Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A non-conventional model to assess the production potential of the Waipawa Formation – a possible hydrocarbon source rock in the East Coast Basin

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Earth Science at Massey University, Palmerston North, New Zealand

Sadaf

2013

Abstract

Since the early part of the 20th century, many countries have attempted to diversify their energy resources through exploiting their unconventional hydrocarbon reserves. These include oil shales, native bitumen, oil sands and tar sands. Oil shale, in particular, has received significant interest over recent decades due to the potentially huge reserves stored within this type of resource. Traditional assessment of oil shale deposits is dependent on the analytical technique Source Rock Analysis (SRA), but there are recognised limitations to this technique.

The hypothesis of the current study was that a novel and non-conventional analytical tool would be better suited to assess the hydrocarbon potential of oil shales than conventional SRA. The overall objective of the study was to define a scientifically comprehensive production potential model for non-conventional source rocks using a suite of physical (XRD, organic petrography), thermal (LOI, LECO, TGA) and chemical analytical techniques (FTIR and GC-MS of the solvent-extracted bitumen phase). These techniques were used to characterise international reference shales from the USA (Green River Formation, GRF), Pakistan (Salt Range oil shale, Mir Kalam Kala and Speena Banda oil shale) and China Qianjiang Formation), and shales from New Zealand (Waipawa Formation and Orepuki oil shale). Analysis of each rock by SRA allowed for ranking of the petroleum potential, with the GRF, Orepuki oil shale, and two of four locations from the Waipawa Formation, being inferred as good potential source rocks.

Physical characterisation of the rocks showed that the content of illite in an oil shale is inversely proportional to the hydrocarbon content of the rock. The absence of illite can therefore be used as an index of production potential, and allowed ranking of the petroleum potential of the rocks which was in good agreement with SRA. Organic petrography linked production potential to the presence of macerals in polished sections prepared from selected rocks of the study and provided strong evidence for the environment of deposition of these samples.

Thermal analysis showed that the abundance of organic matter and total organic carbon (TOC) are directly proportional to the oil production potential of an oil shale provided the oil shale is not post mature. Samples with good SRA-defined production potential had LOI and TOC values in excess of 5% and 2.5% respectively, and a weight loss due to decomposition of kerogen (W_B) of 7%. There was a clear distinction between the good and

poor production potential source rocks, with the Pakistan samples showing low values in each of these parameters. The TOC of the Chinese oil shale provided fan ambiguous interpretation, but further investigation defined this rock as post-mature.

Chemical analysis showed that the relative aliphaticity and aromaticity of the bitumen phase extracted by dichloromethane was higher for the highly SRA-ranked shales. No aromatic bands were identified in the low to non-producing oil shales. A direct relationship between the relative content of the constituent chemical compounds of bitumen (alkanes, cycloalkanes, aromatics and heteroatom compounds) and production potential was also observed, and the GC-MS data provided information on the likely quality of oil that might be extracted from an oil shale. The trend in relative aliphaticity and aromaticity of the rocks was consistent under both FTIR and GC-MS analysis.

To formulate the non-conventional production potential model, cut-off values were selected using the SRA-defined production rankings. Good production potential is inferred through LOI >5%, TOC >2.5% and $W_B >7\%$. The presence or absence of illite in the clay fraction, and the presence of both aliphatic and aromatic bands (FTIR) and the four constituent chemicals in the bitumen extract (GC-MS), were defined as qualitative cut-off values. Organic petrography is not integrated into the model at the current time, but provided strong data on the origin of deposition of a shale rock. These cut-off values were integrated into a model that defines a sequence of analytical steps. The analytical techniques become progressively more complex as the potential of a sample becomes more certain. A sample is defined as having good production potential if it meets all criteria.

The non-conventional production potential model was then used to interpret the analytical results obtained through analysis of the Orepuki oil shale and Waipawa Formation shale rocks. The Orepuki oil shale was found to be an oil shale, rich in organic matter with excellent production potential. The Waipawa Formation was similarly found to be an oil shale, with good petroleum potential for two of the four outcrop locations analysed.

The conclusions from the non-conventional production potential model were consistent with those inferred by SRA. But the model yields superior understanding regarding the production potential of the Orepuki oil shale and Waipawa Formation. The low illite content, origin of deposition of these formations, degree of richness of the constituent organic content, and the inferred quality of oil which may be derived from its bitumen, are key information that cannot be obtained from SRA.

Acknowledgements

Undertaking this PhD has been a truly life-changing experience for me, which would not have been possible without the support and guidance of many people. I am deeply grateful to all of them and wish to render my sincerest thanks to them.

I would like to thank my supervisor Dr Christopher Anderson for his scholarly support, encouragement, guidance and patience throughout this project. Without his continuous help and valuable guidance, this PhD would not have been possible.

Thanks to my supervisor Julie Palmer, for her continuous guidance and support throughout my doctoral studies.

I am immensely grateful to the Higher Education Commission (HEC), Pakistan, for granting me a full-time doctoral scholarship which made it possible for me to pursue and complete my doctoral studies at Massey University.

I would like to thank Richard Sykes from GNS for sharing his ideas through discussions with me, sending me publications and reports and helping me with Source Rock Analysis and identifying different macerals under a microscope using polished grain mounts. I greatly appreciate help of Todd Ventura with discussion of GC-MS data.

I am indeed thankful to Associate Professor Bob Stewart for running all the XRD samples. I greatly appreciate his help by critically reading some parts of the manuscript and rendering invaluable advice and guidance from time to time throughout my PhD.

I would like to acknowledge the help and support of Graham Freeman, Senior Technician, Chemistry Department, Massey University. I am indebted to him for his useful discussion and helping me with the FTIR analysis and Soxhlet Extractions. I am immensely grateful to John Sykes from School of Engineering and Advanced Technology, Massey University, for the GC-MS analysis.

I greatly appreciate the assistance I received through my research from the staff of the Soil and Earth Science section, Institute of Agriculture and Environment, especially Professor Mike Hedley, Lance Currie, Peter Bishop, Clel Wallace, Ian Furkert, Glenys Wallace, Ross Wallace, Anja Mobis, Mike Bretherton and Liza Haarhoff.

Thanks to all my friends and research colleagues, especially Saman, Tomoko, Tao, Neha, Reddy, Saleem and Amandeep who always added colour to dull routine through their chat or laughter. I cherish all the beautiful moments spent with them and the help and support they gave me.

I can't find words to express my gratitude and thanks to my parents. Heartfelt respect to my parents who always loved me, were so proud of me, believed in me, supported me and were always there for me through this journey. I thank my dad for allowing me to proceed with my PhD studies. My special thanks to my brothers and sisters, Rashid, Sheema, Danish and Shumaila for their continuous love, encouragement and help in whatever way they could provide me during this challenging period. To my son – Zaid – your love, your presence and future ahead has been my inspiration and motivation!!!. Zaid is only two years old and will not remember these days when he is grown up. I am sorry that I could not play with you more during this period. I love you.

Last but not the least; I am greatly indebted to my loving, encouraging and patient husband – Amjad – whose unfailing support during this PhD is so appreciated. When I was down you were always there to pick me up. I have always kept taking out my frustration on you. Thank you so much for always understanding and believing in me during such times, checking my health, motivating me to complete this study and for all the little things that made me feel secure and cared for. THANK YOU.

This thesis is dedicated to my abbu and ammi for their love, endless support and encouragement.

Table of Contents

Abstract	i
Acknowledgements	iii
Dedication	v
Table of Contents	vi
List of Tables	xi
List of Figures	xiii

Chapter 1 Literature review and research objectives......1

1.1	Introd	uction	1			
1.2	Oil sh	shale and shale oil				
1.3	Histor	y of oil shales	4			
1.4	Petrog	genesis of oil shales	6			
1.5	Comp	osition of oil shale	7			
	1.5.1	Kerogen and bitumen	7			
1.6	Types	of oil shale	10			
1.7	Asses	sment of oil shale deposits	11			
	1.7.1	Oil shale exploration	11			
	1.7.2	Estimating the production potential of oil shale deposits	12			
		1.7.2.1 Limitations to conventional production potential				
		assessment techniques	14			
	1.7.3	Production of oil from oil shale	17			
1.8	Non-c	onventional hydrocarbon deposits	19			
	1.8.1	Green River Formation	19			
	1.8.2	Non-conventional hydrocarbon deposits in Pakistan	24			
		1.8.2.1 Jatta Gypsum Formation	26			
		1.8.2.2 Mir Kalam Kala and Speena Banda oil shales	29			
		1.8.2.3 Salt Range oil shale	30			
	1.8.3	Qianjiang Formation (Jianghan Basin), China	34			
	1.8.4	Non-conventional hydrocarbon deposits in New Zealand	37			
		1.8.4.1 The Waipawa Formation: a potential New Zealand				
		source rock	40			

	1.8.4.2 Orepuki oil shale: an example of a historically	
	producing New Zealand oil shale 50	I
1.9	Research objectives	
1.10	Thesis overview	

Chapter 2 Materials and methods......61

2.1	Introd	uction	61
2.2	Oil sh	ale and reference samples for the current study	61
	2.2.1	Sand and argillite	64
	2.2.2	Green River Formation	64
	2.2.3	Orepuki oil shale	65
	2.2.4	Qianjiang Formation	66
	2.2.5	Mir Kalam Kala oil shale, Pakistan	67
	2.2.6	Speena Banda oil shale, Pakistan	67
	2.2.7	Salt Range oil shale, Pakistan	67
	2.2.8	Waipawa Formation	68
2.3	Prima	ry sample preparation for thermal, physical and chemical	
	analys	is	71
	2.3.1	Grinding	71
	2.3.2	Concentration of minerals	72
		2.3.2.1 Removal of carbonates	72
		2.3.2.2 Removal of organic carbon	72
		2.3.2.3 Removal of iron and aluminium oxides and oxyhydroxides	73
	2.3.3	Separation of clay free from carbonates, organic carbon and	
		iron and aluminium oxides	73
2.4	Major	analytical techniques used to characterise rocks of the study	74
	2.4.1	Analytical techniques used for physical analyses	74
		2.4.1.1 X-ray diffraction (XRD)	74
		2.4.1.2 Organic petrography	78
	2.4.2	Analytical techniques used for thermal analyses	79
		2.4.2.1 Loss on ignition (LOI)	79
		2.4.2.2 LECO	79
		2.4.2.3 Thermogravimetric analysis (TGA)	80

2.4.3	Analytical techniques used for chemical analyses		81	
		2.4.3.1	Soxhlet extraction	
		2.4.3.2	Fourier Transform Infrared spectroscopy (FTIR)	
		2.4.3.3	Gas Chromatography – Mass Spectroscopy (GC-MS)	83
2.5	Conve	entional S	Source Rock Analysis (SRA)	84
2.6	Qualit	ty control	procedures used throughout the study	85

	-		•	
3.1	Introd	uction		87
3.2	Source	e Rock A	nalysis (SRA)	87
	3.2.1	Results		87
		3.2.1.1	Amount and type of organic matter	89
		3.2.1.2	Thermal maturity	11
		3.2.1.3	Source rock generative potential (SP)1	13
3.3	Concl	usion		13

4.1	Introd	uction		
4.2	X-Ray	/ Diffract	tion (XRD)	
	4.2.1	Results	and discussion	
		4.2.1.1	Mineralogy of the sand and the argillite	
		4.2.1.2	Mineralogy of the Green River Formation, Qianjiang	
			Formation, Orepuki and Pakistani oil shale samples	
		4.2.1.3	Mineralogy of the Waipawa Formation	
	4.2.2	Discuss	ion	135
4.3	Organi	c petrogra	aphy	
	4.3.1	Descript	tion of maceral assemblages	
		4.3.1.1	Green River Formation	
		4.3.1.2	Mir Kalam Kala oil shale	139
		4.3.1.3	Orepuki oil shale	141
		4.3.1.4	Waipawa Formation	141
	4.3.21	Discussic	on	

Cha	apter 5	5 Thermal analyses	144
5.1	Introd	luction	144
5.2	Loss o	on Ignition (LOI)	145
5.3	LECC)	146
5.4	Thern	nogravimetric Analysis, TGA	151
	5.4.1	Sand and argillite (reference samples)	155
	5.4.2	Green River Formation, Colorado	157
	5.4.3	Orepuki oil shale, New Zealand	160
	5.4.4	Qianjiang Formation, China	162
	5.4.5	Mir Kalam Kala oil shale, Pakistan	164
	5.4.6	Speena Banda oil shale (SB), Pakistan	166
	5.4.7	Salt Range oil shale, Pakistan	167
	5.4.8	Waipawa Formation, New Zealand	169
5.5	Discu	ssion	174
Cha	apter (6 Chemical Analyses	
6.1	Introd	luction	184
6.2	Solve	nt extraction using the soxhlet apparatus	185
6.3	Fourie	er Transform Infrared spectroscopy, FTIR	190
	6.3.1	Various FTIR absorption bands and their proposed	
		assignments	190
	6.3.2	FTIR spectra of sand and argillite	191
	6.3.3	FTIR spectra of Orepuki oil shale, Green River Formation,	
		Qianjiang Formation and Pakistani oil shales	193
	6.3.4	FTIR spectra of the Waipawa Formation	197
6.4	Gas C	Chromatography Mass Spectrometry, GC-MS	202
	6.4.1	Main components of bitumen	
		6.4.1.1 Alkanes (paraffins)	206
		6.4.1.2 Cycloalkanes	207
		6.4.1.3 Aromatics	208
		6.4.1.4 Heteroatom compounds	208

6	6.4.2	Index compounds and ratios		.212
		6.4.2.1	Pristane-Phytane ratio	.212
		6.4.2.2	Phytane-n Octadecane ratio	.213
6.5	Discus	ssion		.214

Chapter 7		General discussion: a non-conventional model to assess the production potential of oil shales	215
7.1	Introduction		215
7.2	Summary of an	alytical data for the international shale and reference	
	samples		217
7.3	Derivation of a	non-conventional production potential assessment	
	model for oil sl	hales	221
7.4	Waipawa and O	Drepuki oil shales: new insights obtained through	
	analysis of thes	se rocks using the non-conventional model	226
	7.4.1 Assessm	nent model applied to the Orepuki oil shale	228
	7.4.2 Assessm	nent model applied to oil shales from the Waipawa	
	Formati	on	230
7.5	Conclusion		234
7.6	Recommendati	ons for future work	236
Refe	erences		238
Арр	endices		

List of Tables

Table 1.1	Total recoverable shale oil in the world	3
Table 1.2	Conventional exploration tools used for assessment of oil potential of source rocks	13
Table 1.3	TOC and Rock-Eval pyrolysis results for selected oil shale core samples from a well in Montana	15
Table 1.4	Source Rock Analysis (SRA) results of Mahogany oil shale from Green River Formation	23
Table 1.5	TOC and Rock-Eval pyrolysis results for oil shale samples from Dharangi (Kohat Basin, Pakistan)	28
Table 1.6	TOC and Rock-Eval pyrolysis results of Qianjiang Formation core samples from Sha and Liang wells in Jianghan Basin (China).	36
Table 1.7	SRA data of Orepuki oil shale available in the literature	53
Table 2.1	Identification codes for samples of the current study including their localities and grid references	63
Table 2.2	Selected diagnostic d-spacing (Å) of common soil minerals at specified conditions of cation saturation, glycerol solvation and heat treatment.	76
Table 2.3	Machine replication of each sample	86
Table 3.1	Source Rock Analysis results	88
Table 3.2	Geochemical parameters describing the generative potential of immature to marginally mature source rocks	89
Table 3.3	Ranges, means and standard deviations of S1 and S2 of previous data from the Waipawa Formation	96
Table 3.4	Geochemical parameters describing kerogen type and the character of expelled products	105
Table 3.5	Geochemical parameters describing the level of thermal maturation	111
Table 3.6	Ranking of rocks of the current study based on their source rock generative potential from SRA	115
Table 4.1	Qualitative mineralogy of sand, argillite and the oil shale samples of the current study	119

Table 5.1	Total organic matter content of the shales and non-generative reference materials of this study as determined by LOI	145
Table 5.2	Total carbon (TC) and total organic carbon (TOC) of each sample as obtained by LECO	147
Table 5.3	Total weight loss in relation to pyrolysis temperature using TGA	156
Table 6.1	Bitumen to TOC ratio describing the level of thermal maturation	185
Table 6.2	Bitumen yield and yield to TOC ratios providing an index of thermal maturity for the rocks of the current study	188
Table 6.3	FTIR bands positions for sand, argillite, Orepuki oil shale, Green River Formation, Qianjiang Formation and Pakistani oil shale samples	192
Table 6.4	FTIR absorption bands positions of the Waipawa Formation samples	200
Table 6.5	Absolute areas of the most probable and abundant organic compounds, alkanes, cycloalkanes, aromatics and heteroatomic compounds from GC-MS analysis of argillite and different oil shale bitumen extracts.	204
Table 6.6	GC-MS index for organic compounds extracted from the samples of the current study identified as belonging to four chemical groups	206
Table 6.7	Absolute GC-MS index of nitrogen and sulfur compounds present in argillite and different oil shales bitumen extracts	210
Table 6.8	Absolute areas of pristane, phytane and octadecane and their ratios from the GC-MS analysis of different oil shales bitumen extracts	212
Table 7.1	Summary of the results obtained through analysis of rocks from Pakistan, Qianjiang Formation, the Green River Formation and control samples (sand and argillite) using non- conventional techniques.	220
Table 7.2	Cut off values from the analytical techniques (based on the suite of non-conventional analytical analyses) that have been used in the non-conventional production potential assessment model.	222
Table 7.3	Summary of the results obtained through analysis of rocks from the Waipawa Formation from the Waipawa Type Locality, Lower Angora Road quarry, Upper Angora Road and Old Hill Road using non-conventional techniques	227

List of Figures

Figure 1.1	Production of oil shale from 1800 to 2000	5
Figure 1.2	Van-Krevelen diagram showing where kerogen types I, II and	
	III occur in an Oxygen Index versus Hydrogen Index bivariate plot	9
Figure 1.3	Eocene Basins of western USA	20
Figure 1.4	Stratigraphy of the Green River Formation from the Anvil Points Mine (APM) near Rifle, Colorado.	22
Figure 1.5	Plot of TOC vs S2 for the Mahogany oil shale samples collected from the Mahogany Zone in the Piceance Basin, Colorado	24
Figure 1.6	Map of Pakistan showing Kohat Basin	25
Figure 1.7	Stratigraphy of the Paleocene-Miocene succession of the Kohat Basin, Northern Pakistan	26
Figure 1.8	Total organic carbon (TOC) content of outcrop oil shale samples from different localities in Kohat Basin (Pakistan)	28
Figure 1.9	Plot of TOC vs S2 (SRA) for oil shale samples collected from three different outcrops in Dharangi the Kohat Basin	29
Figure 1.10	Distribution of Salt Range between Jhelum and Kalabagh, Potwar Basin (Pakistan.)	31
Figure 1.11	Stratigraphy of Kohat-Potwar region (Pakistan)	32
Figure 1.12	Range of organic richness (% TOC) of outcrop samples of eastern Salt Range from the Salt Range Formation	33
Figure 1.13	Major Cenozoic sedimentary basins in China	34
Figure 1.14	Generalised stratigraphy of the Jianghan Basin	35
Figure 1.15	Plot of TOC vs S2 (SRA) for oil shale samples collected from Ling and Sha wells the from the Qianjiang Formation, Jianghan Basin, (China)	37
Figure 1.16	Sedimentary basins in the New Zealand region	38
Figure 1.17	Locations and thickness map of measured sections and other important localities for the Waipawa Formation in eastern North Island	41
Figure 1.18	Stratigraphy of the northern East Coast Basin	42

Figure 1.19	a) - Overview of the stratigraphy of the East Coast region	
	(b) - Stratigraphic relationship of the Waipawa Formation and different members of the Whangai Formation	44
Figure 1.20	Bivariate plot of TOC vs S2 (SRA) for Waipawa Formation samples collected from 51 different localities in the East Coast Basin	47
Figure 1.21	Plot of TOC vs S2 (SRA) for the Waipawa Formation samples from six different localities in the East Coast Basin.	49
Figure 1.22	New Zealand map showing the locations of Permits 38348 and 38349	50
Figure 1.23	Regional map highlighting south of South Island showing three sedimentary basins	51
Figure 1.24	Stratigraphic column showing the different lithologies of the Waimeamea Series	52
Figure 1.25	The thermal, physical and chemical analytical techniques used in this thesis to identify petroleum potential of source rocks and to propose a novel and non-conventional model to assess the production potential of oil shale resources	59
Figure 2.1	Sampling locations of the Waipawa Formation	62
Figure 2.2	Green River Formation sample location from the Anvil Points Mine near Rifle, Colorado	65
Figure 2.3	Orepuki oil shale from the mouth Falls Creek, Southland	66
Figure 2.4	Waipawa Formation at the Waipawa type locality	69
Figure 2.5	Waipawa Formation at the Lower Angora Road quarry/Upper Angora Road.	70
Figure 2.6	Waipawa Formation at the Old Hill Road, Porangahau	70
Figure 3.1	Ranges of organic richness (% TOC) of outcrop samples from the Salt Range Formation	90
Figure 3.2	Total organic carbon (TOC) content of outcrop oil shale samples from different localities in Kohat Basin (Pakistan)	91
Figure 3.3	Ranges of organic richness (% TOC) of the Mahogany Zone samples of the Green River Formation	92
Figure 3.4	Source Rock Analysis of sand, argillite, Salt Range and Speena Banda oil shale samples as a function of time and temperature	97

Figure 3.5	Source Rock Analysis of the Mir Kalam Kala and Qianjiang Formation as a function of time and temperature	98
Figure 3.6	Source Rock Analysis of the Green River Formation and Orepuki oil shale as a function of time and temperature	99
Figure 3.7	Source Rock Analysis of samples of the Waipawa Formation from four different outcrops within the East Coast Basin as a function of time and temperature	100
Figure 3.8	Bivariate plot of TOC versus S2 for the Dharangi oil shale based on published data	101
Figure 3.9	Bivariate plot of TOC versus S2 for the Qianjiang Formation based on published data	102
Figure 3.10	Bivariate plot of TOC versus S2 for the Green River Formation from the Mahogany Zone based on published data	103
Figure 3.11	Bivariate plot of TOC versus S2 of the Waipawa Formation collected from six different outcrops in the East Coast Basin	104
Figure 3.12	Bivariate plot of Hydrogen Index (HI) versus Oxygen Index (OI) for the source rock samples of the current study (van-Krevelen diagram)	106
Figure 3.13	Cross plot of Hydrogen Index (HI) versus Tmax	109
Figure 4.1	XRD spectra of sand and argillite	121
Figure 4.2	XRD spectra of the Green River Formation	123
Figure 4.3	XRD spectra of the Orepuki oil shale	125
Figure 4.4	XRD spectra of the Qianjiang Formation	126
Figure 4.5	XRD spectra of the Mir Kalam Kala oil shale	127
Figure 4.6	XRD spectra of the Speena Banda oil shale	128
Figure 4.7	XRD spectra of the Salt Range oil shale	129
Figure 4.8a	XRD spectra of the Waipawa Formation from the Waipawa type locality	131
Figure 4.8b	XRD spectra of the Waipawa Formation from the Lower Angora Road quarry locality	132
Figure 4.8c	XRD spectra of the Waipawa Formation from the Upper Angora Road locality	133

Figure 4.8d	XRD spectra of the Waipawa Formation from the Old Hill Road,	
	Porangahau, outcrop	134
Figure 4.9	Photomicrographs of the macerals present in reference samples subjected to organic petrography	140
Figure 4.10	Photomicrographs of the macerals present in the analysed Orepuki, and Waipawa Formation, oil shale samples	142
Figure 5.1a	Correlation graph between LOI and LECO-analysed TOC of all samples of this study	149
Figure 5.1b	Correlation graph between LOI and LECO-analysed TOC of all samples of this study except Qianjiang Formation samples	150
Figure 5.2	Correlation graph between LECO-analysed TC and TOC	150
Figure 5.3	Correlation graph between LECO-analysed TOC and SRA (TOC)	151
Figure 5.4	General TGA profile of a shale over the temperature range 0-1200°C	152
Figure 5.5	Non-isothermal TGA and DTA pyrolysis thermograms of sand and argillite at 5°Cmin ⁻¹	155
Figure 5.6	Non-isothermal TGA and DTA pyrolysis thermograms of the Green River Formation, at 5°Cmin ⁻¹	159
Figure 5.7	Non-isothermal TGA and DTA pyrolysis thermograms of samples of the Orepuki oil shale, at 5°Cmin ⁻¹	161
Figure 5.8	Non-isothermal TGA and DTA pyrolysis thermograms of samples of the Qianjiang Formation, at 5°Cmin ⁻¹	163
Figure 5.9	Non-isothermal TGA and DTA pyrolysis thermograms of samples of the Mir Kalam Kala oil shale, at 5°Cmin ⁻¹	165
Figure 5.10	Non-isothermal TGA and DTA pyrolysis thermograms of samples of the Speena Banda oil shale, at 5°Cmin ⁻¹	166
Figure 5.11	Non-isothermal TGA and DTA pyrolysis thermograms of samples of the Salt Range oil shale, at 5°Cmin ⁻¹	168
Figure 5.12a	Non-isothermal TGA and DTA pyrolysis thermograms of samples of the Waipawa Formation from the Waipawa type locality, at 5°Cmin ⁻¹	170
Figure 5.12b	Non-isothermal TGA and DTA pyrolysis thermograms of samples of the Waipawa Formation sampled from the Lower Angora Road quarry, at 5°Cmin ⁻¹	171

Figure 5.12c	Non-isothermal TGA and DTA pyrolysis thermograms of samples of the Waipawa Formation sampled from the Upper Angora Road, at 5°Cmin ⁻¹	. 172
Figure 5.12d	Non-isothermal TGA and DTA pyrolysis thermograms of samples of the Waipawa Formation sampled from Old Hill Road, Porangahau, at 5°Cmin ⁻¹	. 173
Figure 5.13a	Correlation graph between weight losses during Phase II from the TGA analysis and LOI of all samples of this study except sand	. 175
Figure 5.13b	Correlation graph between weight losses during Phase II from the TGA analysis and LOI of all samples of this study except the Qianjiang Formation, Speena Banda oil shale and sand	. 176
Figure 5.14a	Correlation graph between weight losses during Phase II from the TGA analysis and LECO-analysed TOC of the all the samples of this study	. 176
Figure 5.14b	Correlation graph between weight losses during Phase II from the TGA analysis and LECO-analysed TOC of the all the samples of this study except Qianjiang Formation samples and sand	. 177
Figure 5.15	Correlation graph between weight losses during Phase II from the TGA analysis and LECO-analysed total inorganic carbon of the all the samples of this study except sand.	. 179
Figure 5.16	Correlation graph between weight losses during Phase II from the TGA analysis and S1+S2 from SRA of the all the samples of this study except sand	. 180
Figure 5.17	Correlation graph between the Tmax from TGA and the Tmax from SRA, of the Colorado oil shale, Orepuki oil shale and Waipawa Formation samples in the study	. 182
Figure 6.1	Solvent extraction yields from different oil shale samples, sand and argillite	. 187
Figure 6.2	FTIR spectra of the solvent extract from sand and argillite	. 191
Figure 6.3	FTIR spectra of the Orepuki oil shale	. 195
Figure 6.4	FTIR spectra of the Colorado oil shale	. 195
Figure 6.5	FTIR spectra of the Qianjiang Formation	. 195
Figure 6.6:	FTIR spectra of the Mir Kalam Kala oil shale	. 196
Figure 6.7	FTIR spectra of the Speena Banda oil shale	. 196
Figure 6.8	FTIR spectra of the Salt Range oil shale	. 196

Figure 6.9	FTIR spectra of the Waipawa Formation from the Waipawa type locality and the Lower Angora Road quarry	. 198
Figure 6.10	FTIR spectra of the Waipawa Formation from the Upper Angora Road and Old Hill Road (Porangahau)	. 199
Figure 7.1	A non-conventional production potential assessment model of source rocks based on various non-conventional techniques	. 225
Figure 7.2	Assessment of source rock potential of the Orepuki oil shale using the non-conventional production assessment model	.229
Figure 7.3	Assessment of the source rock potential of the Waipawa Formation collected from the Waipawa type locality and the Lower Angora Road quarry using the non-conventional production assessment model.	. 232
Figure 7.4	Assessment of the source rock potential of samples of the Waipawa Formation collected from the Upper Angora Road and Old Hill Road, Porangahau using the non-conventional production assessment model	. 233