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ABSTRACT

The main objective of this thesis was to analyseiticlusion of genomic information
of production traits into a multitrait sheep brewgdprogramme evaluated for 20 years
using deterministic and stochastic simulation medéhe breeding objective was to
reduce faecal egg score (FES), decrease yearlighive'W) and increase 160 days
lamb carcass weight (CW). The selection criterialuded 160 days live weight
(instead of CW) plus YW and FES. The first studyeleped a stochastic model
selecting animals based on their individual bregdialues estimated using best linear
unbiased predictor (BLUP) procedure with a multiteanimal model. The model was
validated using a deterministic multitrait selentiodex; obtaining similar prediction
responses for breeding objective and selectiorer@ittraits. The second study
deterministically evaluated the inclusion of genonmformation explaining different
proportions of CW and YW genetic variances intcekeaion index. Under the same
selection scheme a selection index having only genanformation obtained lower
accuracies and genetic gains compared to a seleictdex considering phenotypic
information. If shorter generation intervals areplemented, a selection index
including phenotypic and genomic information expiag low proportions of the trait's
genetic variance could achieve higher genetic asmh@mic gains. The third study
evaluated genetic responses of a stochasticallyeheadbreeding flock selecting ewes
based on BLUP estimated breeding values and ssjecims based on genomic
breeding values (GBV) for CW. The fourth study exaéd accuracy of prediction of
CW GBYV using the same simulated model. Carcasshw&@Vs were calculated in a
validation population using single nucleotide potyphism (SNP) effects from a
training population. The further apart the genedtationship between these two
populations, lower the GBV accuracy. Resultant emdes depended on the
proportion of total genetic variance explained nhgmic information and also the
variance accounted by each SNP, therefore an appi®@®GBYV estimating method has
to be chosen to achieve accuracies as high asbpmsStochastic models proved to be
more versatile for managing data, also showingatian of the genetic responses. In
contrast, deterministic models were faster reggradimmputer processing times. The
study proved that a breeding programme combiningy Gid BLUP estimated
breeding values can increase genetic responseslduting animals at early stages of
life.
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CHAPTER 1

General introduction






General introduction 3

New Zealand is recognised worldwide for livestoc&duction, specifically dairy, beef
and sheep production. New Zealand sheep industongly relies in lamb meat
exports (Beef + Lamb New Zealand 2013); therefétme amount of lamb carcass
weight produced is a trait that is very desirablédé¢ improved as is directly related to
the farms income. As carcass weight is a trait tteat not be measured in living
animals, a positive correlated trait like live watigit 160 days can be used, in order to
select animals as breeders improving carcass wéigmnett et al. 1991). Other traits
of economic importance are, faecal egg score eklatehe animal's parasite load and
adult weight associated with maintenance costssfiHan et al. 2008). These traits
affect negatively farm profit by increasing farmst®) therefore it is desired to
minimise or reduce the genetic gain of these traitsrder to improve the profit of the
farms (Amer 2000).

Well designed breeding programmes achieve a brgedoal by identifying and
choosing for breeding, the most suitable animalgte production system (Harris et
al. 1984). Genetic improvement programmes can biggaed by the implementation of
a proper selection index that maximises the gemggtio of the traits included in the
breeding objective, which are traits identifiedtasgets, and have an impact on the
production system (Blair & Garrick 2007). It can $&d that New Zealand has been
successful in the implementation of breeding prognes, as an example, average
lamb carcass weight has increased from 16.9 k@@® 20 18.2 kg on average in 2010
(Beef + Lamb New Zealand 2012b).

Classical genetic improvement programmes rely oanttative genetics to select
individuals as breeders using phenotypic records fthe selection candidates and/or
their relatives (Ruane & Sonnino 2007). Genetidwations have been very important
in New Zealand, helping to improve livestock praie (Crawford 2003). These

evaluations are statistical techniques that geegpatdictions of an animal genetic
merit, allowing the ranking of animals in a breegipopulation for replacement.

Initially, genetic evaluations were conducted usbest linear predictor procedures,
but when computers with enough processing capaedye available, best linear
unbiased prediction (BLUP) procedures were comrabbycimplemented (Blair &

Garrick 2007). BLUP procedures use phenotypic x@and genealogical data to

generate a numerical representation of an animaétge merit named estimated



4 CHAPTER 1

breeding values, and with these values it is p&sstonstruct an animal genetic
ranking (Henderson 1975).

The development of technologies that enables thapuktion of genetic material at
DNA level, have allowed the discovery of the molecsource of variation for animal
production and diseases traits (Crawford 2003).Wssen et al. (2001) presented the
methodology for genomic selection, using informatisfom thousands of single
nucleotide polymorphism genotypes allowing the neation of a trait's genomic
breeding value, for animals that may not have ptygorecords of their own or from
their relatives. The expectation of incorporatingngmic information into animal
production selection programmes is that, the us®MA information will help to
improve the rate of genetic gain compared with pgognes using just phenotypic

information (Meuwissen et al. 2001).

In sheep production, studies have been developggesting that the use of genomic
selection in breeding programmes will be benefid@lthe genetic gains of the
evaluated production system. The researches inraduations of genetic gains in
selection indices for dual purpose animals, mestt¢aminal sires) or wool related
traits (Pickering et al. 2013; Swan & Brown 2013arVvVder Werf 2009), and
assessment of accuracy of genomic breeding vatuggdduction traits (Sise & Amer
2009; Slack-Smith et al. 2010). The conclusionheise studies showed that the use of
genomic selection can produce higher genetic gaimsaits of economic importance,

but none of them included genomic information ia #ame way.

None of the reviewed studies have shown the lorg tariation markers when using
genomic selection in a breeding programme, nor laacaracies been evaluated based

on the true breeding value of the genotyped trait.

The objective of this thesis was to analyse how, ltng-term genetic responses of
economic important production traits are affect@dlen genomic information of one
of those traits is included into a multitrait shdaeeding programme evaluated over
20 years. Subsequently, analyse the long-term lalmaef genomic breeding values
accuracies using the true breeding values of thetgped trait, with genomic breeding
values estimated under two different methodolodi@sally, a comparison of breeding
programmes that include genomic information andedireg programmes based only
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on phenotypic records was required, to allow reatiemake an informed conclusion

on the differences between them.

To achieve the objectives of this thesis, deterstimand stochastic simulation models
were developed. Simulated models were created withreeding objective that

decreases faecal egg score (to improve parasitdamse), decrease yearling weight
(to reduce maintenance costs) and to increasessameaight of the lambs (increase

production income).






CHAPTER 2

A review of genomic selection for production traits
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2.1. Introduction

2.1.1. Current selection

Animal breeding is a technology involving applicatiof the knowledge of genetics
and other disciplines (e.g. economics, farm managémand reproduction) to improve
animals (Garrick & Snell 2005). Differences betwasdlividuals are the raw materials
on which breeders work; it is known that the vaomtbetween individuals is due to
differences in their genotypes and their environt@egxperiences. A third component
of the difference comes from joint effects betwegemotype and environment which
cannot yet fairly be attributed to one or the otleernon-additive combination effects
(Lush 1943). Quantitative genetics is concernedhwtte inheritance of those
differences between individuals that are by degatieer than of kind, in other words
quantitative rather than qualitative differenceal¢bner & Mackay 1996). To decide
which animals are the best ones to produce the gexération, the breeder has to
choose which animals have the best combinatioew#rsl traits to achieve the highest

genetic improvement (in some cases stated as d¢egling objective).

In 1942, Hazel and Lush stated that multi-traiesgbn using a selection index is more
effective than other methods ways of selection,abse it achieves the maximum
genetic improvement per unit of time and effort exged (Hazel & Lush 1942). The
aggregate value of an animal is the addition ofvisious genotypes (assuming
different but overlapping genotypes for each ecdnotrait), and each genotype
should be incorporated into the index accordingheorelative economic influence of
that trait (Hazel 1943). Having this in mind, thet genetic improvement obtained by
selecting a group of animals is the accumulatiothefgenetic gains made for all the

traits which have economic importance.

Animal industries around the world require the tifezation of animals of high

genetic merit for traits of economic relevance. Bbineeding objective consists of two
components, estimates of genetic merit for thetstréd be improved and their
economic values. An estimate of the genetic meniequired for each trait included in
the breeding objective. This estimated genetic tmertypically called the breeding
value, estimated breeding value or expected progefigrence (Blair & Garrick

2007). Selection for economically important quaatiite traits in animals and plants is
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traditionally based on phenotypic records of anividdial and/or its relatives
(Meuwissen et al. 2001). To enable the estimatfageaetic merit, it is assumed that a
large number of genes, each with small individuéats (the infinitesimal model)
contribute to the expression of the phenotype andhkir interaction the additive
effects can be elucidated. The prediction or egtonaof breeding values for animals
using phenotypic and genealogical information isvatays commonly calculated by
best linear unbiased prediction (BLUP) (Garrick 88 2005; Meuwissen et al. 2001,
Montaldo & Meza-Herrera 1998).

2.1.2. Opportunities for selection schemes

Selection schemes are based in the principle amgphg the annual genetic gain,
which according to the equation presented by Reanél/Robertson in 1950 (Garrick
& Snell 2005; Lopez-Villalobos & Garrick 2005; Meissen 2003) shows 4 elements
that can be controlled to change the rate of gewgetin,

Ry

AG, :[ LT jxag

where:

AGry is the annual genetic gain of the objective.

I is the intensity of selection.

rq is the correlation between the true breeding vallgY) and the estimated breeding
value also known as accuracy of selection.

L is the length of the generation interval for teéested population.

gq IS the genetic standard deviation of aggregateotgpe of all the animals in the

population.

Therefore any new technology or system that enahkeptimisation of the genetic
gain by changing any component of this equatioth lvélof high commercial interest,
but as stated by Ruane & Sonnino (2007) it neetie tassessed if implementing these
new technologies into breeding programmes are eftsttive. Molecular or DNA
technologies, could offer the possibility to inctudneasurements with reliable
accuracy of evaluation at younger ages comparell thé current selection schemes

(Garrick & Snell 2005). This evaluation at a youngme could be as early as
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embryonic stages (Georges & Massey 1991) or evell & done at a sexual cellular
level (Haley & Visscher 1998). Improved geneticrgaiould also be possible when
the traits under a conventional selection prograrhenge low accuracy, such as traits
with low heritability or traits with few recordingdeuwissen 2003); when traits are
not available at the time of selection (carcasgshrar when traits are sex-limited
(Haley & Visscher 1998; Meuwissen 2003).

2.1.3. Molecular genetic markers

A simple definition of genetic markers can be, dsevvable genetically-controlled
variation that follows a Mendelian pattern of inkeance (Williams 2005). Molecular
techniques allow for the detection of these vaorai or polymorphisms existing
among individuals in a population for certain DNAgions (Montaldo & Meza-
Herrera 1998). Genetic markers can take a numbdorais depending on which
molecular technique is used to detect and produe®.thence the choice of using any
of them depends on the goal of study and the uéitiabf the information needed
(Vignal et al. 2002).

Vignal et al. (2002) presented the following exaesplf molecular markers that

according to the authors are the main ones:

» Restriction fragment length polymorphisms (RFLP)

* Polymerase chain reaction - Restriction fragmengtle polymorphisms (PCR-
RFLP)

* Randomly amplified polymorphic DNA (RAPD)

* Amplification fragment length polymorphisms (AFLP)

e Single stranded conformation polymorphism (SSCP)

* Microsatellite

* Single nucleotide polymorphism (SNP).

The differences between them involve basicallytyipe of information that they can
provide, and the requirements and characteristih®ftechniques used for obtaining

each marker.
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2.1.3.1. RFLP

Restriction fragment length polymorphism (RFLP) epasidered to be the first DNA-
based molecular markers (Edwards & McCouch 200FLH® can be described as
species-specific sequences of genomic variationecti®l as differences in DNA
fragment lengths after a process called Southethlybridisation. This is achieved by
treating whole genomic DNA material is treated wathestriction enzyme followed by
separation by gel electrophoresis (Mueller & Wolferger 1999; Southern 1975;
Zehner et al. 1998). The polymorphisms identifiethwiRFLPs can be due to single
base changes generating loss or gain of restrisiteis, or may be from insertion or
deletion between restriction sites, RFLPs are Kidgtdtus-specific molecular markers
(Edwards & McCouch 2007; Mueller & Wolfenbarger 299

2.1.3.2. PCR-RFLP

Isolation of enough DNA material for RFLPs and atsalysis using Southern blot
methodology is considered technically demanding aaldo time consuming
(Beckmann 1988). For this reason another methoatwbombines the Polymerase

chain reaction (PCR) and RFLP was implemented.

The PCR technique was first proposed by Mullisletl®86). One PCR reaction cycle
can be described as a three-step process: dematyainealing and extension. A PCR
cycle duplicates a target DNA sequence by using fl@oking primers (short
synthetically generated nucleotides sequences),bind to each of the target DNA
strands in opposite directions, serving as a gigyoint for the synthesis of the DNA.
By the successive repetition of a cycle the soedalthain reaction” amplification is
accomplished, obtaining in very short timé mes the amount of the target DNA
sequence, with N being the number of the perforpyetes (Huang 2014; Mueller &
Wolfenbarger 1999; Mullis et al. 1986).

In PCR-RFLP, the PCR process is used to rapidlyligmpnly the DNA regions
flanked by the two primers in the annealing stagter which the PCR products are
submitted to RFLP analysis to identify polymorphssiitherefore, a larger quantity of
genomic samples can be evaluated in a shorter (itdevards & McCouch 2007,
Gonzélez Andrade 2010; Higuchi et al. 1999; Zelated. 1998).



Literature review 13

2.1.3.3. RAPD

Random amplified polymorphic DNA (RAPD) was firsestribed in 1990 by
Williams et al. (1990) and Welsh & McClelland (1990his procedure utilises low
stringency PCR amplification with a random DNA seqce as a single primer that
generates an array of unknown DNA fragments thapecific for each DNA strain,
and are used to generate a genetic profile (Wardl. et993; Welsh & McClelland
1990; Williams et al. 1990). One issue is the logteptial of exactly reproducing
RAPD because the methodology depends highly ofP@ie conditions (Vignal et al.
2002). This methodology generates dominant matiieeller & Wolfenbarger 1999;
Vignal et al. 2002; Williams et al. 1990), but hdogous alleles can sometimes be
identified with the help of pedigrees (Mueller & Wiémbarger 1999).

2.1.3.4. AFLP

This technique was proposed by Vos et al. (199%ksell on a selective PCR
amplification of restriction fragments from a totdigest of genomic DNA. They

structured the methodology as a three step proeedur

1. Restriction of the DNA and ligation of oligonucledd adapters.
2. Selective amplification of sets of restriction fnagnts.
3. Gel analysis of the amplified fragments.

AFLPs are easy to use in the laboratory and cordpari¢gh RAPDs have better
reproducibility. But on the other hand, the processnore technically demanding
because AFLP patterns are more complex as muligieare screened at the same
time (Edwards & McCouch 2007; Mueller & Wolfenbard®99; Zhang et al. 2014).
The main drawback of this method is the difficultydetecting homologous markers,
because it primarily generates dominant rather ttedominant markers (Mueller &
Wolfenbarger 1999; Vignal et al. 2002).

This methodology is still largely used for genotygpi phylogenetic analysis or the
identification of species which feature large coexpjenomes, therefore new tools are

designed for scoring, studying or managing ALFRadahang et al. 2014).
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2.1.3.5. SSCP

The single-strand conformational polymorphism (Sp@fethod is a genotyping
technology which was first proposed by Orita et(dB89a). The authors developed
this methodology as a fast, simple, powerful anasgize tool for detecting specific
DNA sequence changes, even on a single-base $adtagka et al. 1994, Orita et al.
1989b). This methodology allows segments of DNA thave been amplified with
specific primers and PCR to be quickly examined, &nidentify in a single strand of
DNA any sequence variation (Humphries et al. 19880 et al. 1996). This is done
without the involvement of restriction enzyme dig@s, blotting, or hybridization to
probes (Orita et al. 1989b).

SSCP patterns can be significantly affected fomela by the temperature used for
the electrophoresis process, the glycerol concgoisain gel, the buffer concentration
and conductivity. Also, the optimal conditions figtection of the polymorphisms are
affected by the length of the analysed nucleotisksguences (Fukuoka et al. 1994;
Humphries et al. 1997).

2.1.3.6. Microsatellite

Microsatellites, also known as simple sequence tkenqmplymorphisms (SSLP) or
simple sequence repeats (SSR), consist of sholeatide sequences (di-, tri- or tetra-
nucleotide patterns) repeated in tandem severasti(Edwards & McCouch 2007;
Mueller & Wolfenbarger 1999). One advantage is thase markers are co-dominant;
therefore the heterozygous form can be differezdidtom the homozygous form.
Another benefit is that the results are highly oelicible and are abundant in
eukaryotic genomes (Edwards & McCouch 2007).

A drawback of this method is the need of develompgcies-specific primers, which
requires a considerable degree of molecular sfallg. cloning and sequencing) and
also patience and time as the procedure may takerademonths (Mueller &
Wolfenbarger 1999). It is very unusual that priméeseloped for one species could be
used further than just the closest relatives. Tibhese for every new species analysed
new microsatellite primers need to be developedv@Eds & McCouch 2007; Mueller
& Wolfenbarger 1999).
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2.1.3.7. SNP

SNP is the acronym for single nucleotide polymosphi(Montaldo & Meza-Herrera
1998; Vignal et al. 2002). These are stable pointations that constitute the most
common type of genetic variation (Gilles et al. 99%nd they are characterised by the
variation of a nucleotide at a single base. Becaofsdheir widespread nature
throughout the genome, they are considered as tmtgrvaluable genetic markers
(Garrick & Snell 2005; Gilles et al. 1999). Theme at most four alleles, for the four
bases, A, T, C and G, at any one position in thege but most often there are only
two alleles (Garrick & Snell 2005; Vignal et al. @). Most commonly, only two
alleles occur, firstly, because the probability wfo independent base changes
occurring at a single position is very low (Vigredlal. 2002). Secondly because of a
bias towards transition mutations (purine-purine—<@&) or pyrimidine-pyrimidine
(C—T)) over transversion mutations (purine-pyrimidimepyrimidine-purine (A->C,
AT, GoC, GoT)), leading to a prevalence of two SNP types. Tadlelic nature
makes individual SNPs intrinsically less informatithan other markers which show
more variation, but a large number of SNPs compen&a their low variability
(Haley & Visscher 1998). This is due to how the SN&e organised in the
chromosome, SNPs that are near each other teral itthbrited together so regions of
close related markers can be identified. Thesensgof linked variants are known as

haplotypes (The International HapMap Consortium&00

SNPs, of all the molecular markers are consideoeblet the best choice (Edwards &
McCouch 2007).SNPs provide the most marker denis@tye a very low mutation rate
and allow to make inferences across independemtsetst (Nielsen 2000). Also, in
some situations SNPs are the only way for findiragkars very close or within a gene
of significant importance, or can provide the meaosdetect functional genetic
elements (Edwards & McCouch 2007; Meuwissen et28l13). In addition this
technology is becoming more cost-effective for maisthe major livestock species.
Using SNP-chip genotyping technologies panels pf@pmately 50,000 or even over
700,000 genome-wide SNPs are available (Pérez-Ragiriet al. 2013; VanRaden et
al. 2011).
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2.2. Selection schemes using genomic information

It has been stated that most traits of economgrest behave as if there were many
loci influencing their expression and therefordrtihariation. This assumption leads to
the idea of polygenic inheritance and the infinited model (Garrick & Snell 2005;
Hayes & Goddard 2001). In reality, a small numbkegenes seem to affect a large
proportion of the variation in phenotypic charaistiezs; accompanied by a large
number of genes each having small effects (Ga&i&nell 2005; Georges & Massey
1991; Hayes & Goddard 2001). The inclusion of geicoimformation into selection
programmes to improve animal production rely ondkpectation that information at
the DNA level will lead to faster genetic gain thdore one achieved based only on
phenotypic information (Meuwissen et al. 2001). fEfiere accurate appraisal about
the implications of introducing genomic data int@r@eding scheme concerning the
impact that this inclusion will have in the phermity response, is needed before
developing an accurate breeding programme.

Lande & Thompson (1990) presented a determinigtzilation model that included
molecular genetic information using selection indteory. This was further
developed by Dekkers (2007) where he presentedtiegeato include marker
information as a correlated trait (with heritalyiliéqual to 1). Several assumptions
were made to develop the model, highlighting thétirariate normality of the marker
information, which the author states that it carcbesidered "approximately valid" if
markers breeding values are based on a large nuofberarkers allowing to be
represented as a polygenic trait. Another consimeras that selection index theory
does not account for changes in the genetic vagialie to changes in gene (allele)
frequencies (Bulmer effect). This issue was solusihg a selection index software
package that adjusts for the Bulmer effect. BasedDekker's (2007) publication,
Janssen-Tapken et gR010) compared different selection strategies ifoproved
productivity and marker assisted selection (MAS) dsease traits; Togashi & Lin
(2010) analysed different selection methods foregierimprovement of net merit for
two traits with the inclusion of marker informatioRryce et al. (2010) presented a
deterministic model using the four pathways of @@ of Rendel & Robertson
(1950) while also accounting for the rate of inloieg per generation. In sheep

production Sise & Amer (2009) presented a detestimiapproach using selection
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index theory to predict the response to genomiecsiein in dual purpose sheep flocks.
Besides the methodology used the results of thieskes suggest that a large amount
of information is required to a estimate genomiegoling values (GBV). Better genetic
gains may be obtained because genomic informatiptaies a larger amount of the

phenotypic variance, and/or a reduction of the ggran interval.

Even though deterministic models have the advantdgeeing less demanding in
computing time than stochastic models, most ofwioek evaluating the impact of
information on individual genes or markers has betne using stochastic
simulations. This is because deterministic preolictof the selection response by
selection index theory needs multivariate normaiitiiich does not occur when only a
limited number genes are used in the selectionlaiion, and also because selection

index predictions ignore Bulmer effects (Dekker®20

Stochastic simulation models using BLUP with thelusion of genetic markers have
been compared with conventional BLUP to assessfthetiveness of MAS (Fernando
& Grossman 1989; Zhang & Smith 1992), even thougias never commercially
applied. The great change in the perception of Mv&S when Meuwissen et al. (2001)
published their work in which they presented thehméology for genomic selection, a
term that was first introduced by Haley and Vissoti®98) (Meuwissen 2007). The
methodology is a form of MAS that uses SNPs asrsa@enarker map combined as
“haplotypes”, which represents the total genetigaten of the trait under study, and
phenotypes in a training population to estimate dffect of each haplotype in the
breeding objective traits. This allows the estimaif breeding values for animals that
have no phenotypic record of their own and no pnggé@Meuwissen et al. 2001).
These predictions of animal genetic merit becamewkn as genomic estimated
breeding values (GBV). The statistical methods usedleuwissen et a(2001) will
be explained in the next section.

Since the appearance of genomic selection, seveethodologies have arisen to
estimate the GBVs and also for analysing the acguie different methods in
different scenarios (Amer & Payne 2009; Hayes eP@06; Hayes & Goddard 2010;
Luan et al. 2009; Pérez-Rodriguez et al. 2013; &t1a2006; Toosi et al. 2010;
Weigel et al. 2010). Regarding sheep, studies baakiated the accuracy of genomic

selection for production traits (Sise & Amer 20@ack-Smith et al. 2010), genetic
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gains in selection indices for dual purpose animalg/ool related traits (Pickering et
al. 2013; Swan & Brown 2013), or for the detectminfaulty genes by identifying
animals carrying the undesirable SNP allele (Sised. 2008).

In general, the literature concludes that the isioln of genomic data into selection
schemes produces an increase in the rate of gegatidfor the traits or index under
simulation. All studies concur that large datasats required to achieve high
accuracies but there is no agreement on a uniqubon@ogy for estimating the

GBVs, with small differences shown by differenttstical analyses.

2.3. Prediction of genomic values

Genetic improvement programmes try to optimisegaeetic merit of the population
studied. This merit can be a linear or nonlineanioimation of genetic values of the
traits under selection, and cannot be directly nlesk This requires that the genetic
values must be inferred from data (Gianola 200G fovel approach proposed by
Meuwissen et al. (2001) using dense marker mapdysed data sets that included
thousands of variables (SNPs) to estimate theiakd#lects of each SNP, for a finite
animal population. Their intention was to utilisengmic selection procedures to
explain all genetic variation by genetic markerd #rereby, acquire a higher accuracy
of selection in situations, where the accuracyetécion of "non genomic procedures”
was low, like traits with low heritability, measuréate-in-life, or after-slaughter. Also
their proposal of genomic selection was to fitratrkers (whether or not they were

statistically significant) and to estimate all geffects simultaneously.

Meuwissen et al. (2001) showed three proceduresafaiysing genomic data and
therefore inferring genomic breeding value estimaie GBVs. These methods were
Least squares, BLUP and Bayesian estimation (Bayaséd BayesB). Numerical
examples will be presented to illustrate how germoimiormation is incorporated into

the mathematical procedures to obtain GBVSs.

2.3.1. Least squares procedure

The least squares procedure in statistics is usqutddict the expected value of a

vector of observations, beigy) = Xb , leading to the equation:
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X' Xb =Xy

where:

X is an incidence matrix associating individuals #valr fixed effects,

y is a vector of the known observations,

b is a vector with the regression coefficients iged effects.

Using this statistical procedure to estimate thieitem for a very large number of
effects (variables) is not possible, because tvdlenot be enough degrees of freedom
to fit all the effects at the same time (Meuwisséml. 2001; Meuwissen 2003; Searle
2006). However, least squares can be used toltabeagenomic variables included,
by analysing them one by one for their statiststghificance (stepwise), and therefore
enabling the inclusion only of the ones that imgrdive fit of the model (Meuwissen et
al. 2001; Meuwissen 2003). The major issue thaearfrom the use of least squares is
that a bias problem occurs by setting the effetth® non-significant genes to zero
and giving full effect to the ones that are statsly significant. Therefore, this
procedure performs poorly because it greatly ovieneses some variable effects (the
ones that do have a statistically significant gjfend underestimates others (the ones

that are non-significant but with some effect) (Mgssen et al. 2001).

2.3.1.1. Numerical example illustrating the use of the leastquares procedure to

estimate genomic breeding value

Two sheep populations of 20 animals were simulatettaining population (Table
A2.1) and a predicted population (Table A2.2)cre@ne of them with randomly
generated weaning weights (WW) with a mean valu28okg and a variance of 4%g
also a sequence of 40 genetic markers (SNPs) peiabhwas simulated, associating
them to the weaning weight of each animal, theseewenerated assuming that the
SNPs explain a 100% of the genetic variance fortrtdig with frequencies of 0.5 for
heterozygous and 0.25 for each homozygous alletk that they have a gamma
distribution with a shape parameter of 0.4 andadesset to 1.66 (Calus & Veerkamp
2007; Hayes & Goddard 2001; Meuwissen et al. 20@gsi et al. 2010) this is to
represent a small number of genes affecting a laeg®@tion proportion, and large

number of genes affecting a small proportion.
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To see which SNPs predict most accurately the W\ach animal presented in Table
A2.1, a stepwise regression (forward-backward) d@ase using the step function of
the data analysis language R (lhaka & Gentlemag)19¢hich showed that SNPs 1, 2,
24, 4, 13, 5, 31, 33, 14 and 3 were the ones tlat accurately predicted the WW for
the 20 animals in the training population?(R92), leaving aside the information
provided by the rest of SNPs. The SNPs identifedignificant were analysed using a
least squares procedure to obtain the regressieffigents p values) of the 10
selected SNPs. This values, also known as best linear predictors, witesed to
estimate the GBVs of the predicted population anse Figure 2.1, obtaining an
accuracy of prediction of 0.38.

Results presented in Figure 2.1 shows large difiees between weaning weights
TBVs and GBVs, being 3.83 kg the largest predictilifference (animal 1,500) and
0.18 kg the lowest prediction difference (animaleh,).
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Figure 2.1. True breeding values (TBV) and genomic esthabreeding values

(GBV) for simulated sheep weaning weights usingtisguares.
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2.3.2. Best linear unbiased prediction procedure

This statistical procedure is used to estimatefiked effects and breeding values
(random effects) (Falconer & Mackay 1996), and assi genetic and phenotypic
variances are known. In reality the genetic vaatend also the residual variance)
might not be known, so they can be estimated usagjricted maximum likelihood”
procedure, better known as REML (Falconer & Mack896; Gianola 2000), which
accounts for the loss of degrees of freedom induire estimating fixed effects
(Gianola 2000; Meuwissen et al. 2001).

The SNP information or allelic effects are fittedgenomic BLUP as random effects;
therefore this procedure is also called randomessgon-BLUP (RR-BLUP) (Habier et
al. 2007; Moser et al. 2009) or SNPBLUP (Meuwisseal. 2013). This methodology
requires an estimate of the SNP variance. Howdsrmrocedure assumes that every
locus will get the same variance and considersyasmall impact of the allelic effects
on the related trait (Meuwissen et al. 2001; Mesamns2003). Another consideration
of interest is that the gene or SNP effects areiraed to be additive (which is
appropriate for the prediction of breeding valuésit, the reality is that some degree of
dominance will probably occur in practice (Meuwisset al. 2001), therefore the
dominance effect of some genes is going to be ndabiethe average effect of the

total gene population.

2.3.2.1. SNPBLUP and GBLUP

Another BLUP model which includes genomic inforroatiis GBLUP (Hayes et al.
2009b; Hayes et al. 2009a). This model can be e@fias an adaptation of the
SNPBLUP method. Instead of fitting the SNP inforimatas random effects, in
GBLUP the markers information is included usingem@gmic relationship matrix G,
which is derived from them (Daetwyler et al. 20M@nRaden 2008; Visscher et al.
2006).

SNPBLUP and GBLUP models are equivalent, consetuéim¢ genomic breeding
values estimates yield from each of the modelsgaiag to be the same (Goddard
2009; Habier et al. 2007; Meuwissen et al. 2013).
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2.3.2.2. Numerical example illustrating the use of the bedinear unbiased
predictor procedure to estimate genomic breeding Jaes

Two examples were made to show the use of BLUP whth same two sheep
populations of 20 animals simulated in point 2#.;1two simulated markers, SNP1
and SNP2 have known variances explaining 40 and i@3¥ectively of the WW total
genetic variance. To obtain the genomic informatiedicting values, the 40

simulated SNPs were included as random variablgstive mixed model equation:

XX Xz o] [Xy
ZX zz+i|al |Zy
where:

X is a known incidence matrix relating animals wtibir fixed effects,

Z is an incidence matrix relating the recorded ahimnd their random effects,

y is a vector of the known observations (phenotypaords),

b anda are regression coefficients for fixed and randdi@ces respectively (BLUE and
BLUP values),

| is an identity matrix of the same order asZt® matrix.

A (also known as alpha value) is the value obtawbeén the residual variance is

divided by the random effect variance (for eachth&f random variables used in the

model) A =

SDQI\J | quI\J

The first of the SNPBLUP examples (1-alpha) wasdam Meuwissen et al. (2001),
where each SNP variance was assumed to be the \W\gemetic variance (1.6 Rg
divided by the number of SNPs, this brings an iittlial variance value of 0.04 kg
The residual variance with a value of 2.4 kgs obtained considering the total genetic
variance and the phenotypic variance utilised (3 kythe stochastic simulation. The
SNPs variance and the residual variance are needetain the alpha value used in
the mixed model equations. The estimates for thdam SNPs effects obtained from
the training population were multiplied with the B effects values of the predicted
population in order to get their GBVs (Figure 2 Phe accuracy of prediction obtained
was 0.47.
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The second example (2-alpha) differs from l-alpihdhat, as the variances of the
SNP1 and SNP2 were known (representing a largeopiop of the total genetic
variance), these variances were used to estimatalfiha values for each respective
known random effect (SNP). The rest of the SNP$ wibknown variances were
assumed to have a variance value obtained as fferedice of the known SNPs
variances and the total genetic variance. With thfermation the BLUP values
obtained from the training population were usedoaghe previous example with the
purpose of acquiring the GBVs (Figure 2.2); tlasulted in an accuracy of prediction
of 0.45.
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Figure 2.2. True breeding values (TBV) and genomic esthabreeding values
(GBVs) for simulated sheep weaning weights using tifferent BLUP approaches
(1-alpha and 2-alpha).

The results presented in Figure 2.2 do not shaogelalifferences of the animals
predicted GBVs for the two presented methods. Tiggdst GBV difference of 3.2 kg

was obtained by animal 1,339 analysed with 1-alpiththe lowest GBV difference of
0,008 kg was achieved by animal 2,501 analysed 248iipha method. Even though
the accuracy of the 1l-alpha method was slighthhéigas shown in Figure 2.2 the
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differences between the animals TBVs and GBVs ieraye were lower for the 2-
alpha BLUP method.

2.3.3. Bayesian Procedures

The premise of Bayesian analysis is the Bayes'réneowhich is based on defining

two probability values:

The likelihood probability, which is in a generanse, the probability that is derived
from the observed data.
The prior probability, which is an estimate of htkely this set of observations and the

associated prior probability, is to occur in th@plation.

The combination of these two probabilities is atinestion of the probability that an
event will occur (known as the joint probabilityjdir et al. 2006). In general Bayesian
estimation (BayesA and BayesB) is similar to BLUMe(wissen et al. 2001;
Meuwissen 2003). The difference between these appss is that the variance of the
allelic effect is assumed individually (for evergrg or SNP included in the model),
which is estimated by using a prior distribution fiee variance of genegVy) assumed

as:

V,_, with probabilityz, and
V, ~ x2(v,S) with probability (1-7).

Where p depends on the gene mutation rate yahV, S) represents the inverse — Chi

squared distribution witlv degrees of freedom and scale param&efhese two
parameters\ and S) depend on the distribution of the mutational efe and in

practice they need to be estimated (Meuwissen €08lL; Meuwissen 2003).

This methodology of analysis wasn't chosen in tkigegmental part of this thesis to
estimate the simulated GBVs mainly because is momputational demanding and
secondly because the level of accuracy shown inlitkeature doesn't differ much

compared to the BLUP methodology including genoimficrmation.
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2.3.3.1. The bayesian alphabet

Since Meuwissen et al. (2001) presented the Bapgarbhical models (BayesA and
BayesB) several other bayesian models have begoged due to discrepancy on the
mathematical validity of the models (e.g. assummstioof the SNPs effects
distributions). Therefore BayesA and BayesB aresiciared the starting point for what

is now known as the bayesian alphabet.

2.3.3.1.1.BayesA and BayesB

As stated in point 2.3.3, the variance of thelialleffect of the SNP included is
assumed individually, this is because considerivgg SNP effects to have a normal
distribution with an invariable variance may notdseurate. According to Meuwissen
et al. (2001) the BayesA model, assumed that than@e of SNPs effects had a scaled
inverted chi-square distribution, allowing some SN have larger effects than they
do under an assumption of normality. However therpgtensity does not have a peak
when the variance of a genomic segment equals 8, &bcording to Gianola et al.
(2009), actually is the kernel of the density of thdistribution, which is thee facto

prior assigned to a SNPs effects in Meuwissen. ¢2a01).

Meuwissen et al. (2001) highlights that the differe between their two proposed
bayes models, is that in the BayesB model, somes§iFfh a probability oft) have
no effect on the evaluated trait, and another ptapoof SNPs (with a probability of
1-n) have an effect drawn from a t-distribution. THere BayesB can be reduced to

BayesA by having = 0 (Gianola et al. 2009).

Gianola et al. (2009) state that, in a Bayesiamnlag context BayesB is wrongly
formulated based on the assumption thatagpriori variance value equal to zero
implies absence of an effect of the SNP on the. timia Bayesian sense, a parameter
having ana priori variance value of zero, does not inevitably ingicthat it will
obtain the value of O, in fact it could be any wlbut known with certainty. Besides
the previous statements, BayesB methodology has lbegely used and as shown by
the Meuwissen et al. (2001) delivers higher acdasaof prediction compared with

other analysis methodologies.



26 CHAPTER 2

2.3.3.1.2.Bayes SSVS or BayesC

The Stochastic Search Variable Selection (SSVShodaeiogy developed by George
& McCulloch (1993) (Verbyla et al. 2009) also cdllBayes C (Verbyla et al. 2010) is
a methodology is similar to BayesB. It differs bpwing a constant dimensionality to
be maintained across all models while enabling $INPs in the predictive set to
change. In other words, a single effect varianegaroon to all SNPs is used instead of
locus-specific variances. With this change, thduarice of the scaling parameter is
reduced (Habier et al. 2011). The major advantdgise method is that it can be
implemented using the Gibbs sampler instead ofrthee computationally demanding

algorithms such as the reverse jump algorithm.

2.3.3.1.3.BayesD

This is another methodology which can be describdoe a modification of BayesB.
This procedure according to Habier et al. (2011fedi from BayesB in that the scale
parameter of the inverse chi-square prior for lespescific variances is treated as an

unknown having its own prior.

2.3.3.1.4.BayesCr and BayesDx

The purpose of Habier et al. (2011) in developimgse two bayesian methods was to
address for the drawbacks exposed by Gianola €2@09), of the models presented
by Meuwissen et al. (2001). Bayes@nd Bayesk models are similar to BayesC and
BayesD models respectively in terms of how the ®INBct variances are simulated
leading to different strategies for the inclusidnSINPs in the model. The difference
between the respective models being that the ptiopotr was considered as unknown

with a prior distributed uniformly (0.1).

Regarding accuracy of GBVs, the authors have acletdged that none of the models
(BayesA, BayesB, BayeaCand Bayesb) outperformed the others. But in terms of
computing time Bayes€and Bayesl are the models which took less time to run.
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2.3.3.1.5.Bayesian Lasso

Bayesian least absolute shrinkage and selectioratmpéBayesian Lasso) proposed by
Park & Casella (2008) (de los Campos et al. 208@))bines the subset selection (i.e.,
variable selection) with the shrinkage producedh®y standard Bayesian regression,
but it does not accommodate pedigree informatiorregression on (co)variates other
than the markers for which a different shrinkagprapch may be desired.

2.3.4. Statistical learning methods for estimation of genmic values

Statistical learning or machine learning methodstarminologies referring to a group
of methods that emerged due to the need of obtaimformation from an immense
amount of data. They were developed to optimiseptkdictive performance based on
the automatic discovery of patterns in a datagseutfh the use of computer algorithms
from a training dataset (Bishop 2006). Methods sashleast squares procedures,
BLUP and the entire bayesian alphabet can be fiedsas machine learning

approaches.

To obtain different approaches to analyse and ob&BVs with higher accuracies
than the ones presented by Meuwissen et al. (20 statistical methods such as
machine learning algorithms have been proposedjédoomic selection (Long et al.
2007). An example is the double hierarchical gdira linear model (DHGLM)

developed by Lee & Nelder (2006) which accordingSteen et al. (2011) uses a
likelihood framework to allow for the estimation afarker-specific variances and

therefore GBVs without the need for a prior disitibn.

Two other methods also utilised to estimate thekeragffects, are partial least squares
regression (PLSR) (Moser et al. 2009; Solberg.€2G@07; Solberg et al. 2009; Sélkner
et al. 2007) and principal components regressi@R()P(Solberg et al. 2007; Solberg
et al. 2009). These are considered dimension rieduntethods, and provide another
approach to deal with having a greater number efliptors than records (Solberg et
al. 2009). PLSR obtained similar accuracies contpamth other methodologies

analysed by the authors (Bayes regression and RBPBLand PCR obtained slightly

lower accuracies. Regarding computational requirgspePLSR and PCR methods

needed less computing time.
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Other nonparametric approximation methods for olotgi additive genetic values are
Kernel regression (KR) and the semi-parametrictionoof reproducing kernel Hilbert
spaces regression (RKHS) procedures. These metlandse embedded into standard
mixed-effects linear models without introducing Horearity (Gianola et al. 2006),
thereby allowing the identification of the multipéend complex interactions between
many loci at different chromosomes (Gianola & vaamaki 2008).

Moser et al. (2009) and Long et al. (2011) als@psed another method which can be
classified as a specific learning algorithm of RKH&or this method, the
nonparametric support vector regression (SVR) mego by Vapnik (1998),
simultaneously minimises an objective function vhiecludes both model complexity

and the error on the training data.

The Elastic-Net (EN) algorithm (Croiseau et al. POhas been used to estimate each
of the available SNP effects, when there is a largember of SNPs than animal
records. This methodology originally proposed by ZoHastie (2005) is defined as a
penalised regression approach (Croiseau et al.;2@04dldron et al. 2011). The
approach encourages a grouping effect wherebyyhigiirelated prediction variables
are likely to be conjointly included or discarderh the model. This leads to a
reduction of SNPs included in the prediction equratvith only a minor effect on the

quality of prediction (Croiseau et al. 2011).

Artificial neural networks, or neural networks (NNiave been proposed for the
prediction of complex genotypes using genomic imi@tion (Gianola et al. 2011; Okut
et al. 2011; Okut et al. 2013). The concept of NlNto find a mathematical
representation of the information processing inldgizal systems, in particular the
central nervous system (Bishop 2006). NN is a mrecHearning procedure that
operates as a universal approximator of severalp@minput functions. These
functions called neurons operate in parallel anel amanged into layers which
converge into a single output (Gianola et al. 20&@nola et al. 2011; Okut et al.
2011). The methodology can be considered as ainearl regression model, with
parameters tuned by Markov Chain Monte Carlo method by Bayes theory.
Therefore it can capture non-linear relationshipbmMeen predictors and responses
(Gianola et al. 2010; Gianola et al. 2011), andhis way, learn complex functional

forms as well as pattern recognition due to theapdive nature (Okut et al. 2013). The
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main challenge is that the methodology is very cataonal demanding and hence
time consuming, especially with large datasetsgR&odriguez et al. 2013).

There are some other special cases of learningitges that are combinations of
several machine learning models. These combinedelsodccasionally labelled as
committees, are implemented in an attempt to obketier performances (higher
accuracies or less computing times) than the ocleig\aed by using an isolated model
(Bishop 2006). Bagging is one example of a committeethod, the name being an
abbreviation for bootstrap aggregating (Bishop 20B&ch 2012). Bagging is a
method developed by Breiman (1996) (Bishop 200&nGla et al. 2010; Gonzalez-
Recio & Forni 2011). As the name states, the metiuidins an aggregated predictor
value from generating different predictor values bdmotstrapping different random
samples or subsets of the original learning da@setusing them as new learning sets
(Breiman 1996; Flach 2012).

A committee method used for genome-wide predictidnch exploits the bagging
method with another machine learning procedurdeddiee models, is random forest
(RF) (Flach 2012). This algorithm was developedbgiman (2001) and employed in
a genomic breeding value context for the first tioygGonzalez-Recio & Forni (2011).
RF constructs several decision trees models onstvapped subsets of the dataset
(which includes genomic information), averaging regenerated predictor to make
final predictions. This methodology reduces thedfmt®n error by a factor of the

number of tree models evaluated.

Gonzales-Recio et al. (2010) utilised a further potree method called boosting for
genomic selection. Specifically they evaluated pleeformance of the iBoosting
algorithm, showing that the method can be useddgression in high-dimensional
problems, and can evince complexity brought by dates, such as SNPs. The
authors stated thatiBoosting could be a viable method for genomic &eda, but to
improve the performance of the procedure, aspects as the choice of weak learner,

stopping criterion, step-size parameter and progriaug strategy have to be evaluated.
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2.3.5. Multi-step vs. Single-step approaches for genomicaluations

Methodologies for genomic evaluations are execated series of steps (Misztal et al.
2009), hence the term multi-step. In theory, itsists of two phases, a training phase
for the estimation of the genotypic effects andapplication phase where the GBVs of
the selection individuals are estimated based eim ttwn genotypic information and
the effects from the training phase (Garrick et 2009). Some of the methods
mentioned could involve traditional BV estimatiamsing an animal model, prediction
of genotypic effects (usually in mixed models asd@n effects), the inclusion of new
input data derived from the observations (e.g.puifg averages as data, deregressed
evaluations, removing parent average effects), m@noselection, and maybe
developing a selection index that merges genomicpaiygenic data (Garrick et al.
2009; Misztal et al. 2009; VanRaden 2008). Forittotusion of either all or some of
these options the multi-step procedure is saidetalblended methodology, but as
reviewed there is not a single way to approachattadysis.

According to Misztal et al. (2009) the multi-step@edure has some disadvantages
such as the requirements for certain parameterdedef®r the estimation of genomic
effects and GBVs (e.g. prior variances and weighasyl also loss of accuracy and
biases attributable to selection. Therefore, theyetbped a single-step methodology
which simultaneously includes phenotypic, genomial aelationship information
(Harris et al. 2013). The method modifies the pesgoased numerator relationship
matrix with the inclusion of the genomic relatioisimatrix proposed by VanRaden
(2008) (Harris et al. 2013; Misztal et al. 2009; #wet al. 2012). This new
methodology allows the analysis in one unique ptace of all available individuals,

regardless of whether they have been genotypassbhave phenotypic information.

2.4. Concluding observations

The selection of young bulls by artificial insentioa companies using genomic
selection has increased genetic gains mainly bytesmiag the generation intervals
(Wiggans et al. 2011). But even though more thadeaade has passed since
Meuwissen (2001) proposed the use of genomic sahedhere is still no agreement in
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a unique statistical procedure for estimating GBS, new methodologies are

implemented (Pérez-Rodriguez et al. 2013).

The methodologies for validating genomic selecti@mve become a very important
topic as more countries are interested in utiliging new technology (Olson et al.
2011). The main issue that has arisen concernsetilesed accuracy of the GBVs
which are low compared with progeny tests. It hasrbvery difficult to increase the
accuracy to levels that may be considered acceqptédsl example 75% for yield traits
in dairy cow populations (Wiggans et al. 2011), &@8@P6 for beef related traits
(Boerner & Johnston 2013). One of the ways thas tbiwer accuracy has been
managed is by using very large training populatitmest have both genotypic and
phenotypic information (Saatchi et al. 2013). Sirtke number of animals within
breeds is sometimes not enough to obtain desiadacy levels, multi-breed methods
have been proposed to increase accuracy (MacLead @013; Moghaddar et al.
2013; Saatchi & Garrick 2013).

Another way that has been proposed to increasabiidiies is the use of quantitative
trait nucleotides (Ron & Weller 2007; Weller & Ra011); these are specific
polymorphisms that have a direct effect over a phgnc characteristic. High density
chips (over 700,000 SNPs) are another way thabbaa proposed for increasing the
estimation accuracies, but for the moment thigss Icost effective than using a lower

density chip with more animals (VanRaden et al.1201

As technologies develop and costs decrease, thmgemmolecular and quantitative
genetic tools will become a possible alternativeaimmal selection programmes.
Different analysis techniques, such as the onesepted in this chapter, are designed
in an effort to integrate the information provideg molecular genetics, and by using
quantitative procedures to estimate a trait's gecaliy estimated breeding value of
genotyped animals in a selection breeding prograniine accuracies of the breeding
values obtained depend not only on the analysibodattilised but also on the amount
of information used to estimate the GBVs and thstritution of the genotypes.
Therefore the results obtained in the presentednpbes must be considered as

examples only, because they consist of just a femals.
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This review suggests that the power of genomicactiele currently does not rely on the
expectation of acquiring better realised accura@#tbough there is a lot of effort to
overcome this issue) in the prediction of GBVs, Ibather on the possibility of
selecting breeding animals at younger ages. Becatigbe limited evidence for
increase genetic gain provided by the empiricallisgy further simulation studies are
needed in order to assess the long-term effedtechiding genomic information about

production traits in multitrait sheep breeding peogmes.
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Table A2.3. Genomic breeding values (GBV) for
weaning weight estimated using least squares

methods.

Animal ID GBV
6287 0.83
4192 -0.46
3551 0.69
3658 1.30
3059 0.70
4281 0.22
1341 2.16
1808 0.43
2065 1.53
8438 0.44
8123 0.97
5047 -1.22
5803 1.25
2792 3.44
1095 0.46
1500 -3.25
2501 3.05

524 3.32
1396 -0.09

1339 2.59
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Table A2.4. Genomic breeding values (GBV) for weaning
weight is sheep estimated using best linear undiase

prediction procedures.

Animal ID True breeding GBV GBVs

values (1-alphaj  (2-alphaf
6287 1.95 0.04 0.21
4192 1.08 -0.41 -0.34
3551 2.55 -0.18 -0.04
3658 1.52 0.01 0.56
3059 2.03 0.18 0.07
4281 1.57 0.37 0.12
1341 0.50 -0.27 0.68
1808 1.19 -0.02 0.51
2065 1.35 -0.19 0.52
8438 -0.78 -0.39 -0.10
8123 2.10 0.37 0.83
5047 1.20 0.04 -0.48
5803 3.06 0.13 0.60
2792 2.72 0.29 0.80
1095 2.48 -0.38 0.63
1500 0.59 -0.48 -1.43
2501 0.80 0.08 0.79
524 2.67 0.07 1.24
1396 2.15 -0.29 -0.05
1339 3.29 0.11 0.77

! Equal variance for all SNPs
2 Known variances for SNP1 and SNP2



CHAPTER 3

Deterministic and stochastic simulation of a breedig programme for a

nucleus flock based on individual selection






Breeding programme: Deterministic and stochastrauation 39

3.1. Abstract

The use of an adequate selection index in a brgadhit to identify the individuals
with best genetics will improve the breeding ohjexttraits. New Zealand has had
very strong capacity of quantitative genetics, Whias enabled the development of
successful sheep breeding programmes. The studloged a stochastic model that
simulated a sheep breeding flock selecting thedeting animals using best linear
unbiased predictor methodology. The system hadtéeding objective of improving
parasite resistance by decreasing faecal eggs;sdeceeasing yearling weight to
reduce maintenance feed costs in adult sheep amdremase 160 days lamb's carcass
weight representing an increase of the system iecof selection index theory
deterministic model was utilised to validate theckstic model. Very similar genetic
responses values were obtained for the analysiesl between simulation models (e.g.
0.113 kg and 0.099 = 0.04 kg for carcass weigherdahistic and stochastic,
respectively) also appreciable on all the genatnds of the traits; therefore the
stochastic model has proven to be adequate to aientihe proposed system. The
models developed in this study enable the consbtrudbase for new models to
investigate different breeding options such asititusion of DNA information to

improve production traits.

3.2. Introduction

An animal breeding programme can be defined asiessef organised steps designed
to obtain the farm system's breeding goal (Hatres.€1984). This can be achieved by
the identification of the genetically fittest inddwals of a breeding unit using an
appropriate selection index, to improve the tramsthe breeding objective. This

enables the implementation of custom designed ts@teschemes for the breeding
population. Subsequently, the implementation ofgpropriate mating system through
dissemination of the improved genetic materialdmmercial farmers is required. The
programme is not complete until the whole processevaluated (economically,

technically and genetically) allowing identificatimf any weak points in the system;

any necessary improvements should then be madquifred.
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Some concepts that require attention from the lmgegrogramme definition are
breeding goal, breeding objective and selectioexnd

The breeding goal is a high level description @& tlesired outcome as a result of the
breeding management of the population, for exanipbeeased profit per unit of feed.
More recently, breeders have also considered aspiet ethics and other social
aspects of human and animal welfare and wellb&drgén 2000).

The breeding or selection objective is a statenwnéll the traits that are to be
modified via selection. The relative (economic) ortance of these different traits are
needed to apportion selection pressure betweentr#its to achieve the desired
breeding goal (Van der Werf 2000).

The selection index is the sum of weighted selactinteria (the traits measured) to
predict the animal's breeding value. Animals artected based on their index
(Cameron 1997).

According to Hazel and Lush (1942), selection foiradex which gives proper weight
to each trait is more effective than other waysedéction to achieve maximum genetic
progress in the breeding objective. The selectiolex theory equations developed by
Hazel (1943) defined the aggregate breeding vafuanoanimal as the sum of its
various genotypes weighted by the relative econanfligence of each trait.

The New Zealand sheep industry breeding goal immfmove the genetic merit of the
animals thereby improving farm profit. The successmplementing proper breeding
programmes can be seen by reviewing the counthespsstatistics. From 1996 to
2011 the total number of New Zealand breeding éwssars and older exposed to ram
declined by 38.75% (Statistics New Zealand 2014a),the number of exported lambs
(1998-2011) only declined by 19.6% (Beef + Lamb N&saland 2012a). This means
that more lambs are exported by means of less ingddmales. In addition, lamb
carcass weight increased from an average of 16i8 R§06 to 18.2 kg on average in
2010 (Beef + Lamb New Zealand 2012b).

New Zealand has been fortunate in having a stramgntifative animal breeding
capability. Initial genetic evaluations were basedBest Linear Prediction procedure

(Blair & Garrick 2007), but as computing capacitjowed, Best Linear Unbiased
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Prediction (BLUP) was introduced commercially tsubset of ram breeders in 1985
(Garrick 1991). BLUP maximises the use of phenatypnd genealogical data to
obtain estimated breeding values (EBVSs), therelabkmg an animal genetic ranking
(Henderson 1963, 1975; Meuwissen et al. 2001). BlddoBbles the subjects to be
compared between different environments (e.g. 8pglears, etc.) providing animals

are genetically linked.

The New Zealand sheep industry is comprised ofraédéstinct breeding populations
(typically breeds), and each of these populationé mvake genetic progress at
different rates. There are four factors that cdrttie rate of genetic gain towards the

breeding goal:

Selection differential
Accuracy of selection

Genetic variance of the population

A

Generation interval

These four factors are interdependent, so rather #eeking to either maximise or
minimise each factor, it is required to consideznthjointly to optimise the rate of
genetic change (Blair & Garrick 2007). In a re& Isituation, the best scenario to
optimize the genetic gain of a production systenmas always possible, especially
because of difficulties related to farm managendgeaisions. For example, the costs of
obtaining some data at a specific moment could nia&eampling unviable, affecting

as a result the selection strategies of the animals

Simulation techniques (or data modelling) are & weeful tool that can be described
as: “A hypothetical or stylized representation tatempts to predict aspects of the
behaviour of some system by the adoption of a laggu using a special set of
symbols, letters, numerals, etc., creating an apmate (mathematical) model of it,

imitating the internal processes and not merely tbsults of the thing being

simulated” (Reingruber & Gregory 1994). Stochasticandom simulation is when the
values of the parameters needed to develop the Inaoelegenerated randomly using
predefined distributions, in order to minimise b{doore & McCabe 1990). On the

other hand, deterministic simulation can be deedrias an algorithm in which the
correct next step depends only on the current,stat@ other words states that for a
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given data or variable input the output obtainell aWways be the same (Pomar et al.
1991).

The objectives of this study were firstly to deyebp stochastic simulation model for a
multitrait sheep breeding scheme including fourrelated traits under selection, to
assess the averages and variances of the gersgimnses. And secondly, to validate
the stochastic simulation model against a detestinimodel using selection index

theory.

3.3. Materials and methods

Two simulation models were developed in this stwdgeterministic and a stochastic
model. Four traits were simulated based on the gilgpit and genetic parameters
(Tables 3.1 and 3.2) presented by Benetedt. (1991), Huisman & Brown (2008) and
Huismanet al. (2008). The traits considered were live weightlé® days (160W),
faecal egg score at 160 days (FES), live weightystar of age (YW) and lamb carcass
weight at 160 days (CW); 160 days as selected ag€W, 160W and FES was to
simulate an average age for the animals to be Istateyl.

Special attention has to taken when incorporatizgeas from different studies, as the
included variables when arranged as a (co)variana&ix could result in a non
positive definite matrix causing some inconvenigenposterior analysis that may use

this (co)variance matrix.

Both simulation models used the animal's own trpérformance with one

measurement per animal. CW was included in theystodnclude a trait that cannot
be directly measured in the live animal. Using tloerelation between CW and the
measured traits makes it possible to generate H8M$he unobserved trait (Cameron
1997).

3.3.1. Deterministic model

The deterministic model was developed using thectieh index theory software SIP

(Wagenaar et al. 1995). The selection index egusiilo matrix form are:

Pb = Ga
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where:

P is a phenotypic variance-covariance matrix for eba criteria traits

b is a vector of selection index weights for phenatypformation

G is a genetic variance-covariance matrix betwedacten criterion and breeding
objective traits

ais a vector of economic weights for the breedingpciive traits.

3.3.1.1. Breeding objective

The breeding objective proposed for the presemtysiincluded FES, YW and CW as
the traits to be economically important for the qurction system. The breeding
objective of decreasing FES (to improve parasiwstance), to decrease YW (to
decrease maintenance feed costs) and to increaseofC\ie lambs (increase

production income), is expected to improve farnfipro

The breeding objective also included an economimpmment to apportion the
selection pressure between the traits in the albbgcthe economic component can be

considered as:

* Economic value (EV), is the amount of profit chapge unit of improvement in
a trait keeping all other traits constant (Van Atemk 1991).

* Relative economic weights (REW), can be stated dovalues or weighting
factors assigned with a relative importance dependn an expected proportion
of change (Hazel 1943).

For the present study, the EV for each of the draias estimated using the trait's
genetic standard deviatiosd) and REWSs, in order that an absolute value oBYef
a trait multiplied by thers of the same trait represented the desired relatwemomic
weight absolute value (AEW) (Table 3.1). The pesitand negative values of the EV
and REW represent the purpose of increasing (pe}itor decrease (negative) the

genetic value of the traits related with each EV.
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Table3.1. Genetic standard deviationrsg), economic values (EV), relative economic
weights (REW) and relative economic weights absollues (AEW) of the traits

included in the breeding objective.

Trait oG EV(t) REW AEW
FES 0.78 -10.72 -30%  30%
YW (kg) 3.30 -1.70 -20%  20%
CW (kg) 0.83 16.93 50% 50%
Total 100%

'FES= faecal egg score defined as cubic root of murabeggs per gram [(eggﬁ’dlx
YW= yearling live weight and CW = carcass weigh1&0 days of age.

3.3.1.2. Selection index

The selection index consisted of three traits 16(FES and YW. 160W was the

primary predictor of CW due to the high geneticretation between these two traits.

The genetic and phenotypic parameters utilisechpgtidata in the SIP software are

shown in Table 3.2.

Table 3.2. Phenotypic standard deviationsp)( heritabilities (on the diagonal),
phenotypic (above the diagonal) and genetic (beélmwvdiagonal) correlations of traits

included in a selection index for sheep geneticcaonpment.

Correlations

Trait Unit op 160W CwW FES YW
160W kg 4.524 0.54 0.94 -0.01 0.65
Cw kg 1.766 0.92 0.22 -0.01 0.61
FES score 1.483 0.34 0.31 0.28 0.1
YW kg 5.216 0.76 0.69 0.13 0.40

Defined as Cube root of number of eggs per gragg[s(/ag)”s]

The selection index equations were:

0
20.47 -0.06711 15.3 bl 11.05 0.8872 8.336 2.534 |-10.7
-0.06711 2.2 0.773 b2 =10.8872 0.616 0.3366 0.203 -1.7
15.34 0.7737 27.2 b3 8.336 0.3366 10.88 1.91 16.9

P b G a
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3.3.1.3. Breeding scheme

The breeding scheme was based on a sheep breedilegs structure that consisted of
300 ewes, the size of the New Zealand averagerpeafce recorded flock (Garrick et
al. 2000). Figure 3.1 shows the reproductive agplacement parameters for the

nucleus flock.

- 300 ewes & 9 rams -t
Replacements Replacements
84 (2 year-old ewe / 4.5 (2 year-old
hoggets) 450 born lambs rams)

(1.5 lambs per ewe)

(10% mortality
+
(15% culled)

€ 172.1259 172.1258 ———»»

105 (1 year-old ewe
hoggets)

15 (1 year-old
ram hoggets)

Figure3.1. Simulated sheep nucleus breeding schemesteuct

In order to assess the annual genetic progreseeisdlection index traits, a simulated
breeding flock was developed. The information of thrtual flock (Table 3.3) was
simulated based on the structure presented in &igur. One year-old ewe and ram
hoggets represent 35 and 5% respectively of thebB8&ding ewes. The age structure
for males and females older than 1 year-old isguresl in Table 3.4. Using selection
pathways theory, the flock information was arranget two categories, ewes to
breed ewes, and rams to breed rams, based in thegys model presented by Lopez-
Villalobos & Garrick (2005). The generation intelwas estimated using the same age

structure utilised for the stochastic model (Tah).

Table3.3. Simulated ewes and rams pathways of selection.

Selection Population Number Proportion Generation
Pathway Size selected selected Interval
Ewes 105 84 0.8 3.4

Rams 15 4.5 0.3 2.5
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With the selection index information and the pathsvanodel, annual genetic gain
(4G/ yr) of the simulated population was estimated ustegdel & Robertson (1950)

selection pathways theory formula:

— (Id xrd)+(i_sxrs)
AG/yr = L,

)(O'G

Where:

subscriptd ands represents dams and sires pathways respectively;

i_represents the intensity of selection of the cpwading pathway,
r their accuracy of selection,
L their generation interval and

o, IS the standard deviation of the true genetic value

3.3.1.4. Correlated responses for individual traits

To asses individual responses of the breeding twgetraits to selection based on the

selection index, annual correlated respongeR, {yr) for each trait were estimated

using Turner (1959) equation,

("% )
L

CR;lyr =

Where:

CR is the correlated response of tjait

G; is thej™ column of matrixG of the breeding objective,
b is the regression coefficient vector of the sébectriteria,
P is the phenotypic (co)variance matrix

L is the generation interval of the selected popateand

i; Is the selection intensity of the index.

As the breeding scheme involved two pathways witiereént intensities of selection,
the correlated responses of each trait were estdrad the sum of both equations for

each pathway.
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o e o )

Le +Lg

CR,lyr =

beingie andLg the intensity of selection and generation intefeathe ewes pathway,

and respectivelyjr andLg being for the rams pathway.

3.3.1.5. Contribution of traits in the selection index

Cameron (1997), presented a way to asses how nanthbation over the selection
objective a trait included in the selection indeshThis contribution is considered to
be the proportional reduction to the accuracy @ $kelection index if the trait was

excluded from the selection index. The equatioestomate this contribution is
. 2
r|_H =1- —bj
M b' PbP;*

ry is the accuracy of the selection index with jhiait omitted from the selection

where

index,

ij‘lis the " diagonal element of the inverBematrix and

bf is the square of th& element of the regression coefficients vector.

3.3.2. Stochastic simulation

The stochastic model was developed using Base SAS/IML and SAS 9.3 Macro
language (SAS Institute Inc. 2011). The procedwssd in developing the genetic
simulation model were based on the studies of Anatllal. (1995), Cameron (1997),
Falconer and Mackay (1996) and Dzama et al. (2004¢ simulation represents a
flock under a breeding programme, the time undeduation is 20 years and the
simulation process was replicated 100 times inooti¢ain a measure of the variation
of response to selection. The genetic and phenopgriameters utilised were the same

as those used in the deterministic simulation. @tifiects of dominance and epistasis
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were not modelled. The four traits considered andleterministic simulation (LW160,
FEC, YWT, CW) were modelled as:

Y = u+t M+ F+G +ey

where, y; is the phenotypic value of any of the traits besigulated

1 is the mean of the population for the trait

M, is the effect of yeag
F. is the effect of flock
G, is the additive genetic effect of aninjalnd

e, is an environmental effect.

The year effect was assumed to account for 5%eoptienotypic (co)variance matrix.
The inclusion of the flock effecE] was to account for a flock difference per rephkca
and it was assumed to account for 10% of the plypro{co)variance matrix. The
matrices containing the information of the traiengtic, environmental, flock and year
effects, were created by the product of a randogdgerated normal distribution
matrix, having as many columns as traits simulatedias many rows as the number of
randomly generated animals, with the lower triaaguhatrix D of the Cholesky

decomposition (Nejati-Javaremi et al. 2007) of (@@variance matrix of each effect.

In matrix notation the generation model for eadkeafcan be expressed as:

[\/l \/2 \/3 \/4] ::[(I)l (I)Z (I)S (1)4]

nx4 nx4

w
[
O
w
[N
O
w
w
o

_U <U NU ‘U
R
o
o

IN
O
IN
O
>
W)
N
i

Where:

Vi is a random multivariate normal deviate vector floe traiti, ®. represents a

random number vector taken from a normal distrdyutvith mean 0 and variance 1 for

the f" trait and the matrix containing ipresults from the transpose of Cholesky
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decomposition of the (co)variance matrix of theeefl/ (environmental, flock or year
effect) for the traits under selection.

The true genetic or breeding valueB{;) of any animal of the base population was
generated using the method described in the previanagraph. Th@BV; of any
animal i in the following generations was estimated assgntivat the value of an
individual was equal to the average value of theemis genetic valueTBVs and

TBV ) plus a deviation due to Mendelian samplim X (Mrode 2006).

For the present multitrait simulation the modelisgid to estimate the TBV of each
lamb considered a Mendelian sampling in the absefdabreeding (Kemp et al.
1986), then

TBV=05(TBV, + TBV, )+ (¢D)0.5

whereD is the lower triangular matrix of the Cholesky dexposition of the genetic

(co)variance matrix]BV;, TBVs;andTBV4 are row vectors of TBVs for animglthe

sire and the dam of animalrespectively, an(€ is a random number vector taken

from a normal distribution (N(0,1)).

The phenotypic values of all the simulated traibs €ach available animal were

obtained as the sum of the TBVs, environmentakédfeyear and flock effects.

3.3.2.1. Flock structure

The base population simulated consisted of a fleith an average of 300 ewes with a
standard deviation of 25 animals (SD=25). The numobeams corresponded to 3% of
the ewes. The number of hoggets (between 1 an@r2oj@) represented 35% and 5%
of the ewe population females and males respeygtivEhble 3.4 shows the age
structure of the flock for ewes and rams older tharears. Animals older than the ages
shown in Table 3.4 were culled. Also 15% of thenlbs were culled due to

reproductive and phenotypic defects.
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Table 3.4. Age structure for ewes and rams over two ye#ds of a stochastically
simulated sheep breeding flock.

Age in years 2 3 4 5
Ewes (%) 28 26 24 22
Rams (%) 50 50

The sex of lambs was assumed as 50% males and &@flels at birth and the
lambing proportion used was 1.5 lambs per ewe. eT&hb shows the birth rank

probability assumed for the lambing.

Table 3.5. Birth rank percentages for lambs born in @lsstically simulated sheep

breeding flock.

N° of lambs 1 2 3

Lambs (%) 60 30 10

For the death simulation process, 10% of the banmbk die before reaching the first
year of life. Ewe's death percentage is 5% forltheear old and 2 % for older ewes.

1% of the rams die.

3.3.2.2. Genetic evaluation

Estimated breeding values were generated via mailtianalysis using the package
AIREML (Johnson & Thompson 1995). This software dusee average information
matrix as second derivatives in a quasi-Newton gutace. The multitrait mixed model

(Henderson & Quaas 1976) presented in matrix foas:w

Y, X, 0 0/]|b, Z, 0 O]l a e
Y,[=| 0 X, O |b,|+| 0 Z, O |a,|t+|e,
Y, 0 0 X, b, 0 0 Z,l|la;| |&

where:
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Y, is a vector that represents the observed phermotgpords of trait i,

X, is a incidence matrix of fixed effects associatgith trait i,

b, is a vector of regression coefficients of the dixedfects,

Z,is a relationship matrix of the recorded animalgshwiandom effects (breeding

values),

a, is the vector of breeding values for trait i,

e is a vector of the residual (error) of trait i,

The matrices of genetic (co)variance (G) and redi¢eo)variance (R) are represented

as:
a, Aaall Aaalz Aaa13
varja, | = Aaalz A0a22 A0a23 =G and
a, Aaa13 Aaa23 Aaa33
e, Icrell Iae12 Icre13
var|e, | = Iae12 Io'6322 Io'6323 =R
€, IaelS |0e23 Ia%3
Where:

li is an identity matrix of the order nxn where his number of measured animals,
A is the numerator relationship matrix between atsraad,

% with o, are their corresponding covariances between fraitsl].
]

To enable comparison between the deterministic stmthastic simulations the
relationship matrix was assumed to be an identigtrim i.e., the EBVs for each
animal were obtained based on its own performamteabcounting for the genetic

correlations between the traits.

3.3.2.2.1.Selection Index

A total merit index (IDX) (Hazel 1943) was createsing the EBVs each weighted by
a regression coefficienb (value) obtained from the deterministic simulatising the
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SIP software. The purpose of generating this ID> waenable the ranking of each
animal based on the relative importance of thdstran which the evaluation was

based.

ID>(I:(bl X EB\/I160N)+(b2 X EB\/I FES)+(b3 X EB\/IYW)

3.3.2.3. Data generation structure

The modelling process was built in subroutines negl(M1 to M9) using SAS Macro
language. Each subroutine generated specific irdgtbam that contributed to the
creation of a 20 year sheep flock database. Theshveak replicated 100 times.

e M1 developed a base population using the age steigbresented in the
assumptions. The phenotypic record for each animtile base generation was
obtained as the sum of the trait's true genetioeyagnvironmental value, flock
effect and a year effect.

e M2 generated EBV's for each animal for the traifs imterest (without
considering genealogical information). From thisnpdhe replication process
started, the purpose being to simulate a 20 yeaodgef reproduction, death,
culling and selection routines.

« M3 implemented the reproduction process for whicrardom mating within
flock was done.

« M4 simulated the losses from death, in which a¢griage of females and males
based on their age were randomly categorised @k dea

* Mb5 assigned the year effect, to the phenotypicevalueach animal.

* M6 obtained the phenotypic information for all lim@imals about to be 1 year
old.

« M7 was the first subroutine to cull the animals lgsaand females) based on
two aspects; the age structure presented in themgs®ns and their IDX
(selection of the ranked animals). This subroués® culled 15% of the lambs
younger than one year, because of reproductiveohadotypic defects. The aim
of this subroutine was to preserve the age streadfithe flock considering all
the available animals (alive and not culled) per egtegory. If there were more
sheep than needed, the animals that had lower E>age were culled.

* M8 ensured that all the live animals became one glelar.
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« M9 was the second culling subroutine, which culidanimals (males and

females) that exceeded the maximum age of thetagege tables.

In the final step subroutine, M2 was run again ifdeo to genetically evaluate the
animals that were 1 year old. A flowchart of therewtines is shown in Figure 3.2.

M1
Base population with IDX v
M2

Y

Starts 20 years replication

Y

Reproduction { M3 =

v
Death { M4

Y

Year effect { M5

Y

Phenotypic values{ M6
Culling and selection{ M7

Y

Birthday { M8

Culling maximum age{ M9
EBVs and IDX estimation{ M2

Figure 3.2. Subroutine structure of a stochastically sataed 20 years sheep breeding
programme, selecting the breeding stock with aitrailt total merit index (IDX), built

using estimated breeding values (EBVS).
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3.4. Results

3.4.1. Deterministic simulation

Relative economic weights (Table 3.1), and geraatit phenotypic parameters (Table
3.2) were used to estimate the regression coefiisi(b-values) to weight the selection
criteria traits in the selection index. The indeegnession coefficients, the relative
contribution of the trait in the selection crite(®@), and the correlated responses of the

traits are shown in Table 3.6.

The economic value of response was ¢4.97, the igdeetic standard deviation was
11.29 and the accuracy of predicted genetic mexg &.44. The annual genetic gain
obtained, considering the two pathways presentdalote 3.3, was of ¢1.27 per year.

Table 3.6. Regression coefficients (b-values) contributaf traits in the selection

index and correlated responses for determinisficathulated traits

Trait b-value Contribytio_n of traitin  Correlated
selection index (%) responsé
160W (kg) 1.069 32.06 1.791
FES -1.6 12.15 -0.0197 i
YW (kg) -0.1809 1.006 1.291
CW (kg) 0.4104 i

IFES= faecal egg score defined as cubic root of murmbeggs per gram [(eggs/d)
YW= yearling live weight and CW = carcass weigh1@0 days.

2 represents the intensity of selection.

Genetic responses to selection for the four evetutaits are presented in Figure 3.3.

The annual genetic gains are shown in T&bfe
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Year

Figure3.3. Annual predicted genetic responses for (&) \Wweight at 160 days (160W),
yearling weight (YW) and carcass weight (CW) angfé®cal egg score (FES), for a

deterministically simulated sheep breeding programm

3.4.2. Stochastic simulation

Figure 3.4 shows the mean true breeding values/)TBr trait per year and per
replicate, and the trend lines as an average TRYslf the replicates. The annual
average genetic gain for each trait (correlatedamses) measured were calculated as,
the slope of the regression of the mean TBV per j@athe twenty simulated years
for the 100 simulated replicates (TaBl&).
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Table3.7. Animal genetic responses for deterministic sto¢hastic (meanx( ) and

standard error (se)) simulations.

1 L Stochastic
Trait Deterministic
X, *se
160W (kg) 0.458 0.486 + 0.007
FES -0.005 0.022 £ 0.001
YW (kg) 0.330 0.358 + 0.006
CW (kg) 0.105 0.106 = 0.001

IFES= faecal egg score defined as cubic root of murmbeggs per gram [(eggs/d)
YW= yearling live weight and CW = carcass weigh1@0 days.
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Figure3.4. True breeding value (TBV) trends of individugplicates (dotted lines) and
replicates averages (continuous lines) for (a) Wixght at 160 days (160W), yearling
weight (YW) and carcass weight (CW) and (b) faeegh score (FES), for a

stochastically simulated sheep breeding programme.

3.5. Discussion

For any simulation model an accurate knowledgehefwariables to be included as
input data it is required, especially regarding thean and variance of the traits
involved. Based on the work done to set up thegmtesesearch (Table 3.2) it is
suggested that, to obtain adequate simulated py@noovalues, the ratio of the

phenotypic standard deviation to the mean or cdefit of variation (CV) for each
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trait should be less than 0.2, otherwise phenotyplues generated with a stochastic
simulation could turn out to be negative which ighlhy improvable for real measured

data.

The main purpose of this study was to develop ehststic model that simulated the
genetic behaviour of a breeding flock with animakdected based on individual
records of three different traits using a multitielection index. One of the objective
traits (CW) was not directly measured. Geneticdseinom a deterministic model were
used to validate the results of the stochastic medech has proven to be adequate to
simulate the breeding programme, because it obsamsar genetic results compared
with the deterministic simulation (Tab&7). Important is to highlight that the shape
(straight lines) of the genetic response tendenofethe deterministic simulation
(Figure 3.3) represent perfectly what someoneecguect from a deterministic model
which accounts for the same outcome per year (Patat. 1991). Comparing the
deterministic genetic trends and average genetiods of the stochastic model, all
simulated traits behaved in a similar way. This barexplained because the values of
the animal genetic responses (input data for Fg@8 and 3.4), differ very little

between them (Tabl&.7) especially if the standard error values aresictered.

The variation of the stochastic simulation can ppraciated in Figure 3.4 showing a
high variability of 160W and YW, and for FES and QW& represented deviations
from the mean shows to be in a lower amount, tbeeethe input data used for the
stochastic model (SE in TabB?7) its very well represented, this fluctuationvafues

is one of the main points of comparison betweertoahastic and a deterministic

model.

For the stochastic results (Figure 3.4) a widegeagenetic means within year were
obtained. During the first three years (0-2) noajengain occurred. This was an
adjustment period for the flock being selected. base population had not been under
selection for the proposed breeding objective, thedefore base animals had average
TBVs of zero. An increase in average genetic narturs after culling those animals
in the base population and the inclusion of gea#icselected animals into the

programme.
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YW becomes an important trait because bigger asimeguire more nutritional input
(maintenance cost) than a smaller ones (Nicol &oRes 2007), therefore if the
system management is not changed (by adjustindathe feed input), having bigger
animals will lead to a reduction in the farm stoxkirate and conjointly less lambs
born per hectare ergo less income. In the othed Ragures 3.3-a and 3.4-a showed an
increase in CW genetic values, having heavier sagsmweights per lamb increases

the income per unit sold.

One of the targets proposed by the breeding obgetas to decrease or lower YW (to
limit maintenance cost of the flock); this was ddmeassigning it a negative relative
economic weight. However Figures 3.3-a and 3.4-th Ishow significant genetic

trends for this trait. This previous situation ¢enexplained by two aspects:

» As first point it is needed to be highlighted tlaetfthat CW and YW have a
considerable high genetic correlation (near to,h&nce as CW received a large
positive economic value, the response of YW wilhdeto be in the same
direction of CW, therefore it will be very hard tontrol the behaviour of the
trait.

» The second and maybe more important than thegostt is that the economic
weights used were not the best to maintain or redle yearling weight of the
flock. The economic value assigned to YW has praeebe modestly negative
and in order to achieve lower or negative genetiog) a lower economic value
is required by YW. Therefore, new input data (ecoimoweights) are needed to
be simulated and evaluated in order to reach arattcome.

FES impacts the production system by affecting @ppropriate weight gain of the
animals, increasing the drenching costs and alsxireme cases could lead to death
loses (Vagenas et al. 2007). Figures 3.3-b andb 3dewed a very low genetic change
(close to 0) for FES tendencies, even considehag the genetic correlation between
FES and CW had a positive value, hence the negaéistiction weight utilized
(estimated on the trait's genetic standard deviashowed to be effective to achieve

the objective of limiting the traits effect.

Even though the stochastic model of this studypgrasen to be adequate to simulate
the breeding programme, bio-economic farm modasaeded (Van Arendonk 1991;

Wolfova et al. 2009) to analyse the economical iogpion of having heavier CW and
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YW with the corresponding maintenance of FES (FeguB.3-b and 3.4-b), and as a
result adjust the economic information of the pné$eeeding objective to enhance the

simulated breeding programme for the proposed brgegbal (Harris et al. 1984).

The present study has developed two models (orerndigiistic and one stochastic)
simulating a breeding programme for a sheep brgedlock, providing the
groundwork to develop simulations that could explseveral other scenarios such as,
the possible advantages of including genomic in&drom into a breeding programme

to improve production characteristics (Amer 2011).

As shown by the results obtained from this studgmpared to a deterministic
simulation a stochastic model allows a more flexiiay of data control, permitting
for example changing age structures or the inclusibmore variables in an easiest
way. But as stated by Dekkers (2007), one of thewathges of a deterministic model
over a stochastic one is that the deterministic ehasl less demanding regarding
computer processing time (once all the variablesbé¢oincluded are modelled),
therefore a fast overview of different scenariaduding genomic information can be

evaluated to optimize selection strategies.
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Deterministic simulation analysis using selectiomdex theory for

sheep genomic selection
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4.1. Abstract

For animal breeding, molecular technologies coufavigde information with reliable
accuracy of evaluation at younger ages. Theresis #le opportunity to enhance the
development of breeding schemes by using gendticnration associated with traits
that are either not measurable at the time of thimal selection, or are sex-limited
traits. Based on deterministic selection index ngdée present study estimated the
accuracy of selection and predicted the genetio gaing different selection indices
that included either phenotypic and genomic infdramaor indices with only marker
information. Two SNP genotypes were included thaplaned four different
percentages (1, 10, 30 and 50%) of one simulatedgenetic variance. The breeding
objective for the simulation included decreasecddhegg score (to improve parasite
resistance); reduced yearling weight (to decredsdt aheep feed maintenance costs)
and to increased 160 day lamb carcass weight ¢rease the farm's income). Results
from the different simulated scenarios showed #ratincrease of genetic gain and
accuracy of prediction was seen when genomic inétion was included together with
phenotypic information. Compared to a selectionexdising only phenotypic
information, a selection index that uses genomiorimation without phenotypic
information can result in lower selection accurac®d genetic gains. The results of
this study suggest that the use of genomic infaonain a selection scheme could
increase genetic gains with lower accuracies aécsein, only if a reduction of the

generation interval was also achieved.

4.2. Introduction

The inclusion of genomic information into breedisghemes to improve animal
production, relies on the expectation that infoioratat the DNA level will lead to
faster genetic gain compared to that which couldati@eved using only phenotypic
information (Meuwissen et al. 2001). For that reasaccurate appraisal about the
implications of introducing genomic data into adiimg scheme is needed before its
development. Meuwissen et al. (2001) demonstratedmethodology for genomic
selection, a term that according to Meuwissen (2005 first introduced in 1998 by
Haley & Visscher (1998). Genomic selection use®rimiation from thousands of
single nucleotide polymorphism (SNP) genotypes dogthbas “haplotypes”, to allow
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the estimation of genomic breeding values for afgntiaat may have no phenotypic
records of their own (Meuwissen et al. 2001).

Hazel (1943) defined the aggregate genetic valuanoanimal as the sum of its
various genotypes (assuming a distinct genotypedch economic trait) weighted by
the relative economic influence of that trait. Heered Lush (1942) stated that a multi-
trait selection using a selection index is more@ffe than other types of selection,
because it achieves the maximum genetic improvenpamt unit of time. A
deterministic simulation model was presented bydea& Thompson (1990) which
included molecular genetic information using setecindex theory. This model was
further extended by Dekkers (2007) who presentedataans to include marker
information as a correlated trait (with heritalyiléqual to 1). It was assumed that the
marker information dombined genetic effects of those markeshiowed multivariate
normality to develop the model, which according-tmde & Thompson (1990) does
not occur when genotypes representing only a smuatiber of genes are used because
a large proportion of the trait variance is asdedavith the gene or the marker. The
methodology developed by Dekkers (2007) does rawad for changes in the genetic
variance due to changes in gene (allele) frequendlee so-called Bulmer effect
(Bulmer 1971). Several studies have used Dekk2067) methodology to simulate
the impact of including genomic selection into lolieg schemes. Janssen-Tapken et
al. (2010) compared different selection strategieseef cattle using genetic markers
for diseases traits. Togashi & Lin (2010) analysifferent selection methods for
genetic improvement of net merit for two traits hwithe inclusion of marker
information. Pryce & Goddard (2010) presented emeistic model to simulate
genomic selection in dairy cattle using the fouthpeays of selection of Rendel &
Robertson (1950) while accounting for the ratentréeding per generation. In sheep
production, Sise & Amer (2009) presented a detaestmnapproach using selection
index theory to predict the response to genomiectiein in dual purpose sheep flocks.
They showed that when SNP markers were includgzhesof the selection index, the

increase in annual genetic response was due wsthef young rams.

One of the contributions that molecular technolsgiean provide for genetic
improvement might be the inclusion of measuremenith reliable accuracy at

younger ages (Garrick & Snell 2005). This couldaseearly as the embryonic stage
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(Georges & Massey 1991) or even at the gamete (elaéy & Visscher 1998). Other
situations in which these techniques could enh@medreeding schemes may be when
traits are not available at the time of selectibialéy & Visscher 1998; Meuwissen
2003), or when traits are sex-limited (Haley & \élssr 1998).

In the New Zealand sheep industry ewes can givé bortheir first lamb when they
are one-year-old (Kenyon et al. 2008). This creamsopportunity to reduce the
generation interval if one-year old ewes can bed us® mothers of the following
generation. However, it has to be considered thaty@ar-old ewes and ram hoggets
have a lower reproductive performance compared witler animals in the flock
(Kenyon et al. 2007).

The objectives of this study were:

e For one breeding scheme, design a deterministiecseh index model to
include genomic information. Based on this detersti;h model, estimate the
accuracy of selection and the genetic gain fored#ifit selection indices that
include phenotypic and genomic information conjgirdnd also indices with
only marker information.

* By using different breeding schemes, evaluate thygact on the accuracy of
selection and the genetic gain in selection indi@sang phenotypic and marker

information and also indices with only marker infation.

4.3. Materials and methods

The present work is a theoretical study, develapeilustrate the methodology used
to incorporate genomic information into a selectindex. It was not a purpose of the
study to simulate the New Zealand sheep industdetail or to present an optimised
breeding scheme design.

The traits included the breeding objective werecass weight at 160 days (CW),

yearling live weight (YW) and faecal egg score @ tlays (FES). The intent was to:

* Increase CW, because it is an income trait only smedble after slaughter
(Meuwissen 2003),
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» decrease YW, which is a trait measured later i@ #ihd affects maintenance
costs (Nicol & Brookes 2007) and,
» decrease FES, because it is a health and welfatethat affects the profit of

sheep industry (Vagenas et al. 2007).

4.3.1. Genomic selection index conceptualisation

Following Dekkers (2007), the phenoty{f® of a trait was represented as:
P=G+E

with G partitioned as
G=Q+R,

where,

G represents the additive genetic value of the tradgter study,
Q is the genetic effects correlated with SNP genetyp
Ris the residual genetic effects independent @itlarkers,

E is the random environmental effects.

The linear form of the selection index methodolsgggested by Lande & Thompson
(1990) can be represented as:

l; = byQ + bR

which represents the selection index criteria stidpethe SNP genotype information

for the individuali (Q ), the individual's phenotypic informatiorR), and the
regression coefficients for SNP genetic and phgnotynformation b, and b,

respectively.
The selection index equations in matrix form are:
Pb =Ga

where:

P is a variance-covariance matrix with traits in gedection index,
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b is a vector of index weighting factors for SNP gigpes and phenotypic information,
G is a variance-covariance matrix associating traftshe selection index and the
breeding objective,

ais a vector of economic weights for the breedibgective traits.

SNP genotypic information included in the selectimbex was simulated based on the
models presented by Lande & Thompson (1990), Cam¢i®97) and Dekkers
(2007). Correlations between markers (SNP genojyped the traits were derived

using the path coefficient theory diagram presemgdekkers (2007), assuming the

accuracies 01(5 predictor of Q for every SNP genotyp'rézl, or equivalently

Q: Q. Therefore, the genetic correlation between aay énd a SNP genotype trait

can be estimated as:
r =qr
GjQi q| Gij

where:
g is the square root of the proportion of the genetidgance of the trait associated
with the SNP genotypg’ = cg/cg and

rG,j is the genetic correlation between the tradad;.

For the estimation of the phenotypic correlationwsen any trait and the SNP
genotype for trait i, the equation utilised was:

r Q =hq, rGij

J

where:

h; is the square root of the heritability of the ctated traitj.

The heritability of the SNP genotype for traitvas assumed to be 1, meaning that
there was no difference between genetic and phpiotyariances of the SNP
genotype. Covariances were obtained using stargizadtitative genetics theory for
estimating covariances between correlated traiekkBrs 2007; Falconer & Mackay
1996).



68 CHAPTER 4

The accuracy of the selection index ), also known as the correlation between the
selection criteria and the breeding objective, lmamstimated in matrix notation as:

Iy = Jb'Pb)(a'Ca)
where:

C is a variance-covariance matrix of the traitsuded in the breeding objective.

This accuracy of selection was used for estimatirtg annual genetic gain of the
simulated population, based on the pathways modsiepted by Lopez-Villalobos &
Garrick (2005) using Rendel & Robertson (1950) dede pathways theory formula:

AG/yr:Mx

2L

Og

where:

i, represents the intensity of selection for the pathiw
r, the accuracy of selection of animals for piath

L, the generation interval for the pathwiagnd

o IS the standard deviation of the true genetic valu@ matrix notatiorv/a'Ca .

In order to calculate genetic responses in ind@idraits in the selection index, annual

correlated responsesR(/yr) for each trait were estimated using the Turn&5¢)

equation:
)4 )
R AT = b'Pb) * b' Pb
. Le + Ly
where:

G; is the jth column of matri6 of the breeding objective,
b is the regression coefficient vector of the sébectriteria,

P is the phenotypic (co)variance matrix
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Le andLg are the generation intervals of ewes and ramsyagih respectively and

ie andir are the selection intensity of ewes and rams paghwespectively.

4.3.2. Selection scenarios

The present study considered scenarios, one fagumineach of the stated study
objectives. All simulations in both scenarios wdeveloped using the same breeding
objective H) represented as:

H= a'FES BVFES + aCW BVCW+ a’YW BVYW

Where:

H represents the desired breeding objective,

a an economic value of traitand

BV, is the breeding value of trait

The absolute values of the breeding objective emmneoalues §) multiplied by the
trait's genetic standard deviatioss) corresponds to the desired relative economic
weight absolute value (AEW), which were neededitain relative economic weights
(REW) (Table 4.1). Considering the intention ofcemsed YW (decreased
maintenance costs), lower FES (decreased healtk) @sd increased CW (increased

income), positive or negative EV and REW were assilgto the traits.

Table 4.1. Genetic standard deviationg), economic valuesaj, relative economic
weights (REW) and relative economic weights absollues (AEW) of the traits

included in the breeding objective.

Trait 0G a(t) REW AEW
FES 0.78 -10.72 -30% 30
YW (kg) 330 -1.70 -20% 20
CW (kg) 0.83 16.93 50% 50
Total 100%

'FES= faecal egg score defined as cubic root of murnbeggs per gram [(egg§/’§])
YW= yearling live weight and CW = carcass weigh1@0 days.
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4.3.2.1. Scenario 1: Different selection indices including ghomic information

The purpose of developing this scenario was touatal the effect of including
genomic information into a selection index. Sevelkction indices were created to
account for different proportions of genetic vadanexplained by the included
markers. All indices in this scenario were simullateder the same breeding scheme
which was defined as a set of organised stepsrtblatded reproductive, management
and economic and productive decisions conducteskkect the animals predicted to

have the best genetic merit.

The phenotypic and genetic parameters for the gatwe traits required to obtain the
selection index weighting factors for a sheep papoh (Table 4.2) were obtained
from Bennett et al. (1991) and Huisman & Brown ahdisman et al. (2008). The
traits included in the selection index were liveigi® at 160 days (160W), FES and
YW, and the traits included in the breeding objexivere CW, FES and YW.

Genetic and phenotypi€(andP) and residualR-G) covariance matrices were tested
to be positive definite. The residual covariancetrinawas not positive definite,
therefore a bending process was utilised to malmsitive definite and then the

matrix was recalculated.

Table 4.2. Phenotypic standard deviatiosp)( heritability (diagonal), phenotypic
(above diagonal) and genetic (below diagonal) tations of traits considered in

selection index and breeding objective for sheepetie improvement.

Correlations

Trait Unit op 160W CwW FES YW
160W Kg 4.524 0.54 0.94 -0.01 0.65
Cw Kg 1.766 0.92 0.22 -0.01 0.61
FES Score 1.483 0.34 0.31 0.28 0.1
YW Kg 5.216 0.76 0.69 0.13 0.40

1160W= live weight at 160 days, CW = carcass weaht60 days, FES= faecal egg
score defined as cubic root of number of eggs pEnd(eggs/g)1/3] and YW= yearling
live weight.

Table 4.3 describes all the simulated selectialices which can be summarised as

follows:
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A phenotypic-based (PI) multi-trait selection indesontaining three traits

(160W, FES and YW) as selection index, with YW &5 also being included

in H.

» Eight selection indices that adds one SNP gendiypeto Pl as selection index.

The SNP genotypes included as partothe first one (Mw) linked to CW and

the second (My) associated to YW. Each explained four differestcpntages

of the genetic variance of the respective traifd (1. 30 and 50%).

» Sixteen selection indices that add two SNP genstypew anaMyw) to Pl as

selection index. Each SNP genotype was correlateallt traits in H and

represented different genetic variance proportadrike traits.

» Sixteen selection index using onlycM anaMyw as selection criteria. Each SNP

genotype was correlated to Hltraits and represented different genetic variance

proportions for each trait. No phenotypic inforroatiwas included in these

selection indices.

The selection index equations in matrix form usadHI that added 2 correlated SNP

genotypes with thél traits were:

o Op
60N 160W,FES
2
o
Presioow 7 Pres
o o
Rwzsow Rwres
o o
G oy 1600 CM oy FES
o o
Gy 160 Gy FES
o o
GieonFES Greanyw
2
o o
Gres Gresyw
2
o o
GywFes Gyw
o o
CMoy FES Gy w
o o
CMywFES Gy yw
where:
2 2
0p Op O

i FivJ
)

o
|le(W,WV

o
F’FESWV

Og

Mew, YW

o
Myw

o
Groncw

o
Grescw

o
Gyw,ew

o
G
Mew CW

o
G
Myw . CW |

o
GlGON,MCW

Myw:Mcw

aFES

Gcw

o
CreomMyy

o
Cresmyy
o2
Myw
0g
Mew:Myw

2
Myw

bioow | =
Bees

B

Mcw

b
b

Myw |

Og . . . :
S and % are the phenotypic and genetic variances and @wes of the

traits i and J, respectively,
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b and a are the regression coefficients and the economaiceg for the trait,
respectively.

The G matrix has an order of 5x3.

Two selection pathways were simulated (Figureahd Table 4.4). The first pathway
(Ewes) considers 300 breeding ewes (Garrick et2@00) reproduced by natural
mating, with 84 ewes being replaced every yearlamibing ages ranging between 2
and 5 years (Table 4.5). The second pathway (Raorgisted of 4.5 rams selected
from 202.5 male lambs; once selected these anweiks used for two mating seasons.
All animals (rams and ewes) were first mated at yle&rs old having their first
offspring at 2 years old. The average number obktmorn per ewe was assumed at
1.5, with a mortality of 10% during the first yedihe total number of rams in the flock

was assumed to be 3% of the total number of ewes.
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Table 4.3. Selection indices including SNP genotypesyMand M) explaining
different percentages (1, 10, 30, 50%) of the d¢ated trait genetic variance.

Percentage of genetic variance

Selection Index

Mcw Mvw
PIt
Pl+Mcwl 1
Pl+Mcw10 10
Pl+Mcw30 30
Pl+Mcw50 50
Pl+Myw1 1
Pl+Myw10 10
Pl+Myw30 30
Pl+Myw50 50
Pl+Mcwl-Myw1 1 1
Pl+Mcwl-Myw 10 1 10
Pl+Mcwl-Myw30 1 30
Pl+Mcwl-Myw50 1 50
Pl+Mcwl0-Myw1 10 1
Pl+Mcwl10-Myw10 10 10
Pl+Mcw10-Myw30 10 30
Pl+Mcw10-Myw50 10 50
Pl+Mcw30-Myw 1 30 1
Pl+Mcw30-Myw10 30 10
P1+Mcw30-Myw30 30 30
Pl+Mcw30-Myw50 30 50
Pl+Mcw50-Myw 1 50 1
P1+Mcw50-Myw10 50 10
Pl+Mcw50-Myw30 50 30
P1+Mcw50-Myw/50 50 50
Mcewl-Mywl 1 1
Mcwl-Myw10 1 10
Mcwl-Myw30 1 30
Mcwl-Myw50 1 50
McewlO0-Mywl 10 1
Mcwl0-Myw10 10 10
M cwl0-Myw30 10 30
M cwl0-Myw50 10 50
Mcw30-Myw1 30 1
Mcw30-Myw 10 30 10
M cw30-Myw30 30 30
M cw30-Myw50 30 50
Mcwb0-Myw1 50 1
Mcwb0-Myw10 50 10
M cwb0-Myw30 50 30
M cwb0-Myw50 50 50

'P|1= phenotypic information selection index incluglib60W+FES+YW as traits,
160W= live weight at 160 days, CW = carcass weigtit60 days, FES= faecal egg
score and YW= yearling live weight.
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L. 300 ewes & 9 rams g
Replacements Replacements
84 (2 year-old y 4.5 (2 year-old
ewe hoggets) 450 born lambs rams)

(1.5 lambs per ewe)

20259 | | 20253 |

Figure 4.1. Two pathways of selection breeding schemectsire for the simulated
sheep nucleus.

Table 4.4. Population parameters to simulate two pathwayselection (ewes and
rams pathways), for a selection index with ram®del at 1 year old and ewes
lambing from 2 to 5 years old.

Selection Population  Number Proportion Generation
Pathway Size selected selected Interval
Ewes 202.5 84 0.4148 3.4
Rams 202.5 4.5 0.0222 2.5

Table4.5. Age structure for ewes over two years, olé afeterministically simulated

sheep nucleus.

Age in years 2 3 4 5 Total
Ewes % 28% 26% 24% 22% 100%

4.3.2.2. Scenario 2: Using genomic information to change ags selection

The same SNP genotypes considered in scenaridgdnd M) were included as
components of the selection index. Each SNP geeratyplained only 1% or 10% of
the genetic variance of their correlated trait (€ad.6). The inclusion of SNP
genotypes as part of the selection criteria wa®un@gd on the age at sampling of the
males. Therefore, three different periods of datarding or selection were simulated
(Table 4.7):

« Males of 1 year old, using only phenotypic dataevexcorded.
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* Males at 160 days old, in which 160W and FES wemonded and My was
genotyped, both were included as selection criteria
* Males sampled at birth for M, and My as traits included in the selection

criteria.

The differences of the selection indices for scenarcompared with scenario“ere,
that in scenario 2 the SNP genotypes were not dieclitogether with the correlated
trait in the selection index but instead they silnstd for them (Table 4.6). This
reduced the age of the animals at selection. Teedimg scheme SS1 (Table 4.7) was
the same used for scenario 1. Selection using genaformation was carried through
the males of the population, to reduce the numbsamples needed to be taken from

the whole population. Table 4.8 shows the ewekflge structure.

Table 4.6. Selection indices using phenotypic data (166®5 and YW) and SNP
genotypes (Mw and M) explaining different percentages of the genetidance of

the trait (%s2).

Trait
Mcw  Mvw
(%02) (%02)

Selection
Index 160W FES YW

Pl v v v

Myw1 v v 1
McwlMyw1 1 1
Myw10 v v 10
Mcwl10Myw10 10 10

1160W= live weight at 160 days, FES= faecal eggescoW= yearling live weight,
Mcw= SNP genotype for CW andy= SNP genotype for YW.

The scenario considered a breeding nucleus of &BBihg ewes (Garrick et al. 2000)
simulated as base population. The ewes were bredhtoyal mating, and had two age

structures (Tables 4.7 and 4.8) implemented as:

* Ages ranging from 2 to 5 years old at lambing (E2)d with a prolificacy of
150%.

» Ages ranging from 1 to 4 years old at lambing (Eii}h 136% lambs per ewe
due to lower prolificacy of the ewe lambs (Kenydrak 2008; Mulvaney et al.
2010; Notter 2000).
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For males having their last trait recorded at omar pf age a ram to ewe ratio of 1:33.3
was used. A ratio of 1:20 rams per ewe was used \ahénals were genotyped for
selection at ages younger than one year, and wgearlold when offspring were born
(Kenyon et al. 2007).

Based on the previous information two selectionhpalys were simulated, one
pathway for ewes and another pathway for rams .eBafices of population sizes and
number of animal selected (Table 4.4 and Appesdi@able A4.1 to Table A4.5) were

due to different prolificacy rates and ram to eatos used.

Table 4.7. Simulated breeding schemes and selection @adior the genetic
improvement of a 300-ewe flock size using two ddfeé ewes age structure
considering the inclusion of SNP genotypescgMand M) explaining different
percentage of the genetic variance of their cadldraits according to the males

selection age.

Males Number Ewesage Ewe

Bsrfﬁgr':g Slilgte:illon selection of years range at prolificacy Ra:;r;{gwe
age mated  lambing (%)

SS1 Pl 1 year 2 150 1:33.3
SS2(a) Mwl 160 days 1 2105 150 1:20
SS2(b)  Mwi10 160 days 1 years 150 1:20
SS2(c) MwlMywl At birth 1 150 1:20
SS2(d)  MwlOMyw10 At birth 1 150 1:20
SS3 PI 1 year 2 136 1:33.3
SS4(a) Mwl 160 days 1 1104 136 1:20
SS4(b)  Mwi10 160 days 1 136 1:20
SS4(c) MwlMywl  Atbirth 1 years 136 1:20
SS4(d)  MwlOMyw10 At birth 1 136 1:20

! Refer to table 4.6

Table4.8. Age structures of the two nucleus flocks.

Ewes age structure Ewes%
) 28% 26% 24% 2206

El 1 2 3 4
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4.4. Results

4.4.1. Scenario 1 (Typical flock age structure)

The predicted rate of genetic gain in the breedibppctive using a selection index
based on only phenotypic information (PI) was 2.Z8&ar with an accuracy of 0.440
(Figure 4.2, Table A4.6). The rate of genetingaias also 2.796 ¢/year for Pl+l

and it slightly increased to 2.810 ¢/year for PiyMwhen they were incorporated in
the selection index explaining 1% of the genetigarace. When only one of the SNP
genotypes (Mw or Myw) was incorporated to PI, the genetic gains andiractes

obtained by PI+Mw were higher than PI-My when comparing the same proportion

of genetic variance explained.

Using the same breeding scheme in all scenarigsyaces of selection indices using
only marker information (Figure 4.3, Table A4Wgre lower, compared to those
obtained with selection indices that conjointly h@enotypic and marker information
(Figure 4.2) when considering the same proporiowariance explained by &y and
Myw. The highest accuracy in Figure 4.2 was 0.56%teMcy50 with My included

at any proportion of YW genetic variance (0, 1, 30,and 50%). These combinations
generated a predicted genetic gain of 3.62 ¢/y.higeest accuracy in Figure 4.3 was
0.469 for Mcw50-Myw50 giving a genetic gain of 2.982 ¢/y.
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Figure4.2. Genetic gains (shown in bars) and accuradisglection (scattered lines)
for different selection indices including phenotypinformation (Pl) and SNP
genotypes (Mw and Mny) explaining different proportions (1, 10, 30 ar@®g of the

total genetic variance of carcass weight (CW) agatling live weight (YW) evaluated

in a sheep nucleus.
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Figure4.3. Genetic gains (shown in bars) and accuradisglection (scattered lines)
for different selection indices including only plegypic information (PI), or having
only SNP genotypes (My and M) explaining different proportions (1, 10, 30 and
50%) of the total genetic variance of carcass we{@W) and yearling live weight

(YW) evaluated in a sheep nucleus.

Annual predicted correlated genetic responses &IW, FES, YW and CW are
presented in Figure 4.4 (from Table A4.8). Thghlkst gain for each of the included
traits (all positive values), occurred when PliWMyy accounted for 50% of both

CWosi and YWsZ. For FES the same gain was obtained using the Ri+Mw
index when Myw accounted for 50% of CW¢ and My accounted for 10 and 30% of
YW ol (Figure 4.4-b). For CW the highest genetic respowas obtained using the
Pl+Mcw-Myw index when My accounted for 50% of CWE and Myw accounting for

30% of YW (Figure 4.4-d). The lowest gains for correlatets was when Pl was
applied with no marker information included in tbelection index. The same values

were obtained for FES and CW in PkMwhen My accounted for 1% of YW3 .
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Figure 4.5 and Table A4.9 show correlated resporiesr 160W, FES, YW and CW
when selecting on SNP genotypes only. The lowest galues for each of the

included traits were obtained whencMMyw accounts for 1% of both C¥¢ and
YW ¢ . The highest annual predicted genetic value f@énd CW was achieved
by Mcwb0-Myw50. The highest gain value for YW was achieved ignwNVyw with
Mcw accounting for 1% of CW2 and My accounting for 50% of YWZ . For FES
(Figure 4.5b) the highest gain value (being undést as the lowest is better) was
obtained in all the percentages of W (1, 10, 30 and 50% of YW:) when Mew

accounted for 50% of CW .
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Figure4.5. Genetic responses per year of (a) live weajiit60 days (160W), yearling
weight (YW) and carcass weight (CW) and (b) faesgd score (FES) (shapes), for

different selection indices (colours) having onNSgenotypes (My and Mw).

4.4.2. Scenario 2 (Using ram and ewe lambs as parents)

The accuracies of selection between the same sehletters (a,b,c,d) shown in Table

4.9 are the same because the sources of infommeateothe same. The highest accuracy

and genetic gain were obtained by using selectidex My 10 in breeding schemes

SS2 and SS4. When the female generation intervalraduced higher genetic gains
were achieved compared to their respective seleatidices when ewe first lambed at

2 years old (Table 4.9).
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Table 4.9. Genetic gains in the breeding objective antui@cies of selection with
ewes ages from 2 to 5 years old (SS1 and SS2)rand X to 4 years (SS3 and SS4),
for different breeding schemes and selection irgdiwéh Mcyw and My explaining
1% and 10% of the genetic variance for CW and YW.

Breeding scheme  Selection index Genetic gain Accurac_;y of

(¢/year) selection
ss1t PI 2.796 0.4399
SS2(af  Mywl 3.198 0.4400
SS2(bY  Myw10 3.206 0.4412
SS2(cf  Mawl-Mywl 0.520 0.0715
SS2(df  Mcwl0-Myw10 1.610 0.2216
ss3t PI 3.162 0.4399
SS4(af  Mywl 3.806 0.4400
SS4(bf  Mywl0 3.816 0.4412
SS4(cf  Mawl-Mywl 0.619 0.0715
SS4(dY  Mawl0-Myw10 1.916 0.2216

' Ram generation interval) = 2.5 years® RamL = 1 year

Figure 4.6 and Table A4.10 shows the geneticaresgs per year for 160W, FES, YW
and CW, using different breeding schemes and safestdices. It can be seen that a
selection indices with lower female generationrnva(SS3 and SS4) achieved greater
genetic gain in all traits compared with the cgomexlent selection indices using SS1
and SS2 breeding schemes. The use of Pl achiegb@rhvalues than M1-Mywl
and M.w10-Myw10 (except FES) but lower thanyil and My10 (except CW SS2
and 160W SS2 and SS4).
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Figure 4.6. Correlated responses for (a) live weight a@ #idys (160W), yearling
weight (YW) and carcass weight (CW) and (b) faesgd score (FES) (shapes), using
different selection index (colours) within four f@ifent breeding schemes (SS1-SS4(d)
from Table4.7) with Mcw and My explaining 1% and 10% of CW and YW total

genetic variance.

4. 5. Discussion

Results from scenario 1 suggest that the use ddrgeninformation in combination
with phenotypic information can increase the gengéin compared with a traditional
selection index without genomic information. As geeted in Figure 4.2, Pl+W
obtained higher genetic gains compared with RigNbr all the different proportions
of genetic variance explained by the SNP genotypbs is due to the higher REW
assigned to CW compared to YW (50 v/s -20% respelgh. This big difference
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between the REWs was selected in order to limitgdmeetic gain of YW in favour of
CW due to the higher heritability that YW has (0gmpared with CW (0.22),
expressing that a higher heritability represenitsgaer proportion of the phenotype is
determine by the trait's genotype (Falconer & Mgcka96).

The use of My and My in combination with PI (P1+My~-Mcw Figure 4.2) increased
genetic gains and accuracies of selection comp@arddl. Different levels of genetic
gains and accuracies of prediction can be appegtid¢pending on the proportion of
genetic variance explained by each SNP genotypisadtias stated by Hayes et al.
(2010b). This was shown in Figures 4.2 and 4.3,revimeuch higher rates of genetic
gains were obtained when the genomic informatiatushed into the selection index

explained higher percentages of the total genati@mmce (30% and 50%).

In relation to the accuracies of selection, andsm®ring that for scenario one the
same breeding scheme was used for all selectioicemdthe results obtained by
indices without phenotypic information (Figure ¥ W®&ere lower compared to the
results obtained using selection indices havingnptyic and genomic information
together (Figure 4.2). These results are in ageeeémvith Janssen-Tapken et al.
(2010).

One of the advantages of using genomic informatiorselection indices is the
possibility of selecting animals at younger agesabse the genetic merit of the
animals can be estimated immediately after birtherathan waiting for the animal to
produce phenotypic records. A consequence of thidy eselection is that the
generation interval can be decreased and subségugmrietic gain will increase,
providing accuracy of selection is maintained (@esr& Massey 1991; Goddard et al.
2010; Haley & Visscher 1998; Meuwissen 2003; Sdea&f006; Spelman et al. 2012).
Supporting evidence is provided in Table 4.9; tmdy adifference between these
selection indices being the age structures utilisetthe respective breeding schemes.
The results show that a breeding scheme that dexsdhe generation interval of the
breeding population can increase the rate of gengdin in the nucleus flock.
Moreover, it is apparent that when SNP genotypes iacluded conjointly with
phenotypic information, higher genetic gains camabkieved in association with the
reduction of the generation interval. This occusrehaving selection indices with
higher proportions of the traits genetic varianeeglained by the SNP genotype.
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Even though in scenario 210 only described 10% of Y\£, and it's correlated

response was not the highest of all the simulatdatés the genetic gain obtained by
SS4(b) (Table 4.9) was the highest outcome ofhalstudy. This demonstrates that
reducing the generation interval is critical to abt higher rates of genetic

improvement.

The economic value applied in the breeding objector FES achieved the proposed
objective of minimising the traits genetic change the population when traits
correlated to FES were included in the selectiaex(Figures 4.4, 4.5-b and 4.6-b).
When no phenotypic information was included in #eadection index, correlated
responses in FES became positive but with valuesedo 0. This can be explained
because the model was simulated considering tipectge covariances between SNP

genotypes and FES which were very low (the highestig 0.17 foraGM - with
YW

Myw representing 50% of YW genetic variance).

For YW correlated responses, when the correlataitl phenotypic data is included
jointly with Myw using the same breeding scheme (Figure 4.4-e)ydlues obtained
were all higher than when using Pl alone. Likewisben no phenotypic information
was used (Figure 4.5-a and selection indices ) @) on Figure 4.6-a) values

obtained with Mw and My representing 1% and 10% of G and YWsZ were all

lower than the gain obtained under PIl. As a redb#, objective of lowering YW
genetic responses was very difficult to achievehwiite traits included in the model.
This is because of the high positive genetic catiah between YW and CW (0.7) and
YW and 160W (0.76).

Correlated responses in CW were all positive (Fegut.4, 4.5-a and 4.6-a) with some

being close to the response obtained with PIl, sag;hPI-Myy representing 1% of
YW o2 (Figure 4.4). The correlated responses for YW @kd shown in Figures 4.4
and 4.5-a reflect the high positive correlationNn the two traits. Thus even though

opposite genetic gains are desired (positive in @G¥gative in YW), the chosen REWs

did not enable this to occur.

This study provides a theoretical framework to sthate the use of genomic

information with selection index theory. But theeusf more complex statistical and
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genetic procedures are needed to simulate morésehethe application of this new
technology. For example, the implementation of ecoic analysis taking into account
costs and benefits of the application of molectésrhniques are needed (Ruane &
Sonnino 2007; Sonnino et al. 2007). Also, it mustibted that the change in genetic
variance with time also known as Bulmer effect (Bef 1971; Dekkers 2007;
Falconer & Mackay 1996), was not accounted fothm present study. Therefore, the
predicted genetic gains are likely to be overedtnaf the true genetic gain when the
Bulmer effect is accounted for (Bulmer 1971). Thisblem can be addressed using

stochastic simulation models considering severatgjeand is the subject of chapter 5.

4.6. Conclusions

The results obtained in this study illustrate tim¢eptial effects of genomic selection
on the rate of genetic gain in a nucleus flock.iBwing Pl outcomes of scenario one,
an increase of genetic gain and accuracy can be whken genomic information is

included together with phenotypic information. Agiected, as the proportion of the
trait explained by each SNP genotype increasest does the rate of gain in the
objective. Considering that several traits canrimduded in a selection index, special
care has to be taken when including correlatetstraith high heritabilities in order to

assign appropriate economic values to achieveieedegenetic response.

Under the same breeding scheme, the results frenpridsent study suggest that the
use of genomic information without phenotypic imf@tion can result in lower
selection accuracies and lower genetic gains cosdp@r a selection index using only
phenotypic information. Higher genetic gains canel@ected using just genotypic
information (and higher accuracies) if the genatyipformation accounts for a large
proportion of the objective trait's genetic varienBased on the results obtained for a
selection index using phenotypic and genomic infdram together, the inclusion of a
SNP genotype that explains only a low proportiontied correlated trait's genetic
variance is not the best alternative to achieveatgregenetic and economic gains,
unless a reduction of the generation interval lsea@d. The best genetic responses for
the individual traits did not always lead to thestbgenetic gain in the objective and

therefore the best economic outcome.
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To assess more accurately the effect of includiegogiic information into a sheep
breeding programme, stochastic models have to Ipdemented. This will give the
flexibility to control different aspects such asveanmental effects, population
structure, farm management and the number of traidsided. In addition, selection
index predictions ignore changes in genetic vagarchanges (Dekkers 2007). Thus,
the use of stochastic models will better demorestiahg term effects of genomic

selection on selection accuracies and genetic gaa®reeding population.

4.7. Appendix to chapter 4

Table A.1. Population parameters to simulate two pathwdyselection (ewes and
rams pathways), for a selection index with ramedet at 1 year old and ewes ages

from 1 to 4 years old.

Selection Population Number Proportion Generation
Pathway Size selected selected Interval
Ewes 183.6 84 0.4575 2.54
Rams 183.6 4.5 0.0245 2.50

Table A4.2. Population parameters to simulate two pathwdyselection (ewes and
rams pathways), for a selection index with ramectetl at 160 days old and ewes ages
from 2 to 5 years old.

Selection Population Number Proportion Generation
Pathway Size selected selected Interval
Ewes 202.5 84 0.4148 3.40
Rams 202.5 15 0.0741 1.00

Table A4.3. Population parameters to simulate two pathwdyselection (ewes and
rams pathways), for a selection index with ramecet at 160 days old and ewes ages

from 1 to 4 years old.

Selection Population Number Proportion Generation
Pathway Size selected selected Interval
Ewes 183.6 84 0.4575 2.54

Rams 183.6 15 0.0817 1.00




Genomic deterministic simulation 89

Table A4.4. Population parameters to simulate two pathwdyselection (ewes and
rams pathways), for a selection index with ramedet at birth and ewes ages from 2

to 5 years old.

Selection Population Number Proportion Generation
Pathway Size selected selected Interval
Ewes 202.5 84 0.4148 3.40
Rams 202.5 15 0.0741 1.00

Table A4.5. Population parameters to simulate two pathwdyselection (ewes and
rams pathways), for a selection index with ramedet at birth and ewes ages from 1

to 4 years old.

Selection Population Number Proportion Generation
Pathway Size selected selected Interval
Ewes 183.6 84 0.4575 2.54

Rams 183.6 15 0.0817 1.00
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Table A.6. Genetic gains and accuracies of selectiorsétection indices including

phenotypic information (P1) and SNP genotypesgMnd M) explaining different

proportions (1%,10%,30% and 50%) of the total genedriance of carcass weight

(CW) and yearling weight (YW) respectively.

L Genetic gain Accuracy of

Selection index (¢hy) selection
Pl 2.796 0.440
Pl+Mcwl 2.810 0.442
Pl+Mcwl10 2.942 0.463
Pl+Mcw30 3.258 0.513
Pl+Mcw50 3.617 0.569
Pl+Myw1 2.796 0.440
Pl+Myw10 2.804 0.441
Pl+Myw30 2.822 0.444
P1+Myw50 2.844 0.448
Pl+Mcwl-Myw1 2.811 0.442
Pl+Mcwl-Myw10 2.812 0.442
Pl+Mcwl-Myw30 2.836 0.446
Pl+Mcwl-Myw50 2.857 0.450
Pl+Mcwl10-Myw1 2.942 0.463
Pl+Mcwl10-Myw 10 2.947 0.464
PH‘MCW:I.O'MYWgO 2.960 0.466
P|+Mcwlo'Myw5O 2.976 0.468
Pl+Mcw30-Myw 1 3.259 0.513
Pl+Mcw30'MywlO 3.260 0.513
PH‘MCWgO'MYWgO 3.265 0.514
Pl+Mcw30-Myw/50 3.270 0.515
Pl+Mcw50-Myw1 3.617 0.569
P|+Mcw50'MywlO 3.617 0.569
Pl+Mcw50-Myw 30 3.617 0.569
Pl+Mcw50-Myw/50 3.618 0.569
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Table A.7. Genetic gains and accuracies for a selectidax including phenotypic
information (PIl) and selection indices having o8IMP genotypes (Mv and M)
explaining different proportions (1%, 10%, 30% &@d6) of the total genetic variance
of carcass weight (CW) and yearling weight (YW )pagively.

Accuracy of

Selection index Genetic gain (¢/y) selection
Pl 2.796 0.440
Mcwl-Mywl 0.454 0.072
Mcwl-Myw10 0.687 0.108
Mcwl-Myw30 1.032 0.162
Mcwl-Myw50 1.287 0.203
Mcwl0-Myw1 1.338 0.211
Mcwl0-Myw 10 1.408 0.222
M cwl10-Myw 30 1.554 0.244
M cwl0-Myw50 1.689 0.266
Mcw30-Myw1 2.306 0.363
Mcw30-Myw 10 2.321 0.365
M cw30-Myw 30 2.355 0.371
M cw30-Myw50 2.391 0.376
Mcw50-Myw1 2.975 0.468
Mcwb0-Myw 10 2.976 0.468
M cw50-Myw30 2.979 0.469
M cw50-Myw50 2.982 0.469

'PI= phenotypic information selection index incluglib60W+FES+YW as traits,
160W= live weight at 160 days, CW = carcass weajlit60 days, FES= faecal egg
score and YW= yearling live weight.
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Table A4.8. Correlated responses year of live weight & d&ys (160W), faecal egg
score (FES), yearling weight (YW) and carcass we(@W), for selection indices
including phenotypic information (PI) and SNP gemeats (Mcw and M) explaining
different proportions (1%,10%,30% and 50%) of thiltgenetic variance of CW and
YW respectively.

Correlation response

Selection index 160W FES YW Cw

Pl 1.006 -0.012 0.726 0.231
Pl+Mcwl 1.009 -0.011 0.728 0.232
Pl+Mcw10 1.030 -0.009 0.749 0.243
Pl+Mcw30 1.087 -0.003 0.802 0.271
Pl+Mcw50 1.156 0.002 0.864 0.302
Pl+Myw1l 1.008 -0.012 0.728 0.231
Pl+Myw10 1.019 -0.011 0.749 0.234
Pl+Myw30 1.049 -0.011 0.803 0.240
Pl+Myw50 1.084 -0.010 0.867 0.249
Pl+Mcwl-Mywl 1.010 -0.011 0.730 0.232

Pl+Mcwl-Myw10 1.022 -0.011 0.754 0.235
Pl+Mcwl-Myw30 1.050 -0.011 0.804 0.241
Pl+Mcwl-Myw50 1.085 -0.010 0.867 0.249
Pl+Mcw10-Myw1 1.031 -0.009 0.751 0.244
Pl+Mcwl0-Myw10  1.041 -0.009 0.768  0.246
Pl+Mcwl0-Myw30  1.065 -0.008 0.812  0.251
Pl+Mcw10-Myy50  1.094 -0.008 0.865  0.258
Pl+Mcw30-Myw1 1.087 -0.003 0.803 0.271
Pl+Mcw30-Myw10  1.092 -0.003 0.812 0.272
Pl+Mcw30-Myy30  1.105 -0.003 0.836  0.275
Pl+Mcw30-Mywy50  1.121  -0.003 0.866  0.278
Pl+McwS0-Myw 1 1.156 0.002 0.864 0.302
Pl+Mcw50-Myw10  1.157 0.003  0.866  0.302
PlI+Mcw50-Myy30  1.159  0.003 0.870  0.303
Pl+Mcw50-Myw50  1.162  0.003  0.875  0.303




Genomic deterministic simulation 93

Table A4.9. Correlated responses year of live weight & d&ys (160W), faecal egg
score (FES), yearling weight (YW) and carcass we(@W), for selection indices
having only SNP genotypes gW and M) explaining different proportions
(1%,10%,30% and 50%) of the total genetic variaofd8W and YW respectively.

Correlation response

Selection index 160W FES YW CW

Mcwl-Myw1 0.213 0.015 0.190 0.055
Mcwl-Myw10 0.458 0.023 0.542 0.109
Mcwl-Myw30 0.776 0.034 0978 0.181
Mcwl-Myw50 1.000 0.042 1.279 0.231
McwlO0-Mywl 0.555 0.044 0.427 0.150
Mcwl10-Myw10 0.650 0.046 0571 0.170
Mcw10-Myw30 0.837 0.051 0.855 0.210
Mcw10-Myw50 1.003 0.056 1.103  0.246
Mcw30-Myw1 0.947 0.076 0.717 0.256
Mcw30-Myw10 0977 0.076 0.766  0.262
Mcw30-Myw30 1.045 0.077 0.879 0.276
Mcw30-Myw50 1.117 0.079 0.995 0.291
McwS0-Myw1 1.218 0.098 0.920 0.330
Mcw50-Myw10 1225 0.098 0931 0.331
Mcw50-Myw30 1241 0.098 0.959 0.334
M cwS0-Myw50 1258 0.098 0.990 0.338

Table A4.10. Correlated responses year of live weight6@t days (160W), faecal egg
score (FES), yearling weight (YW) and carcass we{@W), for different breeding
schemes and selection indices witkiand M explaining 1% and 10% of CW and

YW total genetic variance.

Correlation response
160W FES YW CW

Breeding schemeSelection index

SS1 Pl 1.006 -0.0120.726 0.231
SS2 Mwl 1.152 -0.013 0.833 0.264
SS2 Mw10 1.165 -0.013 0.857 0.267
SS2 Mwl-Mywl 0.243 0.017 0.217 0.063
SS2 Mw10-Myw10 0.743 0.053 0.653 0.194
SS3 Pl 1.138 -0.0130.821 0.261
SS4 Mwl 1.371 -0.016 0.991 0.314
SS4 Mw10 1.387 -0.0151.020 0.318
SS4 Mwl-Myw1 0.290 0.020 0.259 0.075

SS4 Mw10-Myw10 0.884 0.063 0.778 0.231







CHAPTER 5

Stochastic simulation model for sheep breeding schies using genomic

selection and multitrait total merit index
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5.1. Abstract

New DNA technologies allow the identification of rggic markers related to
production traits, providing information to predgenomic breeding values for those
animal traits at early age. The inclusion of tm$rmation into breeding schemes
could allow the selection of breeding stock in patages of their life. The present
study developed a stochastic model that simulatstieep breeding flock in which
females were selected based on breeding valugsagstl using best linear unbiased
predictor methodology and males were selected usithg genomic breeding values
for carcass weight estimated with a genomic beseali unbiased predictor
methodology. The breeding objective of the simwabeeeding population was to
reduce the parasite load by decreasing faecal egg;sto reduce maintenance feed
costs in ewes by decreasing yearling weight anidhfoove the income of the system
by augmenting 160 day lamb carcass weight. The genmformation included to
estimate the genomic breeding values represent#d dIthe carcass weight genetic
variance, a trait that can not be measured in divamimals. Results of this study
showed an increasing accuracy for genomic selea®mphenotypic information is
added to the training population. Also, proportibnehigher genetic gains were
obtained for carcass weight compared with the atiraulated traits. This proved that
the use of genomic selection combined with a nmaltitselection index could be a
valid option for increasing the genetic gains ditt recorded expressed after the

animals have been selected for breeding.

5.2. Introduction

The sheep industry is comprised of several distbreeding populations (typically
breeds), and each of these populations will berpssing at various rates of genetic

improvement. There are four factors that contrelrtite of towards the breeding goal:

* Intensity of selection
» Selection accuracy
* Genetic standard deviation

* Generation interval
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These four factors that control the rate of geneltienge are interdependent, so rather
than seeking to either maximise or minimise eadhtofa it is necessary to consider
them jointly to optimise the rate of genetic cha(@kir & Garrick 2007).

The breeding goal of most sheep industries arobhedvorld is to identify animals of
high genetic merit in traits that improves the grof the production system. Selection
for economically important quantitative traits imegp is traditionally based on
phenotypic records of the individual or relativEstimated breeding values, based on
this phenotypic data, are commonly calculated bgt bmear unbiased prediction
(BLUP), using phenotypic records (Meuwissen et24101). With respect to New
Zealand, initial sheep genetic evaluations wereedasn best linear prediction
procedures, but as computing capacity allowed, BLW&s introduced (Blair &
Garrick 2007).

The development of useful breeding schemes is notasy task, with several
processes needing to be considered. Harris et18B4), proposed a nine step
systematic approach to build a comprehensive anbre¢ding scheme, which was
used to develop a computer simulation model tatiezly analyse different breeding

plans for broiler chickens.

Computer stochastic simulations can be describedatlsematical routines developed
with randomly generated parameters using predefidisttibutions, imitating the
internal processes of a system (Moore & McCabe 1B@&ihgruber & Gregory 1994).
This technique has been widely used to evaluatediorg schemes in different species
like, goats (Analla et al. 1995), swine (Pomarleil@91), dairy sheep (Smulders et al.
2007) or dairy cattle (Sérensen et al. 1999).

One or several genes producing an effect of anysumable level on a quantitative trait
are called quantitative trait loci (QTL) (Hayes &@lard 2001), and if the measurable
trait is of economic importance the genes are dadleonomic trait loci (Garrick &
Snell 2005). Georges and Massey (1991), statedthieaphenotypic expression of a
trait in an animal is due the combination betwesa énvironmental effects and the
effect of several “polygenes” known as QuantitatiVeait Loci. Therefore as

guantitative traits are usually affected by mangeagethe benefit from selection using
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genetic markers is limited by the proportion of tienetic variance explained by the
QTL (Meuwissen et al. 2001).

A single nucleotide polymorphism (SNP) can be defims a genetic marker that is
characterised by the variation in a nucleotide sihgle base (Garrick & Snell 2005).
The availability of thousands of SNPs spread actiesgienome gives the opportunity
to include genome-wide marker information to predatal breeding values for the
species under study and allows genomic selectiatugCet al. 2008; Meuwissen et al.
2001).

The term genomic selection was first proposed bifeHet al. (1990), but the
mathematical procedure was first described by Mssen et al. (2001). In genomic
selection, breeding values are predicted usingge laumber of marker haplotypes
across the entire genome (Calus et al. 2008). fidery behind this statement is, that
some markers very near to a QTL could be combinéal an haplotype. Therefore
chromosome segments containing the same haplotyossibly are going to be
identical by descent (IBD) and consequently haeesiime QTL allele (Meuwissen et
al. 2001).

The tendency of some alleles at two different kocbe inherited together, generally
because they are physically very close, is knownirdsage disequilibrium (LD)

(Falconer & Mackay 1996; Ruane & Sonnino 2007).sThon-random association
between alleles is expressed based on the amouatainbination between two loci

during the gametic recombination phase (Falconktatkay 1996).

Considering all the previous statements, it is idsdo state that genomic selection is
a method that allows the estimation of genomic direg values (GBV) without

phenotypic information on the animals under sebectiThe genetic merit would then
be calculated by summing up the values of eachemsaly chromosomal segment
(Garrick & Snell 2005). As a result, breeding schentan be adapted to select
breeding stock based on a ranking of the animaB¥<; this could be done in early
stages of their life (for example at birth), aclmgyvan increase in the trait's genetic

gain providing the breeding scheme's generati@rvat is reduced (Pryce et al. 2010).

Based on Meuwissen et al. (2001), several studaee Ibeen developed to evaluate
different methods to incorporate genomic informatio obtain GBVs. But regarding
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deterministic or stochastic simulation studies gsialj production traits in sheep
breeding schemes, the author found very few stu@ekering et al. 2013; Swan &
Brown 2013).

Therefore taking into account all the studies sitilj simulation techniques, the
hypothesis of including genomic information intsienulated multitrait sheep breeding
programme seems to be an interesting option foluatiag the long term genetic

response of the traits under selection.

The objectives of this study were:

* To develop a stochastic simulation model for a phiémck using a multitrait
BLUP selection index conjointly with SNP genotypassociated with one
production trait.

* To evaluate the implication of using these two céd@ procedures (SNPBLUP
and phenotypic BLUP) together on a sheep flock.

5.3. Materials and methods

A stochastic model was programmed using Base SAS/IBIL and SAS 9.3 Macro

language (SAS Institute Inc. 2011). The simulati@presented a flock under a
breeding programme, evaluated for the period ofe&20's. This simulation process was
replicated 100 times in order to obtain measuremehthe variation of responses to

selection.

The simulated traits (Table 5.1) were the samiéstsamulated in Chapter 3 (Table
3.2), being live weight at 160 days (160W), fae®gd) score at 160 days (FES), live
weight at 1 year or yearling weight (YW) and thenka carcass weight (CW).

Phenotypic and genetic parameters for these tnate obtained from Bennett et al.
(1991), Huisman & Brown (2008) and Huisman et 2008). The breeding objective
was to decrease FES (to improve parasite resigtadeerease YW (to decrease

maintenance costs) and to increase CW of the ldmb®ase production income).

The simulation model considered two proceduresetecs the animals as part of the
breeding flock:

A BLUP selection to choose the flock's ewes.
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A genomic selection (using SNPBLUP) to select m@hesv born) to be used at seven
month of age as breeding rams.

For the SNPBLUP selection, the simulated SNP gereotyas associated with CW, its
inclusion was determined because CW is a trait that only be recorded in dead
animals (therefore it is too late to select measwarimals as breeders), and also
because it was the most economically importantt @i income based on the

economic weights utilised in Table 5.2.

Table 5.1. Phenotypic standard deviationsp)( heritabilities (on the diagonal),
phenotypic (above the diagonal) and genetic (betlendiagonal) correlations of trdits
included in a selection index for sheep geneticconement.

Correlations

Trait Unit op 160W Ccw FES YW
160W kg 4.524 0.54 0.94 -0.01 0.65
CwW kg 1.766 0.92 0.22  -0.0094 0.611
FES score 1.483 0.34 0.3128 0.28 0.1
YW kg 5.216 0.76  0.6992 0.13 0.40

1160W= live weight at 160 days, CW = carcass weigHt60 days, FES= faecal egg
score defined as cubic root of number of eggs pENd(eggs/d)’] and YW= yearling
live weight.

Table 5.2. Genetic standard deviationsg), economic values (EV) and relative

economic weights (REW) of the trdiiscluded in the breeding objective.

Trait 0G EV($) REW
FES 0.78 -10.72 -30%
YW (kg) 330 -1.70  -20%
CW (kg) 0.83 16.93 50%

IFES= faecal egg score defined as cubic root of murnbeggs per gram [(eggs/d)
YW= yearling live weight and CW = carcass weigh1@0 days.

5.3.1. Flock structure

The base population simulated represented the @fizan average New Zealand
performance recorded flock (Garrick et al. 2000cdnsisted of a 300 ewes flock as
average and a standard deviation of 25 animalsniiheber of rams utilised the first 2
years corresponded to 3% of the ewes. Later, whemblrams were used, the

percentage of breeding males was 5% of the bredémgles to account for worst
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reproductive performance due difficulty in detagtiand/or mounting females in
oestrus, or that young rams mated less frequemly tlder rams (Kenyon et al. 2007).
The number of ewe hoggets (between 1 and 2 yearepdesented 31% of the ewes
between 2 and 5 year old population. Table 5.3vshtbe age structure of the flock for
ewes older than 2 years. Ewes older than 5 yedraradd males older than 1 year old

were culled.

Table5.3. Age structure of ewes over two years old, stoghastically simulated sheep

nucleus flock.

Age in years 2 3 4 5
Ewes (%) 28% 26% 24% 22%

The sex of the born lambs was assumed as 50% raatt$H50% females and the
lambing proportion was 1.5 lambs per ewe. Tablesbows the birth rank probability

assumed for the lambing.

Table 5.4. Birth rank percentages for lambs born in @lsstically simulated sheep

breeding flock.
Number of 1 2 3
lambs

Lambs (%) 60 30 10

For the death simulation process, it was assunadL%o of the born lambs die before
reaching the first year of life. Ewe's death petaga was 5% for 1 year old ewes and

2 % for older ewes.

5.3.2. Breeding scheme

Figure 5.1 shows the reproductive and replacenpamameters assumed in the
simulated flock. Female selection was based on Bht#eding values at one year old
(lambing at 2 years) and males were selected #t bging only SNPBLUP breeding
values to breed at 7 months of age. A higher nurobeams was selected (compared
with the stochastic model in chapter 3) to accdonta possible lower reproductive

performance.
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The purpose of selecting the males of the populdtiased only on their GBVs was
based on the idea presented by Meuwissen et &1)2Bat animals could be selected
without any phenotypic record. Also it was taketoinonsideration that the decision
of adopting this new technology by the farmers Wwélnot only to improve the genetic
gain of their production system but also if it abelase their working load by reducing

the amount of data recording.

——————® 300 ewes & 15 rams (5% of ewes)
Replacements
Replacements selected using
selected using GBLUP to
BLUP \ breed at 7
450 born lambs ‘ month old
84 (1.5 lambs per ewe) 15 lamb

rams

(2 year-old ewe)

(10% mortality)
+
(15% culled)

4 172.1259 172.1255

105 (1 year-old ewe
hoggets)

Figure 5.1. Breeding scheme structure for a simulated psheeeding nucleus,
selecting the females with BLUP breeding valuestaednales with genomic breeding
values (SNPBLUP).

5.3.2.1. Best linear unbiased prediction selection

The females of the flock were selected over 1 yelar (once the phenotypic
information was recorded) using BLUP breeding valuestimated breeding values
(EBV) were generated via multitrait analysis usihg package AIREML (Johnson &
Thompson 1995). This software uses the averagernmafiton matrix as second
derivatives in a quasi-Newton procedure. The amalysed a multitrait mixed model
considering the inclusion of pedigree informatifeNderson & Quaas 1976). For the
present simulation, analysing three traits (160\SFand YW) the model can be

written as:
Y, X, 0 O0|b,| [|Z, O Olla| |&g
Y,|=| 0 X, O |b,[+| 0 Z, 0 |a,|+|e,
Y, 0 0 X, b, 0 0 Z,l|lay| |€;
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where:

y, is a vector that represents the observed phemotgpords of trait i,

X, is aincidence matrix of fixed effects (mean, y#lack) associated with trait i,
b, is a vector of fixed effects for trait i,

Z.is an incidence matrix relating animals with recota animals in the pedigree,
a, is the vector of random animal effects for trait i

e is a vector of the random residual effects ot frai

The matrices of genetic (co)varian€g) @nd residual (co)varianc®) are represented

as:
a, Aa81 Aaalz Aa813
var|a, | =| Ao, Aaj2 Ao, |=G and
a 2
| a3 | _Aaa13 ona23 Ac)‘a3
ro1 .2
e I0'el Iovelz Iaels
varje, |=|lo,  lo; lo, |=R
e 2
| €5 | _Iaela Ial323 Ia%

where:

| is an identity matrix of the order nxn where this number of measured animals,

A is the relationship matrix between animals (peskgnformation),

0‘62]_ and o-é are the genetic and residual effects variancesdii, and

o, with Tq, are their corresponding covariances between iraitsl].

After obtaining the EBV of each trait, a total mendex (IDX) for each animal (Hazel
1943) was generated, multiplying these EBVs witbgression coefficienb(value) as

weighting values which were utilised in the stoditasimulation of chapter 3, to rank
each animal based on the relative importance ofr#tits for which the evaluation was

based.

IDX= (b.l. X EBVlGQN )+ (b2 x EBVFES )+(b3 x EBVYW)
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5.3.2.2. Genomic best linear unbiased prediction selection

All simulated males were genotyped when they wene.bThe purpose was to have
their genetic evaluation to select these animalgaly in their life as possible, to
allow a reduction of generation interval and saleuowanted rams. The genomic
information model represented 100 SNPs distribwt@tiin the same chromosome
(Reich et al. 2001), for each simulated animal. ther present study, it was assumed

that the whole SNP genotype represented 20% of Enéta: variance((jcw) and that
one SNP (SNP 15) controlled 10% of the whole SNRogge (2% of ajcw).

Therefore the individual SNP variance was assumé:dattheajcw multiplied by 20%

(representing the amount accounted by the SNP gesptlivided by the number of
simulated SNPs (100) giving an individual SNP vec&of 0.00137 Ky

It was assumed a biallelic loci form for the simathSNP genotype. There were two
possible alleles for each SNP (1 and 2), and tpssible genotypes: -1, 0 and 1
associated with a homozygous with a negative effeeterozygous with a neutral

effect and a homozygous with a positive effectpeesively.

The SNP information or allelic effects were fitteda SNPBLUP as random effects
(Meuwissen et al. 2001; Meuwissen 2003). It wasuiassl that every SNP had the
same proportion of the total genetic variance amrang therefore the same impact of

each allelic effect on the related trait. The randeffects were estimated using the

zx z20a)a 2]

mixed model equation:

where:

X'is a column vector of ones relating the animats the trait mean (fixed effect),

Z is an incidence matrix, relating all the animaighveach allelic form (-1, 0, 1) of the
included SNPs (random effects),

y is a vector of the known CW phenotypic records,

b anda are vectors of fixed effects and random SNP effeespectively (BLUE and
BLUP values),
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| is an identity matrix of the same order asZt® matrix.
A is a value obtained when the residual variancdivgled by each individual SNP

effect variance.

The GBV estimation considered the effects coverihng whole SNP genotype.
Genomic selection used a subset of the total popuaolaalled the training population,
the requirement to be included as part of the itmginpopulation was having
phenotypic and genomic information at the momentesfimating GBVs. The
information was analysed in order to estimate tbgression coefficients for the
random effects (each allelic form of each SNP).sEhestimates for the random effects
were multiplied with the SNP genotypes of the preati population (all animals with
genomic information, with or without phenotypic oeds), and then all these estimates
of each SNP were summed to obtain the GBV (Luaal.eR009). Therefore, SNP
effects were assumed to have an additive effectniotita dominance effect. The
mathematical procedure previously described allowstmation of GBV for all

animals with genomic information.

5.3.2.3. Accuracy of genomic breeding values

The accuracy of GBVr{sycsy) Was estimated as the correlation between the true
breeding value and the predicted genomic breedahgevshown as:

r _ O1BvGBY
TBV,GBV —
v PGBV

where, .5, sy 1S the covariance between TBV and GBV.
oy IS the standard deviation of the true breedingesiand

osey IS the standard deviation of the estimated gendimgeding values.

The information utilised to evaluate the annualuaacies consisted of the training
population (animals with phenotypic and genomiotinfation) and animals with only

genomic information updated annually.
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5.3.2.4. Hardy-Weinberg equilibrium

To assess if SNP15 had any changes along the s$ediusalection period in order to

see if that specific allelic form in the populatibmd been under selection (Hardy-
Weinberg equilibrium), a chi-square Pearson tgétwas determined (Falconer &

Mackay 1996). The analysis was done measuringlkblecaenotypic values at year 0

and at year 20 using the equation:

X2 — Z (OSNPE_ ESNP)2
NP

where Ogis the observed allelic frequency at a certain querand Egis the

expected allelic frequency in the same period.

To assess the significance of this test, one degfefeeedom is used (number of

genotypes - number of alleles). For significansel®f 5% and one degree of freedom
the limit value utilised to accept or reject thdl typothesis is 3.84. Any result gf?

below this value, the null hypothesis that the papon is in Hardy—Weinberg
equilibrium is accepted.

5.3.3. Data generation

5.3.3.1. Phenotypic information

The phenotypic values of all the simulated traibs €ach available animal were
obtained as the sum of the true breeding value¥J T&vironmental effects, year and
flock effects modelled as:

Ygijum = 4+ Mg+ F +G; +ey

where, y .4, IS the phenotypic value of any of the traits besigulated

w1 is the mean of the population for the trait,
M, is the effect of yeag,
F is the flock effect,

G, is the TBV effect of animak, and
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€um 1S @n environmental effect.

The year effect was assumed to have a variatid@¥obf the phenotypic (co)variance
matrix. The inclusion of the flock effecE) was to account for a flock difference per
replicate, and it was assumed to have a variatibnl@ of the phenotypic
(co)variance matrix. Genetic, environmental, flogkd year effects matrices were
created by the product of a randomly generated albthstribution matrix with the
lower triangular matribD of the Cholesky decomposition (Nejati-Javarenale2007)

of the (co)variance matrix of each effect.

The genetic effect matrix was created with a rargiagenerated normal distribution
matrix times the lower triangular matr@ of the Cholesky decomposition (Nejati-
Javaremi et al. 2007) of a modified genetic (caarare matrix including 160W, FES,

YW and CW. The modification consisted in replacihg CW genetic variancerfcw)

with a value representing 80% ofcw as the SNP genotype represented 20%§gv)vf.

Then, based on Dekkers (2007) the true breedingeviak CW was simulated as

G=Q+R

where,

G represents the additive genetic value of the tradter study,

Qs the genetic effects correlated with SNP genaype

Ris the residual genetic effects independent ofribekers (polygenic effect),

5.3.3.2. SNP generation

5.3.3.2.1.Base population SNP generation

In order to create the SNP genotype for the bapelption, two alleles for each SNP
were generated (1 and 2) each of them represeafirgguency andq) of 0.5. Based
on Falconer & Mackay (1996), the additive amounttabuted by each homozygous
for each SNP considering no dominance was geneaated

Va

2p.g;

2D
I
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where,

a is the deviation from the mean (additive effect)tlvé positive homozygous of the
SNPi.
V, is the additive variance of the SNP

pi andg; are the allelic frequencies for the SNP

The additive effect for the negative homozygoushaf SNPi was estimated as the
product of -1 timesy. The heterozygous form was simulated with an additalue of
0.

5.3.3.2.2.Offspring SNP generation

After pairing males and females based on their GBY their IDX respectively, and
according on Table 5.4 information, by using umforandom generation procedure,
the number of offspring for each ewe was simuladce the number of lambs per
ewe and sire are known, the inherited SNP genatyeach lamb was generated using
one strand of each parent recombined genomic irgtbom, emulating the information
carried by one gamete. All the SNPs were assuméd tillocated in one chromosome
(Reich et al. 2001) therefore presenting LD betwisem; it was considered that the
SNP in the 1% position (SNP15) was the "anchor" SNP. Recombonatias assumed
to be a crossing over recombination as an exchahgengle strands between two

participating chromatids (Andersen & Sekelsky 2(B€xnstein et al. 2011).

Figure 5.2 shows how the SNP genotype of each lasnfbrmed by inheriting one
randomly recombined allele strand (gamete) fronsits and the other from its dam.
The LD was simulated as the probability of a SNFo¢orepresented as a specific
allelic form in one locus of an allele strand. Téfere the higher the simulated value,
the higher the probability of a neighbouring alle&e the anchor SNP (randomly
selected allele of SNP15) to be inherited togetfibe simulated probabilities ranged
from 0.575, representing that the alleles haveohatility of 42.5% to be recombined
by the opposite allele, and 1 indicating that ohéhe alleles had 100% chance to be
the chosen allele, and consequently the opposledeahas no possibility to be

represented (no recombination). SNP15 as the arf®@kBrhad always a value of 1.
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Sire SNP Dam SNP
genotype genotype
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Meiosis (recombination)
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Figure 5.2. Schematic presentation of an inherited lamtP $j¢notype formed by
recombined parental randomly selected SNP geno@ielg strands (A or B), based
on simulated linkage disequilibrium (LD).

5.3.4. Data generation structure

The modelling process was built in subroutine medulsing SAS Macro language.
Each subroutine generated specific information twatitributed to the creation of a
database for a sheep flock under a 20 year sategtiogramme. The model was
replicated 100 times. A flowchart of the subrousimeshown in Figure 5.3.
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M1 developed a base population using the age structasented in Table
5.3 The phenotypic records of 160W, FES and YW, ferlthing animals
and CW for the slaughtered lambs in the base generatbm@e year old
animals were obtained as the sum of the traits true ingeedlue, random
environmental effect, flock effect and a year effect.

Base population and
one year old animal
having IDX

/—%

v
Starts 19 years iteration
+

Birthday ‘ M2 ensured that all the live animals became one year.older -
+
M3 generated estimated breeding values (EBVs) for eairhahffior the
EBVs and IDX traits of interest (considering genealogical informatiorf)e TEBVs were
estimation used to generate a selection index (IDX) for each drémabling ranking of

the animals.

!

M4 recreated the breeding (reproduction) process for hwhicrandom

mating within flock was done. This routine gives as regaits of sires and

dams having as offspring triplets, twins or unique larbhbsed on the birth

rank on Table 5.4 using a randomly generating unifdistribution.
¥

M5 generates each lamb SNP genotype, using one stréasdsoé and one

Reproduction

Lambs SNPs | . > A
genotypes strand of its dam (gametes), allocating (based on admklisequilibrium
Y structure) each allelic form.
¥
M6 estimates the genomic breeding values (GBVs) of all ahienals
GBVs genotyped considering as training population all the lamith WW
phenotypic information.
+
Culling M7 was a subroutine that culled males older than 1 ysdufemales olde

maximum age than 5 years old.

}

M8 simulated the losses from death, in which a percembfgmales and
males based on their age were randomly categorisddad.

!

M9 a subroutine which culled lambs (males and femaksuming

Death

Culling offspring

defects randomly undesirable phenotypic features (defects).
I
Culling and M10 simulates the selection process of the ram lambs astsised on their

GBVs, all the lambs not selected as possible rams wélezic
+
M11 assigned the year effect, simulating how much the ydiacte

selection by GBVs

e e s Y et

Year effect contributed on the phenotypic record of the animals.
'
160W, FES, YW, M12 obtained the phenotypic information of 160W, FES andféwall live
Phenotypic records animals about to be 1 year old.
+
CW Phenotypic M13 generates the CW phenotypic records to all the c(dledightered)
records lambs.
¥
M14 was a subroutine that culled ewes based on: the agguse (Table
5.3) and their IDX (selection of the ranked animals). Hi®m was to
Culling and preserve the age structure of the flock consideringhallavailable ewes
selection by IDX (alive and not culled). If there were more ewes thaded, the animals that

had lower IDX within age were culled.

Figure 5.3. Stochastic simulation subroutine moduled-M14) of a 20 years sheep
breeding programme, selecting the rams using camagght (CW) genomic breeding
values (GBV) and ewes with a total merit index ()DXuilt using estimated breeding
values (EBV) of live weight at 160 days (160W),dakegg score (FES) and yearling
weight (YW).
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5.4. Results

Figure 5.4 shows the mean of TBV for each trarty@ar and per replication, and the
trend lines of average TBVs for all the replicatiomligh genetic variances? ) is

observed for CW, 160W and YW, while for FES theiasace is much lower. CW
shows the highest average genetic trend of akithelated traits over all the evaluated
years. CW presents an increasing curvilinear trezathing at year 20 a TBV of 10.44
kg. Regarding the TBVs trends for 160W and YW thepe of the tendency lines
appear to be more linear showing less gain thano@®v the years. Their high values
at year 20 were 5.66 and 4.33 kg respectively. BR®ved least change during the
analysed time period. The trend line of its TBVsswary close to 0 during the first 8
years after which it presented a slight increasaghing the value of 0.27 (eggs/iat
year 20.
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Figure5.4. Trends of true breeding values of individugplicates (dotted lines) and
replicates averages (continuous lines) for (a) Wixeght at 160 days (160W), yearling
weight (YW) and carcass weight (CW) and (b) fae=gd) score (FES), in a sheep
breeding flock in a twenty years simulated breedprggramme using genomic

selection.

Figure 5.5 shows accuracies of prediction of tilB/&when using the CW phenotypic
information provided by the training population aped on a yearly basis. Big
dispersion of the accuracies can be appreciataddtive first years of using genomic
selection, ranging between 6 and 37% at year 2feord 37 to 73% at year 6.

Accuracies over 90% were achieved after 20 yeassadlation.
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Figure 5.6 presents the frequency change of flke&calorms of SNP15 across the 20
simulated years. The allelic form that was simul&ateincrease CW (SNP15 positive

homozygous) shows an increase frequency over time.

---- (Genomic breeding values replicate accuracies
— Accuracies average

0 I 1 1 1 1 1 1 1 1 1 1

] rm 1 " 1°r 17T "7 "1 ""1T ""1T 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Year

Figure 5.5. Trends of genomic breeding values accuracesdrcass weight (CW)
using a yearly updated training population. Indiat replicates are shown in grey
dotted lines and averages of the replicates anersiothe continuous blue line.
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Figure5.6. Long term response genotypic frequency averémea non-recombinant

anchor SNP (SNP15) for a simulated sheep populatiotier 20 years breeding

programme using genomic selection for carcass weigh

Table 5.5 shows frequencies of the 3 genotypesdset the first simulated year (year
0) and the last simulated year (year 20). The pesitomozygous (AA) presents a
higher value, 0.806 at year 20 compared with 0@%2ined at year 0. The other two
allelic forms reduced their frequencies over tmewated 20 years. A high chi squared

value of 26.821 was obtained considering the ggnofyequencies at year 20.

Table 5.5. Average of genotypic frequencies for positi®mozygous (1),
heterozygous (0) and negative homozygous (-1);cimgquared valuesy(®) for the

simulated sheep flock at year 0 and year 20 (nG=r&plicates).

Year O Year 20
Allelic form 1 0 -1 1 0 -1
Genotypic frequency 0.252 0.496 0.2542 0.806 0.114 .08 0
X° 0.006 26.821
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5.5. Discussion

The aim of this study was to develop a stochastdehthat simulated a breeding
flock with ewes selected using a multitrait BLUP tbfee different traits, and rams
selected based on GBV for CW estimated using SNABLThe combined breeding
scheme was chosen to simulate a scenario in whothalh new-born animals were
genotyped due to the costs that these proceduvet/@ a fact that a sheep breeder
will absolutely consider at the moment to decide tmplementation of this new

technique.

The flexibility of adding or modifying informatioto nourish the stochastic simulation
model was a key aspect compared with the detericimsdel presented in chapter 4.
Even though a stochastic simulation is consideraitye demanding in terms of the
required computer memory capacity and computing @& stated by Dekkers (2007).
Also the results presented by the developed sttichrasdel (Figures 5.4 and 5.5) had
a mean and a variance around the mean, not juavenage linear trend such as the

one produced by the deterministic model developedhapter 4.

The genetic trend of individual replicates obtair®d the simulation (Figure 5.4)
showed a large variation of within year recordsspnting a wide range of TBV
results due to the randomness of the simulatiortguiare. But it is important to
highlight that besides the differences of the otsdivalues, all the TBVs follow the

same tendency along the 20 years of evaluations.

Figure 5.4 also presented very low (practicallya@@rage genetic gain for all the traits
during the first years. This is caused by an adjest period of the population to the
selection process, similar to the results obtaingtie stochastic simulation of Chapter
3.

After the initial years of low TBV variation, a adlinear trend line demonstrating the
average true breeding value for CW showed an isgrgagenetic gain for the trait
(Figure 5.4-a). This increasing of values was argbn a yearly basis, differing from
the genetic trends presented by 160W, YW and FESsthowed a linear growth with
proportionally lower genetic gains. This can belaexmged because for the simulated

population, two different methods were used toddle breeding animals. Firstly, the
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males were selected using only genomic selectioectly associated with CW, and

second the females were selected based on an IBv€laped with the selection

objective of also increasing CW as a correlatedt. tfehe fact that CW had an

heritability slightly over 0.2 (considered mediumnd that the generation intervals
were reduced (Schaeffer 2006) also helped to aehle genetic gains of the selected
traits.

The effect of using genomic selection having 20%thef genetic variance of CW
explained by the whole SNP genotype, including 8hd (SNP15) that accounts for
2% of the same trait genetic variance, achievady &0 years of selection, a genetic
gain five times higher, compared to the use of dil)X (stochastic simulation in
Chapter 3). Regarding the genetic gains averagstsesfter 20 years of selection of
the other two breeding objective traits, YWT andSHiresented values of 4.33 kg and
0.27 (eggs/df®using genomic selection, representing 65% and G&jectively of the
true breeding values obtained using only IDX. Thteran be said that, in the present
simulated breeding programme because of the ugermic selection for CW, the
genetic gains for FES and YW were limited (Dekk&sVan der Werf 2007),
accomplishing in a more suitable way the proposddction objective of increasing
CWw.

Another point to highlight as part of the resulfgtee simulation is the effect that the
inclusion of SNP information had on the accuracy&diction of the GBVs for CW.

It can be appreciated in Figure 5.5 that averageiracies over 90% were achieved
after 20 years of simulation. But to obtain thessults the training population had to
be updated in a yearly basis, also considering #zatshown in the subroutine
predicting the GBVs (M6 in Figure 5.3) the estigmtfor the SNPs effects were
updated yearly as new animals with phenotypic ametomic information are

incorporated adding more input data to the trairppgulation database. The annual
replicate accuracies of prediction trends (greyatbtines) showed a great variability
between simulated replicates, especially during first five years using genomic

selection, but as the evaluated years and the aiesr increased, the variation

between replicates becomes smaller.

Figure 5.6 presents the increase of the genofygguiency of the positive homozygous

of SNP15 (the one that was simulated to increase),G@ducing the amount of
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heterozygous and negative homozygous frequenoiese ¢b 10% for both of them.
This result illustrates the reduction of genotyp@riation for this marker in the
population after 20 years of selection. In a similay this change of genotypic

frequency after 20 years is reflected in Table Wbich showed that the simulated
population was not in Hardy-Weinberg equilibriumdesnonstrated by thg? value

of 26.821 (3.84 being the limit value for 5% ofrsficance level). This loss of
equilibrium clearly can be stated to be caused lselaction process (Falconer &
Mackay 1996), as the simulation did not considertation of the simulated SNP

neither migration.

Another point to consider regarding this increasmg¢he frequency of the favourable
genotype for SNP15 is that the methodology usedyémomic selection (SNPBLUP)
has proven to be effective to achieve the desitgdctive of increased CW genetic
values, even taking into account that in the wiismixed model equation all the
included random variables (SNPs) were analysed with same individual SNP

variance.

The present study proved that using genomic seleati combination with a multitrait

selection index is an alternative option to inceegsnetic gains of traits recorded when
animals are selected before the phenotype is &li(@.g. lambs being slaughtered),
as stated by Meuwissen and Goddard (1996), andvatem early selection can be
done (Dekkers & Van der Werf 2007; Schaeffer 20@6¢reby reducing generation
intervals. Results obtained in this work, contréoud the statement that genomic
selection can be commercially useful if, the cobktimoplementing schemes using
genomic information are lowered (Amer 2011), or ke#s gain interest in products
that could be enhanced using genomic selection (8u& Davison 2006) justifying

the implementation of this technology. Accuraciekiaved by the model can reach
very high levels (over 90%) but only consideringttlthe training population and

therefore the regression estimates for predictihg GBVs were updated and
accumulated in a yearly basis. Using the simulasioacture developed in the present
model other situations or scenarios consideringpgen selection for a sheep breeding

programme could be evaluated.
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Accuracy of prediction of genomic breeding values

for lamb carcass weight using simulation
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6.1. Abstract

The use of genomic selection in breeding progranemyeects that the use of DNA
information will lead to faster genetic gains. Fosuccessful application of genomic
selection an important point to consider is theusacy of prediction of the breeding
values obtained from the genomic information. T$tisdy analysed the accuracy of
prediction for only newborn males either with thggmomic breeding values being re-
estimated on a yearly basis or alternatively usagyession coefficients from a static
training population (not updated on a yearly basi$le accuracy of prediction was
estimated as the correlation between the true hrgedalues and the genomic
breeding values (GBV) of a stochastically simulatdteep breeding flock. GBV
accuracies of prediction were found using regressiefficients of a static training
population to estimate the lambs genomic breedalges. These were compared with
the accuracy tendency obtained when SNP randorotef$elutions were re-estimated
yearly. The stochastic simulation showed a largeuracy variance within years
caused by the males of the population being thg gahomically selected animals,
leaving to randomness the genomic contributionhef ¢wes. To obtain the highest
possible accuracy of prediction, the most adegstatiéstical analysis method has to be
chosen to predict GBVs. This is because the acgueae! of the predicted GBVs
depends on the amount of variance that the genorfocmation represents and the
variance distribution of the analysed SNPs.

6.2. Introduction

The use of genomic selection enables the desigrowél breeding schemes (Pryce et
al. 2010), and has become a very important fieldng&stigation in recent years
(Goddard 2012; Hayes & Goddard 2010; Pérez-Rodzigual. 2013; Van Eenennaam
et al. 2014). The decision of implementing genoseection as part of a breeding
programme relies on the conviction that the useMA information will accomplish a
faster genetic gain compared to a breeding progerbased just on phenotypic

information (Meuwissen et al. 2001).

A very important subject to consider for the sustdsapplication of genomic

selection, is the accuracy of prediction (Luan le2809). This should refer to how
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accurate the estimated genomic breeding values gpBYe in predicting the true
genetic value of an animal (TBVs) (Calus 2010; Camel997). In real life, as the
TBVs are not known, the accuracy estimation is dbgecorrelating GBVs and

phenotypic information (Harris et al. 2013; Hayeésak 2010a; Hayes et al. 2010b;
Luan et al. 2009; Saatchi et al. 2013), leadintheouse of many different evaluation
models. The purpose behind the development of tH#ent statistical models to
obtain GBVs, responds to the need to increase B¥s@ccuracy of estimation for the
selection of breeding animals, crops or foragesePRodriguez et al. 2013; Wimmer
et al. 2013).

Simulation techniques (or data modelling) are & weseful tool that, by imitating the
internal processes of a system, attempts to preditain aspects of it (Reingruber &
Gregory 1994). Based on the previous informatiorst@hastic simulation model
representing a sheep breeding flock selecting theding rams with genomic selection
was developed in Chapter 5. This model providedrmétion such as TBVS,
phenotypic records and GBVs, which were neededntdyae some aspects of the

long-term genetic response of traits for whichgbeulation was selected.

The objective of this study was to evaluate sonpeets regarding how the accuracy

of selection performs when:

The estimation of GBVs is done using the SNP randffect solutions obtained from a
static training population (not updated on a yebdsis).

The accuracy of prediction is evaluated using oywborn males TBVs and GBVSs.

6.3. Materials and methods

The study analysed a stochastically developed shesgaling flock under a genomic
selection breeding programme over 20 years (chap)erIn order to obtain
measurements of the variation of responses to tsmlethe simulation process was
replicated 100 times. The resulting database @neesdatabase obtained in chapter 5)
contained genetic (true breeding values), envirarieide.g. year effect, dam age and
flock effect), genomic (a 100 single nucleotide yoabrphism sequence) and
phenotypic information. The model considered thelusion of four correlated
simulated traits: live weight at 160 days (160Vgdal egg score at 160 days (FES),
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yearling weight (YW) and lamb carcass weight (CVWPhenotypic and genetic
parameters for these traits were obtained from Bgnet al. (1991), Huisman &
Brown (2008) and Huisman et al. (2008). Phenotypgdor LW160, FEC and YWT

were modelled as Falconer & Mackay (1996):

P=G+E

G represents the genetic value of the trait undetyst

E is the random environmental effects affectingtthé.

Phenotypes for CW was modelled based on Dekkef¥7§20

P= G+ Ewith G simulated aG= Q+ R, where,

Q is the sum of the single nucleotide polymorphissiNP genotypes) effects on the
specific trait,

Ris the residual genetic effects independent oSiN@ effects.

In the present study, the estimai®dor Q is referred as genomic breeding values

(GBVS).

6.3.1. Estimation of genomic breeding values

In order to obtain new GBVs, two phase process wakergone to the information
provided by the same simulated population of chaptetherefore, the pedigree
structure of the population was the same (samenfsafer the same offspring), even
though other animals might have better GBVs to dlecsed as breeders. Phase one
used a subset of the total population availablgdsyr, called the training population,
consisting of all the animals that at the momentestimating GBVs had been
slaughtered (when new lambs are born), thereforeinpathe CW phenotypic
information recorded and a sequence of 100 SNRg@smic information associated
with CW. The second phase used all the animalshatgenomic information with or

without phenotypic records, named as the predigtgullation.

The information provided for each animal in theiridg population by the 100
simulated SNPs was fitted in a single-trait geno®idJP (SNPBLUP) as random
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effects (Meuwissen et al. 2001; Meuwissen 2003 e®NP was assumed to account
for the same proportion of the total genetic vazeanf CW. To this, end random effect

values were estimated using the mixed model equatio

XX Xz o] _[Xy
ZX zz+l|lal |zy
where:

X is a column vector formed only by ones relatingheanimal with the trait mean
(fixed effect),

Z is an incidence matrix, relating each animal vathindividual allelic form (-1, O, 1)
of the present SNPs (random effects),

y is a vector of the known CW phenotypic records,

b is the regression coefficient for fixed effectd.(H),

ais the vector of estimate solutions for randone&f (SNP),

| is an identity matrix of the same order as therdatrix and

/. is a value obtained when the residual variancdiviled by each individual SNP

effect variance.

When the training population was analysed, theregés of the random effects were
acquired (one for each allelic form of each SNR)ldwing, as the second step, the
obtained random effect estimates were multiplietth & incidence matrix that related
each animal of the predicted population to theilPS¢notype allelic structure. The
resulting products of each animal SNP sequence w@memed within individual to
obtain their CW GBV (Luan et al. 2009). Therefd®&P effects were assumed to have
an additive effect with no dominance or epistaffeas. The mathematical procedure

previously described allowed estimation of GBV &tiranimals with SNP information.

In the present study two different GBVs data setsewevaluated. Firstly, the GBVs
generated on chapter 5 which were estimated usmgssion coefficients for random
effects updated on a yearly base. The second ted$ new GBVs for animals born
from year 10 until year 20, using for each lamb Hane SNP genotypes of the
previous data set. These GBVs were obtained usiagsolution values for random
SNP effects estimated using as the training pojamayvery animal with genomic and
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phenotypic information only until year 9; therefanet updating the information to
estimate the random SNP effects on a yearly basis.

6.3.2. Accuracy of GBV

The accuracy of GBVr{g) also known as the correlation between the treeding

value and the predicted genomic breeding value g€am1997) was estimated as:

— Omveey

Ite
O1Bv 0GRy

Where o, o5 IS the covariance between TBV and GBVY,
oy IS the standard deviation of the true breedingesknd

oeay IS the standard deviation of the estimated gendmg@eding values.

The purpose of using this statistic method wasveduate how precisely the TBVs of
the simulated sheep population are predicted bySiNe effects. Considering how
these GBVs were obtained (as explained in pointl§.&ccuracies were estimated
taking into account these two different GBVs dagéssConsequently two ways of
evaluating the accuracies were used. The first w@aysidered the estimation of
accuracies of the GBVs for the training populatiplns the male lambs without
phenotypic information, accumulating the amounapimals with GBVs on a yearly
basis. The second considered the estimation ofatloeiracies for only the newly
evaluated male lambs (males without phenotypic rmédion) year by year, not
considering the information provided by animalsrbior previous years.

6.4. Results

Figure 6.1 shows the accuracy of prediction trehd€w/ GBVs for newborn male
lambs (red trend line). These GBVs are from theutated population in Chapter 5
which were obtained using an accumulated yearlyatged training population. An
initial accuracy value of 0.28 was obtained in y2afrom this point on; the accuracy
values constantly increased reaching a value af 8t#ear 10. After year 10 the rate
of increase in accuracy values declines, reachmgauracy of to 0.91 at year 20.

Figure 6.1 also shows the accuracy of CW GBVsefrh of the 100 replicates (grey
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dotted lines) using the solution of the SNP randeffects obtained using the
information of the training population to year D{ryearly updated) to estimate the
GBVs of animals from year 10 onwards, therefor@ocuracies were estimated before
year 10. The figure shows a great dispersion atiddal replicate values on year 10,
having a standard deviation of 0.045 (Table A6this dispersion gradually reduces
during the following years, reaching at year 20tandard deviation value of 0.013
(Table A6.1). The blue trend line included in Fig®.1 represents the average by year
of all the replicates trend lines presenting vaktegear 20 of 0.89.

J — Accuracies updated on a yearly basis
0.1 - — Accuracies using year's 9 SNP effects solutions
J Replicates average accuracies

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Year
Figure 6.1. Accuracy of lamb carcass weight predicted geaobreeding values,
estimated using random SNP effects solutions oéaly accumulated and updated
training population starting at year 1 (red tremuke), and within-year individual
replicate for genomic breeding values estimatedgugear's 9 SNP effects solutions

(grey dotted trend lines) with replicate averagesieacies mean (blue trend line).

Figure 6.2 shows trend lines of the CW GBVs aauesof prediction for new-born
male lambs. Random SNP effects to obtain GBVs vestimated using a yearly
updated training population. The grey dotted tréinds represent the within-year
individual replicate accuracy averages for all thewborn lambs. An evident

dispersion of the accuracies can be seen all dlemgimulated years, presenting the
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higher differences of replicate variation betweearg two and seven, with standard
deviation values of 0.083 and 0.078 respectivelgb(@ A6.2), after which those
differences were slightly diminished reaching andtad deviation value of 0.053
(Table A6.2) at year 20. The blue trend line pnése in Figure 6.2 represents the year
averages for the replicate accuracy averages tme@sl It shows low accuracy values
in the early years (being 0.12 the lowest accuneye at year two) but steadily
increased until year nine reaching a value of Gadter which the trend line presents a

plateau state obtaining at year twenty an averagaracy value of 0.42.

N Replicates averages
0.9 — Year averages

-0'2 -I 1 T T T T 1 1 T T 1 1 T T T 1 1 T T T T
0 1 2 3 4 5 6 7 § 9 10 11 12 13 14 15 16 17 18 19 20
Year

Figure 6.2. Individual replicate accuracies of predictigney dotted trend lines) and
mean accuracy value from 100 replicates (blue tfieag, for carcass weight genomic
breeding values of newborn male lambs estimatetjusindom SNP effects obtained

from a yearly updated training population.

The information presented in Figure 6.3 shows &xes of prediction of CW GBVs
for newborn male lambs. The GBVs utilised for tleelmacy estimation were obtained
using year nine random SNP solution effects, tloeegfsame as for Figure 6.1, before
year 10 no accuracies were estimated. Figure B&vs a large dispersion of
accuracies between individual replicates (greyedbttend lines) along the evaluated

years, presenting the lowest difference at yeamtéim a standard deviation value of
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0.058 (Table A6.3), after which an irregular desbeg trend can be appreciated. The
average of the replicates (blue trend line) shdwveshighest mean accuracy value of
0.45 at year ten with a clear decreasing tendeficthmugh the following years

reaching the lowest accuracy value (0.35) at yeanty.

. Replicates averages
0.9 4| — Year averages

¥ e

0 I T 1 1 1 T 1 1 1 T 1 1 1 T 1 1 1 T 1 1 1
0 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20
Year
Figure 6.3. Individual replicate accuracies of predictigney dotted trend lines) and
mean accuracy value from 100 replicates (blue tfieag, for carcass weight genomic
breeding values of newborn male lambs estimatedgusnly year's 9 random SNP

effects solutions.

6.5. Discussion

Studies evaluating the accuracy of genomic seleatosheep populations were not
found in the literature; therefore studies invotyimther agricultural enterprises

(poultry, crops, dairy and beef cattle) were usethe present discussion.

As stated by Reingruber & Gregory (1994), the ussirulation techniques allowed
the prediction of certain aspects of a specifictesys In this study, the simulation
model developed in Chapter 5 representing a shesguling flock with breeding rams

selected using genomic selection, delivered inféionmasuch as TBVs (not known in
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real life), GBVs and a sequence of SNP genotypesé&sh simulated animal. This
information allowed the estimation of accuracy ofgction of GBVs for CW which
relied on the correlation between TBVs and GBVd€2010; Cameron 1997).

The study showed that when GBVs were estimatedjubia solution of random SNP
effects obtained from a static training populationthis case fixed at the ninth year
(Figure 6.3), a steady decreasing tendency ofatt®iracies was observed in the
following years. If these results are compared wlith plateau tendency shown from
year 10 by the average accuracies of predictiosemted in Figure 6.2, it can be stated
that higher accuracies can be achieved when the SGB¥ re-estimated using the
random SNP effects solutions of a yearly updataiaitrg population. It is important to
highlight that the animals and therefore the gewomiormation utilised to estimate
carcass weight GBVs were exactly the same for wee domparisons. Therefore the
only difference between these two studies was thg that random SNP effects
solutions were utilised. Based on the previous amspn, it may be inferred that, the
more distant the genetic relationship betweenrdiaihg population and the predicted
animals, the lower the accuracy of prediction betw&BVs and TBVs. This previous
statement, concurs with Saatchi et al. (2013), e$timated accuracies for Hereford
beef cattle, comparing four nationally evaluatealning populations (U.S., Canada,
Argentina and Uruguay), using two different Bayasmaethods to estimate the GBVs.
Also Habier et al. (2010) evaluating GBV in Germbiolstein cattle and Van
Eenennaam et al. (2014) analysing GBV accuracigsarfuction and quality traits in
layer chickens arrived at the same conclusioningtdhat in order to provide a good
accuracy of prediction, SNP effects should be tereded including the most recent

phenotypic data from relatives.

The reduction in the accuracy of prediction of GBWan have significant

consequences, especially if the breeding anim&sselected only on their genomic
information (without recording any phenotypic datdhe long-term response of
selecting animals based on GBVs estimated usingprarSNP effects solutions from
an old training population, will incur a reductiohthe GBVs accuracies. As a result,
if breeding animals of lesser genetic value arectetl, lower genetic gain of the

population for the trait under selection can beeexgd.
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The wide range of the GBVs accuracies of predicfioasented by the individual
simulated replicates (grey trend lines Figures&3); can be explained by two causes.
The first cause may be due to the fact that for dimulated breeding flock, the
genomic selection was carried out only through rttedes of the population without
considering the females. This approach left to oamiess the ewe's contribution of
genomic information for the flock. The second cause& be linked also with a
randomness issue, but this time related to crossweg during meiosis which occurs
during the simulated reproduction process (Andesedekelsky 2010). Considering
these causes, the randomness effect occurred irbréedding population through
utilisation of animals with unknown SNP genotypatoithe breeding scheme; this

deficiency could be minimised with the inclusiontioé female's genomic information.

The high levels of GBVs accuracy of prediction shaw Figure 6.1 for all replicates
is likely to be a result of the recurrent inclusimhanimals with more phenotypic and
genomic information. As the number of years progiréise number of animals in the
database with both phenotypic and genomic infolwnaincreases, in contrast to the
steady number of new animals included having oelyognic information; therefore by
having more information on a yearly basis, highecuaulated accuracy levels are
obtained. The difference in the GBV accuracy odpm&on between the red trend line
and the blue trend line of Figure 6.1, can be @&rpld in the same way that arises in
Figure 6.3. The accuracy reduction when GBVs warined using only the SNP
effects solutions of a fixed-year (year 9) trainipgpulation (blue trend line, less
information), against the use of yearly updatedhing population to predict GBVs

(red trend line, more information).

When the accuracy levels are measured only onrduigbed animals (Figure 6.2), low
accuracy levels can be appreciated at the begirofitige simulated time period. The
accuracies in the following years increase as tmaber of animals in the training
population also increase. Thus more phenotypicgambmic information is included,
in order to re-estimate the random SNP effects graaly basis to obtain GBVs for
the desired trait (Goddard 2012). After year niiesimulation, the accuracy levels
reached a plateau state, showing that even whee imiormation is incorporated on a
yearly base to estimate GBVs this is very littleng@m accuracy. This suggests that,

without changing the methodology for predicting 88Vs the accuracy level was
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mediated by the genetic information that nourishessimulation model. As stated by
Hayes et al. (2010a) the accuracy of the prediGBYs depends on the amount of the
trait's variance that the analysed genomic infolwnats accounting for. This also

confirms the results of the deterministic simulatgenerated in Chapter 4, showing
higher accuracies when more of the total genetimnee is explained by the included

genomic information.

The use of different statistical procedures to gs®kthe genomic information in order
to predict GBVs will result in different accuracytoomes. But it is not obvious if the
resulting accuracy level will be higher or lowers presented by Habier et al. (2011),
Wimmer et al. (2013) or Wolc et al. (2011), the mascurate analysis method has to
be chosen individually for each trait separatellisTis because the accuracy of the
method depends on the variance distribution ofathedysed genomic information. For
example as stated by Hayes et al. (2010b) SNPBLARIde equally, or even most
accurate than other analysis methods (eg. Bayesihods) especially if a large

number of SNP effects account for a small amountofince (Hayes et al. 2010a).

6.6. Conclusions

Based on the analysis of the data obtained frontoahastic simulation model

developed in Chapter 5, it can be expected thagnvthe genetic relationship between
the training population and the predicted animsisiore distant, the level of accuracy
of prediction for the GBVs will be reduced. Thisggests that SNP random effect
solutions required to estimate GBVs should be tepased on a yearly basis using

both, accumulated phenotypic and SNP information.

The analysis showed a large variation of accuramig@sediction for CW GBVs within
year. This was caused because the genomic selut@dls were only the ram lambs,
leaving to randomness the contribution of genomiorimation provided by the ewes.
In relation to the accuracy level of the predic@&8Vs, it can be stated that it depends
on the amount of variance that the genomic infolwnatxplains and also, the
contribution that each analysed SNP makes to tia denetic variance. Therefore the
most adequate analysis method has to be choseredictppGBVs with the highest

possible accuracy of prediction.
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6.7. Appendix to chapter 6

Table A6.1. Within-year standard deviations for 100 regilis carcass weight

predicted genomic breeding values accuracies, awanusing year's 9 SNP effects

solutions.
Accuracy of selection
vear standard deviation
10 0.045
11 0.040
12 0.035
13 0.030
14 0.027
15 0.023
16 0.020
17 0.018
18 0.016
19 0.014
20 0.013

Table A£6.2. Individual replicate accuracies of predictistandard deviations, for
carcass weight genomic breeding values of newboate fambs estimated using

random SNP effects obtained from a yearly updatadihg population.

Accuracy of selection

Year standard deviation
2 0.083
3 0.088
4 0.089
5 0.065
6 0.070
7 0.078
8 0.063
9 0.067
10 0.058
11 0.062
12 0.070
13 0.066
14 0.062
15 0.062
16 0.068
17 0.064
18 0.059
19 0.065

20 0.072
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Table A6.3. Individual replicate accuracies of predictistandard deviations, for
carcass weight genomic breeding values of newbaie tambs estimated using only

year's 9 random SNP effects solutions.

Accuracy of selection

Year standard deviation
10 0.058
11 0.062
12 0.070
13 0.066
14 0.062
15 0.062
16 0.068
17 0.064
18 0.059
19 0.065

20 0.072
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7.1. Introduction

Animal breeding is the controlled propagation ofrgstic animals in order to improve
desirable traits in future generations and involthes use of knowledge from several
branches of science, including genetics statistegsoduction, computer science and
economics (Garrick & Snell 2005). Molecular genetis becoming a real alternative
to be employed in different animal breeding progrees, due to reduction in the cost
of DNA sequencing and the possibility of imputingner sequences from a group of
animals having a complete genomic sequence intateegl individuals having
incomplete genomic sequences (Goddard 2012). Télasion of DNA information
into selection programmes to improve animal produagtrely on the prospect that the
use of this information for genomic selection walloduce a faster genetic gain than
the one achieved with only phenotypic informatidfe(wissen et al. 2001).

The studies presented in this thesis followed acsired sequence, in which the final
objective was to develop a stochastic simulatiordehdor sheep breeding which
included genomic and phenotypic information in orgeanalyse the genetic responses
for traits of economic importance in sheep productiThe topics considered in this
thesis were, the development of a deterministic arstiochastic model to simulate a
sheep breeding scheme with four correlated traitdeu selection (Chapter 3). The
development of deterministic multitrait selectiondéx models considering the
inclusion of genomic information to evaluate accyraf selection and genetic gains
(Chapter 4). The development of a stochastic mtdsl simulated a sheep breeding
flock selecting ewe replacements using a multitkest linear unbiased predictor
methodology (BLUP) and the rams with genomic seec{Chapter 5). Finally the
analysis of prediction accuracies of the genommebtling values estimated using a
yearly updated training population or with the mf@tion provided by a static training
population (Chapter 6).

7.2. Effect of including genomic selection in a sheep beding programme

The effectiveness of including genomic informatinto a sheep breeding programme
is shown in Figure 7.1. The compared genetic nresg®were obtained from a breeding

flock selecting all animals based on their indiatlbreeding values estimated with
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BLUP (Chapter 3) and from another breeding floclecteng ewes using BLUP and

rams with genomic selection (Chapter 5).
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Figure 7.1. Changes in true breeding values for (a) livegivt at 160 days (160W),
yearling weight (YW) and carcass weight (CW) and(fp faecal egg score (FES), of
a sheep breeding flock with a breeding programmagugenomic selection
(continuous lines) and a breeding programme witlgmriomic information (dotted

lines).

The breeding programme utilising genomic informatishows a higher genetic
response for carcass weight (CW) compared with gdmeetic gain obtained by a
traditional breeding programme without the inclusaf genomic information. These
results suggest that for an objective trait thatncé be measured directly, genomic
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selection may enable greater rates of geneticthaima selection based on the use of a
correlated trait. The degree of benefit will depemdthe accuracy of selection and
reduction in generation interval achieved in theageic system, relative to the genetic
correlation between the objective trait and thedaidr trait in the traditional selection

system.

The use of the proposed genomic selection in adbrgeprogramme also resulted in
lower rates for yearling weight (YW) and faecal esgpre (FES), compared with the
genetic gains obtained by the simulated breedirggramme which did not use

genomic selection. After 20 years of evaluatiore genomic selection programme
obtained 2.37 kg and 0.14 (eggstd)lower for YW and FES, respectively. These
outcomes represent a better way to achieve thedibgeebjective of reducing the

maintenance costs of adult ewes by lowering YW lapdlecreasing health problems

and costs related to parasite loads by reducingrieunt of FES.

One of the main differences between the two siredl@ireeding schemes is the age at
which the rams were utilised as breeders (ewe agetsre was the same for both
simulations). In the breeding scheme that didrét gsnomic selection (Chapter 3) the
rams were used as breeders for two years givirepargtion interval of 2.5 years. This
is compared to the breeding scheme that includeshrge selection (Chapter 5),
whereby rams were utilised only once being one g&hivhen their lambs were born.
The previous point illustrates that the reductiérihe flock's generation interval was
due to the males of the flock. Considering the genmesponses of the analysed traits
the simulation model demonstrated that genomiccBele is a viable technology to

successfully select new-born animals as breeders.

7.3. Limitations and considerations of the simulation pogrammes

There are several key factors that could leadeécstitcess or failure of any simulation
programme. The importance of the biological infotioa nourishing the model is
critical and was discussed earlier. However, soorebiological aspects that restricted
the number of selection scenarios simulated in ghesent thesis were features
regarding the programming language and the softwdiesed to develop the

simulation models. The deterministic models of tthiesis were developed using
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Microsoft Excel (2003). The implementation of sélee index equations and

calculations of selection intensities, accountiogthe age structure of the ewes and
rams, required the estimation of asymptotic gengéims demanding knowledge of
quantitative genetics and the design of breedimgnammes. Once the deterministic
model was implemented, a number of scenarios deeilsimulated and computer time

was not a limiting factor.

Using selection index theory, the variance of tblecion index or the variance of the
breeding objective can be estimated. Also, as shioyvRalconer & Mackay (1996)
and Cameron (1997), the individual genetic gaingach trait included in the analysis
(correlated response) can be estimated. Howeweguthor of this thesis did not found
a formula to calculate the variance of individualts genetic responses using selection

index theory.

The stochastic simulation models were developeaguSAS 9.3 (2011), that provided
statistical, data management and programming cipesyi allowing the construction

of recursive and random routines (as presentedhapters 3 and 5).

Stochastic models provide many advantages overndigtistic models. Changes in
genetic gain can be determined at any time pointpared to the asymptotic genetic
gains which only presents a linear trend. In addjtand compared with deterministic
models; in stochastic models besides estimatingdhn@nces of genetic gains for the
index and breeding objective, the genetic respeasances for individual traits can
be estimated. An estimation of the variance of teneesponse enables the
determination of economic risk which is very img@ort for those making investment
decisions and whose livelihood depend on the pitbdtycand profitability of the
livestock enterprise (Conington et al. 2004; Dekk&iShook 1990).

However, some limitations have to be considerednnwd®veloping stochastic models

including genomic selection:

Becoming competent in the computer language caanbeca very time demanding
process (especially if there is no previous prognamy knowledge).

Simulations produce very large datasets, thereddeege amount of computer memory
is required for running the simulation processaghk present thesis, a 2.3 GHz quad-
core computer with 8-gigabyte of RAM memory wasdis€he developed genomic
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selection stochastic simulation, produced a 2-gigadatabase and took on average 20
hours of actual computing time for the entire siatioin model using macros of SAS 9.3
(2011).

7.4. Possible new applications of the model

The use of sub modules (macros) to structure theldeed stochastic simulation
programme proved to be a very versatile tool. Teehnique of modelling, by adding
or modifying small segments of the computationatiree, allowed the implementation
of several models in order to study or analysepiréormance of a simulated breeding
programme under different scenarios or any otheestpn regarding genomic

information such as the:

* Economic impact of the breeding programme
* Accuracies of different statistical methods toraste GBVs
* Number of SNPs or animals needed to maximise gegain,

* Analysis of other breeds and traits

7.4.1. Economical analysis of breeding programmes

Economic analysis is an important step in consideiin the efficacy of breeding
programmes (Harris et al. 1984; Lopez-VillalobosGarrick 2005). An economic
analysis can help to understand the reasons faressffailures of animal breeding
programmes. This improved understanding shouldwatize development of better

techniques to enhance livestock genetics (Amer 2011

The use of bioeconomic farm models is a useful owlogy to assess the economic
effects of modifying biological characteristics production related traits (Van

Arendonk 1991), and also to create economicallyomat breeding programmes
(Thomasen et al. 2014; Wolfova et al. 2009). Thesent thesis developeded a
genomic selection approach to include in a breegirgggramme, and evaluated the
long-term genetic response to selection of diffetesits in a sheep breeding flock.
However, an economic analysis is required to evaltlee financial effect of CW, YW

and FES genetic changes on farm profitability.
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Few studies were found by the author that analylsececonomic impact of genomic
selection where traits were constrained using atagamistic genetic correlation
(Pickering et al. 2013). The genomic selection nhodieveloped here could be
incorporated with complex simulation models suchwasle farm models. Examples
are those developed by Baudracco et al. (2013)dé&ry grazing systems and by
Pickering et al. (2013) for a dual-purpose shequfation, to appraise how the change
of genetic values for the selected traits will affeconomic aspects of the sheep
industry like costs of production (by including gé&yping and evaluation costs) and

income of the production system.

7.4.2. Accuracies of different statistical methods to egthate

It was discussed (Chapters 2 and 6) that diffestatistical methods can be used to
estimate GBVs, for example SNPBLUP utilised in Gkaf or BayesB and BayesC

methods utilised by Saatchi et al. (2013). Eachihelke procedures for estimating
GBVs, deliver different accuracies of predictiorpdeding on the contribution in the

genetic variance of each SNP effect included (Hadtial. 2011; Hayes et al. 2010a).

The stochastic genomic selection model developebisnthesis utilised SNPBLUP to
estimate GBVs, this was achieved by statisticatlyng the information provided by
the SNPs as random effects (Meuwissen et al. 2002ertheless, the model has the
power to utilise any other statistical procedurat tpredicts GBVs. Future research
using other methods; exploring the genetic resmorwethe accuracy impact of
predicting GBVs for a sheep breeding flock coulddeseloped. In addition, studies
comparing the outcomes of several different statisestimation techniques could be
analysed. These experiments could be implementegitbgr modifying the existing
module or developing a new module, to perform thenognic breeding value
estimation (M6 in Figure 5.3) and incorporating$t a new subroutine of the genomic

selection stochastic model.

7.4.3. Number of SNPs or animals needed to maximise genetiain

As found by Calus (2010), the accuracy of the ganastimations depends on the
number of individuals from the reference populationmber of analysed markers and

the proportion of genetic variance affecting treatirThe stochastic simulation model
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developed in this thesis could be used in fututelies to predict the number of
individuals needed to accurately detect certain bemof SNPs or to evaluate the
number of SNPs required for a determined numbeaniials to achieve a certain

accuracy level for any desired trait of a sheedirey flock.

To evaluate the number of individuals needed toeaeha certain accuracy level using
a specific statistical procedure to estimate GBXs,heritability of the trait for which

the GBVs are being estimated must be known. Intiafdliit is necessary to assume a
fixed number of SNP, which are controlling a knopercentage of the total genetic
variance of that trait. Once the previous informatis determined, the simulation
model could be modified to deliver the answer o€ tesired accuracy. This

modification is just for the first subroutine M1 igure 5.3. Then the model should be
adjusted to use the desired statistical methodotoggstimate GBVs considering a
fixed number of animals. Once the routine runs,ueades of prediction will be

estimated as the correlation between the true brgeclues and GBVS (Calus 2010;
Cameron 1997) of the simulated animals (which éssime methodology as utilised in
Chapters 5 and 6). The previous routine (populageneration, GBV estimation and
accuracy prediction) has to be run for a numbeiteshtions, possibly one hundred
times as was performed in the present thesis, tairolan average and the deviation
values of the accuracies of prediction for that hamof evaluated animals. After this
process has finished the routine has to be rerumulating a population with

additionally evaluated animals to assess the chamdghe accuracies of prediction

when more individuals are incorporated.

The model could also be used to identify how maNy$ are required to achieve a
desired level of predicted accuracy with a speaifionber of animals in a sheep
breeding flock. This simulation model would be vesiynilar to the one proposed
previously for evaluating the number of individualseded to obtain a certain level of
accuracy. The major difference is that the numib&NMNPs will be variable, increasing
in every replicate run, instead of changing the benof animals. This model has to
consider the contribution of each SNP to the tgéaletic variance, because as stated in
7.3.2, the achieved accuracy depends on the gtatistocedure chosen to estimate the
GBVs.
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7.4.4. Analysis of other breeds and other traits

In this thesis, the stochastic simulation model waglemented to simulate a single
breed sheep breeding flock. Therefore, to noutighsimulation model all the input
information (physiological aspects, traits parametnd management decisions) was

carefully chosen to represent a long-term respoh#i@s unique animal population.

The phenotypic and genetic mean values and vasaoté¢he traits included in the

stochastic model could be modified to account fthrep traits to be analysed. The
simulation model could also be extended to incldee traits to be analysed, either in
the selection index or in the breeding objectivee§e modifications, combined with

changes in physiological and management, could &dento represent other sheep
breeds or production system. For example, this fivadion could be used to

simultaneously evaluate the genetic responses dfipteusheep breeds breeding
programmes. It could also enable, as presenteddygdet al. (2009a) in dairy cattle,
Saatchi & Garrick (2013) for beef cattle or Moghadet al. (2013) for sheep, the
comparison of predicting GBVs accuracies using genanformation from multiple

breeds.

7.5. Conclusions

The main conclusions of this thesis can be sumedasder three topics,

« Simulation techniques applied to genetic evaluation
* Genomic selection analysis

e Accuracies of estimating genomic breeding values

7.5.1. Simulation techniques for genetic evaluation.

All studies in this thesis demonstrated that the ofssimulation techniques is a very
useful tool that enabled a prospective view for@dpction system. Regardless of the
type of simulation utilised (deterministic or stashic), models can be used to assess
the long-term responses to selection of a breegmgulation. It was shown that,
compared with a deterministic simulation, a stothawmodel allows the variance of
genetic gain to be estimated for the selectionxntieeeding objective and individual

traits. On the other hand, once a deterministicehads fully developed, it allowed a
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faster review of various scenarios (including germoselection), because it was less

demanding regarding computer processing time.

7.5.2. Analysis of genomic selection

The use of genomic information in a breeding progree can increase the rate of
genetic gain for traits that are difficult to megesue.g., carcass weight in this study.
The power of genomic selection relies on the pdggilof selecting breeding animals
at younger stages of life, achieving higher gengins due to a reduction of the

generation interval of the breeding population.

7.5.3. Genomic breeding values accuracies

Considering the methods of estimating genomic bngedialues, accuracies of
genomic selection are lower than the accuracieairdd with progeny testing. The
accuracies of genomic breeding values depend oartf@int of information used to
estimate them and the contribution to the totalegjervariance of each included SNP.
Therefore the most adequate analysis method mugtdsen to predict GBVs with the
highest possible accuracy of prediction. An impairfgoint shown in this thesis is that,
accuracies of GBVs were reduced as the geneti@andist between the training
population and the population where GBVs are es@thancreased. Therefore, it is

recommended to re-estimate SNPs effects on a yieasig.
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Since the mathematical work of this thesis wasioaiy completed (at the end of
2011), several advances in the field of study hangen. For example, parameters of
the simulated traits were gathered from differeuitligation sources rather than New
Zealand parameter estimates (e.g. Pickering €R@l2) or Pickering et al.(2013)).
Other advances that occurred while, or after tlesqmt thesis was being developed are
some topic discussed in Chapter 2 like, the estimabf GBVs using a genomic
relationship matrix in GBLUP or utilizing some ofhe machine learning
methodologies described.

Another point that might be worthy to mention isatthin the genomic simulation
developed in this thesis the inheritance of the $dRotypes or linked locations, was
set up assuming an anchor SNP (with it's allelesnigaan equal possibility to be
sampled), and the rest of the alleles at other SMlse SNP genotype, were sampled
assuming a linkage disequilibrium model, rathemthesing genetic distances and

making inheritance dependent on the result foattjacent marker.

Considering all this statement, the author of thesis acknowledge that the results of
this study might have delivered different resuitss different accuracies of prediction
for the estimated genomic breeding values for tineulated population (possibly
higher). Other result that might have a differentcome due to a difference in the
simulation procedure utilised, might be the genétend of CW for the genomic
selection chapter (Figures 5.4-a and 7.1). Assumstiof a genetic relationship
between the SNP panel utilized and all the traithe breeding objective (and not only
CW), might have restricted the genetic respongbefraits under selection showing a
more believable genetic gain for CW (compared wlith extreme curvilinear genetic

gain shown).
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