Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Process optimization and scale-up for the production of a diagnostic monoclonal antibody against congenital adrenal hyperplasia (CAH)

A thesis presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Bioprocess Engineering

at Massey University, Manawatu Campus, New Zealand

Gek Kee, Chua @ Yeo

2010

ABSTRACT

The objective of this work was to optimize and scale up the suspension culture of the hybridoma 192 cell line for producing a diagnostic monoclonal antibody (MAb) against Congenital Adrenal Hyperplasia (CAH), a rare human genetic disorder. An inexpensive and simple culture method was desired.

The hybridoma 192 had previously been grown only in serum-containing media, mostly in static flasks. Baseline data were obtained in tissue culture flasks (T-flask) with the cells grown in Dulbecco Modified Eagle's Medium (DMEM) supplemented with 5% fetal bovine serum (FBS). Cells were first adapted to grow in DMEM with a reduced serum content of 2%. These adapted cells were grown in T-flasks, spinner flasks and a 2 L stirred tank bioreactor, to assess process scalability. Compared to T-flasks and spinner flasks, a high specific MAb production rate could be achieved in the highly controlled conditions of the 2 L bioreactor.

In the next step, the serum content of the media was further reduced to 0.4% by adding inexpensive components (ferric citrate, sodium selenite, zinc sulfate, 2mercaptoethanol, essential amino acids and ethanolamine) to the medium to replace the functionality of serum. Media design experiments were conducted in T-flasks using a design of experiment methodology to screen components for their effectiveness in substituting serum and supporting the growth of the hybridoma cells. The significant components were then optimized through a central composite design (CCD). The optimized medium was verified after adapting the cells to this new formulation. Of the screened components, only sodium selenite, zinc sulfate and ferric citrate were found to substitute for some of the functions of serum. Serum requirement of the cells was successfully reduced to 0.4% by supplementing the medium with 311.8 µM ferric citrate, 17 nM sodium selenite and 4.5 µM zinc sulfate. With this new formulation, the total cost of the medium was reduced by nearly 80% compared to DMEM supplemented with 5% FBS. The specific growth rate of the cells in this new formulation was comparable to that in the DMEM medium supplemented with 2% FBS. Similarly, the specific MAb production rate in the new medium was comparable to that of DMEM + 2% FBS. The antibody produced in the new formulation could specifically detect its antigen, 17-OHP.

In a further step, amino acids, lysozyme, dimethyl sulfoxide (DMSO) and lipopolysaccharide (LPS) were screened as potential inducers of MAb production in this cell line. An effective inducer (i.e. LPS) was identified, but the level of enhancement of the average specific MAb production rate could not compensate for the high cost of the inducer. Therefore, the inducer was not used in further work.

Using the new low-serum medium, the cell culture was scaled-up to a 2 L bioreactor and the operating parameters were screened with a fractional factorial design. A total of 5 parameters were screened. They were pH, temperature, dissolved oxygen, stirring speed and gas sparging rate. The significant parameters were then optimized with a central composite design. The resulting optimized parameters were verified and used to scale up to a 20 L bioreactor using constant impeller tip speed as the scale up criterion. The performance of cells in the 20 L bioreactor was then evaluated. All 5 operating parameters screened and optimized in the 2 L bioreactor significantly affected the culture performance. The optimum operational condition to maximize the MAb production rate were a sparging rate of 0.09 vvm, a stirring speed of 100 rpm, a pH of 7.4, a temperature of 36.8°C and a dissolved oxygen level of 30% of air saturation. The specific Mab production rate at this optimum point was 0.2730 pg/cell.h and the specific growth rate was 0.0363/h. This was equivalent to a production of 11.941 µg/mL (or 11.9 mg/L) of MAb per batch. By using the constant impeller tip speed scale up criterion, the stirring speed in the 20 L bioreactor was calculated to be 37 rpm. The other operating settings remained the same as in the 2 L bioreactor. There were improvements in the specific growth rate (0.0401/h) and the maximum viable cell density $(1.89 \times 10^6 \text{ cells/mL})$ attained by the hybridoma 192 in the 20 L bioreactor. Nevertheless, both the maximum MAb titer (9.782µg/mL) and the average specific MAb production rate (0.1695 pg/cell.h) were slightly reduced relative to the 2 L bioreactor. This was due to the negatively-growth associated production characteristics of the MAb. The product quality was examined through specificity tests and SDS-PAGE. The MAb produced in the 20 L bioreactor was found to be specific to its antigen, 17-OHP.

In conclusion, the production of the diagnostic MAb against CAH was successfully optimized in a newly developed medium that greatly reduced the cost of culture. A successful scale up of the production process to a 20 L bioreactor was demonstrated.

ACKNOWLEDGEMENT

I wish to extend my special thanks and appreciation to my supervisors, Prof. Yusuf Chisti, Dr. Badarulhisam bin Abdul Rahman and Prof. Badhrulhisham bin Abdul Aziz for their supervision, suggestions and guidance throughout this work. Special thanks go to Dr. Badarul for his invaluable advice, support and encouragement.

Special appreciation is due to Prof. Cheah Swee Hung, University of Malaya, Malaysia, and Dr. Heilly Chong of InnoBiologics Sdn Bhd for their technical support, time and effort in helping troubleshoot the analytical problems that I faced.

I also wish to gratefully acknowledge the financial support from Universiti Malaysia Pahang and Science Fund from the Ministry of Science, Technology and Innovation, Malaysia, in making this study a success.

Special thanks are due to Mr. Zainal bin Giman for his technical assistance in operating the bench scale and the pilot scale bioreactors. I also wish to thank Miss Siti Fatimah binti Mohd Yunus and Mr. Liu Meng for their help in taking care of the cell line when I was away from the laboratory. Special appreciation is expressed to Mr. Abd. Razak bin Abd. Hamid for his kindness in helping me to change the gas tanks during weekends and public holidays. My sincere thanks to all of them.

Likewise I specially thank my friends and colleagues at Faculty of Chemical Engineering and Natural Resources, Universiti Malaysia Pahang, Malaysia, especially Chin, Jolius, Chong and SMS for their ever ready willingness to assist me when I encountered problems. Thanks also go to Chin and Chong for always accompanying me for a short and fast lunch. Thank you all for the assistance and friendship.

My special thanks are also due to my friends, Shawn and Zaki for their willingness to listen when I was depressed and grumble about my work. Thanks to their caring support and blessings in helping me complete this thesis. Finally, I express my gratitude to my husband for his years of dedicated patience and love, which gave me strength to go through those good days and bad days. To my girls, I would like to apologize for my negligence in participating in their life these few years. I appreciate the understanding and the touch of love from them and thanks for working together with me in the lab during the weekends.

TABLE OF CONTENTS

Abstract		i
Acknowledgements		iv
Table of contents		vi
List of figures	s	xii
List of tables		XV
List of abbrev	viations	xvii
Chapter 1 –	Introduction	1
1.1 Backg	ground to the study	1
1.1.1	What is CAH?	1
1.1.2	Frequency of incidence	3
1.1.3	Screening methods available	4
1.1.4	Rationale for using monoclonal antibody (MAb) for CAH	4
	diagnosis	
1.2 Proble	em identification	6
1.2.1	Serum omission from culture medium	6
1.2.2	Requirement of a simple, reliable and consistent small scale	6
	batch culture process	
1.2.3	Low producer characteristic of hybridoma cells	7
1.3 Objec	tive of study	7
1.4 Resea	rch strategy	8
1.4.1	Serum reduction and baseline data collection	8
1.4.2	Medium optimization using statistical experimental design	8
1.4.3	Operational optimization using statistical experimental design	9
Chapter 2 – 2	Literature Review	10
2.1 Mono	clonal antibodies and their applications	10
2.2 Produ	ction of a monoclonal antibody	10
2.2.1	In vivo cultivation	10
2.2.2	In vitro cultivation	11
2.2.3	Types of bioreactors	11
2.2.4	Mode of operations	13
	2.2.4.1 Batch culture	14

		2.2.4.2 Fed-batch mode	14
		2.2.4.3 Perfusion culture	15
		2.2.4.4 Perfusion culture with controlled feeding	15
2.3	Cultur	re media	16
	2.3.1	Basal media	16
	2.3.2	Serum-containing media	16
	2.3.3	Serum-free media	18
	2.3.4	Protein-free media	19
2.4	Factor	rs affecting cell growth, cell metabolism and antibody	21
	produ	ction	
	2.4.1	Temperature	21
	2.4.2	pH	23
	2.4.3	Dissolved oxygen content	26
		2.4.3.1 Dissolved oxygen concentration measurement	29
		2.4.3.2 Methods of controlling dissolved oxygen	30
	2.4.4	Shear effect	32
		2.4.4.1 Mechanisms of cell damage	33
		2.4.4.2 Protective agents	35
	2.4.5	Waste products	36
	2.4.6	Inducer agents	40
2.5	Scale-	-up	42
	2.5.1	Scale up of culture processes	42
	2.5.2	Problems in scaling-up	43
	2.5.3	Scale up methods	43
	2.5.4	Scale up strategy for shear sensitive hybridoma cell line	44
Ch	apter 3 –	General Materials and Methods	45
3.1	Cell li	ine and stock preparation	45
	3.1.1	Hybridoma cell and growth conditions	45
	3.1.2	Thawing and freezing of cells	45
	3.1.3	Stock preparation	46
3.2	Prepa	ration of culture media	46
	3.2.1	Basic media preparation	46
	3.2.2	Preparation of complete media	47

3.3	Analy	tical methods	47
	3.3.1	Total and viable cell count through Trypan Blue dye exclusion	48
	3.3.2	Determination of glucose and lactate concentrations for	49
		samples from static culture	
	3.3.3	Determination of glutamine and/or amino acids concentrations	50
		for samples from static culture	
	3.3.4	Determination of ammonia concentration for samples from	51
		static culture	
	3.3.5	Determination of glucose, lactate, glutamine and ammonia	53
		concentrations for samples from stirred culture	
	3.3.6	Determination of monoclonal antibody concentration	53
	3.3.7	SDS-PAGE gel electrophoresis of purified protein	54
3.4	Proces	ssing and purification of MAb	55
	3.4.1	Protein concentration through ammonia sulfate precipitation	56
	3.4.2	Protein concentration using Vivaspin	56
	3.4.3	Protein concentration using cross flow filtration	57
	3.4.4	Purification through Protein G column	57
3.5	Batch	culture growth and production studies	58
	3.5.1	Static flak cultures	58
	3.5.2	Spinner flask cultures	58
	3.5.3	Bioreactor cultures	58
3.6	Bioact	tive assay	59
	3.6.1	Identification of suitable antibody concentration	59
	3.6.2	Specificity test	60
	3.6.3	Cross-reactivity test	61
Ch	apter 4 – 1	Results and Discussion	62
4.1	Serum	Reduction and Baseline Data Collection	62
	4.1.1	Introduction	62
	4.1.2	Objectives of study	63
	4.1.3	Materials and methods	64
		4.1.3.1 Materials	64
		4.1.3.2 Serum reduction	64
		4.1.3.3 Glutamine degradation	65

	4.1.3.4 Baseline data collection in T-flask, spinner flask and	65
	bioreactor	
	4.1.3.5 Fed-batch study in spinner flask	65
	4.1.3.6 Estimation of growth parameters	66
4.1.4	Results and discussion	68
	4.1.4.1 Serum reduction	68
	4.1.4.2 Glutamine degradation rate in the culture media	70
	4.1.4.3 Growth, production and metabolites profiles in T-flask,	73
	spinner flask and bioreactor	
	4.1.4.4 Fed-batch study in spinner flask	83
4.1.5	Conclusion	85
4.2 Medi	um Optimization Using Statistical Experimental Design	87
4.2.1	Introduction	87
4.2.2	Objectives of study	90
4.2.3	Materials and methods	90
	4.2.3.1 Supplements	90
	4.2.3.2 Statistical experimental design	91
	4.2.3.3 Cell culture procedures	91
	4.2.3.4 Augmentation to central composite design	91
	4.2.3.5 Adaptation to new medium	92
	4.2.3.6 Validation process in new medium	92
4.2.4	Results and discussion	92
	4.2.4.1 Screening of the significant factors	92
	4.2.4.2 Augmentation to central composite design (CCD)	94
	4.2.4.3 Adaptation to new medium	97
	4.2.4.4 Batch profile for cells growing in LSD	98
4.2.5	Conclusion	102
4.3 Scree	ening and Optimization of Inducer Agents	103
4.3.1	Introduction	103
4.3.2	Objectives of study	103
4.3.3	Materials and methods	103
	4.3.3.1 Chemicals	103
	4.3.3.2 Screening of inducer agents	104

		4.3.3.3 Cell culture condition during inducer screening	104
		4.3.3.4 Optimization of inducer agent	104
		4.3.3.5 Cell culture condition during optimization process	105
		4.3.3.6 Verification of inducing effect	105
	4.3.4	Results and discussion	106
		4.3.4.1 Screening of significant factors	106
		4.3.4.2 Determination of optimum LPS concentration	110
		4.3.4.3 Verification of the optimum point	111
	4.3.5	Conclusion	113
4.4	Opera	tional Parameter Optimization Using Statistical Experimental	114
	Desig	n	
	4.4.1	Introduction	114
	4.4.2	Objectives of study	114
	4.4.3	Materials and methods	114
		4.4.3.1 Preliminary study in spinner flask culture	114
		4.4.3.2 Experimental design for the screening process	115
		4.4.3.3 Cell culture procedures	115
		4.4.3.4 Augmentation to central composite design	115
		4.4.3.5 Verification of optimum point	116
	4.4.4	Results and discussion	116
		4.4.4.1 Preliminary study in spinner flask culture	116
		4.4.4.2 Screening of significant factors	119
		4.4.4.3 Augmentation to central composite design	123
		4.4.4 Verification of the optimum point	128
		4.4.4.5 Comparison of the cell growth and MAb production in	132
		T-flasks, spinner flasks and bioreactor	
	4.4.5	Conclusion	133
4.5	Scale	Up to 20 L Pilot Scale Bioreactor	134
	4.5.1	Introduction	134
	4.5.2	Objectives of study	134
	4.5.3	Materials and methods	134
		4.5.3.1 Geometry of 2 L and 20 L bioreactors	134
		4.5.3.2 Scale up strategy	135

	4.5.3.3 Cell culture procedures	136
4.5.4	Results and discussion	137
	4.5.4.1 Growth and production profiles	137
	4.5.4.2 Specificity of the MAb produced	140
	4.5.4.3 Structural integrity of the MAb produced	142
4.5.5	Conclusion	145
Chapter 5 -	- Conclusions and Recommendations	146
5.1 Intro	duction	146
5.2 Gen	eral conclusions	146
5.2.1	Serum reduction and baseline data collection	146
5.2.2	Medium optimization using statistical experimental design	147
5.2.3	Screening and optimization of inducer agents	147
5.2.4 (perational parameter optimization using statistical experimental	147
(lesign	
5.2.5	Scale up to 20 L pilot scale bioreactor	148
5.2.6	Overall achievement	148
5.3 Reco	ommendation for further work	149
REFEREN	CES	150
APPENDI	CES	171
Appendix A	Recipes of solutions used	171
Appendix B	Geometric details and photos of spinner flask and bioreactor	174
Appendix C	Raw data for all experiments	178

LIST OF FIGURES

Figure 1.1	Pathway of steroid biosynthesis (Friedman, 2004)	2
Figure 2.1	Lamellae between bubble layers (adapted from Papoutsakis,	35
	1991b)	
Figure 3.1	Hemacytometer	49
Figure 4.1.1	Viable cell density after 48 h and 3 passages in different basal	68
	media supplemented with 1% FBS	
Figure 4.1.2	Comparison of specific growth rates (A), maximum viable cell	69
	density (B) and maximum MAb titer (C) for cells cultured in	
	different media	
Figure 4.1.3	Glutamine degradation in DMEM supplemented with 5% FBS and	71
	2% FBS at 4°C and 37°C	
Figure 4.1.4	A plot of ln{[Gln]/[Gln] ₀ } versus t in DMEM + 5% FBS and	71
	DMEM + 2% FBS at 37°C ([Gln] is glutamine concentration at	
	time t; [Gln] ₀ is glutamine concentration at time zero)	
Figure 4.1.5	Typical growth profiles of cells in T-flask culture	73
Figure 4.1.6	Typical growth profiles of cells in spinner flask culture	74
Figure 4.1.7	Specific growth rates of cells in static and stirred cultures	75
Figure 4.1.8	Specific MAb production rates of cells in static and stirred	76
	cultures	
Figure 4.1.9	Specific metabolites production and consumption rates of cells in	77
	static and stirred cultures	
Figure 4.1.10	Typical growth profiles of cells in bioreactor with DMEM	78
	supplemented with 2% FBS	
Figure 4.1.11	Comparison of specific growth rate and specific MAb production	79
	rate for DMEM with 2%FBS in spinner culture and bioreactor	
Figure 4.1.12	Comparison of metabolites consumption and productions rates for	80
	2%FBS + DMEM in spinner culture and bioreactor	
Figure 4.1.13	Comparison of growth profiles for old and new cell stock in 2%	82
	DMEM in static culture	
Figure 4.1.14	Growth profiles of cells in spinner flasks for simple fed-batch	84

- **Figure 4.2.1** 3D plot showing optimum point for viable cell density at 17.28 96 nM sodium selenite **Figure 4.2.2** 3D plot showing optimum point for % viability at 17.28 nM 97 sodium selenite Repeated batch cell growth profile in NM (2nd trial) 98 Figure 4.2.3 Growth and production profiles for cells grow in LSD 99 Figure 4.2.4 Figure 4.2.5 MAb specificity and cross-reactivity with steroid hormones with 101 structures similar to 170HP **Figure 4.3.1** MAb titer at 72 h in media supplemented (after spinning) with 106 various concentrations DMSO (%v/v) **Figure 4.3.2** MAb titer at 72 h in media supplemented with various lysozyme 106 $(\mu g/mL)$ concentrations **Figure 4.3.3** MAb titer at 72 h in media supplemented with amino acids 107 solution at various concentrations (% v/v)Figure 4.3.4 MAb titer at 72 h in media with various cocentrations of LPS 107 $(\mu g/mL)$ **Figure 4.3.5** MAb titer at 72 h in media supplemented with various 109 concentrations of DMSO (%v/v) (without spinning) **Figure 4.4.1** Comparison of growth curves for cells in T-flask and spinner flask 116 cultures (100 mL flask, 40 rpm) Figure 4.4.2 Significant interactions between the factors on the response of 125 maximum viable cell density: (a) aeration rate and stirring speed; (b) pH and dissolved oxygen; (c) temperature and dissolved oxygen; and (d) stirring speed and pH. (All other factors were fixed at the optimum conditions.) Figure 4.4.3 Significant interactions between the factors on the response of 126 specific growth rate: (a) pH and dissolved oxygen; and (b) temperature and dissolved oxygen. (All other factors were set at
- **Figure 4.4.4** Growth profiles of hybridoma 192 cell in the 2L bioreactor at the 128 recommended optimum point (0.09 vvm aeration rate, 100 rpm agitation speed, pH of 7.4, 36.8°C, and 30% dissolved oxygen level)

the optimum conditions.)

Figure 4.4.5	MAb production profiles of hybridoma 192 cell in the 2L	129
	bioreactor at the recommended optimum point	
Figure 4.5.1	Growth profiles of cells (3 independent runs) in the 20 L	137
	bioreactor	
Figure 4.5.2	MAb production profiles (3 independent runs) in the 20 L	137
	bioreactor	
Figure 4.5.3	Chromatogram of purified sample at 280 nm	141
Figure 4.5.4	Plot of OD versus dilution factor for the purified MAb from the 20	141
	L bioreactor	
Figure 4.5.5	Specificity test with purified sample from 20 L bioreactor	142
Figure 4.5.6	Coomasie stained gel with reducing and non-reducing mouse IgG	143
	standard	
Figure 4.5.7	Silver stained gel with the reduced MAb sample from the 20 L	144
	bioreactor and the reduced mouse IgG standard	

LIST OF TABLES

Table 1.1	Advantages and disadvantages of various CAH detection	5
	methods	
Table 3.1	The amount of assay solution mixed for the determination of	52
	ammonia concentrations	
Table 4.1.1	Comparison of glutamine decomposition rate constant at $37^{\circ}C$	72
	in different media	
Table 4.1.2	Comparison of yields in static and stirred cultures	77
Table 4.1.3	Comparison of yields in T-flask, spinner culture and bioreactor	80
Table 4.1.4	Comparison of specific growth, specific MAb production and	83
	specific metabolites rates for old and new cell stock in 2%	
	DMEM at static culture	
Table 4.1.5	Comparison of specific growth rates, specific MAb production	84
	rates, metabolites consumption and production rates, and yields	
	of cells at 2% and 5% serum media in fed-batch culture	
Table 4.1.6	Comparison of specific growth rates of cells in 2% and 5%	85
	serum media (DMEM) in spinner flask at different speed for	
	batch culture	
Table 4.2.1	Concentrations of components in the experiments and stock	90
	solutions	
Table 4.2.2	Analysis of variance table for cell density and percentage cell	93
	viability for the screening design	
Table 4.2.3	Analysis of variance table for MAb titer for the screening	94
	design	
Table 4.2.4	Analysis of variance table for cell density and percentage cell	95
	viability for the augmented design	
Table 4.2.5	R^2 and Q^2 of the models	95
Table 4.2.6	Comparison of specific growth rates and MAb production rates	99
	of cells growing in LSD and control	
Table 4.2.7	Cost reduction of the medium	100
Table 4.3.1	LPS concentration in the experimental runs of the one factor	105
	central composite design	

Table 4.3.2	Analysis of variance table for maximum MAb titer and specific	110
	MAb production rate	
Table 4.3.3	Goodness of fit (R^2) and goodness of prediction (Q^2) for the	111
	models	
Table 4.3.4	Comparison of the predicted, actual and control values	112
Table 4.3.5	Comparison of media costs with and without LPS	113
Table 4.4.1	Comparison of specific growth rates and average specific MAb	117
	production rate of hybridoma 192 in T-flask and spinner flask cultures	
Table 4.4.2	The surface-to-volume ratio of spinner flasks for a medium	117
	volume of 90 mL	
Table 4.4.3	Analysis of variance table for the maximum viable cell density	120
	and the specific growth rate in screening study	
Table 4.4.4	Analysis of variance table for the maximum MAb titer and the	121
	average specific MAb production rate in screening study	
Table 4.4.5	Analysis of variance table for the maximum viable cell density	123
	and the specific growth rate in central compostie design	
Table 4.4.6	Analysis of variance table for the maximum MAb titer and the	124
	average specific MAb production rate in central composite	
	design	
Table 4.4.7	Goodness of fit (R^2) , goodness of prediction (Q^2) and the signal	128
	to noise ratio for the models	
Table 4.4.8	Comparison between predicted and actual values	130
Table 4.4.9	Comparison of the responses for T-flasks, spinner flasks (100	132
	mL, 40 rpm) & bioreactor	
Table 4.5.1	Details of geometry of 2 L and 20 L bioreactors	135
Table 4.5.2	Geometrical similarities between 2 L and 20 L bioreactors	136
Table 4.5.3	Comparison of results between the 2 L bench scale and the 20	138
	L bioreactors	
Table 4.5.4	Comparison of $k_L a$ values in the two bioreactors	139

LIST OF ABBREVIATIONS

[GLN]	Glutamine concentration (mM)
[GLN] ₀	Initial glutamine concentration (mM)
170HP	17α-Hydroxyprogesterone
ABTS	2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)
ACTH	Adrenocorticotropic hormone
AMM	Ammonia
ANDRD	4-Androstene-3,17-dione
ANOVA	Analysis of variance
BESTR	β-Estradiol
BSA	Bovine serum albumin
САН	Congenital adrenal hyperplasia
CCD	Central composite design
СНО	Chinese hamster ovary cell line
CV	Coefficient of variation
CYP21	21-Hydroxylase
d	Length of the light path (cm)
DF	DMEM/Ham's F12 medium in a ratio of 1:1 by volume
DHEA	Dehydroepiandrosterone
D _i	Impeller diameter (cm)
DMEM	Dulbecco Modified Eagle's Medium
DMSO	Dimethyl sulfoxide
DO	Dissolved oxygen level (% of air saturation)
D _T	Bioreactor diameter (cm)
ELISA	Enzyme Linked Immunosorbent Assay
eRDF	Enhanced RPMI/DMEM/F12 medium in volum ratio of 2:1:1
F12	Ham's F12
FBS	Fetal bovine serum
FCS	Fetal calf serum
FDA	United States Food and Drug Administration
FMOC	9-Fluorenylmethylchloroformate
GC/MS	Gas chromatography tandem mass spectrometry

GIDH	Glutamate dehydrogenase
GLN	Glutamine
GLU	Glucose
HPLC	High Performance Liquid Chromatography
IgG	Immunoglobulin G
IMDM	Iscove's Modified Dulbecco medium
k	Glutamine degradation rate constant (1/h)
k _L a	Volumetric oxygen transfer coefficient (1/s)
LAC	Lactate
LC/MS/MS	High-performance liquid chromatography tandem mass
	spectrometry
LPS	Lipopolysaccharide
LSD	Low serum DMEM
MAb	Monoclonal antibody
MEM	Minimum Eagle's Medium
MW	Molecular weight (g/mol)
MWCO	Molecular weight cut off (Da)
Ν	Rotational speed (rpm)
NADH	Nicotin-amide-adenine dinucleotide
NM	New medium
OD	Optical density
OPA	Ortho-phthalaldehyde
OUR	Oxygen uptake rate (mmol/(L.h))
PBS	Phosphate buffer saline, pH 7
PEG	Polyethylene glycol
PREG17	17α-Hydroxypregnenolone
PREG5	5-Pregnen-3β-ol-20-one
q	Specific consumption/production rate (mmol/10 ⁹ cells.h)
Q	Volumetric gas flow rate (vvm)
Q^2	Goodness of prediction
r	Average specific MAb production rate (pg/cell.h)
R^2	Goodness of fit
RIA	Radioimmunoassay

RPMI 1640	Roswell Park Memorial Institute 1640 medium
SV	Simple virilising
SW	Salt-wasting
t	Culture period (h)
TEA	Triethylamine
THF	Tetrahydrofuran
TRFS	Time-resolved fluorescence spectroscopy
UP	Ultrapure water
V	Final volume of solution mixture in ammonia assay
v	Sample volume in ammonia assay
$\int X_{\nu}.\mathrm{dt}$	Viability index (cells.h)
X _v	Viable cell density (cells/mL)
Y	Yield
μ	Specific growth rate (1/h)
μ	Viscosity of the fluid (Pa.s)
τ	Shear stress (Pa)
γ	Shear rate (1/s)
3	Extinction coefficient of NADH at 340 nm (L/mol.cm)