Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A Molecular Analysis of Flower Colour Development in an Ornamental Monocot (Anthurium andraeanum)

A thesis presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Plant Molecular Biology

at Massey University, Palmerston North, New Zealand.

Vern Eddy Collette

2002

ABSTRACT

Colour in Anthurium andraeanum spathe and spadix was investigated at the molecular level. A cDNA library was constructed from poly $(A)^+$ RNA isolated from different stages of spathe tissue of the red-flowered anthurium cultivar, Altar. Full-length clones for the flavonoid biosynthetic genes, chalcone synthase, flavanone 3-hydroxylase, dihydroflavonol 4-reductase (*DFR*) and anthocyanidin synthase were isolated by heterologous screening. The expression pattern of these genes implicates *DFR* as a prime regulatory target in the spathe, having an independent regulatory mechanism to that of the other three genes. In the spadix, other regulatory targets are suggested. Additional analysis of *DFR* expression in the spathe revealed a diurnal rhythm to its transcript profile and a model of the possible functional significance of this is presented.

Molecular analysis of the genetic model for anthurium spathe colour was performed with three genotypically defined white lines recessive at the O and M loci, revealing a more complex genetic model than that originally proposed. The hypothesis that the O locus encodes a regulatory protein with specific targets is discussed along with various possible identities for M.

١

Several partial *Myb* cDNA clones were isolated, representing six distinct Myb groups in the anthurium spathe. A full-length cDNA clone for one *Myb* gene, *AaMyb1*, was obtained. *AaMyb1* encodes a R2R3 Myb protein. It had all the structural features in its DNA binding domain that are conserved in R2R3 Myb proteins as well as an acidic domain in the C-terminus that is a potential activation domain. In sequence comparisons with other Myb proteins, AaMYB1 had high similarity to anthocyanin related Mybs from *Zea mays* (maize). However, in transient assays, AaMYB1 was unable to restore wild type phenotype in an *Antirrhinum majus* line, mutated at the anthocyanin Myb locus *Rosea1*. The expression pattern of AaMYB1, in fact, suggests a role in regulating flavone production in the anthurium spathe.

Analyses were done to further investigate the regulation of the anthurium DFR promoter. Specific conserved *cis*-elements recognised by anthocyanin Myb regulators were found in the promoter fragment. However, transient expression assays showed that the anthurium DFR promoter was activated independently of ROSEA1. The possibility that DFRexpression is controlled by several regulatory mechanisms, involving various signal transduction cascades, is discussed.

ACKNOWLEDGEMENTS

This acknowledgement is to all who in one way or another have assisted me in completing my study. Firstly, to the government of New Zealand, I am deeply grateful for offering me a Commonwealth scholarship to pursue my doctorate in this wonderfully scenic country. To Kiri Manuera, Margaret Gilbert and your respective teams, I appreciate all the kindness, assistance, interest and support shown to me. I am also thankful for the extension of my scholarship through Massey University, enabling me to produce an excellent thesis.

To my supervisors, Professor Paula Jameson, at Massey University, Dr. Kevin Davies and Dr. Kathy Schwinn of Crop & Food Research (C&FR), it was an honour to be guided by your intellect and proficiency. Many thanks for the mentoring and training provided which I am sure will contribute positively to my development as a scientist. I have always commented to my peers that I was assigned the best combination of supervisors a student could ask for. I hold each one of you in very high esteem and desire for you and your loved ones the very best for the future. My thanks also to Paula and family for allowing me to stay at their home when I first arrived in New Zealand.

To C&FR, I express my sincere thanks for funding my research and to all the staff for providing a most enjoyable work culture. To Dr. Chris Winefield, Steve Arathoon and Jan Mason, many thanks for the countless assistance in the lab and for the friendship and laughter that often characterised our interactions. To the members of the C&FR business house tennis team, thanks for wonderful times of recreation, hopefully you can secure first place in a subsequent tournament. MaryAnne, in the mean time, we would guard zealously our personal title of 'unbeaten mix doubles team over two seasons.'

Many thanks, to the staff at the Massey Plant Growth Unit for the excellent care of my plants, during the thesis. I understood the odds were against us in getting the plants established and thriving but clearly your expertise was more than sufficient.

I can write a thesis of equivalent length describing in detail the contributions made by my wife throughout the duration of this study. Words cannot begin to describe the great debt of love and gratitude I have for my wife and best friend, Lauren. She has joyfully given up the last four years of her life on my behalf. It is her love, encouragement, inspiration, intuition, enthusiasm and prayer that has been integral to my success. Her interest in my work has never diminished and her ability to grasp the concepts of molecular biology, though her background is business studies, is a testimony to the wonderful mind she possesses. I am grateful to her for the detailed corrections of my work. I dedicate this thesis to you my darling and pledge my support in your PhD endeavours.

To all the members of my family and friends both at home in Trinidad and Tobago and around the world. Thanks for the continued support and prayer. This success belongs to us all. Special commendation to my mother, Frances Collette ('the tallest lady'). We both know what this means to us. You are a pillar of strength, a symbol of honour and virtue. Thanks for being my mother, the best in the world.

My appreciation also goes to Dr. Umaharan of the University of the West Indies, St. Augustine, who nurtured my love for genetics and molecular biology. He continues to be an inspiration and a model for me. Also to Kairi Blooms, Trinidad, for their continued support of anthurium research. Such links between industry and university are critical to continued development. I am confident that the results of this work would contribute positively to your company.

Finally, I acknowledge my friend and my God, the ultimate designer of the wonderfully complex biological systems that we explore today through science, and Jesus Christ my Lord, for the multifaceted grace that was given to me at every stage of my thesis. My heart is filled with gratitude and praise to Him.

TABLE OF CONTENTS

ABSTRACT	ii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	vi
ABBREVIATIONS	xiii
LIST OF FIGURES	xv
LIST OF TABLES	xviii
Chapter 1. Introduction	1
1.1 COMMERCIAL ASPECTS OF ANTHURIUM PRODUCTION IN TRINIDAD AND TOBAGO	2
1.2 THE ANTHURIUM FLOWER	4
1.3 FLOWER COLOUR PIGMENTS	5
1.4 THE FLAVONOIDS	6
1.5 ANTHOCYANINS	6
1.6 ANTHURIUM FLOWER PIGMENTS	8
1.7 THE GENETICS OF FLOWER COLOUR INHERITANCE IN ANTHURIUM	10
 1.8 THE BIOCHEMISTRY OF FLOWER COLOUR AS IT RELATES TO ANTHURIUM 1.8.1 Biosynthesis of substrates for the flavonoid pathway 1.8.2 Biosynthesis of chalcones 1.8.3 Biosynthesis of flavones 1.8.4 Biosynthesis of anthocyanins: B-ring hydroxylation 1.8.5 Transfer of anthocyanins to the vacuole 	11 12 12 13 14 18
1.9 TEMPORAL EXPRESSION OF ANTHOCYANIN BIOSYNTHETIC GENES	18
1.10 GENE TRANSCRIPTION	20

1.11 Myb TRANSCRIPTION FACTORS	22
1.11.1 Myb protein distribution and diversity of function	23
1.11.2 Defining features of Myb proteins: The Myb domain	25
1.11.2.1 Three repeat Mybs	25
1.11.2.2 Two repeat Mybs	26
1.11.2.3 Single repeat Mybs	27
1 11 2 4 Myb domain features for plant and animal Mybs	27
1.11.3 Defining features of Mybs: The C-terminus	28
1 11 4 Myb recognition specificity	20
1 11 5 Myb interactions with other proteins	30
1 11 6 Regulation of anthoevanin biosynthesis in model species	31
1 11 7 In vivo transcription factor studios for anthocyanin Mybs	33
1.11.7 In vivo transcription factor studies for anthocyanin Mybs	55
1.12 INTRODUCING NOVEL COLOURS	34
1.12.1 Targeting specific genes	34
1.12.2 Modifying genes involved in conigment synthesis	35
1 12 3 Manipulating the nathway by modifying regulatory genes	36
1.12.5 Manipulating the pathway by mounying regulatory genes	50
1.13 THESIS AIMS	36
Chapter 2. Material and methods	38
2.1 PLANT MATERIAL	39
2.2 RNA EXTRACTION PROCEDURES	40
2.2 A A LATARA ENTRACTION TROOPED CRES	40
2.2.1 RNA extraction from the spacine tissue	42
2.2.2 KIVA extraction from the spacia tissue	72
2.3 ANALYSING THE ISOLATED RNA	45
2.3.1 Quantifying RNA by spectrophotometry	45
2.3.2 Checking for RNA degradation by agarose gel electrophoresis	45
2.4 PURIFYING MESSENGER RNA	45
2.5 ISOLATION OF CONA CLONES FOR ANTHURIUM FLAVONOID	
BIOSVNTHETIC GENES	46
2.5.1 Preparation of double stranded cDNA	47
2.5.1 Size fractionation	50
2.5.2 Size in actionation 2.5.3 Ligation, packaging and titoring	51
2.5.5 Ligation, packaging and thering	51
2.5.4 LIDEALY plaque IIIIS	52
2.5.5 Kadioactive probe preparation	53
2.5.0 Screening the library	54
2.5. / In vivo excision of pBluescript phagemid from the	
Uni-Zap XR Vector	56
2.5.8 Sequencing	57

2.6.1 Plasmid miniprep by alkaline lysis 58 2.6.2 QIAprep spin miniprep 60 2.6.3 Alkaline lysis/PEG treatment DNA preparation 60 2.6.4 QIAGEN plasmid Midi and Maxi protocols 61 2.7 RESTRICTION ENZYME DIGEST OF PLASMID DNA 62 2.8 METHODS FOR DETERMINING DNA CONCENTRATION 63 2.8.1 Quantifying plasmid DNA by spectrophotometry 63 2.8.2 Fluorometry 63 2.8.3 Quantifying plasmid DNA by agarose gel electrophoresis 63 2.9 POLYMERASE CHAIN REACTIONS 64 2.9.1 Taq polymerase PCR 66 2.9.3 J' RACE PCR 66 2.10 PURIFICATION OF DNA FROM AGAROSE GELS 66 2.11 PREPARATION OF COMPETENT CELLS 67 2.12 DNA LIGATION REACTIONS 68 2.13 HEAT SHOCK TRANSFORMATION 69 2.14 NORTHERN ANALYSIS 66 2.14 NORTHERN ANALYSIS 67 2.14 J Gel electrophoresis of RNA 71 2.14.1 Gel electrophoresis of RNA 71 2.14.2 Blotting of RNA 71 2.14.3 Hybridisation 72 3.1 INTRODUCTION 74 3.2 ISOLATION OF AN ANTHURIUM <i>CHS</i> cDNA CLONE	2.6 PLASMID DNA PREPARATION	58
2.6.2 QIAprep spin miniprep662.6.3 Alkaline lysis/PEG treatment DNA preparation662.6.4 QIAGEN plasmid Midi and Maxi protocols612.7 RESTRICTION ENZYME DIGEST OF PLASMID DNA622.8 METHODS FOR DETERMINING DNA CONCENTRATION632.8.1 Quantifying plasmid DNA by spectrophotometry632.8.2 Fluorometry632.8.3 Quantifying plasmid DNA by agarose gel electrophoresis632.9 POLYMERASE CHAIN REACTIONS642.9.1 Taq polymerase PCR642.9.2 Platinum Pfx polymerase PCR652.9.3 3' RACE PCR652.10 PURIFICATION OF DNA FROM AGAROSE GELS662.11 PREPARATION OF COMPETENT CELLS672.12 DNA LIGATION REACTIONS682.13 HEAT SHOCK TRANSFORMATION692.14 NORTHERN ANALYSIS692.14.1 Gel electrophoresis of RNA772.14.2 Blotting of RNA772.14.3 Hybridisation72Chapter 3. Characterisation of cDNA clones for anthuriumflavonoid biosynthetic genes733.1 INTRODUCTION743.2 ISOLATION OF AN ANTHURIUM <i>FJH</i> cDNA CLONE763.4 ISOLATION OF AN ANTHURIUM <i>JNS</i> cDNA CLONE783.5 ISOLATION OF AN ANTHURIUM <i>JNS</i> cDNA CLONE813.6 SCREENING FOR AN ANTHURIUM <i>FNS</i> cDNA CLONE81	2.6.1 Plasmid miniprep by alkaline lysis	58
2.6.3 Alkaline lysis/PEG treatment DNA preparation662.6.4 QIAGEN plasmid Midi and Maxi protocols612.7 RESTRICTION ENZYME DIGEST OF PLASMID DNA622.8 METHODS FOR DETERMINING DNA CONCENTRATION632.8.1 Quantifying plasmid DNA by spectrophotometry632.8.2 Fluorometry632.8.3 Quantifying plasmid DNA by agarose gel electrophoresis632.9 POLYMERASE CHAIN REACTIONS642.9.1 Tag polymerase PCR642.9.2 Platinum Pfx polymerase PCR662.9.3 3' RACE PCR662.10 PURIFICATION OF DNA FROM AGAROSE GELS662.11 PREPARATION OF COMPETENT CELLS652.12 DNA LIGATION REACTIONS662.13 HEAT SHOCK TRANSFORMATION692.14 NORTHERN ANALYSIS692.14.1 Gel electrophoresis of RNA772.14.2 Blotting of RNA772.14.3 Hybridisation723.1 INTRODUCTION743.2 ISOLATION OF AN ANTHURIUM <i>CHS</i> cDNA CLONE763.4 ISOLATION OF AN ANTHURIUM <i>DFR</i> cDNA CLONE783.5 ISOLATION OF AN ANTHURIUM <i>LNS</i> cDNA CLONE813.6 SCREENING FOR AN ANTHURIUM <i>FNS</i> cDNA CLONE81	2.6.2 QIAprep spin miniprep	60
2.6.4 QIAGEN plasmid Midi and Maxi protocols 61 2.7 RESTRICTION ENZYME DIGEST OF PLASMID DNA 62 2.8 METHODS FOR DETERMINING DNA CONCENTRATION 63 2.8.1 Quantifying plasmid DNA by spectrophotometry 63 2.8.2 Fluorometry 63 2.8.3 Quantifying plasmid DNA by agarose gel electrophoresis 63 2.9 POLYMERASE CHAIN REACTIONS 64 2.9.1 Taq polymerase PCR 64 2.9.2 Platinum Pfx polymerase PCR 65 2.9.3 '' RACE PCR 65 2.10 PURIFICATION OF DNA FROM AGAROSE GELS 66 2.11 PREPARATION OF COMPETENT CELLS 67 2.12 DNA LIGATION REACTIONS 68 2.13 HEAT SHOCK TRANSFORMATION 66 2.14 NORTHERN ANALYSIS 66 2.14.1 Gel electrophoresis of RNA 70 2.14.2 Blotting of RNA 71 2.14.3 Hybridisation 72 3.1 INTRODUCTION 74 3.2 ISOLATION OF AN ANTHURIUM <i>CHS</i> cDNA CLONE 76 3.4 ISOLATION OF AN ANTHURIUM <i>JNS</i> cDNA CLONE 76 3.5 ISOLATION OF AN ANTHURIUM <i>LNS</i> cDNA CLONE 76 3.6 SCREENING FOR AN ANTHURIUM <i>LNS</i> cDNA CLONE 81	2.6.3 Alkaline lysis/PEG treatment DNA preparation	60
2.7 RESTRICTION ENZYME DIGEST OF PLASMID DNA 62 2.8 METHODS FOR DETERMINING DNA CONCENTRATION 63 2.8.1 Quantifying plasmid DNA by spectrophotometry 63 2.8.2 Fluorometry 63 2.8.3 Quantifying plasmid DNA by agarose gel electrophoresis 63 2.9 POLYMERASE CHAIN REACTIONS 64 2.9.1 Taa polymerase PCR 64 2.9.2 Platinum Pfx polymerase PCR 65 2.9.3 3' RACE PCR 65 2.10 PURIFICATION OF DNA FROM AGAROSE GELS 66 2.11 PREPARATION OF COMPETENT CELLS 67 2.12 DNA LIGATION REACTIONS 68 2.13 HEAT SHOCK TRANSFORMATION 69 2.14 NORTHERN ANALYSIS 66 2.14 NORTHERN ANALYSIS 66 2.14 NORTHERN ANALYSIS 66 2.14.1 Gel electrophoresis of RNA 70 2.14.2 Blotting of RNA 71 2.14.3 Hybridisation 72 Chapter 3. Characterisation of cDNA clones for anthurium 64 1avonoid biosynthetic genes 73 3.1 INTRODUCTION 74 3.2 ISOLATION OF AN ANTHURIUM <i>F3H</i> cDNA CLONE 76 3.4 ISOLATION OF AN ANTHURIUM <i>ANS</i> cDNA CLONE	2.6.4 QIAGEN plasmid Midi and Maxi protocols	61
2.8 METHODS FOR DETERMINING DNA CONCENTRATION 63 2.8.1 Quantifying plasmid DNA by spectrophotometry 63 2.8.2 Fluorometry 63 2.8.3 Quantifying plasmid DNA by agarose gel electrophoresis 63 2.9 POLYMERASE CHAIN REACTIONS 64 2.9.1 Tag polymerase PCR 66 2.9.2 Platinum Pfx polymerase PCR 66 2.9.3 3' RACE PCR 65 2.10 PURIFICATION OF DNA FROM AGAROSE GELS 66 2.11 PREPARATION OF COMPETENT CELLS 67 2.12 DNA LIGATION REACTIONS 68 2.13 HEAT SHOCK TRANSFORMATION 69 2.14 NORTHERN ANALYSIS 69 2.14.1 Gel electrophoresis of RNA 70 2.14.2 Blotting of RNA 71 2.14.3 Hybridisation 72 3.1 INTRODUCTION 74 3.2 ISOLATION OF AN ANTHURIUM CHS cDNA CLONE 74 3.3 ISOLATION OF AN ANTHURIUM <i>ANS</i> cDNA CLONE 76 3.4 ISOLATION OF AN ANTHURIUM <i>ANS</i> cDNA CLONE 80 3.6 SCREENING FOR AN ANTHURIUM <i>HNS</i> cDNA CLONE 81	2.7 RESTRICTION ENZYME DIGEST OF PLASMID DNA	62
2.8.1 Quantifying plasmid DNA by spectrophotometry632.8.2 Fluorometry632.8.3 Quantifying plasmid DNA by agarose gel electrophoresis632.9 POLYMERASE CHAIN REACTIONS642.9.1 Taq polymerase PCR652.9.2 Platinum Pfx polymerase PCR652.9.3 3' RACE PCR652.10 PURIFICATION OF DNA FROM AGAROSE GELS662.11 PREPARATION OF COMPETENT CELLS672.12 DNA LIGATION REACTIONS682.13 HEAT SHOCK TRANSFORMATION692.14 NORTHERN ANALYSIS662.14.1 Gel electrophoresis of RNA702.14.2 Blotting of RNA712.14.3 Hybridisation72Chapter 3. Characterisation of cDNA clones for anthurium flavonoid biosynthetic genes723.1 INTRODUCTION743.2 ISOLATION OF AN ANTHURIUM <i>CHS</i> cDNA CLONE763.4 ISOLATION OF AN ANTHURIUM <i>DFR</i> cDNA CLONE783.5 ISOLATION OF AN ANTHURIUM <i>HNS</i> cDNA CLONE803.6 SCREENING FOR AN ANTHURIUM <i>FNS</i> cDNA CLONE81	2.8 METHODS FOR DETERMINING DNA CONCENTRATION	63
2.8.2 Fluorometry632.8.3 Quantifying plasmid DNA by agarose gel electrophoresis632.9 POLYMERASE CHAIN REACTIONS642.9.1 Taq polymerase PCR642.9.2 Platinum Pfx polymerase PCR652.9.3 3' RACE PCR652.10 PURIFICATION OF DNA FROM AGAROSE GELS662.11 PREPARATION OF COMPETENT CELLS672.12 DNA LIGATION REACTIONS682.13 HEAT SHOCK TRANSFORMATION692.14 NORTHERN ANALYSIS692.14.1 Gel electrophoresis of RNA712.14.2 Blotting of RNA712.14.3 Hybridisation72Chapter 3. Characterisation of cDNA clones for anthurium flavonoid biosynthetic genes723.1 INTRODUCTION743.2 ISOLATION OF AN ANTHURIUM CHS cDNA CLONE763.4 ISOLATION OF AN ANTHURIUM ANS cDNA CLONE763.5 ISOLATION OF AN ANTHURIUM FNS cDNA CLONE813.6 SCREENING FOR AN ANTHURIUM FNS cDNA CLONE81	2.8.1 Quantifying plasmid DNA by spectrophotometry	63
2.8.3 Quantifying plasmid DNA by agarose gel electrophoresis632.9 POLYMERASE CHAIN REACTIONS642.9.1 Taq polymerase PCR642.9.2 Platinum Pfx polymerase PCR652.9.3 3' RACE PCR652.10 PURIFICATION OF DNA FROM AGAROSE GELS662.11 PREPARATION OF COMPETENT CELLS672.12 DNA LIGATION REACTIONS682.13 HEAT SHOCK TRANSFORMATION692.14.1 Gel electrophoresis of RNA712.14.2 Blotting of RNA712.14.3 Hybridisation72Chapter 3. Characterisation of cDNA clones for anthurium flavonoid biosynthetic genes723.1 INTRODUCTION743.2 ISOLATION OF AN ANTHURIUM <i>CHS</i> cDNA CLONE763.4 ISOLATION OF AN ANTHURIUM <i>ANS</i> cDNA CLONE783.5 ISOLATION OF AN ANTHURIUM <i>FNS</i> cDNA CLONE813.6 SCREENING FOR AN ANTHURIUM <i>FNS</i> cDNA CLONE81	2.8.2 Fluorometry	63
2.9 POLYMERASE CHAIN REACTIONS642.9.1 Tag polymerase PCR642.9.2 Platinum Pfx polymerase PCR652.9.3 3' RACE PCR652.10 PURIFICATION OF DNA FROM AGAROSE GELS662.11 PREPARATION OF COMPETENT CELLS672.12 DNA LIGATION REACTIONS682.13 HEAT SHOCK TRANSFORMATION692.14 NORTHERN ANALYSIS652.14.1 Gel electrophoresis of RNA702.14.2 Blotting of RNA712.14.3 Hybridisation72Chapter 3. Characterisation of cDNA clones for anthurium flavonoid biosynthetic genes733.1 INTRODUCTION743.2 ISOLATION OF AN ANTHURIUM CHS cDNA CLONE763.4 ISOLATION OF AN ANTHURIUM DFR cDNA CLONE763.5 ISOLATION OF AN ANTHURIUM FSH cDNA CLONE863.6 SCREENING FOR AN ANTHURIUM FNS cDNA CLONE81	2.8.3 Quantifying plasmid DNA by agarose gel electrophoresis	63
2.9.1 Taq polymerase PCR642.9.2 Platinum Pfx polymerase PCR652.9.3 3' RACE PCR652.10 PURIFICATION OF DNA FROM AGAROSE GELS662.11 PREPARATION OF COMPETENT CELLS672.12 DNA LIGATION REACTIONS682.13 HEAT SHOCK TRANSFORMATION692.14 NORTHERN ANALYSIS662.14.1 Gel electrophoresis of RNA702.14.2 Blotting of RNA712.14.3 Hybridisation72Chapter 3. Characterisation of cDNA clones for anthurium flavonoid biosynthetic genes733.1 INTRODUCTION743.2 ISOLATION OF AN ANTHURIUM CHS eDNA CLONE763.4 ISOLATION OF AN ANTHURIUM DFR eDNA CLONE763.5 ISOLATION OF AN ANTHURIUM FNS eDNA CLONE803.6 SCREENING FOR AN ANTHURIUM FNS cDNA CLONE81	2.9 POLYMERASE CHAIN REACTIONS	64
2.9.2 Platinum Pfx polymerase PCR652.9.3 3' RACE PCR652.10 PURIFICATION OF DNA FROM AGAROSE GELS662.11 PREPARATION OF COMPETENT CELLS672.12 DNA LIGATION REACTIONS682.13 HEAT SHOCK TRANSFORMATION692.14 NORTHERN ANALYSIS692.14 NORTHERN ANALYSIS692.14.1 Gel electrophoresis of RNA702.14.2 Blotting of RNA712.14.3 Hybridisation72Chapter 3. Characterisation of cDNA clones for anthuriumflavonoid biosynthetic genes733.1 INTRODUCTION743.2 ISOLATION OF AN ANTHURIUM <i>CHS</i> cDNA CLONE763.4 ISOLATION OF AN ANTHURIUM <i>DFR</i> cDNA CLONE763.5 ISOLATION OF AN ANTHURIUM <i>ANS</i> cDNA CLONE803.6 SCREENING FOR AN ANTHURIUM <i>FNS</i> cDNA CLONE81	2.9.1 <i>Taq</i> polymerase PCR	64
2.9.3 3' RACE PCR652.10 PURIFICATION OF DNA FROM AGAROSE GELS662.11 PREPARATION OF COMPETENT CELLS672.12 DNA LIGATION REACTIONS682.13 HEAT SHOCK TRANSFORMATION692.14 NORTHERN ANALYSIS662.14.1 Gel electrophoresis of RNA702.14.2 Blotting of RNA712.14.3 Hybridisation72Chapter 3. Characterisation of cDNA clones for anthurium flavonoid biosynthetic genes733.1 INTRODUCTION743.2 ISOLATION OF AN ANTHURIUM <i>CHS</i> cDNA CLONE763.4 ISOLATION OF AN ANTHURIUM <i>DFR</i> cDNA CLONE783.5 ISOLATION OF AN ANTHURIUM <i>ANS</i> cDNA CLONE803.6 SCREENING FOR AN ANTHURIUM <i>FNS</i> cDNA CLONE81	2.9.2 Platinum <i>Pfx</i> polymerase PCR	65
2.10 PURIFICATION OF DNA FROM AGAROSE GELS662.11 PREPARATION OF COMPETENT CELLS672.12 DNA LIGATION REACTIONS682.13 HEAT SHOCK TRANSFORMATION692.14 NORTHERN ANALYSIS692.14.1 Gel electrophoresis of RNA702.14.2 Blotting of RNA702.14.3 Hybridisation72Chapter 3. Characterisation of cDNA clones for anthurium flavonoid biosynthetic genes7.33.1 INTRODUCTION743.2 ISOLATION OF AN ANTHURIUM <i>CHS</i> cDNA CLONE763.4 ISOLATION OF AN ANTHURIUM <i>DFR</i> cDNA CLONE763.5 ISOLATION OF AN ANTHURIUM <i>ANS</i> cDNA CLONE803.6 SCREENING FOR AN ANTHURIUM <i>FNS</i> cDNA CLONE81	2.9.3 3' RACE PCR	65
2.11 PREPARATION OF COMPETENT CELLS672.12 DNA LIGATION REACTIONS682.13 HEAT SHOCK TRANSFORMATION692.14 NORTHERN ANALYSIS692.14.1 Gel electrophoresis of RNA702.14.2 Blotting of RNA712.14.3 Hybridisation72Chapter 3. Characterisation of cDNA clones for anthurium flavonoid biosynthetic genes733.1 INTRODUCTION743.2 ISOLATION OF AN ANTHURIUM <i>CHS</i> cDNA CLONE763.4 ISOLATION OF AN ANTHURIUM <i>DFR</i> cDNA CLONE783.5 ISOLATION OF AN ANTHURIUM <i>ANS</i> cDNA CLONE803.6 SCREENING FOR AN ANTHURIUM <i>FNS</i> cDNA CLONE81	2.10 PURIFICATION OF DNA FROM AGAROSE GELS	66
2.12 DNA LIGATION REACTIONS682.13 HEAT SHOCK TRANSFORMATION692.14 NORTHERN ANALYSIS 2.14.1 Gel electrophoresis of RNA 2.14.2 Blotting of RNA 2.14.3 Hybridisation70Chapter 3. Characterisation of cDNA clones for anthurium flavonoid biosynthetic genes713.1 INTRODUCTION743.2 ISOLATION OF AN ANTHURIUM CHS cDNA CLONE763.4 ISOLATION OF AN ANTHURIUM DFR cDNA CLONE783.5 ISOLATION OF AN ANTHURIUM ANS cDNA CLONE803.6 SCREENING FOR AN ANTHURIUM FNS cDNA CLONE81	2.11 PREPARATION OF COMPETENT CELLS	67
2.13 HEAT SHOCK TRANSFORMATION692.14 NORTHERN ANALYSIS 2.14.1 Gel electrophoresis of RNA 2.14.2 Blotting of RNA 2.14.3 Hybridisation6971 2.14.3 Hybridisation7172Chapter 3. Characterisation of cDNA clones for anthurium flavonoid biosynthetic genes71733.1 INTRODUCTION743.2 ISOLATION OF AN ANTHURIUM CHS cDNA CLONE743.3 ISOLATION OF AN ANTHURIUM F3H cDNA CLONE763.4 ISOLATION OF AN ANTHURIUM DFR cDNA CLONE783.5 ISOLATION OF AN ANTHURIUM ANS cDNA CLONE803.6 SCREENING FOR AN ANTHURIUM FNS cDNA CLONE81	2.12 DNA LIGATION REACTIONS	68
2.14 NORTHERN ANALYSIS692.14.1 Gel electrophoresis of RNA702.14.2 Blotting of RNA712.14.3 Hybridisation72Chapter 3. Characterisation of cDNA clones for anthurium flavonoid biosynthetic genes73743.1 INTRODUCTION743.2 ISOLATION OF AN ANTHURIUM CHS cDNA CLONE743.3 ISOLATION OF AN ANTHURIUM F3H cDNA CLONE763.4 ISOLATION OF AN ANTHURIUM DFR cDNA CLONE783.5 ISOLATION OF AN ANTHURIUM ANS cDNA CLONE803.6 SCREENING FOR AN ANTHURIUM FNS cDNA CLONE81	2.13 HEAT SHOCK TRANSFORMATION	69
2.14.1 Gel electrophoresis of RNA702.14.2 Blotting of RNA712.14.3 Hybridisation72Chapter 3. Characterisation of cDNA clones for anthurium flavonoid biosynthetic genes7.3.1 INTRODUCTION743.2 ISOLATION OF AN ANTHURIUM CHS cDNA CLONE743.3 ISOLATION OF AN ANTHURIUM F3H cDNA CLONE763.4 ISOLATION OF AN ANTHURIUM DFR cDNA CLONE783.5 ISOLATION OF AN ANTHURIUM ANS cDNA CLONE803.6 SCREENING FOR AN ANTHURIUM FNS cDNA CLONE81	2.14 NORTHERN ANALYSIS	69
2.14.2 Blotting of RNA712.14.3 Hybridisation72Chapter 3. Characterisation of cDNA clones for anthurium flavonoid biosynthetic genes733.1 INTRODUCTION743.2 ISOLATION OF AN ANTHURIUM CHS cDNA CLONE743.3 ISOLATION OF AN ANTHURIUM F3H cDNA CLONE763.4 ISOLATION OF AN ANTHURIUM DFR cDNA CLONE783.5 ISOLATION OF AN ANTHURIUM ANS cDNA CLONE803.6 SCREENING FOR AN ANTHURIUM FNS cDNA CLONE81	2.14.1 Gel electrophoresis of RNA	70
2.14.3 Hybridisation72Chapter 3. Characterisation of cDNA clones for anthurium flavonoid biosynthetic genes733.1 INTRODUCTION743.2 ISOLATION OF AN ANTHURIUM CHS cDNA CLONE743.3 ISOLATION OF AN ANTHURIUM F3H cDNA CLONE763.4 ISOLATION OF AN ANTHURIUM DFR cDNA CLONE783.5 ISOLATION OF AN ANTHURIUM ANS cDNA CLONE803.6 SCREENING FOR AN ANTHURIUM FNS cDNA CLONE81	2.14.2 Blotting of RNA	71
Chapter 3. Characterisation of cDNA clones for anthurium flavonoid biosynthetic genes733.1 INTRODUCTION743.2 ISOLATION OF AN ANTHURIUM CHS cDNA CLONE743.3 ISOLATION OF AN ANTHURIUM F3H cDNA CLONE763.4 ISOLATION OF AN ANTHURIUM DFR cDNA CLONE783.5 ISOLATION OF AN ANTHURIUM ANS cDNA CLONE803.6 SCREENING FOR AN ANTHURIUM FNS cDNA CLONE81	2.14.3 Hybridisation	72
flavonoid biosynthetic genes733.1 INTRODUCTION743.2 ISOLATION OF AN ANTHURIUM CHS cDNA CLONE743.3 ISOLATION OF AN ANTHURIUM F3H cDNA CLONE763.4 ISOLATION OF AN ANTHURIUM DFR cDNA CLONE783.5 ISOLATION OF AN ANTHURIUM ANS cDNA CLONE803.6 SCREENING FOR AN ANTHURIUM FNS cDNA CLONE81	Chapter 3. Characterisation of cDNA clones for anthurium	
3.1 INTRODUCTION743.2 ISOLATION OF AN ANTHURIUM CHS cDNA CLONE743.3 ISOLATION OF AN ANTHURIUM F3H cDNA CLONE763.4 ISOLATION OF AN ANTHURIUM DFR cDNA CLONE783.5 ISOLATION OF AN ANTHURIUM ANS cDNA CLONE803.6 SCREENING FOR AN ANTHURIUM FNS cDNA CLONE81	flavonoid biosynthetic genes	73
3.2 ISOLATION OF AN ANTHURIUM CHS cDNA CLONE743.3 ISOLATION OF AN ANTHURIUM F3H cDNA CLONE763.4 ISOLATION OF AN ANTHURIUM DFR cDNA CLONE783.5 ISOLATION OF AN ANTHURIUM ANS cDNA CLONE803.6 SCREENING FOR AN ANTHURIUM FNS cDNA CLONE81	3.1 INTRODUCTION	74
3.3 ISOLATION OF AN ANTHURIUM F3H cDNA CLONE763.4 ISOLATION OF AN ANTHURIUM DFR cDNA CLONE783.5 ISOLATION OF AN ANTHURIUM ANS cDNA CLONE803.6 SCREENING FOR AN ANTHURIUM FNS cDNA CLONE81	3.2 ISOLATION OF AN ANTHURIUM CHS cDNA CLONE	74
3.4 ISOLATION OF AN ANTHURIUM DFR cDNA CLONE783.5 ISOLATION OF AN ANTHURIUM ANS cDNA CLONE803.6 SCREENING FOR AN ANTHURIUM FNS cDNA CLONE81	3.3 ISOLATION OF AN ANTHURIUM F3H cDNA CLONE	76
3.5 ISOLATION OF AN ANTHURIUM ANS cDNA CLONE803.6 SCREENING FOR AN ANTHURIUM FNS cDNA CLONE81	3.4 ISOLATION OF AN ANTHURIUM DFR cDNA CLONE	78
3.6 SCREENING FOR AN ANTHURIUM FNS cDNA CLONE 81	3.5 ISOLATION OF AN ANTHURIUM ANS CDNA CLONE	80
	3.6 SCREENING FOR AN ANTHURIUM FNS cDNA CLONE	81

3.7 SCREENING FOR AN ANTHURIUM CHI cDNA CLONE	82
3.8 SCREENING FOR AN ANTHURIUM F3'H cDNA CLONE	83
3.9 SCREENING FOR AN ANTHURIUM UF3GT cDNA CLONE	83
3.10 DISCUSSION	85
3.10.1 <i>AaCHS1</i>	86
3.10.2 AaF3H and AaANS1	88
3.10.3 AaDFR1	89
3.10.4 Attempts to isolate an anthurium FNS	92
3.10.5 Attempts to isolate an anthurium CHI	93
3.10.6 Attempts to isolate an anthurium F3'H	94
3.10.7 Attempts to isolate an anthurium UF3GT	94
Chanter 4 Temporal and spatial expression patterns of	
flavonoid biosynthetia ganos during the development	
navonolu biosynthetic genes during the development	
of anthurium flowers	96
4.1 INTRODUCTION	97
4.2 MATERIALS AND METHODS	97
4.2.1 Plant material used for northern analysis	97
4.2.1.1 Temporal expression of flavonoid biosynthetic genes 4.2.1.2 Tissue specific expression patterns of flavonoid	97
biosynthetic genes 4 2 1 3 Investigating diurnal rhythms in anthurium flavonoid	98
4.2.1.5 Investigating dia na expression	08
4.2.2 Biochemical analyses of anthurium anothe and anodir	90
4.2.2 Biochemical analyses of antifurrum spattle and spatts 4.2.2.1 Extraction, and quantification of flavonoid and	99
anthocyanin levels	99
4.3 RESULTS	100
4.3.1 Anthocyanin and flavonoid production profiles for	
different coloured lines	100
4.3.2 Temporal gene expression patterns for <i>CHS</i> , <i>F3H</i> , <i>DFR</i> and <i>ANS</i> in the spathe of Altar	102
A 3.3 Temporal expression patterns of CHS F3H DFR and ANS in	102
four anthurium lines	102
A 3 A Tissue specific expression of enthurium flevenoid	102
4.3.4 Tissue specific expression of antifutrum flavonoid	102
Diosynthetic genes	103
4.3.5 A diurnal rnythm to the temporal expression of	104
DFK transcript levels	104
4.4 DISCUSSION	105

4.4.1 Temporal gene expression pattern 4.4.2 Spatial expression pattern	105 108
4.4.3 Diurnal regulation of DFR expression and its possible implications	110
Chapter 5. Molecular testing of the genetic model for flower	
colour inneritance in anthurium	114
5.1 INTRODUCTION	115
5.2 MATERIAL AND METHODS	117
5.2.1 Northern analysis	117
5.2.2 F3'H assay procedure	117
5.3 RESULTS	119
5.3.1 Northern analysis of genotypically defined white lines	119
5.3.2 F3'H assay	119
5.4 DISCUSSION	120
5.4.1 Investigating the nature of the O locus in anthurium	120
5.4.2 Investigating the nature of the <i>M</i> locus	122
Chapter 6. Cloning and characterisation of a putative	
anthocyanin regulator from anthurium	124
6.1 INTRODUCTION	125
6.2 MVP ISOLATION STRATEOV	126
6.2 I RT_PCR reactions with Myb degenerate primers	120
6.2.2 Cloning the 3' end of <i>Mvb</i> cDNAs	120
6.2.3 Cloning full-length cDNAs for anthurium <i>Myb</i> Groups C and F	129
6 3 RESULTS	129
6.3.1 Isolating cDNAs for <i>Mvb</i> genes from anthurium spathe tissue	129
6.3.2 The 3' end of Group C and F	132
6.3.2.1 Analysing the C-terminus sequence of Myb Group C	132
6.3.2.2 Analysing the C-terminus sequence of Myb Group F	133
6.3.3 Isolating a full-length cDNA for AaMyb1	133
6.3.3.1 Characteristics of the AaMyb1 cDNA	134
6.3.3.2 Characteristics of the AaMYB1 protein	134
6.4 DISCUSSION	136

Chapter 7. Functional analysis of AaMYB1 and DFR	
Promoter studies	141
7.1 INTRODUCTION	142
 7.2 MATERIAL AND METHODS 7.2.1 Northern analysis of <i>AaMyb1</i> expression in anthurium spathe 7.2.2 Construction of an <i>AaMyb1</i> expression vector 	143 143 143
7.3 PARTICLE BOMBARDMENT EXPERIMENTS	145
7.4 CLONING AND CHARACTERISATION OF THE PROMOTER REGION FOR <i>AaDFR1</i> 7.4.1 Extraction of anthurium genomic DNA 7.4.2 Construction of Genome Walker libraries 7.4.3 PCR based genome walking	146 146 148 149
7.5 CONSTRUCTION OF <i>AaDFR1</i> PROMOTER EXPRESSION VECTOR	152
7.6 RESULTS 7.6.1 Temporal expression of <i>AaMyb1</i> 7.6.2 Transient expression studies 7.6.3 In vitro promoter studies 7.6.3.1 Cloning an anthurium DFR promoter fragment 7.6.3.2 Heterologous promoter activation experiments	153 153 153 155 156 156
7.7 DISCUSSION	157
Chapter 8. General Discussion and conclusion	166
References	178
Appendices	
Appendix I. List of primers used for various experiments during this research	217
Appendix II. Nucleotide sequence encoding AaCHS1.	219
Appendix III. Nucleotide sequence encoding <i>AaF3H1</i> .	220
Appendix IV. Nucleotide sequence encoding AaDFR1.	221
Appendix V. Nucleotide sequence encoding AaANS1.	222
Appendix VI. Nucleotide sequences encoding anthurium MYB groups A-C.	223
Appendix VII. Nucleotide sequences encoding anthurium MYB groups D-F.	224

Appendix VIII. Nucleotide sequence encoding the C-terminus of anthurium	
MYB group C.	225
Appendix IX. Nucleotide sequence encoding AaMyb1.	226
Appendix X. cis-regulatory elements of anthurium DFR promoter fragment	
generated from a PLACE database search.	227
Appendix X1. Crude pH measurements of anthurium spathe cell sap.	228

ABBREVIATIONS

Chemicals

ANS	Anthocyanin synthase
BSA	bovine serum albumin
СН₃СООН	acetic acid
CHS	Chalcone synthase
СТАВ	Cetyltrimethylammonium bromide
DFR	Dihydroflavonol 4-reductase
DMSO	dimethyl sulphoxide
DTT	dithiothreitol
EtBr	ethidium bromide
F3H	Flavanone 3-hydroxylase
IPTG	isopropyl-β-D-thiogalactoside
KAc	potassium acetate
L-Broth	Luria Broth
Liquid N ₂	liquid nitrogen
2β ΜΕ	2β mercaptoethanol
MnCL ₂	manganese chloride
PEG	polyethylene glycol
PMSF	phenyl methyl sulfonyl fluoride
PVP-40	polyvinylpyrrilidone
PVPP	polyvinylpolypyrrolidone
SSC	standard saline citrate
TBE	tris borate EDTA buffer
TE	tris EDTA buffer
TLC	thin layer chromatography
X-Gal	5'-bromo-4-chloro-3-indoyl- β -D-galactopyranoside
X-Gluc	5'-bromo-4-chloro-3-indoyl-β-D- glucuronide

Terms/Techniques

CaMV	cauliflower mosaic virus
GUS	β-glucuronidase
GFP	green fluorescent protein
h	hour
min	minute
PLACE	plant cis-acting regulatory elements
rpm	revolutions per minute
S	second
TRANSFAC	transcription factor database
v/v	volume/volume
w/v	weight/volume

LIST OF FIGURES

On page following

1.1. Various aspects of anthurium morphology and pigment	
distribution.	4
1.2. The three anthocyanin derivatives of the phenylpropanoid	
pathway.	5
1.3. The colour range of anthurium flowers.	8
1.4. Biochemical pathway for flavonoid production in anthurium.	12
2.1. The six developmental stages of the anthurium flower.	39
2.2. Autoradiograph of double stranded cDNA.	49
3.1. Multiple alignment of the deduced amino acid sequence of	
AaCHS1 with confirmed CHS and CHS-related proteins.	75
3.2. Phylogenetic relationship of AaCHS1 with confirmed CHS	
proteins as well as other polyketide synthases.	76
3.3. Multiple alignment of the deduced amino acid sequence of	
AaF3H1 with those of confirmed F3H proteins.	77
3.4. Phylogenetic relationship of AaF3H1 to confirmed F3H	
proteins from other species.	78
3.5. Multiple alignment of the deduced amino acid sequence of	
AaDFR1 with those of confirmed DFR proteins.	79
3.6. Phylogenetic relationship of AaDFR1 to confirmed DFR	
proteins from other species.	79
3.7. Amino acid alignment showing substrate specificity region	
for DFR.	80
3.8. Multiple alignment of the deduced amino acid sequence of	
AaANS1 with those of confirmed ANS proteins.	81
3.9. Phylogenetic relationship of AaANS1 to confirmed ANS	
proteins from other species.	81
4.1. The coloured lines used to examine transcript abundance	

in the spadix.	98
4.2. High magnification photo of the spadix in Altar.	98
4.3. Stage 4 subdivisions for diurnal gene expression analysis.	98
4.4. Anthocyanin production profile for Altar, Atlanta	
and Montana.	100
4.5. Developmental profile of total flavonoid in the	
spathe of the Altar.	100
4.6. Flavonoid biosynthetic gene expression in Altar spathe.	102
4.7. Comparison of flavonoid biosynthetic gene	
expression in four anthurium lines.	102
4.8. Flavonoid biosynthetic gene expression in spadix and leaf.	103
4.9. Diurnal rhythm of <i>DFR</i> gene expression.	104
4.10. The proposed model for the regulation of anthocyanin	
biosynthesis in anthurium spathe.	107
4.11. Proposed functional significance to diurnal expression of	
DFR.	113
5.1. Northern analysis for testing genetic model.	119
5.2. Chromatogram for F3'H assay.	119
6.1. Degenerate primers for Myb RT-PCR reactions.	126
6.2. Primer layout for nested- 3' RACE Myb PCR reactions.	128
6.3. A comparison of the deduced amino acid sequence for	
Myb Groups A-F.	129
6.4A-C. Amino acid alignment Myb Groups A-C with the	
relevant region of the Myb proteins to which they are most similar.	130
6.4 D-F. Amino acid alignment Myb Groups A-C with the	
relevant region of the Myb proteins to which they are most similar.	130
6.5. Phylogenetic relationships of deduced anthurium Myb amino	
acid sequences to those of selected Myb proteins from other species.	131
6.6. The predicted amino acid sequence for AaMYB1.	133
6.7. α-helicity of AaMYB1 acidic domain.	133
6.8. The predicted second α -helix of AaMYB1 acidic domain.	133

6.9. Sequence alignment of the R2R3 Myb domain of	
AaMYB1 to anthocyanin related Myb proteins.	134
6.10. Phylogenetic relationship of AaMYB1 to the	
anthocyanin Myb family.	135
7.1. AaMyb1 gene expression pattern.	153
7.2. Transient expression assays in anthurium spathe.	154
7.3. Nucleotide sequence and conserved motifs in the	
anthurium DFR promoter.	156
7.4. Transient expression experiments with antirrhinum and	
anthurium <i>promoter::GUS</i> constructs.	157

LIST OF TABLES

	page number
1.1. The range of plant processes controlled by	
Myb proteins.	24
1.2. Myb and bHLH proteins involved in regulating	
anthocyanin biosynthesis in five plant species.	31
2.1. Anthurium cultivars and genetic lines used in this research.	39
7.1. A summary of the layout of PCR reactions for cloning	
AaDFR1 promoter.	151