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Abstract 

In this thesis we study the theory of Riemannian manifolds: these are smooth 

manifolds equipped with Riemannian metrics, which allow one to measure geometric 

quantities such as distances and angles. 

The main objectives are: 

(i) to introduce some of the main ideas of Riemannian geometry, ·,,c geometry of 

curved spaces. 

(ii) to present the basic concepts of Riemannian geometry such as Riemannian 

connections, geodesics, curvature (which describes the most important geometric 

features of universes) and Jacobi fields (which provide the relationship between 

geodesics and curvature). 

(iii) to show how we can generalize the notion of Gaussian curvature for surfaces to 

the notion of sectional curvature for Riemannian manifolds using the second 

fundamental form associated with an isometric immersion. Finally we compute the 

sectional curvatures of our model Riemannian manifolds - Euclidean spaces, spheres 

and hyperbolic spaces. 
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Chapter 0 

Introduction 

0.1 The Evolution of Riemannian Geometry 

Geometry is the branch of mathematics that deals with the relationships, properties 

and measurements of solids, surfaces, lines and angles. It also considers spatial 

relationships, the theory of space and figures in space. The name comes from Greek 

words meaning, "land" and "to measure". Geometry was first used by the Egyptians to 

measure lands. Later it was highly developed by the great Greek mathematicians. 

About 300 B.C, Euclid was a Greek mathematician. Elements of Euclid is a 

scientific work containing the foundations of ancient mathematics: elementary 

geometry, number theory, algebra, the general theory of proportion and a method for 

the determination of areas and volumes. The geometry based on the assumptions of 

Euclid and dealing with the study of plane and solid or space geometry is called 

Euclidean geometry. In the 19th century, new kinds of geometry, called Non­

Euclidean geometry, were created. Any kind of geometry not based upon Euclid's 

assumptions is called Non-Euclidean geometry. E.g:- Differential geometry (Surface 

geometry), Hyperbolic geometry, Riemannian geometry, etc. Classical differential 

geometry consisted of the study of curves and surfaces (embedded in three­

dimensional Euclidean space) by means of the differential and integral calculus. 



The founders of Non-Euclidean geometry were Gauss, Riemann, Bolyai and 

Lobachevski. All of them investigated the possibilities of changing Euclid's parallel 

postulate, which said that one and only one line parallel to a given line could be 

drawn through a point outside that line. Until the 19th century, this was accepted as a 

" self -evident truth ". The replacement of this postulate led to new geometries. In the 

early part of the 19th century, Carl Friedrich Gauss (1777-1855) was considered to be 

one of the most original mathematicians living in Germany. He was a pioneer in Non­

Euclidean geometry, statistics and probability. He developed the theory of functions 

and the geometry of curved surfaces. Gauss defined a notion of curvature (Gaussian 

curvature) for surfaces, which measures the amount that the surface deviates from its 

tangent plane at each point on the surface. 

Towards the end of his life (1855) Gauss was fortunate to have an excellent 

student, Gerg Friedrich Riemann (1826-1866), who was the founder of Riemannian 

geometry. Riemann' s life was short but marvelously creative. He took up the ideas of 

Gauss. On June 10th in 1854, he delivered his inaugural lecture, entitled " On the 

Hypotheses that lie at the foundations of geometry ". Several vital concepts of modern 

mathematics appeared for the first time from his lecture. In particular, he 

1. Introduced the concept of a manifold. 

2. Explained how different metric relations could be defined on a manifold. 

3. Extended Gauss's notion of curvature of a surfac.' to hig:1er dimensioml manifolds. 

The concepts of Riemannian geometry played an important role in the formulation of 

the general theory of relativity. Riemannian geometry is a special geometry, the 

geometry of curved spaces, associated with differentiable manifolds and has many 

applications to Physics. During the closing decades of the 19th century, Levi-civita 

( 1873-1941 ), took up the ideas of Riemann and contributed the concept of parallel 

displacement or parallel transport, which plays an important role in Riemannian 

geometry. 

0.2 Generalization of Surface Theory to Riemannian 
Geometry 

Surface is one of the basic concepts in geometry. The definitions of a surface in 

various fields of geometry differ substantially. In elementary geometry, one considers 

planes, multifaceted surfaces, as well as certain curved surfaces (for example, 
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spheres). Each curved surface is defined in a special way, very often as a set of points 

or lines. The general concept of surface is only explained, not defined, in elementary 

geometry: one says that a surface is the boundary of a body, or the trace of a moving 

line, etc. In analytic and algebraic geometry, a surface is considered as a set of points 

the coordinates of which satisfy equations of a particular form. In three-dimensional 

Euclidean space, 9\ 3
, a surface is obtained by deforming pieces of the plane and 

arranging them in such a way that the resulting figure has no sharp points, edges, or 

self-intersection. We must require that a surface be smooth and two-dimensional, so 

that the usual notions of calculus can be extended to it. A surface is defined by means 

of the concept of a surface patch, which is a homeomorphic image of a square in 9\ 3
• 

A surface is understood to be a connected set, which is the union of surface patches 

(for example, a sphere is the union of two hemispheres, which are surface patches). 

Usually, a surface is specified in 9\ 3 by a vector function 

r = r(x(u , v), y(u , v), z(u , v)), where O $ u, v $ 1. 

The first example of a manifold, is a regular surface in 9\ 3
. 

0.2.1 Definition 

A subset S c 9\ 3 is a regular su,face, if, for every point p E S , there exists a 

neighborhood V of pin 9\ 3 and a mapping x: U c9\ 2
-? V n S of an open set Uc 9\ 2 

onto V n S, such that: 

(a) x is a differentiable homeomorphism; 

(b) The differential (dx\ : 9\ 2 ~ 9\ 3 is injective for all q E U 

The mapping xis called a parametrization of Sat p. The neighborhood V n S of p in S 

is called a coordinate neighborhood. 

A major defect of the definition of regular surface is its dependence on 9\ 3
. This 

situation gradually became clear to the mathematicians of 19th century. Riemann drew 

the correct conclusion, which says that there must exist a geometrical theory of 

surfaces completely independent of 9\ 3
• His idea was to replace the dot product by a 

arbitrary inner product on each tangent plane of S. He observed that all the notions of 

the intrinsic geometry (for example, Gaussian curvature) only depended on the choice 

of an inner product on each tangent plane of S. Next we will introduce the notion of 

abstract surface which is an outgrowth of the definition of the regular surface. 
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Historically, it took a long time to appear due to the fact that the fundamental role of 

the change of parameters in the definition of a surface in 9\ 3 was not clearly 

understood. 

0.2.2 Definition 

An abstract su,face (differentiable manifold of dimension 2) is a set S together with a 

family of one-to-one mappings xa: U a ~ S of open sets U a c 9\ 2 into S such that 

(i) U a Xa (U a)= S. 

(ii) For each pair a,~ with xa (U a) n x~ (U ~) = W ::;; <)>, we have that 

x~1 (W), x;1 (W) are open sets in 9\ 2
, and x~1 ox~, x;1 o xa are 

differentiable mappings. 

The pair (U a, xa) with p E xa (U a) is called a parametrization of S around p. 

xa (U a) is called a coordinate neighborhood at p. The family { U a, xa } is called a 

differentiable structure for S. 

Shifting then from surfaces in 9\ 3 to abstract surfaces and, from the dot product to 

arbitrary inner products, we get the following definition. 

0.2.3 Definition 

A geometric su,face is an abstract surface furnished with an inner product ( , ), on 

each of its tangent planes. This inner product is required to be differentiable in the 

sense that if V and W are differentiable vector fields on S then (V, W) is a 

differentiable real-valued function on S. 

We emphasize that each tangent plane TPS of S has its own inner product. An 

assignment of inner products to tangent planes as in the above definition is called a 

geometric structure (or metric tensor or "ds 2
") on S. We emphasize that the same 

surface furnished with two different geometric structures gives rise to two different 

geometric surfaces. 

If we look back to the definition of abstract surface, we see that the number 2 has 

played no essential role. Thus, we can extend that definition to an arbitrary n and this 

may be useful in future. 
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0.2.4 Definition 

A differentiable manifold of dimension n is a set M and a family of injective 

mappings xa: U a c 9tn ~ M of open sets U a of 9tn into M such that 

(II) For any pair a, ~ with xa (U a) n x~ (U ~) = W "# <I>, the sets x~1 (W), xt (W) are 

open sets in 9t n and the mappings x~1 ox~, xi1 o xa are differentiable. 

(III) The family { (U a, xa) } is maximal relative to the conditions (I) and (II). 

The pair (U a, xa) with p E xa (U a) is called a parametrization of M around p . 

xa (U a) is called a coordinate neighborhood at p . A family { (U a, x
0

) } satisfying (I) 

and (II) is called a differentiable structure on M 

For example, curves are one-dimensional manifolds because every point of a curve 

can be located by a single parameter. Also surfaces are two-dimensional manifolds 

since for each piece of a surface, every point can be located by surface coordinates. 

Generalizing, we say that an n-dimensional manifold is a set, such that on every piece, 

of it, we can locate points by using n coordinates. 

0.2.S The metric coefficients of the surface 

Gauss presented the most important formula in surface geometry m 1827. This 

appeared in his paper " General investigation of curved surface ". 

(1) 

It expresses the distance between two infinitesimally close points on the surface in 

terms of surface coordinates u1, u2 • He considered that the geometry of a surface is 

Euclidean in infinitesimal neighborhoods. Thus, a surface can be regarded as an 

infinite collection of Euclidean spaces that are smoothly joined together. Another way 

of thinking about this is to regard the surface as the envelope of its tangent planes. 

The proof of this formula for a surface in 9l 3 is briefly as follows . 

Let p be any point on the surface and ( u 1 , u 2 ) be the surface coordinates of p . Let s 

be the value of arc length. 

Then the rectangular Cartesian coordinates of p are ( x(u1, u2 ), y(u 1, u 2 ), z(u1, u2 ) ). 
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So (a) 

We know that (ds) 2 = (dx) 2 + (dy)2 + (dz) 2 (Pythagorean formula) 

Substituting from ( a), (b) and ( c ), 

2 dx dx 2 dy dy ? dz dz 
(ds) = (-du 1 +-du2 ) + (-du 1 +-du2 )-+ (-du 1 +-du2 )

2 

dU 1 dU 2 dU 1 dU 2 dU 1 du2 

Simplifying the terms in brackets and taking, 

al 
1 
= ( dX ) 2 + ( dy ) 2 + ( dZ )2 

dU 1 dU 1 dU1 

The expression ( 1) appearing on the right hand side of the equation is called the first 

fundamental form and a 11 , a 12 , a 22 are called the metric coefficients. They vary from 

point to point as one moves across the surface. But in the Euclidean plane we can 

choose coordinates so that the metric coefficients are constants. 

Consider a horizontal plane lying in three-dimensional Euclidean space. 

The equation of this plane is z = constant. We can choose the coordinates 

u1 = x, u 2 = y on the plane. 

dX dX dy dy dZ dZ 
Then - = 1,-= 0,- = 0,- = 1,-= 0,- = 0. Therefore, we can show that 

du 1 dU2 dU 1 dU2 dU 1 dU2 

a11 = 1, a 12 = 0, a22 = 1 . That is, the metric coefficients are constant for the plane. 

Therefore ds 2 = dui1 + dui. (from (1)) 

Consider the sphere with radius r, centered at the origin. Let 0 and </J be surface 

coordinates (except at the poles) of any point p, where u1 = 0,u2 = </J. The Cartesian 

coordinates of p can be expressed in terms of 0 and </J as 
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x = rcos(/Jcos0 

y = rcos(/Jsin 0 

z = rsin(/J, where O ::; 0 < 2Jr, -rr/2( </J ( rr/2 

Taking partial derivatives of the functions in these expressions, 

dx A. . _0 - = - r cos 'I' sm u, ae 

dy = rcos(/Jcos0 , ae 

~=0 ae ' 

dx . A. 
0 - =-rsm'l'cos 

d</J 

dy = -r sin </J sin 0 
d</J 

dz - = rcos(/J 
d(/J 

Substituting these expressions into equations (a), (b), (c) and using the trigonometric 

identity sin 2 0+cos 2 0=1 , then a 11 =r 2 cos 2 (/J, a 12 =O,a22 =r 2
. 

Hence~ equation ( 1) becomes 

ds 2 = r 2 cos 2 (/Jd0 2 + r 2d</J 2
. 

This is the expression for the square of the length of an infinitesimal line element on 

the sphere. It is clear that the metric coefficient a 11 varies with ¢. 

0.2.6 Generalization of metric coefficients of surfaces to Riemannian 

space 

Generalizing the formula which Gauss obtained and extending it to n-dimensional 

manifolds, Riemann explained some basic concepts of a n-dimensional manifold. 

Consider a point p in an n-dimensional manifold and let ui, u2 , ••• , un be its 

coordinates. Take a seco9,d point q whose coordinates u1 +dui,u2 +du2 , ••• ,un +dun 

differ only infinitesimally from those of p. Riemann suggested that the square of the 

length ds of the line element joining p to q is given by 
n 

ds
2 =Lg ij du;du j. 

i,j=I 
(2) 

where g ij are functions of ui, u2 , • • • , un . This directly generalizes the formula (1) Gauss 

obtained for the line element of a surface. The expression on the right hand side of the 

equation (2) is a quadratic form in the variables dui,du 2 , ••. ,dun, where ds 2 is positive 

unless q and p coincide. Therefore the quadratic form is said to be positive definite. 
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Using the expression (2) for determining length, he defined a Riemannian metric (see 

the definition in chapter 1) on the differentiable manifold. It provides the ability to 

calculate the length of paths in the manifold, and angles between tangent vectors in 

the same tangent space of the manifold. A manifold furnished with a Riemannian 

metric is called a Riemannian manifold or a Riemannian space. 

For an example, in an n-dimensional Euclidean space, the square of the length of a 

line segment is given by the Pythagorean formula. 

ds 2 = dxt +dxi + ... +dx~ , (3) 

where x 1 , x2 , ... , xn are rectangular Cartesian coordinates. It is clear that (3) is a special 

case of (2) with g 11 = 1, g 22 = 1, .. . , g nn = 1. Thus, Euclidean space is a special case of 

Riemannian space. Riemann called Euclidean spaces flat. A Riemannian space is 

locally Euclidean which means that an infinitesimal neighborhood of a point appears 

to be Euclidean. Just as the surface can be regarded as the envelope of its tangent 

planes, we may think of a Riemannian space as a collection of Euclidean spaces. We 

may say that a Riemannian space is infinitesimally flat or locally Euclidean. 

0.2.7 Generalizing Gaussian curvature into Riemannian Geometry 

In 1760, L. Euler described the curvature of a surface in space by two numbers at each 

point, called the principal curvatures. He defined the principal curvatures k1 and k2 

of a surface by considering the curvature of curves, kn , obtained by intersecting the 

surface with planes normal to the surface at an arbitrary point and taking k1 = max kn 

and k 2 = min kn. But at the time of Gauss, it was not clear that the principal 

curvatures would be an adequate definition of curvature. Gauss was the first to realize 

that surfaces have an intrinsic metric geometry that is independent of the surrounding 

space. More precisely, a property of surfaces in 9\ 3 is called intrinsic if it is preserved 

by isometries. Even though the principal curvatures are not intrinsic, Gauss made the 

surprising discovery in 1827, that the product of the principal curvatures, now called 

the Gaussian curvature, is intrinsic. Gauss was amazed by his wonderful results and 

then named the theorem as Theorema Egregium, which is in colloquial American 

English can be translated roughly as "Totally Awesome Theorem". To get an idea of 

what Gaussian curvature tells us about surfaces, let's look at few examples. Simplest 

of all is the plane, which has both principal curvatures equal to zero and therefore has 
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constant Gaussian curvature equal to zero. Another simple example is a sphere of 

radius r. Any normal planes intersect the sphere in great circles, which have radius r 

and therefore curvatures are ±1/r (sign depends on whether we choose the outward 

pointing or inward pointing normal). Thus the principal curvatures are both equal to 

±l!r, and the Gaussian curvature is equal to 1/r2 and always positive on the sphere. 

The model spaces of surface theory are the surfaces with constant Gaussian 

curvature. We have discussed two of them: the Euclidean plane 9\ 2 and the sphere of 

radius r. The third model is a surface of constant negative curvature, which is not so 

easy to visualize. Let's just mention that the upper half plane { (x, y): y > O} with the 

Riemannian metric g = R2(dx2 + dy2)!y2 has constant negative curvature -1 / R2
, 

where R is a constant. In the special case R = I the curvature is - I. This is called the 

hyperbolic plane. 

Here again generalizing the ideas of Gauss, Riemann defined the intrinsic 

geometry of a Riemannian space. Just as the notion of Gaussian curvature he thought 

that Riemannin curvature is a measure of the degree to which a Riemannian space 

differs from Euclidean space. In Euclidean space, he considered that the Riemannian 

curvature is zero everywhere. As with the surfaces, the basic geometric invariant is 

curvature. But the curvature becomes much more complicated quantity in higher 

dimensions because a manifold may curve in so many directions. The curvature can 

vary from point to point, but there are important special cases in which Riemann 's 

measure is constant across the entire space. As with the surfaces, the model spaces of 

Riemannian geometry are the manifolds with constant sectional curvature (see chapter 

3). In the end of the chapter 5, we introduce three classes of highly symmetric model 

Riemannian manifolds:- Euclidean spaces, spheres, and hyperbolic spaces. All most 

all of the properties of Riemannian geometry are related to the curvature. Therefore as 

in surface geometry, we can say that the curvature was the main source to develop 

Riemannian geometry. 

The main objective of this thesis is to discuss more details about the curvature 

of the Riemannian manifold. 
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