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ABSTRACT 

The main objective of this thesis was to analyse the inclusion of genomic information 

of production traits into a multitrait sheep breeding programme evaluated for 20 years 

using deterministic and stochastic simulation models. The breeding objective was to 

reduce faecal egg score (FES), decrease yearling weight (YW) and increase 160 days 

lamb carcass weight (CW). The selection criteria included 160 days live weight 

(instead of CW) plus YW and FES. The first study developed a stochastic model 

selecting animals based on their individual breeding values estimated using best linear 

unbiased predictor (BLUP) procedure with a multitrait animal model. The model was 

validated using a deterministic multitrait selection index; obtaining similar prediction 

responses for breeding objective and selection criteria traits. The second study 

deterministically evaluated the inclusion of genomic information explaining different 

proportions of CW and YW genetic variances into a selection index. Under the same 

selection scheme a selection index having only genomic information obtained lower 

accuracies and genetic gains compared to a selection index considering phenotypic 

information. If shorter generation intervals are implemented, a selection index 

including phenotypic and genomic information explaining low proportions of the trait's 

genetic variance could achieve higher genetic and economic gains. The third study 

evaluated genetic responses of a stochastically modelled breeding flock selecting ewes 

based on BLUP estimated breeding values and selecting rams based on genomic 

breeding values (GBV) for CW. The fourth study evaluated accuracy of prediction of 

CW GBV using the same simulated model. Carcass weight GBVs were calculated in a 

validation population using single nucleotide polymorphism (SNP) effects from a 

training population. The further apart the genetic relationship between these two 

populations, lower the GBV accuracy. Resultant accuracies depended on the 

proportion of total genetic variance explained by genomic information and also the 

variance accounted by each SNP, therefore an appropriate GBV estimating method has 

to be chosen to achieve accuracies as high as possible. Stochastic models proved to be 

more versatile for managing data, also showing variation of the genetic responses. In 

contrast, deterministic models were faster regarding computer processing times. The 

study proved that a breeding programme combining GBV and BLUP estimated 

breeding values can increase genetic responses by selecting animals at early stages of 

life. 
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New Zealand is recognised worldwide for livestock production, specifically dairy, beef 

and sheep production. New Zealand sheep industry strongly relies in lamb meat 

exports (Beef + Lamb New Zealand 2013); therefore the amount of lamb carcass 

weight produced is a trait that is very desirable to be improved as is directly related to 

the farms income. As carcass weight is a trait that can not be measured in living 

animals, a positive correlated trait like live weight at 160 days can be used, in order to 

select animals as breeders improving carcass weight (Bennett et al. 1991). Other traits 

of economic importance are, faecal egg score related to the animal's parasite load and 

adult weight associated with maintenance costs (Huisman et al. 2008). These traits 

affect negatively farm profit by increasing farm costs, therefore it is desired to 

minimise or reduce the genetic gain of these traits in order to improve the profit of the 

farms (Amer 2000). 

Well designed breeding programmes achieve a breeding goal by identifying and 

choosing for breeding, the most suitable animals for the production system (Harris et 

al. 1984). Genetic improvement programmes can be designed by the implementation of 

a proper selection index that maximises the genetic gain of the traits included in the 

breeding objective, which are traits identified as targets, and have an impact on the 

production system (Blair & Garrick 2007). It can be said that New Zealand has been 

successful in the implementation of breeding programmes, as an example, average 

lamb carcass weight has increased from 16.9 kg in 2006 to 18.2 kg on average in 2010 

(Beef + Lamb New Zealand 2012b).  

Classical genetic improvement programmes rely on quantitative genetics to select 

individuals as breeders using phenotypic records from the selection candidates and/or 

their relatives (Ruane & Sonnino 2007). Genetic evaluations have been  very important 

in New Zealand, helping to improve livestock production (Crawford 2003). These 

evaluations are statistical techniques that generate predictions of an animal genetic 

merit, allowing the ranking of animals in a breeding population for replacement. 

Initially, genetic evaluations were conducted using best linear predictor procedures, 

but when computers with enough processing capacity were available, best linear 

unbiased prediction (BLUP) procedures were commercially implemented (Blair & 

Garrick 2007). BLUP procedures use phenotypic records and genealogical data to 

generate a numerical representation of an animal genetic merit named estimated 
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breeding values, and with these values it is possible construct an animal genetic 

ranking (Henderson 1975).  

The development of technologies that enables the manipulation of genetic material at 

DNA level, have allowed the discovery of the molecular source of variation for animal 

production and diseases traits (Crawford 2003). Meuwissen et al. (2001) presented the 

methodology for genomic selection, using information from thousands of single 

nucleotide polymorphism genotypes allowing the estimation of a trait's genomic 

breeding value, for animals that may not have phenotypic records of their own or from 

their relatives. The expectation of incorporating genomic information into animal 

production selection programmes is that, the use of DNA information will help to 

improve the rate of genetic gain compared with programmes using just phenotypic 

information (Meuwissen et al. 2001). 

In sheep production, studies have been developed suggesting that the use of genomic 

selection in breeding programmes will be beneficial to the genetic gains of the 

evaluated production system. The researches involve evaluations of genetic gains in 

selection indices for dual purpose animals, meat (as terminal sires) or wool related 

traits (Pickering et al. 2013; Swan & Brown 2013; Van der Werf 2009), and 

assessment of accuracy of genomic breeding values for production traits (Sise & Amer 

2009; Slack-Smith et al. 2010). The conclusion of these studies showed that the use of 

genomic selection can produce higher genetic gains for traits of economic importance, 

but none of them included genomic information in the same way. 

None of the reviewed studies have shown the long term variation markers when using 

genomic selection in a breeding programme, nor have accuracies been evaluated based 

on the true breeding value of the genotyped trait. 

The objective of this thesis was to analyse how, the long-term genetic responses of 

economic important production traits are affected, when genomic information of one 

of those traits is included into a multitrait sheep breeding programme evaluated over 

20 years. Subsequently, analyse the long-term behaviour of genomic breeding values 

accuracies using the true breeding values of the genotyped trait, with genomic breeding 

values estimated under two different methodologies. Finally, a comparison of breeding 

programmes that include genomic information and breeding programmes based only 
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on phenotypic records was required, to allow readers to make an informed conclusion 

on the differences between them. 

To achieve the objectives of this thesis, deterministic and stochastic simulation models 

were developed. Simulated models were created with a breeding objective that 

decreases faecal egg score (to improve parasite resistance), decrease yearling weight 

(to reduce maintenance costs) and to increase carcass weight of the lambs (increase 

production income).  
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2.1. Introduction 

2.1.1. Current selection 

Animal breeding is a technology involving application of the knowledge of genetics 

and other disciplines (e.g. economics, farm management and reproduction) to improve 

animals (Garrick & Snell 2005). Differences between individuals are the raw materials 

on which breeders work; it is known that the variation between individuals is due to 

differences in their genotypes and their environmental experiences. A third component 

of the difference comes from joint effects between genotype and environment which 

cannot yet fairly be attributed to one or the other, or non-additive combination effects 

(Lush 1943). Quantitative genetics is concerned with the inheritance of those 

differences between individuals that are by degree rather than of kind, in other words 

quantitative rather than qualitative differences (Falconer & Mackay 1996). To decide 

which animals are the best ones to produce the next generation, the breeder has to 

choose which animals have the best combination of several traits to achieve the highest 

genetic improvement (in some cases stated as the breeding objective). 

In 1942, Hazel and Lush stated that multi-trait selection using a selection index is more 

effective than other methods ways of selection, because it achieves the maximum 

genetic improvement per unit of time and effort expended (Hazel & Lush 1942). The 

aggregate value of an animal is the addition of its various genotypes (assuming 

different but overlapping genotypes for each economic trait), and each genotype 

should be incorporated into the index according to the relative economic influence of 

that trait (Hazel 1943). Having this in mind, the net genetic improvement obtained by 

selecting a group of animals is the accumulation of the genetic gains made for all the 

traits which have economic importance. 

Animal industries around the world require the identification of animals of high 

genetic merit for traits of economic relevance. The breeding objective consists of two 

components, estimates of genetic merit for the traits to be improved and their 

economic values. An estimate of the genetic merit is required for each trait included in 

the breeding objective. This estimated genetic merit is typically called the breeding 

value, estimated breeding value or expected progeny difference (Blair & Garrick 

2007). Selection for economically important quantitative traits in animals and plants is 
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traditionally based on phenotypic records of an individual and/or its relatives 

(Meuwissen et al. 2001). To enable the estimation of genetic merit, it is assumed that a 

large number of genes, each with small individual effects (the infinitesimal model) 

contribute to the expression of the phenotype and by their interaction the additive 

effects can be elucidated. The prediction or estimation of breeding values for animals 

using phenotypic and genealogical information is nowadays commonly calculated by 

best linear unbiased prediction (BLUP) (Garrick & Snell 2005; Meuwissen et al. 2001; 

Montaldo & Meza-Herrera 1998). 

2.1.2. Opportunities for selection schemes 

Selection schemes are based in the principle of optimising the annual genetic gain, 

which according to the equation presented by Rendel and Robertson in 1950 (Garrick 

& Snell 2005; Lopez-Villalobos & Garrick 2005; Meuwissen 2003) shows 4 elements 

that can be controlled to change the rate of genetic gain, 

g
TI

T σ
L

ri
G ×







 ×=∆  

where:  

∆GT is the annual genetic gain of the objective. 

i is the intensity of selection. 

rTI is the correlation between the true breeding value (TBV) and the estimated breeding 

value also known as accuracy of selection. 

L is the length of the generation interval for the selected population. 

σg is the genetic standard deviation of aggregate genotype of all the animals in the 

population. 

Therefore any new technology or system that enables the optimisation of the genetic 

gain by changing any component of this equation will be of high commercial interest, 

but as stated by Ruane & Sonnino (2007) it needs to be assessed if implementing these 

new technologies into breeding programmes are cost-effective. Molecular or DNA 

technologies, could offer the possibility to include measurements with reliable 

accuracy of evaluation at younger ages compared with the current selection schemes 

(Garrick & Snell 2005). This evaluation at a younger age could be as early as 
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embryonic stages (Georges & Massey 1991) or even could be done at a sexual cellular 

level (Haley & Visscher 1998). Improved genetic gain would also be possible when 

the traits under a conventional selection programme have low accuracy, such as traits 

with low heritability or traits with few recordings (Meuwissen 2003); when traits are 

not available at the time of selection (carcass traits) or when traits are sex-limited 

(Haley & Visscher 1998; Meuwissen 2003).  

2.1.3. Molecular genetic markers 

A simple definition of genetic markers can be, an observable genetically-controlled 

variation that follows a Mendelian pattern of inheritance (Williams 2005). Molecular 

techniques allow for the detection of these variations or polymorphisms existing 

among individuals in a population for certain DNA regions (Montaldo & Meza-

Herrera 1998). Genetic markers can take a number of forms depending on which 

molecular technique is used to detect and produce them, hence the choice of using any 

of them depends on the goal of study and the variability of the information needed 

(Vignal et al. 2002). 

Vignal et al. (2002) presented the following examples of molecular markers that 

according to the authors are the main ones: 

• Restriction fragment length polymorphisms (RFLP) 

• Polymerase chain reaction - Restriction fragment length polymorphisms (PCR-

RFLP) 

• Randomly amplified polymorphic DNA (RAPD) 

• Amplification fragment length polymorphisms (AFLP) 

• Single stranded conformation polymorphism (SSCP) 

• Microsatellite 

• Single nucleotide polymorphism (SNP). 

The differences between them involve basically the type of information that they can 

provide, and the requirements and characteristic of the techniques used for obtaining 

each marker. 



   CHAPTER 2 

 

12 

2.1.3.1. RFLP 

Restriction fragment length polymorphism (RFLP) are considered to be the first DNA-

based molecular markers (Edwards & McCouch 2007). RFLPs can be described as 

species-specific sequences of genomic variations detected as differences in DNA 

fragment lengths after a process called Southern blot hybridisation. This is achieved by 

treating whole genomic DNA material is treated with a restriction enzyme followed by 

separation by gel electrophoresis (Mueller & Wolfenbarger 1999; Southern 1975; 

Zehner et al. 1998). The polymorphisms identified with RFLPs can be due to single 

base changes generating loss or gain of restriction sites, or may be from insertion or 

deletion between restriction sites, RFLPs are highly locus-specific molecular markers 

(Edwards & McCouch 2007; Mueller & Wolfenbarger 1999). 

2.1.3.2. PCR-RFLP 

Isolation of enough DNA material for RFLPs and its analysis using Southern blot 

methodology is considered technically demanding and also time consuming 

(Beckmann 1988). For this reason another method which combines the Polymerase 

chain reaction (PCR) and RFLP was implemented. 

The PCR technique was first proposed by Mullis et al. (1986). One PCR reaction cycle 

can be described as a three-step process: denaturation, annealing and extension. A PCR 

cycle duplicates a target DNA sequence by using two flanking primers (short 

synthetically generated nucleotides sequences), that bind to each of the target DNA 

strands in opposite directions, serving as a staring point for the synthesis of the DNA. 

By the successive repetition of a cycle the so called "chain reaction" amplification is 

accomplished, obtaining in very short time 2N times the amount of the target DNA 

sequence, with N being the number of the performed cycles (Huang 2014; Mueller & 

Wolfenbarger 1999; Mullis et al. 1986).  

In PCR-RFLP, the PCR process is used to rapidly amplify only the DNA regions 

flanked by the two primers in the annealing stage, after which the PCR products are 

submitted to RFLP analysis to identify polymorphisms. Therefore, a larger quantity of 

genomic samples can be evaluated in a shorter time (Edwards & McCouch 2007; 

González Andrade 2010; Higuchi et al. 1999; Zehner et al. 1998).  
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2.1.3.3. RAPD 

Random amplified polymorphic DNA (RAPD) was first described in 1990 by 

Williams et al. (1990) and Welsh & McClelland (1990). This procedure utilises low 

stringency PCR amplification with a random DNA sequence as a single primer that 

generates an array of unknown DNA fragments that is specific for each DNA strain, 

and are used to generate a genetic profile (Wang et al. 1993; Welsh & McClelland 

1990; Williams et al. 1990). One issue is the low potential of exactly reproducing 

RAPD because the methodology depends highly on the PCR conditions (Vignal et al. 

2002). This methodology generates dominant markers (Mueller & Wolfenbarger 1999; 

Vignal et al. 2002; Williams et al. 1990), but homologous alleles can sometimes be 

identified with the help of pedigrees (Mueller & Wolfenbarger 1999). 

2.1.3.4. AFLP 

This technique was proposed by Vos et al. (1995), based on a selective PCR 

amplification of restriction fragments from a total digest of genomic DNA. They 

structured the methodology as a three step procedure: 

1. Restriction of the DNA and ligation of oligonucleotide adapters. 

2. Selective amplification of sets of restriction fragments. 

3. Gel analysis of the amplified fragments. 

AFLPs are easy to use in the laboratory and compared with RAPDs have better 

reproducibility. But on the other hand, the process is more technically demanding 

because AFLP patterns are more complex as multiple loci are screened at the same 

time (Edwards & McCouch 2007; Mueller & Wolfenbarger 1999; Zhang et al. 2014). 

The main drawback of this method is the difficulty in detecting homologous markers, 

because it primarily generates dominant rather than co-dominant markers (Mueller & 

Wolfenbarger 1999; Vignal et al. 2002). 

This methodology is still largely used for genotyping, phylogenetic analysis or the 

identification of species which feature large complex genomes, therefore new tools are 

designed for scoring, studying or managing ALFP data (Zhang et al. 2014).  
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2.1.3.5. SSCP 

The single-strand conformational polymorphism (SSCP) method is a genotyping 

technology which was first proposed by Orita et al. (1989a). The authors developed 

this methodology as a fast, simple, powerful and sensitive tool for detecting specific 

DNA sequence changes, even on a single-base scale (Fukuoka et al. 1994; Orita et al. 

1989b). This methodology allows segments of DNA that have been amplified with 

specific primers and PCR to be quickly examined, and to identify in a single strand of 

DNA any sequence variation (Humphries et al. 1997; Yao et al. 1996). This is done 

without the involvement of restriction enzyme digestion, blotting, or hybridization to 

probes (Orita et al. 1989b). 

SSCP patterns can be significantly affected for example by the temperature used for 

the electrophoresis process, the glycerol concentrations in gel, the buffer concentration 

and conductivity. Also, the optimal conditions for detection of the polymorphisms are 

affected by the length of the analysed nucleotides sequences (Fukuoka et al. 1994; 

Humphries et al. 1997). 

2.1.3.6. Microsatellite 

Microsatellites, also known as simple sequence length polymorphisms (SSLP) or 

simple sequence repeats (SSR), consist of short nucleotide sequences (di-, tri- or tetra-

nucleotide patterns) repeated in tandem several times (Edwards & McCouch 2007; 

Mueller & Wolfenbarger 1999). One advantage is that these markers are co-dominant; 

therefore the heterozygous form can be differentiated from the homozygous form. 

Another benefit is that the results are highly reproducible and are abundant in 

eukaryotic genomes (Edwards & McCouch 2007).  

A drawback of this method is the need of developing species-specific primers, which 

requires a considerable degree of molecular skills (e.g. cloning and sequencing) and 

also patience and time as the procedure may take several months (Mueller & 

Wolfenbarger 1999). It is very unusual that primers developed for one species could be 

used further than just the closest relatives. Therefore, for every new species analysed 

new microsatellite primers need to be developed (Edwards & McCouch 2007; Mueller 

& Wolfenbarger 1999). 
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2.1.3.7. SNP 

SNP is the acronym for single nucleotide polymorphism (Montaldo & Meza-Herrera 

1998; Vignal et al. 2002). These are stable point mutations that constitute the most 

common type of genetic variation (Gilles et al. 1999), and they are characterised by the 

variation of a nucleotide at a single base. Because of their widespread nature 

throughout the genome, they are considered as potentially valuable genetic markers 

(Garrick & Snell 2005; Gilles et al. 1999). There are at most four alleles, for the four 

bases, A, T, C and G, at any one position in the genome but most often there are only 

two alleles (Garrick & Snell 2005; Vignal et al. 2002). Most commonly, only two 

alleles occur, firstly, because the probability of two independent base changes 

occurring at a single position is very low (Vignal et al. 2002). Secondly because of a 

bias towards transition mutations (purine-purine (A↔G) or pyrimidine-pyrimidine 

(C↔T)) over transversion mutations (purine-pyrimidine or pyrimidine-purine (A↔C, 

A↔T, G↔C, G↔T)), leading to a prevalence of two SNP types. This diallelic nature 

makes individual SNPs intrinsically less informative than other markers which show 

more variation, but a large number of SNPs compensate for their low variability 

(Haley & Visscher 1998). This is due to how the SNPs are organised in the 

chromosome, SNPs that are near each other tend to be inherited together so regions of 

close related markers can be identified. These regions of linked variants are known as 

haplotypes (The International HapMap Consortium 2008). 

SNPs, of all the molecular markers are considered to be the best choice (Edwards & 

McCouch 2007).SNPs provide the most marker density, have a very low mutation rate 

and allow to make inferences across independent datasets (Nielsen 2000). Also, in 

some situations SNPs are the only way for finding markers very close or within a gene 

of significant importance, or can provide the means to detect functional genetic 

elements (Edwards & McCouch 2007; Meuwissen et al. 2013). In addition this 

technology is becoming more cost-effective for most of the major livestock species. 

Using SNP-chip genotyping technologies panels of approximately 50,000 or even over 

700,000 genome-wide SNPs are available (Pérez-Rodríguez et al. 2013; VanRaden et 

al. 2011).  
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2.2. Selection schemes using genomic information 

It has been stated that most traits of economic interest behave as if there were many 

loci influencing their expression and therefore their variation. This assumption leads to 

the idea of polygenic inheritance and the infinitesimal model (Garrick & Snell 2005; 

Hayes & Goddard 2001). In reality, a small number of genes seem to affect a large 

proportion of the variation in phenotypic characteristics; accompanied by a large 

number of genes each having small effects (Garrick & Snell 2005; Georges & Massey 

1991; Hayes & Goddard 2001). The inclusion of genomic information into selection 

programmes to improve animal production rely on the expectation that information at 

the DNA level will lead to faster genetic gain than the one achieved based only on 

phenotypic information (Meuwissen et al. 2001). Therefore accurate appraisal about 

the implications of introducing genomic data into a breeding scheme concerning the 

impact that this inclusion will have in the phenotypic response, is needed before 

developing an accurate breeding programme. 

Lande & Thompson (1990) presented a deterministic simulation model that included 

molecular genetic information using selection index theory. This was further 

developed by Dekkers (2007) where he presented equations to include marker 

information as a correlated trait (with heritability equal to 1). Several assumptions 

were made to develop the model, highlighting the multivariate normality of the marker 

information, which the author states that it can be considered "approximately valid" if 

markers breeding values are based on a large number of markers allowing to be 

represented as a polygenic trait. Another consideration is that selection index theory 

does not account for changes in the genetic variance due to changes in gene (allele) 

frequencies (Bulmer effect). This issue was solved using a selection index software 

package that adjusts for the Bulmer effect. Based on Dekker's (2007) publication, 

Janssen-Tapken et al. (2010) compared different selection strategies for improved 

productivity and marker assisted selection (MAS) for disease traits; Togashi & Lin 

(2010) analysed different selection methods for genetic improvement of net merit for 

two traits with the inclusion of marker information; Pryce et al. (2010) presented a 

deterministic model using the four pathways of selection of Rendel & Robertson 

(1950) while also accounting for the rate of inbreeding per generation. In sheep 

production Sise & Amer (2009) presented a deterministic approach using selection 
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index theory to predict the response to genomic selection in dual purpose sheep flocks. 

Besides the methodology used the results of these studies suggest that a large amount 

of information is required to a estimate genomic breeding values (GBV). Better genetic 

gains may be obtained because genomic information explains a larger amount of the 

phenotypic variance, and/or a reduction of the generation interval. 

Even though deterministic models have the advantage of being less demanding in 

computing time than stochastic models, most of the work evaluating the impact of 

information on individual genes or markers has been done using stochastic 

simulations. This is because deterministic prediction of the selection response by 

selection index theory needs multivariate normality, which does not occur when only a 

limited number genes are used in the selection simulation, and also because selection 

index predictions ignore Bulmer effects (Dekkers 2007). 

Stochastic simulation models using BLUP with the inclusion of genetic markers have 

been compared with conventional BLUP to assess the effectiveness of MAS (Fernando 

& Grossman 1989; Zhang & Smith 1992), even though it was never commercially 

applied. The great change in the perception of MAS was when Meuwissen et al. (2001) 

published their work in which they presented the methodology for genomic selection, a 

term that was first introduced by Haley and Visscher (1998) (Meuwissen 2007). The 

methodology is a form of MAS that uses SNPs as a dense marker map combined as 

“haplotypes”, which represents the total genetic variation of the trait under study, and 

phenotypes in a training population to estimate the effect of each haplotype in the 

breeding objective traits. This allows the estimation of breeding values for animals that 

have no phenotypic record of their own and no progeny (Meuwissen et al. 2001). 

These predictions of animal genetic merit became known as genomic estimated 

breeding values (GBV). The statistical methods used by Meuwissen et al. (2001) will 

be explained in the next section. 

Since the appearance of genomic selection, several methodologies have arisen to 

estimate the GBVs and also for analysing the accuracy of different methods in 

different scenarios (Amer & Payne 2009; Hayes et al. 2006; Hayes & Goddard 2010; 

Luan et al. 2009; Pérez-Rodríguez et al. 2013; Schaeffer 2006; Toosi et al. 2010; 

Weigel et al. 2010). Regarding sheep, studies have evaluated the accuracy of genomic 

selection for production traits (Sise & Amer 2009; Slack-Smith et al. 2010), genetic 
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gains in selection indices for dual purpose animals or wool related traits (Pickering et 

al. 2013; Swan & Brown 2013), or for the detection of faulty genes by identifying 

animals carrying the undesirable SNP allele (Sise et al. 2008). 

In general, the literature concludes that the inclusion of genomic data into selection 

schemes produces an increase in the rate of genetic gain for the traits or index under 

simulation. All studies concur that large datasets are required to achieve high 

accuracies but there is no agreement on a unique methodology for estimating the 

GBVs, with small differences shown by different statistical analyses. 

 

2.3. Prediction of genomic values 

Genetic improvement programmes try to optimise the genetic merit of the population 

studied. This merit can be a linear or nonlinear combination of genetic values of the 

traits under selection, and cannot be directly observed. This requires that the genetic 

values must be inferred from data (Gianola 2000). The novel approach proposed by 

Meuwissen et al. (2001) using dense marker maps, analysed data sets that included 

thousands of variables (SNPs) to estimate the allelic effects of each SNP, for a finite 

animal population. Their intention was to utilise genomic selection procedures to 

explain all genetic variation by genetic markers and thereby, acquire a higher accuracy 

of selection in situations, where the accuracy of selection of "non genomic procedures" 

was low, like traits with low heritability, measured late-in-life, or after-slaughter. Also 

their proposal of genomic selection was to fit all markers (whether or not they were 

statistically significant) and to estimate all gene effects simultaneously. 

Meuwissen et al. (2001) showed three procedures for analysing genomic data and 

therefore inferring genomic breeding value estimates or GBVs. These methods were 

Least squares, BLUP and Bayesian estimation (BayesA and BayesB). Numerical 

examples will be presented to illustrate how genomic information is incorporated into 

the mathematical procedures to obtain GBVs. 

2.3.1. Least squares procedure 

The least squares procedure in statistics is used to predict the expected value of a 

vector of observations, being Xb(y) =E , leading to the equation: 
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yX'bXX' =ˆ  

where: 

X is an incidence matrix associating individuals and their fixed effects, 

y is a vector of the known observations, 

b̂  is a vector with the regression coefficients for fixed effects. 

Using this statistical procedure to estimate the solution for a very large number of 

effects (variables) is not possible, because there will not be enough degrees of freedom 

to fit all the effects at the same time (Meuwissen et al. 2001; Meuwissen 2003; Searle 

2006). However, least squares can be used to test all the genomic variables included, 

by analysing them one by one for their statistical significance (stepwise), and therefore 

enabling the inclusion only of the ones that improve the fit of the model (Meuwissen et 

al. 2001; Meuwissen 2003). The major issue that arises from the use of least squares is 

that a bias problem occurs by setting the effects of the non-significant genes to zero 

and giving full effect to the ones that are statistically significant. Therefore, this 

procedure performs poorly because it greatly overestimates some variable effects (the 

ones that do have a statistically significant effect) and underestimates others (the ones 

that are non-significant but with some effect) (Meuwissen et al. 2001). 

2.3.1.1. Numerical example illustrating the use of the least squares procedure to 

estimate genomic breeding value 

Two sheep populations of 20 animals were simulated, a training population (Table 

A 2.1) and a predicted population (Table A 2.2), each one of them with randomly 

generated weaning weights (WW) with a mean value of 28 kg and a variance of 4 kg2, 

also a sequence of 40 genetic markers (SNPs) per animal was simulated, associating 

them to the weaning weight of each animal, these were generated assuming that the 

SNPs explain a 100% of the genetic variance for the trait, with frequencies of 0.5 for 

heterozygous and 0.25 for each homozygous allele and that they have a gamma 

distribution with a shape parameter of 0.4 and a scale set to 1.66 (Calus & Veerkamp 

2007; Hayes & Goddard 2001; Meuwissen et al. 2001; Toosi et al. 2010) this is to 

represent a small number of genes affecting a large variation proportion, and large 

number of genes affecting a small proportion. 
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To see which SNPs predict most accurately the WW of each animal presented in Table 

A 2.1, a stepwise regression (forward-backward) was done using the step function of 

the data analysis language R (Ihaka & Gentleman 1996), which showed that SNPs 1, 2, 

24, 4, 13, 5, 31, 33, 14 and 3 were the ones that most accurately predicted the WW for 

the 20 animals in the training population (R2 0.92), leaving aside the information 

provided by the rest of SNPs. The SNPs identified as significant were analysed using a 

least squares procedure to obtain the regression coefficients (b values) of the 10 

selected SNPs. This b values, also known as best linear predictors, were utilised to 

estimate the GBVs of the predicted population as seen in Figure  2.1, obtaining an 

accuracy of prediction of 0.38. 

Results presented in Figure  2.1 shows large differences between weaning weights 

TBVs and GBVs, being 3.83 kg the largest prediction difference (animal 1,500) and 

0.18 kg the lowest prediction difference (animal 2,065).  

 

Figure  2.1. True breeding values (TBV) and genomic estimated breeding values 

(GBV) for simulated sheep weaning weights using least squares. 
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2.3.2. Best linear unbiased prediction procedure 

This statistical procedure is used to estimate the fixed effects and breeding values 

(random effects) (Falconer & Mackay 1996), and assumes genetic and phenotypic 

variances are known. In reality the genetic variance (and also the residual variance) 

might not be known, so they can be estimated using “restricted maximum likelihood” 

procedure, better known as REML (Falconer & Mackay 1996; Gianola 2000), which 

accounts for the loss of degrees of freedom incurred in estimating fixed effects 

(Gianola 2000; Meuwissen et al. 2001).  

The SNP information or allelic effects are fitted in genomic BLUP as random effects; 

therefore this procedure is also called random regression-BLUP (RR-BLUP) (Habier et 

al. 2007; Moser et al. 2009) or SNPBLUP (Meuwissen et al. 2013). This methodology 

requires an estimate of the SNP variance. However this procedure assumes that every 

locus will get the same variance and considers a very small impact of the allelic effects 

on the related trait (Meuwissen et al. 2001; Meuwissen 2003). Another consideration 

of interest is that the gene or SNP effects are assumed to be additive (which is 

appropriate for the prediction of breeding values), but the reality is that some degree of 

dominance will probably occur in practice (Meuwissen et al. 2001), therefore the 

dominance effect of some genes is going to be masked by the average effect of the 

total gene population. 

2.3.2.1. SNPBLUP and GBLUP 

Another BLUP model which includes genomic information is GBLUP (Hayes et al. 

2009b; Hayes et al. 2009a). This model can be defined as an adaptation of the 

SNPBLUP method. Instead of fitting the SNP information as random effects, in 

GBLUP the markers information is included using a genomic relationship matrix G, 

which is derived from them (Daetwyler et al. 2010; VanRaden 2008; Visscher et al. 

2006). 

SNPBLUP and GBLUP models are equivalent, consequently the genomic breeding 

values estimates yield from each of the models are going to be the same (Goddard 

2009; Habier et al. 2007; Meuwissen et al. 2013). 
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2.3.2.2. Numerical example illustrating the use of the best linear unbiased 

predictor procedure to estimate genomic breeding values 

Two examples were made to show the use of BLUP with the same two sheep 

populations of 20 animals simulated in point 2.4.1.1.; two simulated markers, SNP1 

and SNP2 have known variances explaining 40 and 30% respectively of the WW total 

genetic variance. To obtain the genomic information predicting values, the 40 

simulated SNPs were included as random variables with the mixed model equation: 
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where: 

X is a known incidence matrix relating animals with their fixed effects, 

Z is an incidence matrix relating the recorded animal and their random effects, 

y is a vector of the known observations (phenotypic records), 

b and a are regression coefficients for fixed and random effects respectively (BLUE and 

BLUP values), 

I  is an identity matrix of the same order as the Z'Z  matrix. 

λ (also known as alpha value) is the value obtained when the residual variance is 

divided by the random effect variance (for each of the random variables used in the 

model) 
2
a

2
e

σ

σ
λ = . 

The first of the SNPBLUP examples (1-alpha) was based on Meuwissen et al. (2001), 

where each SNP variance was assumed to be the WW total genetic variance (1.6 kg2) 

divided by the number of SNPs, this brings an individual variance value of 0.04 kg2. 

The residual variance with a value of 2.4 kg2 was obtained considering the total genetic 

variance and the phenotypic variance utilised (4 kg2) in the stochastic simulation. The 

SNPs variance and the residual variance are needed to obtain the alpha value used in 

the mixed model equations. The estimates for the random SNPs effects obtained from 

the training population were multiplied with the SNPs effects values of the predicted 

population in order to get their GBVs (Figure  2.2). The accuracy of prediction obtained 

was 0.47. 
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The second example (2-alpha) differs from 1-alpha in that, as the variances of the 

SNP1 and SNP2 were known (representing a large proportion of the total genetic 

variance), these variances were used to estimate the alpha values for each respective 

known random effect (SNP). The rest of the SNPs with unknown variances were 

assumed to have a variance value obtained as the difference of the known SNPs 

variances and the total genetic variance. With this information the BLUP values 

obtained from the training population were used as for the previous example with the 

purpose of acquiring the GBVs (Figure  2.2); this resulted in an accuracy of prediction 

of 0.45. 

 

Figure  2.2. True breeding values (TBV) and genomic estimated breeding values 

(GBVs) for simulated sheep weaning weights using two different BLUP approaches 

(1-alpha and 2-alpha). 

The results presented in Figure  2.2 do not show large differences of the animals 

predicted GBVs for the two presented methods. The biggest GBV difference of 3.2 kg 

was obtained by animal 1,339 analysed with 1-alpha and the lowest GBV difference of 

0,008 kg was achieved by animal 2,501 analysed with 2-alpha method. Even though 

the accuracy of the 1-alpha method was slightly higher, as shown in Figure  2.2 the 
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differences between the animals TBVs and GBVs in average were lower for the 2-

alpha BLUP method.  

2.3.3. Bayesian Procedures 

The premise of Bayesian analysis is the Bayes' theorem, which is based on defining 

two probability values: 

The likelihood probability, which is in a general sense, the probability that is derived 

from the observed data. 

The prior probability, which is an estimate of how likely this set of observations and the 

associated prior probability, is to occur in the population. 

The combination of these two probabilities is an estimation of the probability that an 

event will occur (known as the joint probability) (Hair et al. 2006). In general Bayesian 

estimation (BayesA and BayesB) is similar to BLUP (Meuwissen et al. 2001; 

Meuwissen 2003). The difference between these approaches is that the variance of the 

allelic effect is assumed individually (for every gene or SNP included in the model), 

which is estimated by using a prior distribution for the variance of gene i (Vai) assumed 

as: 

0=aiV  with probability π, and  

( )SvVai ,~ 2−χ  with probability (1- π). 

Where p depends on the gene mutation rate, and ( )Sv,2−χ  represents the inverse – Chi 

squared distribution with v degrees of freedom and scale parameter S. These two 

parameters (v and S) depend on the distribution of the mutational effects, and in 

practice they need to be estimated (Meuwissen et al. 2001; Meuwissen 2003). 

This methodology of analysis wasn't chosen in the experimental part of this thesis to 

estimate the simulated GBVs mainly because is more computational demanding and 

secondly because the level of accuracy shown in the literature doesn't differ much 

compared to the BLUP methodology including genomic information. 
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2.3.3.1. The bayesian alphabet 

Since Meuwissen et al. (2001) presented the Bayes hierarchical models (BayesA and 

BayesB) several other bayesian models have been proposed due to discrepancy on the 

mathematical validity of the models (e.g. assumptions of the SNPs effects 

distributions). Therefore BayesA and BayesB are considered the starting point for what 

is now known as the bayesian alphabet. 

2.3.3.1.1. BayesA and BayesB 

As stated in point  2.3.3, the variance of the allelic effect of the SNP included is 

assumed individually, this is because considering the SNP effects to have a normal 

distribution with an invariable variance may not be accurate. According to Meuwissen 

et al. (2001) the BayesA model, assumed that the variance of SNPs effects had a scaled 

inverted chi-square distribution, allowing some SNPs to have larger effects than they 

do under an assumption of normality. However the prior density does not have a peak 

when the variance of a genomic segment equals 0. This, according to Gianola et al. 

(2009), actually is the kernel of the density of the t-distribution, which is the de facto 

prior assigned to a SNPs effects in Meuwissen et al. (2001). 

Meuwissen et al. (2001) highlights that the difference between their two proposed 

bayes models, is that in the BayesB model, some SNPs (with a probability of π) have 

no effect on the evaluated trait, and another proportion of SNPs (with a probability of 

1– π) have an effect drawn from a t-distribution. Therefore BayesB can be reduced to 

BayesA by having π = 0 (Gianola et al. 2009). 

Gianola et al. (2009) state that, in a Bayesian learning context BayesB is wrongly 

formulated based on the assumption that an a priori variance value equal to zero 

implies absence of an effect of the SNP on the trait. In a Bayesian sense, a parameter 

having an a priori variance value of zero, does not inevitably indicate that it will 

obtain the value of 0, in fact it could be any value, but known with certainty. Besides 

the previous statements, BayesB methodology has been largely used and as shown by 

the Meuwissen et al. (2001) delivers higher accuracies of prediction compared with 

other analysis methodologies. 
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2.3.3.1.2. Bayes SSVS or BayesC 

The Stochastic Search Variable Selection (SSVS) methodology developed by George 

& McCulloch (1993) (Verbyla et al. 2009) also called Bayes C (Verbyla et al. 2010) is 

a methodology is similar to BayesB. It differs by allowing a constant dimensionality to 

be maintained across all models while enabling the SNPs in the predictive set to 

change. In other words, a single effect variance common to all SNPs is used instead of 

locus-specific variances. With this change, the influence of the scaling parameter is 

reduced (Habier et al. 2011). The major advantage of this method is that it can be 

implemented using the Gibbs sampler instead of the more computationally demanding 

algorithms such as the reverse jump algorithm.  

2.3.3.1.3. BayesD 

This is another methodology which can be described to be a modification of BayesB. 

This procedure according to Habier et al. (2011) differs from BayesB in that the scale 

parameter of the inverse chi-square prior for locus-specific variances is treated as an 

unknown having its own prior. 

2.3.3.1.4. BayesCπ and BayesDπ 

The purpose of Habier et al. (2011) in developing these two bayesian methods was to 

address for the drawbacks exposed by Gianola et al. (2009), of the models presented 

by Meuwissen et al. (2001). BayesCπ and BayesDπ models are similar to BayesC and 

BayesD models respectively in terms of how the SNP effect variances are simulated 

leading to different strategies for the inclusion of SNPs in the model. The difference 

between the respective models being that the proportion π was considered as unknown 

with a prior distributed uniformly (0.1). 

Regarding accuracy of GBVs, the authors have acknowledged that none of the models 

(BayesA, BayesB, BayesCπ and BayesDπ) outperformed the others. But in terms of 

computing time BayesCπ and BayesDπ are the models which took less time to run. 
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2.3.3.1.5. Bayesian Lasso 

Bayesian least absolute shrinkage and selection operator (Bayesian Lasso) proposed by 

Park & Casella (2008) (de los Campos et al. 2009), combines the subset selection (i.e., 

variable selection) with the shrinkage produced by the standard Bayesian regression, 

but it does not accommodate pedigree information or  regression on (co)variates other 

than the markers for which a different shrinkage approach may be desired. 

2.3.4. Statistical learning methods for estimation of genomic values  

Statistical learning or machine learning methods are terminologies referring to a group 

of methods that emerged due to the need of obtaining information from an immense 

amount of data. They were developed to optimise the predictive performance based on 

the automatic discovery of patterns in a dataset through the use of computer algorithms 

from a training dataset (Bishop 2006). Methods such as least squares procedures, 

BLUP and the entire bayesian alphabet can be classified as machine learning 

approaches. 

To obtain different approaches to analyse and obtain GBVs with higher accuracies 

than the ones presented by Meuwissen et al. (2001) other statistical methods such as 

machine learning algorithms have been proposed for genomic selection (Long et al. 

2007). An example is the double hierarchical generalized linear model (DHGLM) 

developed by Lee & Nelder (2006) which according to Shen et al. (2011) uses a 

likelihood framework to allow for the estimation of marker-specific variances and 

therefore GBVs without the need for a prior distribution.  

Two other methods also utilised to estimate the marker effects, are partial least squares 

regression (PLSR) (Moser et al. 2009; Solberg et al. 2007; Solberg et al. 2009; Sölkner 

et al. 2007) and principal components regression (PCR) (Solberg et al. 2007; Solberg 

et al. 2009). These are considered dimension reduction methods, and provide another 

approach to deal with having a greater number of predictors than records (Solberg et 

al. 2009). PLSR obtained similar accuracies compared with other methodologies 

analysed by the authors (Bayes regression and RR-BLUP), and PCR obtained slightly 

lower accuracies. Regarding computational requirements, PLSR and PCR methods 

needed less computing time.  
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Other nonparametric approximation methods for obtaining additive genetic values are 

Kernel regression (KR) and the semi-parametric function of reproducing kernel Hilbert 

spaces regression (RKHS) procedures. These methods can be embedded into standard 

mixed-effects linear models without introducing non-linearity (Gianola et al. 2006), 

thereby allowing the identification of the multiple and complex interactions between 

many loci at different chromosomes (Gianola & van Kaam 2008). 

Moser et al. (2009) and Long et al. (2011) also proposed another method which can be 

classified as a specific learning algorithm of RKHS. For this method, the 

nonparametric support vector regression (SVR) proposed by Vapnik (1998), 

simultaneously minimises an objective function which includes both model complexity 

and the error on the training data. 

The Elastic-Net (EN) algorithm (Croiseau et al. 2011) has been used to estimate each 

of the available SNP effects, when there is a larger number of SNPs than animal 

records. This methodology originally proposed by Zou & Hastie (2005) is defined as a 

penalised regression approach (Croiseau et al. 2011; Waldron et al. 2011). The 

approach encourages a grouping effect whereby highly correlated prediction variables 

are likely to be conjointly included or discarded from the model. This leads to a 

reduction of SNPs included in the prediction equation with only a minor effect on the 

quality of prediction (Croiseau et al. 2011). 

Artificial neural networks, or neural networks (NN) have been proposed for the 

prediction of complex genotypes using genomic information (Gianola et al. 2011; Okut 

et al. 2011; Okut et al. 2013). The concept of NN is to find a mathematical 

representation of the information processing in biological systems, in particular the 

central nervous system (Bishop 2006). NN is a machine learning procedure that 

operates as a universal approximator of several complex input functions. These 

functions called neurons operate in parallel and are arranged into layers which 

converge into a single output (Gianola et al. 2010; Gianola et al. 2011; Okut et al. 

2011). The methodology can be considered as a non-linear regression model, with 

parameters tuned by Markov Chain Monte Carlo methods or by Bayes theory. 

Therefore it can capture non-linear relationships between predictors and responses 

(Gianola et al. 2010; Gianola et al. 2011), and in this way, learn complex functional 

forms as well as pattern recognition due to their adaptive nature (Okut et al. 2013). The 
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main challenge is that the methodology is very computational demanding and hence 

time consuming, especially with large datasets (Pérez-Rodríguez et al. 2013). 

There are some other special cases of learning algorithms that are combinations of 

several machine learning models. These combined models, occasionally labelled as 

committees, are implemented in an attempt to obtain better performances (higher 

accuracies or less computing times) than the ones achieved by using an isolated model 

(Bishop 2006). Bagging is one example of a committee method, the name being an 

abbreviation for bootstrap aggregating (Bishop 2006; Flach 2012). Bagging is a 

method developed by Breiman (1996) (Bishop 2006; Gianola et al. 2010; Gonzalez-

Recio & Forni 2011). As the name states, the method obtains an aggregated predictor 

value from generating different predictor values by bootstrapping different random 

samples or subsets of the original learning dataset and using them as new learning sets 

(Breiman 1996; Flach 2012).  

A committee method used for genome-wide prediction which exploits the bagging 

method with another machine learning procedure, called tree models, is random forest 

(RF) (Flach 2012). This algorithm was developed by Breiman (2001) and employed in 

a genomic breeding value context for the first time by Gonzalez-Recio & Forni (2011). 

RF constructs several decision trees models on bootstrapped subsets of the dataset 

(which includes genomic information), averaging each generated predictor to make 

final predictions. This methodology reduces the prediction error by a factor of the 

number of tree models evaluated. 

Gonzáles-Recio et al. (2010) utilised a further committee method called boosting for 

genomic selection. Specifically they evaluated the performance of the L2-Boosting 

algorithm, showing that the method can be used for regression in high-dimensional 

problems, and can evince complexity brought by covariates, such as SNPs. The 

authors stated that L2-Boosting could be a viable method for genomic selection, but to 

improve the performance of the procedure, aspects such as the choice of weak learner, 

stopping criterion, step-size parameter and programming strategy have to be evaluated. 
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2.3.5. Multi-step vs. Single-step approaches for genomic evaluations 

Methodologies for genomic evaluations are executed as a series of steps (Misztal et al. 

2009), hence the term multi-step. In theory, it consists of two phases, a training phase 

for the estimation of the genotypic effects and an application phase where the GBVs of 

the selection individuals are estimated based on their own genotypic information and 

the effects from the training phase (Garrick et al. 2009). Some of the methods 

mentioned could involve traditional BV estimations using an animal model, prediction 

of genotypic effects (usually in mixed models as random effects), the inclusion of new 

input data derived from the observations (e.g. offspring averages as data, deregressed 

evaluations, removing parent average effects), genomic selection, and maybe 

developing a selection index that merges genomic and polygenic data (Garrick et al. 

2009; Misztal et al. 2009; VanRaden 2008). For the inclusion of either all or some of 

these options the multi-step procedure is said to be a blended methodology, but as 

reviewed there is not a single way to approach the analysis.  

According to Misztal et al. (2009) the multi-step procedure has some disadvantages 

such as the requirements for certain parameters needed for the estimation of genomic 

effects and GBVs (e.g. prior variances and weights), and also loss of accuracy and 

biases attributable to selection. Therefore, they developed a single-step methodology 

which simultaneously includes phenotypic, genomic and relationship information 

(Harris et al. 2013). The method modifies the pedigree-based numerator relationship 

matrix with the inclusion of the genomic relationship matrix proposed by VanRaden 

(2008) (Harris et al. 2013; Misztal et al. 2009; Swan et al. 2012). This new 

methodology allows the analysis in one unique procedure of all available individuals, 

regardless of whether they have been genotyped or just have phenotypic information.  

 

2.4. Concluding observations 

The selection of young bulls by artificial insemination companies using genomic 

selection has increased genetic gains mainly by shortening the generation intervals 

(Wiggans et al. 2011). But even though more than a decade has passed since 

Meuwissen (2001) proposed the use of genomic selection, there is still no agreement in 
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a unique statistical procedure for estimating GBVs, as new methodologies are 

implemented (Pérez-Rodríguez et al. 2013). 

The methodologies for validating genomic selection have become a very important 

topic as more countries are interested in utilising this new technology (Olson et al. 

2011).  The main issue that has arisen concerns the realised accuracy of the GBVs 

which are low compared with progeny tests. It has been very difficult to increase the 

accuracy to levels that may be considered acceptable, for example 75% for yield traits 

in dairy cow populations (Wiggans et al. 2011), and 90% for beef related traits 

(Boerner & Johnston 2013). One of the ways that this lower accuracy has been 

managed is by using very large training populations that have both genotypic and 

phenotypic information (Saatchi et al. 2013). Since the number of animals within 

breeds is sometimes not enough to obtain desired accuracy levels, multi-breed methods 

have been proposed to increase accuracy (MacLeod et al. 2013; Moghaddar et al. 

2013; Saatchi & Garrick 2013). 

Another way that has been proposed to increase reliabilities is the use of quantitative 

trait nucleotides (Ron & Weller 2007; Weller & Ron 2011); these are specific 

polymorphisms that have a direct effect over a phenotypic characteristic. High density 

chips (over 700,000 SNPs) are another way that has been proposed for increasing the 

estimation accuracies, but for the moment this is less cost effective than using a lower 

density chip with more animals (VanRaden et al. 2011). 

As technologies develop and costs decrease, these new molecular and quantitative 

genetic tools will become a possible alternative in animal selection programmes. 

Different analysis techniques, such as the ones presented in this chapter, are designed 

in an effort to integrate the information provided by molecular genetics, and by using 

quantitative procedures to estimate a trait's genomically estimated breeding value of 

genotyped animals in a selection breeding programme. The accuracies of the breeding 

values obtained depend not only on the analysis method utilised but also on the amount 

of information used to estimate the GBVs and the distribution of the genotypes. 

Therefore the results obtained in the presented examples must be considered as 

examples only, because they consist of just a few animals. 
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This review suggests that the power of genomic selection currently does not rely on the 

expectation of acquiring better realised accuracies (although there is a lot of effort to 

overcome this issue) in the prediction of GBVs, but rather on the possibility of 

selecting breeding animals at younger ages. Because of the limited evidence for 

increase genetic gain provided by the empirical studies, further simulation studies are 

needed in order to assess the long-term effects of including genomic information about 

production traits in multitrait sheep breeding programmes.  
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Table A 2.1. Simulated single nucleotide polymorphisms associated with weaning weight (WW) for a training population of 
20 animals. 
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WW 

29,95 

29,08 

30,55 

29,52 

30,03 

29,57 

28,50 

29,19 

29,35 

27,22 

30,10 

29,20 

31,06 

30,72 

30,48 

28,59 

28,80 

30,67 

30,15 

31,29 

Table A 2.2. Simulated single nucleotide polimorphisms associated with weaning weight (WW) for a predicted population 

of 20 animals. 

ID 

6287 

4192 

3551 

3658 

3059 

4281 

1341 

1808 

2065 

8438 

8123 

5047 

5803 

2792 

1095 

1500 

2501 

524 

1396 

1339 

 



Literature review 

 

35 

Table A 2.3. Genomic breeding values (GBV) for 

weaning weight estimated using least squares 

methods. 

Animal ID GBV 

6287 0.83 
4192 -0.46 
3551 0.69 
3658 1.30 
3059 0.70 
4281 0.22 
1341 2.16 
1808 0.43 
2065 1.53 
8438 0.44 
8123 0.97 
5047 -1.22 
5803 1.25 
2792 3.44 
1095 0.46 
1500 -3.25 
2501 3.05 
524 3.32 
1396 -0.09 
1339 2.59 

 



   CHAPTER 2 

 

36 

Table A 2.4. Genomic breeding values (GBV) for weaning 

weight is sheep estimated using best linear unbiased 

prediction procedures. 

Animal ID 
True breeding 

values 
GBV          

(1-alpha)1 
GBVs          

(2-alpha)2 

6287 1.95 0.04 0.21 
4192 1.08 -0.41 -0.34 
3551 2.55 -0.18 -0.04 
3658 1.52 0.01 0.56 
3059 2.03 0.18 0.07 
4281 1.57 0.37 0.12 
1341 0.50 -0.27 0.68 
1808 1.19 -0.02 0.51 
2065 1.35 -0.19 0.52 
8438 -0.78 -0.39 -0.10 
8123 2.10 0.37 0.83 
5047 1.20 0.04 -0.48 
5803 3.06 0.13 0.60 
2792 2.72 0.29 0.80 
1095 2.48 -0.38 0.63 
1500 0.59 -0.48 -1.43 
2501 0.80 0.08 0.79 
524 2.67 0.07 1.24 
1396 2.15 -0.29 -0.05 
1339 3.29 0.11 0.77 

 
  1 Equal variance for all SNPs 
  2 Known variances for SNP1 and SNP2 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 3  

Deterministic and stochastic simulation of a breeding programme for a 

nucleus flock based on individual selection
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3.1. Abstract 

The use of an adequate selection index in a breeding unit to identify the individuals 

with best genetics will improve the breeding objective traits. New Zealand has had 

very strong capacity of quantitative genetics, which has enabled the development of 

successful sheep breeding programmes. The study developed a stochastic model that 

simulated a sheep breeding flock selecting their breeding animals using best linear 

unbiased predictor methodology. The system had the breeding objective of improving 

parasite resistance by decreasing faecal eggs score; decreasing yearling weight to 

reduce maintenance feed costs in adult sheep and to increase 160 days lamb's carcass 

weight representing an increase of the system income. A selection index theory 

deterministic model was utilised to validate the stochastic model. Very similar genetic 

responses values were obtained for the analysed traits between simulation models (e.g. 

0.113 kg and 0.099 ± 0.04 kg for carcass weight deterministic and stochastic, 

respectively) also appreciable on all the genetic trends of the traits; therefore the 

stochastic model has proven to be adequate to simulate the proposed system. The 

models developed in this study enable the construction base for new models to 

investigate different breeding options such as the inclusion of DNA information to 

improve production traits. 

 

3.2. Introduction 

An animal breeding programme can be defined as a series of organised steps designed 

to obtain the farm system's breeding goal (Harris et al. 1984). This can be achieved by 

the identification of the genetically fittest individuals of a breeding unit using an 

appropriate selection index, to improve the traits in the breeding objective. This 

enables the implementation of custom designed selection schemes for the breeding 

population. Subsequently, the implementation of an appropriate mating system through 

dissemination of the improved genetic material to commercial farmers is required. The 

programme is not complete until the whole process is evaluated (economically, 

technically and genetically) allowing identification of any weak points in the system; 

any necessary improvements should then be made if required. 



40 CHAPTER 3  

 

Some concepts that require attention from the breeding programme definition are 

breeding goal, breeding objective and selection index. 

The breeding goal is a high level description of the desired outcome as a result of the 

breeding management of the population, for example, increased profit per unit of feed. 

More recently, breeders have also considered aspects like ethics and other social 

aspects of human and animal welfare and wellbeing (Groen 2000). 

The breeding or selection objective is a statement of all the traits that are to be 

modified via selection. The relative (economic) importance of these different traits are 

needed to apportion selection pressure between the traits to achieve the desired 

breeding goal (Van der Werf 2000). 

The selection index is the sum of weighted selection criteria (the traits measured) to 

predict the animal's breeding value. Animals are selected based on their index 

(Cameron 1997).  

According to Hazel and Lush (1942), selection for an index which gives proper weight 

to each trait is more effective than other ways of selection to achieve maximum genetic 

progress in the breeding objective. The selection index theory equations developed by 

Hazel (1943) defined the aggregate breeding value of an animal as the sum of its 

various genotypes weighted by the relative economic influence of each trait. 

The New Zealand sheep industry breeding goal is to improve the genetic merit of the 

animals thereby improving farm profit. The success of implementing proper breeding 

programmes can be seen by reviewing the countries sheep statistics. From 1996 to 

2011 the total number of New Zealand breeding ewes 2 years and older exposed to ram 

declined by 38.75% (Statistics New Zealand 2012), but the number of exported lambs 

(1998-2011) only declined by 19.6% (Beef + Lamb New Zealand 2012a). This means 

that more lambs are exported by means of less breeding females. In addition, lamb 

carcass weight increased from an average of 16.9 kg in 2006 to 18.2 kg on average in 

2010 (Beef + Lamb New Zealand 2012b). 

New Zealand has been fortunate in having a strong quantitative animal breeding 

capability. Initial genetic evaluations were based on Best Linear Prediction procedure 

(Blair & Garrick 2007), but as computing capacity allowed, Best Linear Unbiased 
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Prediction (BLUP) was introduced commercially to a subset of ram breeders in 1985 

(Garrick 1991). BLUP maximises the use of phenotypic and genealogical data to 

obtain estimated breeding values (EBVs), thereby enabling an animal genetic ranking 

(Henderson 1963, 1975; Meuwissen et al. 2001). BLUP enables the subjects to be 

compared between different environments (e.g. flocks, years, etc.) providing animals 

are genetically linked. 

The New Zealand sheep industry is comprised of several distinct breeding populations 

(typically breeds), and each of these populations will make genetic progress at 

different rates. There are four factors that control the rate of genetic gain towards the 

breeding goal: 

1. Selection differential 

2. Accuracy of selection 

3. Genetic variance of the population 

4. Generation interval 

These four factors are interdependent, so rather than seeking to either maximise or 

minimise each factor, it is required to consider them jointly to optimise the rate of 

genetic change (Blair & Garrick 2007). In a real life situation, the best scenario to 

optimize the genetic gain of a production system is not always possible, especially 

because of difficulties related to farm management decisions. For example, the costs of 

obtaining some data at a specific moment could make the sampling unviable, affecting 

as a result the selection strategies of the animals. 

Simulation techniques (or data modelling) are a very useful tool that can be described 

as: “A hypothetical or stylized representation that attempts to predict aspects of the 

behaviour of some system by the adoption of a language, using a special set of 

symbols, letters, numerals, etc., creating an approximate (mathematical) model of it, 

imitating the internal processes and not merely the results of the thing being 

simulated” (Reingruber & Gregory 1994). Stochastic or random simulation is when the 

values of the parameters needed to develop the model are generated randomly using 

predefined distributions, in order to minimise bias (Moore & McCabe 1990). On the 

other hand, deterministic simulation can be described as an algorithm in which the 

correct next step depends only on the current state, or in other words states that for a 
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given data or variable input the output obtained will always be the same (Pomar et al. 

1991). 

The objectives of this study were firstly to develop a stochastic simulation model for a 

multitrait sheep breeding scheme including four correlated traits under selection, to 

assess the averages and variances of the genetic responses. And secondly, to validate 

the stochastic simulation model against a deterministic model using selection index 

theory. 

 

3.3. Materials and methods 

Two simulation models were developed in this study, a deterministic and a stochastic 

model. Four traits were simulated based on the phenotypic and genetic parameters 

(Tables  3.1 and  3.2) presented by Bennett et al. (1991), Huisman & Brown (2008) and 

Huisman et al. (2008). The traits considered were live weight at 160 days (160W), 

faecal egg score at 160 days (FES), live weight at 1 year of age (YW) and lamb carcass 

weight at 160 days (CW); 160 days as selected age for CW, 160W and FES was to 

simulate an average age for the animals to be slaughtered. 

Special attention has to taken when incorporating values from different studies, as the 

included variables when arranged as a (co)variance matrix could result in a non 

positive definite matrix causing some inconvenient in posterior analysis that may use 

this (co)variance matrix. 

Both simulation models used the animal's own trait performance with one 

measurement per animal. CW was included in the study to include a trait that cannot 

be directly measured in the live animal. Using the correlation between CW and the 

measured traits makes it possible to generate EBVs for the unobserved trait (Cameron 

1997). 

3.3.1. Deterministic model 

The deterministic model was developed using the selection index theory software SIP 

(Wagenaar et al. 1995). The selection index equations in matrix form are:  

GaPb =  
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where: 

P is a phenotypic variance-covariance matrix for selection criteria traits 

b is a vector of selection index weights for phenotypic information 

G is a genetic variance-covariance matrix between selection criterion and breeding 

objective traits 

a is a vector of economic weights for the breeding objective traits. 

3.3.1.1. Breeding objective 

The breeding objective proposed for the present study included FES, YW and CW as 

the traits to be economically important for the production system. The breeding 

objective of decreasing FES (to improve parasite resistance), to decrease YW (to 

decrease maintenance feed costs) and to increase CW of the lambs (increase 

production income), is expected to improve farm profit. 

The breeding objective also included an economic component to apportion the 

selection pressure between the traits in the objective. The economic component can be 

considered as: 

• Economic value (EV), is the amount of profit change per unit of improvement in 

a trait keeping all other traits constant (Van Arendonk 1991). 

• Relative economic weights (REW), can be stated to be values or weighting 

factors assigned with a relative importance depending on an expected proportion 

of change (Hazel 1943). 

 

For the present study, the EV for each of the traits was estimated using the trait's 

genetic standard deviation (σG) and REWs, in order that an absolute value of the EV of 

a trait multiplied by the σG of the same trait represented the desired relative economic 

weight absolute value (AEW) (Table  3.1). The positive and negative values of the EV 

and REW represent the purpose of increasing (positive) or decrease (negative) the 

genetic value of the traits related with each EV. 
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Table  3.1. Genetic standard deviations (σG), economic values (EV), relative economic 

weights (REW) and relative economic weights absolute values (AEW) of the traits1 

included in the breeding objective. 

Trait σG EV(¢) REW AEW 
FES 0.78 -10.72 -30% 30% 
YW (kg) 3.30 -1.70 -20% 20% 
CW (kg) 0.83 16.93 50% 50% 
Total    100% 

1FES= faecal egg score defined as cubic root of number of eggs per gram [(eggs/g)1/3], 
YW= yearling live weight and CW = carcass weight at 160 days of age. 
 

3.3.1.2. Selection index 

The selection index consisted of three traits 160W, FES and YW. 160W was the 

primary predictor of CW due to the high genetic correlation between these two traits. 

The genetic and phenotypic parameters utilised as input data in the SIP software are 

shown in Table  3.2. 

Table  3.2. Phenotypic standard deviations (σP) heritabilities (on the diagonal), 

phenotypic (above the diagonal) and genetic (below the diagonal) correlations of traits 

included in a selection index for sheep genetic improvement. 

   Correlations 
Trait Unit σP 160W CW FES YW 
160W kg 4.524 0.54 0.94 -0.01 0.65 
CW kg 1.766 0.92 0.22 -0.01 0.61 
FES1 score 1.483 0.34 0.31 0.28 0.1 
YW kg 5.216 0.76 0.69 0.13 0.40 
1Defined as Cube root of number of eggs per gram [(eggs/g)1/3] 
 

The selection index equations were: 
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3.3.1.3. Breeding scheme 

The breeding scheme was based on a sheep breeding nucleus structure that consisted of 

300 ewes, the size of the New Zealand average performance recorded flock (Garrick et 

al. 2000). Figure  3.1 shows the reproductive and replacement parameters for the 

nucleus flock.  

 

300 ewes & 9 rams

450 born lambs

172.125 ♀

(10% mortality)
+

4.5 (2 year-old  
rams)

84 (2 year-old ewe 
hoggets)

172.125 ♂

(1.5 lambs per ewe)

ReplacementsReplacements

(15% culled)

15 (1 year-old 
ram hoggets)

105 (1 year-old ewe 
hoggets)  

Figure  3.1. Simulated sheep nucleus breeding scheme structure. 

In order to assess the annual genetic progress in the selection index traits, a simulated 

breeding flock was developed. The information of the virtual flock (Table  3.3) was 

simulated based on the structure presented in Figure  3.1. One year-old ewe and ram 

hoggets represent 35 and 5% respectively of the 300 breeding ewes. The age structure 

for males and females older than 1 year-old is presented in Table  3.4. Using selection 

pathways theory, the flock information was arranged into two categories, ewes to 

breed ewes, and rams to breed rams, based in the pathways model presented by Lopez-

Villalobos & Garrick (2005). The generation interval was estimated using the same age 

structure utilised for the stochastic model (Table  3.4). 

Table  3.3. Simulated ewes and rams pathways of selection. 

Selection 
Pathway 

Population 
Size 

Number 
selected 

Proportion 
selected 

Generation 
Interval 

Ewes 105 84 0.8 3.4 
Rams 15 4.5 0.3 2.5 
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With the selection index information and the pathways model, annual genetic gain 

( yr∆G / ) of the simulated population was estimated using Rendel & Robertson (1950) 

selection pathways theory formula: 

( ) ( )
G

sd

ssdd σ
LL

riri
=yr∆G ×

+
×+×

/  

Where: 

subscripts d and s represents dams and sires pathways respectively;  

i represents the intensity of selection of the corresponding pathway, 

r  their accuracy of selection, 

L their generation interval and  

Gσ is the standard deviation of the true genetic value. 

3.3.1.4. Correlated responses for individual traits 

To asses individual responses of the breeding objective traits to selection based on the 

selection index, annual correlated responses (/yrCR j ) for each trait were estimated 

using Turner (1959) equation, 

L

i

/yrCR
I

j










= Pbb'
Gb' j

 

Where: 

CRj is the correlated response of trait j, 

Gj is the j th column of matrix G of the breeding objective, 

b is the regression coefficient vector of the selection criteria, 

P is the phenotypic (co)variance matrix  

L is the generation interval of the selected population and  

iI is the selection intensity of the index. 

As the breeding scheme involved two pathways with different intensities of selection, 

the correlated responses of each trait were estimated as the sum of both equations for 

each pathway. 
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being iIE and LE the intensity of selection and generation interval for the ewes pathway, 

and respectively iIR and LR being for the rams pathway. 

3.3.1.5. Contribution of traits in the selection index 

Cameron (1997), presented a way to asses how much contribution over the selection 

objective a trait included in the selection index has. This contribution is considered to 

be the proportional reduction to the accuracy of the selection index if the trait was 

excluded from the selection index. The equation to estimate this contribution is 

1

2

−−=
jj

j

IH

*

IH

P

b

r

r

Pbb'
1  

where  

*

IHr is the accuracy of the selection index with the j trait omitted from the selection 

index, 

1−
jjP is the jth diagonal element of the inverse P matrix and 

2
jb  is the square of the jth element of the regression coefficients vector. 

3.3.2. Stochastic simulation 

The stochastic model was developed using Base SAS, SAS/IML and SAS 9.3 Macro 

language (SAS Institute Inc. 2011). The procedures used in developing the genetic 

simulation model were based on the studies of Analla et al. (1995), Cameron (1997), 

Falconer and Mackay (1996) and Dzama et al. (2001). The simulation represents a 

flock under a breeding programme, the time under evaluation is 20 years and the 

simulation process was replicated 100 times in order obtain a measure of the variation 

of response to selection. The genetic and phenotypic parameters utilised were the same 

as those used in the deterministic simulation. The effects of dominance and epistasis 
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were not modelled. The four traits considered in the deterministic simulation (LW160, 

FEC, YWT, CW) were modelled as: 

gijjiggij e+GF+M+µ=y +  

where, gijy is the phenotypic value of any of the traits being simulated 

µ is the mean of the population for the trait 

gM is the effect of year g 

iF is the effect of flock i 

jG is the additive genetic effect of animal j, and 

gije is an environmental effect. 

 

The year effect was assumed to account for 5% of the phenotypic (co)variance matrix. 

The inclusion of the flock effect (F) was to account for a flock difference per replicate, 

and it was assumed to account for 10% of the phenotypic (co)variance matrix. The 

matrices containing the information of the traits genetic, environmental, flock and year 

effects, were created by the product of a randomly generated normal distribution 

matrix, having as many columns as traits simulated and as many rows as the number of 

randomly generated animals, with the lower triangular matrix D of the Cholesky 

decomposition (Nejati-Javaremi et al. 2007) of the (co)variance matrix of each effect. 

In matrix notation the generation model for each effect can be expressed as: 
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Where: 

V i is a random multivariate normal deviate vector for the trait i, iΦ  represents a 

random number vector taken from a normal distribution with mean 0 and variance 1 for 

the ith trait and the matrix containing Di,j results from the transpose of Cholesky 
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decomposition of the (co)variance matrix of the effect V (environmental, flock or year 

effect) for the traits under selection. 

The true genetic or breeding value (TBV i) of any animal i of the base population was 

generated using the method described in the previous paragraph. The TBV i of any 

animal i in the following generations was estimated assuming that the value of an 

individual was equal to the average value of the parents genetic value (TBV s and 

TBVd) plus a deviation due to Mendelian sampling (im ) (Mrode 2006). 

For the present multitrait simulation the model utilised to estimate the TBV of each 

lamb considered a Mendelian sampling in the absence of inbreeding (Kemp et al. 

1986), then  

( ) ( )0.5+50 DTBV+TBVTBV dsi φ.=  

where D is the lower triangular matrix of the Cholesky decomposition of the genetic 

(co)variance matrix, TBV i, TBVs and TBVd are row vectors of TBVs for animal i, the 

sire and the dam of animal i respectively,  and φ  is a random number vector taken 

from a normal distribution (N(0,1)). 

The phenotypic values of all the simulated traits for each available animal were 

obtained as the sum of the TBVs, environmental effects, year and flock effects. 

3.3.2.1. Flock structure 

The base population simulated consisted of a flock with an average of 300 ewes with a 

standard deviation of 25 animals (SD=25). The number of rams corresponded to 3% of 

the ewes. The number of hoggets (between 1 and 2 year old) represented 35% and 5% 

of the ewe population females and males respectively. Table  3.4 shows the age 

structure of the flock for ewes and rams older than 2 years. Animals older than the ages 

shown in Table  3.4 were culled. Also 15% of the lambs were culled due to 

reproductive and phenotypic defects. 
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Table  3.4. Age structure for ewes and rams over two years old, of a stochastically 

simulated sheep breeding flock. 

Age in years 2 3 4 5 

Ewes (%) 28 26 24 22 

Rams (%) 50 50   
 

The sex of lambs was assumed as 50% males and 50% females at birth and the 

lambing proportion used was 1.5 lambs per ewe. Table  3.5 shows the birth rank 

probability assumed for the lambing. 

 

Table  3.5. Birth rank percentages for lambs born in a stochastically simulated sheep 

breeding flock. 

No of lambs 1 2 3 

Lambs (%) 60 30 10 

 

For the death simulation process, 10% of the born lambs die before reaching the first 

year of life. Ewe's death percentage is 5% for the 1 year old and 2 % for older ewes. 

1% of the rams die. 

 

3.3.2.2. Genetic evaluation 

Estimated breeding values were generated via multitrait analysis using the package 

AIREML (Johnson & Thompson 1995). This software used the average information 

matrix as second derivatives in a quasi-Newton procedure. The multitrait mixed model 

(Henderson & Quaas 1976) presented in matrix form was: 
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where: 
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iY  is a vector that represents the observed phenotypic records of trait i, 

iX  is a incidence matrix of fixed effects associated with trait i, 

ib  is a vector of regression coefficients of the fixed effects, 

iZ is a relationship matrix of the recorded animals with random effects (breeding 

values), 

ia  is the vector of breeding values for trait i, 

ie  is a vector of the residual (error) of trait i, 

The matrices of genetic (co)variance (G) and residual (co)variance (R) are represented 

as: 

G=

AAA

AAA

AAA

=

a

a

a

var

3

2

1

































332313

232212

131211

aaa

aaa

aaa

σσσ

σσσ

σσσ

 and 

R=

III

III

III

=

e

e

e

var

3

2

1

































332313

232212

131211

eee

eee

eee

σσσ

σσσ

σσσ

 

Where: 

I i is an identity matrix of the order nxn where n is the number of measured animals,  

A is the numerator relationship matrix between animals and, 

 
ijaσ with 

ijeσ are their corresponding covariances between traits i and j. 

To enable comparison between the deterministic and stochastic simulations the 

relationship matrix was assumed to be an identity matrix, i.e., the EBVs for each 

animal were obtained based on its own performance but accounting for the genetic 

correlations between the traits. 

3.3.2.2.1. Selection Index 

A total merit index (IDX) (Hazel 1943) was created using the EBVs each weighted by 

a regression coefficient (b value) obtained from the deterministic simulation using the 
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SIP software. The purpose of generating this IDX was to enable the ranking of each 

animal based on the relative importance of the traits on which the evaluation was 

based. 

( ) ( ) ( )YWiFESiWii EBVb+EBVb+EBVb=IDX ××× 321601  

3.3.2.3. Data generation structure 

The modelling process was built in subroutines modules (M1 to M9) using SAS Macro 

language. Each subroutine generated specific information that contributed to the 

creation of a 20 year sheep flock database. The model was replicated 100 times. 

• M1 developed a base population using the age structure presented in the 

assumptions. The phenotypic record for each animal in the base generation was 

obtained as the sum of the trait's true genetic value, environmental value, flock 

effect and a year effect. 

• M2 generated EBV's for each animal for the traits of interest (without 

considering genealogical information). From this point the replication process 

started, the purpose being to simulate a 20 year period of reproduction, death, 

culling and selection routines. 

• M3 implemented the reproduction process for which a random mating within 

flock was done.  

• M4 simulated the losses from death, in which a percentage of females and males 

based on their age were randomly categorised as dead. 

• M5 assigned the year effect, to the phenotypic value of each animal. 

• M6 obtained the phenotypic information for all live animals about to be 1 year 

old.  

• M7 was the first subroutine to cull the animals (males and females) based on 

two aspects; the age structure presented in the assumptions and their IDX 

(selection of the ranked animals). This subroutine also culled 15% of the lambs 

younger than one year, because of reproductive and phenotypic defects. The aim 

of this subroutine was to preserve the age structure of the flock considering all 

the available animals (alive and not culled) per age category. If there were more 

sheep than needed, the animals that had lower IDX per age were culled. 

• M8 ensured that all the live animals became one year older. 
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• M9 was the second culling subroutine, which culled all animals (males and 

females) that exceeded the maximum age of the age structure tables. 

In the final step subroutine, M2 was run again in order to genetically evaluate the 

animals that were 1 year old. A flowchart of the subroutines is shown in Figure  3.2. 

 

Base population with IDX

Reproduction

Death

Year effect

Phenotypic values

Culling and selection

Culling maximum age

Birthday

EBVs and IDX estimation

M1

M2

Starts 20 years replication

M3

M4

M5

M6

M7

M8

M9

M2
 

Figure  3.2. Subroutine structure of a stochastically simulated 20 years sheep breeding 

programme, selecting the breeding stock with a multitrait total merit index (IDX), built 

using estimated breeding values (EBVs). 
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3.4. Results 

3.4.1. Deterministic simulation 

Relative economic weights (Table  3.1), and genetic and phenotypic parameters (Table 

 3.2) were used to estimate the regression coefficients (b-values) to weight the selection 

criteria traits in the selection index. The index regression coefficients, the relative 

contribution of the trait in the selection criteria (%), and the correlated responses of the 

traits are shown in Table  3.6. 

The economic value of response was ¢4.97, the index genetic standard deviation was 

11.29 and the accuracy of predicted genetic merit was 0.44. The annual genetic gain 

obtained, considering the two pathways presented in Table  3.3, was of ¢1.27 per year. 

Table  3.6. Regression coefficients (b-values) contribution of traits in the selection 

index and correlated responses for deterministically simulated traits1. 

Trait b-value 
Contribution of trait in 

selection index (%) 
Correlated 
response2 

160W (kg) 1.069 32.06 1.79 i 
FES  -1.6 12.15 -0.0197 i 
YW (kg) -0.1809 1.006 1.29 i 
CW (kg)   0.4104 i 
1FES= faecal egg score defined as cubic root of number of eggs per gram [(eggs/g)1/3], 
YW= yearling live weight and CW = carcass weight at 160 days. 
2 i represents the intensity of selection. 

Genetic responses to selection for the four evaluated traits are presented in Figure  3.3. 

The annual genetic gains are shown in Table  3.7.  
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Figure  3.3. Annual predicted genetic responses for (a) live weight at 160 days (160W), 

yearling weight (YW) and carcass weight (CW) and (b) faecal egg score (FES), for a 

deterministically simulated sheep breeding programme. 

3.4.2. Stochastic simulation 

Figure  3.4 shows the mean true breeding values (TBV) for trait per year and per 

replicate, and the trend lines as an average TBVs for all the replicates. The annual 

average genetic gain for each trait (correlated responses) measured were calculated as, 

the slope of the regression of the mean TBV per year for the twenty simulated years 

for the 100 simulated replicates (Table  3.7). 
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Table  3.7. Animal genetic responses for deterministic and stochastic (mean (∆Gx ) and 

standard error (se)) simulations. 

Stochastic 
Trait1 Deterministic 

    ∆Gx  ± se 

160W (kg) 0.458 0.486 ± 0.007 
FES  -0.005 0.022 ± 0.001 
YW (kg) 0.330 0.358 ± 0.006  
CW (kg) 0.105 0.106 ± 0.001 
1FES= faecal egg score defined as cubic root of number of eggs per gram [(eggs/g)1/3], 
YW= yearling live weight and CW = carcass weight at 160 days. 
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Figure  3.4. True breeding value (TBV) trends of individual replicates (dotted lines) and 

replicates averages (continuous lines) for (a) live weight at 160 days (160W), yearling 

weight (YW) and carcass weight (CW) and (b) faecal egg score (FES), for a 

stochastically simulated sheep breeding programme. 

 

3.5. Discussion 

For any simulation model an accurate knowledge of the variables to be included as 

input data it is required, especially regarding the mean and variance of the traits 

involved. Based on the work done to set up the present research (Table  3.2) it is 

suggested that, to obtain adequate simulated phenotypic values, the ratio of the 

phenotypic standard deviation to the mean or coefficient of variation (CV) for each 
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trait should be less than 0.2, otherwise phenotypic values generated with a stochastic 

simulation could turn out to be negative which is highly improvable for real measured 

data. 

The main purpose of this study was to develop a stochastic model that simulated the 

genetic behaviour of a breeding flock with animals selected based on individual 

records of three different traits using a multitrait selection index. One of the objective 

traits (CW) was not directly measured. Genetic trends from a deterministic model were 

used to validate the results of the stochastic model, which has proven to be adequate to 

simulate the breeding programme, because it obtains similar genetic results compared 

with the deterministic simulation (Table  3.7). Important is to highlight that the shape 

(straight lines) of the genetic response tendencies of the deterministic simulation 

(Figure  3.3) represent perfectly what someone can expect from a deterministic model 

which accounts for the same outcome per year (Pomar et al. 1991). Comparing the 

deterministic genetic trends and average genetic trends of the stochastic model, all 

simulated traits behaved in a similar way. This can be explained because the values of 

the animal genetic responses (input data for Figures 3.3 and 3.4), differ very little 

between them (Table  3.7) especially if the standard error values are considered. 

The variation of the stochastic simulation can be appreciated in Figure  3.4 showing a 

high variability of 160W and YW, and for FES and CW the represented deviations 

from the mean shows to be in a lower amount, therefore the input data used for the 

stochastic model (SE in Table  3.7) its very well represented, this fluctuation of values 

is one of the main points of comparison between a stochastic and a deterministic 

model. 

For the stochastic results (Figure  3.4) a wide range genetic means within year were 

obtained. During the first three years (0-2) no genetic gain occurred. This was an 

adjustment period for the flock being selected. The base population had not been under 

selection for the proposed breeding objective, and therefore base animals had average 

TBVs of zero. An increase in average genetic merit occurs after culling those animals 

in the base population and the inclusion of genetically selected animals into the 

programme. 
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YW becomes an important trait because bigger animals require more nutritional input 

(maintenance cost) than a smaller ones (Nicol & Brookes 2007), therefore if the 

system management is not changed (by adjusting the farm feed input), having bigger 

animals will lead to a reduction in the farm stocking rate and conjointly less lambs 

born per hectare ergo less income. In the other hand Figures 3.3-a and 3.4-a showed an 

increase in CW genetic values, having heavier carcasses weights per lamb increases 

the income per unit sold. 

One of the targets proposed by the breeding objective was to decrease or lower YW (to 

limit maintenance cost of the flock); this was done by assigning it a negative relative 

economic weight. However Figures 3.3-a and 3.4-a both show significant genetic 

trends for this trait. This previous situation can be explained by two aspects: 

• As first point it is needed to be highlighted the fact that CW and YW have a 

considerable high genetic correlation (near to 0.7), hence as CW received a large 

positive economic value, the response of YW will tend to be in the same 

direction of CW, therefore it will be very hard to control the behaviour of the 

trait. 

• The second and maybe more important than the first point is that the economic 

weights used were not the best to maintain or reduce the yearling weight of the 

flock. The economic value assigned to YW has proven to be modestly negative 

and in order to achieve lower or negative genetic gains; a lower economic value 

is required by YW. Therefore, new input data (economic weights) are needed to 

be simulated and evaluated in order to reach a better outcome. 

FES impacts the production system by affecting the appropriate weight gain of the 

animals, increasing the drenching costs and also in extreme cases could lead to death 

loses (Vagenas et al. 2007). Figures 3.3-b and 3.4-b showed a very low genetic change 

(close to 0) for FES tendencies, even considering that the genetic correlation between 

FES and CW had a positive value, hence the negative restriction weight utilized 

(estimated on the trait's genetic standard deviation) showed to be effective to achieve 

the objective of limiting the traits effect. 

Even though the stochastic model of this study has proven to be adequate to simulate 

the breeding programme, bio-economic farm models are needed (Van Arendonk 1991; 

Wolfová et al. 2009) to analyse the economical implication of having heavier CW and 
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YW with the corresponding maintenance of FES (Figures 3.3-b and 3.4-b), and as a 

result adjust the economic information of the present breeding objective to enhance the 

simulated breeding programme for the proposed breeding goal (Harris et al. 1984). 

The present study has developed two models (one deterministic and one stochastic) 

simulating a breeding programme for a sheep breeding flock, providing the 

groundwork to develop simulations that could explore several other scenarios such as, 

the possible advantages of including genomic information into a breeding programme 

to improve production characteristics (Amer 2011). 

As shown by the results obtained from this study; compared to a deterministic 

simulation a stochastic model allows a more flexible way of data control, permitting 

for example changing age structures or the inclusion of more variables in an easiest 

way. But as stated by Dekkers (2007), one of the advantages of a deterministic model 

over a stochastic one is that the deterministic model is less demanding regarding 

computer processing time (once all the variables to be included are modelled), 

therefore a fast overview of different scenarios including genomic information can be 

evaluated to optimize selection strategies. 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 4  

Deterministic simulation analysis using selection index theory for 

sheep genomic selection
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4.1. Abstract 

For animal breeding, molecular technologies could provide information with reliable 

accuracy of evaluation at younger ages. There is also the opportunity to enhance the 

development of breeding schemes by using genetic information associated with traits 

that are either not measurable at the time of the animal selection, or are sex-limited 

traits. Based on deterministic selection index models, the present study estimated the 

accuracy of selection and predicted the genetic gain using different selection indices 

that included either phenotypic and genomic information or indices with only marker 

information. Two SNP genotypes were included that explained four different 

percentages (1, 10, 30 and 50%) of one simulated trait genetic variance. The breeding 

objective for the simulation included decreased faecal egg score (to improve parasite 

resistance); reduced yearling weight (to decrease adult sheep feed maintenance costs) 

and to increased 160 day lamb carcass weight (to increase the farm's income). Results 

from the different simulated scenarios showed that an increase of genetic gain and 

accuracy of prediction was seen when genomic information was included together with 

phenotypic information. Compared to a selection index using only phenotypic 

information, a selection index that uses genomic information without phenotypic 

information can result in lower selection accuracies and genetic gains. The results of 

this study suggest that the use of genomic information in a selection scheme could 

increase genetic gains with lower accuracies of selection, only if a reduction of the 

generation interval was also achieved.  

 

4.2. Introduction 

The inclusion of genomic information into breeding schemes to improve animal 

production, relies on the expectation that information at the DNA level will lead to 

faster genetic gain compared to that which could be achieved using only phenotypic 

information (Meuwissen et al. 2001). For that reason, accurate appraisal about the 

implications of introducing genomic data into a breeding scheme is needed before its 

development. Meuwissen et al. (2001) demonstrated the methodology for genomic 

selection, a term that according to Meuwissen (2007) was first introduced in 1998 by 

Haley & Visscher (1998). Genomic selection uses information from thousands of 

single nucleotide polymorphism (SNP) genotypes combined as “haplotypes”, to allow 
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the estimation of genomic breeding values for animals that may have no phenotypic 

records of their own (Meuwissen et al. 2001). 

 Hazel (1943) defined the aggregate genetic value of an animal as the sum of its 

various genotypes (assuming a distinct genotype for each economic trait) weighted by 

the relative economic influence of that trait. Hazel and Lush (1942) stated that a multi-

trait selection using a selection index is more effective than other types of selection, 

because it achieves the maximum genetic improvement per unit of time. A 

deterministic simulation model was presented by Lande & Thompson (1990) which 

included molecular genetic information using selection index theory. This model was 

further extended by Dekkers (2007) who presented equations to include marker 

information as a correlated trait (with heritability equal to 1). It was assumed that the 

marker information (combined genetic effects of those markers) showed multivariate 

normality to develop the model, which according to Lande & Thompson (1990) does 

not occur when genotypes representing only a small number of genes are used because 

a large proportion of the trait variance is associated with the gene or the marker. The 

methodology developed by Dekkers (2007) does not account for changes in the genetic 

variance due to changes in gene (allele) frequencies, the so-called Bulmer effect 

(Bulmer 1971). Several studies have used Dekker's (2007) methodology to simulate 

the impact of including genomic selection into breeding schemes. Janssen-Tapken et 

al. (2010) compared different selection strategies in beef cattle using genetic markers 

for diseases traits. Togashi & Lin (2010) analysed different selection methods for 

genetic improvement of net merit for two traits with the inclusion of marker 

information. Pryce & Goddard (2010) presented a deterministic model to simulate 

genomic selection in dairy cattle using the four pathways of selection of Rendel & 

Robertson (1950) while accounting for the rate of inbreeding per generation. In sheep 

production, Sise & Amer (2009) presented a deterministic approach using selection 

index theory to predict the response to genomic selection in dual purpose sheep flocks. 

They showed that when SNP markers were included as part of the selection index, the 

increase in annual genetic response was due to the use of young rams. 

One of the contributions that molecular technologies can provide for genetic 

improvement might be the inclusion of measurements with reliable accuracy at 

younger ages (Garrick & Snell 2005). This could be as early as the embryonic stage 
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(Georges & Massey 1991) or even at the gamete level (Haley & Visscher 1998). Other 

situations in which these techniques could enhance the breeding schemes may be when 

traits are not available at the time of selection (Haley & Visscher 1998; Meuwissen 

2003), or when traits are sex-limited (Haley & Visscher 1998). 

In the New Zealand sheep industry ewes can give birth to their first lamb when they 

are one-year-old (Kenyon et al. 2008). This creates an opportunity to reduce the 

generation interval if one-year old ewes can be used as mothers of the following 

generation. However, it has to be considered that one-year-old ewes and ram hoggets 

have a lower reproductive performance compared with older animals in the flock 

(Kenyon et al. 2007). 

The objectives of this study were: 

• For one breeding scheme, design a deterministic selection index model to 

include genomic information. Based on this deterministic model, estimate the 

accuracy of selection and the genetic gain for different selection indices that 

include phenotypic and genomic information conjointly and also indices with 

only marker information. 

• By using different breeding schemes, evaluate the impact on the accuracy of 

selection and the genetic gain in selection indices having phenotypic and marker 

information and also indices with only marker information. 

 

4.3. Materials and methods 

The present work is a theoretical study, developed to illustrate the methodology used 

to incorporate genomic information into a selection index. It was not a purpose of the 

study to simulate the New Zealand sheep industry in detail or to present an optimised 

breeding scheme design.  

The traits included the breeding objective were carcass weight at 160 days (CW), 

yearling live weight (YW) and faecal egg score at 160 days (FES). The intent was to: 

• Increase CW, because it is an income trait only measurable after slaughter 

(Meuwissen 2003), 
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• decrease YW, which is a trait measured later in life and affects maintenance 

costs (Nicol & Brookes 2007) and, 

• decrease FES, because it is a health and welfare trait that affects the profit of 

sheep industry (Vagenas et al. 2007). 

4.3.1. Genomic selection index conceptualisation 

Following Dekkers (2007), the phenotype (P) of a trait was represented as: 

E+G=P  

with G partitioned as  

R+Q=G , 

where, 

G represents the additive genetic value of the trait under study,  

Q is the genetic effects correlated with SNP genotypes,  

R is  the residual genetic effects independent of the markers, 

E is the random environmental effects.  

The linear form of the selection index methodology suggested by Lande & Thompson 

(1990) can be represented as:  

iPiQi Pb+Qb=I  

which represents the selection index criteria shaped by the SNP genotype information 

for the individual i ( iQ ), the individual's phenotypic information (iP ), and the 

regression coefficients for SNP genetic and phenotypic information Qb  and Pb  

respectively.  

The selection index equations in matrix form are: 

GaPb =  

where: 

P is a variance-covariance matrix with traits in the selection index, 
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b is a vector of index weighting factors for SNP genotypes and phenotypic information, 

G is a variance-covariance matrix associating traits of the selection index and the 

breeding objective, 

a is a vector of economic weights for the breeding objective traits. 

SNP genotypic information included in the selection index was simulated based on the 

models presented by Lande & Thompson (1990), Cameron (1997) and Dekkers 

(2007). Correlations between markers (SNP genotypes) and the traits were derived 

using the path coefficient theory diagram presented by Dekkers (2007), assuming the 

accuracies of Q̂  predictor of Q  for every SNP genotype 1ˆ =r
Q

, or equivalently 

Q=Q̂ . Therefore, the genetic correlation between any trait and a SNP genotype trait 

can be estimated as: 

ijGi
ijG

rq=Qr  

where: 

iq is the square root of the proportion of the genetic variance of the trait i associated 

with the SNP genotype 2
G

2
Q

2 /σσ=q and  

ijGr is the genetic correlation between the traits i and j. 

For the estimation of the phenotypic correlation between any trait and the SNP 

genotype for trait i, the equation utilised was: 

ijGij
ijP

rqh=Qr  

where: 

jh is the square root of the heritability of the correlated trait j.  

The heritability of the SNP genotype for trait i was assumed to be 1, meaning that 

there was no difference between genetic and phenotypic variances of the SNP 

genotype. Covariances were obtained using standard quantitative genetics theory for 

estimating covariances between correlated traits (Dekkers 2007; Falconer & Mackay 

1996). 
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The accuracy of the selection index (rTI), also known as the correlation between the 

selection criteria and the breeding objective, can be estimated in matrix notation as: 

( ) ( )Caa'/Pbb'=rTI  

where:  

C is a variance-covariance matrix of the traits included in the breeding objective.  

This accuracy of selection was used for estimating the annual genetic gain of the 

simulated population, based on the pathways model presented by Lopez-Villalobos & 

Garrick (2005) using Rendel & Robertson (1950) selection pathways theory formula: 

( )
G

i

ii
σ

L

ri
=yr∆G ×

×

∑
∑/  

where: 

ii represents the intensity of selection for the pathway i, 

ir the accuracy of selection of animals for path i, 

iL the generation interval for the pathway i, and 

Gσ is the standard deviation of the true genetic value or in matrix notation Caa' . 

 

In order to calculate genetic responses in individual traits in the selection index, annual 

correlated responses (/yrR j ) for each trait were estimated using the Turner (1959) 

equation: 

RE

RE

j LL

ii
/yrR

+








+








= Pbb'
Gb'

Pbb'
Gb' jj

 

where: 

Gj is the jth column of matrix G of the breeding objective, 

b is the regression coefficient vector of the selection criteria, 

P is the phenotypic (co)variance matrix  
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LE and LR are the generation intervals of ewes and rams pathways, respectively and  

iE and iR are the selection intensity of ewes and rams pathways, respectively. 

4.3.2. Selection scenarios 

The present study considered scenarios, one focusing on each of the stated study 

objectives. All simulations in both scenarios were developed using the same breeding 

objective (H) represented as: 

YWYWCWCWFESFES BV+aBVaBVa=H +  

Where:  

H represents the desired breeding objective, 

ia an economic value of trait i and  

BVi is the breeding value of trait i. 

The absolute values of the breeding objective economic values (a) multiplied by the 

trait's genetic standard deviation (σG) corresponds to the desired relative economic 

weight absolute value (AEW), which were needed to obtain relative economic weights 

(REW) (Table  4.1). Considering the intention of decreased YW (decreased 

maintenance costs), lower FES (decreased health costs) and increased CW (increased 

income), positive or negative EV and REW were assigned to the traits. 

Table  4.1. Genetic standard deviations (σG), economic values (a), relative economic 

weights (REW) and relative economic weights absolute values (AEW) of the traits1 

included in the breeding objective. 

Trait σG a(¢) REW AEW 
FES 0.78 -10.72 -30% 30 
YW (kg) 3.30 -1.70 -20% 20 
CW (kg) 0.83 16.93 50% 50 
Total    100% 

1FES= faecal egg score defined as cubic root of number of eggs per gram [(eggs/g)1/3], 
YW= yearling live weight and CW = carcass weight at 160 days. 
 



70 CHAPTER 4 

 

4.3.2.1. Scenario 1: Different selection indices including genomic information 

The purpose of developing this scenario was to evaluate the effect of including 

genomic information into a selection index. Several selection indices were created to 

account for different proportions of genetic variance explained by the included 

markers. All indices in this scenario were simulated under the same breeding scheme 

which was defined as a set of organised steps that included reproductive, management 

and economic and productive decisions conducted to select the animals predicted to 

have the best genetic merit. 

The phenotypic and genetic parameters for the quantitative traits required to obtain the 

selection index weighting factors for a sheep population (Table  4.2) were obtained 

from Bennett et al. (1991) and Huisman & Brown  and Huisman et al. (2008). The 

traits included in the selection index were live weight at 160 days (160W), FES and 

YW, and the traits included in the breeding objective were CW, FES and YW. 

Genetic and phenotypic (G and P) and residual (P-G) covariance matrices were tested 

to be positive definite. The residual covariance matrix was not positive definite, 

therefore a bending process was utilised to make it positive definite and then the P 

matrix was recalculated. 

Table  4.2. Phenotypic standard deviation (σP), heritability (diagonal), phenotypic 

(above diagonal) and genetic (below diagonal) correlations of traits1 considered in 

selection index and breeding objective for sheep genetic improvement. 

   Correlations 
Trait Unit σP 160W CW FES YW 
160W Kg 4.524 0.54 0.94 -0.01 0.65 
CW Kg 1.766 0.92 0.22 -0.01 0.61 
FES Score 1.483 0.34 0.31 0.28 0.1 
YW Kg 5.216 0.76 0.69 0.13 0.40 
1160W= live weight at 160 days, CW = carcass weight at 160 days, FES= faecal egg 
score defined as cubic root of number of eggs per gram [(eggs/g)1/3] and YW= yearling 
live weight. 
 

Table  4.3 describes all the simulated selection indices which can be summarised as 

follows: 
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• A phenotypic-based (PI) multi-trait selection index, containing three traits 

(160W, FES and YW) as selection index, with YW and FES also being included 

in H. 

• Eight selection indices that adds one SNP genotype (M i) to PI as selection index. 

The SNP genotypes included as part of H, the first one (MCW) linked to CW and 

the second (MYW) associated to YW. Each explained four different percentages 

of the genetic variance of the respective traits (1, 10, 30 and 50%). 

• Sixteen selection indices that add two SNP genotypes (MCW and MYW) to PI as 

selection index. Each SNP genotype was correlated to all traits in H and 

represented different genetic variance proportions of the traits. 

• Sixteen selection index using only MCW and MYW as selection criteria. Each SNP 

genotype was correlated to all H traits and represented different genetic variance 

proportions for each trait. No phenotypic information was included in these 

selection indices. 

 

The selection index equations in matrix form used for PI that added 2 correlated SNP 

genotypes with the H traits were: 

 

where: 

2

iPσ , i,jPσ
, 

2

iGσ and i,jGσ
are the phenotypic and genetic variances and covariances of the 
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bi and ai are the regression coefficients and the economic values for the trait i, 

respectively.  

The G matrix has an order of 5x3. 

Two selection pathways were simulated (Figure  4.1 and Table  4.4). The first pathway 

(Ewes) considers 300 breeding ewes (Garrick et al. 2000) reproduced by natural 

mating, with 84 ewes being replaced every year and lambing ages ranging between 2 

and 5 years (Table  4.5). The second pathway (Rams) consisted of 4.5 rams selected 

from 202.5 male lambs; once selected these animals were used for two mating seasons. 

All animals (rams and ewes) were first mated at 1.5 years old having their first 

offspring at 2 years old. The average number of lambs born per ewe was assumed at 

1.5, with a mortality of 10% during the first year. The total number of rams in the flock 

was assumed to be 3% of the total number of ewes.  
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Table  4.3. Selection indices including SNP genotypes (MCW and MYW) explaining 

different percentages (1, 10, 30, 50%) of the correlated trait genetic variance. 

Percentage of genetic variance 
Selection Index 

MCW MYW 
PI1   
PI+MCW1 1  
PI+MCW10 10  
PI+MCW30 30  
PI+MCW50 50  
PI+MYW1  1 
PI+MYW10  10 
PI+MYW30  30 
PI+MYW50  50 
PI+MCW1-MYW1 1 1 
PI+MCW1-MYW10 1 10 
PI+MCW1-MYW30 1 30 
PI+MCW1-MYW50 1 50 
PI+MCW10-MYW1 10 1 
PI+MCW10-MYW10 10 10 
PI+MCW10-MYW30 10 30 
PI+MCW10-MYW50 10 50 
PI+MCW30-MYW1 30 1 
PI+MCW30-MYW10 30 10 
PI+MCW30-MYW30 30 30 
PI+MCW30-MYW50 30 50 
PI+MCW50-MYW1 50 1 
PI+MCW50-MYW10 50 10 
PI+MCW50-MYW30 50 30 
PI+MCW50-MYW50 50 50 
MCW1-MYW1 1 1 
MCW1-MYW10 1 10 
MCW1-MYW30 1 30 
MCW1-MYW50 1 50 
MCW10-MYW1 10 1 
MCW10-MYW10 10 10 
MCW10-MYW30 10 30 
MCW10-MYW50 10 50 
MCW30-MYW1 30 1 
MCW30-MYW10 30 10 
MCW30-MYW30 30 30 
MCW30-MYW50 30 50 
MCW50-MYW1 50 1 
MCW50-MYW10 50 10 
MCW50-MYW30 50 30 
MCW50-MYW50 50 50 
1PI= phenotypic information selection index including 160W+FES+YW as traits, 
160W= live weight at 160 days, CW = carcass weight at 160 days, FES= faecal egg 
score and YW= yearling live weight. 



74 CHAPTER 4 

 

300 ewes & 9 rams

450 born lambs

202.5 ♀

(10% mortality)

4.5 (2 year-old  
rams)

84 (2 year-old 
ewe hoggets)

202.5 ♂

(1.5 lambs per ewe)

ReplacementsReplacements

 

Figure  4.1. Two pathways of selection breeding scheme structure for the simulated 
sheep nucleus. 

 

Table  4.4. Population parameters to simulate two pathways of selection (ewes and 

rams pathways), for a selection index with rams selected at 1 year old and ewes 

lambing from 2 to 5 years old. 

Selection 
Pathway 

Population 
Size 

Number 
selected 

Proportion 
selected 

Generation 
Interval 

Ewes 202.5 84 0.4148 3.4 
Rams 202.5 4.5 0.0222 2.5 
 
 

Table  4.5. Age structure for ewes over two years, old of a deterministically simulated 

sheep nucleus. 

Age in years 2 3 4 5 Total 
Ewes % 28% 26% 24% 22% 100% 
  

4.3.2.2. Scenario 2: Using genomic information to change age at selection 

The same SNP genotypes considered in scenario one (MCW and MYW) were included as 

components of the selection index. Each SNP genotype explained only 1% or 10% of 

the genetic variance of their correlated trait (Table  4.6). The inclusion of SNP 

genotypes as part of the selection criteria was depended on the age at sampling of the 

males. Therefore, three different periods of data recording or selection were simulated 

(Table  4.7): 

• Males of 1 year old, using only phenotypic data were recorded. 
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• Males at 160 days old, in which 160W and FES were recorded and MYW was 

genotyped, both were included as selection criteria. 

• Males sampled at birth for MCW and MYW as traits included in the selection 

criteria. 

The differences of the selection indices for scenario 2 compared with scenario 1 were, 

that in scenario 2 the SNP genotypes were not included together with the correlated 

trait in the selection index but instead they substituted for them (Table  4.6). This 

reduced the age of the animals at selection. The breeding scheme SS1 (Table  4.7) was 

the same used for scenario 1. Selection using genomic information was carried through 

the males of the population, to reduce the number of samples needed to be taken from 

the whole population. Table  4.8 shows the ewe flock age structure.  

Table  4.6. Selection indices using phenotypic data (160W, FES and YW) and SNP 

genotypes (MCW and MYW) explaining different percentages of the genetic variance of 

the trait (% 2
Gσ ). 

Trait 
Selection 

Index 160W FES YW 
MCW 

(% 2

Gσ ) 
MYW 

(% 2

Gσ ) 

PI � � �   
MYW1 � �   1 
McW1MYW1    1 1 
MYW10 � �   10 
McW10MYW10    10 10 
1160W= live weight at 160 days, FES= faecal egg score, YW= yearling live weight, 
MCW= SNP genotype for CW and MYW= SNP genotype for YW. 

The scenario considered a breeding nucleus of 300 lambing ewes (Garrick et al. 2000) 

simulated as base population. The ewes were bred by natural mating, and had two age 

structures (Tables 4.7 and 4.8) implemented as: 

• Ages ranging from 2 to 5 years old at lambing (E2), and with a prolificacy of 

150%. 

• Ages ranging from 1 to 4 years old at lambing (E1), with 136% lambs per ewe 

due to lower prolificacy of the ewe lambs (Kenyon et al. 2008; Mulvaney et al. 

2010; Notter 2000). 
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For males having their last trait recorded at one year of age a ram to ewe ratio of 1:33.3 

was used. A ratio of 1:20 rams per ewe was used when animals were genotyped for 

selection at ages younger than one year, and were 1 year old when offspring were born 

(Kenyon et al. 2007). 

Based on the previous information two selection pathways were simulated, one 

pathway for ewes and another pathway for rams. Differences of population sizes and 

number of animal selected (Table  4.4 and Appendices Table A 4.1 to Table A 4.5) were 

due to different prolificacy rates and ram to ewe ratios used. 

Table  4.7. Simulated breeding schemes and selection indices for the genetic 

improvement of a 300-ewe flock size using two different ewes age structure 

considering the inclusion of SNP genotypes (MCW and MYW) explaining different 

percentage of the genetic variance of their correlated traits according to the males 

selection age. 

Breeding 
scheme 

Selection 
Index1 

Males 
selection 

age 

Number 
of years 
mated 

Ewes age 
range at 
lambing 

Ewe 
prolificacy 

(%) 

Ram/ewe 
ratio 

 SS1 PI 1 year 2 150 1:33.3 
 SS2(a) MYW1 160 days 1 150 1:20 
 SS2(b) MYW10 160 days 1 150 1:20 
 SS2(c) McW1MYW1 At birth 1 150 1:20 
 SS2(d) McW10MYW10 At birth 1 

2 to 5 
years 

150 1:20 
       
 SS3 PI 1 year 2 136 1:33.3 
 SS4(a) MYW1 160 days 1 136 1:20 
 SS4(b) MYW10 160 days 1 136 1:20 
 SS4(c) McW1MYW1 At birth 1 136 1:20 
 SS4(d) McW10MYW10 At birth 1 

1 to 4 
years 

136 1:20 
1 Refer to table  4.6 
 

Table  4.8. Age structures of the two nucleus flocks. 

Ewes% 
Ewes age structure 

28% 26% 24% 22% 
E2 2 3 4 5 
E1 1 2 3 4 
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4.4. Results 

4.4.1. Scenario 1 (Typical flock age structure) 

The predicted rate of genetic gain in the breeding objective using a selection index 

based on only phenotypic information (PI) was 2.796 ¢/year with an accuracy of 0.440 

(Figure  4.2, Table A 4.6). The rate of genetic gain was also 2.796 ¢/year for PI+MYW 

and it slightly increased to 2.810 ¢/year for PI+MCW when they were incorporated in 

the selection index explaining 1% of the genetic variance. When only one of the SNP 

genotypes (MCW or MYW) was incorporated to PI, the genetic gains and accuracies 

obtained by PI+MCW were higher than PI-MYW when comparing the same proportion 

of genetic variance explained. 

Using the same breeding scheme in all scenarios, accuracies of selection indices using 

only marker information (Figure  4.3, Table A 4.7) were lower, compared to those 

obtained with selection indices that conjointly had phenotypic and marker information 

(Figure  4.2) when considering the same proportion of variance explained by MCW and 

MYW. The highest accuracy in Figure  4.2 was 0.569 for PI+MCW50 with MYW included 

at any proportion of YW genetic variance (0, 1, 10, 30 and 50%). These combinations 

generated a predicted genetic gain of 3.62 ¢/y. The highest accuracy in Figure  4.3 was 

0.469 for MCW50-MYW50 giving a genetic gain of 2.982 ¢/y. 
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Figure  4.2. Genetic gains (shown in bars) and accuracies of selection (scattered lines) 

for different selection indices including phenotypic information (PI) and SNP 

genotypes (MCW and MYW) explaining different proportions (1, 10, 30 and 50%) of the 

total genetic variance of carcass weight (CW) and yearling live weight (YW) evaluated 

in a sheep nucleus. 
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Figure  4.3. Genetic gains (shown in bars) and accuracies of selection (scattered lines) 

for different selection indices including only phenotypic information (PI), or having 

only SNP genotypes (MCW and MYW) explaining different proportions (1, 10, 30 and 

50%) of the total genetic variance of carcass weight (CW) and yearling live weight 

(YW) evaluated in a sheep nucleus. 

Annual predicted correlated genetic responses for 160W, FES, YW and CW are 

presented in Figure  4.4 (from Table A 4.8). The highest gain for each of the included 

traits (all positive values), occurred when PI+MCW-MYW accounted for 50% of both 

CW 2
Gσ  and YW 2

Gσ . For FES the same gain was obtained using the PI+MCW-MYW 

index when MCW accounted for 50% of CW2
Gσ  and MYW accounted for 10 and 30% of 

YW 2
Gσ  (Figure  4.4-b). For CW the highest genetic response was obtained using the 

PI+MCW-MYW index when MCW accounted for 50% of CW2
Gσ  and MYW accounting for 

30% of YW 2
Gσ  (Figure  4.4-d). The lowest gains for correlated traits was when PI was 

applied with no marker information included in the selection index. The same values 

were obtained for FES and CW in PI-MYW when MYW accounted for 1% of YW2
Gσ . 
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Figure  4.4. Genetic responses per year of live weight at 160 days (160W) (a), faecal egg score (FES) (b) , yearling live weight (YW) (c) 
and carcass weight (CW) (d) for different selection indices (colours) including phenotypic information (PI) and different proportions of 
SNP genotypes (MCW and MYW).  
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Figure  4.5 and Table A 4.9 show correlated responses for 160W, FES, YW and CW 

when selecting on SNP genotypes only. The lowest gain values for each of the 

included traits were obtained when MCW-MYW accounts for 1% of both CW2
Gσ  and 

YW 2
Gσ . The highest annual predicted genetic value for 160W and CW was achieved 

by MCW50-MYW50. The highest gain value for YW was achieved in MCW-MYW with 

MCW accounting for 1% of CW2
Gσ  and MYW accounting for 50% of YW2

Gσ . For FES 

(Figure  4.5b) the highest gain value (being undesirable as the lowest is better) was 

obtained in all the percentages of MYW (1, 10, 30 and 50% of YW2
Gσ ) when MCW 

accounted for 50% of CW2
Gσ . 
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Figure  4.5. Genetic responses per year of (a) live weight at 160 days (160W), yearling 

weight (YW) and carcass weight (CW) and (b) faecal egg score (FES) (shapes), for 

different selection indices (colours) having only SNP genotypes (MCW and MYW).  

4.4.2. Scenario 2 (Using ram and ewe lambs as parents) 

The accuracies of selection between the same schemes letters (a,b,c,d) shown in Table 

 4.9 are the same because the sources of information are the same. The highest accuracy 

and genetic gain were obtained by using selection index MYW10 in breeding schemes 

SS2 and SS4. When the female generation interval was reduced higher genetic gains 

were achieved compared to their respective selection indices when ewe first lambed at 

2 years old (Table  4.9). 
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Table  4.9. Genetic gains in the breeding objective and accuracies of selection with 

ewes ages from 2 to 5 years old (SS1 and SS2) and from 1 to 4 years (SS3 and SS4), 

for different breeding schemes and selection indices with MCW and MYW explaining 

1% and 10% of the genetic variance for CW and YW. 

Breeding scheme Selection index 
Genetic gain 

(¢/year) 
Accuracy of 

selection 
 SS1 1 PI 2.796 0.4399 
 SS2(a) 2 MYW1 3.198 0.4400 
 SS2(b) 2 MYW10 3.206 0.4412 
 SS2(c) 2 McW1-MYW1 0.520 0.0715 
 SS2(d) 2 McW10-MYW10 1.610 0.2216 
 SS3 1 PI 3.162 0.4399 
 SS4(a) 2 MYW1 3.806 0.4400 
 SS4(b) 2 MYW10 3.816 0.4412 
 SS4(c) 2 McW1-MYW1 0.619 0.0715 
 SS4(d) 2 McW10-MYW10 1.916 0.2216 

1 Ram generation interval (L) = 2.5 years; 2 Ram L = 1 year 
 

Figure  4.6 and Table A 4.10 shows the genetic responses per year for 160W, FES, YW 

and CW, using different breeding schemes and selection indices. It can be seen that a 

selection indices with lower female generation interval (SS3 and SS4) achieved greater 

genetic gain in all traits compared with the correspondent selection indices using SS1 

and SS2 breeding schemes. The use of PI achieved higher values than McW1-MYW1 

and McW10-MYW10 (except FES) but lower than MYW1 and MYW10 (except CW SS2 

and 160W SS2 and SS4).  
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Figure  4.6. Correlated responses for (a) live weight at 160 days (160W), yearling 

weight (YW) and carcass weight (CW) and (b) faecal egg score (FES) (shapes), using 

different selection index (colours) within four different breeding schemes (SS1-SS4(d) 

from Table  4.7) with MCW and MYW explaining 1% and 10% of CW and YW total 

genetic variance. 

4.5. Discussion 

Results from scenario 1 suggest that the use of genomic information in combination 

with phenotypic information can increase the genetic gain compared with a traditional 

selection index without genomic information. As presented in Figure  4.2, PI+MCW 

obtained higher genetic gains compared with PI+MYW for all the different proportions 

of genetic variance explained by the SNP genotypes. This is due to the higher REW 

assigned to CW compared to YW (50 v/s -20% respectively). This big difference 
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between the REWs was selected in order to limit the genetic gain of YW in favour of 

CW due to the higher heritability that YW has (0.4) compared with CW (0.22), 

expressing that a higher heritability represents a higher proportion of the phenotype is 

determine by the trait's genotype (Falconer & Mackay 1996). 

The use of MCW and MYW in combination with PI (PI+MCW-MCW Figure  4.2) increased 

genetic gains and accuracies of selection compared to PI. Different levels of genetic 

gains and accuracies of prediction can be appreciated depending on the proportion of 

genetic variance explained by each SNP genotype utilised as stated by Hayes et al. 

(2010b). This was shown in Figures 4.2 and 4.3, where much higher rates of genetic 

gains were obtained when the genomic information included into the selection index 

explained higher percentages of the total genetic variance (30% and 50%). 

In relation to the accuracies of selection, and considering that for scenario one the 

same breeding scheme was used for all selection indices, the results obtained by 

indices without phenotypic information (Figure  4.3) were lower compared to the 

results obtained using selection indices having phenotypic and genomic information 

together (Figure  4.2). These results are in agreement with Janssen-Tapken et al. 

(2010).  

One of the advantages of using genomic information in selection indices is the 

possibility of selecting animals at younger ages because the genetic merit of the 

animals can be estimated immediately after birth rather than waiting for the animal to 

produce phenotypic records. A consequence of this early selection is that the 

generation interval can be decreased and subsequently genetic gain will increase, 

providing accuracy of selection is maintained (Georges & Massey 1991; Goddard et al. 

2010; Haley & Visscher 1998; Meuwissen 2003; Schaeffer 2006; Spelman et al. 2012). 

Supporting evidence is provided in Table 4.9; the only difference between these 

selection indices being the age structures utilised in the respective breeding schemes. 

The results show that a breeding scheme that decreases the generation interval of the 

breeding population can increase the rate of genetic gain in the nucleus flock. 

Moreover, it is apparent that when SNP genotypes are included conjointly with 

phenotypic information, higher genetic gains can be achieved in association with the 

reduction of the generation interval. This occurs even having selection indices with 

higher proportions of the traits genetic variances explained by the SNP genotype.  
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Even though in scenario 2 MYW10 only described 10% of YW2
Gσ , and it's correlated 

response was not the highest of all the simulated indices the genetic gain obtained by 

SS4(b) (Table  4.9) was the highest outcome of all the study. This demonstrates that 

reducing the generation interval is critical to obtain higher rates of genetic 

improvement.  

The economic value applied in the breeding objective for FES achieved the proposed 

objective of minimising the traits genetic change in the population when traits 

correlated to FES were included in the selection index (Figures 4.4, 4.5-b and 4.6-b). 

When no phenotypic information was included in the selection index, correlated 

responses in FES became positive but with values close to 0. This can be explained 

because the model was simulated considering the respective covariances between SNP 

genotypes and FES which were very low (the highest being 0.17 for 
,FESYWMGσ , with 

MYW representing 50% of YW genetic variance). 

For YW correlated responses, when the correlated trait phenotypic data is included 

jointly with MYW using the same breeding scheme (Figure  4.4-c), the values obtained 

were all higher than when using PI alone. Likewise, when no phenotypic information 

was used (Figure  4.5-a and selection indices (c) and (d) on Figure  4.6-a) values 

obtained with MCW and MYW representing 1% and 10% of CW2
Gσ  and YW 2

Gσ  were all 

lower than the gain obtained under PI. As a result, the objective of lowering YW 

genetic responses was very difficult to achieve with the traits included in the model. 

This is because of the high positive genetic correlation between YW and CW (0.7) and 

YW and 160W (0.76).  

Correlated responses in CW were all positive (Figures 4.4, 4.5-a and 4.6-a) with some 

being close to the response obtained with PI, such as, PI-MYW representing 1% of 

YW 2
Gσ  (Figure  4.4). The correlated responses for YW and CW shown in Figures 4.4 

and 4.5-a reflect the high positive correlation between the two traits. Thus even though 

opposite genetic gains are desired (positive in CW; negative in YW), the chosen REWs 

did not enable this to occur.  

This study provides a theoretical framework to illustrate the use of genomic 

information with selection index theory. But the use of more complex statistical and 
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genetic procedures are needed to simulate more precisely the application of this new 

technology. For example, the implementation of economic analysis taking into account 

costs and benefits of the application of molecular techniques are needed (Ruane & 

Sonnino 2007; Sonnino et al. 2007). Also, it must be noted that the change in genetic 

variance with time also known as Bulmer effect (Bulmer 1971; Dekkers 2007; 

Falconer & Mackay 1996), was not accounted for in the present study. Therefore, the 

predicted genetic gains are likely to be overestimates of the true genetic gain when the 

Bulmer effect is accounted for (Bulmer 1971). This problem can be addressed using 

stochastic simulation models considering several years, and is the subject of chapter 5. 

 

4.6. Conclusions 

The results obtained in this study illustrate the potential effects of genomic selection 

on the rate of genetic gain in a nucleus flock. Reviewing PI outcomes of scenario one, 

an increase of genetic gain and accuracy can be seen when genomic information is 

included together with phenotypic information. As expected, as the proportion of the 

trait explained by each SNP genotype increases, so it does the rate of gain in the 

objective. Considering that several traits can be included in a selection index, special 

care has to be taken when including correlated traits with high heritabilities in order to 

assign appropriate economic values to achieve a desired genetic response. 

Under the same breeding scheme, the results from the present study suggest that the 

use of genomic information without phenotypic information can result in lower 

selection accuracies and lower genetic gains compared to a selection index using only 

phenotypic information. Higher genetic gains can be expected using just genotypic 

information (and higher accuracies) if the genotypic information accounts for a large 

proportion of the objective trait's genetic variance. Based on the results obtained for a 

selection index using phenotypic and genomic information together, the inclusion of a 

SNP genotype that explains only a low proportion of the correlated trait's genetic 

variance is not the best alternative to achieve greater genetic and economic gains, 

unless a reduction of the generation interval is achieved. The best genetic responses for 

the individual traits did not always lead to the best genetic gain in the objective and 

therefore the best economic outcome. 
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To assess more accurately the effect of including genomic information into a sheep 

breeding programme, stochastic models have to be implemented. This will give the 

flexibility to control different aspects such as environmental effects, population 

structure, farm management and the number of traits included. In addition, selection 

index predictions ignore changes in genetic variances changes (Dekkers 2007). Thus, 

the use of stochastic models will better demonstrate long term effects of genomic 

selection on selection accuracies and genetic gains in a breeding population. 

 

4.7. Appendix to chapter 4 

Table A 4.1. Population parameters to simulate two pathways of selection (ewes and 

rams pathways), for a selection index with rams selected at 1 year old and ewes ages 

from 1 to 4 years old. 

Selection 
Pathway 

Population 
Size 

Number 
selected 

Proportion 
selected 

Generation 
Interval 

Ewes 183.6 84 0.4575 2.54 
Rams 183.6 4.5 0.0245 2.50 
 

Table A 4.2. Population parameters to simulate two pathways of selection (ewes and 

rams pathways), for a selection index with rams selected at 160 days old and ewes ages 

from 2 to 5 years old. 

Selection 
Pathway 

Population 
Size 

Number 
selected 

Proportion 
selected 

Generation 
Interval 

Ewes 202.5 84 0.4148 3.40 
Rams 202.5 15 0.0741 1.00 
 

Table A 4.3. Population parameters to simulate two pathways of selection (ewes and 

rams pathways), for a selection index with rams selected at 160 days old and ewes ages 

from 1 to 4 years old. 

Selection 
Pathway 

Population 
Size 

Number 
selected 

Proportion 
selected 

Generation 
Interval 

Ewes 183.6 84 0.4575 2.54 
Rams 183.6 15 0.0817 1.00 
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Table A 4.4. Population parameters to simulate two pathways of selection (ewes and 

rams pathways), for a selection index with rams selected at birth and ewes ages from 2 

to 5 years old. 

Selection 
Pathway 

Population 
Size 

Number 
selected 

Proportion 
selected 

Generation 
Interval 

Ewes 202.5 84 0.4148 3.40 
Rams 202.5 15 0.0741 1.00 

Table A 4.5. Population parameters to simulate two pathways of selection (ewes and 

rams pathways), for a selection index with rams selected at birth and ewes ages from 1 

to 4 years old. 

Selection 
Pathway 

Population 
Size 

Number 
selected 

Proportion 
selected 

Generation 
Interval 

Ewes 183.6 84 0.4575 2.54 
Rams 183.6 15 0.0817 1.00 
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Table A 4.6. Genetic gains and accuracies of selection for selection indices including 

phenotypic information (PI) and SNP genotypes (MCW and MYW) explaining different 

proportions (1%,10%,30% and 50%) of the total genetic variance of carcass weight 

(CW) and yearling weight (YW) respectively. 

Selection index 
Genetic gain 

(¢/y) 
Accuracy of 

selection 
PI 2.796 0.440 
PI+MCW1 2.810 0.442 
PI+MCW10 2.942 0.463 
PI+MCW30 3.258 0.513 
PI+MCW50 3.617 0.569 
PI+MYW1 2.796 0.440 
PI+MYW10 2.804 0.441 
PI+MYW30 2.822 0.444 
PI+MYW50 2.844 0.448 
PI+MCW1-MYW1 2.811 0.442 
PI+MCW1-MYW10 2.812 0.442 
PI+MCW1-MYW30 2.836 0.446 
PI+MCW1-MYW50 2.857 0.450 
PI+MCW10-MYW1 2.942 0.463 
PI+MCW10-MYW10 2.947 0.464 
PI+MCW10-MYW30 2.960 0.466 
PI+MCW10-MYW50 2.976 0.468 
PI+MCW30-MYW1 3.259 0.513 
PI+MCW30-MYW10 3.260 0.513 
PI+MCW30-MYW30 3.265 0.514 
PI+MCW30-MYW50 3.270 0.515 
PI+MCW50-MYW1 3.617 0.569 
PI+MCW50-MYW10 3.617 0.569 
PI+MCW50-MYW30 3.617 0.569 
PI+MCW50-MYW50 3.618 0.569 
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Table A 4.7. Genetic gains and accuracies for a selection index including phenotypic 

information (PI) and selection indices having only SNP genotypes (MCW and MYW) 

explaining different proportions (1%, 10%, 30% and 50%) of the total genetic variance 

of carcass weight (CW) and yearling weight (YW) respectively. 

Selection index Genetic gain (¢/y) 
Accuracy of 

selection 

PI1 2.796 0.440 
MCW1-MYW1 0.454 0.072 
MCW1-MYW10 0.687 0.108 
MCW1-MYW30 1.032 0.162 
MCW1-MYW50 1.287 0.203 
MCW10-MYW1 1.338 0.211 
MCW10-MYW10 1.408 0.222 
MCW10-MYW30 1.554 0.244 
MCW10-MYW50 1.689 0.266 
MCW30-MYW1 2.306 0.363 
MCW30-MYW10 2.321 0.365 
MCW30-MYW30 2.355 0.371 
MCW30-MYW50 2.391 0.376 
MCW50-MYW1 2.975 0.468 
MCW50-MYW10 2.976 0.468 
MCW50-MYW30 2.979 0.469 
MCW50-MYW50 2.982 0.469 

1PI= phenotypic information selection index including 160W+FES+YW as traits, 
160W= live weight at 160 days, CW = carcass weight at 160 days, FES= faecal egg 
score and YW= yearling live weight. 
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Table A 4.8. Correlated responses year of live weight at 160 days (160W), faecal egg 

score (FES), yearling weight (YW) and carcass weight (CW), for selection indices 

including phenotypic information (PI) and SNP genotypes (MCW and MYW) explaining 

different proportions (1%,10%,30% and 50%) of the total genetic variance of CW and 

YW respectively. 

Correlation response Selection index 
160W FES YW CW 

PI 1.006 -0.012 0.726 0.231 
PI+MCW1 1.009 -0.011 0.728 0.232 
PI+MCW10 1.030 -0.009 0.749 0.243 
PI+MCW30 1.087 -0.003 0.802 0.271 
PI+MCW50 1.156 0.002 0.864 0.302 
PI+MYW1 1.008 -0.012 0.728 0.231 
PI+MYW10 1.019 -0.011 0.749 0.234 
PI+MYW30 1.049 -0.011 0.803 0.240 
PI+MYW50 1.084 -0.010 0.867 0.249 
PI+MCW1-MYW1 1.010 -0.011 0.730 0.232 
PI+MCW1-MYW10 1.022 -0.011 0.754 0.235 
PI+MCW1-MYW30 1.050 -0.011 0.804 0.241 
PI+MCW1-MYW50 1.085 -0.010 0.867 0.249 
PI+MCW10-MYW1 1.031 -0.009 0.751 0.244 
PI+MCW10-MYW10 1.041 -0.009 0.768 0.246 
PI+MCW10-MYW30 1.065 -0.008 0.812 0.251 
PI+MCW10-MYW50 1.094 -0.008 0.865 0.258 
PI+MCW30-MYW1 1.087 -0.003 0.803 0.271 
PI+MCW30-MYW10 1.092 -0.003 0.812 0.272 
PI+MCW30-MYW30 1.105 -0.003 0.836 0.275 
PI+MCW30-MYW50 1.121 -0.003 0.866 0.278 
PI+MCW50-MYW1 1.156 0.002 0.864 0.302 
PI+MCW50-MYW10 1.157 0.003 0.866 0.302 
PI+MCW50-MYW30 1.159 0.003 0.870 0.303 
PI+MCW50-MYW50 1.162 0.003 0.875 0.303 
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Table A 4.9. Correlated responses year of live weight at 160 days (160W), faecal egg 

score (FES), yearling weight (YW) and carcass weight (CW), for selection indices 

having only SNP genotypes (MCW and MYW) explaining different proportions 

(1%,10%,30% and 50%) of the total genetic variance of CW and YW respectively. 

Correlation response Selection index 
160W FES YW CW 

MCW1-MYW1 0.213 0.015 0.190 0.055 
MCW1-MYW10 0.458 0.023 0.542 0.109 
MCW1-MYW30 0.776 0.034 0.978 0.181 
MCW1-MYW50 1.000 0.042 1.279 0.231 
MCW10-MYW1 0.555 0.044 0.427 0.150 
MCW10-MYW10 0.650 0.046 0.571 0.170 
MCW10-MYW30 0.837 0.051 0.855 0.210 
MCW10-MYW50 1.003 0.056 1.103 0.246 
MCW30-MYW1 0.947 0.076 0.717 0.256 
MCW30-MYW10 0.977 0.076 0.766 0.262 
MCW30-MYW30 1.045 0.077 0.879 0.276 
MCW30-MYW50 1.117 0.079 0.995 0.291 
MCW50-MYW1 1.218 0.098 0.920 0.330 
MCW50-MYW10 1.225 0.098 0.931 0.331 
MCW50-MYW30 1.241 0.098 0.959 0.334 
MCW50-MYW50 1.258 0.098 0.990 0.338 

 

Table A 4.10. Correlated responses year of live weight at 160 days (160W), faecal egg 

score (FES), yearling weight (YW) and carcass weight (CW), for different breeding 

schemes and selection indices with MCW and MYW explaining 1% and 10% of CW and 

YW total genetic variance. 

Correlation response 
Breeding scheme Selection index 

160W FES YW CW 
SS1 PI 1.006 -0.012 0.726 0.231 
SS2 MYW1 1.152 -0.013 0.833 0.264 
SS2 MYW10 1.165 -0.013 0.857 0.267 
SS2 McW1-MYW1 0.243 0.017 0.217 0.063 
SS2 McW10-MYW10 0.743 0.053 0.653 0.194 

      
SS3 PI 1.138 -0.013 0.821 0.261 
SS4 MYW1 1.371 -0.016 0.991 0.314 
SS4 MYW10 1.387 -0.015 1.020 0.318 
SS4 McW1-MYW1 0.290 0.020 0.259 0.075 
SS4 McW10-MYW10 0.884 0.063 0.778 0.231 





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 5  

Stochastic simulation model for sheep breeding schemes using genomic 

selection and multitrait total merit index





Genomic stochastic simulation 

 

97 

5.1. Abstract 

New DNA technologies allow the identification of genetic markers related to 

production traits, providing information to predict genomic breeding values for those 

animal traits at early age. The inclusion of this information into breeding schemes 

could allow the selection of breeding stock in early stages of their life. The present 

study developed a stochastic model that simulated a sheep breeding flock in which 

females were selected based on breeding values estimated using best linear unbiased 

predictor methodology and males were selected using only genomic breeding values 

for carcass weight estimated with a genomic best linear unbiased predictor 

methodology. The breeding objective of the simulated breeding population was to 

reduce the parasite load by decreasing faecal egg score; to reduce maintenance feed 

costs in ewes by decreasing yearling weight and to improve the income of the system 

by augmenting 160 day lamb carcass weight. The genomic information included to 

estimate the genomic breeding values represented 20% of the carcass weight genetic 

variance, a trait that can not be measured in living animals. Results of this study 

showed an increasing accuracy for genomic selection as phenotypic information is 

added to the training population. Also, proportionally higher genetic gains were 

obtained for carcass weight compared with the other simulated traits. This proved that 

the use of genomic selection combined with a multitrait selection index could be a 

valid option for increasing the genetic gains of traits recorded expressed after the 

animals have been selected for breeding. 

 

5.2. Introduction 

The sheep industry is comprised of several distinct breeding populations (typically 

breeds), and each of these populations will be progressing at various rates of genetic 

improvement. There are four factors that control the rate of towards the breeding goal: 

• Intensity of selection 

• Selection accuracy 

• Genetic standard deviation 

• Generation interval 
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These four factors that control the rate of genetic change are interdependent, so rather 

than seeking to either maximise or minimise each factor, it is necessary to consider 

them jointly to optimise the rate of genetic change (Blair & Garrick 2007). 

The breeding goal of most sheep industries around the world is to identify animals of 

high genetic merit in traits that improves the profit of the production system. Selection 

for economically important quantitative traits in sheep is traditionally based on 

phenotypic records of the individual or relatives. Estimated breeding values, based on 

this phenotypic data, are commonly calculated by best linear unbiased prediction 

(BLUP), using phenotypic records (Meuwissen et al. 2001). With respect to New 

Zealand, initial sheep genetic evaluations were based on best linear prediction 

procedures, but as computing capacity allowed, BLUP was introduced (Blair & 

Garrick 2007). 

The development of useful breeding schemes is not an easy task, with several 

processes needing to be considered. Harris et al. (1984), proposed a nine step 

systematic approach to build a comprehensive animal breeding scheme, which was 

used to develop a computer simulation model to iteratively analyse different breeding 

plans for broiler chickens. 

Computer stochastic simulations can be described as mathematical routines developed 

with randomly generated parameters using predefined distributions, imitating the 

internal processes of a system (Moore & McCabe 1990; Reingruber & Gregory 1994). 

This technique has been widely used to evaluate breeding schemes in different species 

like, goats (Analla et al. 1995), swine (Pomar et al. 1991), dairy sheep (Smulders et al. 

2007) or dairy cattle (Sörensen et al. 1999).  

One or several genes producing an effect of any measurable level on a quantitative trait 

are called quantitative trait loci (QTL) (Hayes & Goddard 2001), and if the measurable 

trait is of economic importance the genes are called economic trait loci (Garrick & 

Snell 2005). Georges and Massey (1991), stated that the phenotypic expression of a 

trait in an animal is due the combination between the environmental effects and the 

effect of several “polygenes” known as Quantitative Trait Loci. Therefore as 

quantitative traits are usually affected by many genes the benefit from selection using 
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genetic markers is limited by the proportion of the genetic variance explained by the 

QTL (Meuwissen et al. 2001). 

A single nucleotide polymorphism (SNP) can be defined as a genetic marker that is 

characterised by the variation in a nucleotide at a single base (Garrick & Snell 2005). 

The availability of thousands of SNPs spread across the genome gives the opportunity 

to include genome-wide marker information to predict total breeding values for the 

species under study and allows genomic selection (Calus et al. 2008; Meuwissen et al. 

2001). 

The term genomic selection was first proposed by Hillel et al. (1990), but the 

mathematical procedure was first described by Meuwissen et al. (2001). In genomic 

selection, breeding values are predicted using a large number of marker haplotypes 

across the entire genome (Calus et al. 2008). The theory behind this statement is, that 

some markers very near to a QTL could be combined into an haplotype. Therefore 

chromosome segments containing the same haplotypes, possibly are going to be 

identical by descent (IBD) and consequently have the same QTL allele (Meuwissen et 

al. 2001).  

The tendency of some alleles at two different loci to be inherited together, generally 

because they are physically very close, is known as linkage disequilibrium (LD) 

(Falconer & Mackay 1996; Ruane & Sonnino 2007). This non-random association 

between alleles is expressed based on the amount of recombination between two loci 

during the gametic recombination phase (Falconer & Mackay 1996). 

Considering all the previous statements, it is possible to state that genomic selection is 

a method that allows the estimation of genomic breeding values (GBV) without 

phenotypic information on the animals under selection. The genetic merit would then 

be calculated by summing up the values of each and every chromosomal segment 

(Garrick & Snell 2005). As a result, breeding schemes can be adapted to select 

breeding stock based on a ranking of the animal's GBVs, this could be done in early 

stages of their life (for example at birth), achieving an increase in the trait's genetic 

gain providing the breeding scheme's generation interval is reduced (Pryce et al. 2010).  

Based on Meuwissen et al. (2001), several studies have been developed to evaluate 

different methods to incorporate genomic information to obtain GBVs. But regarding 
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deterministic or stochastic simulation studies analysing production traits in sheep 

breeding schemes, the author found very few studies (Pickering et al. 2013; Swan & 

Brown 2013). 

Therefore taking into account all the studies utilising simulation techniques, the 

hypothesis of including genomic information into a simulated multitrait sheep breeding 

programme seems to be an interesting option for evaluating the long term genetic 

response of the traits under selection. 

The objectives of this study were: 

• To develop a stochastic simulation model for a sheep flock using a multitrait 

BLUP selection index conjointly with SNP genotypes associated with one 

production trait. 

• To evaluate the implication of using these two selection procedures (SNPBLUP 

and phenotypic BLUP) together on a sheep flock. 

 

5.3. Materials and methods 

A stochastic model was programmed using Base SAS, SAS/IML and SAS 9.3 Macro 

language (SAS Institute Inc. 2011). The simulation represented a flock under a 

breeding programme, evaluated for the period of 20 years. This simulation process was 

replicated 100 times in order to obtain measurements of the variation of responses to 

selection. 

The simulated traits (Table  5.1) were the same traits simulated in Chapter 3 (Table 

3.2), being live weight at 160 days (160W), faecal egg score at 160 days (FES), live 

weight at 1 year or yearling weight (YW) and the lamb carcass weight (CW). 

Phenotypic and genetic parameters for these traits were obtained from Bennett et al. 

(1991), Huisman & Brown (2008) and Huisman et al. (2008). The breeding objective 

was to decrease FES (to improve parasite resistance), decrease YW (to decrease 

maintenance costs) and to increase CW of the lambs (increase production income). 

The simulation model considered two procedures to select the animals as part of the 

breeding flock: 

A BLUP selection to choose the flock's ewes.  
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A genomic selection (using SNPBLUP) to select males (new born) to be used at seven 

month of age as breeding rams. 

For the SNPBLUP selection, the simulated SNP genotype was associated with CW, its 

inclusion was determined because CW is a trait that can only be recorded in dead 

animals (therefore it is too late to select measured animals as breeders), and also 

because it was the most economically important trait for income based on the 

economic weights utilised in Table  5.2. 

Table  5.1. Phenotypic standard deviations (σP) heritabilities (on the diagonal), 

phenotypic (above the diagonal) and genetic (below the diagonal) correlations of traits1 

included in a selection index for sheep genetic improvement. 

   Correlations 
Trait Unit σP 160W CW FES YW 
160W kg 4.524 0.54 0.94 -0.01 0.65 
CW kg 1.766 0.92 0.22 -0.0094 0.611 
FES1 score 1.483 0.34 0.3128 0.28 0.1 
YW kg 5.216 0.76 0.6992 0.13 0.40 
1160W= live weight at 160 days, CW = carcass weight at 160 days, FES= faecal egg 
score defined as cubic root of number of eggs per gram [(eggs/g)1/3] and YW= yearling 
live weight. 

Table  5.2. Genetic standard deviations (σG), economic values (EV) and relative 

economic weights (REW) of the traits1 included in the breeding objective. 

Trait σG EV($) REW 
FES 0.78 -10.72 -30% 
YW (kg) 3.30 -1.70 -20% 
CW (kg) 0.83 16.93 50% 

1FES= faecal egg score defined as cubic root of number of eggs per gram [(eggs/g)1/3], 
YW= yearling live weight and CW = carcass weight at 160 days. 
 

5.3.1. Flock structure 

The base population simulated represented the size of an average New Zealand 

performance recorded flock (Garrick et al. 2000). It consisted of a 300 ewes flock as 

average and a standard deviation of 25 animals. The number of rams utilised the first 2 

years corresponded to 3% of the ewes. Later, when lamb rams were used, the 

percentage of breeding males was 5% of the breeding females to account for worst 
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reproductive performance due difficulty in  detecting and/or  mounting  females in  

oestrus, or that young rams mated less frequently than older rams (Kenyon et al. 2007). 

The number of ewe hoggets (between 1 and 2 year old) represented 31% of the ewes 

between 2 and 5 year old population. Table  5.3 shows the age structure of the flock for 

ewes older than 2 years. Ewes older than 5 years old and males older than 1 year old 

were culled. 

Table  5.3. Age structure of ewes over two years old, of a stochastically simulated sheep 

nucleus flock. 

Age in years 2 3 4 5 

Ewes (%) 28% 26% 24% 22% 
 

The sex of the born lambs was assumed as 50% males and 50% females and the 

lambing proportion was 1.5 lambs per ewe.  Table  5.4 shows the birth rank probability 

assumed for the lambing. 

Table  5.4. Birth rank percentages for lambs born in a stochastically simulated sheep 

breeding flock. 

Number of 
lambs 

1 2 3 

Lambs (%) 60 30 10 

 

For the death simulation process, it was assumed that 10% of the born lambs die before 

reaching the first year of life. Ewe's death percentage was 5% for 1 year old ewes and 

2 % for older ewes. 

5.3.2. Breeding scheme 

Figure  5.1 shows the reproductive and replacement parameters assumed in the 

simulated flock. Female selection was based on BLUP breeding values at one year old 

(lambing at 2 years) and males were selected at birth using only SNPBLUP breeding 

values to breed at 7 months of age. A higher number of rams was selected (compared 

with the stochastic model in chapter 3) to account for a possible lower reproductive 

performance.  
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The purpose of selecting the males of the population based only on their GBVs was 

based on the idea presented by Meuwissen et al. (2001) that animals could be selected 

without any phenotypic record. Also it was taken into consideration that the decision 

of adopting this new technology by the farmers will be not only to improve the genetic 

gain of their production system but also if it could ease their working load by reducing 

the amount of data recording. 

300 ewes & 15 rams (5% of ewes)

450 born lambs

172.125 ♀

84 
(2 year-old ewe)

15 lamb 
rams

172.125 ♂

(1.5 lambs per ewe)

Replacements 
selected using 
BLUP

Replacements 
selected using 
GBLUP to 
breed at 7 
month old

105 (1 year-old ewe 
hoggets)

(10% mortality)
+

(15% culled)

 

Figure  5.1. Breeding scheme structure for a simulated sheep breeding nucleus, 

selecting the females with BLUP breeding values and the males with genomic breeding 

values (SNPBLUP).  

5.3.2.1. Best linear unbiased prediction selection 

The females of the flock were selected over 1 year old (once the phenotypic 

information was recorded) using BLUP breeding values. Estimated breeding values 

(EBV) were generated via multitrait analysis using the package AIREML (Johnson & 

Thompson 1995). This software uses the average information matrix as second 

derivatives in a quasi-Newton procedure. The analysis used a multitrait mixed model 

considering the inclusion of pedigree information (Henderson & Quaas 1976). For the 

present simulation, analysing three traits (160W, FES and YW) the model can be 

written as: 
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where: 

iy  is a vector that represents the observed phenotypic records of trait i, 

iX  is a incidence matrix of fixed effects (mean, year, flock)  associated with trait i, 

ib  is a vector of fixed effects for trait i, 

iZ is an incidence matrix relating animals with records to animals in the pedigree, 

ia  is the vector of random animal effects for trait i, 

ie  is a vector of the random residual effects of trait i, 

The matrices of genetic (co)variance (G) and residual (co)variance (R) are represented 

as: 
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where: 

I  is an identity matrix of the order nxn where n is the number of measured animals,  

A is the relationship matrix between animals (pedigree information), 

2

iaσ  and 2

ieσ  are the genetic and residual effects variances for trait i, and  

ijaσ with 
ijeσ are their corresponding covariances between traits i and j. 

 

After obtaining the EBV of each trait, a total merit index (IDX) for each animal (Hazel 

1943) was generated, multiplying these EBVs with a regression coefficient (b value) as 

weighting values which were utilised in the stochastic simulation of chapter 3, to rank 

each animal based on the relative importance of the traits for which the evaluation was 

based. 

( ) ( ) ( )YWFESW EBVb+EBVb+EBVbIDX= ××× 321601  
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5.3.2.2. Genomic best linear unbiased prediction selection 

All simulated males were genotyped when they were born. The purpose was to have 

their genetic evaluation to select these animals as early in their life as possible, to 

allow a reduction of generation interval and sale of unwanted rams. The genomic 

information model represented 100 SNPs distributed within the same chromosome 

(Reich et al. 2001), for each simulated animal. For the present study, it was assumed 

that the whole SNP genotype represented 20% of CW genetic variance (2

CWaσ ) and that 

one SNP (SNP 15) controlled 10% of the whole SNP genotype (2% of 2

CWaσ ). 

Therefore the individual SNP variance was assumed to be the 2

CWaσ  multiplied by 20% 

(representing the amount accounted by the SNP genotype) divided by the number of 

simulated SNPs (100) giving an individual SNP variance of 0.00137 kg2. 

It was assumed a biallelic loci form for the simulated SNP genotype. There were two 

possible alleles for each SNP (1 and 2), and three possible genotypes: -1, 0 and 1 

associated with a homozygous with a negative effect, heterozygous with a neutral 

effect and a homozygous with a positive effect, respectively. 

The SNP information or allelic effects were fitted in a SNPBLUP as random effects 

(Meuwissen et al. 2001; Meuwissen 2003). It was assumed that every SNP had the 

same proportion of the total genetic variance considering therefore the same impact of 

each allelic effect on the related trait. The random effects were estimated using the 

mixed model equation: 


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where: 

X is a column vector of ones relating the animals and the trait mean (fixed effect), 

Z is an incidence matrix, relating all the animals with each allelic form (-1, 0, 1) of the 

included SNPs (random effects), 

y is a vector of the known CW phenotypic records, 

b and a are vectors of fixed effects and random SNP effects respectively (BLUE and 

BLUP values), 
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I  is an identity matrix of the same order as the Z'Z  matrix. 

λ is a value obtained when the residual variance is divided by each individual SNP 

effect variance. 

The GBV estimation considered the effects covering the whole SNP genotype. 

Genomic selection used a subset of the total population called the training population, 

the requirement to be included as part of the training population was having 

phenotypic and genomic information at the moment of estimating GBVs. The 

information was analysed in order to estimate the regression coefficients for the 

random effects (each allelic form of each SNP). These estimates for the random effects 

were multiplied with the SNP genotypes of the predicted population (all animals with 

genomic information, with or without phenotypic records), and then all these estimates 

of each SNP were summed to obtain the GBV (Luan et al. 2009). Therefore, SNP 

effects were assumed to have an additive effect but not a dominance effect. The 

mathematical procedure previously described allowed estimation of GBV for all 

animals with genomic information. 

5.3.2.3. Accuracy of genomic breeding values 

The accuracy of GBV (rTBV,GBV) was estimated as the correlation between the true 

breeding value and the predicted genomic breeding value shown as: 

GBVTBV

TBV,GBV
GBVTBV

σσ

σ
r =,  

where, TBV,GBVσ is the covariance between TBV and GBV. 

TBVσ  is the standard deviation of the true breeding values and  

GBVσ is the standard deviation of the estimated genomic breeding values. 

The information utilised to evaluate the annual accuracies consisted of the training 

population (animals with phenotypic and genomic information) and animals with only 

genomic information updated annually. 
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5.3.2.4. Hardy-Weinberg equilibrium 

To assess if SNP15 had any changes along the simulated selection period in order to 

see if that specific allelic form in the population had been under selection (Hardy-

Weinberg equilibrium), a chi-square Pearson test 2χ  was determined (Falconer & 

Mackay 1996). The analysis was done measuring the allelic genotypic values at year 0 

and at year 20 using the equation:  

∑
−=
SNP

SNPSNP

E

EO 2
2 )(χ  

where SNPO is the observed allelic frequency at a certain period and SNPE is the 

expected allelic frequency in the same period. 

To assess the significance of this test, one degree of freedom is used (number of 

genotypes - number of alleles). For significance level of 5% and one degree of freedom 

the limit value utilised to accept or reject the null hypothesis is 3.84. Any result of 2χ  

below this value, the null hypothesis that the population is in Hardy–Weinberg 

equilibrium is accepted. 

5.3.3. Data generation 

5.3.3.1. Phenotypic information 

The phenotypic values of all the simulated traits for each available animal were 

obtained as the sum of the true breeding values (TBV), environmental effects, year and 

flock effects modelled as: 

gijjiggijklm e+G+F+M+µ=y  

where, gijklmy is the phenotypic value of any of the traits being simulated 

µ is the mean of the population for the trait, 

gM is the effect of year g, 

iF is the flock effect i, 

mG is the TBV effect of animal k, and 
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ijklme is an environmental effect.  

The year effect was assumed to have a variation of 5% of the phenotypic (co)variance 

matrix. The inclusion of the flock effect (F) was to account for a flock difference per 

replicate, and it was assumed to have a variation of 10% of the phenotypic 

(co)variance matrix. Genetic, environmental, flock and year effects matrices were 

created by the product of a randomly generated normal distribution matrix with the 

lower triangular matrix D of the Cholesky decomposition (Nejati-Javaremi et al. 2007) 

of the (co)variance matrix of each effect. 

The genetic effect matrix was created with a randomly generated normal distribution 

matrix times the lower triangular matrix D of the Cholesky decomposition (Nejati-

Javaremi et al. 2007) of a modified genetic (co)variance matrix including 160W, FES, 

YW and CW. The modification consisted in replacing the CW genetic variance (2
CWaσ ) 

with a value representing 80% of 2
CWaσ  as the SNP genotype represented 20% of 2

CWaσ . 

Then, based on Dekkers (2007) the true breeding value for CW was simulated as  

R+Q=G  

where, 

G represents the additive genetic value of the trait under study,  

Q is the genetic effects correlated with SNP genotypes,  

R is the residual genetic effects independent of the markers (polygenic effect), 

5.3.3.2. SNP generation 

5.3.3.2.1. Base population SNP generation 

In order to create the SNP genotype for the base population, two alleles for each SNP 

were generated (1 and 2) each of them representing a frequency (p and q) of 0.5. Based 

on Falconer & Mackay (1996), the additive amount contributed by each homozygous 

for each SNP considering no dominance was generated as: 

ii

A
i qp

V
a i

2
=  
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where,   

ai is the deviation from the mean (additive effect) of the positive homozygous of the 

SNP i. 

VAi is the additive variance of the SNP i. 

pi and qi are the allelic frequencies for the SNP i. 

The additive effect for the negative homozygous of the SNP i was estimated as the 

product of -1 times ai. The heterozygous form was simulated with an additive value of 

0. 

5.3.3.2.2. Offspring SNP generation 

After pairing males and females based on their GBV and their IDX respectively, and 

according on Table  5.4 information, by using uniform random generation procedure, 

the number of offspring for each ewe was simulated. Once the number of lambs per 

ewe and sire are known, the inherited SNP genotype of each lamb was generated using 

one strand of each parent recombined genomic information, emulating the information 

carried by one gamete. All the SNPs were assumed to be allocated in one chromosome 

(Reich et al. 2001) therefore presenting LD between them; it was considered that the 

SNP in the 15th position (SNP15) was the "anchor" SNP. Recombination was assumed 

to be a crossing over recombination as an exchange of single strands between two 

participating chromatids (Andersen & Sekelsky 2010; Bernstein et al. 2011). 

Figure  5.2 shows how the SNP genotype of each lamb is formed by inheriting one 

randomly recombined allele strand (gamete) from its sire and the other from its dam. 

The LD was simulated as the probability of a SNP to be represented as a specific 

allelic form in one locus of an allele strand. Therefore the higher the simulated value, 

the higher the probability of a neighbouring allele of the anchor SNP (randomly 

selected allele of SNP15) to be inherited together. The simulated probabilities ranged 

from 0.575, representing that the alleles have a probability of 42.5% to be recombined 

by the opposite allele, and 1 indicating that one of the alleles had 100% chance to be 

the chosen allele, and consequently the opposite allele has no possibility to be 

represented (no recombination). SNP15 as the anchor SNP had always a value of 1. 
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Figure  5.2. Schematic presentation of an inherited lamb SNP genotype formed by 

recombined parental randomly selected SNP genotypes allelic strands (A or B), based 

on simulated linkage disequilibrium (LD). 

5.3.4. Data generation structure 

The modelling process was built in subroutine modules using SAS Macro language. 

Each subroutine generated specific information that contributed to the creation of a 

database for a sheep flock under a 20 year selection programme. The model was 

replicated 100 times. A flowchart of the subroutines is shown in Figure  5.3. 
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Starts 19 years iteration

Base population and 
one year old animals 

having IDX

Lambs SNPs 
genotypes 

GBVs

Culling 
maximum age

Birthday

EBVs and IDX 
estimation

M2 ensured that all the live animals became one year older.

M3 generated estimated breeding values (EBVs) for each animal for the 
traits of interest (considering genealogical information). The EBVs were 
used to generate a selection index (IDX) for each animal enabling ranking of 
the animals.

M4 recreated the breeding (reproduction) process for which a random 
mating within flock was done. This routine gives as result pairs of sires and 
dams having as offspring triplets, twins or unique lambs based on the birth 
rank on Table 5.4 using a randomly generating uniform distribution.

M5 generates each lamb SNP genotype, using one strand of its sire and one 
strand of its dam (gametes), allocating (based on a linkage disequilibrium 
structure) each allelic form.

M6 estimates the genomic breeding values (GBVs) of all the animals 
genotyped considering as training population all the lambs with CW 
phenotypic information.

M7 was a subroutine that culled males older than 1 year and females older 
than 5 years old.

M8 simulated the losses from death, in which a percentage of females and 
males based on their age were randomly categorised as dead.

M14 was a subroutine that culled ewes based on: the age structure (Table 
5.3) and their IDX (selection of the ranked animals). The aim was to 
preserve the age structure of the flock considering all the available ewes 
(alive and not culled). If there were more ewes than needed, the animals that 
had lower IDX within age were culled.

Reproduction

Death

Culling offspring 
defects

Culling and 
selection by GBVs

M9 a subroutine which culled lambs (males and females) assuming 
randomly  undesirable phenotypic features (defects).

M10 simulates the selection process of the ram lambs as sires based on their 
GBVs, all the lambs not selected as possible rams were culled.

M11 assigned the year effect, simulating how much the year effect 
contributed on the phenotypic record of the animals.

Year effect

160W, FES, YW, 
Phenotypic records

CW Phenotypic 
records

M12 obtained the phenotypic information of 160W, FES and YW for all live 
animals about to be 1 year old.

M13 generates the CW phenotypic records to all the culled (slaughtered) 
lambs.

Culling and 
selection by IDX

M1 developed a base population using the age structure presented in Table 
5.3 The phenotypic records of 160W, FES and YW, for the living animals 
and CW for the slaughtered lambs in the base generation and one year old 
animals were obtained as the sum of the traits true breeding value, random 
environmental effect, flock effect and a year effect.

 

Figure  5.3. Stochastic simulation subroutine modules (M1-M14) of a 20 years sheep 

breeding programme, selecting the rams using carcass weight (CW) genomic breeding 

values (GBV) and ewes with a total merit index (IDX), built using estimated breeding 

values (EBV) of live weight at 160 days (160W), faecal egg score (FES) and yearling 

weight (YW). 
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5.4. Results 

Figure  5.4 shows the mean of TBV for each trait per year and per replication, and the 

trend lines of average TBVs for all the replications. High genetic variance (2Gσ ) is 

observed for CW, 160W and YW, while for FES the variance is much lower. CW 

shows the highest average genetic trend of all the simulated traits over all the evaluated 

years. CW presents an increasing curvilinear trend, reaching at year 20 a TBV of 10.44 

kg. Regarding the TBVs trends for 160W and YW the shape of the tendency lines 

appear to be more linear showing less gain than CW over the years. Their high values 

at year 20 were 5.66 and 4.33 kg respectively. FES showed least change during the 

analysed time period. The trend line of its TBVs was very close to 0 during the first 8 

years after which it presented a slight increase, reaching the value of 0.27 (eggs/g)1/3 at 

year 20. 
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Figure  5.4. Trends of true breeding values of individual replicates (dotted lines) and 

replicates averages (continuous lines) for (a) live weight at 160 days (160W), yearling 

weight (YW) and carcass weight (CW) and (b) faecal egg score (FES), in a sheep 

breeding flock in a twenty years simulated breeding programme using genomic 

selection. 

 

Figure  5.5 shows accuracies of prediction of the GBVs when using the CW phenotypic 

information provided by the training population updated on a yearly basis. Big 

dispersion of the accuracies can be appreciated during the first years of using genomic 

selection, ranging between 6 and 37% at year 2 and from 37 to 73% at year 6. 

Accuracies over 90% were achieved after 20 years of simulation. 
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Figure  5.6 presents the frequency change of the allelic forms of SNP15 across the 20 

simulated years. The allelic form that was simulated to increase CW (SNP15 positive 

homozygous) shows an increase frequency over time. 

 

 

Figure  5.5. Trends of genomic breeding values accuracies for carcass weight (CW) 

using a yearly updated training population. Individual replicates are shown in grey 

dotted lines and averages of the replicates are shown in the continuous blue line. 
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Figure  5.6. Long term response genotypic frequency averages for a non-recombinant 

anchor SNP (SNP15) for a simulated sheep population under 20 years breeding 

programme using genomic selection for carcass weight. 

Table  5.5 shows frequencies of the 3 genotypes between the first simulated year (year 

0) and the last simulated year (year 20). The positive homozygous (AA) presents a 

higher value, 0.806 at year 20 compared with 0.252 obtained at year 0. The other two 

allelic forms reduced their frequencies over the simulated 20 years. A high chi squared 

value of 26.821 was obtained considering the genotypic frequencies at year 20. 

Table  5.5. Average of genotypic frequencies for positive homozygous (1), 

heterozygous (0) and negative homozygous (-1); and chi squared values (2χ ) for the 

simulated sheep flock at year 0 and year 20 (n = 100 replicates). 

 Year 0 Year 20 

Allelic form 1 0 -1 1 0 -1 

Genotypic frequency 0.252 0.496 0.252 0.806 0.114 0.08 
2χ  0.006 26.821 
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5.5. Discussion 

The aim of this study was to develop a stochastic model that simulated a breeding 

flock with ewes selected using a multitrait BLUP of three different traits, and rams 

selected based on GBV for CW estimated using SNPBLUP. The combined breeding 

scheme was chosen to simulate a scenario in which not all new-born animals were 

genotyped due to the costs that these procedures involve, a fact that a sheep breeder 

will absolutely consider at the moment to decide the implementation of this new 

technique. 

The flexibility of adding or modifying information to nourish the stochastic simulation 

model was a key aspect compared with the deterministic model presented in chapter 4. 

Even though a stochastic simulation is considerably more demanding in terms of the 

required computer memory capacity and computing time as stated by Dekkers (2007). 

Also the results presented by the developed stochastic model (Figures 5.4 and 5.5) had 

a mean and a variance around the mean, not just an average linear trend such as the 

one produced by the deterministic model developed in Chapter 4. 

The genetic trend of individual replicates obtained by the simulation (Figure  5.4) 

showed a large variation of within year records, presenting a wide range of TBV 

results due to the randomness of the simulation procedure. But it is important to 

highlight that besides the differences of the obtained values, all the TBVs follow the 

same tendency along the 20 years of evaluations. 

Figure  5.4 also presented very low (practically 0) average genetic gain for all the traits 

during the first years. This is caused by an adjustment period of the population to the 

selection process, similar to the results obtained in the stochastic simulation of Chapter 

3. 

After the initial years of low TBV variation, a curvilinear trend line demonstrating the 

average true breeding value for CW showed an increasing genetic gain for the trait 

(Figure  5.4-a). This increasing of values was higher on a yearly basis, differing from 

the genetic trends presented by 160W, YW and FES that showed a linear growth with 

proportionally lower genetic gains. This can be explained because for the simulated 

population, two different methods were used to select the breeding animals. Firstly, the 
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males were selected using only genomic selection directly associated with CW, and 

second the females were selected based on an IDX, developed with the selection 

objective of also increasing CW as a correlated trait. The fact that CW had an 

heritability slightly over 0.2 (considered medium) and that the generation intervals 

were reduced (Schaeffer 2006) also helped to achieve the genetic gains of the selected 

traits. 

The effect of using genomic selection having 20% of the genetic variance of CW 

explained by the whole SNP genotype, including one SNP (SNP15) that accounts for 

2% of the same trait genetic variance, achieved, after 20 years of selection, a genetic 

gain five times higher, compared to the use of only IDX (stochastic simulation in 

Chapter 3). Regarding the genetic gains average results after 20 years of selection of 

the other two breeding objective traits, YWT and FES presented values of 4.33 kg and 

0.27 (eggs/g)1/3 using genomic selection, representing 65% and 67% respectively of the 

true breeding values obtained using only IDX. Then it can be said that, in the present 

simulated breeding programme because of the use of genomic selection for CW, the 

genetic gains for FES and YW were limited (Dekkers & Van der Werf 2007), 

accomplishing in a more suitable way the proposed selection objective of increasing 

CW. 

Another point to highlight as part of the results of the simulation is the effect that the 

inclusion of SNP information had on the accuracy of prediction of the GBVs for CW. 

It can be appreciated in Figure  5.5 that average accuracies over 90% were achieved 

after 20 years of simulation. But to obtain these results the training population had to 

be updated in a yearly basis, also considering that as shown in the subroutine 

predicting the GBVs (M6 in Figure  5.3) the estimates for the SNPs effects were 

updated yearly as new animals with phenotypic and genomic information are 

incorporated adding more input data to the training population database. The annual 

replicate accuracies of prediction trends (grey dotted lines) showed a great variability 

between simulated replicates, especially during the first five years using genomic 

selection, but as the evaluated years and the accuracies increased, the variation 

between replicates becomes smaller. 

Figure  5.6 presents the increase of the genotypic frequency of the positive homozygous 

of SNP15 (the one that was simulated to increase CW), reducing the amount of 
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heterozygous and negative homozygous frequencies close to 10% for both of them. 

This result illustrates the reduction of genotypic variation for this marker in the 

population after 20 years of selection. In a similar way this change of genotypic 

frequency after 20 years is reflected in Table  5.5, which showed that the simulated 

population was not in Hardy-Weinberg equilibrium as demonstrated by the 2χ  value 

of  26.821 (3.84 being the limit value for 5% of significance level). This loss of 

equilibrium clearly can be stated to be caused by a selection process (Falconer & 

Mackay 1996), as the simulation did not consider mutation of the simulated SNP 

neither migration. 

Another point to consider regarding this increasing in the frequency of the favourable 

genotype for SNP15 is that the methodology used for genomic selection (SNPBLUP) 

has proven to be effective to achieve the desired objective of increased CW genetic 

values, even taking into account that in the utilised mixed model equation all the 

included random variables (SNPs) were analysed with the same individual SNP 

variance. 

The present study proved that using genomic selection in combination with a multitrait 

selection index is an alternative option to increase genetic gains of traits recorded when 

animals are selected before the phenotype is available (e.g. lambs being slaughtered), 

as stated by Meuwissen and Goddard (1996), and also when early selection can be 

done (Dekkers & Van der Werf 2007; Schaeffer 2006), thereby reducing generation 

intervals. Results obtained in this work, contribute to the statement that genomic 

selection can be commercially useful if, the cost of implementing schemes using 

genomic information are lowered (Amer 2011), or markets gain interest in products 

that could be enhanced using genomic selection (Sumner & Davison 2006) justifying 

the implementation of this technology. Accuracies achieved by the model can reach 

very high levels (over 90%) but only considering that the training population and 

therefore the regression estimates for predicting the GBVs were updated and 

accumulated in a yearly basis. Using the simulation structure developed in the present 

model other situations or scenarios considering genomic selection for a sheep breeding 

programme could be evaluated. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 6  

Accuracy of prediction of genomic breeding values  

for lamb carcass weight using simulation
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6.1. Abstract 

The use of genomic selection in breeding programme expects that the use of DNA 

information will lead to faster genetic gains. For a successful application of genomic 

selection an important point to consider is the accuracy of prediction of the breeding 

values obtained from the genomic information. This study analysed the accuracy of 

prediction for only newborn males either with their genomic breeding values being re-

estimated on a yearly basis or alternatively using regression coefficients from a static 

training population (not updated on a yearly basis). The accuracy of prediction was 

estimated as the correlation between the true breeding values and the genomic 

breeding values (GBV) of a stochastically simulated sheep breeding flock. GBV 

accuracies of prediction were found using regression coefficients of a static training 

population to estimate the lambs genomic breeding values. These were compared with 

the accuracy tendency obtained when SNP random effects solutions were re-estimated 

yearly. The stochastic simulation showed a large accuracy variance within years 

caused by the males of the population being the only genomically selected animals, 

leaving to randomness the genomic contribution of the ewes. To obtain the highest 

possible accuracy of prediction, the most adequate statistical analysis method has to be 

chosen to predict GBVs. This is because the accuracy level of the predicted GBVs 

depends on the amount of variance that the genomic information represents and the 

variance distribution of the analysed SNPs.  

 

6.2. Introduction 

The use of genomic selection enables the design of novel breeding schemes (Pryce et 

al. 2010), and has become a very important field of investigation in recent years 

(Goddard 2012; Hayes & Goddard 2010; Pérez-Rodríguez et al. 2013; Van Eenennaam 

et al. 2014). The decision of implementing genomic selection as part of a breeding 

programme relies on the conviction that the use of DNA information will accomplish a 

faster genetic gain compared to a breeding programme based just on phenotypic 

information (Meuwissen et al. 2001). 

A very important subject to consider for the successful application of genomic 

selection, is the accuracy of prediction (Luan et al. 2009). This should refer to how 
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accurate the estimated genomic breeding values (GBVs) are in predicting the true 

genetic value of an animal (TBVs) (Calus 2010; Cameron 1997). In real life, as the 

TBVs are not known, the accuracy estimation is done by correlating GBVs and 

phenotypic information (Harris et al. 2013; Hayes et al. 2010a; Hayes et al. 2010b; 

Luan et al. 2009; Saatchi et al. 2013), leading to the use of many different evaluation 

models. The purpose behind the development of these different statistical models to 

obtain GBVs, responds to the need to increase the GBVs accuracy of estimation for the 

selection of breeding animals, crops or forages (Pérez-Rodríguez et al. 2013; Wimmer 

et al. 2013). 

Simulation techniques (or data modelling) are a very useful tool that, by imitating the 

internal processes of a system, attempts to predict certain aspects of it (Reingruber & 

Gregory 1994). Based on the previous information, a stochastic simulation model 

representing a sheep breeding flock selecting the breeding rams with genomic selection 

was developed in Chapter 5. This model provided information such as TBVs, 

phenotypic records and GBVs, which were needed to analyse some aspects of the 

long-term genetic response of traits for which the population was selected. 

The objective of this study was to evaluate some aspects regarding how the accuracy 

of selection performs when: 

The estimation of GBVs is done using the SNP random effect solutions obtained from a 

static training population (not updated on a yearly basis). 

The accuracy of prediction is evaluated using only newborn males TBVs and GBVs. 

 

6.3. Materials and methods 

The study analysed a stochastically developed sheep breeding flock under a genomic 

selection breeding programme over 20 years (chapter 5). In order to obtain 

measurements of the variation of responses to selection, the simulation process was 

replicated 100 times. The resulting database (the same database obtained in chapter 5) 

contained genetic (true breeding values), environmental (e.g. year effect, dam age and 

flock effect), genomic (a 100 single nucleotide polymorphism sequence) and 

phenotypic information. The model considered the inclusion of four correlated 

simulated traits: live weight at 160 days (160W), faecal egg score at 160 days (FES), 
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yearling weight (YW) and lamb carcass weight (CW). Phenotypic and genetic 

parameters for these traits were obtained from Bennett et al. (1991), Huisman & 

Brown (2008) and Huisman et al. (2008). Phenotypes (P) for LW160, FEC and YWT 

were modelled as Falconer & Mackay (1996): 

E+G=P  

G represents the genetic value of the trait under study,  

E is the random environmental effects affecting the trait. 

 

Phenotypes for CW was modelled based on Dekkers (2007): 

E+G=P with G simulated as R+Q=G , where, 

Q is the sum of the single nucleotide polymorphism (SNP genotypes) effects on the 

specific trait,  

R is the residual genetic effects independent of the SNP effects. 

In the present study, the estimated Q or Q̂  is referred as genomic breeding values 

(GBVs). 

6.3.1. Estimation of genomic breeding values 

In order to obtain new GBVs, two phase process was undergone to the information 

provided by the same simulated population of chapter 5, therefore, the pedigree 

structure of the population was the same (same parents for the same offspring), even 

though other animals might have better GBVs to be selected as breeders. Phase one 

used a subset of the total population available by year, called the training population, 

consisting of all the animals that at the moment of estimating GBVs had been 

slaughtered (when new lambs are born), therefore having the CW phenotypic 

information recorded and a sequence of 100 SNPs as genomic information associated 

with CW. The second phase used all the animals that had genomic information with or 

without phenotypic records, named as the predicted population. 

The information provided for each animal in the training population by the 100 

simulated SNPs was fitted in a single-trait genomic BLUP (SNPBLUP) as random 
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effects (Meuwissen et al. 2001; Meuwissen 2003), every SNP was assumed to account 

for the same proportion of the total genetic variance of CW. To this, end random effect 

values were estimated using the mixed model equation: 
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where: 

X is a column vector formed only by ones relating each animal with the trait mean 

(fixed effect), 

Z is an incidence matrix, relating each animal with an individual allelic form (-1, 0, 1) 

of the present SNPs (random effects), 

y is a vector of the known CW phenotypic records, 

b is the regression coefficient for fixed effects (BLUE), 

a is the vector of estimate solutions for random effects (SNP), 

I  is an identity matrix of the same order as the Z'Z matrix and 

λ is a value obtained when the residual variance is divided by each individual SNP 

effect variance. 

When the training population was analysed, the estimates of the random effects were 

acquired (one for each allelic form of each SNP). Following, as the second step, the 

obtained random effect estimates were multiplied with an incidence matrix that related 

each animal of the predicted population to their SNP genotype allelic structure. The 

resulting products of each animal SNP sequence were summed within individual to 

obtain their CW GBV (Luan et al. 2009). Therefore, SNP effects were assumed to have 

an additive effect with no dominance or epistatic effects. The mathematical procedure 

previously described allowed estimation of GBV for all animals with SNP information. 

In the present study two different GBVs data sets were evaluated. Firstly, the GBVs 

generated on chapter 5 which were estimated using regression coefficients for random 

effects updated on a yearly base. The second consisted of new GBVs for animals born 

from year 10 until year 20, using for each lamb the same SNP genotypes of the 

previous data set. These GBVs were obtained using the solution values for random 

SNP effects estimated using as the training population every animal with genomic and 
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phenotypic information only until year 9; therefore not updating the information to 

estimate the random SNP effects on a yearly basis. 

6.3.2. Accuracy of GBV 

The accuracy of GBV (rTG) also known as the correlation between the true breeding 

value and the predicted genomic breeding value (Cameron 1997) was estimated as: 

GBVTBV

TBV,GBV
TG

σσ

σ
r =  

Where TBV,GBVσ is the covariance between TBV and GBV, 

TBVσ is the standard deviation of the true breeding values and 

GBVσ is the standard deviation of the estimated genomic breeding values. 

The purpose of using this statistic method was to evaluate how precisely the TBVs of 

the simulated sheep population are predicted by the SNP effects. Considering how 

these GBVs were obtained (as explained in point 6.3.1.) accuracies were estimated 

taking into account these two different GBVs data sets. Consequently two ways of 

evaluating the accuracies were used. The first way considered the estimation of 

accuracies of the GBVs for the training population plus the male lambs without 

phenotypic information, accumulating the amount of animals with GBVs on a yearly 

basis. The second considered the estimation of the accuracies for only the newly 

evaluated male lambs (males without phenotypic information) year by year, not 

considering the information provided by animals born in previous years. 

 

6.4. Results 

Figure 6.1 shows the accuracy of prediction trend of CW GBVs for newborn male 

lambs (red trend line). These GBVs are from the simulated population in Chapter 5 

which were obtained using an accumulated yearly updated training population. An 

initial accuracy value of 0.28 was obtained in year 2, from this point on; the accuracy 

values constantly increased reaching a value of 0.77 at year 10. After year 10 the rate 

of increase in accuracy values declines, reaching an accuracy of to 0.91 at year 20. 

Figure  6.1 also shows the accuracy of CW GBVs for each of the 100 replicates (grey 
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dotted lines) using the solution of the SNP random effects obtained using the 

information of the training population to year 9 (not yearly updated) to estimate the 

GBVs of animals from year 10 onwards, therefore no accuracies were estimated before 

year 10. The figure shows a great dispersion of individual replicate values on year 10, 

having a standard deviation of 0.045 (Table A 6.1), this dispersion gradually reduces 

during the following years, reaching at year 20 a standard deviation value of 0.013 

(Table A 6.1). The blue trend line included in Figure  6.1 represents the average by year 

of all the replicates trend lines presenting values at year 20 of 0.89. 

 

Figure  6.1. Accuracy of lamb carcass weight predicted genomic breeding values, 

estimated using random SNP effects solutions of a yearly accumulated and updated 

training population starting at year 1 (red trend line), and within-year individual 

replicate for genomic breeding values estimated using year's 9 SNP effects solutions 

(grey dotted trend lines) with replicate averages accuracies mean (blue trend line). 

Figure  6.2 shows trend lines of the CW GBVs accuracies of prediction for new-born 

male lambs. Random SNP effects to obtain GBVs were estimated using a yearly 

updated training population. The grey dotted trend lines represent the within-year 

individual replicate accuracy averages for all the newborn lambs. An evident 

dispersion of the accuracies can be seen all along the simulated years, presenting the 
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higher differences of replicate variation between years two and seven, with standard 

deviation values of 0.083 and 0.078 respectively (Table A 6.2), after which those 

differences were slightly diminished reaching a standard deviation value of 0.053 

(Table A 6.2) at year 20. The blue trend line presented in Figure  6.2 represents the year 

averages for the replicate accuracy averages trend lines. It shows low accuracy values 

in the early years (being 0.12 the lowest accuracy value at year two) but steadily 

increased until year nine reaching a value of 0.45; after which the trend line presents a 

plateau state obtaining at year twenty an average accuracy value of 0.42. 

 

Figure  6.2. Individual replicate accuracies of prediction (grey dotted trend lines) and 

mean accuracy value from 100 replicates (blue trend line), for carcass weight genomic 

breeding values of newborn male lambs estimated using random SNP effects obtained 

from a yearly updated training population. 

The information presented in Figure  6.3 shows accuracies of prediction of CW GBVs 

for newborn male lambs. The GBVs utilised for the accuracy estimation were obtained 

using year nine random SNP solution effects, therefore, same as for Figure  6.1, before 

year 10 no accuracies were estimated. Figure  6.3 shows a large dispersion of 

accuracies between individual replicates (grey dotted trend lines) along the evaluated 

years, presenting the lowest difference at year ten with a standard deviation value of 
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0.058 (Table A 6.3), after which an irregular descending trend can be appreciated. The 

average of the replicates (blue trend line) shows the highest mean accuracy value of 

0.45 at year ten with a clear decreasing tendency all through the following years 

reaching the lowest accuracy value (0.35) at year twenty. 

 

Figure  6.3. Individual replicate accuracies of prediction (grey dotted trend lines) and 

mean accuracy value from 100 replicates (blue trend line), for carcass weight genomic 

breeding values of newborn male lambs estimated using only year's 9 random SNP 

effects solutions. 

6.5. Discussion 

Studies evaluating the accuracy of genomic selection in sheep populations were not 

found in the literature; therefore studies involving other agricultural enterprises 

(poultry, crops, dairy and beef cattle) were used in the present discussion. 

As stated by Reingruber & Gregory (1994), the use of simulation techniques allowed 

the prediction of certain aspects of a specific system. In this study, the simulation 

model developed in Chapter 5 representing a sheep breeding flock with breeding rams 

selected using genomic selection, delivered information such as TBVs (not known in 
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real life), GBVs and a sequence of SNP genotypes for each simulated animal. This 

information allowed the estimation of accuracy of prediction of GBVs for CW which 

relied on the correlation between TBVs and GBVs (Calus 2010; Cameron 1997). 

The study showed that when GBVs were estimated using the solution of random SNP 

effects obtained from a static training population, in this case fixed at the ninth year 

(Figure  6.3), a steady decreasing tendency of the accuracies was observed in the 

following years. If these results are compared with the plateau tendency shown from 

year 10 by the average accuracies of prediction presented in Figure  6.2, it can be stated 

that higher accuracies can be achieved when the GBVs are re-estimated using the 

random SNP effects solutions of a yearly updated training population. It is important to 

highlight that the animals and therefore the genomic information utilised to estimate 

carcass weight GBVs were exactly the same for the two comparisons. Therefore the 

only difference between these two studies was the way that random SNP effects 

solutions were utilised. Based on the previous comparison, it may be inferred that, the 

more distant the genetic relationship between the training population and the predicted 

animals, the lower the accuracy of prediction between GBVs and TBVs. This previous 

statement, concurs with Saatchi et al. (2013), who estimated accuracies for Hereford 

beef cattle, comparing four nationally evaluated training populations (U.S., Canada, 

Argentina and Uruguay), using two different Bayesian methods to estimate the GBVs. 

Also Habier et al. (2010) evaluating GBV in German Holstein cattle and Van 

Eenennaam et al. (2014) analysing GBV accuracies of production and quality traits in 

layer chickens arrived at the same conclusion, stating that in order to provide a good 

accuracy of prediction, SNP effects should be re-estimated including the most recent 

phenotypic data from relatives. 

The reduction in the accuracy of prediction of GBVs can have significant 

consequences, especially if the breeding animals are selected only on their genomic 

information (without recording any phenotypic data). The long-term response of 

selecting animals based on GBVs estimated using random SNP effects solutions from 

an old training population, will incur a reduction of the GBVs accuracies. As a result, 

if breeding animals of lesser genetic value are selected, lower genetic gain of the 

population for the trait under selection can be expected. 
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The wide range of the GBVs accuracies of prediction presented by the individual 

simulated replicates (grey trend lines Figures 6.1-6.3), can be explained by two causes. 

The first cause may be due to the fact that for the simulated breeding flock, the 

genomic selection was carried out only through the males of the population without 

considering the females. This approach left to randomness the ewe's contribution of 

genomic information for the flock. The second cause can be linked also with a 

randomness issue, but this time related to crossing over during meiosis which occurs 

during the simulated reproduction process (Andersen & Sekelsky 2010). Considering 

these causes, the randomness effect occurred in the breeding population through 

utilisation of animals with unknown SNP genotypes into the breeding scheme; this 

deficiency could be minimised with the inclusion of the female's genomic information.  

The high levels of GBVs accuracy of prediction shown in Figure  6.1 for all replicates 

is likely to be a result of the recurrent inclusion of animals with more phenotypic and 

genomic information. As the number of years progress, the number of animals in the 

database with both phenotypic and genomic information increases, in contrast to the 

steady number of new animals included having only genomic information; therefore by 

having more information on a yearly basis, higher accumulated accuracy levels are 

obtained. The difference in the GBV accuracy of prediction between the red trend line 

and the blue trend line of Figure  6.1, can be explained in the same way that arises in 

Figure  6.3. The accuracy reduction when GBVs were obtained using only the SNP 

effects solutions of a fixed-year (year 9) training population (blue trend line, less 

information), against the use of yearly updated training population to predict GBVs 

(red trend line, more information). 

When the accuracy levels are measured only on the predicted animals (Figure  6.2), low 

accuracy levels can be appreciated at the beginning of the simulated time period. The 

accuracies in the following years increase as the number of animals in the training 

population also increase. Thus more phenotypic and genomic information is included, 

in order to re-estimate the random SNP effects on a yearly basis to obtain GBVs for 

the desired trait (Goddard 2012). After year nine of simulation, the accuracy levels 

reached a plateau state, showing that even when more information is incorporated on a 

yearly base to estimate GBVs this is very little gain in accuracy. This suggests that, 

without changing the methodology for predicting the GBVs the accuracy level was 
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mediated by the genetic information that nourishes the simulation model. As stated by 

Hayes et al. (2010a) the accuracy of the predicted GBVs depends on the amount of the 

trait's variance that the analysed genomic information is accounting for. This also 

confirms the results of the deterministic simulation generated in Chapter 4, showing 

higher accuracies when more of the total genetic variance is explained by the included 

genomic information. 

The use of different statistical procedures to analyse the genomic information in order 

to predict GBVs will result in different accuracy outcomes. But it is not obvious if the 

resulting accuracy level will be higher or lower. As presented by Habier et al. (2011), 

Wimmer et al. (2013) or Wolc et al. (2011), the most accurate analysis method has to 

be chosen individually for each trait separately. This is because the accuracy of the 

method depends on the variance distribution of the analysed genomic information. For 

example as stated by Hayes et al. (2010b) SNPBLUP could be equally, or even most 

accurate than other analysis methods (eg. Bayesian methods) especially if a large 

number of SNP effects account for a small amount of variance (Hayes et al. 2010a). 

 

6.6. Conclusions 

Based on the analysis of the data obtained from a stochastic simulation model 

developed in Chapter 5, it can be expected that, when the genetic relationship between 

the training population and the predicted animals is more distant, the level of accuracy 

of prediction for the GBVs will be reduced. This suggests that SNP random effect 

solutions required to estimate GBVs should be re-estimated on a yearly basis using 

both, accumulated phenotypic and SNP information.  

The analysis showed a large variation of accuracies of prediction for CW GBVs within 

year. This was caused because the genomic selected animals were only the ram lambs, 

leaving to randomness the contribution of genomic information provided by the ewes. 

In relation to the accuracy level of the predicted GBVs, it can be stated that it depends 

on the amount of variance that the genomic information explains and also, the 

contribution that each analysed SNP makes to the total genetic variance. Therefore the 

most adequate analysis method has to be chosen to predict GBVs with the highest 

possible accuracy of prediction.  
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6.7. Appendix to chapter 6 

Table A 6.1. Within-year standard deviations for 100 replicates carcass weight 

predicted genomic breeding values accuracies, estimated using year's 9 SNP effects 

solutions. 

Year Accuracy of selection 
standard deviation 

10 0.045 
11 0.040 
12 0.035 
13 0.030 
14 0.027 
15 0.023 
16 0.020 
17 0.018 
18 0.016 
19 0.014 
20 0.013 

 

Table A 6.2. Individual replicate accuracies of prediction standard deviations, for 

carcass weight genomic breeding values of newborn male lambs estimated using 

random SNP effects obtained from a yearly updated training population. 

Year Accuracy of selection 
standard deviation 

2 0.083 
3 0.088 
4 0.089 
5 0.065 
6 0.070 
7 0.078 
8 0.063 
9 0.067 
10 0.058 
11 0.062 
12 0.070 
13 0.066 
14 0.062 
15 0.062 
16 0.068 
17 0.064 
18 0.059 
19 0.065 
20 0.072 



Genomic breeding values accuracy of prediction 

 

133 

Table A 6.3. Individual replicate accuracies of prediction standard deviations, for 

carcass weight genomic breeding values of newborn male lambs estimated using only 

year's 9 random SNP effects solutions. 

 

Year Accuracy of selection 
standard deviation 

10 0.058 
11 0.062 
12 0.070 
13 0.066 
14 0.062 
15 0.062 
16 0.068 
17 0.064 
18 0.059 
19 0.065 
20 0.072 
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7.1. Introduction 

Animal breeding is the controlled propagation of domestic animals in order to improve 

desirable traits in future generations and involves the use of knowledge from several 

branches of science, including genetics statistics, reproduction, computer science and 

economics (Garrick & Snell 2005). Molecular genetics is becoming a real alternative 

to be employed in different animal breeding programmes, due to reduction in the cost 

of DNA sequencing and the possibility of imputing marker sequences from a group of 

animals having a complete genomic sequence into related individuals having 

incomplete genomic sequences (Goddard 2012). The inclusion of DNA information 

into selection programmes to improve animal production, rely on the prospect that the 

use of this information for genomic selection will produce a faster genetic gain than 

the one achieved with only phenotypic information (Meuwissen et al. 2001). 

The studies presented in this thesis followed a structured sequence, in which the final 

objective was to develop a stochastic simulation model for sheep breeding which 

included genomic and phenotypic information in order to analyse the genetic responses 

for traits of economic importance in sheep production. The topics considered in this 

thesis were, the development of a deterministic and a stochastic model to simulate a 

sheep breeding scheme with four correlated traits under selection (Chapter 3). The 

development of deterministic multitrait selection index models considering the 

inclusion of genomic information to evaluate accuracy of selection and genetic gains 

(Chapter 4). The development of a stochastic model that simulated a sheep breeding 

flock selecting ewe replacements using a multitrait best linear unbiased predictor 

methodology (BLUP) and the rams with genomic selection (Chapter 5). Finally the 

analysis of prediction accuracies of the genomic breeding values estimated using a 

yearly updated training population or with the information provided by a static training 

population (Chapter 6). 

 

7.2. Effect of including genomic selection in a sheep breeding programme 

The effectiveness of including genomic information into a sheep breeding programme 

is shown in Figure  7.1. The compared genetic responses were obtained from a breeding 

flock selecting all animals based on their individual breeding values estimated with 
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BLUP (Chapter 3) and from another breeding flock selecting ewes using BLUP and 

rams with genomic selection (Chapter 5). 

 

Figure  7.1. Changes in true breeding values for (a) live weight at 160 days (160W), 

yearling weight (YW) and carcass weight (CW) and for (b) faecal egg score (FES), of 

a sheep breeding flock with a breeding programme using genomic selection 

(continuous lines) and a breeding programme without genomic information (dotted 

lines). 

The breeding programme utilising genomic information shows a higher genetic 

response for carcass weight (CW) compared with the genetic gain obtained by a 

traditional breeding programme without the inclusion of genomic information. These 

results suggest that for an objective trait that cannot be measured directly, genomic 
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selection may enable greater rates of genetic gain than a selection based on the use of a 

correlated trait. The degree of benefit will depend on the accuracy of selection and 

reduction in generation interval achieved in the genomic system, relative to the genetic 

correlation between the objective trait and the indicator trait in the traditional selection 

system. 

The use of the proposed genomic selection in a breeding programme also resulted in 

lower rates for yearling weight (YW) and faecal egg score (FES), compared with the 

genetic gains obtained by the simulated breeding programme which did not use 

genomic selection. After 20 years of evaluation, the genomic selection programme 

obtained 2.37 kg and 0.14 (eggs/g) 1/3 lower for YW and FES, respectively. These 

outcomes represent a better way to achieve the breeding objective of reducing the 

maintenance costs of adult ewes by lowering YW and by decreasing health problems 

and costs related to parasite loads by reducing the amount of FES. 

One of the main differences between the two simulated breeding schemes is the age at 

which the rams were utilised as breeders (ewe age structure was the same for both 

simulations). In the breeding scheme that didn't use genomic selection (Chapter 3) the 

rams were used as breeders for two years giving a generation interval of 2.5 years. This 

is compared to the breeding scheme that included genomic selection (Chapter 5), 

whereby rams were utilised only once being one year old when their lambs were born. 

The previous point illustrates that the reduction of the flock's generation interval was 

due to the males of the flock. Considering the genetic responses of the analysed traits 

the simulation model demonstrated that genomic selection is a viable technology to 

successfully select new-born animals as breeders. 

 

7.3. Limitations and considerations of the simulation programmes 

There are several key factors that could lead to the success or failure of any simulation 

programme. The importance of the biological information nourishing the model is 

critical and was discussed earlier. However, some non-biological aspects that restricted 

the number of selection scenarios simulated in the present thesis were features 

regarding the programming language and the software utilised to develop the 

simulation models. The deterministic models of this thesis were developed using 
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Microsoft Excel (2003). The implementation of selection index equations and 

calculations of selection intensities, accounting for the age structure of the ewes and 

rams, required the estimation of asymptotic genetic gains demanding knowledge of 

quantitative genetics and the design of breeding programmes. Once the deterministic 

model was implemented, a number of scenarios could be simulated and computer time 

was not a limiting factor.  

Using selection index theory, the variance of the selection index or the variance of the 

breeding objective can be estimated. Also, as shown by Falconer & Mackay (1996) 

and Cameron (1997), the individual genetic gain for each trait included in the analysis 

(correlated response) can be estimated. However, the author of this thesis did not found 

a formula to calculate the variance of individual traits genetic responses using selection 

index theory. 

The stochastic simulation models were developed using SAS 9.3 (2011), that provided 

statistical, data management and programming capabilities, allowing the construction 

of recursive and random routines (as presented in Chapters 3 and 5). 

Stochastic models provide many advantages over deterministic models. Changes in 

genetic gain can be determined at any time point compared to the asymptotic genetic 

gains which only presents a linear trend. In addition, and compared with deterministic 

models; in stochastic models besides estimating the variances of genetic gains for the 

index and breeding objective, the genetic response variances for individual traits can 

be estimated. An estimation of the variance of genetic response enables the 

determination of economic risk which is very important for those making investment 

decisions and whose livelihood depend on the productivity and profitability of the 

livestock enterprise (Conington et al. 2004; Dekkers & Shook 1990). 

However, some limitations have to be considered when developing stochastic models 

including genomic selection: 

Becoming competent in the computer language can became a very time demanding 

process (especially if there is no previous programming knowledge). 

Simulations produce very large datasets, therefore a large amount of computer memory 

is required for running the simulation processes. In the present thesis, a 2.3 GHz quad-

core computer with 8-gigabyte of RAM memory was used. The developed genomic 
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selection stochastic simulation, produced a 2-gigabyte database and took on average 20 

hours of actual computing time for the entire simulation model using macros of SAS 9.3 

(2011).   

 

7.4. Possible new applications of the model 

The use of sub modules (macros) to structure the developed stochastic simulation 

programme proved to be a very versatile tool. This technique of modelling, by adding 

or modifying small segments of the computational routine, allowed the implementation 

of several models in order to study or analyse the performance of a simulated breeding 

programme under different scenarios or any other question regarding genomic 

information such as the: 

• Economic impact of the breeding programme 

• Accuracies of different statistical methods to estimate GBVs 

• Number of SNPs or animals needed to maximise genetic gain, 

• Analysis of other breeds and traits 

7.4.1. Economical analysis of breeding programmes 

Economic analysis is an important step in considering in the efficacy of breeding 

programmes (Harris et al. 1984; Lopez-Villalobos & Garrick 2005). An economic 

analysis can help to understand the reasons for success/failures of animal breeding 

programmes. This improved understanding should allow the development of better 

techniques to enhance livestock genetics (Amer 2011). 

The use of bioeconomic farm models is a useful methodology to assess the economic 

effects of modifying biological characteristics or production related traits (Van 

Arendonk 1991), and also to create economically rational breeding programmes 

(Thomasen et al. 2014; Wolfová et al. 2009). The present thesis developeded a 

genomic selection approach to include in a breeding programme, and evaluated the 

long-term genetic response to selection of different traits in a sheep breeding flock. 

However, an economic analysis is required to evaluate the financial effect of CW, YW 

and FES genetic changes on farm profitability. 
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Few studies were found by the author that analysed the economic impact of genomic 

selection where traits were constrained using an antagonistic genetic correlation 

(Pickering et al. 2013). The genomic selection model developed here could be 

incorporated with complex simulation models such as whole farm models. Examples 

are those developed by Baudracco et al. (2013) for dairy grazing systems and by 

Pickering et al. (2013) for a dual-purpose sheep population, to appraise how the change 

of genetic values for the selected traits will affect economic aspects of the sheep 

industry like costs of production (by including genotyping and evaluation costs) and 

income of the production system. 

7.4.2. Accuracies of different statistical methods to estimate 

It was discussed (Chapters 2 and 6) that different statistical methods can be used to 

estimate GBVs, for example SNPBLUP utilised in Chapter 5 or BayesB and BayesC 

methods utilised by Saatchi et al. (2013). Each of these procedures for estimating 

GBVs, deliver different accuracies of prediction depending on the contribution in the 

genetic variance of each SNP effect included (Habier et al. 2011; Hayes et al. 2010a). 

The stochastic genomic selection model developed in this thesis utilised SNPBLUP to 

estimate GBVs, this was achieved by statistically fitting the information provided by 

the SNPs as random effects (Meuwissen et al. 2001). Nevertheless, the model has the 

power to utilise any other statistical procedure that predicts GBVs. Future research 

using other methods; exploring the genetic responses or the accuracy impact of 

predicting GBVs for a sheep breeding flock could be developed. In addition, studies 

comparing the outcomes of several different statistical estimation techniques could be 

analysed. These experiments could be implemented by either modifying the existing 

module or developing a new module, to perform the genomic breeding value 

estimation (M6 in Figure 5.3) and incorporating it as a new subroutine of the genomic 

selection stochastic model. 

7.4.3. Number of SNPs or animals needed to maximise genetic gain 

As found by Calus (2010), the accuracy of the genomic estimations depends on the 

number of individuals from the reference population, number of analysed markers and 

the proportion of genetic variance affecting the trait. The stochastic simulation model 



General discussion 

 

143 

developed in this thesis could be used in future studies to predict the number of 

individuals needed to accurately detect certain number of SNPs or to evaluate the 

number of SNPs required for a determined number of animals to achieve a certain 

accuracy level for any desired trait of a sheep breeding flock. 

To evaluate the number of individuals needed to achieve a certain accuracy level using 

a specific statistical procedure to estimate GBVs, the heritability of the trait for which 

the GBVs are being estimated must be known. In addition, it is necessary to assume a 

fixed number of SNP, which are controlling a known percentage of the total genetic 

variance of that trait. Once the previous information is determined, the simulation 

model could be modified to deliver the answer of the desired accuracy. This 

modification is just for the first subroutine M1 in Figure 5.3. Then the model should be 

adjusted to use the desired statistical methodology to estimate GBVs considering a 

fixed number of animals. Once the routine runs, accuracies of prediction will be 

estimated as the correlation between the true breeding values and GBVS (Calus 2010; 

Cameron 1997) of the simulated animals (which is the same methodology as utilised in 

Chapters 5 and 6). The previous routine (population generation, GBV estimation and 

accuracy prediction) has to be run for a number of iterations, possibly one hundred 

times as was performed in the present thesis, to obtain an average and the deviation 

values of the accuracies of prediction for that number of evaluated animals. After this 

process has finished the routine has to be rerun simulating a population with 

additionally evaluated animals to assess the change in the accuracies of prediction 

when more individuals are incorporated. 

The model could also be used to identify how many SNPs are required to achieve a 

desired level of predicted accuracy with a specific number of animals in a sheep 

breeding flock. This simulation model would be very similar to the one proposed 

previously for evaluating the number of individuals needed to obtain a certain level of 

accuracy. The major difference is that the number of SNPs will be variable, increasing 

in every replicate run, instead of changing the number of animals. This model has to 

consider the contribution of each SNP to the total genetic variance, because as stated in 

7.3.2, the achieved accuracy depends on the statistical procedure chosen to estimate the 

GBVs. 
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7.4.4. Analysis of other breeds and other traits 

In this thesis, the stochastic simulation model was implemented to simulate a single 

breed sheep breeding flock. Therefore, to nourish the simulation model all the input 

information (physiological aspects, traits parameters and management decisions) was 

carefully chosen to represent a long-term response of this unique animal population. 

The phenotypic and genetic mean values and variances of the traits included in the 

stochastic model could be modified to account for other traits to be analysed. The 

simulation model could also be extended to include more traits to be analysed, either in 

the selection index or in the breeding objective. These modifications, combined with 

changes in physiological and management, could be made to represent other sheep 

breeds or production system. For example, this modification could be used to 

simultaneously evaluate the genetic responses of multiple sheep breeds breeding 

programmes. It could also enable, as presented by Hayes et al. (2009a) in dairy cattle, 

Saatchi & Garrick (2013) for beef cattle or Moghaddar et al. (2013) for sheep, the 

comparison of predicting GBVs accuracies using genomic information from multiple 

breeds. 

 

7.5. Conclusions 

The main conclusions of this thesis can be summarised under three topics, 

• Simulation techniques applied to genetic evaluations. 

• Genomic selection analysis 

• Accuracies of estimating genomic breeding values 

7.5.1. Simulation techniques for genetic evaluation. 

All studies in this thesis demonstrated that the use of simulation techniques is a very 

useful tool that enabled a prospective view for a production system. Regardless of the 

type of simulation utilised (deterministic or stochastic), models can be used to assess 

the long-term responses to selection of a breeding population. It was shown that, 

compared with a deterministic simulation, a stochastic model allows the variance of 

genetic gain to be estimated for the selection index, breeding objective and individual 

traits. On the other hand, once a deterministic model was fully developed, it allowed a 



General discussion 

 

145 

faster review of various scenarios (including genomic selection), because it was less 

demanding regarding computer processing time. 

7.5.2. Analysis of genomic selection 

The use of genomic information in a breeding programme can increase the rate of 

genetic gain for traits that are difficult to measure, e.g., carcass weight in this study. 

The power of genomic selection relies on the possibility of selecting breeding animals 

at younger stages of life, achieving higher genetic gains due to a reduction of the 

generation interval of the breeding population. 

7.5.3. Genomic breeding values accuracies 

Considering the methods of estimating genomic breeding values, accuracies of 

genomic selection are lower than the accuracies obtained with progeny testing. The 

accuracies of genomic breeding values depend on the amount of information used to 

estimate them and the contribution to the total genetic variance of each included SNP. 

Therefore the most adequate analysis method must be chosen to predict GBVs with the 

highest possible accuracy of prediction. An important point shown in this thesis is that, 

accuracies of GBVs were reduced as the genetic distance between the training 

population and the population where GBVs are estimated increased. Therefore, it is 

recommended to re-estimate SNPs effects on a yearly basis.  
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Since the mathematical work of this thesis was originally completed (at the end of 

2011), several advances in the field of study have arisen. For example, parameters of 

the simulated traits were gathered from different publication sources rather than New 

Zealand parameter estimates (e.g. Pickering et al. (2012) or Pickering et al.(2013)). 

Other advances that occurred while, or after the present thesis was being developed are 

some topic discussed in Chapter 2 like, the estimation of GBVs using a genomic 

relationship matrix in GBLUP or utilizing some of the machine learning 

methodologies described. 

Another point that might be worthy to mention is that, in the genomic simulation 

developed in this thesis the inheritance of the SNP genotypes or linked locations, was 

set up assuming an anchor SNP (with it's alleles having an equal possibility to be 

sampled), and the rest of the alleles at other SNPs of the SNP genotype, were sampled 

assuming a linkage disequilibrium model, rather than using genetic distances and 

making inheritance dependent on the result for the adjacent marker. 

Considering all this statement, the author of this thesis acknowledge that the results of 

this study might have delivered different results, like different accuracies of prediction 

for the estimated genomic breeding values for the simulated population (possibly 

higher). Other result that might have a different outcome due to a difference in the 

simulation procedure utilised, might be the genetic trend of CW for the genomic 

selection chapter (Figures 5.4-a and 7.1). Assumptions of a genetic relationship 

between the SNP panel utilized and all the traits in the breeding objective (and not only 

CW), might have restricted the genetic response of the traits under selection showing a 

more believable genetic gain for CW (compared with the extreme curvilinear genetic 

gain shown). 
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