycle. 

Similar to the packet_in process, the packet_out process is triggered by every out-going packet that 

goes out the Netfilters post-routing hook. Packet_out sends the destination IP address of each 

outgoing packet to the aodv_route process which compares the address with those already in the 

AODV routing table. If the address exists, then its lifetime for staying in the AODV route table is 

increased (since there are packets still going to that address), otherwise if the address is not found in 

the route table, then the packet_out process triggers the RREQ process, which goes about finding a 

route to the destination. Thus by monitoring the packets going out the post-routing hook, Kernel AODV 

is able to determine when a route to a destination node is needed. 

The aodv _route process manages the AODV route table and calls on the kemef _route process to 

modify the actual kernel route table. The AODV route table is only used by the AODV module, while 

the kernel route table is used by the actual Linux kernel. The aodv_route process contains many 

functions which are used by itself and other processes to create, modify and delete routes in the AODV 

route table. A similar process in the original Kernel AODV is the aodv_neighbor process. It manages 

the neighboring node table, but as described later, the AODV-LL implementation doesn't use both the 

aodv_neighbor process or the neighboring node table. The hello process is used to generate hello 

messages and calls on the timer _queue process to create timers for every neighboring node in the 

neighboring node table. These timers expire when hello messages are no longer received from the 

neighboring node associated with the timer. If a neighboring node timer runs out, then that node is 

deleted from the neighboring node table. The hello process was also significantly changed in the 

AODV-LL implementation. 

The rreq, rerr and rrep processes each process their corresponding AODV messages. These three 

processes along with the aodv_route process implement most of the actual AODV networking protocol 

on their own while the other processes within Kernel AODV exist to make everything work. The 

remaining processes within Kernel AODV include ones for working with the network devices, inserting 

AODV messages into the network stack to be transmitted and displaying statistics to the user about the 

Kernel AODV module. 
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Figure 6. 1 The simplified command and data flow of the original hello message based A OD V 

implementation - Kernel AODV v2.2.2 

Figure 6.1 shows the simplified data and command flow of Kernel AODV v2.2.2. The general data and 

command flow of the AODV-LL implementation is the same, except it does not include the 

aodv _neighbor process and the Neighboring Node table. 

6.2 Changing the IEEE 802.11 Device Driver 

For this research IEEE 802.11 b PCI wireless network interfaces were used. The IEEE 802.11 b 

standard is an extension of the IEEE 802.11 standard. Both standards are the same except IEEE 

802.11 b devices are capable of operating at 11 Mbps as apposed to only 2Mbps which the original IEEE 

802.11 devices operate at. Two other extensions to the original standard are the IEEE 802.11 g and 
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IEEE 802.11a standards. Both are capable at operating at 54Mbps but the IEEE 802.11g standard 

operates in the 2.4GHz spectrum like the IEEE 802.11 and IEEE 802.11 b standards, while the IEEE 

802.11 a standard operates in the 5GHz spectrum. For this research, IEEE 802.11 b interfaces were 

used since IEEE 802.11 b devices are popular worldwide, and are currently cheaper then both IEEE 

802.11 a and IEEE 802.11 g devices, making them a more feasible option when using multiple interfaces 

per node. 

A total of eight IEEE 802.11 b PCI wireless network interfaces were used; three using the the ADM8211 

MAC chipset from Admtek and five using the RTL8180 MAC chipset from Realtek. Both Admtek and 

Realtek are companies based in Taiwan which are specialized in manufacturing networking equipment. 

The ADM8211 chipset based interfaces have open source drivers available for the Linux operating 

system which meant they could be modified to provide data link layer feedback using the transmit retry 

limit. The RTL8180 chipset based interfaces did not have any open source driver software available 

and therefore could not be configured to provide access to the transmit retry limit. The data sheet for 

the RTL8180 does specify status registers that monitor the transmit retry limit and therefore the 

RTL8180 chipset could be used in the same way as the ADM8211 chipset if open source drivers were 

available. 

6.2.1 Changing the ADM8211 Chipset Driver to use the Transmit Retry Limit 

The first part of modifying the ADM8211 chipset driver was to enable it to be able to detect when the 

transmit retry limit had been exceeded. The ADM8211 chipset created an interrupt whenever an error 

occurred and the interrupt status registers could be checked to identify which error generated the 

interrupt. Included in the events that could generate an interrupt was the event of the transmit retry limit 

being reached. Part of the ADM8211 driver was a section which was processed if an error interrupt had 

been generated. Within this section of the ADM8211 driver, code was added which checked the 

transmit retry limit status register which effectively enabled the driver to detect if the transmit retry limit 

had been exceeded. If the value of the transmit retry limit status register equaled one, then it meant the 

transmit retry limit had been exceeded and appropriate action was taken. 

The second part of modifying the ADM8211 chipset driver was to enable it to be able to notify the 

AODV software of the broken link when it was detected that the transmit retry limit had been exceeded. 

It was found the best method to do this was for the ADM8211 chipset driver to create an AODV RERR 
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packet, encapsulated within a DIX Ethernet frame with all the necessary details included in it, and then 

have it sent up the network stack for AODV to process. By using data structures and systems already 

in place meant there was no need to modify the kernel network stack as the kernel could simply treat 

the AODV RERR from the chipset driver as a normal Ethernet frame. This approach also helped satisfy 

the OSI network model, by ensuring the different layers of the model only communicate through proper 

interfaces. 

The AODV RERR packet and DIX Ethernet frame generated by the ADM8211 driver were configured 

so that they appeared to the kernel stack as being transmitted by the node at the other end of the 

broken link. This is obviously impossible, but causes no problems for the network stack, and less 

processing for the AODV-LL implementation. Most of the information needed to create a DIX Ethernet 

frame with a AODV RERR packet inside was obtained from the headers of the packet which had just 

failed transmission and had triggered the transmit retry limit interrupt due to the link being broken. The 

only information that could not obtained from the packet which had failed to transmit, was the sequence 

number required for the AODV RERR packet. AODV creates and manages sequence numbers for 

each route, and when hello messages are used, AODV itself detects when a route is broken and so can 

use the corresponding sequence numbers from it's own route tables to put in a RERR packet. The 

sequence numbers in the AODV RERR packet are important since it means nodes that receive the 

RERR can determine if the RERR is recent information or simply a stale RERR that it has already 

processed and is still being forwarded around the network. The IEEE 802.11 device driver had no easy 

method of accessing AODV route tables. Therefore to overcome this problem, the sequence number 

section of the AODV RERR was left blank and instead a one bit flag in the reserved section of the 

AODV RERR header was set to one. This meant AODV-LL could check for this flag and determine if 

the AODV RERR had been created by the IEEE 802.11 device driver or instead was a RERR that had 

actually been transmitted from another node. If the RERR was from the IEEE 802.11 device driver, 

then AODV knew to find the corresponding sequence number from the route table for the broken link, 

add it to the RERR, update it's own route tables and then send the RERR back down the network stack 

to be transmitted to the surrounding nodes. Figure 6.2 shows the process used to inform AODV of a 

broken link after the transmit retry limit has been exceeded. 
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Figure 6.2 The process from the transmit retry limit being exceeded to AODV being notified 

6.3 Changing the AODV-HM Implementation to use Data Link Layer Feedback 

There were two main areas in the original AODV-HM software that were modified in order to create the 

AODV-LL implementation. Table 6.1 shows the differences in these two areas. 
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Table 6.1 Significant areas of the original AODV-HM implementation that were changed or created to create the 

AODV-LL implementation 

Created/Modified Area 
1

1 

1. Detection of a broken route · 2. Management of the AODV neighboring 
node table . . 

I AODV-HM implementation Checks periodically that hello messages Neighboring nodes are created or updated in the 
are being received from a neighboring neighboring node table by the information in the hello 
node to determine if that neighboring messages received from neighboring nodes. 

I node is alive and that routes through the I 
node are not broken. I 

I . 
j AODV-LL implementation Doesn't check in any way if neighboring I Hello messages aren't used allowing the neighboring 

nodes are alive. Instead a special node table to be removed completely resulting in only 
AODV RERR message from the wireless the AODV routing table needing to be managed. I 

I 
interface driver (the data link layer) I 
informs AODV of the broken link. j 

6.3.1 Detection of a Broken Route 

The first area of the original AODV-HM implementation that had to be changed to create the AODV-LL 

implementation was to remove hello messages and instead give the AODV-LL implementation the 

ability to identify the special AODV RERR packets from the data link layer and then take the appropriate 

action. 

In the original AODV-HM implementation, hello messages were generated through a timer task. A 

task_hello timer was created when AODV started up, and set to expire in one second which is the 

default hello interval rate. When the task_hello timer ran out, it created an interrupt, prompting the 

timer_queue process to insert the task_hello task in the task_queue process. This in turn interrupted 

the main AODV thread which sent the task off to the hello process, resulting in a hello message being 

created and sent to the network stack to be transmitted. After the hello message had been generated 

and transmitted, the hello process created a new task_hello timer set to the hello interval rate to ensure 

the hello messages continued. In the AODV-LL implementation, to stop the hello messages from being 

transmitted, the initial task_hello timer which was created when AODV started up was disabled and 

thus stopping the hello message cycle. 

The next stage was to enable the AODV-LL implementation to be able to identify the RERR message 

sent to it from the data link layer. To do this, the packet_in process in the AODV-LL implementation 

checks the first bit in the reserved section of any AODV RERR message received. If the bit equals zero 

then the RERR is treated as a normal RERR from a another node, otherwise if the bit is equals one 
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then its treated as a RERR from the data link layer. For RERRs from the data link layer, packet_in 

sends the RERR message off to the task_queue process but tells the task_queue process that it is a 

TASK_NEIGHBOR message type rather then the normal RERR message type. Doing this means 

when the task_queue process receives the RERR it knows its from the data link layer. 

Normally a RERR from another node results in AODV deleting any routes associated with the broken 

node or link, and then deciding whether it needs to forward on the RERR to downstream nodes in any 

affected routes. With the RERR from the data link layer, the sequence number for the affected route is 

missing since the data link layer has no easy way of obtaining this information. The RERR from the 

data link layer is treated simply as an indicator of a broken route, providing the only necessary 

information - the IP address of the inactive or broken node. When task_queue process receives the 

data link layer RERR it extracts the IP address of the node causing the broken link and then creates a 

new route removal task with the broken node IP address as the target IP. The route removal task is 

sent off to the main AODV thread process which passes it on to the aodv_route process. The 

aodv_route process expires any routes that pass through the inactive node (the expired routes are then 

removed later) and then generates a proper AODV RERR containing all the necessary information of 

the broken route including the sequence number and sends it off to the network stack to be transmitted. 

The process used to remove routes using the RERR from the data link layer is similar to the process 

used with hello messages in the original AODV-HM implementation. Whenever a hello message was 

received from a neighboring node, a timer set to twice the length of the hello interval was created . This 

timer, when it ran out, would trigger the process which would remove the inactive node and any 

associated routes from the route table and then generate a RERR message to be transmitted . Every 

time a hello message was received from a neighboring node, its corresponding "removal" timer was 

reset, meaning that two hello messages from a node had to be missed before that node was 

considered inactive and the route broken. Using the data link layer technique meant detecting broken 

routes was almost instant, and in the two seconds needed for hello messages to detect a broken route, 

the AODV-LL implementation could have enough time to have an alternative route discovered and 

operational. Figure 6.3 shows the command and data flow through both the AODV-HM and AODV-LL 

implementations as the result of detecting a broken route. The AODV-HM implementation diagram 

shows the trigger being the "removal" timer for a node from which no hello messages have been 

received for the period equal to twice the hello interval, while the AODV-LL implementation shows the 

trigger being the event of receiving a RERR from the data link layer. 
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Figure 6.3 Simplified data and command flow through the AODV-HM implementation and the AODV-LL 

implementation as the result of detecting a broken route 

6.3.2 Management of the Neighboring Node Table 

As shown in Figure 6.3, the AODV-LL implementation no longer uses the aodv_neighbor process or the 

neighboring node table when processing a broken route. In fact, as a result of no longer needing hello 

messages, there was no need at all to maintain a neighboring node table which in turn removed the 

need for almost all the functions within the aodv_neighbor process. With the original AODV-HM 

implementation, the only way a broken route could be detected was through listening for the periodic 

hello message transmissions from neighboring nodes. Because of this, keeping track of neighboring 

nodes was important, resulting in a neighboring node table being used, along with several functions to 

access and manipulate the table that made up the aodv_neighbor process. Neighboring nodes were 

added to the table when a hello message was received from them (regardless of whether the node was 

used in a route), and were deleted from the table (along with any associated routes) when hello 
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messages stopped being received from them. Whenever an AODV message was received by the 

AODV-HM implementation, it firstly checked that the message was from a node transmitting hello 

messages by checking if it existed the neighboring node table. This was necessary since if a route was 

set up through a neighboring node, it had to transmit hello messages for AODV-HM to be able to 

monitor the status the route. Any AODV message received from a node not transmitting hello 

messages was discarded. 

When the AODV-LL implementation was created , the neighboring node table and aodv_neighbor 

process was removed although two extra functions had to be created for the aodv_route process to 

make up for some functionality that the aodv_neighbor process originally provided. The first extra 

function created for the aodv_route process was for adding routes to neighboring nodes. When a route 

is added to the kernel route table, it is done by specifying to the kernel the IP address of the distant 

destination node, along with specifying the IP address of the gateway, or the neighboring node that the 

kernel must send any network packets to in order for them to be forwarded on down the route to the 

destination node. If the kernel route does not already have a separate route to the gateway or 

neighboring node, then it won't allow routes with the IP of an "unknown" neighboring node as the 

gateway being added. With the AODV-HM implementation , routes to neighboring nodes were added to 

the kernel route table as soon a hello message was received from the neighboring node and therefore 

separate routes to the neighboring nodes were always in the route table before any extra routes were 

added where the neighboring node was the gateway. Because hello messages were removed, a 

separate function was added to the aodv_route process which handled adding neighboring node routes 

to the kernel route table. This function simply checked that the IP address of the neighboring node that 

the AODV message came through was already in the route tables. If the neighboring node wasn't in 

the route table, then a route was created for it and was added to both the AODV and kernel route 

tables before AODV carried on processing the AODV message. The second function that was added 

to the aodv_route process was removing neighboring node routes . Previously this function was within 

the aodv_neighbor process and was triggered when hello messages stopped being received from a 

neighbor. The new route removal function was triggered when a RERR was received from the data link 

layer, resulting in the neighboring node route being expired in the AODV route table and removed from 

the kernel route table. Figure 6.4 shows the general data and command flow in the AODV-LL 

implementation after removing the neighboring node table and aodv_neighbor process. The reason for 

the hello process still being present is for the purpose of making AODV-LL compatible with hello 

message based AODV implementations and is explained in more detail later in the thesis. 
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Figure 6.4 The simplified data and command flow of the AODV-LL implementation 

6.4 Making the AODV-LL Implementation Compatible with Multiple Wireless 

Interfaces 

The original AODV-HM implementation, Kernel AODV, is capable of assigning routes to go through 

specific interfaces, as it allows wireless nodes to act as gateways to other networks such as Ethernet 

networks. When an AODV message arrived from a neighboring node on an interface, Kernel AODV 

assigned all future routes that went through that neighboring_ node to go out through the interface that 

the neighboring node was detected on. As a result, the AODV-LL implementation required no 

modification to be compatible with two interfaces per node because of this feature. 

AODV-LL needed to be modified though to be compatible with four interfaces per node. Using four 
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wireless interfaces per node can be understood easier when they are viewed as two pairs of interfaces. 

One pair handles the "downstream" traffic while the other pair handles the "upstream" traffic. But then 

within each pair (as far as the network layer and above are concerned), one interface is only used for 

incoming traffic and the other interface is only used for outgoing traffic and so overall creating four 

independent communication channels . Because of this, for AODV-LL to work with four interfaces, it 

had to be modified so that when a connection to a neighboring node was detected, then the interface it 

was detected on was considered the incoming interface, while the other interface within the pair was 

considered the outgoing interface. This way each route was configured to go out through the outgoing 

interface within the correct pair of interfaces. 

Broadcasts are always transmitted out each network interface by default, and although an AODV 

broadcast such as a RREQ or RERR would only need to be transmitted out one interface per pair to 

achieve it's purpose, it was simpler to leave it unmodified where a broadcast packet went to all 

interfaces. Because of this , since both the incoming and outgoing interfaces will receive broadcast 

messages such as RREQs, which are used to set up neighboring node routes, either interface could be 

the incoming or outgoing interface, but it was decided that the first interface to have the RREQ or any 

other AODV message processed by AODV, would be considered the incoming interface. 

To implement this, AODV-LL was modified so that when it started , the user specified the network 

interface pairs. In the initialization process, AODV-LL then linked each interface to its other pair 

interface. After this the only other major section that needed to be modified was in the routing section 

where neighboring node routes was created . When a neighboring node is detected, such as by 

receiving an AODV message from a neighboring node not already listed the AODV route table, then the 

network interface that the message was received from is considered the incoming interface, and the 

other network interface within the pair is considered the outgoing interface. A route to the neighboring 

node is then set up through the outgoing interface, and as a result all routes that pass through the 

neighboring node also go through the outgoing interface. 

6.5 Making the AODV-LL Implementation Compatible with the AODV-HM 

Implementation 

When the AODV-LL implementation was created , it was decided that, if possible, it would be designed 
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so that it would be able to function with a hello message based AODV implementation so that it would 

be possible to operate an AODV-LL node in a real world scenario where hello message based AODV 

nodes also operate. The following outlines necessary features that the AODV-LL implementation would 

need, in order to be compatible with the AODV-HM implementation, but at the same time keep hello 

messages to a minimum. The AODV-LL implementation would need to: 

- be able to detect when a hello message based AODV node is operating within its radio 

range and when the hello message based AODV node has left its radio range 

- transmit hello messages when a hello message based AODV node is detected but stop 

transmitting as soon as the hello message based AODV node is no longer detected 

- be able to determine the difference between a hello message from an AODV-LL node and 

an AODV-HM node, so that an AODV-LL node doesn't misinterpret another AODV-LL node 

transmitting hello messages as an AODV-HM node, resulting in hello messages being 

transmitted by every node across the whole network 

To detect a hello message based AODV node is simple - AODV-HM based implementations transmit 

hello messages whereas AODV-LL implementations don't. If an AODV-LL based node detected hello 

messages then it could assume that there is at least one AODV-HM node within it's maximum network 

range. As soon as no hello messages are detected, an AODV-LL node could assume that there are no 

AODV-HM nodes left within it's maximum network range. Using this approach, the AODV-LL 

implementation was designed so that as soon as a hello message from an AODV-HM based node was 

detected, the AODV-LL implementation would start broadcasting hello messages at the rate of one per 

second. The hello message transmitted by the AODV-LL implementation has the first bit of the 

reserved section in the hello message data structure set to equal one. This bit is not checked by 

AODV-HM implementations, so it can be used by AODV-LL implementations to determine if a hello 

message is either from an AODV-HM node or an AODV-LL node resulting in any hello messages from 

AODV-LL nodes being silently discarded and no action being taken. As so as the AODV-LL 

implementation detects no more hello messages are being received from AODV-HM nodes, it stops 

broadcasting hello messages. 

To implement this in the AODV-LL implementation, a combination of timer tasks are used. As soon as 

the AODV-LL implementation receives a genuine hello message, two timer tasks are created. The first 

task is set to the hello message interval period (one second) and results in the hello process being 

called and a hello message being transmitted. After the hello message is transmitted the hello process 
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checks a flag which specifies if AODV-HM nodes are still present. If true then the hello message timer 

task is set running again so that hello messages will still be transmitted. If the flag is false then the 

hello message task is deleted and the hello messages stop being transmitted . The second timer task 

that is created when a hello message is received is for stopping the hello messages. It's timer is set to 

twice the hello message interval (two seconds) , but is reset back to zero every time a hello message is 

received from another node. While hello messages are being received, the timer never expires. But if 

no hello messages are received from another node for at least two hello message interval periods, then 

the timer expires, resulting in the hello process being called which results in the flag which specifies if 

AODV-HM nodes are present, being set to zero. This will result in the hello message timer task being 

deleted and hello messages will stop being transmitted . To determine if a hello message is from an 

AODV-LL node, the packet_in process checks the hello message when it arrives for the flag which if set 

means the hello message is from an AODV-LL node otherwise the hello message is from an AODV-HM 

node. Hello messages from AODV-LL nodes are silently discarded and no action is taken . 

AODV-HM RREP Structure 
0 I 2 3 ; 5 S 7 8 9 1·l I l 12 13 1t 15 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Tvoe IR I A I Reserved I Prefix Size I Hop Count 
Destination IP Address 

Destination Sequence Number 
Originator IP Address 

Lifetime 

AODV-LL RREP Structure 
0 I 2 3 ' < 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 4 V 

Type IRIA U Reserved I Prefix Size I Hop Count 
Desonat1on IP Address 

Dest1nat10n Seauence Number 
0riQinator IP Address 

Lifetime 

Figure 6.5 The different AODV-HM and AODV-LL RREP structures 

To create a flag which indicated a hello message was from an AODV-LL based node, the original hello 

message data structure had to be changed . The hello message structure, as defined by the AODV 

protocol, is actually a RREP structure. To determine if a RREP message is a hello message, the 

AODV implementation checks if the IP address in the destination address field is the same as the IP 

address in the source address field Figure 6.5 shows the original AODV-HM RREP structure and the 

new AODV-LL RREP structure. In the header of the AODV-HM RREP structure, there are ten bits 

which are defined as the Reserved section. The AODV-LL RREP structure was changed so that the 
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first bit (bit ten) of the old reserved section is now a flag , termed "L" since it is used to indicate that the 

hello message is from an AODV-LL based node. By checking if the "L" flag equals one, the AODV-LL 

implementation can assume that the hello message is from an AODV-LL node, otherwise if the "L" flag 

equals zero (since by default AODV-HM implementations set the reserved section to zero, which for 

AODV-HM implementations includes the "L" flag) , then the AODV-LL implementation can assume it is a 

genuine hello message from an AODV-HM based node. AODV-HM based implementations do not 

check the Reserved section of the RREP structure (which for them includes the "L" flag), so therefore 

they will process all hello messages from an AODV-LL node as normal. 
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7 Testing Methodology 

For this research the tests were designed to not only test the performance of the AODV-LL 

implementation and the the multiple wireless interface configuration, but they were also designed to test 

the functionality of the AODV-LL implementation; the multiple wireless interface configuration ; and the 

the data link layer route error reporting mechanism in order to show that they all operate correctly. 

The functionality tests are far from complete in terms of testing with all possible node and transport 

protocol configurations. They were designed to show that the AODV-LL implementation functions 

correctly with the data link layer route error reporting mechanism and the multiple wireless interface 

configuration in a simple TCP based network. Also included in the functionality tests, were tests to 

show that the AODV-LL implementation was compatible with the old AODV-HM implementation as well 

as tests to find the optimal transmit retry limit that should be used by the data link layer route error 

mechanism to ensure the correct detection of broken routes. 

The performance tests are also far from complete in terms of testing with all possible performance 

metrics and with all possible node and transport protocol configurations. Instead this research has 

focused on improving throughput at the application layer when using the IP routing and TCP transport 

protocols. These tests were based on the single performance metric, data throughput, which was 

measured at the application or user layer. All the tests were performed within the 11ST Networking 

Laboratory at Massey University, New Zealand (see Figure 7.1) . 
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Figure 7.11/ST Networking Laboratory Massey University 

The major software used in the testing was: 

- AODV-LL. The data link layer feedback based AODV implementation designed and 

created as part of this research 

- Kernel AODV 2.1. This was the hello message based AODV implementation used . The 

software was completely unmodified and was obtained from the official NIST Kernel AODV 

website [5] . Kernel AODV version 2.1 was chosen over version 2.2 since version 2.1 

operated better with multiple wireless network interfaces. 

- The Linux kernel v 2.4. The Red Hat 9 distribution of the Linux kernel was used as the 

base operating system for all the tests. Each computer in all the tests had identical makes 

of the operating system on them . 

- Netperf. This is a Linux based network performance testing software. It operates by the 
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destination running a Netperf server while the source runs the Netperf cl ient. For these 

tests we only used the TCP transport protocol in the throughput tests . After the Netperf 

client had connected to the Netperf server running on the destination , the Netperf client 

would then proceed to transmit a TCP stream of data to the Nelperf server, and display the 

throughput result. Options such as the size of the network buffers on the source and 

destination can be changed , along with the size of the data packet and the length of the 

throughput. For the performance based tests, each throughput tests ran for sixty seconds, 

with 8Mb of data being repeatedly transmitted until the sixty seconds were up. The sender 

and receiver network (socket) buffers sizes were set to 32Kb. For each performance test, 

the Netperf settings stayed constant. 

- Ethereal. Ethereal is capable of monitoring and recording all incoming and outgoing 

network packets on the node's network interfaces. This software was used primarily in the 

functionality tests as it was capable of decoding AODV packets, making it an effective tool 

to identify when AODV and the route error detection mechanism functioned incorrectly. 

Ethereal was also capable of identifying the AODV RERR message being sent from the 

wireless interface driver on the data link layer to AODV on the network layer as it was sent 

up through the normal Linux network stack being monitored by Ethereal. Ethereal could 

identify the packet was for AODV by the packet UDP port number, but was unable to 

identify that the packet was a RERR packet. This was due to the fact that when the 

wireless interface driver software generated the RERR packet, the UDP checksum wasn't 

added on to the end of the RERR packet, as it was not needed . Therefore the packet size is 

smaller then expected by Ethereal and it checks the wrong bit in the RERR packet to 

determine what type of AODV message it is . As a result, the RERR message from the 

wireless interface driver software appears in the Ethereal packet capture list as an AODV 

packet but with out the AODV type being defined. This is shown more clearly in the 

Ethereal screenshots in Section 8.0. 

- IP Tables. The Linux IP Tables filter/firewall software was used to artificially create hops 

between nodes when needed. Since all the tests were performed with in a laboratory, it was 

not possible to separate the nodes far enough apart so that each node was only within the 

radio range of the next node one hop away in the route . Therefore the distance between 

the nodes was artificially created by setting up MAC address filters on each node using the 
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IP Tables software. This way a node could only accept frames with the MAC address of the 

nodes one hop away either upstream or downstream in the route. When using multiple 

wireless network interfaces, MAC address filtering wasn't needed, since each wireless 

interface pair could be configured to operate on a different frequency. 

- General networking tools used for the functionality tests include the PING command which 

sends an ICMP echo request to a destination which responds with an ICMP echo reply. 

The following outlines the hardware used in the testing: 

- Micronet SP906B wireless interfaces. For all the tests a total of eight IEEE 802.11 b 

compliant wireless network interface cards were used with a maximum transmit rate of 

11 Mbps. In all the tests, all security encryption functions on the cards were turned off, 

along with fragmentation functions and each card was forced to only operate at 11 Mbps. 

For all the tests, the cards operated in ad-hoc mode (IBSS mode). Initially three Micronet 

SP906B PCI wireless cards were purchased for the testing . These cards were based on 

the ADM8211 chipset from Admtek. The ADM8211 chipset had open source Linux based 

drivers, which were modified to enable the use of the transmit retry limit interrupt. For all 

the functionality tests the SP906B cards were used. See Figure 7.2. 

Figure 7.2 Micronet SP906B PC/ wireless interface with the ADM8211 chipset 
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- Micronet SP906BB wireless interfaces. Later in the research another five wireless cards 

were needed to use with the other three for the performance tests. By this stage the 

SP906B wireless card was no longer produced and instead five IEEE 802.11 complaint 

SP906BB PCI cards were purchased. The Micronet SP906BB was the updated version of 

the SP906B and operated on the Realtek 8180 chipset. The Realtek chipset had Linux 

based drivers but they were not completely open source and therefore could not be 

modified to utilize the transmit retry limit. When used with the AODV-LL implementation, 

this meant broken links could not be detected. For the performance tests though, the focus 

was comparing throughput between the AODV-HM and AODV-LL implementations along 

using multiple wireless interfaces, as opposed to testing the route error detection 

capabilities like with the functionality tests. Because of this, the Realtek chipset cards could 

still be used in the performance tests since all the nodes in the routes were static and 

broken links never occurred. See Figure 7.3. 

• LAN PCI Adapter 
Wir~l~ss 

Figure 7. 3 Micronet SP906BB wireless interface with the RTL8180L chipset 

- Computers. For all the tests standard desktop PCs were used. For the functionality tests 

three identical PCs were used, consisting of 500MHz Intel Pentium 3 processors with 

256MB of RAM. These three PCs were also used for the for the performance tests along 

five other PCs consisting of 2GHz Intel Pentium four processors with 256MB of RAM. 
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Initially there was concern that the faster PCs could affect the throughput performance, but 

testing done as part of the functionality tests showed that once the route was set up by 

AODV, there was very little processor usage while the actual throughput tests were taking 

place, even on the slower PCs, concluding that the effect on throughput caused by the PC 

hardware was negligible compared to the effect caused by the header overheads from the 

IEEE 802.11 protocol. 

7.1 Functionality Test Methodology 

The functionality tests were divided into three groups of tests. The first was designed to find the 

optimal transmit retry limit. The second group of tests tested the operation of the AODV-LL 

implementation to ensure that it conformed to the AODV protocol and more importantly, that the data 

link layer route error detection worked correctly. The third test ensured that the AODV-LL 

implementation operated correctly with both two and four wireless interfaces. 

7.1.1 Optimal Transmit Retry Limit Test 

The transmit retry limit determines how many times the MAC layer should retry transmitting a frame 

after is has failed to receive a MAC acknowledgment for a transmitted frame. Since the trigger for the 

data link layer route error generation mechanism designed in this research is the event of the MAC 

exceeding the transmit retry limit, the value of the transmit retry limit is critical to ensure that the data 

link layer router error generation process operates correctly and efficiently. If the transmit retry limit is 

to low, it will be exceeded every time there is even a slight disruption in the network traffic flow, 

resulting in the route error generation process incorrectly reporting a broken route. Incorrect reports of 

a broken route would have adverse effects on the performance of AODV-LL as it would result in all 

traffic going out the affected route being unnecessarily stopped while AODV sends out RREQs to look 

for a new route. If the transmit retry limit is too high, then there would be unnecessary delays before 

the route error generation process is notified of a broken route, which in turn would create more delays 

in the higher layers before a new route is found . 

Due to these reasons, a test was performed to find the optimal transmit retry limit. In the test the 

transmit retry limit was initially set to zero and then increased by one for each test run. In each test run , 
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a TCP stream throughput test using Netperf lasting ten seconds was run three times. The number of 

times the transmit retry limit was exceeded during each individual throughput test was recorded and 

after the three throughput tests, the average number of times the transmit retry limit was exceeded was 

calculated . The tests runs continued , increasing the transmit retry limit by one each time, until the 

number of times the retry limit was being exceeded was zero for a significant number of test runs. 

7.1.2 Operational Tests 

The operational tests focused on two areas: the operation of the data link layer feedback error 

detection, and the operation of the AODV-LL implementation . The purpose of the operational tests was 

to ensure that the data link layer feedback error detection was working correctly, along with the AODV­

LL implementation . The AODV-LL implementation was a significantly modified version of Kernel 

AODV, the original hello message based AODV implementation, especially in the areas of managing 

neighboring node routes and route errors using the data link layer feedback. Because of this the 

operational tests were designed to check that AODV-LL and the route error detection operated as 

expected. 

The tests covered three major functions of the AODV, finding a route using RREQs, completing the 

route finding process using RREPs, and thirdly, detecting a broken route and then taking appropriate 

actions to find a new route. For the test, three PCs were used, forming a source, intermediate and 

destination node over a two hop route with the hops being artificially created using the IP Tables 

software. 

A total of three operation tests were performed. In the first test ICMP requests using the PING 

command were sent from the source node to the destination node by passing through the intermediate 

node. This was simply to see if the AODV-LL implementation was capable of setting up and managing 

a basic AODV route. The same was performed again in the second test, with the source node sending 

ICMP requests to the destination node by going through the intermediate node. When the connection 

had been correctly set up by the AODV-LL implementation , and ICMP replies were arriving back from 

the destination node, then the network interface on the destination node was turned off for a several 

seconds and then back on , forcing the route to be broken but then allowing it to be found again . This 

showed firstly; if the route error process on the data link layer functioned correctly, and secondly; it 

showed how the AODV-LL implementation would handle the route errors sent to it by the data link 
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layer. This same test was performed again in the third test but instead the network interface on the 

intermediate node instead of the destination node was switched off and back on again. 

7.1.3 Compatibility Tests 

The compatibility tests, tested if the AODV-LL was compatible with the hello message based AODV 

implementation, Kernel AODV, but was still capable of keeping hello messages to a minimum. 

Providing compatibility between the data link layer feedback based AODV implementation and the hello 

message based AODV implementation was considered important if the AODV-LL implementation was 

used in a real world scenario where the existence of hello message based nodes would be quite 

probable. The compatibility test setup was the same as the operational tests, with three PCs forming a 

two hop route. With the compatibility tests through, the destination node ran Kernel AODV, a hello 

message based AODV, instead of AODV-LL. 

Two compatibility tests were performed. In the first test ICMP requests were transmitted from the 

source node to the destination node through the intermediate node. This was simply to show the 

AODV-LL implementation operating on the intermediate node could correctly set up and manage a 

route between an AODV-LL node and an AODV-HM based node. For the second test, ICMP requests 

were once again sent from the source node through the intermediate to the destination node. This time 

through, once the route was found and the connection operating correctly, the intermediate node's 

wireless interface was halted for several seconds then turned back on, forcing the link to be broken and 

then reset again. 

7.1.4 Multiple Interfaces Tests 

The multiple interface tests were designed to test the compatibility between AODV-LL and multiple 

interfaces, specifically two and four interfaces per node. For these tests, three PCs over a two hop 

route were used just like the operational and compatibility tests, although in this case, IP Tables didn't 

need to be used to artificially create the hops, since each interface pair could be set to operate on 

separate frequencies, creating non-conflicting hops. The tests were preformed as the same as the 

operational tests, where ICMP requests were sent from the source to the destination nodes, forcing 

AODV-LL to setup a route through the intermediate node. Using Ethereal, the network traffic could be 

monitored so it could be seen if the AODV-LL implementation was capable of working with multiple 
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interfaces. 

For the two interface per node test, only four wireless NICs were required (as apposed to six) since only 

the intermediate node required two (an upstream and downstream ) interfaces while the source only 

needed the upstream interface and the destination only needed the downstream interface. In the same 

way, for the four interfaces per node test, eight wireless interfaces were required (four for the 

intermediate and two each for the source and destination) rather then twelve. Since only three wireless 

interfaces (the ADMTEK chipset based interfaces) were capable of generating the data link layer 

feedback, it was ensured that the interfaces that would detect the broken link in the tests were 

ADMTEK chipset based interfaces. This way the tests could be run as if all the interfaces were capable 

of data link layer feedback. See Figure 7.4 

7 .2 Performance Test Methodology 

The performance tests were designed to show how throughput at the application layer was affected by 

the combination of two software factors and three hardware factors over a range of multiple hop routes. 

The software factors were: 

- each node using the hello message based AODV implementation Kernel AODV 

- each node using the data link layer feedback based AODV implementation AODV-LL 

The hardware factors were: 

- each node using a single wireless interface 

- each node using two wireless interfaces 

- each node using four wireless interfaces 

Due to the number of wireless interfaces available, tests using one and two wireless interfaces per 

node were done for routes with one to four hops, while for the four interfaces per node tests, routes 

only up to two hops were used. Out of the eight wireless cards used, only three cards were capable of 

generating data link layer feedback route detection which meant when using the AODV-LL 

implementation, only the three nodes with the capable wireless interfaces were able to detect broken 

links. To overcome this problem, it was assumed that this test represented a scenario where each 

node was static, resulting in no broken links and therefore no route errors. This assumption was 

considered sufficient for the performance tests since they were only designed to show how hello 
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Figure 7. 4 Different views of the four wireless interfaces installed in the computer showing also the antennas used. The top 

three interfaces are the ADMB211 chipset interfaces while the bottom interface is the RTLB1B0L chipset interface 
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messages and multiple wireless interfaces affected throughput rather then showing how well the data 

link layer feedback operated . 

Within the performance tests three major tests were run . In the first major test each node used one 

wireless interface, in the second test each node used two wireless interfaces and in the third test each 

node used four wireless interfaces. For each test, firstly all the nodes ran Kernel AODV and then the 

tests were re-run with each node running AODV-LL. 

In each test, first the AODV implementation was used to create a route to the furtherest node in the 

route, whether this was four hops away as with the single and double cards per node configuration or 

two hops away for the four card per node configuration . Once the route was set up, throughput tests 

were performed using Netperf. The throughput tests were run from the source node to the furtherest 

node over the route, and then re-run to the next node one hop closer and so forth so that all the 

different hop routes were tested . Each individual throughput test lasted for sixty seconds and was run 

ten times resulting in ten minutes per test and a total of forty minutes to test all the different hop routes 

in the single and double card configuration tests and twenty minutes to test the four card configuration 

test. From each of the ten individual throughput tests, the average was then calculated . 

7.3 Testing Using Actual Hardware and Software 

Performing tests using simulation software or similar has the advantage of easi ly being able to control 

the test environment but has the disadvantage of not always reflecting the actual test scenario. In this 

research , actual hardware and software was used to help reflect real world environments and also 

show that the results can be achieved using easily accessible hardware and software. The testing 

environment used in this research was based within a laboratory using computers with standard 

wireless cards. Even through this barely represents actual wireless mesh networks that could exist, 

such as a crowd of people on a campus with wireless capable notebooks, the problems encounted 

during the tests, still highlighted the often non-uniform behavior of actual wireless hardware. During the 

tests it was observed that wireless links are difficult to predict and that throughput could often be 

influenced by factors such as the wireless equipment not performing as expected , or the placement of 

the wireless antennas or even other equipment within the laboratory such as chairs and tables. Dealing 

with other wireless hardware in the surrounding university campus also presented a problem at times. 
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Because of these reasons it was always ensured that before each test, the environment was made as 

uniform as possible, that no other wireless networks were present while the tests were taking place, 

and that all wireless equipment was operating as expected. To ensure good placement of antennas, 

the destination node across the multiple hop routes was "pinged" while moving the antennas. When the 

ping times were consistent the antennas were considered to be in a suitable position and then this 

position was kept the same for all tests to ensure no test configuration had an advantage over any 

other tests. This way it was ensured that the test results best reflected the effects of the AODV-HM and 

AODV-LL implementations, as well as the different wireless interface configurations. 
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8 Results And Discussion 

8.1 Functionality Results 

The functionality tests were designed to test the AODV-LL implementation for correct AODV operation 

and compatibility with the data link layer route error detection technique, hello message based AODV 

implementations and multiple wireless interfaces. The following show the results of the functionality 

tests. 

8.1.1 Optimal Transmit Retry Limit 

Numoer or Times Retry Limle was E.Xeceeele<l vs Reery Limle size 

4X 

1 

·:o 

·~ . 

2 3 4 5 1 Z ' ; · a • 5 ;; ·e 9 20 ; , 22 2! 24 ZS 

Figure 8.1 Number of Times Retry Limit was Exceeded vs Retry Limit Size 
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Figure 8.1 shows the results of the optimal transmit retry limit test. When the retry limit was set to zero, 

there was a large number of times it was exceeded which then dropped dramatically when the transmit 

retry limit was set to one. This shows how during the throughput test, a large number of packets 

needed to be retransmitted at least once. Increasing the retry limit from one to ten, decreases the 

number of times it is exceeded in a fairly linear fashion. Setting the retry limit to sixteen and above 

consistently resulted in zero retransmits. Based on these results it was decided to set the retry transmit 

limit to twenty, which was chosen to ensure that the retry transmit limit would only be exceeded when 

the link was truly broken but also keep the broken link detection time to a minimum. 

The results from this test shows how critical it is to correctly set the transmit retry limit for the data link 

layer route error detection to work correctly. In a real scenario, if the transmit retry limit was set 

anyway below five, it would most likely result in all the routes being useless, since the broken route 

detection process in the data link layer would be constantly and incorrectly detecting broken routes, 

prompting AODV to find new routes. Even with the retry limit set between five and ten would cause 

serious disruptions to any route. Based on these test results, setting the retry limit to twenty would be 

sufficient for any applications that are as network intensive or less as the throughput tests used in the 

test. In a real world scenario though, if applications are used which are very network usage intensive, 

then it would be best to re-evaluate the retry limit size, in order to ensure that there are no incorrect 

broken route detections. 

8.1.2 Operation 

The first operation test showed if the AODV-LL implementation was capable of creating and managing 

a simple two-hop route from the source node which passed through the intermediate node to the 

destination node. In this first test, the kernel messages on each node - which includes messages 

output by the AODV-LL implementation - were collected along with the Ethereal capture of the network 

traffic on the intermediate node. Figure 8.2 to Figure 8.8 shows these results, starting from the source 

node through to the destination node. 

Figure 8.2 shows the kernel messages on the source node for the first operation test. They show how 

AODV-LL firstly configures itself and the wireless network interfaces it uses when it loads up. AODV-LL 

then transmits a RREQ for 10.0.0.3 (the destination node's IP address) and then later receives the 

RREP back from the destination node. Before AODV-LL processes the RREP from the destination 

Institute of Information Sciences and Technology - 72 -



fil e f_dit Yiew I.ermin.i l ~o .t:!e lp 

<4> 
<4>- =: AODV-LL :=-

. . , . 

<4>Based on Kernel AODV v 2 .2 by Luke Kl ein- Berndt 
<.4>i\'i r eless Comrnunicat i ons Tec hnologies Gr oup 
<4>N ational Institue of Standards and Tec hnology 
<4> Modified by Matt Sinclair 
<.4>IIST, Massey Univers it y , New Zealand 
<4>--- ------------------------------ --- ---------
<6>AODV DE.V: Adding i nterface: ethO I P: 10 .0.0.1 Subnet : 10.0 .0. 0 
<.4>AODV MDDULE : Princi pal IP address - 10.0 . 0. 1 
<6>AODV RREO: Generating a RREO fo r : 10.0.0 . 3 
<.6>AODV ROUTE : Creating ro ut e fo r neighbor : 10.0.0. 2 
<6>AODV RREP : Received a rout e t o : 10.0 . 0.3 next hop : 10 . 0. 0 .2 

I 

Matthew Kersley Sinclai r 

D X 

Figure 8. 2 Messages displayed by the kernel on the source node in first operational test 

node, the kernel messages shows how it firstly sets up a neighboring node route to the intermediate 

node (10.0.0.2). This is necessary as a route to the intermediate node is needed as it becomes the 

next hop or gateway to the destination node. 

Figure 8.3 shows the Ethereal capture of the network traffic passing through the intermediate node. 

Although the network traffic could have been captured on both the source and destination nodes, it was 

sufficient to only capture the traffic on the intermediate node, since all traffic passed through it, and as a 

result providing the best picture of the operation of the AODV-LL implementation . In the Ethereal 

packet captures, the green bars show AODV RREQs, the yellow bars show AODV RREPs and the red 

bars show the ICMP requests and replies. Figure 8.3 shows how firstly the source node (shown by the 

IP source address column) broadcasts (shown by the IP destination column where 255.255.255.255 is 

the broadcast address) an AODV RREQ packet (as shown by the info column) . The intermediate node 

receives the RREQ broadcast and re-broadcasts it, as at that time it doesn't have a route to the 

destination node. The destination node receives the RREQ broadcast from the intermediate node and 

No . • Time Protocol IP Source Addr MAC Source Addr MAC Dest Addr Info 

l I OQ lQQO AOC :!ource < ~ I Jr e f;rr1 aca!lt J;.,:u1 e Peque~"' D lll 

n nnnia~ H1r r te.H·r,p,j1 :,.t ~ t I: " ': ~ ': tr: 1 ,te:: 1_CJ.1..:- t,.. B 1-1d ) t Roule Peq.,1;...,t n j() 

0.003193 AODV destination intermediate de" t ina t io.n in terrrted iate Route Reply, 0: 10.0. 

8 0 . 004761 AODV interl'led;i__ate sour e ;Ln erl'"lBdiate s ourc e Route Rel) ly, 0 : 10.0. 

9 0 040317 ICMP source destination source inter eiediate Echo (p ina) request 
10 0.040436 ICMP source destination intereiediate destination Echo (p in&) request 
11 0 0421 20 I CMP destination source destination inter eiediate Echo (pini) reply 
12 o. 042178 ICMP destination source intereiediate ~ource Echo (pini\) reply 
13 1 . 006821 ICMP source destination .source inter eiediate Echo (p ini) request 
14 1 , 006897 ICMP source destination interl'lediate destination Echo (pinal request 
15 1. 007398 ICMP dest i nat i on ~ource destination inter mediate Echo (pina) reply 
16 1, 007424 ICMP destination source interr,ediate source Echo (ping) reply 

Figure 8.3 AODVand ICMP network traffic on the intermediate node during the first operational test 
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then transmits a RREP back to the intermediate node. The intermediate node then forwards the RREP 

to the source node, completing the route. The source node can now begin the ICMP requesUreply 

transactions with the destination node. For the ICMP packets, the IP source and destination addresses 

say the packets are going from the source node to the destination node for the ICMP requests and in 

the opposite direction for the ICMP replies, although by looking at the MAC addresses within the ICMP 

packets, it can be seen that as expected, they are actually traveling from the source node, to the 

intermediate node and then to the destination node, and vice versa for the ICMP replies. 

Eile fdit ~iew I.em ina l ~o .t!e lp 

<4>-=: AODV-LL :=-
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<6>AODV ROUTE: Creating route for neighbor: 10.0.0.3 
<6>AODV RREP: Received a route to: 10.0.0.3 next hop: 10.0.0.3 
<6>AODV RREP: Forn·arding a route to: 10.0.0.3 from node: 10.0.0 . 1 

Figure 8.4 Kernel messages on the intermediate node during the first operational test 

_ox 

Figure 8.4 shows the kernel messages for the intermediate node during the test. Unlike with the 

Ethereal capture, the kernel messages also shows AODV-LL setting up routes to it's neighboring 

nodes, the source node (10.0.0.1) and the destination node (10.0.0.3). Figure 8.5 shows the kernel 

messages displayed on the destination node during the test. They are the similar to the messages on 

the source node, expect a RREP is being generated, instead of the RREQ. 

These results showed that the AODV-LL implementation could successfully find and create a simple 

two hop route. 

The second operational test checked that the route error detection process built into the wireless 

interface drivers, operated correctly and also that the AODV-LL responded correctly to the route error 

information passed to it by the wireless interface driver on the data link layer. In the second operational 

test, a simple route was set up from the source node and through the intermediate node to the 
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Figure 8. 5 Kernel messages displayed on the destination node during the first operational test 
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destination node. The interface on the destination node was turned off then back on , forcing the route 

to be broken and then allowing it to be found again . The behavior of the AODV-LL implementation 

during this test was viewed through Ethereal and the kernel messages. 
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Figure 8. 6 Kernel messages displayed on the source node during the second operational test 
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Figure 8. 6 shows the AODV-LL implementation on the source node going through the process of 

finding and creating a route to the destination node and then receiving a RERR for the destination 

node, from the intermediate node. AODV-LL responds to this by immediately expiring the the route to 

the destination node so that it no longer used and then starts generating RREQs for the destination 

node. A short while later the route to the destination node is removed completely and the RREQs 

continue. Th is process of firstly expiring a route, which involves marking the route as invalid so it isn't 

used, but not completely removing the route (and the associated sequence number) until a certain time 

later, is required by the AODV protocol to stop routing loops occurring. The last part of the kernel 

messages show how the route to the destination is found again . 

Figure 8. 7 shows the ICMP request results during the test, showing the route going down and then 

restored . They also show how as a result of AODV removing the broken route, the kernel routing 

process then correctly reports the destination node as being unreachable. 

~dit _ie Ien in.ii ~o tlelp 
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Figure 8. 7 /CMP request results during the second operational test 
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Figure 8. 8 Kernel messages displayed on the intennediate during the second operational test 

The next results (Figure 8.8) show the kernel messages displayed on the intermediate node during the 

test. This shows the intermediate setting up the route between the source and destination node, and 

then forwarding data between them . The AOOV Packet_in process within AODV-LL then reports 

receiving a RERR from the data link layer. This is the RERR generated by the wireless interface driver, 

after it has detected that the transmit retry limit was exceeded, due to the link between the intermediate 

and destination node going down. The AODV Route process then immediately expires the route to the 

destination node after which the AODV RERR process takes over, notifying through the kernel 

messages that a broken link to 10.0.0.3 (the destination node) has occurred . AODV then broadcasts a 

RERR. Next the AOOV RERR process informs it has received a RERR from 10.0.0.1 (the source 

node) . This is the RERR rebroadcast by the source node as a result of the RERR that has just been 

transmitted from intermediate node. The intermediate node recognizes that this RERR from the source 

is the same as the one it has just broadcast and processes it no further. This can be seen by 

comparing Figure 8.8 with Figure 8.6. In Figure 8.6, when the source node receives the RERR from the 

intermediate node, the AOOV RERR process informs the kernel that the RERR has been received , then 

straight after, informs the kernel that the affected route has been expired . In Figure 8.8 when the 
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intermediate node receives the RERR for the source node, the AOOV RERR process informs the kernel 

that it has received the RERR but then takes no further action since the route to 10.0.0.3 has already 

been expired. The next message in Figure 8.8 shows the AOOV ROUTE process removing the route 

after waiting the "delete period". The next messages show that the a RREP is received from the 

destination node, as the link is restored, and then the intermediate node forwarding the RREP on to the 

source node to complete the route . 
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Figure 8. 9 Second operational test, intermediate node: detecting the broken route 

Figure 8.9 and Figure 8.10 both show the same Ethereal capture from the intermediate node during the 

second operational test but it has been split into two screenshots to make it easier to view. Figure 8.9 

shows the first half of the test. In this figure, the white bar is Ethereal detecting the RERR packet being 

sent from the wireless interface driver on the data link layer to AODV-LL in the routing layer. Although 

Ethereal decodes the packet as an AODV packet by viewing the UDP port address within the packet, it 

doesn't detect it as a RERR message, since the packet is missing the UDP checksum on the end, 

resulting in Ethereal checking the wrong parts of the packet due to the incorrect length of the packet. 

Having a UDP checksum on the packet wasn't necessary as the packet is simply sent up the network 

stack and not transmitted. When the route error detection process within the wireless interface driver 

creates the RERR packet, it sets the IP and MAC destination and source addresses as if the RERR 

was actually received from the node at the end of the broken link. The reason for this is so that AODV­

LL didn't discard the RERR, thinking it was from itself. This can be seen in the Ethereal capture by 

looking at the IP and MAC source and destination address columns, for the data link layer RERR error 

packet. It is interesting to see that the time between detecting the broken link and the data link layer 

RERR being detected, and then the actual AODV RERR being broadcast, is almost instant. With hello 

message based AODV implementations, usually at least two hello messages have to be missed before 

a link is considered broken. Since hello messages are normally broadcast once a second , this means 

for the AODV-HM implementations, it would normally take two seconds at least before a RERR is 
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generated after a link. This is significantly longer then when using data link layer route error detection . 

In two seconds, while the AODV-HM implementation is still just detecting the link is broken, an AODV­

LL implementation could have easily detected the broken route and found a new route to the 

destination, keeping the network disruption to a minimum. 

The Ethereal capture in Figure 8.9 continues on to show that after the data link layer RERR is received , 

the intermediate node then immediately broadcasts a proper AODV RERR, which is forwarded on by 

the source node. The source node then starts broadcasting RREQs, looking for the destination node, 

which are forwarded on by the intermediate node. 
~ -
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Figure 8.10 Second operational test, intermediate node: restoring the route 

The second half of the test, shown by Figure 8.10 simply shows how the intermediate node finally 

receives a RREP from the destination node, after it has started back up again . The RREP is forwarded 

on to the source node and the ICMP packet transfer starts again. 

Figure 8. 11 shows the kernel messages on the destination node during the test. The kernel messages 

show AODV-LL setting up the route to the source node, followed by the wireless interface being turned 

off (adm8201 close) and then being turned back on again (adm8211 open) , followed by AODV 

generating RREPs for the RREQs received from the intermediate node. Four RREPs are generated 

since there is a significant delay between when the wireless interface starts receiving packets and when 

it is capable of actually transmitting packets. Because of this , around four RREQs were received by the 

wireless interface and sent to AODV to process, but it was not until the fourth RREQ was sent back 

down by AODV that the wireless interface was capable of actually transmitting packets . 

The results from the second operational test, showed that the data link layer route error detection 

worked correctly and that the AODV-LL implementation also responded correctly when the data link 

layer route error was sent to it. 

- 79 - Massey University 



Performance Improvements to the AODV Routing Protocol and Multiple Hop Wireless Routes 

]:ile s_dit yjew I.en ·nal §.o Help 

<4> 
<4>-=: AODV-LL :=-
<4>Based on Kernel AODV v 2.2 by Luke Klein-Berndt 
<4> \'ire less Comn1unicat ions Technologies Group 
<4>National Institue of Standards and Technology 
<4>1-1odified by Matt Sinclair 
<4>IIST , Massey University, New Zealand 
<4>---------------------------------------------

- • X 

<6>AODV DEV: Adding interface: ethO IP: 10.0 .0.3 Subnet: 10.0.0 .0 
<4>AODV I, DULE : Pri ncipal IP address - 10.0.0.3 
<6>AODV ROUTE: Cre.:iting route for neighbor: 10.0 .0.2 
<6>AODV RREQ: Destination Generating RREP - src: 10.0.0.1 dst: 10.0.0.3 
<4>0 
<4 >adn,8201 close 
<4>arun8211 open 
<4> set channel 5 
<6>AODV RREQ: Destination, Generating RREP - s rc: 10 .0.0. 1 ds t: 10 .0.0.3 
<4> start to send packet 
<6>AODV RREQ: De s tination , Generating RREP - s rc: 10.0.0.l ds t: 10.0.0.3 
<6>AODV RREQ: De stination , Generating RREP - src: 10 .0.0. l dst: 10.0.0.3 
<6>AODV RREQ: De s tination , Generating RREP - s rc: 10.0 .0. l dst: 10.0 .0.3 

I 
Figure 8. 11 Kernel messages displayed on the destination node during the second operational test 

The third operational test, was the same as the second, except the wireless interface on the 

intermediate node, rather then the destination node, was stopped and then restarted again some time 

later. For this test Ethereal could not be used on the intermediate node, as the wireless interface on 

this node was stopped. This test was designed to observe if the AODV-LL implementation could 

operate correctly when an intermediate node went down . 

As shown in Figure 8. 12, the third operational test started of with the source node going through the 

normal process of communicating with the intermediate node, to find a route to the destination node. 

Shortly after the intermediate node had forwarded on the ICMP ping reply shown by frame 18 in Figure 

8.13, the wireless interface on the intermediate node is stopped, forcing the broken route. One second 
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10 1. 013596 ICMP destination source inter"'8diate ~ource 
11 2 , 020608 ICMP :,ource de:,tination 3ource interMediate 

Figure 8. 12 Third operational test, source node: finding the route 

Institute of Information Sciences and Technology - 80 -

Info 

; t • PP l• • P • t r, 1 ;J 

~•. ·Jt~ PF>'1 11P,t [ I l 

Route Repl~ , O: 10 . 0 . 
Echo (p1na) reque3t 
Echo (pina) reply 
Echo (pin) reque3t 
Echo (pin) reply 
EchO (pina) reque:,t 



No . • Time Protocol 

17 5 050614 ICl4" 
18 6,063441 IC,-P 

t'l 6 060604 re""' 
20 6.19633 4 AOOV 
21 6 . 196751 AOOV 

l)f- Qf" ~ 

- J 8 ~t056fl 
J 11 

IP Source Addr IP Dest Addr MAC Source Addr 

source destination s ource 

d"stination :source intern,diate 
source deetination eourr.e 
destinat i on source in terMed i ate 
~ource 255 .2 55 ,2 55 ,2 55 s ource 

..iQLlt L s, ~~ ~- ., 1_1\,1 ' 
OLlr ... c 1.J•.-1rce 

~OtJrc • .. ,. IJl'i 1"" 

=-••Jr e " urce 

MAC Dest Addr 

interrrediate 
source 
lntere-ediate 
sourc e 
Broadcas t 
t:h ,_ ,.,J -' ' 
Brcau_a?St 
Bt n=,o_ ""r 
Br•Jdd-d t 

Matthew Kersley Sinclair 

Info 

Echo (pini) request 
Echo (pini) reply 
Echo (pine) requeet 

Route Error , Oest Count•2 
>cute PeoL1est O O 0 

1~uuie ~~que~t 0 
Ro.at~ ReQl,e~t O 1 n II ,I 

Q,_~•~ PeQue_t O lO 0 

Figure 8.13 Third operational test, source node: detecting the broken route 

later the source node tries to transmit another ICMP ping request to the destination, shown by frame 19 

in Figure 8.13. About 0.1 seconds later, through trying to transmit the ICMP ping request, the wireless 

interface driver has detected that the transmit retry limit was exceeded , assuming correctly that the 

route is broken, and as a result generates and sends an AODV RERR up the network stack, as shown 

by frame 20. Immediately, in frame 21 , AODV generates a proper AODV RERR, transmitting it to the 

broadcast address . One second later, and from then on every second, AODV transmits RREQs to find 

a route to the destination node. 

Figure 8.14 shows the intermediate node starting back up, resulting it in forwarding on the source 

nodes RREQs as shown in frames 28 to 31 . As a result, in frame 34, the source node finally receives a 

RREP back, through the intermediate node, from the destination . This sets the route back up and the 

ICMP packet transfer continues. Figure 8.14 also shows the delay between the wireless interface on 

the intermediate node after it was restarted being able to transmit and then being able to receive 

packets. This delay resulted in four RREQs being generated by AODV before the wireless interface 

could transmit any of them, then resulting in four RREPs being transmitted back from the destination 
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Figure 8.14 Third operational test, source node: restoring the route 
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node. 

Like the second test, the third operational test showed that the route error detection worked correctly 

and that the AODV-LL implementation was capable of managing nodes leaving the route and then 

joining the route again . 

Overall the operational tests showed that the route error detection process within the wireless interface 

driver was fast and effective, that the AODV-LL implementation responded correctly when it was 

notified of a broken link and that it operated correctly as specified by the AODV protocol. 

8.1.3 Compatibility 

The compatibility tests were designed to show that the AODV-LL implementation was completely 

compatible with AODV-HM implementations but was still capable of keeping hello messages to a 

minimum. A total of two tests were performed. 

In the first test, the source and intermediate nodes were running the AODV-LL implementation and the 

destination node was running the AODV-HM implementation. In Figure 8.15 the purple bars show hello 

messages, while the green bars show RREQs, the yellow bars show RREPs and the red bars show 

ICMP packets. Figure 8.15 shows a screenshot taken from the packet capture software Ethereal while 

the source node finds a route to the destination node and then begins to ping the destination . 
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Figure 8. 15 First compatibility test, source node: finding the route 
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During the whole test, the source node is receiving hello messages from the intermediate node, about 

once per second as according to the AODV protocol recommended rate. Even though the intermediate 

node is running the AODV-LL implementation , it is transmitting hello messages, as it is in range of the 

destination node which is running the AODV-HM implementation. To be compatible with a hello 

message based AODV implementation , the AODV-LL must broadcast hello messages, so that the 

AODV-HM implementation can detect the presence of the AODV-LL based node. Figure 8.15, shows 

how even though the source is receiving hello messages from the intermediate node, its not 

transmitting hello messages itself (if it was then they would be captured by Ethereal) . This is because 

the AODV-LL on the the source node can detect that the hello messages its receiving are from another 

AODV-LL based node. This feature is important since it means that when an AODV-HM based node 

enters the network, the hello messages that need to be broadcast are kept to a minimum. The figure 

carries on to show that as normal, the source node transmits a RREQ, which is then forwarded on by 

the intermediate node to the destination node. Soon after a RREP is received back and the ICMP 

packet transfer begins . 
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Figure 8.16 First compatibility test, intermediate node: setting up the route 

Figure 8.16 shows clearly the compatibility capabil ities of the AODV-LL implementation. The 

intermediate node is receiving hello messages from the destination node every second and responds 

by transmitting a hello message back. As a result, the AODV route finding process between the two 

different AODV types can complete without any errors and the ICMP packet transfer begins. 
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Figure 8. 17 First compatibility test, destination node: setting up the route 

Figure 8.17 shows the test as seen from the destination node running the AODV-HM implementation. It 

receives hello messages from the intermediate node and therefore treats it as a node running AODV 

with hello messages. The first compatibility test showed that the AODV-LL implementation can operate 

with an AODV-HM node, but still be able to detect between AODV-HM and AODV-LL based nodes. 

The second compatibility test involved setting the usual two hop route between the source and 

destination nodes, with the destination node running the AODV-HM implementation, and the other 

nodes running the AODV-LL implementations. Once the route was set up, it was broken by force by 

halting the interface on the intermediate node for a period of time. 

Figure 8.18 shows how in the second test, when the route is broken, the source node detects the 

broken route on the data link layer using the transmit retry limit, and sends a RRER (shown by frame 66 

) to AODV which then generates a proper RERR to be transmitted. Later the wireless interface on the 

intermediate node is started again and the intermediate node starts forwarding the RREQs (frames 83 

and 84) from the source node. Soon after this point, the intermediate node received a hello message 

from the destination node which is running the AODV-HM implementation . This is known because in 

frame 85, the intermediate node starts to broadcast hello messages in response to the hello messages 

being received from the destination node. 

It is interesting to observe that it is only soon after the intermediate starts to broadcast hello messages 

that a RREP is received back from the destination node. This is because before the destination node 

received any hello messages from the intermediate node, all AODV messages from the intermediate 
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Figure 8.18 Second compatibility test, source node: detecting and restoring the broken route 

node were discarded, as it was not until hello messages were received, that the intermediate node was 

added to the destination node's route table. Hello message based AODV implementations have to take 

this precaution of discarding AODV messages from neighboring nodes that don't transmit hello 

messages, as it is only through the neighboring node transmitting the hello messages that the receiving 

node can monitor the link, and detect broken routes. By accepting AODV messages from a 

neighboring node not transmitting hello messages, routes can form which can't be monitored or 

managed properly. 

In Figure 8.19 which shows the test from the destination node's point of view, the route is broken soon 

after frame 49, which is the last hello message from the intermediate node. About two seconds later, 

the destination node has transmitted two hello messages but has received none from the intermediate 

node and then assumes that the route to the intermediate node is broken and a RERR is broadcast. 

Later, in frame 75, the destination node starts receiving RREQs from the intermediate node but no 

action is taken until the first hello message is received from the intermediate node in frame 78. The 

intermediate node is now added to the destination node's route table and a RREP is transmitted back in 

response to the next RREQ from the intermediate node. This then restores the route and the ICMP 

packet transfer continues. 
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Figure 8.19 Second compatibility test: destination node, detecting and restoring the broken route 

This second test showed how the AODV-LL implementation is capable of leaving and then joining a 

mixed style AODV network, as well as detecting and adapting to the different hello message and non­

hello message based nodes around it. 

The AODV-LL implementation, in terms of route error detection, doesn't use the hello messages from 

AODV-HM based nodes for any purpose and instead still detects broken links to these types of nodes 

using the data link layer. For th is reason compatibility tests showing an AODV-LL node detecting a 

broken link with an AODV-HM didn't need to be performed, as the results would be the same as with 

the operational tests. 

Overall the compatibility tests showed that the AODV-LL implementation is completely compatible with 

hello message based AODV implementations. The AODV-LL implementation is also capable of keeping 

hello messages to a minimum by being able to detect hello messages from AODV-LL nodes as 

apposed to genuine hello messages. 

8.1.4 Multiple Interfaces 

Figure 8.20 shows the intermediate node's kernel route table which has been set up by the AODV-LL 

implementation during the first multiple interfaces test wh ich used two wireless interfaces per node. 

The route table shows a route to the source and destination nodes, followed by two routes to itself, 
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Figure 8.20 Kernel route table on the intennediate node during the two interface per node test 

followed by two default routes to the 10.0.0.0 IP range and finally the loopback route. Evidence of the 

use of two wireless interfaces is shown in the /face or interface column. In the interface column, wlanO 

is the name given to the Realtek chipset wireless interface, while eth1 is the name given to the Admtek 

chipset wireless interfaceand lo is the loopback interface. There are two default routes and two routes 

to itself, since there are two wireless interfaces being used. As can be seen the route to the source 

node is through w/anO, while the route to the destination node is through eth1 therefore showing how 

the two interfaces have been correctly assigned by AODV-LL to an "upstream" and "downstream" route. 

Figure 8.21 shows AODV using the two interfaces on the intermediate during the multiple interface test. 

This can be seen by looking at the MAC Source Unresolved column when the ICMP packets are being 

forwarded between the source and destination nodes. The intermediate node's unresolved MAC 

source address when forwarding the ICMP request from the source to the destination is different to the 

unresolved MAC source address used when the ICMP reply is forwarded back in the opposite direction. 

This shows how the route has been set up by AODV so that one interface on the intermediate node is 

----
No, . Time Protocol IP Source Addr IP Dost Addr MAC Source Addr MAC Source Unreso Info 

• l H•'D e >' ' 
,. 0 ,. J:-ea"e~'" n 0 ' n ~ 0 

Ill JS , ...... ',r, 1 ' r , I ~f'• '·' '' '·' " ., .... r 11"11'" ' f • .t,. 1·e11ue t [J 10 I n 
II Je ~ r.i ·,-, ir,t,, ""t"l~d1 .. • i!! ,, '~ ,, 

'f l ' rr · 110.t c, a• J r" F"1 a.te PeaL.P.st [J 1n 0 3 0 

i2 1 , 7_ 10C68 Ap0V des~ina,tion inte ""' a•e dest,inatip OO:e0:98:a5 ; c f:f ;3 Route Re l 0: 10. o. 0. 3, 0 : 

1~ 18. 716846 A00V intermediate eource intermediate 00 · 50: fc : 49: 19:cf Route Repl:t 0: 10. 0. 0. 3., 0 

16 18 746389 ICl'P source deetination :,ource 00 eO 98 &.5·cr f4 Echo (pini!) requcet 
17 18 . 746611 ICl'P source deet1nat1on 1.nterTT"ed1ate 00 e0,98:aa:ad;D9 Echo (pini!) requeot 
18 18 . 747 669 ICl'P des tin• t ion 9ource deetination 00 e0:98 : as:cf:fJ Echo (pine> reply 
19 16 , 747726 ICl'P deat inat ion aource in t.errredia te 00,50:fc:49:19 cf Echo (pine) reply 
20 19 .715938 ICl'P source destination source 00 e0 : 98 : &.5:cF: f4 Echo (pinaJ request 
21 19 . 716003 ICl'P eource deetinalion 1nter,..,diate DO eO: 98 : 44:ad: 09 Echo (prn&l request 
22 19 , 717456 lCl'P dee t ina t ion •ource destination 00 e0 , 98:&.6:cf•fJ Echo (pina> reply 
23 19 . 717 •8• ICl'P destination eource interr,ediate 00 50:fc : o:19 cf Echo (pin&) reply 
26 20 . 725951 ICl'P aourc.e daat inat ion • ource DO eO: 98 :a.5:cf f4 Echo (pin&) request 

27 20. 726011 ICl'P ,ource destination 1nterP1ediate 00 eO: 98 : "":&.d 09 Echo <pine> request 

28 20 . 72767 4 ICl'P de•tination eource des 1nation DO e0:98 a6 : cf f J Echo (pin&) reply 

29 20 727701 ICl'P destination source interr,ediate 00 50: re 49 :19 er Echo (pine> reply 
30 21. 735749 ICl<P source destination :,ource 00 e0 98 . &.5: cf : f4 Echo (pin&) request 

---
Figure 8.21 AODV-LL using the two wireless interfaces on the intennediate node during the first ,multiple interface test 
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used for the link with the source node, while the other interface is used for the link with the destination 

node. 

It is also interesting to observe that when the intermediate node receives the initial RREQ from the 

source node, the RREQ is then broadcast on both the interfaces, rather then a single interface. This is 

an important feature when using multiple interfaces, since there is no way to determine if the 

destination node is operating on the same channel as the first or second wireless interface. This also 

shows how the number of broadcast transmissions within an AODV network will increase significantly 

when multiple interfaces are used, since broadcast packets (at least when using two interfaces per 

node) need to transmitted out each interface. In the case of four interfaces per node, only two 

interfaces on each node are for outgoing traffic, while the other two are only for incoming traffic. 

Therefore, with four interfaces per node, the broadcast packets will only need to be transmitted out two 

interfaces. Using AODV-LL, RREQs and RERRs are the only AODV messages broadcast, while with a 

hello messages based AODV, every hello message is broadcast. Because of this, using multiple 

interfaces with a hello message based AODV could result in a significant extra amount of network 

traffic. 

In the next set of tests four interfaces per node were used. As explained in the Section 7.0, AODV-LL 

was modified so that it could assign the four interfaces into two pairs: one pair for "upstream" traffic and 

the other for "downstream" traffic. Then within each pair, AODV-LL assigned one interface for only 

incoming traffic while the other interface was assigned only for outgoing traffic. This was also done in 

such a way that within each pair the "outgoing" interface was connected to the "incoming" interface on 

the neighboring node across the other side of the hop in the route, and vice versa for the other interface 

within each pair, thus creating a full duplex capable connection . 

No. Time Protocol IP Source Addr IP Dest Addr MAC Source Addr MAC Source Unreso Info 
• 5c -.c C •J •· ... 

II JI" e ~ -') t;~ FjC' C-1:' I ' ( 8 c, ' ( r 11,t F~1•Jj• r n }I 

1ri trf"t€.l l ~t.=• ... "'~ .c..~ _51,; ... ,c- ... I1 • ern-::J1:::d-= I.ILI ' t '"c --lC tc :Jt f.: uti: F- e I ie~t D l 

r1 tt:" t , "'"J t-- 'J ';r 

destination i nte r MedJ.ate 
interr1edi~ e ~ource 
source destination 

destinat i on ·&O: • ~ : 49 : 19:cf 
in erMediate 00 ·o:00: 1 0 . 90 • 34 

[I 1 

0 I 

eourc e 00 30 : 00 : 10 90.9c Echo (pin• request 
28 22 , 788489 ICMP source destina ion in erl'lediate 00 : e0 : 98 : aa : ad : 09 Echo (pini) req1Jeet 

29 22 , 79 3'3 4 ICMP destination source de!ltination 00 60 : fc : 49 19 . cf Echo (p i n ) reply 

Figure 8.22 AODV-LL using four interfaces on the intermediate node 
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Figure 8.22, shows AODV-LL setting up the AODV route and starting the ICMP packet transfer. Firstly 

in frames 11 and 12, the intermediate node receives two RREQs from the source from the incoming 

and outgoing interfaces that are assigned to the same hop that the source node is on . As explained 

previously, for AODV to work correctly , broadcast packets would only need to be transmitted out the 

outgoing interfaces on each node, but by default broadcast packets are transmitted out all interfaces 

and so for simplicity reasons this was left unchanged. The RREQ, shown in frames 13 to 16, is 

forwarded on out all four interfaces on the intermediate node. Later a RREP is received back from the 

destination node and forwarded to the source completing the route. 

Figure 8.23 shows ICMP packet transfers between the source and destination nodes as viewed by 

each of the four interfaces on the intermediate node. By observing the source and destination MAC 

address columns in Figure 8. 23, it can be seen that AODV has correctly assigned the four interfaces, 

as two pairs and then within each pair, one is the outgoing interface and the other is the incoming 

interface. The first Ethereal capture in Figure 8.23 shows the first incoming interface on the 

intermediate node receiving the ping request from the source node. Shown by the next Ethereal 

1: Incoming interlace from source node 
,o. rime 'rotocol 5ource Ac IP Dest Addr MAC Source Addr MAC Source Unreso Into MAC Dest Addr MAC Dest Unresolv 

1 0 0 ICH' source deetinatior AllwallT- 10:90· 9e 00 • 30 00 10 90 · 90 Echo (pin& ) request Allwell T 10 i 90~a• 00: 30: 00 • 10 90:a4 

2 1 0 ICH' source destinatior Al.lwellT-1D : 90 · 9c 00 30 00 10 • 90 • 9C Echo (pin& ) request AlluellL10: 90 : a• 00: 30 , 00 · 10 90· a• 
3 2. 0 IC,.., source deet.ino.tior- Allwel l T-10 : 90 9c 00 30 00 10 90 9c Echo (pine> request All..,.ll f_10 90'. e.• 00 : 30, 00 · 10 90 : a• 
4 3 . 0 ICt,J> source deotinatlor AllwellT-10:90 : 9c 00 30 00 : 10 : 90 9c Echo (pin& ) reque3t Allwell T _10 : 901 a4 00:30 , oo, 10 90:a• 
6 • • 0 ICH' 9ource destinatior Allwell 1_10: 90 : 9c 00 30 oo : 10 , 90 · 9c Echo ( pin& ) request All..,.,llL10 : 90 a• 00:30:00 10 . 90 :a• 

2: Out oin interlace to destination node 
-Jo .. Time ~rotocol 3ource Ac IP Dest ACldr '1AC Source Addr MAC Source Unreso Into MAC Oest Addr MAC Oest UnresOIY 

1 0 000000 ICH' source destination interl"led i &t e oo eo · 96 e1.: d 09 Echo (pina) request destination OO:e0 · 98 •5 cf:f3 

2 l 009328 ICH' aource destination interfflediat.e oo eo· 96 . a.a . ad · 09 Echo ( pin(l) request destination OO:eo · 98·a.6 cf;f3 

3 2 019881 IC:H' source deetination in t err-ectiat.e oo e o : 98 aa: d • 09 Echo (pin11) request destination oo:e0 198 •36 cf:f3 

4 3 029Zl8 IClol' •ource destination interrediaLe oo eo : 98 aa .aa 09 Echo (pint) request destination 00 : e0 : 98 r aS •cf:f3 

6 • 039 2 47 ICH' ~ourc e destination JnterMediate 00 · 80 '. 98 ! 84 ' d 09 Echo (pln&) request destination OO:e0:98,aS cf:f3 

8 6 . 049131 IClol' source destination in terfTliBd i ate 00 · eO : 98 , aa. , ad, 09 EchO (pin&) reque!lt destination oo:e0 : 98 , a5•cf:f3 

3: Incoming interlace from destination nodes 
~o Tlme. >rotocol IP source Addr , Oest Addr MAC Source Addr MAC Source Unreso Into MAC Oest Addr MAC Oest unrHOtY 

1 0 . 000000 ICMP destination source destination oo 50: f c• •9 19: cf Ecno (pint) reply interMediate 00 60 fc •8 fc, db 

2 1 . 008•07 ICMP destination source deetination oo . 50: f c: •9 : 19 , e r Echo (pint) reply interMedia t.e 00 · 50, ro , •8 . fc , db 

3 2 . 018781 ICMP deetination source de8 ination 00 : 50 : f c: •9 , 19 : cf Echo (pintll reply interMediate 00 1 50 : fc • 48 , fc : db 

4 3 . 027993 ICMP doetinot.ion ,ource deotinat.ion 00 : 50, f c: 49 ; 19 : cf Echo (pint) reply in terMOdie te 00: 50: fc : •8, fc : db 

6 4 0380•6 lCMP destination eource deetine.t.ion 00 , 50 : fc , •9 19:cf Echo (pine ) reply in terl"'led.1.a te 00 : 60 : fc •8: fc : db 

4: Out oin interlace to source node 
No . • Time Protocol IP Source Addr > Dest Addi -AAC Source Addr MAC Source Unre5o 1nro \C Dest Ad MAC Oest Unre,olY 

1 0 000000 ICl'P destination source inter di,ote 00 30 00 10 90 , b 2 Echo (pint) reply !Jource oo , eO · 98 ,o5,cf f4 

2 1 . 008400 ICH' dee t ina tion source interl"leaiate oo · 30 : 00 · 10 , 90 : b2 Echo (pine) reply !Jource OO : e0:98:a5:cf:f4 

3 2 018776 ICl'P de9tination eource interMCiate 00 30 : 00 10 : 90 : b2 Echo (pin&) reply eource 00 : eo, 98 , a6:cf· f4 

4 3 027987 ICt,f> de1tin6tion eource interr,ediate 00 • 30 , 00 , 10 : 90 : b2 Echo (pint) reply eour ce 00:oO 98 a6:of , f4 
6 4 038099 ICl'P deetination sourcei interriediote 00 30 00 10 , 90 · b2 Echo (pin&) reiply .source 00 . oO 98 :a6,cf : f4 

Figure 8.23 Traffic on the four interfaces on the intermediate node during an ICMP packet transfer 
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capture, interface two, the outgoing interface to the destination node, transmits the ping request to the 

incoming interface of the destination node. The ping reply is transmitted back from the destination 

node's outgoing interface and is received by the intermediate nodes other incoming interface as shown 

by the third ethereal capture. The ping reply is then transmitted out the intermediate node's other 

outgoing interface to the incoming interface on the source node as shown by the fourth Ethereal 

capture in Figure 8.23. 

Overall the multiple interface tests showed that the AODV-LL implementation was fully capable of 

operating using two and four interfaces per node. 

8.2 Performance Results 

The performance tests compared using a hello message based AODV and a data link layer feedback 

based AODV on nodes using one, two and four wireless network interfaces over a range of multiple 

hop routes. The performance metric used was the throughput rate at the user or application layer. The 

tests were designed with multiple factors in order to reveal any benefits resulting from a combination of 

factors . 

The following tables show the results of the performance tests. The results are grouped according to 

the AODV type used, either AODV-HM the hello message based AODV or AODV-LL the data link layer 

feedback based AODV, and the number of wireless network interfaces used; either one, two or four. 

Each table shows the throughput rate for each of the ten iterations within the test, and then the average 

throughput rate for each test in the bottom row. All the throughput rates are measured in megabits per 

second (Mbps) . 

The first group of performance tests used one wireless network interface per node and compared 

nodes using the AODV-HM implementation with nodes using the AODV-LL implementation. The 

results for these tests are shown in Table 8.1 and Table 8.2. 

For both sets of results the dramatic decrease in throughput as the hops in the route increases is 

obvious. When compared with the theoretical throughput rates in Table 5.2 for a TCP transaction using 
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Table 8. 1 Performance test results using AODV-HM with one wireless network interface 

One hop Two hops Three hops Four Hops 

4.60 2.15 1.34 1.00 

4.61 2.24 1.32 0.98 

4.59 2.21 1.33 0.99 

4.59 2.10 1.31 0.98 

4.62 2.25 1.35 0.94 

4.59 2.32 1.35 1.01 

4.61 2.19 1.34 1.02 

4.62 2.30 1.32 1.01 

4.59 2.24 1.36 0.89 

4.67 2.31 1.36 0.98 

4.61 2.23 1.34 0.98 

Table 8.2 Performance test results using AODV-LL with one wireless network interface 

. -
One hop Two hops Three hops Four Hops 

4.67 2.33 1.46 1.04 

4.11 2.35 1.48 1.05 

4.89 2.33 1.48 1.06 

4.90 2.33 1.48 1.06 

4.92 2.28 1.49 1.04 

4.92 2.35 1.49 1.05 

4.92 2.31 1.50 1.08 

4.89 2.34 1.47 1.06 

4.91 2.31 1.46 1.09 

4.88 2.32 1.45 1.10 

4.80 2.33 1.48 1.06 

a single wireless interface, the actual values from the performance tests are lower but follow a similar 

trend . The actual results were expected to differ to the theoretical calculations for a few reasons. 

Firstly the theoretical calculations were based on an almost perfect scenario where no errors or 

collisions occurred and for this reason the actual results could be lower. The second reason why the 

actual results could differ is that the theoretical calculations were based on a simple TCP model in order 

to simplify the calculations, but the actual TCP model used in Linux is much more complex, as 

explained in Section 5.2. 2. 

When comparing the two AODV implementation types in this first group of tests, the throughput results 

were only slightly higher for the nodes running the AODV-LL implementation compared to the nodes 
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runn ing the AODV-HM implementation . The hello messages appeared to only cause a small decrease 

in the overall throughput performance when using a single wireless interface. This may have been 

caused by the hello messages simply using network bandwidth , or more likely, from the hello messages 

causing collisions, resulting in packets having to be retransmitted and a decrease in the throughput .. 

The second group of performance tests used two wireless interfaces per node, and again all the nodes 

in the test were either runn ing the AODV-HM implementation that used hello messages, or the AODV­

LL implementation that didn't use hello messages. This second group of performance tests showed a 

more significant difference between the AODV-LL and the AODV-HM implementations and showed 

more clearly the improvement from using two wireless interfaces per node. 

Table 8.3 Performance test resuffs using AODV-LL with two wireless network interfaces 

6-t!]1 ~ .. '.WE _n n. ... _'P...,... ,,. 

One hop Two hops Three hops Four Hops 

5.01 2.96 2.15 1.66 

5.01 2.91 2.15 1.81 

5.02 2.89 2.15 1.79 

5.04 2.94 2.16 1.82 

4.99 2.93 2.1 6 1.80 

5.02 2.95 2.15 1.81 

5.04 2.95 2.14 1.84 

5.04 2.95 2.14 1.80 

5.06 2.97 2.13 1.83 

5.04 2.95 2.14 1.83 

5.03 2.94 2.15 1.80 

Table 8.4 Performance test resuffs using AODV-HM with two wireless network interfaces 

One hop 

4.94 

4.96 

4.96 

4.96 

4.97 

4.96 

4.98 

4.98 

4.92 

4.98 

4.96 
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Two hops 

2.43 

2.28 

2.55 

2.60 

2.54 

2.58 

2.56 

2.58 

2.58 

2.58 

2.53 
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Three hops 

1.56 

1.56 

1.55 

1.54 

1.55 

1.53 

1.55 

1.54 

1.55 

1.56 

1.55 

Four Hops 

1.28 

1.08 

1.29 

1.33 

1.30 

1.30 

1.05 

1.37 

1.06 

1.31 

1.24 
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The results from the second performance tests are shown in Table 8.4 and Table 8.3. When comparing 

with the single interface test results, it is interesting to note that over one hop, there is no difference in 

throughput when two interfaces per node are used. This highlights how over one hop, the two interface 

per node configuration is just the same as using single interface per node. In terms of reducing the 

overhead caused by the IEEE 802.11 standard , it is only between hops that using two interfaces per 

node can increase performance. 

After one hop, the results show there is a noticeable improvement in throughput for the AODV-LL 

nodes over the AODV-HM nodes when using two interfaces per node. Since the AODV-HM 

implementation broadcasts hello messages out every interface, when using two interfaces, twice as 

many hello messages are being broadcast for the same amount of traffic being transferred. This could 

be the cause of the decreased throughput in the AODV-HM nodes due to the extra hello messages 

causing collisions and retransmits . 

The next results ( Table 8. 5 and Table 8. 6) show using four interfaces per node for both the AODV-LL 

and AODV-HM nodes. Due to the number of wireless interfaces available , tests only up to two hop 

routes could be conducted . Over just one hop there is an improvement in the throughput for both the 

AODV-HM and AODV-LL nodes. Unlike the two interface per node configuration , this showed how 

using four interfaces per node is effective from one hop onwards. The two hop test using four 

interfaces had the most surprising results out of all the performance tests. These results , being much 

higher then the calculated theoretical results , showed clearly TCP taking advantage of the full duplex 

nature of the four interface configuration . It is also interesting to view that there is only a small 

difference between the two AODV types, showing that the presence of hello messages had little effect 

on the overall throughput. With four interfaces per node, there is eight hello messages being broadcast 

every hop , but within each hop there is now two non-interfering communication channels. Therefore 

within each channel there is still two hello messages being broadcast every second , like with the two 

interface per node configuration . But when using four interfaces per node, data is spread between two 

channels over each hop, since it can be transferred in both directions. Overall this means although two 

hello messages are transmitted every second , creating the possibility of collisions occurring or 

interference, there is now less data to interfere with then with the two interface configuration , since 

with in one hop, the data is spread between two communication channels . This could be a possible 

reason why the hello messages don't have an effect when using four interfaces per node. Although 

when compared to the number of TCP segments being transferred within the tests (around 30,000 
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Table 8. 5 Performance test results using AODV-HM with four wireless network interfaces 

..!L~~ 
One hop Two hops 

5.49 4.02 

5.35 4.30 

5.49 4.33 

5.56 4.31 

5.59 4.30 

5.59 3.91 

5.58 4.27 

5.60 4.02 

5.59 4.20 

5.56 4.26 

5.54 4.19 

Table 8.6 Performance test results using AOOV-LL with four wireless network interfaces 

_, ,JI "'~u~•ll,· 

One hop Two hops 

5.46 3.66 

5.42 4.29 

5.51 4.39 

5.60 4.31 

5.58 4.50 

5.60 4.46 

5.59 4.37 

5.59 4.47 

5.59 4.42 

5.59 4.53 

5.55 4.34 

separate packets), the chances of one hello message every second causing enough disruption to result 

in a decrease in the throughput seems unlikely. Because of this, even though in some results such as 

the two interface per node tests, the AODV-HM nodes had significantly lower throughputs, it could be a 

possibility that this was caused by some other factor apart from hello messages, whether hardware or 

software related. 

The following graph (Figure 8.24) summarizes the results from the performance tests and highlights the 

different results from the different test configurations. The performance tests results graph shows a 

number of features of the different test configurations. Firstly it shows clearly the large throughput 

increase when using four interfaces per node although there is no significant difference between the 
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Figure 8.24 Throughput over multiple hop routes for different wireless networl< interface configurations and AODV 

implementation types 

AODV-HM and AODV-LL implementations. Secondly, it shows there is a significant throughput 

increase, especially for two, three and four hop routes, when using two wireless interfaces per node but 

only with the AODV-LL implementation. The AODV-HM implementation with two interfaces per node 

has throughput results not much higher then when only a single interface is used. The third feature 

displayed by the graph is that throughput is lowest for both the AODV-HM and AODV-LL 

implementations when using a single wireless interface per node. 

From these results is it can be concluded that using two and especially four interfaces per node results 

in a significant increase in throughput compared to when using just a single interface. It also appears -

although this conclusion is made with less confidence - that a significant throughput increase when 

using two interfaces per node can only be achieved if a non-hello message based AODV 

implementation is used. This conclusion is made with less confidence due to the reasons explained 

earlier where there could be more factors then just the presence of hello messages which causes the 

decreased throughput and as a result further research would be needed to make a more final 

conclusion on this. 
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9 Conclusion 

This research had the purpose of finding an alternative route error detection technique to hello 

messages and improving throughput over multiple hop routes for IEEE 802.11 based wireless 

networks. An alternative to hello messages was desired in order to remove problems that past 

research has found associated with their use, including the creation of unusable routes and the 

increased network traffic and overhead created by them. As a result of this research two solutions were 

proposed. 

The proposed alternative to hello messages is the technique of monitoring if the transmit retry limit is 

exceeded when a packet is transmitted , resulting in the assumption that the link to the node that the 

failed packet was destined to is broken . When the MAC on the source IEEE 802.11 wireless interface 

transmits a frame containing the packet, if an acknowledgment is not received from the destination 

MAC, confirming reception of the transmitted frame, then the source MAC will retry transmitting the 

frame again. After a set number of retries, the MAC assumes the link is broken, discards the failed 

packet and generates an interrupt, which is received by the driver software interfacing the wireless 

interface and the kernel on the node. The event of the transmit retry interrupt can be monitored by 

modifying the wireless interface driver software, and on the occurrence of such an event, a message 

can be sent to the AODV implementation notifying it of the broken link. 

The proposed solution to improve throughput over multiple hop routes, is to use two or four IEEE 

802.11 wireless network interfaces per node. Two interfaces per node were used in a way so that a 

node with in a multiple hop route used one interface to connect with the "downstream" node in the 

route , while the other interface was used to connect to the "upstream" node. Four interfaces per node 

resulted in two interfaces being assigned to the "downstream" node while the other two interfaces were 
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used for the "upstream" node. But then within each pair one interface was used solely for incoming 

traffic (excluding traffic below the network layer) and likewise the other interface was used only for 

outgoing traffic , overall creating four non-interfering communication channels. Both interface 

configurations decreases the time consuming (and throughput reducing) effects of the IEEE 802.11 

overhead, by allowing packets to be transmitted to the next node in a route without having to wait for 

MAC layer acknowledgments to be transmitted back to the previous node. The four interface 

configuration also creates a fu ll duplex connection across the route, which TCP can then use to its own 

advantage, improving throughput even more. 

The driver software of the IEEE 802.11 wireless interface used was modified to be able to monitor the 

transmit retry limit interrupt and generate an AODV route error to send up to AODV if the interrupt 

occurred. An original AODV-HM (hello message based AODV) implementation was also modified to 

remove the hello messages and make it compatible with multiple wireless interfaces, resulting in the 

AODV-LL (data link layer based AODV) implementation . To test the AODV-LL implementation , 

functionality tests were designed, where routes were created and then broken, allowing the route error 

detection function to be observed. To test the multiple wireless interfaces, as well as compare the 

AODV-HM and AODV-LL implementations, performance tests were designed, where throughput tests 

were run over routes with up to four hops. For each test, all nodes either had one , two or four 

interfaces each , and also during each test, all the nodes were either running the AODV-HM or AODV­

LL implementation . 

The functionality tests showed that monitoring the transmit retry limit interrupt was an effective 

technique to detect broken routes. It was found it was important to set a suitable transmit retry limit for 

the network as part of these tests, else simple network disruptions could cause the transmit retry limit to 

be exceeded, and links incorrectly reported as broken. Features of the data link layer based detection 

technique was that detecting a broken route was very fast, less then a second, whereas the AODV-HM 

implementation by default took at least two seconds. Another feature of using the transmit retry limit is 

that a broken link will go undetected until there is an attempt to transmit a frame across it. This 

behavior suits the on-demand nature of AODV and , as explained in the thesis, this behavior doesn't 

give the AODV-HM implementation any advantage over the AODV-LL implementation due to the 

default settings of the AODV standard . 

The performance tests showed a definite throughput improvement when using two interfaces per node 
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and an even more impressive improvement when using four interfaces, even though the four interface 

tests could only be performed over routes of up to two hops due to the available test equipment. The 

tests showed that providing a full duplex connection increased throughput by allowing the TCP 

segments to travel across the route simultaneously in both directions and increased throughput 

performance by allowing a significant amount of the IEEE 802.11 overhead to operate without 

increasing the overall transaction time. The difference between the AODV-HM and AODV-LL 

implementations appeared only significant in the two wireless interface per node tests. The results for 

the AODV-HM implementation when using two interfaces per node, were only marginally better then 

when using a single interface per node, showing that the benefits from using two interfaces with AODV­

HM was negated by the increased hello messages. The effect of hello messages on throughput is an 

area of future research, as hello messages could have a much greater effect in a network made up of a 

larger number of hello message based AODV nodes. 

Overall it can be concluded that using the transmit retry limit is an effective alternative to hello 

messages and it is possible to implement a non hello message based AODV implementation using off­

the-shelf hardware and without any modification to the IEEE 802.11 standard. The use of multiple 

wireless interfaces is also a technique that requires no modification to the IEEE 802.11 standard; can 

be easily implemented; and provides significant throughput improvements, especially for TCP based 

network connections. 

AODV is a routing protocol well suited to multiple hop wireless mesh networks. The non-existence of 

alternatives to hello messages for detecting broken routes, as well as the dramatic throughput decrease 

over multiple hop routes in IEEE 802.11 wireless networks, may have been reasons contributing to the 

slow uptake of AODV in real world applications. This research has shown that alternatives to hello 

messages is easily possible and that the multiple hop route throughput decrease can be minimized by 

using multiple wireless interfaces. It is hoped that as a result, this research will help promote the use of 

AODV and wireless mesh networks in real world scenarios. 
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10 Future Research 

There a number of areas that could provide interesting future research and help provide even more 

conclusive results. One major area is testing with a much larger number of nodes, in a more realistic 

environment, such as outdoors within a university campus. Testing with more nodes and outdoors, will 

not only represent real world scenarios much more then the tests preformed in this research, but it may 

also be easier to observe any negative effects caused by hello messages and highlight the advantages 

of using a non-hello message based AODV implementation. 

It would be interesting also to measure more metrics then simply throughput, including processor 

utilization by the AODV implementation, and also power usage. Both of these areas require more 

sophisticated hardware and software to measure then was available for this research. 

Another area of future research is investigating whether the significant increase of the AODV-LL 

implementation over the AODV-HM implementation when using two interfaces per node is caused by 

the presence of hello messages or whether it is caused by other factors. 
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12 Appendices 

Included in the appendices is the AODV-LL implementation code and the code for the modified 

ADM821 1 chipset driver. All code is written C and intended for the Linux v 2.4 kernel. Due to the size 

of the code, rather then being included in this thesis, it is instead included on a CD-ROM. The following 

outlines what is included on the CD-ROM. 

Appendix A 

The modified ADM8211 chipset driver code. Areas of code that are modified are outl ined by 

comments, the main section being lines 850 to 971 in the adm8211 .c file . 

Appendix B 

The AODV-LL implementation based on the original Kernel AODV from NIST by L.Klien-Berndt. Areas 

of the original code that has been modified are commented. 
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