Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Mathematical Modelling of Fluid Flow and Heat and Pollutant Transport in a Porous Medium with Embedded Objects

Khadija Tul Kubra

Institute of Natural and Mathematical Sciences

Massey University, Albany, New Zealand

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy (PhD) in Mathematics

May 2018

Abstract

How does heat and/or pollutant transfer from objects embedded in the ground depend on their size, shape and burial depth, and how does the dispersion of heat and/or pollution in groundwater aquifers depend on the soil properties, the speed of the groundwater flow, etc.? In detail, the aims of present study are:

- To investigate how the size, shape and position of an object or set of solid or partially pervious objects, e.g., fluid tanks, pipes, etc., embedded in a porous medium affect the local speed and shape of the flow.
- If heat is ejected from the solid objects e.g., fuel storage cylindrical tanks, radioactive waste reservoirs in deep geological formations, etc., and/or a pollutant is released from, or removed by, the pervious object, e.g., septic tanks, disposal of drums of contaminants, etc., how does the subsequent dispersal through a groundwater aquifer depend on the various parameters involved (e.g., the object size, object's burial depth, perviousness of the object, the aquifer's depth, the fluid flow rates, etc.)?
- What is the effect of the non-homogeneity in matrix properties (e.g. permeability or hydraulic conductivity) on fluid flow, pollutant and heat transport rates?

This study pursues answers to these questions. The porous medium fluid flow equations, and the advection-dispersion equations that model the heat and/or species transport, have coefficients that depend mainly on depth. Generally, analytic solutions are not possible. In order to investigate the effects of various objects of different shapes embedded in a porous medium, I have developed numerical algorithms and used some special mathematical techniques for two-dimensional models, namely conformal mappings within the framework of complex analysis.

The velocity potential and (2-D) stream function satisfy Laplace's equation. Central and one-sided finite difference methods are applied to solve this equation subject to a chosen combination of constant-head or constant-flux boundary conditions. Results are discussed for various embedded shapes in homogeneous and layered groundwater aquifers. A Matlab command "contour" is used to depict the streamlines and equipotential lines, and the resulting temperature or pollutant concentrations.

Steady-state and time-dependent forced convection heat/pollutant transfer from some cylinders embedded in groundwater are explored numerically using finite difference methods. The results show that the size, shape, position, perviousness and burial depth of the cylinder affect the pressure drop, as well as the pollutant and/or heat transfer. Moreover advection and dispersion depend on the permeability structure and the fluid speed.

Acknowledgements

I have no words to express my deepest sense of gratitude to the Almighty Allah (God), who enabled me to complete this thesis.

Next, I am extremely grateful to my supervisors Robert McKibbin and Winston L. Sweatman whose knowledge, inspiration, guidance, suggestions and encouragement helped me all along during my research work. I am deeply indebted to my supervisor Robert McKibbin who gave me the opportunity to work for the *Mathematical modelling of fluid flow and heat and pollutant transport in a porous medium with embedded objects*.

Also, my sincere thanks are due to Government College University Faisalabad, Pakistan for granting me with a doctoral scholarship under *Faculty Development Program* (FDP), and Massey University for providing me with the best learning facilities, healthy environment and opportunities for research.

I wish to record my deepest obligations to my beloved father Abdul Rashid, respected mother Shamshad Begum, lovely sisters and brothers for their prayers for my success and unfailing support. I am greatly obliged to Almighty Allah (God) for having them in my life.

I would be unfair if I don't mention my fellow PhD colleagues and friends in New Zealand who have been encouraging me with their worthwhile suggestions, discussions, and support not only in my studies but also in various other fields. Special thanks to all my well wishers, family members and teachers.

Finally, I avail this opportunity to thank my dear husband Sana Ullah Lehre, and my sweet children, Umama Gul Gaity and Moeez Hassan for their prayers and moral support throughout my studies and stay in New Zealand. I also welcome to my new born baby Muhammad Ali Obaid Lehre during my PhD studies.

Contents

1	Intr	Introduction		
2	Bac	Background		
3	Flui	uid Flow Model for a Homogeneous Aquifer		
	3.1	Eulerian coordinate systems		
	3.2	Three-	dimensional modelling of aquifers	22
	3.3 Two-dimensional modelling of aquifers		23	
	3.4	3.4 Elliptic PDE on rectangular domain, separation of variables for velocity potential		
		$\phi(x,z)$)	25
		3.4.1	Corollary	29
	3.5 Modelling two-dimensional flow in aquifers in absence of objects		29	
		3.5.1	Discretization of the solution domain	30
		3.5.2	Complete statement of mathematical flow model	31
		3.5.3	Mathematical description of the velocity potential problem $\ldots \ldots \ldots$	32
		3.5.4	Mathematical description of the stream function problem	33
		3.5.5	Analytical solution for stream function $\psi(x,z)$	34
		3.5.6	Fluid flow illustrations for velocity potential $\phi(x, z)$	36
		3.5.7	Fluid flow for stream function $\psi(x, z)$ without an object $\ldots \ldots \ldots$	39
	3.6 Modelling two-dimensional flow in aquifers in the presence of impermeable objects		42	
		3.6.1	Fluid flow for velocity potential $\phi(x, z)$ in the presence of impermeable	
			objects	43
		3.6.2	Fluid flow for stream function $\psi(x, z)$ in the presence of impermeable	
			objects: some examples	45

		3.6.3	Stream function for flow past impermeable objects when there are more	
			than one entrance and/or exit	47
		3.6.4	Flow grid display	48
	3.7	Model	ling two-dimensional flow in aquifers in the presence of a leaky rectangular	
		cylinde	er	50
		3.7.1	Illustrations	53
	3.8	Calcu	lation of the net flow along the four boundaries of the rectangular cross-	
		section	using the Trapezoidal rule	56
	3.9	A vert	ical pervious thin wall	56
		3.9.1	Illustrations	57
	3.10	A conr	nection between flux out, height of the pervious wall, h , and parameter β_{ps}	58
	3.11	Model	ling three-dimensional flow	61
		3.11.1	Discretization of solution domain	61
	3.12	The ba	asic mass balance equation and initial and boundary conditions \ldots \ldots	62
	3.13	Three-	dimensional flow in the absence of an object	63
	3.14	Three-	dimensional flow in the presence of an impermeable cuboidal object \ldots	65
	3.15	Three-	dimensional flow in the presence of pervious cuboidal objects \ldots .	67
		3.15.1	Influence of ϕ_I on fluxes $\ldots \ldots \ldots$	69
	3.16	Hele-S	haw cell	71
		3.16.1	Illustration: a three-dimensional homogeneous aquifer with four pervious	
			cuboidal objects embedded in it, with the same value of ϕ_I	72
	3.17	A three	e-dimensional homogeneous aquifer, with four pervious cuboidal objects	
		embed	ded in it with different values of ϕ_I	75
4	Flui	d Flow	Model for Non-homogeneous Aquifers	78
	4.1	The ge	eneral motion equation for a non-homogeneous aquifer in terms of $\phi(x,z)$.	82
	4.2	The r	elationship between ϕ and Φ , ψ and Ψ , and the general motion equation	
		for a n	on-homogeneous aquifer in terms of $\Psi(x,z)$	84
		4.2.1	Illustrations: fluid flow in a horizontally-layered aquifer in terms of $\phi(x,z)$	
			and $\Psi(x,z)$ in the absence of objects $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	87

		4.2.2 Illustrations: fluid flow in a vertically-layered aquifer in terms of $\phi(x, z)$
		and $\Psi(x,z)$ in absence of objects $\dots \dots \dots$
	4.3	Numerical solution for velocity potential $\phi(x, z)$ and stream function $\Psi(x, z)$ in
		a non-homogeneous porous medium with embedded impermeable objects \ldots 93
	4.4	A permeable rectangular cylinder with permeability different from outside \ldots 96
		4.4.1 Illustrations
	4.5	Modelling two-dimensional flow in aquifers in the presence of a leaky cylinder
		with rectangular cross-section, placed in a non-homogeneous porous medium $~.~.~~99$
		4.5.1 Illustrations
	4.6	A vertical pervious thin wall placed in a non-homogeneous aquifer 102
		4.6.1 Illustrations
	4.7	Modelling three-dimensional flow in a non-homogeneous porous medium, with
		an embedded cuboid
5	Mo	delling Groundwater Pollution Released by Embedded Objects 106
	5.1	Advective, dispersive, and diffusive fluxes
		5.1.1 Coefficients of dispersion
	5.2	The fundamental balance equation for a pollutant
		5.2.1 Discussion about the boundary conditions
	5.3	Illustrations: homogeneous aquifers
		5.3.1 When dispersion depends on magnitude and direction
		5.3.2 When dispersion depends on magnitude only
		5.3.3 When dispersion is uniformly constant
		5.3.4 When dispersion is uniformly constant: a case for a larger ϕ_I inside 137
		5.3.5 Influence of β_{ps} on fluid and pollutant flux rates $\ldots \ldots \ldots$
		5.3.6 Influence of ϕ_I on net fluid and pollutant fluxes out $\ldots \ldots \ldots \ldots \ldots \ldots 141$
		5.3.7 Influence of fluid flux on pollutant flux for various values of ϕ_I and β_{ps} . 143
		5.3.8 Swimming pool problem
	5.4	Illustrations: non-homogeneous aquifers 147

0	MO	odelling Heat Transport in a Porous Medium with Embedded Convex Ob-		
	ject	ts 155		
	6.1	Conformal mapping	6	
		6.1.1 Some discussion about governing equation and boundary conditions 15'	7	
		6.1.2 Illustrations: graphs of conformal transformation	9	
	6.2	Numerical solution of $\phi(\xi,\eta)$, $\phi(x,z)$, $\psi(\xi,\eta)$, and $\psi(x,z)$		
	6.3	Balance equation of two-dimensional heat advection-dispersion in a porous medium 163	3	
		6.3.1 Governing equations for steady heat advection-conduction	4	
		6.3.2 Illustration: numerical solution for steady heat advection-conduction 160	6	
		6.3.3 Governing equations for non-steady heat advection-conduction 16	7	
		6.3.4 Illustrations: solution for the non-steady heat equation	9	
7	Su	nmary and Conclusions 177	7	
	7.1	Effect of presence of impermeable objects	8	
	7.2	Effect of presence of pervious objects	9	
	7.3	Effect of layering	9	
	7.4	Effect of dispersion coefficients		
	7.5	Conformal mapping		
	7.6	Effect of boundary conditions		
A		182	2	
	A.1	Derivation of the non-steady state heat advection-conduction equation for the		
		(ξ, η) -plane	2	
	A.2	Derivation of the steady-state heat advection-conduction equation for the (ξ, η) -		
		plane	4	
в		180	6	
	B.1	Solution of a system of linear equations	5	
		B.1.1 Convergence of linear methods	7	

6 Modelling Heat Transport in a Porous Medium with Embedded Convex Ob

Nomenclature

Symbol	\mathbf{Units}	Description
Bi	[-]	Biot number
С	$[{\rm J~kg^{-1}~K^{-1}}]$	specific heat
C	$[\mathrm{kg}~\mathrm{m}^{-3}]$	concentration of pollutant in the fluid
D	$[m^2 s^{-1}]$	tensor coefficient of mechanical dispersion of a dissolved
		pollutant while it flows in the porous media
D	$[m^2 s^{-1}]$	scalar coefficient of mechanical dispersion of a dissolved pol-
		lutant while it flows in the porous media
D_{th}	$[m^2 s^{-1}]$	thermal diffusion/dispersion coefficient
g	$[\mathrm{m~s}^{-2}]$	gravitational acceleration
h	[m]	height of the vertical wall
k	$[m^2]$	isotropic permeability of the porous medium
K	$[\mathrm{m~s}^{-1}]$	hydraulic conductivity
n	[-]	porosity of the porous media
Nu_f	[-]	time-mean average fluid Nusselt number
Nu_s	[-]	time-mean average solid Nusselt number
Р	$[{\rm kg}~{\rm m}^{-1}~{\rm s}^{-1}]$	mass flux of a pollutant
p	$[\rm kg \ m^{-1} \ s^{-2}]$	absolute pressure of the fluid
Q	$[m^2 s^{-1}]$	total flux through the whole aquifer per unit width of the
		aquifer, subscripts L , R and I stand for flux in, flux out,
		and net flow across the pervious rectangular/cuboidal cross
		section, respectively
Ra	[-]	Rayleigh number

Re	[-]	Reynolds number
t	[s]	time
T	[K]	temperature
V	$[\mathrm{m}~\mathrm{s}^{-1}]$	average three-dimensional Darcy velocity vector of fluid
		$\mathbf{V} = (u, v, w)$
Greek Sym	bols	
α	[m]	dispersion length (dispersivity) of the porous medium
$lpha_L$	[m]	longitudinal dispersivity
α_T	[m]	transversal dispersivity
$lpha_{th}$	[m]	coefficient of thermal diffusion/dispersion
β_{ps}	[m]	coefficient of pressure difference (which is a measure of re-
		sistance of the object's surface to flow through it)
ϕ	[m]	two- and three-dimensional velocity potential function
Φ	$[m^2 s^{-1}]$	$\Phi = K\phi$
$\gamma = \alpha_L / \alpha_T$	[-]	ratio of longitudinal to transverse dispersivity
κ_{ms}	$[{\rm W}~{\rm m}^{-1}~{\rm K}^{-1}]$	thermal conductivity
ω_{ps}	$[s^{-1}]$	constant of proportionality
μ	$[{\rm kg} {\rm m}^{-1} {\rm s}^{-1}]$	dynamic viscosity of the fluid
ρ	$[\mathrm{kg} \mathrm{m}^{-3}]$	density of water (constant)
ψ	[m]	two-dimensional stream function
Ψ	$[m^2 s^{-1}]$	$\Psi = K\psi$
σ	[-]	coefficient of thermal advection
ξ,η	[m]	transformed coordinates
Subscripts		
e		effective
f		fluid
^		transformed variable
Ι		internal
L		left

m	mixture (formation+fluid)
ms	mixture saturated
ps	porous surface
R	right