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Abstract

How does heat and/or pollutant transfer from objects embedded in the ground depend on

their size, shape and burial depth, and how does the dispersion of heat and/or pollution in

groundwater aquifers depend on the soil properties, the speed of the groundwater flow, etc.?

In detail, the aims of present study are:

• To investigate how the size, shape and position of an object or set of solid or partially

pervious objects, e.g., fluid tanks, pipes, etc., embedded in a porous medium affect the

local speed and shape of the flow.

• If heat is ejected from the solid objects e.g., fuel storage cylindrical tanks, radioactive

waste reservoirs in deep geological formations, etc., and/or a pollutant is released from,

or removed by, the pervious object, e.g., septic tanks, disposal of drums of contaminants,

etc., how does the subsequent dispersal through a groundwater aquifer depend on the

various parameters involved (e.g., the object size, object’s burial depth, perviousness of

the object, the aquifer’s depth, the fluid flow rates, etc.)?

• What is the effect of the non-homogeneity in matrix properties (e.g. permeability or

hydraulic conductivity) on fluid flow, pollutant and heat transport rates?



This study pursues answers to these questions. The porous medium fluid flow equations,

and the advection-dispersion equations that model the heat and/or species transport, have

coefficients that depend mainly on depth. Generally, analytic solutions are not possible. In

order to investigate the effects of various objects of different shapes embedded in a porous

medium, I have developed numerical algorithms and used some special mathematical tech-

niques for two-dimensional models, namely conformal mappings within the framework of

complex analysis.

The velocity potential and (2-D) stream function satisfy Laplace’s equation. Central and

one-sided finite difference methods are applied to solve this equation subject to a chosen

combination of constant-head or constant-flux boundary conditions. Results are discussed

for various embedded shapes in homogeneous and layered groundwater aquifers. A Matlab

command “contour” is used to depict the streamlines and equipotential lines, and the re-

sulting temperature or pollutant concentrations.

Steady-state and time-dependent forced convection heat/pollutant transfer from some cylin-

ders embedded in groundwater are explored numerically using finite difference methods. The

results show that the size, shape, position, perviousness and burial depth of the cylinder af-

fect the pressure drop, as well as the pollutant and/or heat transfer. Moreover advection and

dispersion depend on the permeability structure and the fluid speed.
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Nomenclature

Symbol Units Description

Bi [-] Biot number

c [J kg−1 K−1] specific heat

C [kg m−3] concentration of pollutant in the fluid

D [m2 s−1] tensor coefficient of mechanical dispersion of a dissolved

pollutant while it flows in the porous media

D [m2 s−1] scalar coefficient of mechanical dispersion of a dissolved pol-

lutant while it flows in the porous media

Dth [m2 s−1] thermal diffusion/dispersion coefficient

g [m s−2] gravitational acceleration

h [m] height of the vertical wall

k [m2] isotropic permeability of the porous medium

K [m s−1] hydraulic conductivity

n [-] porosity of the porous media

Nuf [-] time-mean average fluid Nusselt number

Nus [-] time-mean average solid Nusselt number

P [kg m−1 s−1] mass flux of a pollutant

p [kg m−1 s−2] absolute pressure of the fluid

Q [m2 s−1] total flux through the whole aquifer per unit width of the

aquifer, subscripts L, R and I stand for flux in, flux out,

and net flow across the pervious rectangular/cuboidal cross

section, respectively

Ra [-] Rayleigh number



Re [-] Reynolds number

t [s] time

T [K] temperature

V [m s−1] average three-dimensional Darcy velocity vector of fluid

V=(u, v, w)

Greek Symbols

α [m] dispersion length (dispersivity) of the porous medium

αL [m] longitudinal dispersivity

αT [m] transversal dispersivity

αth [m] coefficient of thermal diffusion/dispersion

βps [m] coefficient of pressure difference (which is a measure of re-

sistance of the object’s surface to flow through it)

φ [m] two- and three-dimensional velocity potential function

Φ [m2 s−1] Φ = Kφ

γ = αL/αT [-] ratio of longitudinal to transverse dispersivity

κms [W m−1 K−1] thermal conductivity

ωps [s−1] constant of proportionality

µ [kg m−1 s−1 ] dynamic viscosity of the fluid

ρ [kg m−3] density of water (constant)

ψ [m] two-dimensional stream function

Ψ [m2 s−1] Ψ = Kψ

σ [-] coefficient of thermal advection

ξ, η [m] transformed coordinates

Subscripts

e effective

f fluid

ˆ transformed variable

I internal

L left



m mixture (formation+fluid)

ms mixture saturated

ps porous surface

R right


