
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Extracting and Exploiting
Signals in Genetic Sequences

A thesis presented in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

in Mathematics

at Massey University

Walton Timothy James White

2011

Copyright c© 2011 by Walton Timothy James White

Abstract

As DNA databases continue to grow at an exponential rate, the need for more effi-

cient solutions to basic problems in computational biology grows ever more pressing.

These problems range from the principal questions driving evolutionary science—

How can we accurately infer the history of genes, individuals and species? How

can we separate the signal from the noise in our data? How can we visualise that

signal?—to the purely practical: How can we efficiently store all this data? With

these goals in mind, this thesis mounts a computational combination attack on a

variety of topics in bioinformatics and phylogenetics:

• A program is designed and implemented for solving the Maximum Parsimony

problem—in essence, finding phylogenetic trees having the fewest mutations.

This program generally outperforms existing highly optimised programs when

using a single CPU, and unlike these earlier programs, offers highly efficient

parallelisation across multiple CPUs for further speedup.

• A program is designed and implemented for compressing databases of DNA

sequences. This program outperforms general-purpose compression by taking

advantage of the special “treelike” structure of DNA databases, using a novel

data structure, the “leaky move-to-front hashtable”, to achieve speed gains.

• A data visualisation technique is introduced that concisely summarises the

“treelikeness” of phylogenetic datasets on a ternary plot. Each dataset is rep-

resented by a single point, allowing multiple datasets, or multiple treatments

of a dataset, to be displayed on a single diagram.

• We demonstrate problems with a standard phylogenetic analysis methodology

in which a single tree is assumed a priori. We argue for a shift towards network

methods that can in principle reject the hypothesis of a single tree.

• Motivated by a phylogenetic problem, a fast new algorithm is developed for

finding the mode(s) of a multinomial distribution, and an exact analysis of its

complexity is given.

i

Acknowledgements

I would like to thank my supervisors, Mike Hendy, David Penny and Barbara Hol-

land, for their support (both financial and moral), guidance and patience during my

candidature. I feel extremely lucky to have had the chance to work with such all-

round high-calibre people. Several years ago, in a combination attack of their own,

these three gradually persuaded me (against my own (worse) judgment) to upgrade

from a Masters degree to a PhD. I’m grateful that they knew me well enough, and

thought it worthwhile, to keep nudging me until I realised what was good for me!

Many people have had a positive impact on my life during the course of my PhD.

A somewhat biased random sample includes:

Past and present members of the Allan Wilson Centre at Palmerston North,

whom I have found to be without exception friendly, intelligent and helpful.

My flatmates at the venerable 53 Te Awe Awe St. estate—Matt, Rachel, Michael,

both Karens, Richard and Scott—for providing a thoroughly enjoyable place to live,

where I always felt comfortable, even when Richard was around. As always, it seems

fitting to mention that Scott knows a guy who once slept on a door.

Tony Dale of the BlueFern supercomputer group, for always responding quickly

and helpfully when something went wrong.

The loose association of People Who Have Dinner and Play Board Games on

Saturday Nights—to a first approximation, Rogerio, Klaus, Simon, Gillian, Bennet,

Barbara and Robin—for tolerating my sense of humour, and occasionally affording

me the chance to repay their gastronomic generosity with a few least significant bits

of my own.

My good friend Sylvia, for many things, including for teaching me that people

from very different backgrounds can find the same kinds of people extremely funny-

looking.

Jing, for being an ideal officemate. Trish, for being a tireless force for good. Joy,

for returning my wisecracks with interest.

Everyone over the years who helped me test the graphics cards on the computers

in the Allan Wilson Centre.

And of course my family, whose love and support has been a constant in my life.

ii

Contents

Abstract . i

Acknowledgements . ii

1 Introduction 1

1.1 Overview . 1

1.2 Common Themes . 2

1.2.1 Strengthening the Fundamentals 3

1.2.2 Information: A Common Currency 3

1.2.3 Combination Attacks . 3

1.3 Background: Phylogenetic Inference 7

1.3.1 Fundamentals . 7

1.3.2 Starting points for inference 8

1.3.3 Algorithmic treebuilding approaches 9

1.3.4 Optimality criteria . 9

1.3.5 Search methods . 11

1.3.6 Heuristic algorithms . 12

1.3.7 Statistical models . 12

1.3.8 Errors and consistency . 14

1.3.9 Maximum Parsimony and consistency 14

1.4 Computational Complexity Primer 15

1.4.1 NP Completeness . 16

2 Faster Exact Maximum Parsimony Search with XMP 20

2.1 Introduction . 20

2.2 Correctness of Steiner Tree Lower Bounds for Ambiguous Nucleotides 30

2.2.1 Without Ambiguous Nucleotides 30

iii

2.2.2 With Ambiguous Nucleotides 31

2.3 Zero-length Edges . 32

2.3.1 Sufficiency of Examining Fully Refined Trees 33

2.3.2 Avoiding the Deluge . 33

2.3.3 Minimally Refined Trees . 35

2.3.4 XMP Tree Representation . 35

2.3.5 Identifying ml0 Edges . 37

2.3.6 Contracting ml0 Edges . 37

2.3.7 A Counterexample . 38

2.4 Zharkikh’s Rules . 39

2.5 Visualising MPI Communication . 40

2.6 Lower Bound Comparison . 41

3 Compressing DNA Sequence Databases with coil 45

3.1 Introduction . 45

3.2 Pentium IV Optimised find edges 61

3.3 Sequence Buffering System . 63

3.4 Data Compression as Quick and Dirty Science 64

3.5 General-purpose vs. Specialised Compression 66

3.6 Erratum . 66

4 Treeness Triangles: Visualizing the Loss of Phylogenetic Signal 67

4.1 Introduction . 67

4.2 Why does distance correction amplify residual signals? 69

4.3 Clarification . 70

5 A Bias in ML Estimates of Branch Lengths in the Presence of

Multiple Signals 82

5.1 Introduction . 82

5.2 Testing Robustness . 83

5.2.1 Does “the” internal edge of a mixture of two trees really exist? 83

5.2.2 Shared parameter values . 84

5.2.3 The edges of a mixture model 84

5.3 Later Developments . 85

iv

5.4 Connection to Multinomial Modes . 86

6 A Fast and Simple Algorithm for Finding the Modes of a Multino-

mial Distribution 91

6.1 Introduction . 91

6.2 Motivation and Connection to Phylogenetics 91

6.2.1 The Problem with PAUP* . 92

6.2.2 Choosing a Best Representative 93

6.2.3 An Alternative to Least Squares 94

6.3 Alternate Proof of Correctness . 95

6.4 Problem Instances . 97

7 Conclusion 105

7.1 XMP . 105

7.2 COIL . 107

7.3 Treeness Triangles . 108

7.4 ML Bias . 109

7.5 Multinomial Modes . 110

7.6 How Much Optimisation is the Right Amount? 110

7.7 Other Directions . 112

7.8 Summary . 112

A Work Breakdown 113

A.1 XMP . 113

A.1.1 Author Contributions . 113

A.2 COIL . 116

A.2.1 Author Contributions . 116

A.2.2 Previously Examined Work 116

A.3 Treeness Triangles . 121

A.3.1 Author Contributions . 121

A.4 ML Bias . 123

A.4.1 Author Contributions . 123

A.5 Multinomial Modes . 125

A.5.1 Author Contributions . 125

v

Chapter 1

Introduction

1.1 Overview

This thesis addresses a selection of topics in bioinformatics and phylogenetics that

are unified by a focus on effective computational techniques. Each topic is presented

in a chapter of its own that contains a paper published in a peer-reviewed journal.

Briefly, they are:

• Chapter 2: xmp is a fast new program for exactly solving the Maximum Parsi-

mony problem using multiple CPUs in parallel. On a single CPU, xmp generally

outperforms existing highly optimised programs such as PAUP* and TNT; a

carefully implemented work stealing parallelisation strategy enables efficient

use to be made of many CPUs, even on distributed-memory systems such as

clusters of networked PCs.

• Chapter 3: coil is a program for achieving high-level compression of DNA

sequence databases. coil beats general-purpose compression programs like

gzip by taking advantage of the special “treelike” structure of DNA databases,

using a novel lossy data structure, the “leaky move-to-front hashtable”, to

achieve speed gains. Note: As elaborated in section A.2.2 of appendix A, part

of the work described in this chapter has been previously examined.

• Chapter 4: A Treeness Triangle is a novel data visualisation method that

concisely summarises the “treelikeness” of phylogenetic datasets on a ternary

1

plot. Each dataset is represented by a single point, allowing multiple datasets,

or multiple treatments of a dataset, to be displayed on a single diagram.

• Chapter 5: It is common practice to assume a single tree gave rise to all

sequences in a dataset, and then attempt to estimate this tree using Maximum

Likelihood. We demonstrate how this can lead to biased inferences, and argue

for a shift towards network methods that can in principle reject the hypothesis

of a single tree.

• Chapter 6: GreedyModeFind is a fast new algorithm for finding the mode(s)

of a multinomial distribution. An exact analysis of its complexity is given.

Although motivated by a phylogenetic problem in the previous chapter, this

algorithm is widely applicable, and fits within the theme of effective compu-

tational techniques.

For some topics, journal space limitations meant that not all relevant information

could be covered in sufficient depth in the published paper. Where this is the case,

additional material is provided as extra sections in the chapter. For simplicity’s

sake, page number references in the main body of the thesis always refer to page

numbers in the thesis itself, not to the “internal” page numbers of papers included

within the thesis.

The papers contained in this thesis were written in collaboration with other

authors, though no other author is present on every paper. Appendix A, “Work

Breakdown”, describes my contribution to each paper. This appendix also contains

the DRC 16 Statement of Contribution to Doctoral Thesis Containing Publication

forms for each paper.

1.2 Common Themes

Although each chapter can be considered self-contained, there are several themes

that run through them all.

2

1.2.1 Strengthening the Fundamentals

As a discipline matures and original motivating questions find answers, a tendency

emerges for ever more esoteric research questions to be proposed. Doubtless these

questions are important, but it is just as important to ensure that the bread and

butter tasks performed by scientists in the field continue to receive attention. All

of the topics in this thesis concern fundamental problems in the fields of phyloge-

netics and bioinformatics: how to do things we can already do, but do them better

(chapters 2, 3, and 6), and how to make sure that we are justified in doing them

(chapters 4 and 5).

1.2.2 Information: A Common Currency

This thesis approaches information from two different angles:

• Practical: coil (chapter 3), like all compression programs, is concerned with

extracting the underlying information from a dataset containing redundancy,

for the explicitly practical purpose of saving resources (storage and network

bandwidth).

• Inferential: Chapter 2 is concerned with inferring important information in

the form of model parameters from a dataset, while chapters 4 and 5 examine

the circumstances under which such inferences are meaningful.

Section 3.4 (“Data Compression as Quick and Dirty Science”) elaborates on the

connection between these two related concepts.

1.2.3 Combination Attacks

Chapters 2, 3 and 6 share an additional theme.

What makes computational research challenging is the breadth of knowledge

that must be brought to bear on a problem in order to produce an efficient solu-

tion. Clearly an understanding of the problem domain is required, as are strong

programming skills—the ability to turn a given algorithm into an actual, working

program in some programming language. In addition, two overlapping categories of

computational expertise are needed:

3

• Theoretical. This is the knowledge that comes from computer science: algo-

rithms and data structures, proofs of correctness, computational complexity

(Big O notation). The choice of algorithm literally decides the limiting per-

formance level of a program as input sizes increase. Without a firm grasp of

these concepts, programs are produced that run beautifully on trivial inputs,

but bog down horribly as soon as realistic-size inputs are tried. There is a need

both for familiarity with the universe of existing algorithms and the ability to

synthesise new ones when necessary.

A clear case for the practical importance of theoretical knowledge is Le Gall

(2003)’s lack of awareness of the heap data structure. This is the principle rea-

son for her program’s dire performance in comparison to our GreedyModeFind,

and also the barrier to determining useful time complexity bounds for it.

Theoretical knowledge provides strategy.

• Practical. Computer science attempts to describe the behaviour of computer

programs using abstract models of computation; these models inevitably make

simplifying assumptions that fail to capture important characteristics of real-

world computers. Perhaps the most central is to “forget about” the constant

factors that multiply terms in asymptotic analyses of algorithm complexity.

A textbook example is the existence of caching : data recently acquired from

large, slow storage can be temporarily kept in a smaller amount of fast storage,

enabling rapid access if it is soon required again. This principle operates at

multiple levels in every modern computer—hard disks cache data in RAM,

RAM caches data in L2 cache, L2 caches data in L1 cache—and is highly

effective in practice. Failing to take advantage of caching can lead to slowdowns

of several orders of magnitude. Since the goal of any computational analysis

is to produce correct answers quickly in the real world, it is important to be

aware of these limitations and ways to mitigate them.

An important aspect of practical algorithm design that features heavily in this

thesis is parallel computation. SIMD (Single-Instruction-Multiple-Data) par-

allelism, available through special instructions on modern CPUs, can in theory

multiply execution speed by a constant factor, but only if computations can

4

be rearranged to avoid inter-word dependencies. SIMD parallelism is applied

to coil’s find edges program, xmp’s Fitch algorithm inner loop, and the Fast

Hadamard Transform used for Treeness Triangles.

One of the main advances made by xmp is its highly efficient implementation of

MIMD (Multiple-Instruction-Multiple-Data) distributed-memory parallelism,

enabling effective use of a wide range of computational resources, ranging

from the multiple CPUs available on modern workstations, to many hundreds

of CPUs in a networked cluster of PCs or purpose-built supercomputers. Ex-

tracting the most power from both SIMD and MIMD forms of parallelism

requires detailed attention to data dependencies, access patterns, and sources

of latency. Examples include:

– Under the original work distribution strategy, the boss process retained

the subproblem representing all remaining work, and any time a worker

process requested additional work, a smaller subproblem was split off and

returned to it. This strategy sometimes led to a positive feedback loop

in which a worker was given a series of progessively smaller problems,

resulting in enormous communications overheads. This behaviour was

rectified by replacing this strategy with work stealing, in which a worker

process that runs out of work randomly picks another worker process to

“steal” more work from.

– The most straightforward way to have implemented the boss process main

loop would have been to process requests from different workers sequen-

tially, forcing each request to wait for the previous request to be satisfied;

this would have introduced a slowdown at least linear in the number of

outstanding worker requests. Our more sophisticated approach separates

request handling into a fixed number of phases, in each of which the han-

dling of all worker requests can proceed concurrently, thereby eliminating

this drop in performance.

– Horizontal packing of nucleotides into machine words (in the sense of

Ronquist, 1998) was chosen over vertical packing because it results in a

smaller effective block size, meaning less wasted time and memory for

5

narrow datasets.

– Modern CPUs are notoriously slow at executing conditional branch in-

structions, which correspond to IF ... THEN statements in a high-level

programming language. xmp’s innermost loop avoids the costly data de-

pendencies introduced by these instructions by calculating both possible

results of conditional expressions, and combining them using bit masking

techniques.

Chapter 2 covers these issues in detail.

Floating-point arithmetic is another way in which computers fail to behave

in an ideal manner. Being poor imitations of the real numbers enamoured of

mathematicians, floating-point numbers have finite precision, which in general

is eroded by each computation performed on a value. This can lead to such

“obviously true” identities as x + y - x == y failing to hold in some cases,

and the need for elaborate algorithms for tasks as simple as accurately adding

a list of numbers (Kahan, 1965). For this reason, one of the primary concerns

of any seasoned programmer when working with floating-point arithmetic is

to eliminate long chains of calculations, as they tend to accumulate roundoff

error. Here GreedyModeFind improves on earlier algorithms by computing all

needed floating-point values “afresh” on each loop cycle, instead of reusing

“tarnished” values from earlier loop cycles.

Finally, designing and implementing practical algorithms usually involves trade-

offs. Experience and experimentation are needed to make appropriate choices.

These tradeoffs are everywhere, but conspicuous examples include: in xmp,

the design of heuristics for lower bounds that are reasonably effective while

remaining fast to compute; in coil, the leaky move-to-front hashtable data

structure, which forgoes exact calculation of edit distances between sequences

in exchange for a much faster approximation of the top b distances.

Practical knowledge provides tactics.

A key aspect of xmp, coil and GreedyModeFind is their focus on attacking

computational problems with both theoretical (high-level) and practical (low-level)

engineering in order to maximise performance.

6

1.3 Background: Phylogenetic Inference

The following background information is particularly relevant to the Parallel MP

Search, Treeness Triangles and ML Bias subprojects (chapters 2, 4 and 5), though

it also informs the core algorithm underlying the Sequence Database Compression

subproject (chapter 3). For an in-depth introduction to the topic, suitable texts

include Felsenstein (2004) and Swofford et al. (1996). Semple & Steel (2003) contains

a more formal mathematical treatment.1

1.3.1 Fundamentals

A phylogenetic tree is a representation of the evolutionary history of a set of taxa

(biological species, groups or individuals). It comprises a tree whose leaves (or tips)

are labelled by those taxa, and may be rooted (in which case all edges are considered

to be directed away from the root in the “forward time” direction) or unrooted. A

tree in which every internal vertex has degree 3 (apart from a possible root vertex of

degree 2) is called a binary or bifurcating tree, while other trees are multifurcating. A

tree may additionally specify a positive2 real-valued branch length for each edge (or

branch); interpretation of branch lengths depends on context, though they frequently

represent either time durations or (expected or actual) numbers of mutations. The

term topology is often used to describe the edge structure of a labelled tree—i.e. the

tree considered without regard to any branch lengths it may have.

Another useful concept is the notion of a split or bipartition of a taxon set X

into an (unordered) pair of disjoint subsets Y and Z such that X = Y ∪ Z. This

is written Y |Z. Every edge in a tree defines a split, and it is sometimes useful to

think of a split as a “potential edge in a tree”.

Phylogenetic inference is the problem of finding the phylogenetic tree or trees

that most closely approximate the true tree that models the process that produced

the taxa, using data sampled from the taxa. (Of course, we are assuming here that

1The Felsenstein (2004) and Semple & Steel (2003) books could not be more different in style:
the former brimming with enthusiasm and at times conversational; the latter so taut with precisely
encoded meaning that its contents would, one suspects, be very slightly expanded by a compression
program.

2Edges having length zero are sometimes permitted, allowing non-binary trees to be treated
as special cases of binary trees. This is usually harmless, but theoretically creates a problem for
inference: a model class that allows zero-length edges on trees is not identifiable, since multiple
such trees correspond to the same multifurcating tree having strictly positive edge lengths.

7

the taxa were produced by a treelike process—this assumption is discussed further

in chapter 5, and chapter 4 describes a way to visualise the extent to which it holds.)

In general, the data sample consists of a set of characters, each of which is a mapping

from a taxon to a state; in the specific case of DNA data, characters correspond to

columns or sites in an alignment of DNA sequences, and states correspond to one of

the nucleotides adenine, cytosine, guanine or thymine (A, C, G or T respectively).

As the word “sequence” suggests, DNA sequences confer an ordering on these char-

acters, but this is usually ignored by current methods—for example, statistically

motivated methods generally regard characters as independent and identically dis-

tributed (i.i.d.) observations. Usually, DNA data is available only for the tips of the

tree, which represent present-day taxa—although exceptions do exist, such as when

analysing samples gathered from rapidly evolving pathogens over time (Drummond

& Rodrigo, 2000), or ancient DNA recovered from preserved remains (Shepherd &

Lambert, 2008).

1.3.2 Starting points for inference

Given an alignment containing n DNA sequences, one for each taxon, phylogenetic

inference may proceed directly from the source alignment data, or it may first entail

conversion of the source data to some intermediate form. The most commonly

used intermediate form is a distance matrix, an n × n matrix containing estimates

of pairwise distances between each pair of taxa. Distance estimates are usually

calculated from the source alignment according to some maximum likelihood (ML)

model (see section 1.3.4, “Optimality criteria”). Distance-matrix-based methods are

often faster than other methods and some have attractive statistical properties, but

it is important to note that they cannot be as sensitive as methods that consider

the original source data as they discard all information about interactions between

three or more taxa.

Of crucial importance in phylogenetic reconstruction is the notion of consistency.

An inference method is consistent if, given sufficient data, the probability that it

recovers the true model tends towards 1 as the amount of input data tends towards

infinity.

Consistency is a property of an estimator; a related concept is identifiability,

8

which is a property of a model class. A model class is non-identifiable if it contains

two distinct models (that is, two non-identical choices of parameter values) θ1 and

θ2 such that the probability distributions on all possible outcomes from these models

are equal. Any other model class is identifiable. Intuitively, if a model class is non-

identifiable then there is no way to tell which of several models within it gave rise

to a given dataset, even if an infinite amount of data is available.

1.3.3 Algorithmic treebuilding approaches

Plainly all treebuilding methods can be described in terms of algorithms, but some

can be defined only in this way, while others have additional properties.

The most striking example of a purely algorithmic approach is the neighbour-

joining method (Saitou & Nei, 1987) and its variants. This method takes a distance

matrix, and repeatedly joins together two taxa into a single “virtual” taxon until

only a single taxon remains. Neighbour-joining is interesting because it combines

speed (we will soon see that O(n3) for n taxa is very fast in the world of phylogenetic

inference) with an impressive level of accuracy. It was not until more than 10 years

after its initial discovery that it was conclusively shown to converge to the model

tree when enough data is supplied (Atteson, 1999).

1.3.4 Optimality criteria

An optimality criterion provides a way to assign a numeric score to any given tree.

It is then possible to search for the tree or trees that maximise this score.

The optimality criterion approach has advantages over purely algorithmic tree

building techniques:

• Obviously an exhaustive search through treespace (the set of all possible trees)

will produce provably optimal trees according to the chosen criterion.

• Since a score can be calculated for any tree, it is simple to compare two

arbitrary trees by comparing their scores.

Popular choices of optimality criterion include:

1. Maximum parsimony (MP) (Fitch, 1971): the score of a tree is the fewest

number of nucleotide substitutions required to produce the observed sequences

9

at the tips. MP can operate only on discrete character data, such as DNA.

Chapter 2 describes an efficient implementation of exact MP search.

2. Maximum likelihood (ML) (Neyman, 1971; Felsenstein, 1981): the score of

a tree is its likelihood, namely the probability that the input data would be

observed given a statistical model that includes the tree topology among its

parameters.3 Usually the model includes other parameters as well, such as

edge lengths for each edge in the tree, and parameters governing the process

by which nucleotides mutate. ML is a very general inference method that can

be applied to sequence data. See section 1.3.7 for more details.

3. Bayesian maximum a posteriori probability (MAP) (Rannala & Yang, 1996):

the score of a tree is its posterior probability, namely the probability of a sta-

tistical model being true given that the input data was observed. As with ML,

the statistical model incorporates the tree topology plus other parameters; the

difference is that Bayesian inference additionally requires an a priori probabil-

ity distribution, or prior, on models to be specified. This is needed so that the

probability of a model being true before observing any data can be determined.

(ML hails from the frequentist school of statistics, where all calculations are

implicitly performed “as if” the particular model being considered were true,

and the concept of “the probability of a model being true” is nonsensical.)

Bayesian inference is usually performed using the Markov Chain Monte Carlo

(MCMC: Metropolis et al., 1953; Hastings, 1970) technique, which was adapted

for phylogenetic inference by Mau et al. (1999).

4. Least-squares distance methods, such as the original unweighted least-squares

method (Cavalli-Sforza & Edwards, 1967), or the weighted method of Fitch

& Margoliash (1967): the score of a tree is the sum of squared residuals for

all pairs of taxa. The residual for a pair of taxa is the (possibly weighted)

difference between the distance given for them by the input distance matrix

and the length of the unique path that connects them on the tree.

3It now seems amusing that one of the caveats acknowledged by Felsenstein (1981, p. 369) at
the time he presented his ML computational technique for phylogenetic trees was the “paucity of
DNA sequence data available for analysis” with it.

10

1.3.5 Search methods

Approaches to solving the inference problem using an optimality criterion can be

broken into two categories:

• Exact algorithms

• Heuristics

Given a particular tree topology, it is often the case that an optimality criterion

can be optimised quickly:

• The Fitch (1971) algorithm can determine an MP tree for n taxa and k sites

in O(nk) time

• For least-squares methods, matrix algebra techniques are used to compute

branch lengths from a pairwise distance matrix so as to minimise the score

For ML and Bayesian MAP on the other hand, maximising the score is a challeng-

ing problem even when the tree topology is given. In practice, general-purpose nu-

merical optimisation heuristics such as Nelder-Mead optimisation (Nelder & Mead,

1965) are used for optimising branch lengths and other parameters, so these searches

cannot be said to be exact.

Unfortunately, optimality criterion approaches have one big disadvantage: for

most criteria, the problem of searching treespace for optimal trees is NP-hard (see

section 1.4.1), meaning that it is unlikely that any algorithm exists for solving the

problem more efficiently than an exhaustive enumeration of all possible trees. Since

there are (2n−5)!! unrooted bifurcating trees on n taxa (where k!! denotes the double

factorial k(k− 2)(k− 4) . . ., which has �k/2� factors), the search space grows super-

exponentially with the number of taxa, meaning that in practice, exact solutions

are possible only for small numbers of taxa.

Although the branch and bound (B&B) technique (used in e.g. Hendy & Penny,

1982) can be applied to prune off provably suboptimal parts of the search space and

thereby increase the size of problems that can be solved in a reasonable timeframe,

its efficacy depends heavily on how well the data fit a tree, and it provides no

general time-complexity improvements. Nevertheless, empirically speaking, branch

11

and bound techniques substantially improve the performance of many exact search

problems. B&B benefits from high-quality, conservative heuristics for estimating the

minimum additional cost that must be incurred by a partial solution on its way to

becoming a complete solution; developing such heuristics for maximum parsimony

is one of the four prongs of attack listed as bullet points on p. 21 in chapter 2.

1.3.6 Heuristic algorithms

A heuristic algorithm produces a result that, empirically, is reasonable most of the

time, but about which no guarantees can be made. The advantage of heuristic

algorithms is that they tend to be fast, enabling us to quickly find reasonably good

trees; the disadvantage is that we can never be certain that the tree(s) found are

truly optimal.

Heuristic methods often operate by taking an initial tree and repeatedly modify-

ing it in some way, keeping the resulting tree when such a “move” increases the score

and discarding it otherwise. This hill-climbing procedure allows a search program to

find a local optimum, though there is no guarantee that it is also a global optimum.

If the procedure is repeated many times starting from different random trees, and

the same local optimum is frequently found, confidence that a global optimum has

been found is increased.

One of the earliest heuristic methods is branch-swapping : nearby taxa on a

given tree can be moved around so as to produce a new tree that might have a

better score. Nearest-neighbour interchange (NNI), subtree pruning and regrafting

(SPR) and tree bisection and reconnection (TBR) are progressively more thorough

ways to rearrange a tree topology (Swofford et al., 1996, pp. 407–427).

1.3.7 Statistical models

Following the framework laid out by Penny et al. (1992), in the context of ML or

Bayesian phylogenetic inference, a model refers to the following triple:

1. A tree with branch lengths (which in general must be rooted; but see the

discussion of reversibility below)

12

2. Initial conditions—specifically, the distribution of bases at the root, plus what-

ever other parameters are supported by the model class in question, such as

relative rates of change along each branch (for non-clocklike models; see be-

low), and/or the distribution of rates across sites

3. A mechanism of change—in the case of DNA, a stochastic Markov model

giving the probability of moving from any nucleotide to any other nucleotide

as a function of time

Each of these three components is comprised of one or more parameters that

may be either given a priori, inferred (and then possibly ignored), or integrated

over. Steel & Penny (2000) provides a excellent assessment of the various flavours

of ML that arise from considering the different choices available.

Inference of a set of parameters is performed by finding the combination of

parameter values that maximises the likelihood (for ML) or posterior probability (for

Bayesian inference).4 The number of parameters, and their structure, are determined

by the choice of model.

Many statistical models of evolution have the useful property of reversibility,

meaning that the probability of generating a given set of sequences at the tips does

not depend on the location of the root. This implies that an unrooted tree can be

specified instead of a rooted tree. When searching the space of all trees, only all

unrooted topologies (and not the greater number of all rooted topologies) need be

examined.

Any general class of models can be converted to a class of models that is clocklike,

or is said to obey the molecular clock, if a root vertex is specified and the tree is

constrained to be ultrametric—that is, the sum of branch lengths along any path

leading away from the root is constrained to be the same. Clocklike models stipulate

that the rate of mutation is the same at any point in the tree, and consequently edge

lengths can be interpreted as time spans. Informally, a dataset may be said to be

4It is important to note that while Bayesian inference can be used to infer a single point estimate
using MAP, doing so does not make full use of the method. Bayesian inference is more usually
conducted with the aim of inferring the posterior distribution of the parameters, since the shape of
this distribution supplies additional information on the confidence with which parameter estimates
can be regarded. The MCMC algorithm produces a sample from this distribution, which can be
used to produce a confidence set of trees or other parameters if desired.

13

clocklike if inference using a non-clocklike class of models produces a tree that can

be rooted somewhere to produce a (near-)ultrametric tree.

1.3.8 Errors and consistency

Error from statistical inference methods accrues from at least two sources:

1. Sampling error: random error caused by the fact that a finite sample can-

not estimate a population parameter precisely. Sampling error reduces with

increasing sample size.

2. Systematic error: error introduced by incorrect assumptions in the inference

process. Systematic error does not reduce with increasing sample size—it may

in fact increase.

All ML methods are consistent when applied to datasets that were generated

using their models: given sufficient data, they will converge upon the true tree

(Fisher, 1922; Chang, 1996). If a distance matrix corresponds exactly to the total

path-lengths between leaves on some tree, then that tree is unique (Buneman, 1971);

furthermore several distance-matrix methods, including neighbour-joining (Saitou &

Nei, 1987), can recover the true tree whenever the maximum measurement error in

any distance is less than half the length of the smallest edge, which is sufficient to

establish consistency for these methods (Atteson, 1999).

Of course, we cannot truly know what model produced a set of sequences unless

we generate them ourselves; hence the importance of examining the robustness of

models used for inference, as we do in chapter 5.

1.3.9 Maximum Parsimony and consistency

After an early surge in popularity due to its intuitive simplicity, maximum parsimony

fell from grace in phylogenetics. This can largely be attributed to the discovery

that it is in general inconsistent: for some model trees, even with infinite data, the

probability of recovering the true tree does not go to 1—in fact, in some cases, it goes

to 0, while the probability of a particular incorrect tree goes to 1 (Felsenstein, 1978).

(The region of the parameter space in which this phenomenon occurs is sometimes

14

called the “Felsenstein Zone”.) The construction provided by Felsenstein (1978)

could be considered pathological, however Hendy & Penny (1989) demonstrated

that MP can be inconsistent even for a “typical” tree that obeys a molecular clock.

Despite this gloomy state of affairs, there remains hope for parsimony. The root

of the problem was identified by Steel et al. (1993) as being the lack of a correction

for multiple changes at a site. The apparent inability to perform this correction was

due to the fact that any such correction needs to act on distances between taxa,

while MP requires sequence data. However, as pointed out by Steel et al. (1993),

the ability of Hadamard conjugations (Hendy & Penny, 1993) to invertibly convert

between distances and sequence spectra means that this difficulty can be overcome;

the resulting method, corrected parsimony, is consistent.

Other special cases in which uncorrected MP is known to be consistent include

when no common mechanism can be assumed for all sites in an alignment, and when

the number of states is large in comparison to the number of sites. Steel & Penny

(2004) have shown that for ample (or 1-connected) datasets—those sets of sequences

in which every pair of sequences are connected by a path through sequences in the

set, and each edge in the path has length 1—all MP trees are “Most Parsimonious

Likelihood” (MPL) trees and vice versa. MPL is the ML variant that results when

instead of integrating over character states at internal nodes of a tree as is done for

the “usual” Maximum Average Likelihood criterion, the character states for these

nodes are optimised so as to maximise the likelihood of the resulting model.

A precise description has been given by Tuffley & Steel (1997) of a useful region

of the parameter space in which MP is in fact a consistent estimator.

1.4 Computational Complexity Primer

In addition to knowing that an algorithm is correct, it is practically important

to know that it runs fast and requires little memory. Because computers run at

different speeds, simply measuring running time on a particular computer is not

enough to characterise an abstract algorithm’s performance. Instead, the speed of

an algorithm can be described using Big O notation, which gives asymptotic bounds

on running time as the size of the input increases to infinity. A similar analysis can

15

be performed for memory usage.

An algorithm is usually characterised by its worst-case performance, although

average performance across all possible inputs is also of interest.5 When many

operations will typically be performed in succession, such as a series of insertions

and lookups on a key-value map data structure, amortised analysis (Tarjan, 1985)

can prove useful. This more general approach allows guarantees to be made about

the worst-case performance of a sequence of n operations, without constraining the

time taken by each individual operation.

The most common kind of complexity analysis uses O(·), which expresses an

“eventual” upper bound on a function. Given two nonnegative functions f(x) and

g(x), f(x) = O(g(x)) means that, for sufficiently large values of x, f(x) is always

less than or equal to some fixed multiple of g(x). (An equals sign is often used to

indicate the relationship, although ∈ would be more correct.) Formally, ∃a, c ∈ R

such that ∀x ≥ a, f(x) ≤ cg(x).

The definition of O(·) allows all coefficients, and all but the highest-degree term

in a sum of polynomial terms, to be discarded, since if f(x) = O(Axn + Bxm) and

m < n then f(x) = O(xn) can be had by increasing a and c as necessary. This

permits simple descriptions of common algorithms. A table of common complexities

is given in Table 1.1.

The same notation can be used to describe an algorithm’s memory usage.

1.4.1 NP Completeness

The previous section discussed asymptotic performance characteristics of particular

algorithms for solving computational problems. It is useful to abstract further and

consider the performance of the best-possible algorithm for solving a given problem:

this allows the problems themselves to be characterised through lower bounds on the

computational resources (time and memory) required to solve them. This section

provides just a brief overview; for a full treatment, the interested reader should

consult Garey & Johnson (1979).

5The utility of average-case performance can be hampered if the distribution of problem in-
stances encountered in real applications differs strongly from the uniform distribution, as is often
the case. Although this could in principle be addressed using weighted averages, doing so raises
the tricky question of which distributions deserve such special attention.

16

Class Description Example
O(1) Constant • Array lookup

• Comparison of integers

• Addition and multiplication of integersa

O(log n) Logarithmic • Find given element in sorted list

O(n) Linear • Find given element in unsorted list

• Find location of length-n string occurrence using
suffix tree

• Calculate parsimony score of n-taxon tree using
Fitch algorithm

O(n log n) Log-linear • Sort a list using merge sort or heap sort

O(n2) Quadratic • Find longest common substring of 2 length-n
strings

• Sort a list using quicksort, bubble sort or inser-
tion sort

O(n3) Cubic • Find shortest paths between all pairs of vertices
in n-vertex graph using Ford-Warshall algorithm

• Calculate neighbour-joining tree

O(2n) Exponential • Find assignment of variables satisfying Boolean
proposition or determine none exists

• Fast Hadamard Transform (O(n2n))

aUnder the usual unit cost RAM model, it is assumed that all integers fit within a single machine
register and that most operations on machine registers take unit time.

Table 1.1: Common algorithm complexities

17

The most important practical distinction to make is between the complexity

classes P (Polynomial-Time) and NP-hard (NP stands for Nondeterministic Polynomial-

Time). A problem is in P if an algorithm exists that can solve every instance of the

problem in polynomial time—i.e. in O(xk) time, for some fixed k. A problem is in

NP if a solution to the problem can be checked for correctness in polynomial time;

NP thus includes all problems in P, as well as potentially other problems that are

hard to solve but easy to verify when a solution is already available.

The most difficult problems in NP are called NP-complete. These problems have

the property that, if any polynomial-time algorithm can be found for one of them,

then every other problem in NP can also be solved in polynomial time. (Suppose

the two problems are φ and ρ and the polynomial-time algorithm to solve φ is aφ:

in polynomial time, ρ can be transformed into a polynomial number of instances

of φ, each of which can be solved by calling aφ as a subroutine.) The related class

NP-hard includes all NP-complete problems, and also problems outside of NP such

as the Halting Problem: determining whether a given program eventually completes

or continues running forever.

The first problem proved NP-complete was Boolean satisfiability: the problem

of determining whether there exists an assignment of true/false values to variables

that makes a given propositional logic formula true (Cook, 1971). In the same

paper, Cook also introduced the standard technique for proving a problem NP-hard

via reduction from an NP-complete problem. A raft of NP-completeness results for

other well-known problems soon followed (Karp, 1972).

Roughly speaking, problems in P are considered “efficiently solvable”, while prob-

lems outside of it are “intractable”.6 (Note that this definition of “efficient” differs

from the notion of statistical efficiency, which measures the accuracy of an estima-

tion technique for a given sample size.) It is a longstanding open question whether

P is a strict subset of NP, or whether instead P=NP—but the fact that decades

of computer science research has failed to produce a polynomial-time algorithm for

any NP-complete problem is taken as strong evidence that P �=NP. For all practical

6This description is not always apt; it’s certainly possible for an O(n3) algorithm to run infea-
sibly slowly on typical inputs, while an algorithm that is nominally O(2n) runs quickly on nearly
all inputs. The Simplex algorithm for linear programming is an example of an exponential-time
algorithm that in practice has better performance on typical problems than the polynomial-time
ellipsoid method (Klee & Minty, 1972).

18

purposes, proving an algorithm NP-hard means that the best algorithm that can be

expected to solve the problem is exponential-time.

19

Chapter 2

Faster Exact Maximum Parsimony

Search with XMP

2.1 Introduction

This chapter presents the paper “Faster Exact Maximum Parsimony Search with

XMP”, which was published in volume 27, issue 10, pp. 1359–1367 of the journal

Bioinformatics in 2011.

All software associated with this paper is now freely available via Subversion

from http://xmpfast.sourceforge.net.

20

BIOINFORMATICS ORIGINAL PAPER Vol. 27 no. 10 2011, pages 1359–1367
doi:10.1093/bioinformatics/btr147

Phylogenetics Advance Access publication March 27, 2011

Faster exact maximum parsimony search with XMP
W. Timothy J. White1,∗ and Barbara R. Holland2,∗
1Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand and 2School of Mathematics
and Physics, University of Tasmania, Hobart, Tasmania, Australia
Associate Editor: David Posada

ABSTRACT

Motivation: Despite trends towards maximum likelihood and
Bayesian criteria, maximum parsimony (MP) remains an important
criterion for evaluating phylogenetic trees. Because exact MP search
is NP-complete, the computational effort needed to find provably
optimal trees skyrockets with increasing numbers of taxa, limiting
analyses to around 25–30 taxa. This is, in part, because currently
available programs fail to take advantage of parallelism.
Results: We present XMP, a new program for finding exact MP
trees that comes in both serial and parallel versions. The serial
version is faster in nearly all tests than existing software. The parallel
version uses a work-stealing algorithm to scale to hundreds of CPUs
on a distributed-memory multiprocessor with high efficiency. An
optimized SSE2 inner loop provides additional speedup for Pentium
4 and later CPUs.
Availability: C source code and several binary versions are freely
available from http://www.massey.ac.nz/~wtwhite/xmp. The parallel
version requires an MPI implementation, such as the freely available
MPICH2.
Contact: w.t.white@massey.ac.nz; barbara.holland@utas.edu.au
Supplementary information: Supplementary data are available at
Bioinformatics online.

Received on October 20, 2010; revised on March 16, 2011; accepted
on March 17, 2011

1 INTRODUCTION
Of all the criterion-based approaches to evolutionary tree selection,
the maximum parsimony (MP) criterion is the most intuitive: ‘Select
the tree or trees that require the fewest DNA substitutions’. The
early popularity of MP was dampened by the discovery that it can
be statistically inconsistent: in the ‘Felsenstein Zone’, increasing
amounts of data will lead to increasingly certain recovery of the
wrong tree (Felsenstein, 1978). Later, more general conditions
leading to inconsistency were described (see Schulmeister 2004
for an extensive review). Elucidation of the assumptions made by
MP led to the understanding that it is consistent when the expected
number of changes per site, both across the tree and on any edge,
are sufficiently small (Felsenstein, 2004; Steel, 2001, pp. 97–102).
Steel and Penny (2000) chart the many variants of ML and their
connections to MP. Of particular relevance is that MP is a most-
parsimonious likelihood estimator for ‘ample’ datasets in which all
taxa can be connected by a tree with maximum edge length 1,
which is of practical significance when dealing with population

∗To whom correspondence should be addressed.

(intra-species) data where taxa are highly similar (Holland et al.,
2005).

An often-overlooked fact is that the primary criticism levelled
at MP—lack of statistical consistency in the general case—can
be rectified through Hadamard conjugation (Penny et al., 1996;
Steel et al., 1993). In particular, the Kimura three-parameter model
(Kimura, 1981) and all its submodels can be corrected for directly
using Hadamard conjugation, while any reversible model at all for
which additive distances can be estimated can be dealt with via
the Distance Hadamard transformation (Hendy and Penny, 1993).
The resulting two-step approach, called corrected parsimony, is
statistically consistent.

Although powerful heuristics for the MP problem have been
developed (e.g. Goloboff 1999; Nixon 1999; Roshan et al. 2004; see
also Felsenstein 2004, Chapter 4), they necessarily come without
guarantees. We believe that a freely available, high-performance
implementation of exact MP search is conspicuously absent, and
would benefit the phylogenetics community. Our program, XMP,
fills this gap. XMP offers:

• a parallelization strategy that is simultaneously highly portable
across different computer architectures and highly efficient,
scaling to hundreds of processors. This is the main new
contribution;

• a new lower bounding approach for pruning unpromising
regions of the search space, inspired by the MinMax Squeeze
(Holland et al., 2005);

• streamlined Fitch inner loop calculations using optimizations
not published elsewhere; and

• a hand-optimized SSE2 assembly language implementation of
the Fitch inner loop for Intel Pentium 4 and later CPUs, offering
a potential 4-fold speed improvement.

The latter three improvements are also available in a single-
processor version. We compare this version with a popular exact
MP program and find that XMP is much faster in almost every case.

1.1 Existing implementations
Two branch and bound algorithms for exact maximum parsimony
search were proposed by Hendy and Penny (1982). Their
Algorithm I, which adds taxa to a partial tree one at a
time, forms the basis of most current implementations of exact
MP search (Bader et al., 2006; Felsenstein, 1989). TurboTree
(Penny and Hendy, 1987) took a different approach, inserting
characters one at a time instead of taxa.

Hennig86 (Farris, 1989) was one of the earliest widely used
parsimony programs offering an exact search feature.

21

W.T.J.White and B.R.Holland

ExactMP (Bader et al., 2006) is an exact MP search program
designed to run in parallel on a shared-memory multiprocessor.
For five ‘hard’ datasets, the authors achieve an average parallel
speedup of 7.26 on eight processors using a queue-based locking
and work distribution mechanism. In terms of absolute speed,
Figure 4 of Bader et al. (2006), which compares the speed of
ExactMP running on eight processors with PAUP* running on one
processor, suggests that PAUP* is approximately four times faster
than ExactMP on a single processor. We note that while ExactMP
requires a shared-memory computer to run, XMP runs efficiently on
both shared-memory computers and distributed-memory computers
such as the BlueGene BG/L supercomputer or a networked cluster
of commodity PCs.

PAUP* is a popular program for performing many types of
phylogenetic inference. PAUP*’s exact MP inference is very fast—
it is one of two programs that we use as a benchmark for XMP.
While some of the strategies used by PAUP* have been published
(Swofford et al., 1996), unfortunately many algorithmic details have
not.

PHYLIP (Felsenstein, 1989) is a freely available implementation
of many phylogenetic inference methods, and includes the program
dnapenny for performing exact maximum parsimony analysis. This
program is typically much slower than PAUP*—on the same
hardware, dnapenny took slightly over 20 min to find the unique
minimal tree for the mt-10 dataset, while PAUP* took 44 s and the
plain (non-SSE2) version of XMP took 7.3 s. The SSE2-optimized
version of XMP took just 2.2 s.

TNT (Goloboff et al., 2008) is a freely available maximum
parsimony program explicitly focusing on efficient heuristic
methods for large datasets. TNT also provides a fast exact search
facility, which we compare with XMP.

Althaus and Naujoks (2006) take quite a different approach to the
usual implicit enumeration scheme. Instead of adding individual taxa
to a partial tree, they build sets of candidate rooted monophyletic
groups in a first pass, and in a second pass form unrooted trees from
all legal combinations of three such groups. Because the inputs to the
second pass are monophyletic groups, the authors are able to draw
on a variety of rules developed for general Steiner tree construction
to eliminate tree topologies that cannot possibly be optimal. They
order groups cleverly so as to minimize the number of legality tests
performed.

Sridhar et al. (2008) take a different approach again, providing
two different integer programming formulations of the MP problem:
one that contains only a polynomial number of variables and
constraints, and one that in the worst case may require an exponential
number of both, but which in practice is faster to solve. They
demonstrate impressive solution times, in one case solving a
34-taxon problem in less than one min. However, their program is
restricted to alignments containing binary characters, and produces
only one MP tree, rather than all minimal trees. Although the
program currently requires the commercial mixed integer solver
CPLEX, they provide free access to a web-based front-end at
http://www.cs.cmu.edu/~imperfect/index.html.

In the remainder, we assume as input an aligned DNA dataset
having n taxa and k sites. Informally, a dataset with many taxa is tall;
a dataset with many sites is wide. The length of an edge or tree is the
minimum number of point substitutions it requires; the parsimony
score or MP score of a set of taxa is the minimum length of any tree
interconnecting those taxa. XMP accepts ambiguous nucleotides and

gaps, the latter being interpreted as ‘any nucleotide’—the same as
in PAUP* under default settings (GAPMODE=MISSING).

2 METHODS

2.1 Branch and bound for maximum parsimony
Although the maximum parsimony (MP) score can be determined in O(nk)
time using the Fitch–Hartigan algorithm (Fitch, 1971; Hartigan, 1973) when
a tree is given, the problem of finding a tree whose MP score is minimal
is NP-complete (Graham and Foulds, 1982), so it is unlikely that any
algorithm exists that is asymptotically faster than enumerating and scoring
all possible trees. Nevertheless, branch and bound (B&B) algorithms can
offer a substantial improvement in practice. B&B is a general strategy for
solving optimization problems that operates by exploring a search graph
in which each node corresponds to a subproblem, and each arc links a
subproblem with a child subproblem formed by adding constraints to the
parent. This search graph is usually not represented explicitly but rather is
implicit in the recursion structure of the program. In the usual formulation
of B&B for MP search, first introduced by Hendy and Penny (1982), a
subproblem is a binary tree on a subset of the full taxon set, and there is
a child subproblem for each edge in the tree, indicating where the next
taxon will be added. (For now, we leave aside the question of which
taxon will be added next.) Full trees correspond to feasible solutions. The
algorithm begins by calculating an upper bound on the parsimony score,
often by building a heuristic MP tree. Then evaluation of subproblems
takes place, starting with the original unconstrained problem, represented
by the unique binary tree on some chosen set of three taxa. For each
subproblem visited, a lower bound on the MP score of any solution
reachable via that node is computed. Clearly adding taxa to a tree can
never decrease its length, so it is acceptable to use parsimony scores of
partial trees as lower bounds; later we look at stronger bounds. The utility
of B&B hinges on the following observation: when a node is visited
whose lower bound exceeds the current upper bound, it follows that it
cannot lead to an optimal solution, so evaluation of its descendants can
be skipped. This event is called a cutoff and the descendant nodes are
said to be pruned, bounded out or fathomed. As the algorithm proceeds
and more-parsimonious full trees are discovered, the global upper bound
is reduced, further accelerating performance. In practice, the improvement
over exhaustive enumeration is highly dataset dependent, but significant for
typical biological datasets.

2.2 Branch and bound in XMP
The above description of B&B leaves several questions unanswered:

• Which three taxa should be chosen for the initial tree?

• In what order should taxa be added to the tree?

• In what order should subproblems be evaluated?

B&B involves adding taxa to a current partial tree in some order. At any
point, given a partial tree containing m<n taxa, we must choose (i) the next
taxon to add and (ii) the order in which we should add that taxon to each
of the 2m−3 edges in the tree. As a general rule, the ‘worst’ taxon should
be added next (so as to produce bound cutoffs as early in the search tree as
possible), and that taxon should be added in its ‘best’ position first (so that
new, tighter upper bounds are discovered sooner, possibly leading to earlier
pruning of search trees stemming from other placements of the taxon). One
important decision is whether to use a static or dynamic taxon addition order.
A static order always adds taxa to the tree in the same order, while a dynamic
order decides the taxon to add next just before the addition is to take place,
so it can depend on the topology of the current tree. Although Purdom et al.
(2000) indicates that using a dynamic taxon addition order can improve
running times for tall datasets, we note that performance is highly variable
across datasets, and it complicates the calculation of lower bounds on the

22

Exact MP search with XMP

length added by the remaining taxa. Also it is difficult to efficiently decide
which taxon should be added next. We chose to use a fixed taxon addition
order for XMP, which has the advantage of making lower bound calculations
extremely fast (see Section 2.6). Where different implementation strategies
are in conflict, we have generally favoured those that leave the B&B inner
loop as streamlined as possible.

The order in which taxa are added to the tree is critical to performance
(Hendy and Penny, 1982; Purdom et al., 2000), with different orders easily
leading to running time disparities of many orders of magnitude. XMP uses
the standard max–mini approach (Nei and Kumar, 2000): first, an exhaustive
search is used to find the three-taxon tree whose length is greatest; then n−3
rounds take place, in each of which the taxon ti whose minimum length
increase across all edges is maximum across all remaining taxa is added to
the tree by inserting it at its minimum-length edge. This heuristic attempts to
order taxa so that every tree built on any initial sequence of taxa has length
as great as possible, in order to force early cutoffs.

Regarding the order in which the chosen taxon is added to the edges of
the current partial tree, XMP takes the simple approach of using a preorder
depth-first search (DFS) tree traversal, which is convenient for recursion.
In the typical case where the initial upper bound is optimal (which was the
case for all the datasets used for performance testing), the order in which
placements are tried has no bearing on the set of search nodes evaluated, so
this simple order suffices.

2.3 Parallelization strategy
A simple way to subdivide the original B&B problem is to have a set of
worker processes that request work from a boss process whenever they are
idle, while the boss enumerates complete trees down to some small depth
(number of taxa) and sends each subproblem to a requesting worker to
solve, until all starting trees have been exhausted. However, the subproblems
generated this way may vary greatly in difficulty, leading to enormous
imbalances in solution time: it can happen that all but one process finish
work in milliseconds and sit idle, while one process continues working for
months. One way around this is to arrange for the boss never to hand off the
last subproblem, but rather subdivide it by inserting the next taxon at each
edge, and hand off one of the generated subproblems instead. We found that
although this sometimes improves behaviour, a different problem can arise:
after the boss begins additional subdivision, subproblems issued to workers
become smaller and smaller to the point where running time is dominated by
communication between boss and workers. In effect, the situation approaches
a serial B&B enumeration in which every node evaluation requires round-trip
communication between a boss and a worker. Since communication latency
typically dwarfs the time needed for a single node evaluation, performance
drops dramatically.

Bader et al. (2006) confine themselves to a shared-memory
multiprocessor, which affords them the ability to investigate advanced
locking and lock-bypassing priority queues for managing subproblems.
Approaches based on priority queues guarantee a minimum number of node
evaluations, but increase the time needed for each node to be evaluated
and complicate load balancing. Provided that the initial upper bound is
tight, a simple depth-first search will evaluate exactly the same nodes
(most likely in a different order), but is simpler, enables fast incremental
tree modifications and has better locality properties. So XMP forgoes
priority queues entirely, trusting that the initial TBR search phase (see
Section 2.6) will bring us a near-optimal upper bound, and opts for a
simple load-balancing approach that works on both shared-memory and
distributed-memory multiprocessors: work stealing (Blumofe and Leiserson,
1999). A single boss process starts with the original tree on three taxa, and
hands the entire problem to the first worker process that requests work.
Every subsequent work request made to the boss causes it to choose a
non-idle victim worker at random and steal a job (subproblem) from it
to pass back to the requesting worker, or thief. Intuitively, work stealing
never performs unnecessary communication, and provided steal victims are
chosen randomly, it has excellent performance characteristics in terms of

expected total execution time (Blumofe and Leiserson, 1999). All requests
in XMP go via the boss, which simplifies termination detection and makes it
easier to guarantee starvation-free servicing of workers. Although boss-free,
truly distributed work stealing can be achieved on a distributed-memory
computer by using a one-sided communications protocol that does not
require synchronization with the destination, the necessary hardware support
(Remote Direct Memory Access or RDMA) is often inadequate and must be
emulated at additional cost: tellingly, in their study on the performance of
distributed work stealing, Dinan et al. (2009) set aside one of every eight
CPUs (apparently without adjusting their efficiency measurements) for a
‘data server’ process just to emulate efficient one-sided communication,
despite the fact that their network technology, InfiniBand, nominally supports
RDMA. XMP’s centralized strategy does place an upper limit on scalability,
though as our results show, surpassing this limit requires hundreds of
processors.

The parallel version of XMP uses the industry standard MPI message-
passing interface for handling all communication between processes.
Using MPI rather than a thread-based approach enables XMP to compile
and run on a wide variety of systems. For maximum efficiency, we
use only non-blocking sends and receives, allowing computation and
communication to proceed simultaneously whenever possible, and the boss
uses MPI_Waitsome() to prevent starvation of workers. For portability,
the program makes no assumptions about shared accessibility of files across
processes.

In addition to requesting work when they are idle, workers announce
improved upper bounds they discover to the boss, which broadcasts them.
Workers poll MPI_Test() to detect incoming UB changes and steal
requests. We use the adaptive polling interval technique advocated by Dinan
et al. (2008) to balance computational throughput with responsiveness, using
parameters imax =1024,imin =1,iinc =1,idec =2. Briefly, the polling interval
increases linearly up to a maximum while no message is received, halving
upon receipt of a message.

Despite its simplicity, our boss worker formulation maps neatly to both
‘big’ and ‘small’ multiprocessors:

• on computers with only a few processors, such as modern desktop
workstations, the boss process spends almost all its time waiting,
and consequently takes up very little CPU time. This effectively
leaves an ‘extra’ CPU free to allocate to a worker—i.e. in order
to use the entire capacity of such a machine, XMP should be run
with the number of processes set to one more than the number of
CPUs. As our results show, the task switching that occurs when
the boss needs to service a request requires very little overhead;
and

• computers with many processors, such as the IBM BlueGene series of
supercomputers, commonly mandate a fixed allocation of processes
to CPUs. In this case, time that the boss process spends waiting
is necessarily wasted. However, due to the scale of these systems,
the boss has many more requests to service and thus spends
little time idle, so that typically only a fraction of one CPU is
wasted.

2.4 Subdivision into jobs
It seems natural to define subproblems as partial trees on m<n taxa:
expanding a subproblem is then done by inserting the

(
m+1

)
-th taxon at

each of the 2m−3 edges in turn. Although ideal for serial computation, this
scheme causes problems for parallel implementations because it is difficult
for steal victims to ‘break off’ large jobs (sets of subproblems) to send back to
thieves, which is necessary for minimizing communication overhead. This
problem can be overcome by adopting a finer notion of subproblem that
constrains the set of edges at which the next taxon can be inserted, along
with a novel representation for sets of subproblems.

XMP uses a remaining edge pair list (REPL) to compactly encode a family
of subproblems formed by stripping taxa in reverse order from a base partial

23

W.T.J.White and B.R.Holland

tree. A job whose base tree contains m taxa is represented by a list of m−2
integer pairs; the elements of the i-th pair identify a range of edges in a
partial tree of size i+2. Edges are numbered in DFS preorder. To understand
the REPL, first note that given (a) an initial tree on three taxa, (b) a list of
remaining taxa to be inserted in order, and (c) a fixed policy for numbering
edges, then a list of m edge indices uniquely identifies a tree on the first m+3
taxa by interpreting each edge index as identifying the edge to insert the next
taxon at. The set of subproblems represented by an REPL containing m pairs
(Li,Ri),1≤ i≤m may be described recursively as follows:

(1) If Lm >Rm, then no subproblems are included; otherwise, construct
the (m+2)-taxon tree from the edge index list L1...m−1 as described
above. The subproblem corresponding to this partial tree, with taxon
m+3 constrained to be inserted at an edge having index in the range
Lm ...Rm, is included; and

(2) If m>1, remove the final pair from the list and increase Lm−1 by 1.
All subproblems that would be included by this new REPL are also
included.

The initial problem—a tree on three taxa in which the fourth can be
inserted at any edge—is given by (0,2). Each worker maintains an REPL as
it enumerates its B&B tree: every time a taxon, say the m-th, is added to a
partial tree containing m−1 taxa, a pair (0,2m−2) is appended to the list,
representing the 2m−3 edges at which the next taxon can now be inserted;
whenever the m-th taxon is removed, the last pair in the list is removed, and
the first element of the new final pair is incremented.

REPLs can be quickly updated during local B&B search, and their
compactness reduces the size of job messages. But their primary advantage,
and the key to dealing with steal requests effectively, is that an REPL can be
easily partitioned into two REPLs representing disjoint sets of subproblems
having the following properties:

• The B&B recursion exploring the original REPL can continue exploring
one of the new REPLs; and

• The other REPL contains a largest possible subproblem (smallest
possible partial tree).

When a steal request arrives, the victim can quickly discover a subproblem
corresponding to the smallest partial tree that it has available by scanning its
REPL for the first edge range (i,j) with i< j. Suppose this is the m-th pair. The
REPL to send back consists of the first m−1 edge ranges (which necessarily
have both edge indices equal) plus the edge range (j,j). The victim then sheds
this job from its own workload by decrementing Rm in its own REPL. This
can be done in O(m) time.

Upon receipt of a new job REPL, a thief assembles the base tree from the
list by ‘fast-forwarding’ the usual B&B enumeration process—at each tree
size, taxon insertion is simply skipped for any edge having index less than
the corresponding Li. Normal B&B then resumes.

2.5 Coping with complexity
Anumber of factors contribute to complexity in the parallel code: tracking the
states of workers, the necessity for both worker-initiated and boss-initiated
communications, reliably detecting termination and our desire to use non-
blocking I/O for efficiency. That complexity led to bugs. Bugs in parallel
software can be nightmarish due to the difficulty in reproducing them, so we
decided to model the communicating system of processes using the MPI-
Spin extension to the model checker Spin (Holzmann, 1997; Siegel, 2007).
This excellent tool caught one obvious, and two extremely subtle bugs which
we subsequently fixed. After heavy optimization of the Spin model, the final
run examined 1.4 billion state transitions and required 52 min and 44 GB
of RAM to confirm that every possible interleaving of execution sequences
involving one boss and two workers is free of deadlocks and other assertion
violations—a very strong indication that the program works correctly with
any number of workers.

The remaining subsections concern topics that apply to both serial and
parallel versions of XMP.

2.6 Upper and lower bounds
By default, XMP initially attempts to find a tight upper bound on the MP
score by performing greedy (hill-climbing) TBR branch swapping on 100
trees produced by random addition order. A minimum spanning tree is also
calculated, although this usually produces a loose bound.

During the B&B phase, lower bounds on MP scores are needed for each
partial tree examined. The MP score of the partial tree is an admissible but
usually suboptimal bound; XMP employs several strategies for improving
on this that are described in the following subsections. In each case, we are
given a partial tree on m<n taxa and tasked with finding a lower bound
on the length that must be added by inserting the remaining n−m taxa in
some fashion; this can be added to the MP score of the partial tree to get a
lower bound on the MP score of any full tree that is reachable from it. XMP
takes the standard approach of calculating bounds that depend only on the
taxa present in the tree, and not on the tree topology. Because XMP uses a
fixed taxon addition order, only n−2 different subsets of taxa will ever be
encountered, meaning that all lower bounds can be precomputed and stored
in a lookup table for speed.

The parallel version of XMP does not parallelize the initial computation
of upper and lower bounds. Instead each worker permutes sites randomly
before evaluating bound heuristics, and the overall best bounds of each kind
are retained. This occasionally produces superlinear speedups.

2.7 Single column discrepancy lower bound
Consider a partial tree containing some subset of the taxa, and a site
containing d distinct nucleotides. If only e<d distinct nucleotides appear at
that site among the taxa in the tree so far, then the remaining d−e nucleotides
must be added by the remaining taxa, with each distinct nucleotide incurring
a cost of at least 1 substitution. These lower bounds can be summed over all
sites to produce an overall single column discrepancy (SCD) lower bound
that is cheap to compute and leads to speedups of typically 1.3 to 2.4 for
static taxon addition order (Purdom et al., 2000).

In practice, the algorithm is complicated slightly by ambiguous
nucleotides. To handle these, we split the problem into computing an upper
bound on a given subset of taxa, and a lower bound on the entire taxon set:
the difference is a lower bound on the length that must be added by the
remaining taxa. Upper bounds for a single site are found by representing
ambiguous nucleotides as state sets of unambiguous nucleotides, and
subtracting the frequency of the most commonly occurring nucleotide
from the number of taxa. This is equivalent to determining the most
frequently occurring nucleotide x, then constructing a new, unambiguous
site in which every state set containing x is replaced with x itself and
every other state set S is replaced with any nucleotide y∈S, and finally
applying equation 2 of Steel and Penny (2005) to this new site. This formula
produces optimal upper bounds in the absence of ambiguous nucleotides,
and good quality bounds in other cases. Tight single-site lower bounds can
be found by solving a maximum set packing problem. We performed this

in an offline step for each of the 224−1 possible sets of distinct ambiguous
nucleotides that could be present at a site, and stored the results in a lookup
table. The SCD lower bound can be requested with the -Bd option to
XMP.

2.8 Incompatibility lower bound
The I-bound of Holland et al. (2005) exploits the fact that every non-
overlapping pair of incompatible sites must increase the length of an MP
tree by at least 1, and sometimes more. This bound has the advantage that
it can be added to the SCD bound to produce a stronger lower bound. XMP
provides a similar bound via a greedy approximate maximum matching

24

Exact MP search with XMP

algorithm for finding incompatible site pairs, which is available using the
-Bi option.

2.9 PARTBOUND lower bound
The MinMax Squeeze (Holland et al., 2005) attempts to produce provably
optimal MP trees by pushing a lower bound on MP scores up until it meets
the length of trees found heuristically. That work extends the lower bounding
technique first established as the Partition Theorem by Hendy et al. (1980),
which essentially states that the MP score of a dataset must be at least the
sum of the MP scores of each part in a sitewise partition of the dataset.
XMP contains a new lower bounding technique based on this approach,
PARTBOUND, available via the -Bp option. Rather than maximize the
overall lower bound on the first m taxa, we seek partitions that maximize
the sum of the final scores for each part. The raw score of a part π is
LB(π,n)−UB(π,m), where LB(π,i) is a lower bound on the MP score of
any tree on the first i taxa, restricted to the sites in π, and UB(π,i) is an
upper bound defined similarly. Raw scores may be negative. The final score
of a part is the greater of the raw score and the SCD bound for the first m taxa
summed over all sites in the part. Final scores are always non-negative, and
their sum can be safely added to the MP score of any tree built on the first
m taxa. Starting from the trivial partition (one site per part), XMP searches
partition space with a greedy site-swapping heuristic that attempts to increase
the total final score—or, when impossible, the total raw score—until no final
score improvement has been made for two iterations.

Part upper bounds are calculated as for the SCD bound. The challenge
is to calculate good lower bounds: XMP uses several strategies, choosing
the best for a given part. After identical sequences are collapsed, the Kruskal
algorithm (Kruskal, 1956) is used to find the largest 1-connected components.
If one or two components result, the length of the minimum spanning tree
(MST) is used; this bound dominates the D-bound of Holland et al. (2005)
when one of the edges has length > 2. If three or more components result,
then the lengths of Steiner trees (which may or may not have a single Steiner
vertex) on all possible sets of three components are calculated, and the longest
chosen. (Again, ambiguous nucleotides prove an annoyance since distances
between sequences containing them may violate the triangle inequality;
nevertheless, it can be shown that these constructions yield valid lower
bounds—see the Supplementary Material.) Finally, the length of an MST
is at most twice the length of a Steiner tree in any metric space, so finding
an MST and dividing the length by 2 yields another lower bound on the
MP score (Proposition 5.4.1 in Semple and Steel, 2003). For pairs of sites
containing no ambiguous nucleotides, there is no need to divide by 2 (Bruen
and Bryant, 2008).

2.10 Fast fitch parsimony
Ronquist (1998) describes how Fitch parsimony operations can be
accelerated by encoding state sets as bit vectors and storing multiple sites
in a machine word. In the terminology of that paper, XMP horizontally
packs four-bit state sets into machine words of 32, 64 or 128 bits in
width. He also observes that modern superscalar, deeply pipelined CPUs
penalize unpredictable conditional branches in program code—a trend that
has become more severe in the years since. The Fitch algorithm (Fitch, 1971)
tests whether two state sets have a non-empty intersection and thus appears
to require such a branch; however, he offers several algorithms that cleverly
sidestep the problem by using bit masking techniques.

Although Algorithm 8 of Ronquist (1998) increases performance by using
only predictable conditional branches, it does not achieve the full potential
of this approach because it still loops over each possible state a site may
take. The algorithm on p. 271 of Goloboff (2002) improves matters slightly
by ‘unrolling’ the loop, but XMP boosts speed further by eliminating all
per-state calculations. As the following C code shows, the trick involves
exploiting the carry produced by binary addition:

u = ((((x & y & 0x77777777) + 0x77777777) |

(x & y)) & 0x88888888) >> 3;
z = (x & y) | ((x | y) &

((u + 0x77777777) ˆ 0x88888888));

Here x and y are 32-bit words each containing blocks of 8 input state sets
from two child sequences, and z is assigned the resulting block of 8 output
state sets for the parent sequence. u will have each 4-bit nibble set to 0001
if the corresponding site necessitated a mutation, and 0000 otherwise; it is
also used for computing length increases. &, |, ˆ and » are the operations
AND, OR, XOR and right-shift, respectively, and numbers beginning with
0x are in hexadecimal. We deliberately leave in common subexpressions
like (x & y), trusting the compiler to do a better job of deciding when and
how to evaluate them than we could.

To understand the process, consider a single site (nibble). We compute
the intersection of the state sets (x & y) and mask out the leftmost
bit; adding the binary value 0111 to this value will produce a 4-bit sum
whose leftmost bit is 1 if and only if any of the remaining 3 bits are 1,
thereby detecting whether x and y share any states in the set {A,C,G}
with a single machine instruction. ORing this value with the original
intersection nibble produces a 4-bit value whose leftmost bit is 1 if and
only if any of the original 4 intersection bits were 1, i.e. if x and y share
any states at this site. The reason for masking out the leftmost bit of the
intersection nibble is to guarantee that adding 0111 cannot cause a carry
into the nibble to the left: this permits a single 32-bit addition to perform
shared-state detection for all 8 input state sets in parallel. This general
technique was apparently first discovered by Lamport (1975), who credits
D.E. Knuth.

With knowledge of whether the two taxa share any states at a given
site now stored in the leftmost bit within the corresponding nibble, further
masks and shifts can be used to compute u and the resulting Fitch state
sets z. To turn the u values into the required all-1 or all-0 masks, XMP uses
the O(1) calculation ((u + 0x77777777) ˆ 0x88888888), which
is faster than the repeated shifting and ORing described by Ronquist (1998)
and Goloboff (2002). Because all operations respect nibble boundaries, the
entire Fitch calculation can be performed in parallel across all eight sites
as with earlier algorithms. We speculate that some of these techniques
are already used in some existing MP programs—for example, in a
personal communication note Goloboff (2002, p. 272) attributes to Farris
unspecified optimizations that produce ‘similar results …with about half
the operations’—but they do not seem to be explicitly described in the
phylogenetics literature.

In an initial step, XMP discards parsimony-uninformative sites and
condenses the remaining groups of equivalent site patterns into individual
weighted columns. By sorting sites in decreasing order of weight, we enable
two additional shortcuts: (i) we can exit the innermost loop as soon as the
length added to the tree exceeds the current bound, which is more likely to
happen early on; (ii) we can swap over to a faster bit-counting algorithm
for computing the remaining cost as soon as all weights in a block have
dropped to 1, since from that point on all sites must have this weight.
By default, the number of 1-bits in a machine word is counted using a
multiply-mask-shift sequence, although an alternative implementation can
be selected that sums adjacent nibbles, then adjacent pairs of nibbles,
and so on. Both approaches take a small, fixed time and are likely to be
faster than either of the iterative schemes detailed in Ronquist (1998). The
lookup table approach suggested by Moilanen (1999) and used by Bader
et al. (2006) may be faster, but we concluded that using a large chunk of
memory to hold a lookup table was likely to degrade cache performance
unnecessarily.

Goloboff (1993) describes a way to speed up parsimony searches by
avoiding a complete first-pass Fitch optimization for each taxon insertion,
enabling amortized O(k) Fitch scoring of taxon insertions. For correct
handling of ambiguous nucleotides at leaf nodes, a workaround is required
(Goloboff, 1996, pp. 204–205), though this does not impact the time
complexity. XMP uses a similar scheme by Yan and Bader (2003) that handles
this situation without additional bookkeeping. We enhance this by applying

25

W.T.J.White and B.R.Holland

Shortcut C of Goloboff (1996, pp. 209–211) to eliminate unnecessary second-
pass recursion. Finally, we noticed that as Fitch performance increased,
proportionally more execution time was spent on bookkeeping overhead.
Exploiting the fact that all memory allocations occur in LIFO order during the
main B&B phase, we allocate a block of memory beforehand and thereafter
use single pointer additions and subtractions for quickly allocating memory
from this block when needed.

2.11 SSE2 optimized version
The SSE2 instruction set, available on Pentium 4 and later CPUs, includes
instructions for operating on 128-bit quantities. Particularly on Core2 and
later CPUs where most of these instructions execute in 1 clock cycle, this
offers a potential 4-fold performance improvement over the usual 32-bit
operations. We developed an optimized version of the Fitch inner loop
using hand-coded SSE2 assembly language, which, like the regular C-code
version, avoids conditional branches for maximum performance. Due to
syntax differences, the SSE2-optimized version is currently only available
for Windows compilers.

3 RESULTS
XMP was run on the real and synthetic datasets from Bader et al.
(2006) as well as three other real datasets ranging in height,
width and difficulty level. The leftmost five columns in Table 1
summarize the datasets. Performance was measured in the following
environments: a quad-processor 2.66 GHz Core2 Windows XP
PC using MPICH2, an 8-processor 3.2 GHz Linux PC using
MPICH2 and the BlueFern BlueGene/L (BG/L) supercomputer at
the University of Canterbury, using its proprietary implementation
of MPI. BlueFern is a distributed-memory supercomputer, affording

Table 1. Datasets and performance of XMP -Bdi on 8-CPU SMP

Dataset Taxa Sites
MP

length Trees T1 T8W S/Up

h1 12 64 364 1 42.73 5.82 7.34
h2 12 64 367 2 34.43 4.72 7.29
h3 12 64 359 1 5.31 0.77 6.90
h4 13 64 397 2 215.24 29.16 7.38
h5 13 64 396 3 264.88 35.91 7.38
mh1 20 64 124 1134 14.86 2.16 6.88
mh2 20 64 192 3 7.03 1.09 6.45
mh3 20 64 118 ∗ 873.94 123.97 7.05
mh4 20 64 303 5 9.97 1.47 6.78
mh6 20 64 128 612 24.41 3.45 7.08
e1 24 500 593 6 0.13 0.16 0.81
e3 24 500 589 36 0.11 0.18 0.61
e4 24 500 584 3 0.07 0.13 0.54
e5 24 500 577 3 0.12 0.14 0.86
e6 24 500 579 2 0.09 0.15 0.60
Eukar 27 2461 3512 60 1.55 1.35 1.15
rbc14 14 759 963 2 22.44 3.06 7.33
Metaz 20 1008 825 3 23.81 3.33 7.15
its36 36 607 233 62370 1552.64 192.92 8.05
mt-10 10 10539 16179 1 4.84 3.29 1.47
32hum 32 202 95 ∗ 2269.51 301.66 7.52

Leftmost five columns describe datasets used; rightmost three columns give
performance of XMP -Bdi on 8-CPU SMP. T1: Total elapsed time in seconds for
serial version. T8W: total elapsed time in seconds for 8-worker parallel version (9 MPI
processes). S/Up: speedup (T1/T8W).
* indicates more than 100 000 trees; only the first 100 000 were saved.

the chance to test XMP’s ability to scale up across hundreds of CPUs
without the benefit of fast access to a central memory store. For
brevity, we report only a subset of results; see the Supplementary
Material for a fuller picture.

3.1 Serial performance
Figure 1 compares the times of the single-processor version of XMP
with PAUP* and TNT on Windows XP. Four variants of XMP are
considered: ‘-Bd’indicates that only the SCD bound was used; ‘-Bdi’
indicates the sum of this bound and the incompatibility bound; ‘-Bp’
indicates the new PARTBOUND bound; and ‘-Bp SSE2’ indicates
the SSE2-optimized implementation of this bound (all others use the
portable C version). For parity with XMP’s upper bounding strategy,
PAUP* runs first used a corresponding HSEARCH command to find
upper bounds; TNT does not allow the initial upper bound to be
specified for an exact search, so no corresponding attempts could
be made to improve initial upper bounds for this program. We note
that both XMP and PAUP* found a tight upper bound in their initial
TBR phase each time. An upper limit of 100 000 trees was set.

As Figure 1 shows, on all but three datasets XMP -Bdi is faster
than PAUP*, often by a considerable margin. For mh6, 32hum and
its36, XMP -Bdi is 50, 19 and 14% slower, respectively. For its36,
XMP -Bp is faster, beating PAUP* by 18%, while for the other two
datasets, -Bp is around 1% slower than -Bdi.

On all but two datasets, XMP -Bdi is faster than TNT, again
often by a significant margin. For mh2, XMP -Bdi is 8% slower,
while for mh3, TNT is dramatically faster than both XMP-Bdi and
PAUP* at 260.61 s versus 1299.92 s and 8673.11 s, respectively. On
the other hand, while XMP -Bdi and PAUP* take just 35.12 s and
23.42 s for mh6, respectively, TNT takes 2922.51 s. TNT regularly
runs in under half the time of PAUP* for mid-range datasets, but
performs badly on the largest two datasets.

We find that the performance on many datasets is actually affected
very little by the choice of lower bound strategy. This seems
surprising at first, since in the tables of lower bounds computed for
each strategy, in all cases the entries near the start (being the bounds
for small partial trees) show the -Bdi bound to greatly exceed the
corresponding -Bd bound, and the -Bp bound to be greater still
(data not shown). However as the partial tree size increases, the
bounds for each strategy necessarily decrease, eventually becoming
equal at some tree size. If a partial tree grows to that size under
the -Bdi or -Bp bound without being eliminated, then it and its
subproblems will be evaluated as with the simple -Bd bound; it is
in this region of the search space that B&B presumably spends most
of its time.

PARTBOUND (-Bp) is clearly a loss for very wide datasets such
as mt-10 and Eukar. By comparison, -Bdi never shows excessive
overhead, and is beaten by -Bp only for the its36 and rbc14 datasets,
where it does not do much worse.

Unsurprisingly, the SSE2-optimized version of XMP is
everywhere faster than the portable C version. Generally, the
speedup increases with the width of the dataset, since this translates
to a greater proportion of time spent in the innermost loop. The
clearest example is the mt-10 dataset, although the total running
time as shown on Figure 1 is dominated by the PARTBOUND
calculation. Considering just the B&B time components for the mt-
10 -Bp runs, the portable C version requires 6.05 s while the SSE2
version requires just 1.38 s—an improvement of roughly 4.4 times,

26

Exact MP search with XMP

Fig. 1. Execution time of XMP versus PAUP* and TNT on 1 CPU. Each named dataset is analysed using exact search with PAUP*, TNT and four variants
of XMP. The time taken for each run is shown as a sum of B&B time (solid) and other time (lined) components; for most runs, other time is insignificant.
Separate time axes show detail for short, medium, long and very long runs. The underlying data are available in the Supplementary Material.

exceeding the ‘theoretical’ limit of 4-fold improvement. This is
presumably due to inefficiencies in the compiler-generated code for
the portable C version.

3.2 Parallel performance on eight CPUs
The rightmost three columns of Table 1 show the performance
of XMP when run on the 8-CPU Linux machine using the -Bdi
option. The T1 column shows the total time in seconds for the serial
XMP version, and the T8W column shows the total time for the
parallel version using 9 MPI processes (1 boss and 8 workers).
The S/Up column is the speedup or ratio. This setup is similar
to that used by Bader et al. (2006). For the five datasets labelled
‘hard’ in that paper, we find an average speedup of 7.258, almost
exactly equalling the result obtained there. However, the ‘moderate’
and ‘real’ groups fare much better with XMP, achieving speedups
of 6.847 and 5.210, respectively, while Figure 3 of Bader et al.
(2006) shows that ExactMP obtains speedups of less than 6 and
less than 5, respectively. The slowdown observed for the 5 ‘easy’
datasets is simply a consequence of the fact that the B&B phase for
these datasets takes much less than 1 s, meaning that overall runtime
is dominated by one-time overheads such as communicating input
data to all workers. In our article, all speedups and efficiencies are
calculated with respect to the serial version.

Interestingly, the its36 dataset experiences a superlinear speedup
due to the discovery of better lower bounds. We found this
phenomenon occurred only rarely in our experiments.

3.3 Parallel performance on hundreds of CPUs
We ran each dataset using various numbers of CPUs on the BG/L
in Virtual Node mode, which gives XMP control of both CPUs on
each BG/L compute node. Figure 2 shows the efficiency of each

Fig. 2. Efficiency of XMP -Bp on the BG/L supercomputer as the
number of CPUs is increased. An efficiency of 1.0 indicates overhead-
free parallelization with respect to the serial version. Each dataset is shown
separately; only runs taking >5 s are shown.

run that required more than 5 s. Efficiency is defined as t1 ÷(mtm),
where m is the number of CPUs, t1 is the elapsed time used by
the serial version and tm is the elapsed time used by the m-CPU
parallel version. Because BG/L CPUs are always assigned exactly
one process to run, the boss process necessarily consumes one full

27

W.T.J.White and B.R.Holland

CPU, so efficiency starts out near 0.5 for two CPUs and climbs.
We show only results for the -Bp lower bound strategy; this can
be considered conservative, since all lower bound processing takes
place in serial beforehand, and -Bp has the highest overheads for
this phase.

For the five hardest datasets (mh3, its36, 32hum, h5 and h4), we
find that efficiency remains well above 0.8 for up to 128 processors,
and for three of these datasets it remains above this level even for
256 processors. Above this point, performance begins to drop off
sharply, presumably due to saturation of the boss node.

As a final test, we compared the running times of XMP -Bp
on 256 BG/L CPUs and PAUP* on a 2.66 GHz Core2 CPU,
using progressively larger subsets of the 53humans dataset from
Holland et al. (2005). (Our 32hum dataset consists of the first
32 taxa from this dataset.) We find that analysing the first 39
taxa takes 5452.56 s (roughly 1.5 h) to complete with XMP in
this configuration, while the same dataset takes PAUP* 168341 s
(roughly 46 h, 45 min). The ratio of elapsed times improves from
27.17 at 32 taxa to 30.87 at 39 taxa, suggesting that the parallel
version of XMP continues to become more efficient as problems
grow in size. Adding one more taxon to the dataset results in XMP
taking 19 h, 55 min; the corresponding PAUP* analysis was aborted
after 2 weeks, but is projected to require more than 25 days—an
impractical amount of time for most researchers to spend on a single
analysis.

4 DISCUSSION AND CONCLUSIONS
XMP is at least as scalable on shared-memory multiprocessors as
ExactMP, is faster in absolute terms and also runs efficiently on
distributed-memory multiprocessors where ExactMP will not run
at all. On almost all datasets tested, the serial version of XMP
convincingly beats TNT, which in turn is faster than PAUP* on
a majority of datasets, although there remain cases where PAUP*—
a program now 9 years old—still holds out. Naturally, we were
very interested in discovering the internal workings of TNT and
PAUP*, but very little solid information could be found. We agree
with Goloboff (1993) and Ronquist (1998) in calling for details
of fast computational techniques to be made public, with the goal
of advancing the state of the art: it seems likely that a person
with knowledge of all three programs could design a program that
outperforms all of them. We hope that the strategies, algorithms and
tricks described in this article, and the free source code to XMP,
contribute towards this goal.

Because of the superexponential complexity of exact MP search,
the improvements realized in XMP will not usually allow many
more taxa to be analysed, but they do dramatically increase the
speed of existing searches. For example, our analysis of the its36
dataset on a modern Linux PC takes 17 min, 14 s using 1 CPU.
This drops to 2 min, 23 s when all 8 CPUs of the machine can be
used. Using 256 CPUs on a BG/L, the analysis takes only 38.55 s.
These speed increases will also accelerate heuristic searches for large
datasets that internally rely on exact searches on subsets of taxa,
such as Rec-I-DCM3 (Roshan et al., 2004), or the sectorial search
of Goloboff (1999) when configured to use exact search for small
sectors.

While raw performance is important, it must be noted that mature
programs like PAUP* and TNT offer a fuller set of features than
XMP currently does. Perhaps the most important feature absent

from XMP but offered by both PAUP* and TNT is the ability
to collapse edges according to various criteria, which can lead to
sizeable reductions in output. This can still be done by an external
program after an XMP run completes, but it is an inconvenience
for the user. Other advantages of these existing programs include
the ability to impose topology constraints, and to save suboptimal
trees.

Holland et al. (2005) suggest an application of the MinMax
Squeeze to B&B search, which XMP fulfils. The -Bp partition
bound achieves modest speedups on two datasets, but otherwise
does not materially improve execution times, and for wide datasets
like mt-10 actually produces an overall slowdown. This is despite
the fact that the lower bounds produced for each tree size are always
greater than or equal to those produced by other bounds (data not
shown). These results suggest that -Bdi is a good default setting,
with -Bp as an option to consider for larger datasets.

4.1 Possible future directions
Section 4 of Bachrach et al. (2005) describes a lower bound
based on a circular ordering approximation algorithm for the Path-
Constrained Travelling Salesman Problem, a generalization of the
TSP. This bound is unlike the lower bounds used in XMP in that it
depends on the topology of the partial tree, which makes it not only
potentially stronger but also much slower to compute. It would be
interesting to incorporate this bound into XMP.

Felsenstein (2004; pp. 65–66) discusses rules for reducing the
search space needed for exact MP search, which he attributes
to a Russian language paper by A.Zharkikh, 1977. However,
some of these rules do not appear to be compatible with XMP’s
enumeration scheme, which produces trees that are always binary
but may contain branches that have length zero under every possible
assignment of mutations to edges (A.Zharkikh, J.Felsenstein,
personal communication). In order to accommodate Zharkikh’s
rules, two approaches seem possible: either avoid introducing zero-
length edges into partial trees in the first place or create a collapsed
copy of each partial tree considered and apply the rules to it. The
former approach can be realized by performing binary tree B&B
as usual but ignoring all zero-length edges (and, in particular,
never inserting a taxon into such an edge). This would speed
computation by potentially reducing the number of partial tree
subproblems spawned by any given parent subproblem, but it can
be shown that doing so sometimes causes (collapsed) MP trees
to be missed. In contrast, the latter approach is safe, but whether
the overhead entailed would pay for itself is likely to be dataset
dependent.

Regarding applications, we look to corrected parsimony (Hendy
and Penny, 1993; Penny et al., 1996; Steel et al., 1993).
Despite outperforming other non-ML methods in simulation tests
(Charleston et al., 1994), it appears that no reconstruction-accuracy
comparison of corrected parsimony with ML has yet been done.
We think this is an important oversight. Although XMP currently
requires integer site pattern weights, the non-integer weights
involved in corrected parsimony can be accommodated by scaling
and truncation. In contrast to ML methods, which rely on heuristics
like the Nelder–Mead algorithm (Nelder and Mead, 1965) to
optimize the final ML score, this approach presents the intriguing
possibility of recovering trees in which the error in the optimality
criterion (total tree length) is bounded. Higher scaling and lower

28

Exact MP search with XMP

truncation thresholds produce tighter bounds at the expense of wider
datasets and increased running time.

ACKNOWLEDGEMENTS
We wish to thank Joe Felsenstein, Andrey Zharkikh and Mike Hendy
for helpful discussion concerning when an edge must, or must
not, appear in all MP trees; David Bader and Rouven Naujoks for
helpfully supplying datasets and program code; and the University
of Canterbury’s BlueFern supercomputing facility.

Conflict of Interest: none declared.

REFERENCES
Althaus,E. and Naujoks,R. (2006) Computing steiner minimum trees in Hamming

metric. In Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete
algorithm, ACM, Miami, Florida.

Bachrach,A. et al. (2005) Lower bounds for maximum parsimony with gene order
data. In Comparative Genomics, Vol. 3678 of Lecture Notes in Computer Science,
pp. 1–10.

Bader,D.A. et al. (2006) ExactMP: an efficient parallel exact solver for phylogenetic
tree reconstruction using maximum parsimony. In Proceedings of the International
Conference on Parallel Processing, pp. 65–73.

Blumofe,R.D. and Leiserson,C.E. (1999) Scheduling multithreaded computations by
work stealing. J. ACM, 46, 720–748.

Bruen,T.C. and Bryant,D. (2008) A subdivision approach to maximum parsimony. Ann.
Combinatorics, 12, 45–51.

Charleston,M.A. et al. (1994) The effects of sequence length, tree topology, and
number of taxa on the performance of phylogenetic methods. J. Comput. Biol., 1,
133–151.

Dinan,J. et al. (2008) A message passing benchmark for unbalanced applications. Simul.
Model. Pract. Theory, 16, 1177–1189.

Dinan,J. et al. (2009) Scalable work stealing. In Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis. ACM, Portland,
Oregon.

Felsenstein,J. (1978) Cases in which parsimony or compatibility will be positively
misleading. Syst. Zool., 27, 401–410.

Farris,J.S. (1989) Hennig86, version 1.5. Cladistics, 5, 163.
Felsenstein,J. (1989) PHYLIP – Phylogeny Inference Package (Version 3.2). Cladistics,

5, 164–166.
Felsenstein,J. (2004) Inferring Phylogenies. Sinauer Associates, Inc., Sunderland, MA.
Fitch,W.M. (1971) Toward defining the course of evolution: Minimum change for a

specified tree topology. Syst. Zool., 20, 406–416.
Goloboff,P.A. (1993) Character optimization and calculation of tree lengths. Cladistics,

9, 433–436.
Goloboff,P.A. (1996) Methods for faster parsimony analysis. Cladistics, 12, 199–220.
Goloboff,P.A. (1999) Analyzing large data sets in reasonable times: Solutions for

composite optima. Cladistics, 15, 415–428.
Goloboff,P.A. (2002) Optimization of polytomies: State set and parallel operations. Mol.

Phylogenet. Evol., 22, 269–275.
Goloboff,P.A. et al. (2008) TNT, a free program for phylogenetic analysis. Cladistics,

24, 774–786.
Graham,R.L. and Foulds,L.R. (1982) Unlikelihood that minimal phylogenies for a

realistic biological study can be constructed in reasonable computational time. Math.
Biosci., 60, 133–142.

Hartigan,J.A. (1973) Minimum mutation fits to a given tree. Biometrics, 29, 53–65.

Hendy,M.D. and Penny,D. (1982) Branch and bound algorithms to determine minimal
evolutionary trees. Math. Biosci., 59, 277–290.

Hendy,M. and Penny,D. (1993) Spectral analysis of phylogenetic data. J. Classif., 10,
5–24.

Hendy,M.D. et al. (1980) Proving phylogenetic trees minimal with l-clustering and set
partitioning. Math. Biosci., 51, 71–88.

Holland,B.R. et al. (2005) The minmax squeeze: guaranteeing a minimal tree for
population data. Mol. Biol. Evol., 22, 235–242.

Holzmann,G.J. (1997) The model checker SPIN. IEEE Trans. Softw. Eng., 23, 279–295.
Kimura,M. (1981) Estimation of evolutionary distances between homologous

nucleotide sequences. In Proc. Natl Acad. Sci. USA, 78, 454–458.
Kruskal,J.B.J. (1956) On the shortest spanning subtree of a graph and the traveling

salesman problem. Proc. Am. Math. Soc., 7, 48–50.
Lamport,L. (1975) Multiple byte processing with full-word instructions. Commun.

ACM, 18, 471–475.
Moilanen,A. (1999) Searching for most parsimonious trees with simulated evolutionary

optimization. Cladistics, 15, 39–50.
Nei,M. and Kumar,S. (2000) Molecular Evolution and Phylogenetics. Oxford

University Press, Oxford.
Nelder,J.A. and Mead,R. (1965)Asimplex method for function minimization. Computer

J., 7, 308–313.
Nixon,K.C. (1999) The parsimony ratchet, a new method for rapid parsimony analysis.

Cladistics, 15, 407–414.
Penny,D. and Hendy,M.D. (1987) Turbo tree: a fast algorithm for minimal trees. Comput.

Appl. Biosci., 3, 183–187.
Penny,D. et al. (1996) Corrected parsimony, minimum evolution, and hadamard

conjugations. Syst. Biol., 45, 596–606.
Purdom,P.W. et al. (2000) Single column discrepancy and dynamic max-mini

optimizations for quickly finding the most parsimonious evolutionary trees.
Bioinformatics, 16, 140–151.

Ronquist,F. (1998) Fast fitch-parsimony algorithms for large data sets. Cladistics, 14,
387–400.

Roshan,U.W. et al. (2004) Rec-I-DCM3: a fast algorithmic technique for
reconstructing large phylogenetic trees. In Proceedings of the IEEE Computational
Systems Bioinformatics Conference, Stanford, CA. IEEE Computer Society, CA,
USA.

Schulmeister,S. (2004) Inconsistency of maximum parsimony revisited. Syst. Biol., 53,
521–521.

Semple,C. and Steel,M. (2003) Phylogenetics. Oxford Lecture Series in Mathematics.
Oxford University Press, Oxford.

Siegel,S.F. (2007) Model checking nonblocking MPI programs. Proceedings of
Verification, Model Checking, and Abstract Interpretation, Vol. 4349 of Lecture
Notes in Computer Science, pp. 44–58.

Sridhar,S. et al. (2008) Mixed integer linear programming for maximum-parsimony
phylogeny inference. IEEE-ACM Trans. Comput. Biol. Bioinformatics, 5, 323–331.

Steel,M. (2001) Sufficient conditions for two tree reconstruction techniques to succeed
on sufficiently long sequences. SIAM J. Discrete Math., 14, 36–48.

Steel,M. and Penny,D. (2000) Parsimony, likelihood, and the role of models in molecular
phylogenetics. Mol. Biol. Evol., 17, 839–850.

Steel,M.A. and Penny,D. (2005) Maximum parsimony and the phylogenetic information
in multistate characters. In Albert,V.A. (ed) Parsimony, Phylogeny and Genomics.
Oxford University Press, Oxford, pp. 163–178.

Steel,M.A. et al. (1993) Parsimony can be consistent. Syst. Biol., 42, 581–587.
Swofford,D.L. et al. (1996) Phylogenetic inference. In Hillis,D.M., Moritz,C. and

Mable,B.K. (eds) Molecular Systematics, 2nd edn., Sinauer Associates, Sunderland,
MA, pp. 407–514.

Yan,M. and Bader,D.A. (2003) Fast character optimization in parsimony phylogeny
reconstruction. Technical report TR-CS-2003-53 from the University of New Mexico.
Available at http://www.cs.unm.edu/research/tech-reports/.

29

2.2 Correctness of Steiner Tree Lower Bounds for

Ambiguous Nucleotides

In section 2.9 (“PARTBOUND Lower Bound”) of the paper (p. 25), we mention that

the calculation of lower bounds for collections of 3 or more sequences is complicated

by the existence of ambiguous nucleotides. This section proves the correctness of

these bounds.

2.2.1 Without Ambiguous Nucleotides

For the 3-component Steiner tree case, call the 3 1-connected components A, B, C

and suppose initially that there are no ambiguous nucleotides. Let d(u, v) be the

Hamming distance (number of different nucleotides) between two sequences u and

v, and let

x = min(d(u, v)) for any u ∈ A and v ∈ B

y = min(d(u, v)) for any u ∈ B and v ∈ C

z = min(d(u, v)) for any u ∈ A and v ∈ C

Figure 2.1: Introducing a Steiner point s

Now suppose that we introduce a Steiner point s, and connect all 3 components

to this new sequence as shown in Figure 2.1. Let a be the shortest distance between

s and any sequence in A, b be the shortest distance between s and any sequence in

B, and c be the shortest distance between s and any sequence in C.

30

These are true distances, so by the triangle inequality, we have that:

a+ b ≥ x

b+ c ≥ y

a+ c ≥ z

Summing both sides and dividing by 2, we get:

a+ b+ c ≥ 1

2
(x+ y + z)

a+b+c is the (unknown) length of the edges added to connect the 3 components.

The above inequation says that 1
2
(x + y + z) (which we can readily compute) is a

lower bound for this quantity, provided that there are no ambiguous nucleotides.

(This is actually a weaker bound than that given by Hendy et al. (1980, section 4).)

2.2.2 With Ambiguous Nucleotides

An ambiguous nucleotide can be regarded as a set of specific nucleotides. In order

to generalise the above lower bound to work with sequences containing ambiguous

nucleotides, we need to consider all of the quantities x, y, z, a, b, c as functions of a

function φ that maps every ambiguous nucleotide P in the input dataset to a specific

nucleotide p ∈ P . Call these φ-dependent quantities xφ, yφ, zφ, aφ, bφ, cφ respectively.

Under any valid assignment φ of specific nucleotides to ambiguous nucleotides:

aφ + bφ + cφ ≥ 1

2
(xφ + yφ + zφ)

Given two possibly ambiguous nucleotides P and Q, define

mindist(P,Q) =

⎧⎨
⎩ 1 if P ∩Q = ∅

0 otherwise

If |P | = |Q| = 1 (i.e. when both nucleotides are unambiguous), the function

mindist gives the distance between the two nucleotides; in other cases it gives a lower

bound on this distance, optimistically assuming that a common nucleotide will be

31

assigned whenever possible. mindist can be extended to sequences by summing over

corresponding nucleotides.

We seek a lower bound for min(aφ + bφ + cφ), where the minimum is taken over

all possible assignments φ. (In the worst case, when every nucleotide in the n × k

dataset is N = {A, C, G, T}, there are 4nk possible assignments, so enumerating them

is infeasible.)

Let

x̂ = min(mindist(u, v)) for any u ∈ A and v ∈ B

ŷ = min(mindist(u, v)) for any u ∈ B and v ∈ C

ẑ = min(mindist(u, v)) for any u ∈ A and v ∈ C

Clearly x̂ ≤ xφ ∀φ, and similarly for ŷ and ẑ. Thus for all φ,

1

2
(x̂+ ŷ + ẑ) ≤ 1

2
(xφ + yφ + zφ) ≤ aφ + bφ + cφ

so in particular
1

2
(x̂+ ŷ + ẑ) ≤ min

φ
(aφ + bφ + cφ)

giving the desired lower bound.

2.3 Zero-length Edges

In section 4.1 (“Possible Future Directions”) of the paper we mention “maintaining

collapsed edges during B&B” as a possible performance enhancement that we found

to be unworkable. The following two sections discuss this issue more thoroughly.

The B&B enumeration performed by xmp effectively considers all (2n−5)!! possi-

ble unrooted binary trees on n taxa in which each taxon labels a unique leaf—what

Semple & Steel (2003) call binary phylogenetic X-trees. We call these trees fully

refined, and all other trees (those containing multifurcations, internal nodes labelled

with taxa, or nodes labelled with multiple taxa) partially refined. xmp generates each

fully refined tree at most once, skipping only those trees for which a lower bound

on the parsimony score exceeds a known upper bound: this guarantees that every

32

fully refined tree that could possibly be an MP tree is tested. The Fitch algorithm

(Fitch, 1971), which operates on rooted binary trees, is accommodated by “folding”

the edge from an arbitrarily chosen reference taxon and placing the calculation root

at this new node.

The weight (or length, or parsimony score) of an edge e or tree T is designated we

or wT respectively. Semple & Steel (2003) formulate an assignment of hypothetical

sequences to the internal nodes of a tree as an extension of a partial function;

following this we shorten “assignment of sequences to internal nodes” to extension.

2.3.1 Sufficiency of Examining Fully Refined Trees

Any partially refined tree T with m < 2n − 3 edges can be refined into a fully

refined tree T ′ by a suitable series of 2n− 3−m node expansions in which a node v

is replaced with a refining edge xy whose endpoints partition both the neighbours

and the label set of v. wT ′ ≤ wT because it is always possible to assign to both x and

y the same sequence that was assigned to v, and thereby ensure that all inserted

edges have length 0; when refining a multifurcation, sometimes multiple parallel

substitutions on the spokes can be swapped for a single substitution on the new

edge, reducing wT ′ below wT . (In general refinement is not unique, and different

refinements may produce trees with different weights.) From this it follows that

contracting an edge can never reduce the parsimony score, so there is no need to

examine partially refined trees to discover all fully refined MP trees.

2.3.2 Avoiding the Deluge

The downside of xmp’s fully refined tree search is that, even if every refinement

T ′ of a partially refined MP tree T has wT ′ = wT , all these refinements will be

returned as individual MP trees. In this situation all refining edges are purely

artefacts of the B&B process and contain no biological information—they are in

fact misleading. Particularly troubling is the fact that this situation occurs more

frequently for datasets having few mutations, such as intraspecific datasets, which

is where MP is most accurate and therefore most appealing. Clearly it would be

preferable to return just T in this case, which expresses the same information more

compactly.

33

At first it seems this could be done by somehow enumerating progressively further

refined trees, halting when no further refinement can produce a tree with lower

weight. However, such an approach must be able to detect any lower-weight trees

lurking among the possible refinements of any given partially refined tree, and it’s

not clear how this could be accomplished faster than by trying all such refinements—

a process that essentially mirrors the explicit enumeration of fully refined trees.1

Therefore a better approach is to continue enumerating fully refined trees as

before, while looking for edges that may be safely contracted. Two major types of

edges present themselves as candidates:

1. Minimum-length-zero edges: Contract any edge e for which there exists an

MP extension yielding we = 0.

2. Maximum-length-zero edges: Contract any edge e for which there does not

exist an MP extension yielding we > 0.

The difficulty with minimum-length-zero edges is that contracting one such edge

may cause another such edge to require at least 1 substitution under any MP exten-

sion. Thus in general there is no unique maximally contracted form of a tree with

respect to this criterion.

In contrast, contracting a maximum-length-zero (hereafter ml0) edge does not

disturb the set of MP extensions (when restricted to the remaining nodes), meaning

that all such edges in a given tree T can be contracted in any order to produce a

unique maximally contracted tree collapse(T). We call this operation collapsing,

and we say that a tree devoid of ml0 edges is dense. Clearly wcollapse(T) = wT . If

T is an MP tree, then every refinement of collapse(T) is also an MP tree, since

each refining edge added can neither increase the MP score (see Section 2.3.1) nor

decrease it (since that would contradict the minimality of T). This makes collapse(T)

a compact way to exactly represent a set of fully refined MP trees.

1An exception exists for the rare case in which a perfect phylogeny exists for the dataset—that
is, a tree having weight equal to the SCD bound. Then there is exactly 1 minimally resolved MP
tree, which can be discovered in O(n) time using the Tree-Popping algorithm (Meacham, 1981).

34

2.3.3 Minimally Refined Trees

Call a tree T minimally refined if every refinement T ′ of T has wT ′ = wT , and

no edge in T can be contracted to produce a tree with this property. Ideally xmp

should report only minimally refined MP trees to reduce the amount of repetitive

output. We note that contracting ml0 edges does not in general produce minimally

refined MP trees: Figure 2.2a shows a 5-taxon dense MP tree with weight 3, which

could in principle be reported as the sole MP tree because no refinement of it has

lower weight; however the process of contracting ml0 edges in fully refined trees will

not discover this tree because for each of its 3 fully refined MP refinements there

exists an MP extension that involves a substitution on a refining edge, as shown in

Figure 2.2b. All this means is that collapsing ml0 edges is not maximally effective

in concisely representing all MP trees.

Nevertheless, culling ml0 edges is effective in stopping the worst excesses. Partic-

ularly when taxa are highly similar, the number of ml0 edges in a tree can become

high. In the worst case—n identical taxa—there are (2n − 5)!! fully refined MP

trees, each consisting exclusively of ml0 edges. Even in real datasets, retention of

these edges is an inconvenience: the its36 dataset examined in the paper has 62370

distinct fully refined trees, but after collapsing all ml0 edges, just 320 distinct trees

remain.

(a) (b)

C

G

T

G

T

C

T

G

T
G

T

C

T
A

A
A

A

A

A

A
GA CA

C,
G,
T

A,
A

Figure 2.2: (a) A minimally refined MP tree and (b) its 3 full refinements

2.3.4 XMP Tree Representation

Before discussing how ml0 edges can be identified, it is first necessary to explain

how xmp represents trees during B&B.

The main work of xmp’s B&B inner loop consists of:

1. Calculating the weight that would be added by inserting a given taxon at a

given edge

35

2. Updating the tree representation to reflect a newly inserted or removed taxon

The Fitch algorithm (Fitch, 1971) allows the weight of a tree to be calculated in

a single postorder traversal that constructs, for each internal node v, a preliminary

state set giving the set of nucleotides that may appear at v in any MP extension

for the subtree at and below v. The naive approach of recalculating the entire tree

using the first pass of the Fitch algorithm every time a taxon is added or removed

performs much unnecessary recomputation; an obvious improvement is to record

weights for each subtree, and to recompute only nodes on the path between a newly

inserted or removed taxon and the root. Going further in this direction, it is possible

to traverse this path for each site independently, halting recalculation of a site as

soon as a state set is produced that is equal to the previously calculated version

(Gladstein, 1997). In practice the time saved by this “data-driven” approach is

outweighed by the overhead of performing tree traversal k times, and performance

is hampered further if multiple sites are packed into a machine word, so we never

considered it for xmp.

Both improvements to the basic Fitch algorithm described above still require

O(n) time to calculate how much weight is added to a tree by inserting a given

taxon at a given edge. In contrast, the algorithm of Yan & Bader (2003) enables each

insertion to be evaluated in amortised constant time, by maintaining a binary tree

in which any edge can behave as the Fitch calculation root.2 This is the algorithm

xmp uses.

Accordingly, xmp maintains a binary tree in which each edge is labelled by three

sequences: the postorder, preorder and final Fitch sequences for that edge. Extend-

ing the notation of Yan & Bader (2003), for an edge xy we denote these sequences

−→xy, ←−xy and x̂y, respectively. −→xy is the preliminary state set of x from the standard

Fitch algorithm; ←−xy is the preliminary state set of y that would result if the Fitch

calculation root were on xy; x̂y is the preliminary state set of a hypothetical Fitch

calculation root on xy. As with the standard Fitch algorithm, a calculation root is

created by choosing an arbitrary reference taxon and “folding” the edge from that

2Although Goloboff (1993) also claimed amortised constant time for his algorithm, Goloboff
(1996, p. 204) concedes that errors can occur if the dataset contains ambiguous nucleotides. In
general, the concise and formal description given by Yan & Bader (2003), which includes a proof
of correctness, inspires greater confidence than do Goloboff’s sometimes-ambiguous explanations.

36

taxon; all edges are considered to be directed towards this root.

2.3.5 Identifying ml0 Edges

The next step is to identify ml0 edges from the tree representation xmp uses during

B&B. For simplicity we consider a single site; since parsimony scores are additive

across sites, an edge is ml0 iff the edge for each site is ml0.

Theorem 2.1 explains the connection between −→xy, ←−xy and ml0 edges.

Theorem 2.1. For a given edge xy, −→xy ∩←−xy �= ∅ ⇐⇒ xy is ml0.

Proof. By the correctness of the Fitch algorithm, for any edge xy and nucleotide s,

there exists an MP extension for the subtree including and below x in which x is

assigned nucleotide s iff s ∈ −→xy. Similarly, for any edge xy and base s, there exists an

MP extension for the subtree including and above y in which y is assigned nucleotide

s iff s ∈ ←−xy. Let Z = −→xy ∩←−xy. If Z �= ∅ then any s ∈ Z can be assigned to both x

and y to produce a zero-length edge connecting two minimal-length subtrees, which

is therefore a tree of minimal length; any extension for which xy has length δ > 0

increases the total tree length by at least δ and thus cannot be minimal. Therefore

Z �= ∅ =⇒ xy is ml0.

To show the reverse direction, suppose there is an ml0 edge xy for which−→xy∩←−xy =

∅. In this case, all extensions in which xy is maintained at zero length by assigning

the same nucleotide to both x and y incur a length increase of at least 1: choosing

any s ∈ −→xy increases the length of the subtree including and above y by at least 1,

while choosing any s ∈ ←−xy increases the length of the subtree including and below x

by at least 1. The remaining possibility is to assign any a ∈ −→xy to x and any b ∈ ←−xy
to y, allowing both subtrees to retain minimal length but incurring 1 substitution on

xy. This is clearly a minimal extension (although not necessarily uniquely minimal),

contradicting the assumption that xy is ml0. Therefore −→xy ∩ ←−xy �= ∅ ⇐⇒ xy is

ml0.

2.3.6 Contracting ml0 Edges

Now that edges that can safely be contracted have been identified, two broad strate-

gies can be considered:

37

1. Perform B&B enumeration of fully refined trees as before. In each fully refined

MP tree discovered, contract all ml0 edges and report only the unique trees

that result.

2. Adjust the enumeration algorithm so that these edges are never generated in

the first place.

The first approach is eminently correct, but unsatisfying because it involves doing

a great deal of work and then discarding most of it. The sheer number of meaningless

bifurcations evidenced by the ratio of fully refined MP trees to collapsed MP trees

for datasets like its36 suggests that there is structure in the problem that is not

being fully exploited by the B&B algorithm. In particular it appears that it should

be possible to avoid inserting taxa at ml0 edges during B&B without compromising

the search. We call this approach precollapsed enumeration. Unfortunately, this

turns out not to be the case.

For precollapsed enumeration to be correct, we require that any MP tree that

can be produced by a sequence of taxon insertions involving at least one insertion

into an ml0 edge, collapses to a tree that can also be produced by inserting taxa

into only non-ml0 edges, and collapsing the result.

2.3.7 A Counterexample

Figure 2.3 shows a counterexample to the correctness of precollapsed enumeration

involving 6 single-site sequences, most of which are ambiguous nucleotides. Trees

on the left are fully refined trees, with ml0 edges represented by circles; trees on

the right are the corresponding dense (collapsed) trees. Figure 2.3a shows an initial

5-taxon tree T , and Figures 2.3b 2.3c show the result of inserting a new taxon having

sequence C at two different ml0 edges in T , producing trees T1 and T2 respectively.

Both these trees have weight 2, which is optimal for the 6-taxon dataset. However

they collapse to distinct dense trees, and there is only one non-ml0 edge in T , so

at least one of collapse(T1) and collapse(T2) cannot be recovered by inserting the

taxon only at non-ml0 edges in T . It follows that precollapsed enumeration does

not guarantee recovery of all dense MP trees. For this reason, xmp’s fully refined

B&B tree enumeration was left unchanged.

38

{AT} {CT} {AG}{CG} {GT}

{AT} {CT} {AG}{CG} {GT}

collapse

C

{AT} {CT} {AG}{CG} {GT}C

{AT}, {CT}

{AG}, {CG}, {GT}

collapse

{AT}
C

{CT}
{AG}

{CG}, {GT}

collapse

{AT}, {CT} {AG}

{GT} {CG}

C

(a)

(b)

(c)

Figure 2.3: Counterexample showing trees missed by precollapsed enumeration

2.4 Zharkikh’s Rules

Felsenstein (2004, pp. 66–67) describes several rules for reducing the search space

needed for exact MP search, which he attributes to a Russian-language paper by

Zharkikh (1977). Rule #3 on p. 66 is particularly appetising, because if applicable

it effectively reduces the taxon count by collapsing similar taxa into groups:

Look at all states of all characters. For each one, let the state define

the membership of a group S. Calculate the number of states (over

all characters) that are shared by members of group S but that do not

appear anywhere else. Call this number n0(S). Compute the distances

between all pairs of species i and j that are in S. The distance is in

this case the number of characters that differ between the species. If the

largest value of Dij among all these pairs of species is less than n0(S),

then the group S must appear on all most parsimonious trees. It can now

be collapsed to a single fictional species, which has its state computed

from a Fitch parsimony algorithm. Thus any states that are shared by

39

all members of the group appear in the new species, and otherwise its

state is an ambiguity between some of the possibilities within the group.

However, the tree in Figure 2.4a is an MP tree with 2 substitutions, even though

the two A taxa are not grouped together—this contradicts a straightforward inter-

pretation of Zharkikh’s rule.

A C C A G

C, C
A, A

G

(a) (b)

Figure 2.4: Two representations of a tree that contradicts Zharkikh’s rule #3

Personal communication with Felsenstein and Zharkikh suggests that the prob-

lem stems from the existence of ml0 edges in the tree. Certainly the dense tree in

Figure 2.4b that results from collapsing the tree in Figure 2.4a does not exhibit this

problem. However as previous sections have established, we were unable to find a

way to safely and efficiently enumerate only dense trees, and so this rule has not

been implemented in xmp.

2.5 Visualising MPI Communication

The MPI message-passing interface includes a useful tracing facility that produces

logfiles that can be graphically displayed with the program Jumpshot.

Figure 2.5 shows the activity of each process during a 800μs time segment in

a 32-process run of the parallel version of xmp. Each process occupies a row, with

the boss at the top. Time in seconds runs along the x axis. Narrow brown boxes

represent periodic MPI Test() calls performed by busy workers to poll for new upper

bounds or steal requests; white arrows are messages sent between processes. Peach-

coloured boxes represent worker calls to MPI Waitany(), during which the worker is

stalled, waiting for work to arrive. During the time segment shown, processes 8, 24,

15 and 27 request more work from the boss, which steals from the randomly selected

processes 1, 14, 27 and 7 to satisfy these requests. Steal requests from processes 24

and 15 arrive in quick succession and are forwarded in tandem by the boss. On this

40

Figure 2.5: 800μs segment of Jumpshot trace for 32-process parallel xmp

occasion all steal victims respond by sending back jobs, although it is possible for

the boss to attempt to steal from a worker that has just run out of work itself, in

which case the victim will deny the steal request and the boss will attempt to steal

from a different worker.

Figure 2.6 shows the last 25ms of a ∼2s run, clearly showing how work is running

out and worker processes spend increasing amounts of time waiting for work to

arrive. The blue boxes depict the synchronous send operations used by workers to

send tree data back to the boss for output after the main B&B phase has completed.

In this case, 13 of the 31 worker processes had optimal trees to report.

2.6 Lower Bound Comparison

Before the B&B phase begins, for each partial tree size xmp calculates a lower bound

on the weight that must be added by all remaining taxa. (Recall that xmp uses a

static taxon addition order, so the number of taxa on a partial tree determines which

41

Figure 2.6: Jumpshot trace of last 25ms of 32-process parallel xmp

42

taxa are present.) For each partial tree considered during B&B, the corresponding

lower bound will be added to the tree’s weight to determine whether an optimal tree

can possibly result from adding more taxa to this partial tree, so it is important to

be able to quickly compute high lower bounds to avoid wasting time evaluating trees

that cannot possibly be optimal. Figure 2.7 compares the three different strategies

xmp provides for computing these lower bounds on the 21 datasets examined. -Bp,

-Bd and -Bdi correspond to the newly introduced PARTBOUND bound, the single

column discrepancy (SCD) bound and the sum of the SCD and incompatibility

bounds respectively. Partial tree size is shown on the x axis, with the corresponding

minimum additional weight shown on the y axis.

In general, -Bp dominates, although -Bdi is better in 3 isolated cases: 10 (vs. 9)

for 10-taxon trees on 32hum, 8 (vs. 7) for 11-taxon trees on 32hum, and 12 (vs. 11)

for 14-taxon trees on e4. As discussed in the paper, the superiority of the -Bp and

-Bdi bounds at small tree sizes seldom has a significant effect on overall runtime.

43

5 10 15 20 25 30
0

5
10

20
30

32hum

5 10 15 20

0
50

10
0

15
0

20
0

e1

5 10 15 20

0
50

10
0

15
0

20
0 e3

−Bp
−Bdi
−Bd

5 10 15 20

0
50

10
0

15
0

e4

5 10 15 20

0
50

10
0

15
0

e5

5 10 15 20

0
50

10
0

15
0

e6

5 10 15 20 25

0
40

0
80

0
12

00 Eukar

4 6 8 10

0
50

10
0

15
0 h1

4 6 8 10

0
50

10
0

15
0 h2

4 6 8 10

0
50

10
0

15
0 h3

4 6 8 10 12

0
50

10
0

15
0

h4

4 6 8 10 12
0

50
10

0
15

0

h5

5 10 15 20 25 30 35

0
10

30
50

its36

5 10 15

0
50

10
0

20
0

Metaz

5 10 15

0
5

10
15

20
25

mh1

5 10 15

0
10

30
50

mh2

5 10 15

0
5

10
15

20
25

mh3

5 10 15

0
20

60
10

0

mh4

5 10 15

0
10

20
30

mh6

3 4 5 6 7 8 9

0
20

00
40

00

mt−10

4 6 8 10 12

0
50

15
0

25
0

rbc14

Figure 2.7: Lower bounds for the weight added by all remaining taxa (y axis) vs.
partial tree size (x axis), computed using 3 lower-bounding strategies. Results for
each dataset are shown on separate plots. Higher values are associated with im-
proved search space pruning and faster search times.

44

Chapter 3

Compressing DNA Sequence

Databases with coil

3.1 Introduction

This chapter presents the paper “Compressing DNA Sequence Databases with coil”,

which was published in the journal BMC Bioinformatics in 2008.

All software associated with this paper is now freely available via Subversion

from http://coildna.sourceforge.net.

45

BioMed Central

Page 1 of 15
(page number not for citation purposes)

BMC Bioinformatics

Open AccessSoftware
Compressing DNA sequence databases with coil
W Timothy J White* and Michael D Hendy

Address: Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand

Email: W Timothy J White* - w.t.white@massey.ac.nz; Michael D Hendy - m.hendy@massey.ac.nz

* Corresponding author

Abstract
Background: Publicly available DNA sequence databases such as GenBank are large, and are
growing at an exponential rate. The sheer volume of data being dealt with presents serious storage
and data communications problems. Currently, sequence data is usually kept in large "flat files,"
which are then compressed using standard Lempel-Ziv (gzip) compression – an approach which
rarely achieves good compression ratios. While much research has been done on compressing
individual DNA sequences, surprisingly little has focused on the compression of entire databases
of such sequences. In this study we introduce the sequence database compression software coil.

Results: We have designed and implemented a portable software package, coil, for compressing
and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared
towards achieving high compression ratios at the expense of execution time and memory usage
during compression – the compression time represents a "one-off investment" whose cost is
quickly amortised if the resulting compressed file is transmitted many times. Decompression
requires little memory and is extremely fast. We demonstrate a 5% improvement in compression
ratio over state-of-the-art general-purpose compression tools for a large GenBank database file
containing Expressed Sequence Tag (EST) data. Finally, coil can efficiently encode incremental
additions to a sequence database.

Conclusion: coil presents a compelling alternative to conventional compression of flat files for the
storage and distribution of DNA sequence databases having a narrow distribution of sequence
lengths, such as EST data. Increasing compression levels for databases having a wide distribution of
sequence lengths is a direction for future work.

Background
The advent of the Sanger sequencing method enabled
DNA sequence data to be collected and manipulated on
computers, paving the way for explosive growth in the
new field of bioinformatics. Publicly available DNA
sequence databases such as GenBank play a crucial role in
collecting and disseminating the raw data needed by
researchers in the field. This database currently contains
168 Gb of sequence data [1] section 2.2.8, and is expected

to continue to grow at an exponential rate, doubling in
size roughly every 14 months [2]. The volume of data
being dealt with now presents serious storage and data
communications problems. Currently, sequence data is
usually kept in large "flat files," which are then com-
pressed using standard Lempel-Ziv compression [3] (e.g.
with gzip [4]). Unfortunately this approach rarely
achieves good compression ratios: typically, gzip fails to

Published: 20 May 2008

BMC Bioinformatics 2008, 9:242 doi:10.1186/1471-2105-9-242

Received: 23 October 2007
Accepted: 20 May 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/242

© 2008 White and Hendy; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

46

BMC Bioinformatics 2008, 9:242 http://www.biomedcentral.com/1471-2105/9/242

Page 2 of 15
(page number not for citation purposes)

match the "compression" afforded by simply encoding
each base using 2 bits [5].

Previous work concerning the compression of biological
(DNA or protein) sequences can be divided into two cate-
gories: techniques developed for efficiently compressing
sequence data for the sake of reduced resource consump-
tion (disk space or network usage) [5-9]; and investiga-
tions of the usefulness of compressibility as a measure of
information content, for the purpose of making infer-
ences about sequences (such as the relatedness of two
sequences) [10,11]. In this article we will focus on work in
the former category. Examining this body of work reveals
two distinct approaches:

• Compressing individual biological sequences

• Compressing databases of biological sequences

Compressing individual biological sequences
It is now widely recognised that DNA data is inherently
difficult to compress below the level of 2 bits per base
achievable through direct encoding [5,6,9]. Much
research has gone into developing algorithms for more
effectively compressing individual DNA sequences. These
include BioCompress [6], BioCompress-2 [7], GenCom-
press [8], the CTW+LZ algorithm [5], and DNACompress
[9]. Perhaps the best of these is DNACompress, which
employs the PatternHunter [12] sequence search algo-
rithm to discover patterns of approximate repeats or
approximate palindromic repeats in sequence data. DNA-
Compress achieved compression averaging 13.7% on a
sample set of DNA sequences and is substantially faster
than earlier algorithms. Grumbach and Tahi [7] allude to
a "vertical" mode of compression for compressing multi-
ple sequences in a database, however they do not elabo-
rate on how this might be accomplished.

While these single-sequence algorithms are interesting
from a theoretical point of view, and are certainly becom-
ing increasingly practical in the modern world of genome-
scale analysis, a great deal of everyday bioinformatics
work continues to entail the communication and storage
of multiple sequences, and the modest compression gains
afforded by these algorithms are ultimately not sufficient
to justify their adoption for large databases.

Compressing databases of biological sequences
Strelets and Lim [13] describe a program, SAGITTARIUS,
for compressing PIR-format [14] protein sequence data-
bases. Their system uses standard dictionary-style com-
pression of sequence entry metadata, and a novel
alignment-based compression strategy for the protein
sequence data itself. A small number of sequences is
maintained in memory as the reference sequence accumula-

tor, and each sequence in the database is aligned with each
sequence in this list. If any alignment produces a strong
match, the input sequence is recoded using symbols
describing insertions and deletions to enable recovery
from its close match in the accumulator; otherwise, the
sequence is output verbatim and added to the accumula-
tor, overwriting the oldest incumbent sequence if the
accumulator is full. Sequences to be output are com-
pressed using run-length encoding and Huffman encod-
ing, and the shorter of the two encodings is chosen. Thus
the accumulator represents a window of recently encoun-
tered interesting sequences. The authors set the size of the
accumulator at three sequences, and were able to achieve
2.50:1 compression, significantly better than PKZIP© [15]
at 2.13:1.

Strelets and Lim [13] were interested in producing a com-
pressed database that could be used interactively in much
the same way as the original database. This was facilitated
in part by the fact that their approach never requires recur-
sive decoding of sequences – each sequence is encoded in
terms of at most one other sequence, which is itself avail-
able "as-is," (i.e. not compressed in terms of another
sequence). While useful for interactive operations, it is
clear that avoiding recursive encoding must limit the over-
all level of compression obtained. Since we are targeting
maximum compression, coil differs from that of [13] in
this respect. Another difficulty arises in the assumption
that similar sequences are likely to appear near each other
in the input file. This is crucial in order to be able to limit
the size of the accumulator and thereby the runtime. The
authors found that increasing the size of the accumulator
past three sequences increased the runtime but made no
substantial improvement in compression, which
appeared to justify their assumption. Unfortunately,
while this neat localisation of similar sequences may have
been true of the PIR database in 1995, it is certainly not
true of the large nucleotide databases of today, and we
chose not to make this assumption.

Li, Jaroszewski and Godzik have taken a similar approach
to the related problem of producing non-redundant pro-
tein databases with their CD-HI [16] and CD-HIT [17]
packages. More recently, Li and Godzik have extended this
approach to DNA sequences with the cd-hit-est program
[18]. Their main advance over [13] is in employing short-
word filters to rapidly determine that two sequences can-
not be similar, which significantly reduces the number of
full alignments necessary. Despite impressive speed on
small-to-medium datasets, they report that clustering 6
billion ESTs at 95% similarity takes 139 hours [18].

The program nrdb [19] locates and removes exact dupli-
cate sequences from a DNA database in FASTA format.
While this program is clearly a step in the right direction,

47

BMC Bioinformatics 2008, 9:242 http://www.biomedcentral.com/1471-2105/9/242

Page 3 of 15
(page number not for citation purposes)

many sequences in a typical database are almost but not
quite exact duplicates of other sequences (perhaps differ-
ing at one or two positions), highlighting opportunities
for further improvements.

Compression and the maximum parsimony criterion
A phylogenetic tree is a Steiner tree estimating the evolu-
tionary history of a set of taxa (species, genes or individu-
als). Maximum parsimony is a criterion for building
phylogenetic trees from DNA sequences that aims to iden-
tify the tree or trees containing the fewest point mutations
along their edges, where a point mutation, or edit, is an
insertion or deletion of a single nucleotide or a substitu-
tion of one nucleotide for another. (Most implementa-
tions of maximum parsimony search consider only point
substitutions, for reasons of computational efficiency.)
We then note:

If we are given the complete sequence at one node of a tree, as
well as all edge mutations, we can reconstruct the sequences at
all the nodes.

Thus a maximum parsimony tree represents an optimal
solution to storing sequence data in the form of a list of
edit operations on a tree rooted at a single reference
sequence. This can be an efficient compression if the
sequences are closely related, so that the number of edit
operations is small in comparison with the total sequence
length. Within a large database, it is expected that there
will be large groups of closely related sequences – for
example, the DNA encoding a particular gene from many
different species. More precisely, we expect that many
sequences will be highly similar to at least one other
sequence in the database. If this is the case a considerable

saving in storage space can be achieved by identifying
such groups, determining good trees for them, and encod-
ing each group as a single root sequence plus a series of
"deltas" along the tree edges. We have called this
approach edit-tree coding. Figure 1 illustrates how
sequences within a database are processed according to
this scheme.

In practice, it soon becomes apparent that even a heuristic
maximum parsimony search on subsets of sequences is
not computationally feasible for a large database. The
standard maximum parsimony tree evaluation algorithm
requires all sequences to be aligned. Both alignment and
the subsequent parsimony searches are hard problems
[20,21]. Fortunately, when dealing with data compression
we are not concerned about exactly maximising some
function – our requirement is a method which is fast and
performs well on typical cases. A practical alternative to
maximum parsimony search is to construct an approxi-
mation to the minimum spanning tree on the sequences,
where the metric is the edit distance between two
sequences – the number of single-character insertions,
deletions or replacements required to transform one
sequence into the other. Unlike Steiner trees, minimum
spanning trees do not introduce new internal vertices, and
computation is fast: an algorithm having time complexity
almost linear in the number of edges exists [22]. The total
tree length is bounded by twice that of the maximum par-
simony tree. By judicious selection of algorithms and data
structures, we have developed heuristics and approxima-
tions that make this task feasible for databases having
sizes in the gigabyte range, despite having essentially
quadratic time complexity in the size of the database.

Goals of coil
Our goal was to develop a software package, coil, for com-
pressing and decompressing DNA sequence databases
based on edit-tree coding. The primary intention is to
reduce the bandwidth required to transmit large amounts
of DNA sequence data from a central repository to many
recipients, and also to reduce disk space requirements for
archival storage of such data. While it is desirable to ena-
ble efficient searching of a compressed database, and
progress has been made in this area [23-25], we have not
attempted to do so here. Instead, coil is geared towards
maximising compression ratios. This is achieved at the
expense of execution time and memory usage – but note
that the compression time represents a "one-off invest-
ment" whose cost is quickly amortised if the resulting
compressed file is transmitted many times. Decompres-
sion requires little memory and takes O(D) time for data
sets of size D nucleotides.

coil primarily targets sequence databases containing
many short sequences of roughly equal length, such as

Edit-tree coding of similar sequence groupsFigure 1
Edit-tree coding of similar sequence groups. Circles
represent DNA sequences in a database; the straight-line dis-
tance between circles represents the edit distance between
sequences. Initially (a) we are presented with the input data-
base. In the first step (b), groups of similar sequences are dis-
covered. In the second step (c), each group is edit-tree
coded independently by determining a reasonable tree,
selecting a root sequence (coloured black) and recording the
necessary edits along each edge. Some sequences are not suf-
ficiently similar to any other sequence to be delta-encoded –
these sequences will be recorded verbatim.

(a) (b) (c)

48

BMC Bioinformatics 2008, 9:242 http://www.biomedcentral.com/1471-2105/9/242

Page 4 of 15
(page number not for citation purposes)

Expressed Sequence Tag (EST) databases. Many such data-
bases exist: at the time of printing, GenBank contains 23
Gb of EST sequence data in FASTA format, comprising
43,380,458 sequences in total [1]. Targeting these data-
bases simplifies design and implementation: many oper-
ations on pairs of sequences take time quadratic in the
length of their operands, so shorter sequences are impor-
tant for high performance; also, assuming reasonably
short sequences means that little attention need be paid to
the intra-sequence positions of regions of similarity
between two sequences.

coil reads and write FASTA format databases [26]. This
simple format is easy to work with manually, easy to pro-
gram input and output routines for, and widely used.
Additionally, the format contains a minimum amount of
additional context information for each sequence, which
allows us to focus on compressing the sequence data.

Implementation
coil consists of a small group of C programs that perform
the compression and decompression steps described
below, as well as a Perl script which simplifies the com-
pression process by automating sequences of steps and
providing sensible defaults where helpful. Use of these
programs is described later.

Overview
Hereafter, unless otherwise qualified, D denotes the
number of nucleotides (characters) in a database, N the
number of sequences, and L = D/N the average length of
a sequence. As in the C language, the notation a % b is
used to indicate taking the remainder of a modulo b, for
some non-negative integer a and positive integer b.

Conceptually, the process of compressing a database with
coil proceeds through the following stages:

1. Creating a similarity graph that pairs sequences of high
similarity. The similarity graph is an edge-weighted undi-
rected graph in which vertices represent sequences and
edges exist between highly similar sequences, with edge
weights indicating similarity strength.

2. Extracting an encoding graph from the similarity graph.
The encoding graph is a set of rooted directed trees (for-
mally, arborescences) whose arcs correspond to a subset
of the edges in the similarity graph.

3. Encoding each tree in the encoding graph. For each tree,
the root sequence is stored verbatim (raw-encoded); an in-
order traversal is then used to delta-encode each other
sequence in the tree in terms of its parent sequence.

4. A multi-platform general-purpose compression pro-
gram, such as gzip or bzip2 [27], is applied to extract fur-
ther compression gains.

A typical usage pattern in a Unix-like environment would
be to use the tar archive program to collect the files of step
3 together, and pipe the resulting file through bzip2 -9
(the -9 command-line option requests maximum com-
pression).

Decompression of a coil archive amounts to inverting the
delta-encoding of the final compression stage: for each
encoded tree, the root sequence is written out, following
which an in-order traversal recovers every other sequence
using the (already recovered) parent sequence and the
encoded delta information. This takes place after the gen-
eral-purpose compression step is undone. Note that in
general, the order of sequences in the recovered FASTA file
will be different than in the original FASTA file; if this is
undesirable, program options can be set to restore the
original order (i.e. an exact copy will be produced).

All of these steps are explained in more detail below.

Edit distances and similarity graphs
A common way to quantify the similarity between two
strings a and b is to compute the Levenshtein distance: the
smallest number of single-character insertions, deletions
and substitutions required to transform a into b. Ideally,
we would compute exact distances between every pair of
sequences in the database and output a complete graph
with perfect similarity information. But since computa-
tion of the Levenshtein distance between two strings of
length m and n takes O(mn) time [28] in the general case,
a database of size D containing N roughly equal-length
sequences would require O(N2)O(D2/N2) = O(D2) com-
parisons. When database sizes are in the gigabyte range,
quadratic-time algorithms are not viable.

Instead, coil uses a more efficient related similarity meas-
ure derived by counting the number of length-k sub-
strings, or k-tuples, two strings have in common. For small
k, calculation of k-tuple similarity scores can be made very
fast by using a k-tuple index data structure (described
below) to obtain a list of all sequences in the database that
contain a given k-tuple in constant time.

The k-tuple index
A nucleotide (A, C, G or T) can be encoded as a 2-bit inte-
ger, and consequently a k-tuple of nucleotides has a natu-
ral representation as an integer of 2k bits. In coil, the
leftmost nucleotide occupies the most significant bits. The
k-tuple index data structure, which is prepared in a pre-
processing step using the program make_index, consists
of two files: a k-tuple sequence list file ending with the

49

BMC Bioinformatics 2008, 9:242 http://www.biomedcentral.com/1471-2105/9/242

Page 5 of 15
(page number not for citation purposes)

extension .ktl, which contains (D - N(k - 1))/s integer
sequence numbers (seqnums); and a k-tuple index file end-
ing with the extension .kti, which contains 4k integer off-
sets into the first file. s is a "slide" parameter used to
reduce the size of the k-tuple sequence list file, at the cost
of reduced accuracy: only k-tuples beginning at sequence
positions divisible by s are entered into the index. As Fig-
ure 2 shows, the ith entry in the k-tuple index file points
to the beginning of the list of seqnums that contain k-
tuple i, which continues until the seqnum list for the (i +
1)th entry begins.

These files are built in O(D + 4k) time using a bucket sort
algorithm that performs two passes over the raw sequence
data. The algorithm is similar to that used to build the k-
tuple indices used by SSAHA [29]. Note that unlike in
SSAHA, we do not record the intra-sequence positions of
k-tuples in the k-tuple index, nor do we ever record a given
seqnum more than once in a given k-tuple's seqnum list;
instead we rely on our assumption that the database con-
tains short sequences to ensure that there is a low proba-
bility of a sequence containing more than one instance of
a particular k-tuple. Should this not be the case, the effi-
cacy of the algorithm will be reduced, however correctness
will not be compromised.

The bucket sort algorithm requires both files to be able to
fit in memory simultaneously. If this is not possible,
make_index produces multiple pairs of output files: each
pair is an index on a segment of the database that will just
fit in the amount of memory specified.

It is worth mentioning that empirically, the sizes of seq-
num lists in a k-tuple index built from DNA sequence data
are highly nonuniform, with some k-tuples appearing sev-
eral orders of magnitude more frequently than others.
These k-tuples cause many spurious hits that slow down
the similarity graph construction step. coil follows the
smart practice described in [29] of completely eliminating
k-tuple seqnum lists that exceed a user-specified size: this
has the double effect of reducing index file sizes and dra-
matically improving the selectivity, and hence the speed,
of the next stage.

Creating the similarity graph
Constructing the similarity graph is the main compression
bottleneck in coil. The main contribution made by coil is
in engineering an algorithm to efficiently compute pair-
wise approximate sequence similarity scores using a com-
bination of the raw sequence data and the k-tuple index,
which is implemented in the find_edges program. We first
introduce a "naïve" comparison algorithm, and several
variants which each proved unsatisfactory.

The naïve algorithm is parameterised by k, s and b. b is a
small integer which is used to limit the total number of

edges in the similarity graph to bN; it is necessary to avoid
storing O(N2) edges in the similarity graph. In most test-
ing, b was set to 10. The pseudocode for the algorithm fol-
lows:

• For each query sequence q in the database:

 Create an empty linked list of (seqnum, hit
count) pairs, M.

 For each k-tuple t in q:

 Look up the list of sequences that contain t
starting at a position divisible by s using the k-
tuple index.

 Merge this list into M.

 Keep track of the number of times each
sequence in M has had a k-tuple in common
with q.

 For each pair (i, c) of the b pairs having the high-
est hit counts in M:

 Create the edge (q, i) in the similarity graph
and assign it weight c.

The seqnum lists read from the k-tuple index are in seq-
num order, and M is maintained in this order also. The
merge step is the usual list merge, except that whenever
pairs having the same seqnum are to be merged, the result

Example k-tuple index structure for k = 4Figure 2
Example k-tuple index structure for k = 4.

AAAA
AAAC
AAAG
AAAT
AACA
AACC
AACG
…

TTTT

0
1
2
3
4
5
6
7
8
9
10
11
12
…

675
676
677

0
1
2
3
4
5
6
…

255

3
4
9
24
2
4
5
1
5
2
6
21
22
…
8
10
13

K-tuple Index K-tuple Sequence List Table

Pos PosK-tup Seq #

0
4
7
9
14
20
31
…

675

Start

50

BMC Bioinformatics 2008, 9:242 http://www.biomedcentral.com/1471-2105/9/242

Page 6 of 15
(page number not for citation purposes)

is a single pair whose hit count is equal to the sum of the
hit counts of the arguments to the comparison. The intui-
tion here is that if two sequences share many k-tuples,
they are likely to be similar. In fact, it is relatively straight-
forward to show that if a string of length n is at edit dis-
tance d from another string, then the two strings must
share at least n - (d + 1)k + 1 k-tuples [30]; so we can rea-
sonably expect a correlation in the reverse direction. The
output of the algorithm is a representation of the similar-
ity graph in edge-list format.

Unfortunately, the above algorithm suffers from severe
performance degradation due to random k-tuple matches
clogging M and slowing down list merges. M soon fills
with many pairs containing low hit counts, representing
sequences that are not significantly similar to q but share
one or two k-tuples with q by chance. In fact it can be
shown that under reasonable assumptions about the dis-
tribution of k-tuples in the database, the repeated list
merging introduces an O(D3) factor into the running
time.

SSAHA [29] overcomes the clogging problem by choosing
k to be high enough that very few chance matches occur;
however this is only a viable approach if enough memory
is available as memory requirements are exponential in k.
The impressive search speeds described in [29] were
obtained on a computer with 16 Gb of RAM and with k set
to 14 or 15. Requiring this amount of memory for coil
would immediately put the program out of range of
almost all computers in use today.

Another way to ameliorate the situation is to convert the
list M into a form of hashtable by maintaining r separate
pair lists M0 ... Mr-1, and merging the seqnum list for the
ith k-tuple in q into the list Mi%r. After all k-tuples have
been scanned, a final merge step combines the r lists. Even
better, partition by seqnum rather than k-tuple position:
send each seqnum i to the list Mi%r. The latter technique is
more resilient to variations in seqnum list sizes. Choosing
r = 2h for some positive integer h enables fast calculation
of the remainder through bitwise operations. While these
modifications do improve the running time of the naïve
algorithm, as Table 1 shows, there remains much work to
be done before this algorithm will be feasible for gigabyte-
sized databases. We describe below a way to eliminate the
time spent processing unpromising hits

Letting go of perfection: the leaky move-to-front
hashtable
The algorithms described in the preceding subsection all
compute the complete list of (seqnum, hit count) pairs for
a given query sequence q, including the "noise" matches
with small hit counts, even though we end up keeping

only the best b such matches. To avoid getting bogged
down with noise matches, we modify the seqnum-hash-
ing hashtable from the previous subsection by replacing
each of the r variable-length linked lists in the hashtable
with a small fixed-size array of size f. Instead of maintain-
ing these arrays in seqnum order, a move-to-front disci-
pline is used: whenever a seqnum i arrives, we scan the
array Mi%r for an occurrence. If it is found, it is moved to
the front of the array, its hit count is incremented and all
preceding elements are shunted down one position. If it is
not found, it is inserted at the front of the array with hit
count 1; all existing elements are shunted down one posi-
tion to make room, with the last pair being deleted
("pushed off the end").

Intuitively, the success of this algorithm hinges on the fol-
lowing key assumption:

If a database sequence is genuinely similar to the query
sequence, its seqnum will turn up often enough that it will
never be pushed off the end of the list.

There are several reasons for the improved performance of
this algorithm:

Frequently occurring seqnums are found more quickly and require
fewer updates
A frequently occurring seqnum x is more likely to have
been recently referenced and hence is more likely near the
front of its array. Thus when x next occurs, the scan will
not need to proceed very far down the array. Also note that
only those elements that precede x in the array need to be
shunted back – later elements remain in their original
positions.

Table 1: Execution time for find_edges variations on a small
dataset

Algorithm Parameters Execution Time (s)

SSAHA maxGap = 0, 118.58
maxInsert = 0
maxGap = 20, 118.72
maxInsert = 20

Basic 97.98
Batch merging c = 16 113.03

c = 32 84.35
c = 64 71.09

Recursive merging 80.55
Hashtable h = 12 56.02

h = 13 56.24
h = 14 57.92

The dataset used, month.est_mouse, is a monthly update of the
Genbank Mouse EST dataset comprising 31,401 sequences having
average length 438 nucleotides.

51

BMC Bioinformatics 2008, 9:242 http://www.biomedcentral.com/1471-2105/9/242

Page 7 of 15
(page number not for citation purposes)

Packing the seqnum and count values
A "side effect" of the hashtable structure is that there is no
need to explicitly record the low h bits of each seqnum in
each array, since every seqnum in array Mi must have these
bits equal to i. Thus these bits are available for other uses.
Since each array entry consists of a (seqnum, count) pair,
and since count rarely exceeds L/s, it makes sense to store
the count value in these bits. For our default choice of k
and s parameters, this is reasonable for h 10. (If it is
important to deal properly with the rare occasions that
that more 1023 k-tuples match between two sequences,
we can simply saturate the count at 2h - 1.)

Fixed-size multidimensional arrays require very low memory
overhead
The leaky move-to-front hashtable data structure is a 2h ×
f array. Because of their highly regular structure, accessing
data items in fixed-size multidimensional arrays requires
only multiplications and additions using the fixed dimen-
sion sizes, and does not require any pointers or special list
termination symbols to be explicitly stored in memory,
reducing the memory allocation overhead.

Computers like fixed-size arrays
Linked lists are efficient in theory, but in practice, compu-
ter hardware has long been designed for efficient process-
ing of contiguous arrays of elements, and the "pointer-
chasing" inherent in working with linked lists inevitably
introduces comparatively large overheads. In particular,
items at consecutive positions in a linked list may occupy
widely separated memory addresses – a problem known
as poor spatial locality of reference. In these circumstances,
when iterating through the items in a linked list, memory
cache hardware cannot predict which bytes will be read or
written next, and performance suffers. In contrast, a scan
through an array accesses memory bytes in sequential
order, and will benefit from cache line fills that read con-
tiguous blocks of memory into cache.

Assuming pessimistically that every seqnum must endure
a full f comparison and move operations, analysis gives a
time complexity of O(fD2/s4k) for this algorithm.

Pentium 4 optimised version
Many modern CPUs use pipelining to increase instruction
throughput. We have developed an implementation of
the find_edges algorithm optimised for the heavily pipe-
lined Pentium 4 processor [see Additional file 1].

Extracting the encoding graph
Once a similarity graph has been created with find_edges,
the next step is to extract from it an encoding graph that
distinguishes groups of similar sequences and describes
how they are to be encoded. Then each group is com-
pressed independently. Both steps are performed by the

program encode. For the time being, we assume the avail-
ability of a subroutine for delta-encoding one sequence in
terms of another that produces a "black box" block of data
bytes; this algorithm is described in the subsection "Delta-
encoding Sequences".

First we note some structural properties of the encoding
graph. Each sequence in the database will be either raw-
encoded, or delta-encoded in terms of one other
sequence: this implies that each vertex in the encoding
graph will have at most one in-edge. Then by prohibiting
cycles it is easy to show that the encoding graph will be a
forest of directed trees, each having edges directed away
from a root vertex. Since the decision about which vertex
to choose as the root has little bearing on the speed or
compression level achieved for a tree, coil selects the low-
est-numbered sequence.

To be effective in compressing sequence databases, coil
needs to produce an encoding graph in which highly sim-
ilar sequences are linked by an edge whenever possible.
More precisely, we want to maximise the total similarity
score of the encoding graph, subject to the constraints that
it be a subgraph of the similarity graph, and also a forest.
This is the maximum spanning forest problem, which is
equivalent to the minimum spanning forest problem using
negative edge weights, which in turn is a generalisation of
the heavily studied minimum spanning tree (MST) prob-
lem. Happily, several algorithms exist for efficiently solv-
ing these problems [22,31,32].

Since the similarity graph produced by find_edges is very
sparse (containing at most bN edges) and is already in
edge-list format, we employ Kruskal's O(|E|log |E|) algo-
rithm [31]. Kruskal's algorithm is very simple to state:

1. Read in the similarity graph edge list.

2. Sort edges by similarity score.

3. For each edge in the sorted list:

• If this edge would not introduce a cycle, add it to the
encoding graph forest.

Importantly, both sorting and cycle-testing can be per-
formed efficiently. Edge sorting is accomplished in O(|E|
+ max(score)) time using bucket sort. (Note that the score
of an edge between sequences of lengths x and y is at most
min(x, y)/s). Cycle-testing is performed using the fast
union/find data structure described in [33]. This data
structure manages an equivalence relation on a set: here,
the classes are the connected components of the encoding
graph, which combine as edges are added. Determining
whether an edge would induce a cycle amounts to testing

52

BMC Bioinformatics 2008, 9:242 http://www.biomedcentral.com/1471-2105/9/242

Page 8 of 15
(page number not for citation purposes)

whether its two endpoints are in the same class. m such
tests can be performed on a set of size n in O(m (n, m))
time [34], where (n, m) is the extremely slow-growing
inverse Ackermann function: effectively constant time per
test.

Delta-encoding sequences
Once the encoding graph has been created, encoding of
the individual trees can begin. For each tree, the root
sequence is output verbatim, and an in-order tree traversal
then delta-encodes every other sequence in terms of its
parent. It is well-known that such a traversal can be used
to encode a rooted tree as a string containing only vertex
identifiers and parentheses. Conversion in both directions
can be accomplished without requiring random access to
the characters of the string, implying that an in-memory
tree data structure can be efficiently "streamed" to or from
a sequential storage medium (such as a disk file) in time
linear in the number of nodes.

An edit script is a list of edit operations, which we here take
to be single-character insertions, deletions and substitu-
tions. Our task is to find a minimal-length edit script for
converting one string a of length n into another string b of
length m. This problem can be solved in O(nm) time using
a straightforward dynamic programming approach, in
which we successively compute optimal edit scripts for
pairs of prefixes of a and b in terms of previously com-
puted solutions. Several algorithms exist that are asymp-
totically faster for certain input distributions [28,35]. In
particular, an algorithm of Myers [35] can solve a variant
of this problem in which only insertions and deletions are
allowed in O(nd) time and space, where d is the edit dis-
tance (and thus the size of the edit script). Since the
encoding stage of coil deals only with sequences already
deemed to be similar by heuristics, this algorithm was
chosen for implementation. Another attractive feature of
the Myers algorithm is that it considers possible edit
scripts in increasing order of edit distance, and can be ter-
minated when the edit distance reaches some predeter-
mined maximum distance dmax. In coil's encoding stage,
this is used to bound the runtime of the algorithm: if the
edit distance between a pair of sequences exceeds a user-
specified figure (defaulting to 150), the algorithm termi-
nates early and a trivial edit script having length a + b is
produced.

Once an edit script has been found, it must be compactly
encoded into data bytes. coil uses a simple scheme in
which the most significant bit (MSB) of a byte specifies
whether an insertion or deletion is to take place, and the
remaining seven bits specify the offset (with respect to the
source string) from the previous edit operation. If an edit
operation is more than 126 characters along from the pre-
vious edit operation, a special code byte, having its lowest

seven bits equal to 127, is emitted, indicating that the next
byte should be read and 126 should be added to that
byte's value to form the offset. This code byte may occur
multiple times, adding 126 to the total offset each time.
Since deletion operations identify character positions
within the source string while insertion operations iden-
tify positions between characters, special care must be
taken to handle string positions and offsets in a manner
that permits unambiguous decoding.

In the case of an insertion operation, the character to be
inserted is not recorded in-place but written to a separate
file. This breaks the "edit script as black box" design prin-
ciple, however separating the edit script and nucleotide
data streams in this way makes the distributions of bytes
in each stream more predictable, resulting in compression
gains that cannot be overlooked.

Although the encoding described is fairly compact, it is
clearly not optimal: for example, we expect position off-
sets to be tightly clustered around zero, implying that an
encoding in which lower offset values were represented
with fewer bits would yield higher space savings. How-
ever, this and any other detectable redundancy will be
eliminated when the coil archive files are passed through
an external general-purpose compression program.

Sequence buffering
We have developed a simple buffering system that enables
maximally efficient random access to sequence data [see
Additional file 2].

Incremental compression
Large sequence databases such as GenBank [36] are not
static. They are being updated daily, and there is a need for
database users to access the latest versions. The solution
found by most organisations distributing these databases
is to make available daily or weekly updates in the form of
deltas – lists of sequences added, changed or removed
from the original database release. End users who already
have the main database installed can download the
updates and apply these changes to their local database
copies to produce up-to-date versions. These database del-
tas are much smaller files, often less than 100 Mb in size,
and coil's usual mode of compression performs poorly on
such small files.

A common update performed on a database is the addi-
tion of one or more new sequences. coil therefore sup-
ports incremental compression: the ability to efficiently
encode one sequence database, the increment, in terms of
another baseline database. We presume a user who down-
loads a database delta already has the original baseline
database, so we can "refer back" to baseline sequences
from within the encoding graph of the compressed incre-

53

BMC Bioinformatics 2008, 9:242 http://www.biomedcentral.com/1471-2105/9/242

Page 9 of 15
(page number not for citation purposes)

ment. This approach makes available a large pool of can-
didate root sequences that can be used for efficient delta-
encoding of each sequence in an increment.

In the remainder of this section we will refer to the mode
of compression discussed in previous sections as stan-
dalone compression. For concreteness we will talk about
compressing an increment database named incr.fasta in
terms of a baseline database named base.fasta. It may be
helpful to first read the subsection "Using coil", which
describes the overall workflow and the individual files
read and written by the various programs in the coil pack-
age.

Implementation of incremental compression
Suppose that there are B sequences in the baseline data-
base base.fasta, and I sequences in the increment
incr.fasta. Compression of the baseline entails ordinary
standalone compression; the only difference is that the k-
tuple index files, and also the base.coil.seqnos file, need to
be retained for compression (though not for decompres-
sion) of the increment. To compress the increment, k-
tuple index files are produced from the increment data-
base itself. However, we require the seqnums of the incre-
ment to be distinct from those of the baseline, so the -i B
command-line option must be used with the make_index
and find_edges programs to offset the starting seqnum by
B.

The encode program is then run with the command-line
option -i base, to indicate that the input file should be
encoded in terms of the coil archive base. When this
option is chosen, the Kruskal maximum spanning forest
algorithm is modified to avoid adding an edge between
two components which both contain baseline sequences.
This is easy to accomplish, since all baseline sequences
have seqnums less than B, and as components are identi-
fied by their lowest-numbered seqnum any component
that contains a baseline sequence will be represented by
the seqnum of that sequence, effectively limiting the
involvement of baseline sequences to being the roots of
components in the encoding graph.

Once encode has produced an encoding graph, it needs
access to the sequence data so that delta-encoding can be
performed. Obtaining the sequence data for an increment
seqnum can be accomplished in the usual way (via the
sequence buffering system), but this is not the case for
baseline sequences.

The necessary baseline sequences are obtained from the
baseline coil archive by decompressing the entire baseline
database in-memory, but writing out only those baseline
sequences which are the roots of trees in the increment
encoding graph (which we call buds). During this step,

baseline sequences will be visited in decode order; by first
sorting the list of required baseline seqnums into this
order, extraction can take the form of a list merge. The
sorting step involves inverting the permutation of base-
line seqnums recorded in the base.coil.seqnos file (a lin-
ear-time and -space operation), hence the requirement
that this file be retained after compression of the baseline
database. Then the encode program traverses and encodes
all trees rooted in baseline sequences in decode order. For
each such tree, the (strictly increasing) position of the
baseline root sequence in the decode order is written to
the file incr.bud, which is included in the increment
archive to facilitate decompression. Finally, the program
traverses and encodes all trees rooted in increment
sequences in the usual fashion.

When decompressing an increment with the program
decode, the command-line option -i base is used to spec-
ify that the coil archive base should be used as the base-
line. decode first decompresses the baseline sequences at
the positions listed in incr.bud and uses these sequences
as roots for decoding the initial segment of the increment
archive; then the remaining trees are decompressed as
usual.

Using coil
Compressing a FASTA database using coil involves run-
ning several C programs that work together to produce a
number of output files. Some of these files, collectively
termed the coil archive, are required for recovering the
original data, while the remainder may be discarded once
compression is complete. Alternatively, the user may run
a Perl script which automates these steps. The final step
requires the files comprising the coil archive to be com-
pressed by a general-purpose compression program. Fig-
ure 3 shows the complete process of using coil for
standalone compression of a database; incremental com-
pression is similar, but requires that all output files pro-
duced during baseline compression (including the
baseline coil archive itself) are also available. Incremental
compression produces one additional, small output file
ending with the extension .bud which must be included in
the final archive.

Decompression
Decompressing a coil archive is simple: first "undo" the
general-purpose compression used to compress the
archive, then run the program decode. Decompression of
an increment requires the name of the baseline database
be specified on the command line with the -i switch. The
process takes O(D) time and requires O(max(seqLen) *
max(treeDepth)) memory. max(treeDepth) is typically
small, but could be bounded using a simple adjustment to
the Kruskal algorithm if necessary.

54

BMC Bioinformatics 2008, 9:242 http://www.biomedcentral.com/1471-2105/9/242

Page 10 of 15
(page number not for citation purposes)

If the x.coil.seqnos file has been stored with the coil
archive, then it is possible to recover the original sequence
order at decompression time using the -x switch to the
decode program; otherwise, sequences in the FASTA out-
put file will appear in a different order.

For maximum portability across platforms, all files con-
taining binary integer data use the little-endian storage
format. All reading and writing of such files occurs
through platform-specific load_vector() and
save_vector() functions.

All programs accept the -h and --help switches, which can
be used to display usage information. A brief description
of each program can also be found in the README.txt file
included in the coil software package.

Results and discussion
To investigate the compression ratio achieved and run-
ning time required by coil for datasets of various sizes,
tests were performed on randomly chosen subsets of
sequences from a version of the GenBank est_mouse data-
base, which contains 1,729,518,522 nucleotides in
3,852,398 sequences. Twelve dataset sizes were examined,
with three test datasets produced for each size. Each data-
set having a name of the form emsn contains 3,852,398 ×
n/100 sequences randomly selected from the est_mouse
database. For the 100% size level, a single dataset (the
original est_mouse database) was run three times, giving
an indication of the noise level involved in execution time
measurements.

A number of alternative compression programs were
tested in addition to coil:

1. bz2: The general-purpose compressor bzip2 [27] with
compression level 9.

2. nrdb+bz2: Elimination of duplicate sequences with the
nrdb program, followed by bzip2 with compression level
9.

3. PPMdi: The PPMd general-purpose compressor variant
I described in [37], with model order 8 and RAM usage
256 Mb (the most allowed by the program).

4. 7z: the LZMA compression mode of the freely available
general-purpose compression program 7-Zip [38]. This
was the only other program we found that was capable of
utilising 1 Gb of RAM during compression.

Compression ratio vs. DB sizeFigure 4
Compression ratio vs. DB size. The compression ratios
of all tested algorithms increase as the input size increases;
those of coil and 7-Zip increase faster than the rest.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.01 0.1 1

Fraction of est_mouse sequences

C
o

m
p

re
ss

ed
 s

iz
e

/ O
ri

g
in

al
 s

iz
e

bz2

7z

PPMdi

coil

Using coil to compress a FASTA databaseFigure 3
Using coil to compress a FASTA database. As few
two-file k-tuple index segments are produced as memory
allows.

x.seq

make_index

x1.ktl

x1.kti

x2.ktl

x2.kti

x3.ktl

x3.kti

find_edges

find_edges

find_edges

x1.edges x2.edges x3.edges

x.fastaextract_seqs

combine_edges

x.edges

x.names

x.nidx

encode x.coil.ins

x.coil.child

x.coil.names

x.coil.seq

x.coil.es

x.coil.tar.bz2

x.coil.seqnos

select_lines

tar

bzip2

x.idx

55

BMC Bioinformatics 2008, 9:242 http://www.biomedcentral.com/1471-2105/9/242

Page 11 of 15
(page number not for citation purposes)

We also attempted to compress our datasets with the pro-
gram DNACompress [9], however we found that we were
unable to compress datasets larger than 14.5 million
bases using this program. Unfortunately this is smaller
than the smallest dataset we used in testing, and we were
forced to abandon this attempt.

The tests on the emsn datasets specified restrictions for 7-
Zip and coil to use at most 1 Gb of RAM. It should be
noted that the other programs all use substantially less
memory than this; in particular, PPMdi is limited to 256
Mb. To enable a fairer comparison with the PPMdi pro-
gram, a further series of tests was carried out on the 140
Mb FASTA dataset rfam_full using 256 Mb settings for
each program, and the -x option to coil.pl to enforce in-
order sequence recovery. Due to problems attempting to
compile nrdb on Windows, the nrdb+bz2 measurements
were performed on a different computer: a Linux 3.2 GHz
Xeon machine with 4 Gb of RAM. To measure decompres-
sion speed for nrdb+bz2, a simple C program, unnrdb,
was written to expand the multi-header FASTA files pro-
duced by nrdb.

All coil runs used the parameter values k = 12, s = 8, f = 4
and h = 10, and were run on a 2 GHz Intel Core 2 Duo
computer with 2 Gb RAM running Microsoft Windows
XP. Most parameter values were chosen by earlier experi-
mentation, however the choice of f and h received extra
attention. Since it is important for the speed of the
find_edges program that its hashtable data structure fit in
cache memory, and it is not obvious how to trade off the
f and h parameters for a fixed memory size, preliminary
testing was conducted with several values of these param-
eters, suggesting (f = 4, h = 10) is best for the case where
the hashtable is limited to 16 Kb in size – small enough to
fit in the first-level cache of any modern computer system.

Table 2 shows the sizes of the resulting compressed files.
We immediately see that it is a race between coil and 7-
Zip's LZMA compression mode: these two compressors
easily outstrip all others, with the gap widening as file
sizes increase. This is depicted graphically in figure 4. It
appears that the 1 Gb of RAM available to both these com-
pressors makes a big difference when compressing files
containing many sparse repeats. There is never more than
a 6% difference in file sizes between these two compres-
sors, with 7-Zip performing best on smaller files. coil
edges out 7-Zip on the larger files, eventually claiming a
5% improvement on the largest dataset tested, ems100.

Looking at the execution times in Table 3, a similar tran-
sition takes place: coil is faster than 7-Zip up until around
ems50, at which point the quadratic nature of find_edges
starts to dominate. coil compresses the ems25 datasets
faster and better than does 7-Zip by a small margin.

Finally, the decompression times shown in Table 4 show
that coil is somewhat slower than the other programs,
though still essentially linear-time as expected. Not shown
in the table is coil's frugal memory usage during decom-
pression – the maximum memory usage while decom-
pressing ems100 is just 4.5 Mb, in comparison to the 89
Mb used by 7-Zip and the 270 Mb used by PPMdi.

With respect to the rfam_full datasets, coil outperformed
the nearest competition – again, 7-Zip – by around 3% in
terms of compression ratio, though requiring more than
twice as much time to do so. PPMdi performed poorly,
producing a file more than twice the size of that produced
by coil or 7-Zip. This is especially surprising given that
these other programs were operating with the same 256
Mb RAM constraints as PPMdi for this dataset. bzip2 does
substantially better with only 8 Mb of RAM at its disposal.

Surprisingly, although the optimised Pentium 4 version of
find_edges produced a speed improvement of 25% on the
Pentium 4 computer on which we performed initial test-
ing, using this version of the program actually decreased
performance by 6% on the Core 2 Duo platform. Only
one test was run using this version of the program, indi-
cated by a row with an asterisk in Tables 2, 3 and 4; all
other results shown use the regular version of find_edges.

Conclusion
We have demonstrated that the concept of edit-tree cod-
ing can be applied to produce a practical compression tool
for sequence databases. The execution time required is not
negligible and appears to grow quadratically with data-
base size, but adequate compression on large EST data-
bases can nevertheless be achieved on "everyday" modern
computers. Furthermore, concern over compression time
diminishes when it is considered to be amortised over the
many decompressions that may take place in the targeted
field of one-source-many-sinks operations. Decompression
is acceptably fast, uses very little memory and can be per-
formed on any computer with a C compiler. Source code
portability and binary compatibility of compressed files
has been tested on two widely used platforms, Linux and
Win32.

There remains a wide scope for experimentation with coil
and fine-tuning of algorithms and parameters. For exam-
ple, one avenue not pursued here is the extent to which fil-
tering of common k-tuples affects execution time and
matching accuracy. It may be that the most commonly
occurring 80% of k-tuples can be removed without dra-
matically affecting overall compression. While this kind
of search space pruning would never be acceptable in a
program like SSAHA that is specifically designed to find
matches between sequences, we only care about accuracy

56

BMC Bioinformatics 2008, 9:242 http://www.biomedcentral.com/1471-2105/9/242

Page 12 of 15
(page number not for citation purposes)

of sequence matches where it noticeably improves com-
pression.

Availability and requirements
Project name: coil

Project home page: http://awcmee.massey.ac.nz/Data/
wtwhite/coil-1.1.2

Operating system(s): Tested on Windows and Linux.
Binaries are additionally provided for Windows. Source
code should compile in any UNIX-like environment.

Programming languages: ANSI C, Perl

Other requirements: Perl 5.6 or higher

Licence: BSD-style license

Table 2: Compressed file sizes

Dataset FASTA bz2 nrdb+bz2 7z PPMdi coil

ems1 23292780 5876747 5871445 4870989 5331953 4990193
23199910 5853780 5852865 4854519 5311350 4981279
23201245 5852837 5852772 4857631 5312411 4988747

ems2 46519702 11576074 11574420 9057588 10475531 9432789
46428669 11557030 11556573 9023980 10454826 9410376
46390115 11547516 11549117 9036246 10445740 9426594

ems3 69631679 17211495 17205793 12922145 15537092 13607729
69647486 17212318 17208461 12907737 15543489 13592739
69715954 17231912 17225610 12920294 15558845 13623246

ems4 92905691 22841127 22810035 16600091 20601712 17625302
93012024 22868732 22849091 16611294 20629724 17655369
92850447 22813494 22799324 16587471 20585812 17584008

ems5 116125238 28428297 28415051 20245345 25636473 21509065
116249077 28451622 28426520 20260429 25663621 21547174
116117128 28413464 28397742 20239745 25630456 21496207

ems10 232365230 56136032 56054164 37932764 50662993 39774087
232226017 56101887 56085818 37910566 50643774 39711435
232230440 56099503 56030860 37871106 50622855 39685294

ems15 348404276 83539894 83461996 55591757 75411889 56758484
348435883 83529794 83463158 55594352 75435650 56771053
348292392 83453434 83396104 55580937 75374710 56768193

ems20 464825178 110838776 110755872 72989089 100113255 72984372
464778933 110777795 110650470 72991749 100083039 73004561
464532828 110766213 110653180 72918789 100046482 72978434

ems25 581105516 137940393 137814551 89636246 124600275 88816000
580758935 137898843 137748733 89647136 124521398 88829572
580693026 137884675 137756070 89594767 124526386 88745435

ems50 1161787240 272394718 271857439 169833915 244302747 164139098
1161908810 272481687 271896055 169824808 244355206 164069331
1161582289 272310746 271844248 169812165 244255108 164093038

ems75 1742471477 405262890 404293340 247835911 362403056 236517596
1742664959 405243466 404268271 247921410 362419128 236506851
1742458336 405281768 404397179 247684455 362394809 236572552

ems100 2323234744 533757352 324292321 478735224 308211386
2323234744 533757352 324292321 478735224 308211685
2323234744 533757352 324292321 478735224 308211677

ems100* 2323234744 308212275
rfam_full 140518668 4413613 4113889 9504648 3995880

140518668 4413613 4113889 9504648 3996447
140518668 4413613 4113889 9504648 3995925

All sizes are in bytes. The FASTA column shows the size of the original uncompressed FASTA file. The smallest file in each row is shown in bold. *
This row shows the result of using version of find_edges optimised for the Pentium 4. nrdb+bz2 failed to compress the ems100 dataset because the
size of the FASTA file exceeded 2 Gb. All coil runs performed on the rfam_full dataset used the -x option to enable in-order recovery of sequences.
nrdb+bz2 was not used with the rfam_full dataset because it is incapable of restoring this order.

57

BMC Bioinformatics 2008, 9:242 http://www.biomedcentral.com/1471-2105/9/242

Page 13 of 15
(page number not for citation purposes)

Abbreviations
EST: Expressed Sequence Tag. In order to produce a pro-
tein, a cell first copies the segment of DNA encoding that
protein (the gene) to a complementary messenger RNA
molecule. ESTs are DNA sequences obtained by extracting
and sequencing the messenger RNA molecules from a cell.
Because only a single sequence read is performed on each
molecule, ESTs are limited to approximately 800 bases in
length.

FASTA: A simple text file format for storing multiple DNA
or protein sequences. Each sequence begins with a single
line starting with the character ">" and containing the
sequence name, followed by any number of lines contain-
ing the sequence data.

MST: Minimum Spanning Tree. Given a connected, edge-
weighted graph, a minimum spanning tree of the graph is
a subgraph that (a) contains all vertices of the graph, (b)

Table 3: Compression execution time

coil

Dataset bz2 nrdb+ bz2 7z PPMdi find_edges encode tar+bz other total

ems1 5.6 7.7 43.3 5.6 3.5 9.3 1.2 10.8 24.8
5.5 9.2 48.2 4.7 3.6 8.1 1.0 10.4 23.1
5.7 10.2 43.5 4.3 3.6 8.2 1.2 12.5 25.5

ems2 10.3 15.1 96.5 9.9 9.5 20.0 1.0 19.1 49.5
10.3 17.7 101.4 8.5 9.7 20.2 1.0 19.0 49.8
10.1 16.8 95.6 8.3 9.7 20.3 1.1 20.8 51.9

ems3 15.2 22.6 154.8 14.7 17.0 36.5 1.9 27.7 83.1
16.7 24.6 162.9 12.7 17.3 35.4 2.2 28.0 82.9
15.4 22.4 154.2 12.8 17.3 34.5 3.1 29.2 84.2

ems4 20.3 32.0 216.5 20.0 25.8 50.6 3.6 34.3 114.3
20.5 33.4 221.1 17.4 26.7 50.3 3.0 37.1 117.1
20.0 31.1 215.0 17.0 26.0 49.1 3.3 39.3 117.7

ems5 30.3 39.1 276.7 25.3 35.5 65.4 4.2 42.7 147.7
25.5 43.5 280.4 21.5 35.7 65.5 4.1 45.2 150.5
25.3 38.7 275.9 21.4 35.8 64.6 4.1 46.2 150.7

ems10 62.5 85.1 573.8 49.8 100.5 179.3 8.4 100.4 388.6
60.7 88.0 580.8 45.5 102.1 176.0 9.0 84.4 371.4
50.6 80.1 575.4 43.5 100.5 160.8 9.4 87.7 358.4

ems15 94.3 117.8 871.1 69.0 197.9 271.8 12.6 118.2 600.6
76.7 136.5 876.5 64.7 198.5 276.9 13.7 130.5 619.5
89.8 119.6 869.5 64.5 196.1 275.8 13.8 133.4 619.1

ems20 101.5 169.9 1163.0 92.8 317.1 393.5 16.7 176.0 903.5
101.7 179.7 1169.3 86.9 321.6 393.5 18.5 212.2 945.8
120.5 158.8 1161.3 84.9 319.6 399.7 16.9 215.6 951.8

ems25 133.0 207.7 1482.2 116.0 471.7 503.2 22.5 280.8 1278.1
152.3 220.7 1438.9 105.9 470.9 467.2 22.3 218.4 1178.8
171.0 196.3 1456.4 106.0 468.0 504.4 23.4 248.0 1243.8

ems50 306.2 411.2 2882.0 215.4 1657.4 1172.3 105.4 716.3 3651.4
340.0 452.4 2893.3 209.2 1658.2 1170.7 104.5 583.7 3517.1
291.1 411.6 2888.3 207.2 1655.5 1174.7 107.9 671.8 3609.9

ems75 500.7 712.4 4328.8 314.4 3517.1 1814.9 167.8 1173.4 6673.2
506.8 618.1 4304.5 311.9 3502.1 1810.2 164.7 992.9 6469.8
508.7 593.5 4298.9 317.7 3490.7 1798.6 165.0 1116.4 6570.6

ems100 668.6 5760.8 408.5 6064.4 2552.4 223.9 1421.8 10262.6
634.1 5707.5 404.1 6042.3 2524.8 219.3 1429.0 10215.3
689.2 5773.6 403.3 6114.1 2496.4 217.5 1546.2 10374.1

ems100* 6446.3 2515.4 218.6 1505.8 10686.1
rfam_full 32.8 75.8 7.9 114.8 12.8 4.0 40.7 172.3

29.6 75.3 7.9 113.9 12.3 4.3 38.2 168.7
29.6 75.5 7.8 114.5 12.4 4.2 36.0 167.1

All durations are in seconds. The rightmost five columns break down the execution of coil by its main component programs; the "other" column
includes the time needed for the programs extract_seqs, make_index and select_lines.
*This row shows the result of using the Pentium 4-optimised version of find_edges – surprisingly, this version of find_edges is actually about 6%
slower than the original version on this CPU.

58

BMC Bioinformatics 2008, 9:242 http://www.biomedcentral.com/1471-2105/9/242

Page 14 of 15
(page number not for citation purposes)

retains connectivity and (c) has minimum total weight
among all such subgraphs. It follows that in a graph with
positive edge weights, such a subgraph is always a tree.

Authors' contributions
WTJW conceived the concept of edit-tree coding, designed
and implemented the coil software, performed perform-
ance measurement, and produced an early draft of the
manuscript. MDH provided design advice and made sig-
nificant contributions to the final version of the manu-
script.

Additional material

Acknowledgements
The authors would like to acknowledge the helpful comments of D. Penny
in preparing this manuscript.

References
1. NCBI: NCBI-GenBank Flat File Release 159 Release Notes.

[ftp://ftp.ncbi.nih.gov/genbank/release.notes/gb159.release.notes].
2. NCBI News: GenBank Passes the 100 Gigabase Mark. NCBI

News [http://www.ncbi.nlm.nih.gov/Web/Newsltr/V14N2/
100gig.html].

3. Ziv J, Lempel A: Universal Algorithm for Sequential Data
Compression. IEEE Transactions on Information Theory 1977,
23:337-343.

4. Gailly J, Adler M: gzip (GNU zip) compression utility. [http://
www.gnu.org/software/gzip/].

5. Matsumoto T, Sadakane K, Imai H: Biological sequence compres-
sion algorithms: December 18-19; Tokyo. Universal Academy
Press; 2000:43-52.

6. Grumbach S, Tahi F: Compression of DNA sequences: 30
March-2 April; Snowbird, Utah. Edited by: Storer JA and Cohn
M. IEEE Computer Society Press; 1993:340-350.

7. Grumbach S, Tahi F: A New Challenge for Compression Algo-
rithms - Genetic Sequences. Inf Process Manage 1994,
30:875-886.

8. Chen X, Kwong S, Li M: A compression algorithm for DNA
sequences. IEEE Engineering in Medicine and Biology Magazine 2001,
20:61-66.

9. Chen X, Li M, Ma B, Tromp J: DNACompress: fast and effective
DNA sequence compression. Bioinformatics 2002, 18:1696-1698.

10. Li M, Badger JH, Chen X, Kwong S, Kearney P, Zhang HY: An infor-
mation-based sequence distance and its application to whole
mitochondrial genome phylogeny. Bioinformatics 2001,
17:149-154.

11. Kocsor A, Kertesz-Farkas A, Kajan L, Pongor S: Application of
compression-based distance measures to protein sequence
classification: a methodological study. Bioinformatics 2006,
22:407-412.

12. Ma B, Tromp J, Li M: PatternHunter: faster and more sensitive
homology search. Bioinformatics 2002, 18:440-445.

13. Strelets VB, Lim HA: Compression of Protein-Sequence Data-
bases. Comput Appl Biosci 1995, 11:557-561.

14. Wu CH, Yeh LSL, Huang HZ, Arminski L, Castro-Alvear J, Chen YX,
Hu ZZ, Kourtesis P, Ledley RS, Suzek BE, Vinayaka CR, Zhang J,
Barker WC: The Protein Information Resource. Nucleic Acids
Res 2003, 31:345-347.

15. Katz P: PKZIP. 1.1th edition. 1990 [http://www.pkware.com/]. Mil-
waukee, WI, USA, PKWARE, Inc.

16. Li WZ, Jaroszewski L, Godzik A: Clustering of highly homolo-
gous sequences to reduce the size of large protein databases.
Bioinformatics 2001, 17:282-283.

Additional file 1
Appendix 1 – Pentium IV optimised find_edges. Describes the version of
the find_edges program optimised for the Pentium IV processor.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-242-S1.doc]

Additional file 2
Appendix 2 – Sequence Buffering System. Describes the system used for
efficiently obtaining random access to sequence data in memory-con-
strained environment.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-242-S2.doc]

Table 4: Decompression execution time

Dataset bz2 nrdb+bz2 7z PPMdi coil

ems1 1.8 3.0 1.5 4.6 3.6
1.8 3.1 1.5 3.9 4.5
1.8 3.1 1.5 4.3 4.5

ems2 3.5 6.2 3.2 8.7 6.5
3.5 6.1 3.2 7.9 6.6
3.4 6.0 3.1 8.6 7.1

ems3 5.2 9.0 4.8 13.2 10.4
5.2 9.3 4.9 11.7 11.0
5.2 9.0 4.9 13.2 10.3

ems4 6.9 12.0 6.5 17.5 14.3
7.0 12.3 6.4 15.6 13.6
6.9 12.0 6.5 17.6 13.7

ems5 8.7 15.2 7.8 22.1 16.8
8.6 15.3 7.3 19.7 17.7
8.6 14.9 8.1 22.0 18.3

ems10 17.0 29.8 15.1 44.9 36.3
17.0 30.6 14.8 40.1 36.8
17.1 29.9 17.6 44.5 36.9

ems15 25.2 44.6 22.1 65.9 52.3
25.5 46.0 22.0 59.1 53.7
25.5 44.4 24.4 65.5 52.8

ems20 33.8 59.5 30.3 87.1 68.2
34.0 60.7 29.8 78.1 70.2
34.1 59.4 32.0 86.2 69.1

ems25 41.9 74.4 36.7 107.6 91.1
42.1 76.3 38.9 100.9 85.9
42.4 74.0 36.2 106.7 86.8

ems50 126.6 147.7 71.7 210.4 286.1
128.6 152.0 71.9 202.8 274.9
129.0 148.4 74.5 209.7 280.9

ems75 187.7 223.2 110.3 312.0 511.3
190.5 228.3 111.3 306.7 471.3
191.2 221.5 116.3 352.4 464.9

ems100 247.1 142.1 324.2 646.1
248.6 137.6 404.9 674.2
252.4 143.5 531.9 700.8

ems100* 649.9
rfam_full 9.6 7.9 9.1 60.7

6.3 6.4 9.1 59.9
6.1 6.2 9.1 60.2

All durations are in seconds. *This row shows the result of using the
Pentium 4-optimised version of find_edges.

59

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Bioinformatics 2008, 9:242 http://www.biomedcentral.com/1471-2105/9/242

Page 15 of 15
(page number not for citation purposes)

17. Li WZ, Jaroszewski L, Godzik A: Tolerating some redundancy
significantly speeds up clustering of large protein databases.
Bioinformatics 2002, 18:77-82.

18. Li WZ, Godzik A: Cd-hit: a fast program for clustering and
comparing large sets of protein or nucleotide sequences. Bio-
informatics 2006, 22:1658-1659.

19. nrdb [http://blast.wustl.edu/pub/nrdb/]
20. Thompson JD, Higgins DG, Gibson TJ: Clustal-W - Improving the

Sensitivity of Progressive Multiple Sequence Alignment
through Sequence Weighting, Position-Specific Gap Penal-
ties and Weight Matrix Choice. Nucleic Acids Res 1994,
22:4673-4680.

21. Foulds LR, Graham RL: The Steiner problem in phylogeny is
NP-complete. Advances in Applied Mathematics 1982, 3:43-49.

22. Chazelle B: A minimum spanning tree algorithm with Inverse
Ackermann type complexity. Journal of the ACM 2000,
47:1028-1047.

23. Ferragina P, Manzini G: Indexing compressed text. J ACM 2005,
52:552-581.

24. Russo LMS, Oliveira AL: A compressed self-index using a Ziv-
Lempel dictionary. In String Processing and Information Retrieval, Pro-
ceedings Volume 4209. Berlin, SPRINGER-VERLAG BERLIN;
2006:163-180.

25. Foschini L, Grossi R, Gupta A, Vitter JS: When indexing equals
compression: Experiments with compressing suffix arrays
and applications. ACM Trans Algorithms 2006, 2:611-639.

26. Lipman DJ, Pearson WR: Rapid and Sensitive Protein Similarity
Searches. Science 1985, 227:1435-1441.

27. Seward J: bzip2 and libbzip2 - A program and library for data
compression. 1.0.3 edition. 1997.

28. Hunt JW, Szymanski TG: A Fast Algorithm for Computing
Longest Common Subsequences. Communications of the ACM
1977, 20:350-353.

29. Ning ZM, Cox AJ, Mullikin JC: SSAHA: A fast search method for
large DNA databases. Genome Res 2001, 11:1725-1729.

30. Burkhardt S, Karkkainen J: One-gapped q-gram filters for Leven-
shtein distance. In Combinatorial Pattern Matching Volume 2373. Ber-
lin, SPRINGER-VERLAG BERLIN; 2002:225-234.

31. Kruskal JB Jr.: On the Shortest Spanning Subtree of a Graph
and the Traveling Salesman Problem. Proceedings of the Ameri-
can Mathematical Society 1956, 7:48-50.

32. Prim RC: Shortest Connection Networks and Some General-
izations. Bell System Technical Journal 1957, 36:1389-1401.

33. Moret B, Shapiro H: Algorithms from P to NP: Design and Effi-
ciency. Redwood City, CA, Benjamin/Cummings; 1991.

34. Tarjan RE: Efficiency of a Good but Not Linear Set Union
Algorithm. J ACM 1975, 22:215-225.

35. Myers EW: An O(ND) Difference Algorithm and its Varia-
tions. Algorithmica 1986, 1:251-266.

36. GenBank Sequence Database [http://www.ncbi.nlm.nih.gov/
Genbank/index.html]

37. Shkarin D: PPM: One Step to Practicality. 2002:202-211.
38. 7-Zip [http://www.7-zip.org]

60

3.2 Pentium IV Optimised find edges

Many modern CPUs use pipelining to increase instruction throughput. In a pipelined

CPU, each CPU instruction is fed through an execution pipeline consisting of sev-

eral stages, so that typically each stage is processing a different instruction at any

given time. The Intel Pentium 4 has 20 pipeline stages. Performance is maximised

when all pipeline stages are kept occupied with instructions, although this is not

always possible: whenever one instruction’s behaviour depends on the outcome of

an earlier instruction which has not yet completed executing, that instruction must

“wait” for the earlier instruction to complete. In particular, a conditional branch

instruction may change the memory address that the next instruction should be

read from, depending on the outcome of some test (such as whether a particular

CPU register is equal to zero) which is not yet known. Despite the existence of

sophisticated branch prediction hardware in the Pentium 4, pipeline flushes due to

mispredicted branches can dramatically reduce performance, especially when test

outcomes are close to random.

Nearly all if ... else constructs in compiled languages generate conditional

branch instructions, so it follows that eliminating as many such constructs as possible

from the inner loops of computationally intensive code will improve the performance

of that code on pipelined processors. Since the Pentium 4 is a very popular processor,

we felt it was worthwhile to develop an optimised version of the central subroutine

in the find edges program for this processor. Our subroutine, which is written in

assembly language, performs the step of merging a seqnum into a leaky move-to-

front hashtable as described in the paper, with the hardcoded restriction that f = 4.

The code uses the SSE2 extended instruction set to manipulate 128-bit quantities

representing vectors of four 32-bit numbers. The fact that the code fits all relevant

quantities into the eight SSE2 on-chip registers helps performance, however the

most remarkable feature of this subroutine is that it manages to accomplish its task

without a single conditional branch instruction. This is possible due to creative use

of the PCMPEQD comparison instruction in concert with various bit-shifting and logical

SSE2 instructions; for examples of the general approach the interested reader may

refer to Chapter 5 of the Intel 64 and IA-32 Architectures Optimization Handbook,

available from http://www.intel.com/products/processor/manuals/. We feel

61

that the 35 instructions of “straight-line” code we finally arrived at is close to the

fastest possible implementation of this functionality on this processor. Performance

results are described in the Results and Discussion section.

The actual sequence of SSE2 instructions follows:

mov eax,[bucket_addr]

movdqa xmm0,[XMMPTRTYPE PTR eax] // Load original ring buffer

movd xmm1,[seqno] // Load new seqno into low 32 bits

pshufd xmm1,xmm1,0 // Propagate low 32 bits to all 4 dwords

pand xmm1,xmm6 // Mask out counts in new seqno

movdqa xmm2,xmm0

pand xmm2,xmm6 // Mask out counts in ring buffer

pcmpeqd xmm2,xmm1 // Find match, if any

// Compute the new dword to go at the front of the buffer

movdqa xmm3,xmm0

pand xmm3,xmm2

por xmm1,xmm3 // OK since if there is a match, the seqno.s must be equal

pshufd xmm3,xmm1,0xF9

por xmm1,xmm3

pshufd xmm3,xmm1,0xFE

por xmm1,xmm3 // Now xmm1 contains dword to go at front, including count, in

// (at least) the rightmost dword

pand xmm1,xmm7 // Extract just the rightmost dword

// Compute the other 3 dwords

pslldq xmm2,4 // Also ensures low 32 bits are zero

pshufd xmm3,xmm2,0x90

por xmm2,xmm3

pshufd xmm3,xmm2,0x40

por xmm2,xmm3 // Now xmm2 contains mask extending from one−to−the−left−of

// match out to the left

pshufd xmm3,xmm0,0x90 // xmm3 contains shifted version of buffer

pand xmm0,xmm2 // Keep only the part that should not be shifted from xmm0

pandn xmm2,xmm3 // Put only the part that should be shifted in xmm2

por xmm0,xmm2 // Combine them

pand xmm0,xmm5 // Extract just the remaining 3 dwords

// Combine the two parts

62

por xmm1,xmm0 // Combine them

psubd xmm1,xmm7 // Increment the score

movdqa [XMMPTRTYPE PTR eax],xmm1 // Store the result

// Keep track of the largest count that this k−tuple has incremented

// This could also be done in standard assembler, since we are only

// interested in a single 32−bit quantity .

pslld xmm1,32-LOG2RINGBUCKETS // All we want is to be able to compare counts

movdqa xmm2,xmm4

pcmpgtd xmm4,xmm1 // Is the current biggest still the biggest ? (Signed compare, so

// top bit of count must be off !)

pand xmm2,xmm4

pandn xmm4,xmm1

por xmm4,xmm2

3.3 Sequence Buffering System

The encode program must frequently deal with sequences which are widely separated

in the input file, so it requires efficient random access to the sequence data. Although

all POSIX-compatible operating systems provide an fseek() system call to allow

a program to position the file pointer at any byte in a file, the subsequent read

will almost certainly require the disk read/write head to physically move, a process

which may consume several milliseconds. When performed several million times,

this comparatively slow mechanical movement is inefficient.

This problem is addressed in coil by a buffering system which takes advantage of

the fact that although random file seeks are slow, in-memory sorts are fast. Instead

of performing delta-encoding during each preorder tree traversal, two passes through

the entire forest are performed. Before the first pass, the sequence data file is scanned

to extract an array of sequence file offsets, and a memory buffer of user-specified

size (defaulting to 100Mb) is allocated. Then during the first pass through the

encoding forest, tree traversals simply record the seqnums that need to be retrieved,

adding each seqnum, along with its target offset in the memory buffer (computed

using the file offset array), to the array ordered seq list. During the second

pass through the encoding forest, the function get next seq() is repeatedly called

63

to actually read the next sequence from the memory buffer and perform delta-

encoding or raw-encoding as necessary. This function performs sequence buffering in

a “lazy” fashion: if a sequence is available in the buffer, it will be returned; otherwise,

the buffer seqs() function is first called, which determines how many sequences

will fit in the buffer, sorts this portion of ordered seq list by seqnum and reads

the sequences into memory. Each sequence is placed in the memory buffer at the

location determined by its position in the traversal order. The benefit of sorting

the ordered seq list array is that sequences are read in file order, minimising disk

seeks: in the limit case where the entire database fits in the buffer, no seeks at all

are performed.

3.4 Data Compression as Quick and Dirty Science

Both compression and scientific analysis have at their heart the quest for discovery of

patterns in the data. It is interesting to contrast the demands placed on algorithms

used for finding these patterns in these two cases.

For scientific analysis, accuracy of the pattern model—the extent to which the

model reflects real-world processes—is paramount. It is important to discover pat-

terns that are biologically plausible. Thus, when aligning protein sequences we take

care to set up the amino acid scoring matrix so that groups of amino acids sharing

known physical properties are marked as similar. Also, it is important to have a

model whose assumptions and limitations can be stated precisely—or better yet,

quantified. For this reason, when building phylogenetic trees we often choose the

expensive maximum likelihood approach over the typically faster maximum parsi-

mony search, since it allows the specification of a rich variety of models of sequence

evolution.

Data compression also operates by attempting to model input data. Compression

becomes possible only when the input data contains patterns that can be described

in fewer bytes than can the raw data itself—in particular, random data is not com-

pressible (Li & Vitányi, 2008).1

1Information theory tells us that random data is incompressible in expectation (or equivalently,
that a sufficient amount of random data is incompressible). Any scheme that compresses simple
patterns like homopolymer runs must expand some other patterns (e.g. to “escape” the symbol
used to indicate the start of a run).

64

Many powerful compression algorithms work according to the predictor-corrector

principle. Based on the data seen so far, the next unit of data is predicted; then an

“error term” is written out to correct the prediction to produce the actual data unit.

As a simple example, a digital sound recording consisting of a series of amplitude

samples can be compressed by predicting the ith sample value using a quadratic ex-

trapolation from the previous three data points; the error term is then the difference

between the prediction and the actual value. When the predictor is accurate, the

error term is usually low; more precisely, the distribution of error terms is tightly

clustered around a single value, and so has low entropy. This low-entropy stream

of error values can then be encoded using a small number of bits by a statistical

compression algorithm such as Huffman coding.

Usually, as the accuracy demanded of a predictor increases, both the compu-

tational complexity and the sheer computational effort required to produce that

accuracy increase drastically. Thus it is usually the case that wringing the last few

drops of accuracy out of a predictor requires a staggering amount of computation,

which simply isn’t worthwhile when we are only looking to save some disk space

or speed up a file download. Certainly, the more accurate the model, the better

the level of compression that will be achieved; but generally speaking, a low-order

approximation to the real-world process provides an ample compression gain for

modest time expenditure.

With scientific analysis, we want to find the model that best explains the data,

ideally in terms of meaningful parameters. With data compression, we just want

to find a model that is “usually better than nothing at all”—we don’t particularly

care how or why it works, so long as it can be found quickly and works well, most

of the time. Thus, despite the difference in emphasis, it should come as no surprise

that an algorithm developed to tackle a problem in one field is useful to the other.

As computer hardware and algorithms continue to improve, making feasible ever

more accurate compression schemes, it will be interesting to see how these two fields

continue to come together in the future.

65

3.5 General-purpose vs. Specialised Compression

One issue that doesn’t receive attention in the published paper is the maintenance

burden associated with choosing a specialised compression program such as coil

over a widely available general-purpose compressor such as gzip. Can a 5% im-

provement in compression justify switching to a new program, with the possibility

of bugs, stability and portability issues that doing so entails?

Clearly, if you will be storing only a small amount of sequence data, the answer

is “No”. But coil is designed for archiving large databases of DNA sequences,

and its compression levels are expected to increase with increasing dataset size.

Fig. 4 on p. 55 corroborates this, indicating that coil’s compression slowly begins

to outperform the general-purpose compressor 7-Zip as the dataset grows in size,

despite identical memory requirements. This suggests that coil will produce more

substantial compression gains on the ever-larger databases now being produced by

next-generation sequencing systems.

The fact that I am currently the only person maintaining the coil software is

a legitimate cause for concern for would-be adopters, but in fairness, almost every

software project—including the now-ubiquitous general-purpose compressor bzip2

(Seward, 1997)—began life this way. By making coil freely available and placing

it in the online SourceForge repository, access is ensured for the foreseeable future.

Finally, in an environment where work with datasets of this type and size is routinely

carried out, there are probably already a variety of other bioinformatics tools in use

as well—tools which face similar stability and availability challenges. In other words,

it is quite likely that the people who would be in a place to use coil are already

familiar with managing an ecosystem of evolving analysis software.

3.6 Erratum

The paper refers several times to an “in-order” traversal in the encode and decode

steps. In fact, these steps use a preorder traversal—that is, a depth-first traversal

in which a parent node is always processed before its children.

66

Chapter 4

Treeness Triangles: Visualizing the

Loss of Phylogenetic Signal

4.1 Introduction

This chapter presents the paper “Treeness Triangles: Visualizing the Loss of Phylo-

genetic Signal”, which was published in the journal Molecular Biology and Evolution

in 2007.

All software associated with this paper is now freely available via Subversion

from http://treetri.sourceforge.net.

A phylogenetic dataset, such as a sequence alignment or pairwise distance matrix,

contains a great deal of information; sometimes, too much for the purpose at hand.

This can occur for example when many datasets need to be compared. In such cases,

it is useful to be able to summarise a dataset.

A useful summary captures the “essence” or important aspects of the dataset,

while discarding less relevant information. In the case of phylogenetic analysis, a

relevant question is: To what extent does this dataset fit a phylogenetic tree?

Because evolution involves stochastic mutations, it is expected that the same

mutation may occur on different branches in the tree, and that a mutation in one

branch may be reversed by a later mutation in the same branch. These events,

termed homoplasies and reversals respectively, introduce signals into the resulting

sequences that contradict the signals corresponding to the true tree. Although they

present a difficulty for tree reconstruction, provided that enough data is available,

67

they can be dealt with by adopting an explicitly stochastic model of sequence evo-

lution that accounts for their occurrence. This is possible because these signals are

expected to be uncorrelated and smaller than the signals for the true tree.

On the other hand, processes that are not restricted to a single phylogenetic tree

introduce a different and more interesting class of problems for reconstruction. Ex-

amples of such processes include datasets formed from a mixture of different trees,

lineage sorting, hybridisation, and horizontal gene transfer. Perhaps more subtly,

selection—a fundamental evolutionary process—can skew the results of molecular

sequence tree reconstruction. This is because it introduces a new possible explana-

tion for why two sequences are similar: it could be because they diverged recently

(the usual explanation), or because they diverged long ago but now encode benefi-

cial traits in both species, arrived at independently through a process of convergent

evolution. Since the goal of phylogenetic analysis is to gain an accurate understand-

ing of the distant past, it is vitally important to estimate the extent to which the

primary simplifying assumption of a single phylogenetic tree actually applies to a

given dataset.

The Background section of the paper describes a variety of existing visualisation

techniques. One approach not mentioned there is δ plots (Holland et al., 2002),

which enable identification of problematic taxa. While useful, sometimes it is nec-

essary to display datasets more compactly. Approaches that summarise a dataset

down to a single scalar goodness-of-fit value are certainly possible, and have the

advantage of being highly amenable to statistical analysis (Goldman, 1993). This

approach allows many datasets to be summarised in a single diagram, but it limits

the amount of information that can be conveyed about each dataset. However it is

possible to keep slightly more information without sacrificing the intuitive visual-

ization. Treeness Triangles accomplish this by turning a phylogenetic dataset into a

single point on a ternary plot, where the co-ordinates are given by the proportions

of the signal that correspond to internal edges on the best tree, external edges on

the best tree, and residual signal that does not correspond to any edge on the best

tree. Importantly, the dimensionality of the resulting summary is low enough to

enable easy interpretation of regions on the plot, while remaining high enough to

distinguish important features of the dataset.

68

This paper demonstrates the usefulness of the Treeness Triangle approach, both

on simulated and on real chloroplast datasets. The method itself is very general,

requiring only (a) any kind of data that can be used to build a set of splits (such

as an alignment or pairwise distance matrix) and (b) either a particular tree or a

tree-building algorithm. The choice of which methods to use to turn the dataset

into (a) a set of splits and (b) a tree are unrestricted—it is not required that the

splits in the tree form a subset of those produced by the dataset. As such, Treeness

Triangles can be used not only to compare multiple datasets, but also to compare

the effect of multiple different models or tree-building methods on a single dataset.

4.2 Why does distance correction amplify resid-

ual signals?

Paragraph 3 on p. 78 contains some interesting observations regarding the effects

of distance correction that deserve further explanation. That correcting distances

for unobserved changes should lead to an apparent increase in internal edge signal

component is welcome, but the observation that such corrections also appear to

amplify residual signals is at first worrying. However, both phenomena have the

same underyling cause.

Distance correction for unobserved changes increases all distances in a distance

matrix, but, being nonlinear, it increases large distances the most. The longest

distances are usually those corresponding to paths between taxa in the true tree that

contain many internal edges; the shortest distances are usually those corresponding

to paths between taxa in the true tree that contain few internal edges, such as

the 2-edge paths between neighbouring taxa. Thus the splits supported by these

short distances—being predominantly the external edges of the true tree—are given

the lowest boost by distance correction. All other splits—being predominantly those

corresponding to internal edges, and splits that are incompatible with the true tree—

are given a relatively greater boost. After normalising all split weights, we should

therefore expect to find that both the internal and residual components are relatively

higher than for an uncorrected dataset.

69

4.3 Clarification

On p. 79, the paper discusses lineage sorting and lateral gene transfer under the

rubric of “non-treelike evolutionary processes”. This is perhaps an awkward choice

of words, since in the absence of recombination events, both of these processes can

indeed be represented on a tree. The confusion can be cleared up by keeping in

mind the context of the paragraph, which begins, ‘The issues become distinctly

more problematic if we entail the further assumption that “all” gene sequences in a

particular given chromosome are related by one and the same tree’. In other words,

this paragraph concerns itself with processes that generate entire chromosomes,

rather than individual genes. At this level, it is sensible to talk about lineage

sorting and lateral gene transfer being “non-treelike”, since the chromosome cannot

in general be modelled by a single tree when these processes are active—even though

each of the individual gene trees, considered in isolation, is of course treelike.

70

Treeness Triangles: Visualizing the Loss of Phylogenetic Signal

W. T. White,*1 S. F. Hills,*1 R. Gaddam,*1 B. R. Holland,* and David Penny*
*Allan Wilson Center for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand

It is well known that molecular data ‘‘saturates’’ with increasing sequence divergence (thereby losing phylogenetic
information) and that in addition the accumulation of misleading information due to chance similarities or to systematic
bias may accompany saturation as well. Exploratory data analysis methods that can quantify the extent of signal loss or
convergence for a given data set are scarce. Such methods are needed because genomics delivers very long sequence
alignments spanning substantial phylogenetic depth, where site saturation may be compounded by systematic biases or
other alternative signals. Here we introduce the Treeness Triangle (TT) graph, in which signals detectable by Hadamard
(spectral) analysis are summed into 3 categories—those supporting 1) external and 2) internal branches in the optimal
tree, in addition to 3) the residuals (potential internal branches not present in the optimal tree). These 3 values are plotted
in a standard ternary coordinate system. The approach is illustrated with simulated and real data sets, the latter from
complete chloroplast genomes, where potential problems of paralogy or lateral gene acquisition can be excluded. The TT
uncovers the divergence-dependent loss of phylogenetic signal as subsets of chloroplast genomes are investigated that
span increasingly deeper evolutionary timescales. The rate of signal loss (or signal retention) varies with the gene and/or
the method of analysis.

Introduction

Estimating phylogenies for deep divergences with se-
quence data is known to be a mathematically hard problem
for a number of reasons. Over timescales on the order of
about 600 Myr or more, the historical signal contained
in sequences will be obscured by random noise (Penny
et al. 2001). The theoretical results of Mossel and Steel
(2004, 2005) demonstrate that under standardMarkovmod-
els, as currently employed in molecular phylogenetics,
primary sequences should lose all information about
divergences approaching 1 billion years in age. For exam-
ple, following theorem 14.2 of Mossel and Steel (2005), we
can calculate that for 4 sequences of length 1000 evolving
under a Jukes–Cantor model of nucleotide substitution with
a mutation rate per nucleotide of about 10�8 per year, that if
all 4 lineages existed as far back as 1 billion years ago, the
probability of correctly estimating the tree would be 1/3
plus 0.002 (where the 1/3 term is just the chance of guessing
correctly). With this model and substitution rate, it requires
sequences of;100,000 bp to have a 50% chance of recov-
ering the correct tree for just 4 taxa. This calculation
assumes ideal conditions; any sources of conflicting infor-
mation would require longer sequences to compensate, and
hence, the calculation places an upper bound on the ex-
pected result for the case of a simple, known model.

A related complication is that commonly used models
of sequence evolution assume that, across the entire tree,
each site is evolving in the same rate class. This includes
the widely used general time reversible (GTR) model
and its extension to models where a distribution of rates-
across-sites (RAS) is assumed, with or without some sites
being considered to be invariant. However, models assum-
ing a gamma distribution require that each site must stay in
the same rate class across all lineages (Steel et al. 1994).
Such RAS models are only a simplified approximation
of how sequences really evolve in nature (Lockhart et al.

2000; 2006), but for shorter time scales they provide a suf-
ficiently good approximation to allow accurate phyloge-
netic estimation. We refer to such short to intermediate
time periods (up to about 300 Myr) as the ‘‘comfort zone’’
because simulations reinforce the conclusion that phyloge-
netic inference is very powerful here (Penny et al. 2001).
However, over time scales of half a billion years or more,
the failure to incorporate lineage-specific processes, such as
changes in nucleotide composition between taxa, may have
dire consequences for phylogenetic estimation (see e.g., Ho
and Jermiin 2004). Simulations allow us to predict the loss
of information under specific models, but for real data sets
where the actual substitution process is poorly understood,
we need to be able to assess quantitatively the phylogenetic
information in a given data set.

Confidence in inferred trees is often estimated by boot-
strap values or posterior probabilities. Such values are use-
ful when assessing whether or not sampling error may be
influencing the results. However, bootstrap values do not
detect systematic error; thus, they do not guarantee whether
or not the branch in question is correct. For example, sev-
eral studies of genome-scale data sets have shown that
‘‘support’’ in terms of bootstrap proportions (BPs) can
swing from 100% for one tree to 100% for a different tree
by adjusting the model of nucleotide substitution (Phillips
et al. 2004; Goremykin et al. 2005). The bootstrap is gen-
erally not useful for assessing either loss or presence of phy-
logenetic signal for deep divergences because it does
not take into account systematic error such as mutational
bias (Lockhart et al. 1992; Lockhart and Cameron 2001;
Buckley 2002). Stated another way, the bootstrap permits
statements about site pattern frequencies, but it does not ad-
dress the issue of whether or not site patterns reflect histor-
ical signal.

To determine whether systematic error is readily de-
tectable for a given data set, tools to evaluate the goodness
of fit of models of evolution are often employed. In present
practice, goodness of fit is typically assessed using relative
tests such as the likelihood ratio test or the Akaike Infor-
mation Criterion as implemented in Modeltest (Posada
and Crandall 1998), which ask whether model A fits the
data significantly better than model B without, however,
revealing how close model B comes to approximating

1 These authors contributed equally to this work.

Key words: plastid genomes, spectral analysis, model misspecifica-
tion, exploratory data analysis, ternary plot, Hadamard conjugation.

E-mail: D.Penny@massey.ac.nz.

Mol. Biol. Evol. 24(9):2029–2039. 2007
doi:10.1093/molbev/msm139
Advance Access publication July 13, 2007

� The Author 2007. Published by Oxford University Press on behalf of
the Society for Molecular Biology and Evolution. All rights reserved.
For permissions, please e-mail: journals.permissions@oxfordjournals.org

71

the true model. Another class of tests has been used to an-
swer questions about the absolute goodness of fit of models
to data in a phylogenetic context (Reeves 1992; Goldman
1993; Bollback 2002; Waddell 2005; Jayaswal et al. 2005),
but failure to pass such tests does not explain what aspects
within the data are causing the poor fit. The parametric
bootstrap is another test and can be used to compare, for
example, the observed and predicted numbers of ‘‘single-
ton’’ sites, which basically correspond to the external
branches of the tree (Goremykin et al. 2005; Waddell
2005).

Phylogenetic network methods also allow exploration
of different, potentially conflicting, signals in the data. It is
well known that there is a one-to-one correspondence be-
tween phylogenetic trees and sets of compatible splits; a bi-
nary tree with n taxa corresponds to a set of 2n � 3 splits.
Network methods allow sets of incompatible splits and cor-
respondingly more detailed graphs. One of the first was
split decomposition (Bandelt and Dress 1992a) which takes
a metric (distance matrix) on n taxa and produces a set of up
to n(n � 1)/2 weakly compatible weighted splits, as imple-
mented in SplitsTree 4 (Huson and Bryant 2006). A useful
feature is that both the proportion of the metric that is ex-
plained (graphically represented) by the split system and the
residual that is not explained (undepicted) are both calcu-
lated. NeighborNet (Bryant and Moulton 2004) is a more
recent method that produces a set of up to n(n � 1)/2 cir-
cular splits; these can always be represented on a planar
graph. Other exploratory methods include spectral analysis
(Hendy and Penny 1993), Lento plots (Lento et al. 1995),
and consensus networks (Holland et al. 2005). These meth-
ods have proved useful for assessing conflicting signals
within individual data sets (Kennedy et al. 2005; Nannya
et al. 2005). The likelihood-mapping approach of Strimmer
and von Haeseler (1997), which also uses a triangle plot,
provides a useful graphical gauge of phylogenetic signal
without recourse to assumptions about the underlying tree.
Unfortunately, its output may be difficult to interpret: if
most points fall near the center of the diagram, it can be
concluded with confidence that the data is non-treelike,
but if the points cluster at corners of the triangle, the data
may or may not be treelike. More importantly, there is fre-
quently a need to compare multiple data sets or various
models on the same data set. In such cases, it is convenient
to have an exploratory approach that enables rapid compar-
ison across many data sets. Although the approaches men-
tioned above are useful, they are also visually complex—
meaning it is hard to compare results across many data sets
and treatments. For example, whereas likelihood-mapping
summarizes a data set with a set of points on a diagram,
a treeness triangle (TT) summarizes a data set with a single
point, enabling multiple data sets, or multiple analyses
of a single data set, to be compared on a single diagram.
Although the dekapentagonal mapping approach of
Zhaxybayeva et al. (2004) extends the quartet-based
likelihood-mapping method to 5-taxon data sets, with a sin-
gle point per data set, generalizing the method to n taxa
appears problematic.

Building upon the concept of treeness, introduced by
Andreas Dress and used in Eigen and Winkler-Oswatitsch
(1981) and Eigen et al. (1988) to assess how well data fit

a tree, we introduce the ‘‘Treeness Triangle’’ (TT) method.
This assorts phylogenetic signals in aligned sequences into
3 components: signals that correspond to internal edges
(branches) of a tree (I), signals that correspond to external
edges of a tree (E), and the residual signals (R) that corre-
spond to edges not present in the specified tree. These 3
values must sum to 1.0 and can therefore be plotted in a stan-
dard triangle (ternary) plot that readily reveals the relative
proportion of each signal type in a given data set. We illus-
trate the TT with both simulated and real data—the latter
from complete chloroplast (plastid) genomes. Here, we com-
pare the redistribution of signal proportions for the same
genes as a function of increasing evolutionary time from
flowering plant (fp) evolution spanning roughly 160–200
Myr (Magallon and Sanderson 2005) to the early diver-
sification of photosynthetic eukaryote lineages, including
red algae, whose fossil record spans at least 1200 Myr
(Butterfield 2000). It is essential to understand the extent
to which sequences retain phylogenetic signal for ancient
divergences and to detect conflicting signals. For the rea-
sons given above, this chloroplast data set is a suitable test
case for evaluating the TT.

Materials and Methods
Simulated Data

Random ultrametric trees were sampled from the PDA
(Proportional to Distinguishable Arrangements) distribu-
tion, in which each tree topology is equally likely: the
Markov model that generates these trees is in Steel and
Penny (1993). Each random ultrametric tree was produced
by taking a symmetric two-taxon rooted tree and randomly
adding edges. Sequences were simulated on these random
trees using Seq-Gen (Rambaut and Grassly 1997) and the
Jukes–Cantor model, with 0.2 (figs. 2A and D), 0.4 (figs. 2B
and E), and 0.6 (figs. 2C and F) expected mutations per site
along any path from the root to a tip. One hundred random
trees were produced, and for each tree and mutation rate,
data sets were generated with 100, 200, 400, 800, 1600,
3200, and 6400 sites.

Real Data

The real data set has 30 complete chloroplast (plastid)
sequences and is subdivided into 4 overlapping subsets of
12 taxa each. The first subset has 12 flowering plants (fp),
and each subsequent subset contains 6 sequences from the
previous data set and 6 new ones. Thus, the land plant (lp)
data set has 6 fps and 6 others from conifers to bryophytes;
the green plant (gp) data set has 6 lps and 6 green algae; and
the plastid (pl) data set has 6 from the gp data set and 6 other
algae. The taxa in each data set, together with GenBank ac-
cession numbers, are shown in table 1.

Complete annotated plastid genomes were down-
loaded from GenBank, and annotations for the genomes
were tabulated using a Perl script. A table was generated
which included information about gene sequence, protein
sequence, and gene location. The sequences were then im-
ported into a Microsoft Access database. The database al-
lowed sequences for each gene to be accessed quickly

2030 White et al.

72

across the taxa of interest. For each gene sequence, align-
ments were carried out in BioEdit (Hall 1999); nucleotide
data was translated to protein sequences, aligned, and trans-
lated back to nucleotide sequences. Where automated align-
ment was carried out, Clustal X (Thompson et al. 1994) was
used, together with manual editing. Distance matrices were
generated using PAUP* (Swofford 2001) from the aligned
gene data sets (all alignments are available from http://
awcmee.massey.ac.nz/downloads.htm).

Hadamard Transformation

Although the TT could be used directly on the frequen-
cies of splits as observed in the data, it is usual to use it after
correcting for inferred multiple changes. For mathematical
reasons (Hendy et al. 1994), the full Hadamard transform
requires either 2-state characters with a symmetric distribu-
tion or 4-state characters for the Kimura 3ST model and its
submodels, namely the Jukes–Cantor and Kimura 2ST.
However, the distance Hadamard calculation can be used
with more complex models, including those that are non-
stationary such as the general Markov model to which
the LogDet applies (Lockhart et al. 1994) and any form
of maximum likelihood distances (Felsenstein 2003, p.
196–221). This method is summarized in the next section.
Despite it initially appearing counterintuitive, because of the
reduction of information in distances relative to sequences
(Penny 1982; Huson and Steel 2004), there are some
potential advantages of the distance Hadamard method over

the full Hadamard. Because the distance Hadamard only
uses pairwise distances, both the variance and the bias
are reduced when correcting for inferred multiple changes
(Hendy and Charleston 1993; Charleston et al. 1994;
Waddell et al. 1994; Nei 1996). The variance and the bias
on distance values both increase as the number of changes
between taxa increases, and the increase in the bias is faster
than linear owing to a logarithmic factor used in the correc-
tion term (Tajima 1993). Obviously, the minimum observed
length of a quartet must be larger than that for the pairs con-
tained within it, and consequently, the variance and bias
of the inferred length of the quartet will be larger than
for either pair. However, because of the loss of information
in distances (Penny 1982; Huson and Steel 2004), we
test for the effect of this loss and also use the projected
Hadamard method (Waddell and Hendy 1997). This uses
a separate Hadamard conjugation for each of the 3 param-
eters under the Kimura 3ST model. The comparison of
the distance and projected Hadamard approaches is thus
straightforward.

Calculation of the Distance Hadamard

The Hadamard transformation requires distance values
for all subsets of taxa with an even number of members;
0, 2, 4, 6, 8, . . . n. This is an extension from quartet methods
(e.g., Vinh and von Haeseler 2004) that only include sub-
sets of 4 taxa. The values for nC2 5 n(n� 1)/2 pairs of taxa
are standard pairwise distances and are given by the input

Table 1
The Complete Chloroplast Genomes Used in This Study and the Data Sets They Appear in. They are fp (flowering plants),
lp (land plants), gp (green plants), and pl (plastids–reds, greens, and browns)

Genome Plant Group GenBank Data set

Zea mays Poaceae (Panicoideae) NC001666 fp lp
Oryza sativa Poaceae (Ehrhatoideae) NC005973 fp lp
Nicotiana tabacum Solanaceae NC001879 fp
Atropa belladonna Solanaceae NC004561 fp
Arabidopsis thaliana Brassicaceae NC000932 fp lp
Spinacia oleracea Caryophyllales NC002202 fp lp gp pl
Oenothera elata Myrtales (Rosids) NC002693 fp
Lotus corniculatus Legume NC002694 fp
Calycanthus floridus Magnoliid NC004993 fp
Panax ginseng Asterid NC006290 fp
Amborella trichopoda ANITA NC005086 fp lp gp
Nymphaea alba ANITA NC006050 fp lp
Pinus thunbergii Conifer NC001631 lp gp
Adiantum capillus-veneris Fern NC004766 lp gp pl
Psilotum nudum Fern-ally NC003386 lp
Physcomitrella patens Moss NC005087 lp gp
Anthoceros formosae Hornwort NC004543 lp
Marchantia polymorpha Liverwort NC001319 lp gp pl
Chaetosphaeridium globosum Streptophyte alga NC004115 gp pl
Mesostigma viride Streptophyte alga NC002186 gp
Nephroselmis olivacea Chlorophyte (Prasinophyceae) NC000927 gp pl
Chlorella vulgaris Chlorophyte (Trebouxiophyceae) NC001865 gp
Chlamydomonas reinhardtii Chlorophyte (Volvocales) NC005353 gp
Pseudendoclonium akinetum Chlorophyte (Ulvales) AY835431 gp pl
Odontella sinensis Diatom NC001713 pl
Guillardia theta Cryptophyte NC000926 pl
Cyanophora paradoxa Glaucocystophyceae NC001675 pl
Porphyra purpurea Rhodophyte (Bangiales) NC000925 pl
Cyanidium caldarium Rhodophyte (Cyanidiales) NC001840 pl
Gracilaria tenuistipitata Rhodophyte (Florideophyceae) NC006137 pl

TT: Visualizing the Loss of Phylogenetic Signal 2031

73

distance matrix. The values are either observed (uncor-
rected or Hamming) distances calculated directly from se-
quences or corrected (inferred) distances. Similarly, there
are nC4 possible quartets of 4 taxa and each value is the
minimum of the 3 combinations of pairwise distances.
For example, for the quartet q 5 {i, j, k, l}, the entry is
min{d(i, j)þ d(k, l), d(i, k)þ d(j, l), d(i, l)þ d(j, k)}, where
d(x, y) is the pairwise distance between taxa x and y. Again,
the quartet values are from observed values or from inferred
distances. For all larger subsets having an even numberm of
sequences, the distance is determined by finding the com-
bination of taxon pairs from this subset having minimum
total distance. In practice, it suffices to examine the sums
of the distance values for each pair and the remainingm� 2
taxa, which have already been calculated.

Treeness Triangle

The TT uses splits, subdivisions of a set of n taxa into 2
disjoint subsets, thus corresponding to an edge in a tree. In
general, for n taxa there are 2n�1 splits including the null
split. The analysis was carried out on software based on
SpectroNet (Huber et al. 2002). The programs are available
from http://awcmee.massey.ac.nz/downloads.htm. The main
operations are indicated in supplementary figure S1 (Sup-
plementary Material online). Nucleotide or RY-coded se-
quences can be translated directly into the frequency of
observed splits (s vector), or, using a program such as
PAUP* (Swofford 2001) or the freely available PHYLIP
(Felsenstein 2004), nucleotide, RY-coded or protein sequen-
ces can be converted to either observed or corrected pairwise
distances. Pairwise distance values can be expanded into full
generalized distances (respectively, r for observed and q for
inferred/corrected), which have values for all subsets with
an even number of taxa (Hendy and Penny 1993; Penny
et al. 1993; Hendy et al. 1994) via the distance Hadamard.
The values in the s, r, q, and c vectors (supplementary
fig. S1, Supplementary Material online) are interconvertible
by the Hadamard conjugation. Subsets of entries from either
the s or c vector can be selected, for example, those with
values greater than zero. A network (Huber et al. 2002),
Lento plot (Lento et al. 1995), or TT (fig. 1A) can then
be drawn. The Lento plot (fig. 1B) and TT both require a tree
for their calculation. In the current implementation, the tree is
obtained by the closest tree method (Hendy 1991) using
a standard branch and bound search (Penny and Hendy
1987), although we emphasize that the TT can be used with
anymethods for producing both a set of splits and a tree from
a data set. For example, when working with distance data,
the weakly compatible set of splits output by SplitsTree 4
(Huson and Bryant 2006) could be used as an alternative
to splits generated via the distance Hadamard, and a mini-
mum evolution algorithm (Rzhetsky and Nei 1992) could
be used to generate a tree.

Of course, if the model used to build the tree is incor-
rect (model misspecification) or if there is insufficient data
(sampling error), it is possible that the tree used as input to
the TT does not match the (usually unknown) true tree. In
the case of the closest tree algorithm used in this paper, the
tree recovered corresponds roughly to the tree that gives
the best possible treeness values, in the sense of minimising

the R component. Thus, the treeness components computed
for a data set will be optimistic when a tree different from
the true tree better explains the data. This does not inval-
idate the outcome of a TT analysis: the TT faithfully eval-
uates the tree likeness of a data set ‘‘with respect to a tree-
building method of the user’s choice.’’ Although both
sampling error and model misspecification can be tested
for (e.g., using bootstrapping and the absolute and relative
tests of goodness of fit described in the introduction, respec-
tively), this is probably not justified when using the TT sim-
ply as an exploratory data analysis tool.

In the TT, the values of all signals in the data sum to
unity and the proportion of signal on the external (E) and
internal (I) edges (branches) of the optimal tree are indi-
cated by the first 2 of the 3 entries indicated at the 3 apices
of the triangle. The sum of the residual signals (R) is the
third entry. Given a set of splits and a tree as input, these
3 values are computed by classifying each split in the split
set as an external edge of the tree, an internal edge of the
tree, or absent from the tree and adding the split’s weight to
the corresponding total: E, I, or R, respectively. The final
step is normalization so that the total E þ I þ R equals 1.
The upper apex represents the star tree where there are
no internal edges in the data, the lower left where the data
fits entirely onto internal edges of the tree, and the lower
right where all signals are of equal value (there is no support
for any particular tree). For a specified tree, the 3 classes of
values (E, I, and R) are summed as described above, nor-
mally as the c values, and these 3 coordinates are plotted
within the TT as illustrated in figure 1A. This summarizes
3 signals in just one point, in contrast to a Lento plot (shown
in fig. 1B for the fp data set). In further contrast to a Lento
plot, the TT can summarize a large number of comparisons
in a single graph (see figs. 2 and 3). For data that perfectly fit
a tree, all points would have an R component of 0 and hence
would lie on the line connecting the E and I apices.

Results
Simulated Data: TT Using the True Model

We first analyzed simulated data in order to examine
the extent of the sampling error in the residuals when the
model (tree plus mechanism of nucleotide change) is cor-
rect. Figure 2 shows results for simulated nucleotide data
sets with 12 taxa and increasing numbers of sites. For
100, 200, 400, 800, 1600, 3200, and 6400 sites, each data
set was analyzed for both the distance and projected Hada-
mard methods. Although in this case the true tree for each
data set was available, the trees used for TT analysis were
recovered from the simulated data using the closest tree
algorithm as is usual for real data sets, allowing for the (re-
alistic) possibility of recovering an incorrect tree. Addi-
tional data sets, created by shuffling the data within each
alignment column, were used in order to measure the effect
of complete information loss. For clarity, figure 2 only
shows the results for data sets with 100, 400, 1600, and
6400 sites, and the shuffled sites of 6400 nt. Figures 2A–C
shows the results for the distance Hadamard and figures
2D–F the projected Hadamard.

For figure 2A in particular, the points representing
the same sequence lengths cluster into bands, each point

2032 White et al.

74

FIG. 1.—A TT (A) and a Lento plot (B). The sum of all signals in the data (c values after a Hadamard transform) are normalized to unity. The 3
values calculated are the proportion of signal on the external and internal edges (branches) of the optimal tree and the sum of the remaining (residual)
signals. The upper vertex of the triangle (E) is from a star tree where there are no internal edges in the data, the lower left (I) where the data fits entirely
onto the internal edges of the tree, and the lower right (R, residuals) where all signals are of equal value (and thus the data does not represent a tree). The
value plotted is 0.33, 0.53, and 0.14 for internal, external, and residuals, respectively. In principle, any tree can be used for the plot but the ‘‘closest tree’’
was used here because of its speed of computation and reasonable statistical properties (Hendy 1991). The Lento plot (B) shown is for the atpB gene of
the fp data set. The values above the axis are the values of the signals for a split (edge or branch of a tree) and the values below the axis are the
normalized sum of the values of other splits that are incompatible with that split. The bars have been shaded dark, medium, and white for splits
belonging the E, I, and R classes, respectively. Note that the abscissa scale differs by a factor of 2 above and below the origin. The species, in order, are
Arabidopsis thaliana, Oenothera elata, Lotus corniculatus, Atropa belladonna, Nicotiana tabacum, Panax ginseng, Spinacia oleracea, Amborella
trichopoda, Nymphaea alba, Calycanthus floridus, Zea mays, and Oryza sativa (see table 1).

TT: Visualizing the Loss of Phylogenetic Signal 2033

75

indexed by 3 signal types (I, E, and R). As expected, with
increasing sequence length the points approach the I–E (R5
0) line. Because this data is simulated on a tree and uses
the same mechanism to simulate the data and recover the
tree, sampling error is the only significant factor contribut-
ing to the residual component. These results can be com-
pared later with real data where model misspecification
may be significant. As expected (see Waddell et al.
1994), the residuals (R axis) decrease in inverse proportion
to the sequence length. In contrast, there is a faster-than-
linear increase in the residuals component as the rate of
change increases. This trend is shown in row 1 (figs. 2A–C)
and row 2 (figs. 2D–F), where the diagrams on the left,
center, and right correspond to expected numbers of sub-
stitutions per site of 0.2, 0.4, and 0.6, respectively.

The spread of points along the I–E line occurs because
each point is from a different random tree; the spread does
not vary noticeably between data set sizes. The projected
Hadamard (figs. 2D–F) retains more information from
the original data and hence carries a larger residual com-
ponent. This is seen by comparing each TT plot in figure
2D–F with the one immediately above it. This means that
the distance Hadamard is still underestimating the full values
of the residual component. With the projected Hadamard,
there is still a significant residual component with 6400 sites
for the highest rates of nucleotide change (fig. 2F).

Real Data

We first checked for each gene whether the parameters
for the gamma distribution (C) of rates across sites and the
proportion of variable sites (Pvar) were reasonably constant
in the 4 subsets of taxa (supplementary table S2, Supple-
mentary Material online). To conform to the mathematical

assumptions, this constancy of gamma and Pvar should hold
when going from the fp to the lp, gp, and pl data sets. Al-
though the estimates for the gamma shape parameter vary
considerably from ;0.3 to N across genes and data sets,
there is no clear trend with increasing divergence of the
taxa. (Note that N is a valid gamma value, indicating that
all sites are evolving at an equal rate.) As expected, the pro-
portion of invariant sites is significantly higher in the fp
than the other 3 taxa sets. This may be a bias in estimation
from having more constant sites in the fp alignments than in
the 3 more divergent taxa sets. Nevertheless, the decrease in
constant sites is consistent with the prediction of a relaxed
covarion model that additional sites will become variable
for deeper comparisons (Gaucher et al. 2002; Lockhart
et al. 2006). In the 3 most divergent taxa sets (lp, gp,
and pl), there is a significant positive correlation between
the gamma shape parameter and the proportion of invariant
sites (correlation coefficients of 0.46, 0.44, and 0.48,
respectively). In other words, in models where more sites
are classed as invariant, rates are close to being equal across
the variable sites and in models where there are few invari-
ant sites the rate distribution is more skewed.

Figures 3A and B are TT plots with points for each of
35 genes, calculated under the distance Hadamard (fig. 3A)
and the projected Hadamard (fig. 3B). The points colored red,
orange, green, and blue correspond to the fp, lp, gp, and pl
subsets of taxa. The gray points are shuffled versions of each
data set. For the distanceHadamard, there is a strong tendency,
asexpected, for thepoints tomovecloser toward theE (external
branches) apexwith older divergences (fp/ lp/ gp/ pl).
For the projected Hadamard, there is a similar tendency to
move toward the E apex with increasing divergence. Com-
pared with the distance Hadamard, the projected Hada-
mard yields TT points with a much larger residual value.

FIG. 2.—TT illustration of sampling error on simulated data. Results are for different sequence lengths and amounts of nucleotide change using the
distance Hadamard (panels A–C) and projected Hadamard (panels D–F). TT points for 100 12-taxon trees under a molecular clock model were
simulated with the Jukes–Cantor model and having 0.2 (panels A and D), 0.4 (panels B and E), and 0.6 (panels C and F) expected mutations per site
between the root and the tip. For each point, data was generated on a different random tree consistent with a molecular clock and the optimal tree
inferred by using the closest tree algorithm on the recovered split vector. The values are for 100 (blue), 400 (green), 1600 (orange), and 6400 (red) sites.
Data sets created by taking 6400-site data sets and randomly shuffling nucleotides within columns are shown in gray. Note that some data sets produced
split vectors that could not be analyzed using the projected Hadamard directly because of negative arguments to the log function; points for these data
sets were omitted. (See also supplementary table S2, Supplementary Material online.)

2034 White et al.

76

With progressively deeper geological divergence
times from ;200 Ma to ;1.2 Ga, the points in figure 4A
migrate toward apex E, but there is no apparent shift
toward the R apex, as might have been expected for random
data. To understand this effect, consider the following. As
sequence length tends to infinity, we expect shuffling by
columns to produce homogenous genetic distances between
all pairs of taxa. In other words, all entries in the resulting
distance matrix, apart from the diagonal, would become
equal to some constant d, whose value is determined by
the number and nature of sequence differences in the data.
Such distances can be represented exactly on a star tree with

each external edge of length d/2; this corresponds to the
upper point (the E apex) in the TT. However, for shuffled
alignments of finite length, the values in the distance matrix
only approximate d; hence, we see some signal mapped to
internal edges and some, typically a larger component,
mapped to residuals. Notably, genes for the pl data set,
spanning more than 1.2 Ga, map to points in the same re-
gion of the plot as the shuffled (randomized) data. The con-
trast with figure 3B is instructive: with the projected
Hadamard there is a stronger movement toward the R apex.
Figures 3C and F track 6 individual genes, with arrows in
the direction of increasingly divergent taxa sets.

FIG. 3.—Basic results for the 4 chloroplast data sets, with the distance (panels A and D) and projected (panels B and E) Hadamard methods. Each of
35 genes from the 4 data sets (fp, red; lp, orange; gp, green; and pl, blue) are used, together with randomized (shuffled) columns for all 4 data sets in
gray. In A and B, each dot represents a separate gene. In C and F, 6 genes are identified and the arrows indicate the change in TT value in going from the
fp, lp, green algae, and pl data sets (fp / lp / gp / pl). There are 3 genes with.1,500 bp (atpB, psbB, and rbcL), 2 with .500 bp (psbA and petB)
and one with ,150 bp (psaJ). As expected, there is a decrease in signal for the internal branches on moving from the fps to the pl data set. For the pl
data set (blue), there is apparently little phylogenetic signal at all on the internal branches (however, see the concatenated data set in fig. 4). This analysis
shows that much more signal is retained in the projected Hadamard than for the distance Hadamard, but much of that the additional signal does not fit
onto the optimal tree. G is the residual component of the TT plotted against sequence length for all genes and taxa sets. D and E are equivalent to 3A
and 3B but are the result of using the global optimum tree (concatenated) instead of the closest trees calculated on each data set individually. As
expected, the residuals are marginally larger in 3D and E.

TT: Visualizing the Loss of Phylogenetic Signal 2035

77

In figure 3A, it appears that for individual genes most
phylogenetic signal, corresponding to internal edges of the
optimal tree, is lost in the oldest data sets comprising gp and
algae, especially pl. Indeed, for many genes the residual
component (the distance from the I–E axis) is larger than
the signal for the internal branches of the optimal tree (dis-
tance from the E–R axis). In general, the TT reveals that for
each gene taken individually, most of the phylogenetic sig-
nal for deep divergences has been lost. Figure 3G shows the
relationship between sequence length and the residual com-
ponent of the signals. As expected from the simulation re-
sults (fig. 2), the residuals component is generally smaller
for longer genes.

For concatenated genes, however, the results for the
distance Hadamard for each of the 4 data sets (filled circles

in fig. 4) indicate a substantial component of signal that maps
to internal edges. The expected migration of points toward
the E (external) apex with increasing evolutionary time is
observed in the transition from the fp / lp / gp / pl
data sets. Again, for each of the corresponding data sets
shuffled by columns, virtually all signal on internal edges
of the tree is lost. However, it is most striking that in the
concatenated data the points lie close to the internal–external
(I–E) axis, meaning that the signal for the residual axis is
both quite small and spread over many possible alternative
signals. This important observation suggests that the high
residual signal for individual genes differs across genes.
Put another way, not only the residual signal from the indi-
vidual genes could stem from both sampling effects of gene
length and also lineage-specific differences in functional
constraints (that might average out).

Another area where the TT allows easy comparison is
across different treatments of the same data set. In figure 5,
we show the effect of different distance corrections on
the position of the points within the TT for the genes atpF
(fig. 5A) and petD (fig. 5B); the results for the other genes
are in supplementary material online. The 4 distance meth-
ods used are uncorrected p distances, filled diamond;
Tamura–Nei corrected distances, open diamond; LogDet
distances, closed circle; and GTR maximum likelihood dis-
tances, open circle. All genes, except for rbcL (see supple-
mentary material online) show the fp, lp, gp, and pl
progression. It is interesting that going from the uncorrected
distances to any form of correction tends to increase the
values of both the internal (I) and residuals components
(R). This indicates that the uncorrected data underestimates
the internal branches of the tree but simultaneously that the
signal not conforming to an optimal tree is amplified when
distances are corrected for multiple changes.

Discussion

The tendency in current phylogenetic practice is to fo-
cus attention on those aspects of a given data set that map
onto a particular tree. But the issue of howwell a bifurcating
tree actually describes the observed properties of the data in
question is at least as important. What can we really assume
safely about sequence evolution? For any given ‘‘individual
gene,’’ it can probably be safely assumed that all sequences

FIG. 4.—Results from concatenated genes for each of the 4 data sets
(fp, red; lp, orange; gp, green; and pl, blue). Filled circles are used for
distance (GTR) calculations, and crosses are used for projected Hadamard
calculations on the concatenated data sets. For data sets with older
divergences, the values again show a progression toward the E axis
(longer external and shorter internal edges). Nevertheless, the points are
much closer to the I–E (Internal–External) axis than with the individual
genes (fig. 3). This is a positive result and implies that to some extent the
nonphylogenetic signals observed with individual genes cancel out. In
contrast, the crosses indicate that in comparison to the distance
Hadamard, the projected Hadamard retains considerably more of the
information in the original data, but little of the information retained
corresponds to the closest tree.

FIG. 5.—Effect of different corrections on the fit between model and data. The distance Hadamard applied under different corrections for inferred
multiple changes. The 4 distance matrices used are: filled diamond, uncorrected p distances; open diamond, Tamura–Nei corrected distances; filled
circle, LogDet distances; and open circle, maximum likelihood distances. A and B are for the proteins atpF and petD, respectively. In general, the more
complex the optimal model, the better the fit between the data and the tree.

2036 White et al.

78

that we observe in nature are in fact related by a series of
treelike lineage splits that correspond to a recurrent process
of DNA duplication and mutational accumulation; the only
readily imaginable exceptions to such a rule would entail
intragenic recombination or gene conversion among se-
quence variants possessing fixed differences. If we neglect
the latter 2 mechanisms, then our default assumption would
be that gene and protein sequences are related by processes
that in mathematical terms are well described by trees.

The issues become distinctly more problematic if we
entail the further assumption that ‘‘all’’ gene sequences in
a particular given chromosome are related by one and the
same tree. This assumption is inherent to the concept that
there is a single tree of life by which all things are related
and that all we need to do is to identify its topology. But
many evolutionary mechanisms that affect the evolution
of genes are known, which are fundamentally not depict-
able as strictly bifurcating trees. The 4 most prominent
and mechanistically best understood examples of non–
treelike evolutionary processes include 1) hybridization
events, as are common among flowering plants (fps);
2) gene transfers from organelle genomes in the endosym-
biotic origin of organelles; 3) lineage sorting, which occurs
when gene trees differ from species trees because of coa-
lescence events occurring in a different order than specia-
tion events (as described in e.g., Rosenberg 2002; Degnan
and Salter 2005); and 4) lateral gene transfer among pro-
karyotic chromosomes, as mediated by 4a) transduction
via phages, 4b) transformation in the case of naturally
competent bacteria such as Haemophilus influenzae, and
4c) conjugation via plasmids, as any hospital that uses anti-
biotics can attest. Treelike or not, all these processes do
fit within the more general mechanism of descent with
modification.

In the age of genomes and phylogenomics, where gene
trees are produced on an industrial scale, we often find dis-
crepancies between trees produced for a collection of genes
within a particular set of chromosomes. It has become quite
popular to infer a prevalence of lateral gene transfer or other
non–treelike biological process as the cause of such differ-
ences. However, from the mathematical standpoint the is-
sue might more readily be formulated as, ‘‘How likely is it
that we will infer the same tree, or even similar trees, for
2 genes from the same set of organisms even if we know
exactly how molecules are evolving?’’ Even when the true
tree and the true model of sequence evolution is known, as
in computer simulated data, it is very difficult to infer the
true tree for moderately diverged genes (Nei 1996; Penny
et al. 2001), and only with such ‘‘perfect’’ data can we begin
to feel how well or how poorly methods of phylogenetic
inference actually perform with distantly related taxa. If
our goal is to learn something about the evolutionary past
from gene sequence data, we need to better understand the
relationship between the data that we observe and the trees
that are inferred from them. That means that there is a need
to understand not only the site patterns that will fit onto a
binary tree, but also those that will not (i.e., conflicting
data). Networks, Lento plots, and TT plots are steps in that
direction.

Here, we investigated both simulated data and real se-
quence data from chloroplast genomes. The reason for in-

vestigating the latter stems from the circumstance that, with
the exception of rbcL (which has long been known to ex-
hibit paralogy across the red algal-green algal boundary
Martin et al. [1992]), there is every reason to assume that
the sequences of proteins encoded in chloroplast genomes
are all related by the same historical process of evolutionary
bifurcations. This is because there are no known cases of
gene families within chloroplast genomes, no duplicate
copies of chloroplast genes (with the exception of those en-
coded in the inverted repeat, whose sequences are identi-
cal), and no known examples of gene replacement via
lateral acquisitions (leaving rbcL aside). Therefore, for
a given taxon sample, all chloroplast-encoded proteins
should, in principle, produce the same tree in phylogenetic
inference. The observation is, however, that they produce
different trees, sometimes with very high BPs (Goremykin
et al. 1997; Martin et al. 1998; Lockhart et al. 2000; Vogl
et al. 2003). The reasons underlying the inability of current
molecular phylogenetic methods to extract the same tree for
different chloroplast proteins (or any other protein set
where paralogy or lateral acquisitions can be reasonably ex-
cluded a priori), need clarification, if progress is to be made
in understanding deeper evolutionary history. The problem
of distinguishing between historical and other types of sig-
nal in molecular data is hard and becomes increasingly
severe for deep divergence times.

The projected Hadamard (Waddell and Hendy 1997)
uncovers more conflict than the distance Hadamard. There
is still the option for exploring the full Hadamard on 4-state
characters. However, this requires a vector with 4n�1

entries, rather than 2n�1 for the distance Hadamard and
3 � 2n�1 for the projected. The number of signals in the
residual component is large. For n taxa there are 2n�1 pos-
sible splits, n of which correspond to external branches of
the tree, n � 3 to internal branches, and thus (omitting also
the null split), there are 2n�1� 2n� 45 2002 splits for n5
12 taxa. In principle, both the mean and standard deviation
of the support for any particular split can be calculated for
the Hadamard (Waddell et al. 1994). In practice, the large
number of signals means that the variance of the splits will
be relatively high, and this will contribute to the higher re-
sidual values for the projected Hadamard versus the dis-
tance Hadamard.

In this paper, we have generated TT points with re-
spect to the closest tree, although the method could be used
more generally. For example, to compare the effect of dif-
ferent distance corrections on the weakly compatible splits
systems produced by split decomposition (Bandelt and
Dress 1992b), one could define a triangle point by summing
up the weights of trivial splits (of the form A|B, where either
|A| or |B| 5 1) and assigning it to the E (external) corner,
summing up the weights of the nontrivial splits and assign-
ing it to the I (internal) corner, and assigning the split-prime
residue to the R (residual) corner. When it comes to depict-
ing signal conflicts, TT is complementary to both Lento
plots and networks; Lento plots show all the conflicting
signals and networks show the most important conflicting
signals. A TT point shows how much conflicting signal
there is, without identifying the signals, making it easy
to compare the amount of signal across different data sets
and treatments. TTs reveal that the vast majority of all

TT: Visualizing the Loss of Phylogenetic Signal 2037

79

phylogenetic signals observed in the real chloroplast data
(or in simulated data) conflict with the optimal tree, rather
than support it, even for comparatively short divergence
times corresponding to less than about 200 Myr. Using
the projected Hadamard, the difference between the shuf-
fled and unshuffled pl data set was small. This warrants cau-
tion with regard to interpreting trees for deeper divergences.

Supplementary Material

Supplementary materials are available at Molecular
Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).

Acknowledgments

This work was supported by the New Zealand Mars-
den Fund. We thank Bill Martin for considerable input for
the design of the project at the SMBE meetings at UC
Irvine, for the first chloroplast dataset used during develop-
ment, and for ongoing discussions.

Literature Cited

Bandelt H-J, Dress AWM. 1992a. A canonical decomposition
theory for metrics on a finite set. Adv Math. 92:47–105.

Bandelt H-J, Dress AWM. 1992b. Split decomposition: a new
and useful approach to phylogenetic analysis of distance data.
Mol Phylogenet Evol. 1:242–252.

Bollback JP. 2002. Bayesian model adequacy and choice in
phylogenetics. Mol Biol Evol. 19:1171–1180.

Bryant D, Moulton V. 2004. Neighbor-net: an agglomerative
method for the construction of phylogenetic networks. Mol
Biol Evol. 21:255–265.

Buckley TR. 2002. Model misspecification and probabilistic tests
of topology: evidence from empirical data sets. Syst Biol.
51:509–523.

Butterfield NJ. 2000. Bangiomorpha pubescens n. gen., n. sp.:
implications for the evolution of sex, multicellularity, and the
Mesoproterozoic/Neoproterozoic radiation of eukaryotes.
Paleobiology. 26:386–404.

Charleston MA, Hendy MD, Penny D. 1994. The effects of
sequence length, tree topology and number of taxa on the
performance of phylogenetic methods. J Comp Biol.
1:133–151.

Degnan JH, Salter LA. 2005. Gene tree distributions under the
coalescent process. Evolution. 59:24–37.

Eigen M, Winkler-Oswatitsch R. 1981. Transfer-RNA: the early
adaptor. Naturwissenschaften. 68:217–228.

Eigen M, Winkler-Oswatitsch R, Dress A. 1988. Statistical
geometry in sequence space—a method of quantitative
comparative sequence-analysis. Proc Natl Acad Sci USA.
85:5913–5917.

Felsenstein J. 2003. Inferring phylogenies. Sunderland (MA):
Sinauer Associates.

Felsenstein J. 2004. PHYLIP (phylogeny inference package).
Seattle (WA): Department of Genome Sciences, University of
Washington.Version 3.6b. Distributed by the author

Gaucher EA, Gu X, Miyamoto MM, Benner SA. 2002.
Predicting functional divergence in protein evolution by
site-specific rate shifts. Trends Biochem Sci. 27:315–321.

Goldman N. 1993. Statistical tests of models of DNA sub-
stitution. J Mol Evol. 36:182–198.

Goremykin VV, Hansmann S, Martin WF. 1997. Evolutionary
analysis of 58 proteins encoded in six completely sequenced
chloroplast genomes: revised molecular estimates of two seed
plant divergence times. Plant Syst Evol. 206:337–351.

Goremykin VV, Holland B, Hirsch-Ernst KI, Hellwig FH. 2005.
Analysis of Acorus calamus chloroplast genome and its
phylogenetic implications. Mol Biol Evol. 22:1813–1822.

Hall TA. 1999. BioEdit: a user-friendly biological sequence
alignment editor and analysis program for Windows 95/98/
NT. Nucleic Acids Symp Ser. 41:95–98.

Hendy MD. 1991. A combinatorial description of the closest tree
algorithm for finding evolutionary trees. Discrete Math.
96:51–58.

Hendy MD, Penny D. 1993. Spectral analysis of phylogenetic
data. J Classif. 10:5–24.

Hendy MD, Charleston MA. 1993. Hadamard conjugation—a
versatile tool for modeling nucleotide-sequence evolution.
N Z J Bot. 31:231–237.

Hendy MD, Penny D, Steel MA. 1994. A discrete Fourier
analysis for evolutionary trees. Proc Natl Acad Sci USA.
91:3339–3343.

Ho S, Jermiin L. 2004. Tracing the decay of historical signal in
biological sequence data. Syst Biol. 53:623–637.

Holland BR, Delsuc F, Moulton V. 2005. Visualizing conflicting
evolutionary hypotheses in large collections of trees: using
consensus networks to study the origins of placentals and
hexapods. Syst Biol. 54:66–76.

Huber KT, Langton M, Penny D, Moulton V, Hendy M. 2002.
SpectroNet: a package for computing spectra and median
networks. Appl Bioinformatics. 1:159–161.

Huson DH, Bryant D. 2006. Application of phylogenetic networks
in evolutionary networks. Mol Biol Evol. 23:254–267.

Huson DH, Steel M. 2004. Distances that perfectly mislead. Syst
Biol. 53:327–332.

Jayaswal V, Jermiin LS, Robinson J. 2005. Estimation of
phylogeny using a general Markov matrix. Evol Bioinform
Online. 1:62–80.

Kennedy M, Holland BR, Gray RD, Spencer HG. 2005.
Untangling long branches: identifying conflicting phyloge-
netic signals a priori using spectral analysis, neighbor-net, and
consensus networks. Syst Biol. 54:620–633.

Lento GM, Hickson RE, Chambers GK, Penny D. 1995. Use of
spectral-analysis to test hypotheses on the origin of pinnipeds.
Mol Biol Evol. 12:28–52.

Lockhart PJ, Cameron SA. 2001. Trees for bees. Trends Ecol
Evol. 16:84–88.

Lockhart PJ, Huson D, Maier U, Fraunholz MJ, Van de Peer Y,
Barbrook AC, Howe CJ, Steel MA. 2000. How molecules
evolve in eubacteria. Mol Biol Evol. 17:835–838.

Lockhart PJ, Novis P, Milligan BG, Riden J, Rambaut A,
Larkum T. 2006. Heterotachy and tree building: a case study
with plastids and eubacteria. Mol Biol Evol. 23:40–45.

Lockhart PJ, Penny D, Hendy MD, Howe CJ, Beanland TJ,
Larkum AWD. 1992. Controversy on chloroplast origins.
FEBS Lett. 301:127–131.

Lockhart PJ, Steel MA, Hendy MD, Penny D. 1994. Recovering
evolutionary trees under a more realistic model of sequence
evolution. Mol Biol Evol. 11:605–612.

Magallon SA, Sanderson MJ. 2005. Angiosperm divergence
times: the effect of genes, codon positions, and time
constraints. Evolution. 59:1653–1670.

Martin W, Somerville CC, Loiseauxdegoer S. 1992. Molecular
phylogenies of plastid origins and algal evolution. J Mol Evol.
35:385–404.

Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M,
Kowallik KV. 1998. Gene transfer to the nucleus and the
evolution of chloroplasts. Nature. 393:162–165.

2038 White et al.

80

Mossel E, Steel MA. 2004. A phase transition for a random cluster
model on phylogenetic trees. Math Biosci. 187:189–203.

Mossel E, Steel M. 2005. How much can evolved characters tell
us about the tree that generated them?. In: Gascuel O, editor.
Mathematics of evolution and phylogeny. Oxford: Oxford
University Press. p. 384–412.

Nannya Y, Sanada M, Nakazaki K, et al. (11 co-authors). 2005.
A robust algorithm for copy number detection using high-
density oligonucleotide single nucleotide polymorphism
genotyping arrays. Cancer Res. 65:6071–6079..

Nei M. 1996. Phylogenetic analysis in molecular evolutionary
genetics. Annu Rev Genet. 30:371–403.

Penny D. 1982. Towards a basis for classification: the
incompleteness of distance measures, incompatibility analysis
and phenetic classification. J Theor Biol. 96:129–142.

Penny D, Hendy MD. 1987. Turbotree—a fast algorithm for
minimal trees. Comput Appl Biosci. 3:183–187.

Penny D, McComish BJ, Charleston MA, Hendy MD. 2001.
Mathematical elegance with biochemical realism: the cova-
rion model of molecular evolution. J Mol Evol. 53:711–723.

Penny D, Watson EE, Hickson RE, Lockhart PJ. 1993. Some
recent progress with methods for evolutionary trees. N Z J
Bot. 31:275–288.

Phillips MJ, Delsuc F, Penny D. 2004. Genome-scale phylogeny:
sampling and systematic errors are both important. Mol Biol
Evol. 21:1455–1458.

Posada D, Crandall KA. 1998. Modeltest: testing the model of
DNA substitution. Bioinformatics. 14:817–818.

Rambaut A, Grassly NC. 1997. Seq-Gen: an application for the
Monte Carlo simulation of DNA sequence evolution along
phylogenetic trees. Comput Appl Biosci. 13:235–238.

Reeves JH. 1992. Heterogeneity in the substitution process of
amino acid sites of proteins coded for by mitochondrial DNA.
J Mol Evol. 35:17–31.

Rosenberg NA. 2002. The probability of topological concordance
of gene trees and species trees. Theor Pop Biol. 61:225–247.

Rzhetsky A, Nei M. 1992. A simple method for estimating
and testing minimum-evolution trees. Mol Biol Evol.
9:945–967.

Steel MA, Penny D. 1993. Distributions of tree comparison
metrics - some new results. Syst. Biol. 42:126–141.

Steel MA, Székely L, Hendy MD. 1994. Reconstructing trees
when sequence sites evolve at variable rates. J Comput Biol.
1:153–163.

Strimmer K, von Haeseler A. 1997. Likelihood-mapping: a simple
method to visualize phylogenetic content of a sequence
alignment. Proc Natl Acad Sci USA. 94:6815–6819.

Swofford DL. 2001. PAUP* phylogenetic analysis using
parsimony (*and other methods). Version 4.0b8. Sunderland
(MA): Sinauer Associates.

Tajima F. 1993. Unbiased estimation of evolutionary distance
between nucleotide sequences. Mol Biol Evol. 10:677–688.

Thompson JD, Higgins DG, Gibson TJ. 1994. Clustal-W—im-
proving the sensitivity of progressive multiple sequence
alignment through sequence weighting, position-specific gap
penalties and weight matrix choice. Nucleic Acids Res.
22:4673–4680.

Vinh S, von Haeseler A. 2004. IQPNNI: moving fast through tree
space and stopping in time. Mol Biol Evol. 21:1565–1571.

Vogl C, Badger J, Kearney P, Li M, Glegg M, Jiang T. 2003.
Probabilistic analysis indicates discordant gene trees in
chloroplast evolution. J Mol Evol. 56:330–340.

Waddell PJ. 2005. Measuring the fit of sequence data to
phylogenetic model: allowing for missing data. Mol Biol
Evol. 22:395–401.

Waddell PJ, Hendy MD. 1997. Using phylogenetic invariants to
enhance spectral analysis of nucleotide sequence data. In:
Information and Mathematical Sciences Reports, Series B
(A. Swift, ed). Massey University, Palmerston North. [cited
2007 July 23]. [Internet]. http://awcmee.massey.ac.nz/people/
mhendy/pdf/ProjectedHadamardTemp.pdf.

Waddell PJ, Penny D, Hendy MD, Arnold GC. 1994. The
sampling distributions and covariance matrix of phylogenetic
spectra. Mol Biol Evol. 11:630–642.

Zhaxybayeva O, Hamel L, Raymond J, Gogarten JP. 2004.
Visualization of the phylogenetic content of five genomes
using dekapentagonal maps. Genome Biol. 5:R20.

Jianzhi Zhang, Associate Editor

Accepted June 22, 2007

TT: Visualizing the Loss of Phylogenetic Signal 2039

81

Chapter 5

A Bias in ML Estimates of Branch

Lengths in the Presence of

Multiple Signals

5.1 Introduction

This chapter presents the paper “A Bias in ML Estimates of Branch Lengths in the

Presence of Multiple Signals”, which was published in the journal Molecular Biology

and Evolution in 2008.

All software associated with this paper is now freely available via Subversion

from http://mlbias.sourceforge.net.

One of the primary modes of scientific inquiry is the questioning of assumptions.

In the field of phylogenetics, one glaring assumption dominates: that life evolved on

a single tree.1 While there is much evidence that the evolution of life is broadly tree-

like, there is also evidence that some aspects of some forms of life evolved according

to other, more general processes.

The goal of this paper is twofold:

1. To gauge the robustness of traditional ML tree-building to the presence of

1This despite the fact that Darwin himself was not committed to a single tree as the repre-
sentation of the relationships between living things. He preferred instead the term “descent with
modification”, which merely emphasises the continuity of all life and includes processes such as
lateral gene transfer that, when considered at the level of individuals (or equivalently, genomes)
are more general (Penny, 2011).

82

treelike “noise” in the data.

2. To advocate for the use of analysis methods, such as network methods, that

can in principle reject the hypothesis of a single tree.

5.2 Testing Robustness

Earlier robustness analyses, such as Sullivan & Swofford (2001), generated datasets

using a relatively general model, and then inferred trees using a method that as-

sumed a more restricted class of models. Importantly, there remained commonalities

between the generating model and inference model class: they both assumed a single

tree topology. This made it possible to test robustness by measuring the proportion

of 4-taxon tree topologies recovered correctly.

In our paper, we generated data on a mixture model using trees with different

topologies and fed into a single-tree inference method. Consequently it may very

well be asked: What are the common parameters shared by the generating model

and the inference model class? Or more plainly: What are we hoping to get?

5.2.1 Does “the” internal edge of a mixture of two trees

really exist?

The main difficulty surrounds our use of the term “the internal edge” in describing

the mixture of trees A and B on p. 87: it is not clear what single parameter in the

generating model the inferred internal edge length can be said to be estimating.

No difficulties arise if we assume that one of the trees in the mixture, called the

“true tree”, has a much larger proportion than the other, which we can call the

“noise tree”. If the proportion pA of tree A is large in relation to the proportion

pB = 1−pA of tree B, and if sufficiently many sites are available that sampling error

is not a concern, then it is reasonable to expect that single-tree ML will infer A’s

topology, so the internal branch length inferred is an estimate of A’s internal branch

length (and vice versa when pB � pA). But when pA ≈ pB, this interpretation is

unsatisfying.

83

5.2.2 Shared parameter values

In order to sensibly discuss the behaviour of inferences made using more-restricted

model classes on data generated under more-general models, we need to make precise

the notion of when parameter values are “shared” by different models.

Ever-present real-valued parameters like transition-transversion ratio are a sim-

ple case: if all k components of a mixture model have equal values for such a param-

eter, then we can sensibly describe this collection of parameters θi, 1 ≤ i ≤ k as a

single parameter θ of the overall mixture model, and attempt to infer it using a more

specific, single-component model. The resulting estimate, θ̂, can be meaningfully

compared with the θi, and statements can be made about the estimation procedure

regarding the usual parameter-dependent statistical properties like convergence (or

lack thereof) and bias.

On the other hand, the structure of an edge-weighted phylogenetic tree means

that it is not immediately clear how, or even whether, the parameters describing one

tree T can be matched up with the parameters describing another tree U . T and

U may in general have different topologies, which potentially makes their respective

sets of parameters prima facie structurally different and thus incommensurable.

5.2.3 The edges of a mixture model

One way to overcome this is to follow the lead of the Hadamard conjugation tech-

nique (Hendy & Penny, 1993), and embed the topology-dependent parameter space

of a particular tree in a larger, topology-independent space. Recall that an edge in

a tree (considered without its length) is defined by a split of taxa X|Y , and that

there are 2n−1 distinct splits on n taxa. This enables us to represent the 2n − 3

edge-length parameters describing any edge-weighted, unrooted binary tree T on n

taxa using a vector sT of 2n−1 parameters indexed by split: the 2n − 3 elements

corresponding to edges present in T are assigned the corresponding length, while

the remaining 2n−1 − 2n + 3 elements, which correspond to edges absent from T ,

are assigned the value 0.2 Now that we have a set of parameters that is structurally

identical across different tree topologies, we can safely say that two trees T and U

2This describes the situation for an unrooted binary tree; much the same procedure works for
rooted and/or multifurcating trees.

84

share a parameter value whenever sT i = sUi for some split i.

According to this formulation, the meaning of “the internal edge” of a mixture of

trees is not well defined; but whenever all components in the mixture model contain

some split A|B as an edge, and this edge has identical length across all components,

the meaning of “the edge splitting taxon set A from taxon set B” is well defined,

regardless of how the topologies of the components may otherwise differ. All such

shared edges can be regarded as edges of the mixture model, capable of being inferred

using a single-tree inference method (at least in principle).

It follows that the four external edges of the trees A and B analysed in the paper

are shared parameter values. Likewise, for the 5-taxon analysis, all five external

edges, plus the edge separating taxa 4 and 5 from the rest in the mixture of trees A

and B, are genuine shared parameter values. Figure 1B shows that ML estimation

of the four external edges in the 4-taxon analysis is indeed biased upward as the

mixture approaches an even balance between the two topologies. That such a simple

(and, we propose, frequently occurring) effect as a mixture of two trees is enough to

distort the results of single-tree ML analysis is a persuasive argument for the use of

network methods like Spectronet (Huber et al., 2002), which are inherently immune

to such problems.

5.3 Later Developments

Since the publication of our paper, the problem of how to deal with datasets that

contain signals from multiple trees has received attention from other researchers.

Instead of modelling arbitrary mixtures of trees, Heled & Drummond (2010)

propose to infer a posterior distribution on species trees using the multispecies co-

alescent (Degnan & Rosenberg, 2009). This approach requires a multilocus dataset

containing multiple individuals per species. The gene trees are not actually inferred

individually: instead the entire product space of gene trees for all of the loci is

integrated over using Bayesian MCMC. Because it explicitly allow for the conver-

gence of different gene lineages, the approach of Heled & Drummond (2010) will

not be misled by multiple tree signals in the data, provided that each locus is free

from recombination. As such it presents a compelling alternative to network meth-

85

ods whenever an alignment can be confidently partitioned into recombination-free

regions a priori.

The PhD thesis of Schliep (2009, chapter 2) has examined the problem of inferring

mixture models of trees in more detail. Unlike the simple 1-parameter mixture

model we used on p. 88, in which edge lengths were specified a priori, Schliep

(2009) considers the case in which edge lengths for both trees are to be estimated in

addition to the mixing proportions. Using the phangorn phylogenetic reconstruction

software (Schliep, 2011), he finds that estimates of corresponding edge lengths on

the component trees are strongly negatively correlated, leading to high sampling

variance of these parameters and making their accurate recovery difficult. He notes

that the topic of which phylogenetic mixture models are identifiable and which are

not remains an active area of research.

5.4 Connection to Multinomial Modes

The development of the GreedyModeFind algorithm in chapter 6 is a direct con-

sequence of the need to produce an artefact-free plot for Figure 1A of this paper

(p. 88). The details are explained in that chapter. Suffice it to say that the sentence

“Because PAUP* requires integer site weights for likelihood computation, the site

probabilities were multiplied by 30,001 and rounded to the nearest integer”, appear-

ing near the bottom of p. 87, considerably understates the actual difficulty of this

step.

86

LETTERS

A Bias in ML Estimates of Branch Lengths in the Presence of Multiple Signals

David Penny, W. T. White, Mike D. Hendy, and Matthew J. Phillips1

Allan Wilson Center for Molecular Ecology and Evolution, Massey University, P.O. Box 11222, Palmerston North, New Zealand

Sequence data often have competing signals that are detected by network programs or Lento plots. Such data can be
formed by generating sequences on more than one tree, and combining the results, a mixture model. We report that with
such mixture models, the estimates of edge (branch) lengths from maximum likelihood (ML) methods that assume
a single tree are biased. Based on the observed number of competing signals in real data, such a bias of ML is expected to
occur frequently. Because network methods can recover competing signals more accurately, there is a need for ML
methods allowing a network. A fundamental problem is that mixture models can have more parameters than can be
recovered from the data, so that some mixtures are not, in principle, identifiable. We recommend that network programs
be incorporated into best practice analysis, along with ML and Bayesian trees.

Phylogeneticists have been active in finding regions of
parameter space where methods for inferring evolutionary
trees are, or are not, reliable. Classic simulation studies in-
clude Huelsenbeck and Hillis (1993); Gaut and Lewis
(1995); and Lockhart et al. (1996). However, most theoretical
and simulation work has been on a data set generated on a -
single tree, though we have known for a long time that real
sequences have more signals than can fit onto a single tree.
This is shown by networks (Bandelt andDress 1992; Holland
et al. 2004; Huson and Bryant 2006), Lento plots (Lento et al.
1995), and the treeness triangle (White et al. 2007).

There has been considerable work on the effects
of model violation/misspecification (e.g. Sullivan and
Swofford 2001; Buckley 2002), but most work focuses on
the Markov model itself and less on whether a single tree
is insufficient to describe the data. For the present analysis,
we consider a scientific model as consisting of 3 parts
(Penny et al. 1992):

the structure of the model (a tree in our case),
a mechanism of nucleotide or amino acid change (a

stochastic Markov model), and
the initial conditions (including the nucleotide composition

at the root, rates of changes, and the distribution of rates
across sites).

Here, we concentrate on cases where model misspeci-
fication is the inadequacy of the tree itself, rather than the
Markov model.

There are biological examples where mixture models
(see Kolaczkowski and Thornton 2004; Matsen and Steel
2007) are biologically reasonable and cases where they
are approximating other biological mechanisms. Realistic
examples include lineage sorting, hybridization, lateral
gene transfer, and with questions of orthology/paralogy
among members of a gene family. In other cases, mixture
models can mimic other processes, such as similar changes
in G þ C content leading to convergence onto an incorrect

tree (see Lockhart et al. 1992). Thus, we consider that the
principles illustrated by mixture models are important in
understanding phylogenetic errors.

To illustrate the principles, we generate data on 2 trees,
combine the sequences in defined proportions, and test the
ability of standard maximum likelihood (ML) to estimate
the edge (branch) lengths. Datawere generated under a sym-

metric 2-state Hadamard conjugation (Hendy and Penny
1993) using an Excel spreadsheet (http://awcmee.massey.
ac.nz/downloads.htm). This gives exact frequencies of
the observed patterns, so there are no sampling errors in
either the data or the edge lengths generated from it.

We effectively have infinitely long sequences and so con-
centrate on systematic (Phillips et al. 2004), rather than
sampling, errors.

The first simulations used two 4-taxon trees A
(1,2)(3,4) and B (1,3)(2,4). In the examples reported here
the external branches had 0.2 changes per site and the in-
ternal 0.05; only one parameter (the internal edge) is being
changed. The 11 data sets had from 100% to 0% of patterns
from tree A, decreasing in steps of 10%, with the remaining

data coming from tree B.
PAUP* (Swofford 2001) was used on all data sets to

estimate the ML values for both trees and branch lengths
(4 external and one internal). The ML values for trees are

in figure 1A and the branch lengths in figure 1B. As expected,
ML favors tree A or B, depending on the proportion of data
from each tree, and has equal ML values when the data is
mixed 50:50. It is interesting that the ML value for either
tree changed little with up to 30% of sites coming from

the alternative tree—even though theML value for the minor
tree was increasing. As expected, there was no change in the
ML value of the third possible tree (1,4)(2,3), which was not
used in generating the data. Because PAUP* requires integer
site weights for likelihood computation, the site probabilities
weremultiplied by 30,001 and rounded to the nearest integer.

Figure 1B has the estimates of branch lengths. The
100% A and 100% B results are important controls, in that
branch lengths are estimated correctly (0.2 for the external
and 0.05 for the internal). However, with the mixtures, the

internal edge is underestimated and the external overesti-
mated. The effect on the external edges is straightforward;
the values increase above 0.2, with a maximum overesti-
mate of 6% in the case of the 50:50 mixture.

1 Present address: Centre for Macroevolution and Macroecology,
School of Botany and Zoology, Australian National University, Canberra
0200, ACT, Australia

Key words: maximum likehood estimation, mixture models, multiple
signals.

E-mail: d.penny@massey.ac.nz.

Mol. Biol. Evol. 25(2):239–242. 2008
doi:10.1093/molbev/msm263
Advance Access publication November 28, 2007

� The Author 2007. Published by Oxford University Press on behalf of
the Society for Molecular Biology and Evolution. All rights reserved.
For permissions, please e-mail: journals.permissions@oxfordjournals.org

87

In this example, the effects are stronger on the internal
branch, the estimate being over 30% too low, even consid-
ering just one of the 2 competing signals. The expected
lengths of the 2 competing signals are both 0.025, and
the estimate is .30% lower. However, if the estimate is
expressed as a percentage of the sum of the 2 competing
signals, we get a 66% underestimate; it is only 34% of
the sum. Either way there is a severe underestimate of
the length of the internal edge, which will be important
when estimating dates of divergence.

There is additional information in the data that allows
good recovery of both signals; the problem is forcing
ML onto a single tree. The Hadamard (Hendy and Penny
1993), given data from a 50:50 mixture, recovers the 2 sig-
nals, each with a value of 0.025 (fig. 1C). The recovery is not
exact, in that there is also a very small negative value
(�0.000625) for tree C (1,4)(2,3). This exceeds the rounding
errors from the computer storage of real numbers, which is
,10�16 in these calculations. Other network programs can
recover signal for both trees as shown in figure 1D for Spec-
troNet (Huber et al. 2002) for the same 50:50 mixture.

The bias in ML is not inherent to ML but is a form of
model violation from forcing the calculation onto a single
tree. To show this, we tested a variant of ML with 106 sites
from a mixture of the 2 trees. For each of the 11 data sets
(fig. 1), each site was assigned to tree A or B with random
starting probabilities P and 1� P; the trees and edge lengths
were given a priori. The search uses a simple hill-climbing
algorithm and tests new P values, accepting any which lead
to a better log-likelihood score. The value of P that max-

imizes the log likelihood is selected. With just a single pa-
rameter to estimate, this procedure quickly converged to the
correct P value, always resulting in a higher log-likelihood
value than that produced by fitting either tree alone. Thus,
there is additional information in the data that is not used by
standard ML on a single tree and which can be used to help
detect model violation.

We also did tests on 5-taxon trees. From figure 1B, we
can imagine that the additional signal for the internal branch
of tree B, which does not fit on tree A, might increase the
lengths of edges 1 and 3, or 2 and 4, thus increasing their
estimated lengths. To test this, we used 3 unrooted trees on
5 taxa: tree A (1,2),3,(4,5); tree B (1,3),2,(4,5), and tree C
(1,4),3,(2,5). Again using the Hadamard, we calculated the
data for each tree and made mixtures of trees A and B, and
A and C. In the first case, only one internal edge was
changed, and we expected that the upwards bias on the ex-
ternal edge to taxon 4 (in the 4-taxon case) was transferred
to the internal edge that separates taxa 4 and 5 (in the 5-
taxon case). In contrast, the second mixture (trees A and
C, interchanging taxa 2 and 4) is expected to affect both
internal edges. The expectation was that the first mixture
(trees A and B) would be a more local effect and the second
mixture (trees A and C) more global.

The results in figure 2 are for the 2 internal edges in the
mixtures of trees A and B, and A and C. With the first mix-
ture (A and B), there is the expected underestimate of the
first internal edge, and the predicted upwards bias in the
adjacent internal edge. When both internal edges are af-
fected (in the mixture of trees A and C), then both internal

FIG. 1.—A, Average per-site ML values for 11 mixtures of the trees (1,2)(3,4) and (1,3)(2,4). The highest likelihoods are at the top. B, ML edge
estimates for the same data as figure 1A. The external edges are overestimated and the internal edge underestimated. C, The Hadamard conjugation
recovers the 2 signals from a 50:50 mixture of data from the 2 trees; there is a very small negative signal for the third tree. The back values are the
observed frequencies of the 8 possible patterns in the data; the front values are after correcting for inferred multiple changes at a site. The 2 solid arrows
indicate the signals for the 2 trees in the mixture; the dashed arrow is for the potential third tree that is not in the mixture. D, SpectroNet similarly
recovers the 2 internal edges from the mixture and represents them as a network.

240 Penny et al.

88

edges are seriously underestimated, similar to figure 1B.
Again, as in figure 1C, we used the Hadamard to recover
the signals for both trees from both mixtures. For these ex-
amples, the results are accurate to the 5th decimal place.
Thus, the failure of ML on a single tree to recover the sig-
nals more accurately is not a lack of signal in the data; rather
it is model misspecification.

In addition to the model misspecification, there are the
well-known problems associated with increased parameter-
ization (see, Steel 2005). With mixture models, there can be
more parameters than independent signals in the data. With
a standard mixture model on 4 taxa (as in Matsen and Steel
2007), there are a minimum of 5 parameters for the edges of
each tree, and one for the proportion of sites from each tree.
Thus, there are 11 parameters for the model, which is more
than the 7 independent values being estimated from the da-
ta—there are 8 patterns in the data for the 2-state symmetric
model (Hendy and Penny 1993), but their frequencies must
sum to 1.0. The numbers of patterns does increase rapidly
with 4-state characters (Hendy et al. 1994), but this is not
sufficient to guarantee identifiability. With mixture models,
there is the question of identifiability (Chang 1996; Rannala
2002): whether there is in principle sufficient information in
the data to uniquely identify the model. Note that in the
Matsen and Steel (2007) example, the mixture of 2 sets
of edge lengths on a single tree would be rejected by meth-
ods that weight against increasing the number of parame-
ters. The mixture requires 6 additional parameters over the
alternative single tree that generates the same data.

The problem is exacerbated by the recent tendency to
increase the number of parameters being used in models—
whether it be from variation in population size (Drummond
et al. 2005), recombination (Martin et al. 2005),multipleML
optima (Chor et al. 2000), ordifferent gene trees (Degnanand
Rosenberg 2006, see also Stefankovic and Vigoda 2007).
These recognize that additional parameters are leading to
alternative models giving the same data, and so formal
analysis on identifiability of models is urgently required
(see Allman and Rhodes 2006 and Matsen and Steel 2007).

Although we expect that with real data, ML on single
trees will be biased in estimating branch lengths, this should

be kept in perspective. Researchers did not stop searching
the space of trees when Graham and Foulds (1982) showed
that the problem of evaluating all trees was NP-hard (and
therefore cannot be computed exactly as the number of
taxa increases). Rather, more care was taken over the
search procedures in order to get the best results. We ur-
gently need more work on ML and Bayesian methods
for networks (see Strimmer and Moulton 2000; Pagel
and Meade 2004). Similarly, we conclude that ‘‘best prac-
tice’’ in an analysis is to include a network diagram along
with trees from ML and Bayesian analysis.

Literature Cited

Allman ES, Rhodes JA. 2006. The identifiability of tree topology
for phylogenetic models, including covarion and mixture
models. J Comp Biol. 13(5):1101–1113.

Bandelt H-J, Dress AWD. 1992. A canonical decomposition
theory for metrics on a finite set. Adv Math. 92:47–105.

Buckley TR. 2002. Model misspecification and probabilistic tests
of topology: evidence from empirical data sets. Syst Biol.
51:509–523.

Chang JT. 1996. Full reconstruction of Markov models on
evolutionary trees: identifiability and consistency. Math Biosci.
137:51–73.

Chor B, Holland BR, Penny D, Hendy MD. 2000. Multiple
maxima of likelihood in phylogenetic trees: an analytic
approach. Mol Biol Evol. 17:1529–1541.

Degnan JH, Rosenberg NA. 2006. Discordance of species trees
with their most likely gene trees. PLoS Genet. 2:e68.

Drummond AJ, Rambaut A, Shapiro B, Pybus OG. 2005.
Bayesian coalescent inference of past population dynamics
from molecular sequences. Mol Biol Evol. 22:1185–1192.

Gaut BS, Lewis PO. 1995. Success of maximum-likelihood phylog-
eny inference in the 4-taxon case. Mol Biol Evol. 12:152–162.

Graham RL, Foulds LR. 1982. Unlikelihood that minimal
phylogenies for a realistic biological study can be constructed
in reasonable computational time. Math Biosci. 60:133–142.

Hendy MD, Penny D. 1993. Spectral analysis of phylogenetic
data. J Classif. 10:5–24.

Hendy MD, Penny D, Steel MA. 1994. Discrete Fourier spectral
analysis of evolution. Proc Natl Acad Sci USA. 91:3339–3343.

Holland BR, Huber KT, Moulton V, Lockhart PJ. 2004. Using
consensus networks to visualize contradictory evidence for
species phylogeny. Mol Biol Evol. 23:848–855.

Huber KT, Langton M, Penny D, Moulton V, Hendy M. 2002.
SpectroNet: a package for computing spectra and median
networks. Appl Bioinformatics. 1:159–161.

Huelsenbeck JP, Hillis D, et al. 1993. Success of phylogenetic
methods in the 4-taxon case. Syst Biol. 42:247–264.

Huson DH, Bryant D. 2006. Application of phylogenetic
networks in evolutionary studies. Mol Biol Evol. 23:254–267.

Kolaczkowski B, Thornton JW. 2004. Performance of maximum
parsimony and likelihood phylogenetics when evolution is
heterogeneous. Nature. 431:980–984.

Lento GM, Hickson RE, Chambers GK, Penny D. 1995. Use of
spectral analysis to test hypotheses on the evolutionary origin
of the pinnipeds. Mol Biol Evol. 12:28–52.

Lockhart PJ, Larkum AWD, Steel MA, Waddell PJ, Penny D.
1996. Evolution of chlorophyll and bacteriochlorophyll: the
problem of invariant sites in sequence analysis. Proc Natl
Acad Sci USA. 93:1930–1934.

Lockhart PJ, Penny D, Hendy MD, Howe CJ, Beanland TJ,
Larkum AWD. 1992. Controversy on chloroplast origins.
FEBS Lett. 301:127–131.

FIG. 2.—Edge lengths for the 2 internal edges x and y on mixtures of
trees A and B, and A and C –(1,2),3,(4,5); (1,3),2,(4,5) and (1,4),2,(3,5)
respectively. x is the internal edge leading to the taxon pair containing taxon
1; edge y is the internal edge leading to the taxon pair containing taxon 5.

A Bias in ML Estimates in the Presence of Multiple Signals 241

89

Martin DP, Williamson C, Posada D. 2005. RDP2: recombina-
tion detection and analysis from sequence alignments.
Bioinformatics. 21:260–262.

Matsen FA, Steel M. 2007. Phylogenetic mixtures on a single tree
can mimic a tree of another topology. Syst Biol. 56:767–775.

Pagel M, Meade A. 2004. A phylogenetic mixture model for
detecting pattern-heterogeneity in gene sequence or character-
state data. Syst Biol. 53:571–581.

Penny D, Hendy MD, Steel MA. 1992. Progress with
evolutionary trees. Trends Ecol Evol. 7:73–79.

Phillips MJ, Delsuc F, Penny D. 2004. Genome-scale phylogeny:
sampling and systematic errors are both important. Mol Biol
Evol. 21:1455–1458.

Rannala B. 2002. Identifiability of parameters in MCMC
Bayesian inference in phylogeny. Syst Biol. 51:754–760.

Steel M. 2005. Should phylogenetic models be trying to fit an
elephant? Trends Genet. 21:307–309.

Stefankovic D, Vigoda E. 2007. Pitfalls of heterogeneous processes
for phylogenetic reconstruction. Syst Biol. 56:113–124.

Strimmer K, Moulton V. 2000. Likelihood analysis of phyloge-
netic networks using directed graphical models. Mol Biol
Evol. 17:875–881.

Sullivan J, Swofford DL. 2001. Should we use model-based
methods for phylogenetic inference when we know that
assumptions about among-site rate variation and nucleo-
tide substitution pattern are violated. Syst Biol. 50:
723–729.

Swofford DL. 2001. PAUP* Phylogenetic analysis using
parsimony (*and other methods) ver 4.0b8. Sunderland
(UK): Sinauer Associates.

White WT, Hill SF, Gaddam R, Holland BR, Penny D. 2007.
Treeness triangles: visualizing the loss of phylogenetic signal.
Mol Biol Evol. 24:2029–2039.

Martin Embley, Associate Editor.

Accepted November 19, 2007

242 Penny et al.

90

Chapter 6

A Fast and Simple Algorithm for

Finding the Modes of a

Multinomial Distribution

6.1 Introduction

This chapter presents the paper “A Fast and Simple Algorithm for Finding the

Modes of a Multinomial Distribution”, which was published in the journal Statistics

and Probability Letters in 2010.

All software associated with this paper is now freely available via Subversion

from http://greedymodefind.sourceforge.net.

6.2 Motivation and Connection to Phylogenetics

It frequently happens that in the course of attempting to solve one problem, another

problem appears. Usually the latter problem is smaller and more specific than the

former. In contrast, this chapter follows the story of a small, specific, even grubby

phylogenetic problem—surely no more than an afternoon’s work!—that turned into

a rather general problem, before finally succumbing, somewhat serendipitously, to a

satisfying solution.

91

6.2.1 The Problem with PAUP*

The motivation for developing the GreedyModeFind algorithm described in this chap-

ter came from the need to create Figure 1A on p. 88 in the previous chapter’s paper.

In this figure, inferred ML scores are shown for 11 datasets, each a mixture of two

trees, with the proportion of tree A shown on the x axis. Because a 2-state symmet-

ric i.i.d. model is used, the two trees in the mixture can each be described by a vector

giving the probabilities of observing each of the 24−1 = 8 possible site patterns; each

of the 11 points along the x axis represents a dataset whose site pattern probability

vector is a weighted combination of the corresponding probabilities for these trees.

Each of the three curves shows the ML scores calculated by imposing a different

fixed topology on the inferred tree, and varying branch lengths so as to maximise

the likelihood. The problem encountered in producing this figure was that the site

pattern probabilities used to generate the 11 datasets are real numbers, but the

program used to calculate the ML scores, PAUP* (Swofford, 2001), requires integer

column weights.

The obvious expedient solution would be to multiply the site pattern frequencies

by a large number and round them somehow. (Because sites are i.i.d., multiplying

site pattern frequencies by a constant k amounts to raising the ML score to the power

k, or equivalently to multiplying the log-likelihood score by k—a transformation that

can be trivially undone.) The larger the multiplication factor, the more accurate

the approximation. Experimenting with PAUP* suggested that it stores column

weights as 16-bit signed integers, limiting this factor to 32767.

Unfortunately, this straightforward approach produces unimpressive results. Fig-

ure 6.1 shows an early version of Figure 1A computed by multiplying site pattern

probabilities by 30000 and rounding down. (Note that the graph’s vertical axis was

later inverted and rescaled, and the colours changed.) The two “bump” artefacts

distract noticeably from the main point the plot is trying to make: that ML inference

correctly infers no trace of tree C.

The essence of the problem is that multiplying and then rounding the site pattern

probabilities down (or up, or randomly) does not in general produce frequencies that

sum to a fixed total, and no obvious method of getting around this suggests itself.

This might not have been a practical problem, except that ML inference, when

92

Log-Likelihood vs. Proportion of Tree A for All Topologies

47690

47700

47710

47720

47730

47740

47750

47760

47770

47780

0 0.2 0.4 0.6 0.8 1

Proportion of Tree A

-ln
(P

(X
 |

T)
)

Tree A
Tree B
Tree C

Figure 6.1: An early version of Figure 1A from chapter 5, showing unsightly bumps

constrained to integer site frequencies in this way, appears to be very sensitive to

departures from exact ratios of site patterns.1 In order to reduce the scale of these

artefacts, it is necessary to consider how to apportion sites between site patterns

in more detail. The task now becomes: Given a total number of sites n, r distinct

site patterns, and a vector of site pattern probabilities p = (p1, p2, . . . , pr) that

sum to 1, how to choose a vector of nonnegative integer site pattern frequencies

x = (x1, x2, . . . , xr) such that they sum to n and x/n best approximates p?

6.2.2 Choosing a Best Representative

This is actually a very general question. The first issue is to make the notion of

“best approximates” more precise.

We start by considering the relative frequency vector p̂ = (x1/n, x2/n, . . . , xr/n)

induced by any selection of a vector x = (x1, x2, . . . , xr) satisfying
∑r

i=1 xi = n. In

the specific application at hand (producing Figure 1A for the paper in chapter 5),

we seek an x for some fixed n such that passing this vector to PAUP* produces a

log-likelihood score that, after dividing by n, is minimally different from the true log-

1This may or may not be an issue that is specific to PAUP’s ML inference algorithm; other ML
programs were not tested.

93

likelihood score that would be computed using the exact vector p. However, given

the complicated numerical optimisation steps performed internally by PAUP*, this

formulation is far too opaque to hope for a simple optimisation strategy.

Although PAUP* requires integer site weights, this is merely for ease of calcu-

lation. The likelihood function it computes is of course defined for fractional site

weights, and it is reasonable to expect that a small change in the input site weight

vector will elicit a small change in the likelihood score of the best model found.

Thus we can approximately minimise the error in the log-likelihood score output by

PAUP* by minimising the error in the site weight vector we supply as input to it.

The standard approach would be to minimise the error between p̂ and p in the

least-squares sense: choose x so that
∑r

i=1 (pi − p̂i)
2 is minimised. However the fact

that all xi are constrained to be nonnegative integers turns this problem into an

integer programming problem with a quadratic cost function, rendering it highly

nontrivial to solve.

6.2.3 An Alternative to Least Squares

Although least-squares appears doomed from a computational point of view, a dif-

ferent approach is available: set x to the vector that is most likely to be produced

by collecting the outcomes of n independent trials, each found by choosing site

pattern i with probability pi. This x is the mode of the multinomial distribution

having parameters (n, r,p), and p̂ = x/n approximates p. But in what sense is this

approximation justified?

Call a vector of probabilities y representable using n individuals if ny ∈ Z
r.

Substituting a = n in Theorem 1 of the paper shows that if x is a mode of (n, r,p)

then x is also a (in fact the unique) mode of the multinomial distribution (n, r, p̂),

with p̂ = x/n. Thus, among all probability vectors representable using n individuals,

p̂ is nearest to p in the sense that the multinomial distributions (n, r,p) and (n, r, p̂)

share a mode. In particular, when p is itself representable using n individuals—for

example if n = 5 and p = (0.2, 0.2, 0.6)—its unique mode x must be the vector np,

giving p̂ = p as desired.

I could find no satisfactory algorithm, and very little treatment overall, for com-

puting the mode of a multinomial distribution in the literature. Given the funda-

94

mental importance of multinomial distributions in statistical applications, this came

as a surprise. I resolved to attack the problem using a greedy heuristic approach

that computed modes by incrementing elements in a frequency vector that initially

contained all zeroes. Finding that these experiments yielded promising results, I be-

gan to investigate whether in fact this greedy algorithm could be proven to always

give correct results. As detailed in the paper, I found that it could. This basic ap-

proach, already fast and numerically stable, was further improved by incorporating

the starting point used by Finucan (1964) instead of starting from a zero vector.

6.3 Alternate Proof of Correctness

I am grateful to my coauthor Mike Hendy for suggesting a simpler proof of cor-

rectness of this algorithm. I had originally conceived a more elaborate proof of

correctness that used induction to show that, at every step during construction of a

mode vector, it is possible to make a choice that leads to an optimal solution, and

that the algorithm always makes one of these choices. For completeness I give this

original proof below.

First we establish some terminology. We call a mode vector x∗ a complete solu-

tion. A partial solution is an r-vector whose elements sum to n or less. We say that

a partial solution is larger or smaller than another if its element sum is larger or

smaller, respectively. We call a partial solution x admissible if there exists a com-

plete solution x∗ such that x∗
i ≥ xi ∀i—in other words, x is admissible iff a complete

solution can be produced by increasing some subset of its elements. Clearly, the

r-vector consisting of all zeroes is always an admissible partial solution.

We must also consider the sequence of algorithmic steps involved in constructing

partial and complete solutions. Abusing notation slightly, we will also use x∗ to

refer to a sequence of steps that creates the vector x∗ by incrementing the elements

of some admissible initial vector x0. Each step consists of choosing an element to

increment. Note that for any k-step decision sequence D that builds an admissible

partial solution vector xk from an initial vector x0, there exists a decision sequence

D∗ that builds a complete solution from x0 and whose first k steps agree with D.

Our algorithm starts with an r-vector consisting of all zeroes and increments

95

elements one at a time. After n iterations, a mode vector is produced. To prove

this, it is sufficient to show that:

I. The initial partial solution is admissible.

II. Given an admissible partial solution after i ≥ 0 steps, the (i+1)th greedy step

will produce another admissible partial solution.

III. The greedy algorithm will eventually produce a partial solution whose elements

sum to n.

Conditions (I) and (III) are trivial: clearly, the initial zero vector is admissible;

and the sum of vector elements increases by 1 on each iteration, so the algorithm

will terminate after n iterations. It remains to show that condition (II) is met. We

will not take the usual approach of identifying separate Greedy Choice and Optimal

Substructure requirements, instead we will present a direct inductive proof.

Assume that we have an admissible partial solution after m steps, xm, which

can be extended to a complete solution x∗. The greedy step will produce xm+1 by

choosing the element i that maximises (6.1) below:

(m+ 1)!(∏r
j=1 xj!

)
(xi + 1)

·
r∏

j=1

p
xj

j pi =
(m+ 1)!(∏r

j=1 xj!
) ·

r∏
j=1

p
xj

j

︸ ︷︷ ︸
A

· pi
xi + 1︸ ︷︷ ︸

B

(6.1)

A is invariant w.r.t. i and always > 0, so the i that maximises B also maximises

(6.1). B will be referred to as the score of element i, denoted qi.

If the optimal solution x∗ also chooses element i at step m+1, then clearly xm+1

is still admissible. Otherwise, x∗ chooses a different element c �= i at this step, and

two cases arise:

a) The optimal solution x∗ chooses element i at some later step s > m + 1. In

this case, the choices made by the optimal solution at steps s and m + 1 can

be swapped to produce a new complete solution x′ with the same (maximal)

probability, in which element i is chosen at step m+ 1. xm+1 makes the same

choice as x′ at step m+ 1, and thus is still admissible.

b) The optimal solution x∗ does not choose element i at any later step. The

remaining steps in the proof concern this case.

96

The optimal solution x∗ chooses element c at step m + 1 instead of element i.

Suppose that from step m+ 1 onwards, a total of nc choices of element c are made

by x∗. Then their contribution to the final probability product is given by (6.2)

below:

nc∏
j=1

(
m+ j

xc + j
· pc

)
(6.2)

If one of these choices of c was replaced by a choice of i, the expression in (6.2)

(and therefore the final probability product) would be multiplied by (6.3):

1
m+nc

xc+nc
· pc ·

m+ nc

xi + 1
· pi = pi (xc + nc)

pc (xi + 1)
(6.3)

But the greedy choice of element i at step m + 1 implies pi
xi+1

≥ pj
xj+1

∀j. In

particular,

pi
xi + 1

≥ pc
xc + 1

=⇒ pi (xc + 1)

pc (xi + 1)
≥ 1

=⇒ pi (xc + nc)

pc (xi + 1)
≥ 1 (6.4)

Thus we can replace the choice of c at step m+1 in the optimal solution x∗ with

a choice of i, producing a new complete solution x′′ whose probability is not less

than that of x∗ and which chooses element i at step m + 1. xm+1 makes the same

choice as x′′ at this step, and thus is still admissible. Note that the “≥” sign in

(6.4) above is effectively an “=” sign, since for the LHS to be greater than 1 would

contradict the optimality of x∗.

6.4 Problem Instances

Ideally we would have tested GreedyModeFind’s performance on the problem in-

stances used by Le Gall (2003). However we were not able to obtain them: the

paper itself does not detail them, nor does it indicate where they might be found,

and an email request to the author went unanswered. Nevertheless, given the reli-

97

able running time of GreedyModeFind, it can be safely assumed that these problem

instances would not have produced very different results.

98

Statistics and Probability Letters 80 (2010) 63–68

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

A fast and simple algorithm for finding the modes of a
multinomial distribution

W.T.J. White ∗, M.D. Hendy ∗∗
Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand

a r t i c l e i n f o

Article history:

Received 15 May 2009

Accepted 20 September 2009

Available online 4 October 2009

a b s t r a c t

Suppose a trial has r possible outcomes, with the i-th outcome having probability pi,∑r
i=1 pi = 1 and p = (p1, · · · , pr). The outcome of n independent trials can be described

by the frequencies k = (k1, . . . , kr),
∑r

i=1 ki = n, where outcome i was selected with

frequency ki ∈ N. A mode (there can be multiple modes) is an outcome with maximal

likelihood over all possible outcomes.

Despite the ubiquity of multinomial distributions in statistical applications, the best

algorithm to date for finding modes has unknown computational complexity and highly

variable performance in practice. It is also vulnerable to precision problems due to

accumulated roundoff error.

We propose a new algorithm, GreedyModeFind, for calculating the mode(s) of this

distribution, given n and p. GreedyModeFind is simple, efficient and numerically robust,

requiring O(r log r) time and O(r) space to find one mode. A concise representation of the

full set of joint modes can be found for an additional time cost of O(r log r). In practice

this algorithm drastically improves on the performance of earlier algorithms. We provide

a freely available C++ implementation of GreedyModeFind.
© 2009 Elsevier B.V. All rights reserved.

1. Background

Suppose with each of n independent trials, a selection process chooses one of r possible outcomes with probabilities

p = (p1, . . . , pr),

(
r∑

i=1

pi = 1

)
.

The outcome of the n trials can be expressed as a vector of r non-negative integersk = (k1, . . . , kr), where ki is the frequency
of the i-th outcome and

∑r
i=1 ki = n. Let

Kn,r =
{

(k1, . . . , kr) ∈ N
r |

r∑
i=1

ki = n

}

be the set of all possible outcomes.
The probability of obtaining the outcome k ∈ Kn,r is

P(k) =
(

n

k1, . . . , kr

)
p
k1
1 · · · pkrr = n!

r∏
i=1

p
ki
i

ki! . (1)

∗ Primary corresponding author. Tel.: +64 21 0761691.∗∗ Corresponding author.

E-mail addresses:w.t.white@massey.ac.nz (W.T.J. White), m.hendy@massey.ac.nz (M.D. Hendy).

0167-7152/$ – see front matter© 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.spl.2009.09.013

99

64 W.T.J. White, M.D. Hendy / Statistics and Probability Letters 80 (2010) 63–68

A vector y ∈ Kn,r is a mode of the joint distribution if P(y) is maximal among all vectors in Kn,r (there can be multiple
(‘‘joint’’)modes).Weweremotivated to search formultinomialmodes in order to construct simulatedDNA sequences having
nucleotide frequencies as similar as possible to reference sequences for a bioinformatics application; another application is
to particle non-linear filtering (described in Le Gall (2003)).

The earliest algorithm for computing a mode of a multinomial distribution was suggested as Problem 28 in Feller (1957).
This amounted to enumerating all possible k ∈ Kn,r within bounds attributed in Finucan (1964) to Moran (personal
communication), which restrict the number of candidate solutions. However these bounds are effective only for small r ,
prompting the development by Finucan of an iterative method (Finucan, 1964) that starts from an initial k ∈ Kn,r and
proceeds towards a mode (or modes) by incrementing or decrementing one frequency vector element at a time. This work
also showed that if multiple modes exist, then they occur as a single ‘‘cluster’’.

Later Le Gall (2003) proposed a variation of Finucan (1964) that reduced memory requirements by eliminating the
calculation of one floating-point vector, and made explicit the bookkeeping steps involved in selecting the next element
to adjust. This work also gave an empirically obtained running time bound, as well as heuristics for rapidly solving
perturbations of a given problem.

Our GreedyModeFind is a modification of Le Gall’s algorithm where modes of p in Kn,r are found for successive values
of n by a greedy algorithm. It addresses several weaknesses of the earlier algorithms:

• Both Finucan’s (1964) and Le Gall’s (2003) algorithms accumulate terms across O(r) loop iterations, leading to possible
loss of numerical precision on large instances. In contrast, the longest chain of inexact arithmetic calculations in
GreedyModeFind is fixed at two, since all needed values are computed ‘‘afresh’’ on each loop cycle.

• GreedyModeFind incorporates a straightforward bookkeeping optimisation that dramatically speeds up the
determination of the next frequency vector element to adjust.

• GreedyModeFind is the first algorithm of its kind for which tight bounds on computational complexity have been
established.

2. Preliminaries

It is useful to introduce some constructions where some components of x are changed to adjacent integers. Given
x = (x1, . . . , xr) ∈ Kn,r and distinct i, j ∈ {1, . . . , r}, let

x(i) = (x1, . . . , xi + 1, . . . , xr), x(j) = (x1, . . . , xj − 1, . . . , xr),

so x(i) ∈ Kn+1,r , x(j) ∈ Kn−1,r , and x(i)

(j) ∈ Kn,r . The probabilities of these are easily compared to P(x). We see from (1) that

P(x(i)) = (n + 1)
pi

xi + 1
P(x), P(x(j)) = 1

n

xj

pj
P(x), P

(
x(i)

(j)

)
= pi

xi + 1
· xj

pj
P(x). (2)

For somevaluesm there is a unique and easily determinedmodeofp inKm,r . For any positive real number a, letwi = �api�
for i = 1, . . . , r;

w(=w(a)) = (w1, . . . , wr); and m(=m(a)) =
r∑

i=1

wi. (3)

Theorem 1. w is the unique mode of p in Km,r .

Proof. Consider any z ∈ Km,r . If z �= w, then for some i, j ∈ {1, . . . , r}, zi < wi and zj > wj, so as they are integers,

zi < wi ⇒ zi + 1 ≤ wi = �api� ≤ api

and

zj > wj ⇒ zj ≥ wj + 1 = 1 + �apj� > apj.

Hence

P

(
z(i)

(j)

)
= P(z) · pi

zi + 1
· zj

pj
> P(z) · pi

api
· apj

pj
= P(z).

Hence z cannot be maximal, sow is the unique mode of p in Km,r . �

We note that Le Gall (2003) proves the weaker claim that w is a mode using her Proposition 1; in fact, uniqueness is
necessary for the correctness of both her algorithm and ours when considering joint modes.

Now if we are given a modew of p in Kn,r we can construct modes for p in Kn±1,r by a greedy step. By Eq. (2) the maximal

values among {P(w(i))} occur when
pi

wi+1
is maximal, and the maximal values among {P(w(j))} occur when

wj

pj
is maximal.

Theorem 2. If x is a mode for p in Kn,r , then x(k) is a mode for p in Kn+1,r , where k ∈ {1, . . . , r} maximises
pi

1+xi
.

100

W.T.J. White, M.D. Hendy / Statistics and Probability Letters 80 (2010) 63–68 65

Proof. Let y be a mode for p in Kn+1,r ; then ∀i ∈ {1, . . . , r},
P(y(i)) = 1

n + 1

yi

pi
P(y) ≤ P(x),

and

P(x(i)) = (n + 1)
pi

1 + xi
P(x) ≤ P(y). (4)

Thus

yi ≤ 1 + xi, ∀i ∈ {1, . . . , r}. (5)

As xi, yi are integers with

r∑
i=1

yi = n + 1 = 1 +
r∑

i=1

xi,

Eq. (5) implies yk = 1 + xk for exactly one value k ∈ {1, . . . , r} and yj = xj for each of the remaining r − 1 values. From

Eq. (4), P(x(k)) is maximal when
pk

1+xk
is maximal. �

However it is possible that
pk

1+xk
may be maximal for more than one k, in which case each x(k) is a mode for p in Kn+1,r .

Theorem 3. If x is a mode for p in Kn,r , then x(k) is a mode for p in Kn−1,r , where k ∈ {1, . . . , r} maximises
xi
pi
.

Proof. Let z be a mode for p in Kn−1,r ; then ∀i ∈ {1, . . . , r},
P(z(i)) = n

pi

zi + 1
P(z) ≤ P(x),

and

P(x(i)) = 1

n

xi

pi
P(x) ≤ P(z). (6)

Thus

xi ≤ 1 + zi, ∀i ∈ {1, . . . , r}. (7)

As xi, zi are integers with

1 +
r∑

i=1

zi = n =
r∑

i=1

xi,

Eq. (7) implies 1 + zk = xk for exactly one value k ∈ {1, . . . , r} and zj = xj for each of the remaining r − 1 values. From
Eq. (6), P(x(k)) is maximal when

xk
pk

is maximal. However it is possible that
xk
pk

may bemaximal for more than one k, in which

case each x(k) is a mode for p in Kn−1,r . �

3. Finding a mode

Faster bookkeeping with heaps. From a practical perspective, the primary shortcoming of Le Gall’s algorithm is the
unpredictable performance across problem instances (see Le Gall, 2003, Table 3 and Fig. 1(a)). This is due to Le Gall’s
procedure for choosing the next frequency vector element to adjust by maintaining a list of r pairs (i, qi) sorted by q value.
Choosing the next element to adjust is simple — it is always the element indexed by the i value of the first entry in the list.
However, once that element has been adjusted, the entry’s q value is increased and it must be repositioned in the list so as to
maintain sorted order— a laborious process thatmay involve scanning and copying every entry in the list, implyingO(r) time
per loop iteration. The key to speeding up Le Gall’s algorithm is to replace the sorted list with a heap data structure. A heap
containing r elements can be built in O(r) time; the minimum element is available in O(1) time; removal of the minimum
element and insertion of an arbitrary new element both take O(log r) amortised time. Since each loop iteration requires
extraction of the pair (i, qi) having minimum q, removal of this element, and reinsertion of the element with updated q
value, the size of the heap remains constant at r and the total amortised time per iteration is just O(log r). We use this
heap-based approach in our own algorithm, though we note that it can also be directly applied to Le Gall’s algorithm.

Choosing a starting point. The following bounds, attributed in Finucan (1964) to Moran (citation not provided), constrain the
elements of every mode vector x∗ = (x∗

1, . . . , x
∗
r) for p in Kn,r :

npi − 1 ≤ x∗
i ≤ (n + r − 1)pi. (8)

101

66 W.T.J. White, M.D. Hendy / Statistics and Probability Letters 80 (2010) 63–68

Finucan concludes that a useful starting point for his iterative search is initially setting each frequency vector element to
(n + r/2)pi, the approximate mid-point of this range. GreedyModeFind intialises the search with xi = �(n + r/2)pi�
which by Theorem 1 guarantees that the resulting vector is a unique mode of p in Km,r for some m ≤ n. This will simplify
the handling of multiple modes later.

Theorems 2 and 3 suggest the following simple algorithm for finding a mode for p in Kn,r :

Function GreedyModeFind1(p[n]):
m = 0
For i from 1 to r:

x[i] = floor(p[i] * (n + r / 2))
m = m + x[i]

If m <> n:
For i from 1 to r:

h[i].elem = i
If m < n:

h[i].score = p[i] / (x[i] + 1)
Else (m > n):

h[i].score = x[i] / p[i]

HeapBuild(h)

While m <> n:
best = HeapRemoveMax(h)
If m < n:

x[best.elem] = x[best.elem] + 1
best.score = p[best.elem] / (x[best.elem] + 1)
m = m + 1

Else (m > n):
x[best.elem] = x[best.elem] - 1
best.score = x[best.elem] / p[best.elem]
m = m - 1

HeapPush(h, best)

Return x

The first loop runs r times with constant time per iteration. If we are lucky, we land directly on the desired value of m
and stop there. Otherwise, the next loop also runs r times with constant time per iteration. Building the heap requires O(r)
time. To calculate the maximum number of iterations of the main while-loop, observe that

r∑
i=1

(
n + r

2

)
pi = n + r

2
=

r∑
i=1

⌊(
n + r

2

)
pi

⌋
+

r∑
i=1

di

where 0 ≤ di < 1, ∀i. This implies that
∑r

i=1 di < r , so

n − r

2
< m =

r∑
i=1

⌊(
n + r

2

)
pi

⌋
≤ n + r

2
.

The main while-loop adjusts m by 1 each iteration until m = n, so this loop must execute at most r
2
times. Each iteration

requires a heap removal and heap insertion, both log(r) operations. Thus the time complexity is O(r log r). O(r) space is
required for the heap.

4. Multiple modes

Theorems 2 and 3 show that a mode can be constructed from a mode of a neighbouring distribution. The following two
theorems establish that all modes can be constructed this way:

Theorem 4. If x is a mode for p in Kn,r , then there exist y and k s.t. y is a mode for p in Kn−1,r and y(k) = x. In other words, there
is no mode for p in Kn,r that cannot be constructed from some mode for p in Kn−1,r using Theorem 2.

Proof. By Theorem 3, we can construct a mode u for p in Kn−1,r from x. u = x(i) for some i ∈ {1, . . . , r}. Clearly
u(i) = (x(i))

(i) = x, so set y = u and k = i. �

102

W.T.J. White, M.D. Hendy / Statistics and Probability Letters 80 (2010) 63–68 67

Theorem 5. If x is a mode for p in Kn,r , then there exist y and k s.t. y is a mode for p in Kn+1,r and y(k) = x. In other words, there
is no mode for p in Kn,r that cannot be constructed from some mode for p in Kn+1,r using Theorem 3.

Proof. By Theorem 2, we can construct a mode v for p in Kn+1,r from x. v = x(j) for some j ∈ {1, . . . , r}. Clearly
v(j) = (x(j))(j) = x, so set y = v and k = j. �

We now consider the problem of recovering all modes for p in Kn,r starting from a mode for p in Km,r . We will assume
for simplicity thatm ≤ n (a symmetrical argument holds form ≥ n).

Suppose that for somem ≤ n, u is the uniquemode for p inKm,r . (Theorem 1 guarantees the existence ofm and u.) It then
follows fromTheorems 2 and 4 that anymode for p inKn,r can be obtained by starting fromu and performing some sequence
of n − m steps, where each step increases a maximal-score vector element by 1 and then adjusts its score appropriately.
(If m = n then we have the unique mode already.) Uniqueness of u is necessary to guarantee that all modes in Kn,r can be
reached in this manner.

Evidently there is a connection between multiple modes and multiple vector elements having maximal scores. We now
analyze this more carefully.

The GreedyModeFind1 algorithm leaves open the question of what to do when more than one of the vector elements
have equal scores at a given step. Since selecting one element to increment always decreases its score but has no effect on
the scores of other elements, the othermaximum-score elementswill remain the onlymaximum-score elements at the next
step. Consequently, if after step s there are k maximum-score elements to choose from, then steps s + 1 through s + k will
choose these k elements in some order, and that order is immaterial to the vector produced after step s + k. We call such
a sequence of k choices of k maximum-score elements in some order a resolved ambiguous segment. However, the order of
choices is immaterial only when at least k decisions remain to be made, i.e. whenm + s + k ≤ n. If fewer decisions remain
to be made, say g = n − m − s, the choice of which g elements to select does impact the final vector. Theorems 2 and 3

support the choice of any of the kmaximum-score elements at each of the g steps, so there are

(
k

g

)
distinct solutions. Note

that the particular mode initially arrived at will depend on the input order and particulars of the heap implementation.
TomodifyGreedyModeFind1 to handlemultiplemodes,we compute g by counting the number of equal-score elements

chosen during the final steps of the algorithm (i.e. steps n−m− g + 1, . . . , n−m). Call the score shared by these elements
q. We then continue to extract maximal-score entries from the heap until the score drops below q. Suppose b elements with
score q are extracted: then g + b = k, the total number of equally good elements that could have been chosen in the final
g steps. By recording the sequence of element choices made, the last g choices made by the algorithm can be ‘‘undone’’ to
produce a ‘‘base vector’’ xbase from which all modes can be generated in a straightforward fashion using recursion.

As an efficient alternative to explicitly enumerating all modes, the vector xbase can be returned along with the value of
g and a list of the k equally good elements. Because no element can appear twice in the same run of equal-score element
choices, at most r elements can appear in such a sequence, meaning that a ring buffer of size min(n, r) suffices to hold
the history of choices. This enables the algorithm to retain O(r) space complexity when this more succinct return value
representation is used. We call this version of the algorithm GreedyModeFind.

Approximate equality concerns. The handling of multiple modes requires tests for equality between floating-point numbers.
Because such tests are susceptible to numerical error, in practice some notion of ‘‘approximate equality’’ between floating-
point numbers must be used. This is not an ideal situation; however we do no worse than the algorithms of Finucan and
Le Gall in this respect. We now analyse one criterion for approximate equality, leading to a bound on the relative error,
which we here define as the ratio of the most-probable to the least-probable frequency vectors that could be reported as
joint modes. Rearranging allows a suitable tolerance parameter value to be determined easily from a specified maximum
allowed relative error.

One natural criterion for approximate equality is a bound on relative magnitude. Call two floating-point numbers x and
y approximately equal iff

max(x, y)

min(x, y)
≤ 1 + z (9)

where z is a tolerance parameter that can be varied to control the strictness of the criterion. This criterion is appropriate
when x and y are known to be nonzero and to have the same sign, as is the case here.

The proof of correctness ensures that the mode initially produced by GreedyModeFind will have maximal probability
among all vectors that could be produced by the algorithm. Call the probability of this initial mode vector pmax. Suppose
that the algorithm concludes that joint modes exist — in other words, with g − 1 steps remaining in the algorithm, the top
k − 1 elements on the heap all have scores approximately equal to the score of the element chosen at step n − g + 1. Each
of the g elements chosen in a joint mode may have a score that is as low as a factor of 1

1+z
below the actual maximal score,

and g may be as large as min(n, r). Since the overall probability of a frequency vector is just the product of the scores of its

element choices, in the worst case, a vector may be reported as a joint mode when its probability is just
(

1
1+z

)min(n,r)
times

the probability of the most-probable vector. In other words

pmax

pmin

≤ (1 + z)min(n,r). (10)

103

68 W.T.J. White, M.D. Hendy / Statistics and Probability Letters 80 (2010) 63–68

Table 1
Timings for ten problems in each of nine problem sizes. Those problem instances for which a time of 0.00 is reported took less than one kernel clock tick

(0.01 s on our Linux platform).

r 50,000 50,000 50,000 250,000 250,000 250,000 500,000 500,000 500,000

n 25,000 50,000 100,000 100,000 250,000 500,000 200,000 500,000 1,000,000

Min time (s) 0.00 0.00 0.00 0.03 0.01 0.02 0.07 0.04 0.04

Max time (s) 0.00 0.00 0.00 0.04 0.03 0.03 0.08 0.05 0.06

By rearranging this inequality, it is easy to determine theminimum value of the tolerance parameter z for a given acceptable
level of relative error pmax/pmin:

z ≥ pmax

pmin

1
min(n,r) − 1. (11)

For example, if n = 1000, r = 1000, and a maximum relative error of 10−6 is mandated (i.e. pmax/pmin = 1.000001),
z � 10−9.

5. Performance results

Table 1 shows the performance of a C++ implementation of GreedyModeFind on problems of the same sizes used by
Le Gall (2003) (note: they are not the same problem instances as were used by Le Gall). The table shows the minimum and
maximum running times across the ten instances of each size. The platform used was a 3 GHz Pentium 4 computer running
Linux, with 512 Mb of RAM and 2 Mb of L2 cache. Probability vectors were generated using random numbers read from the
/dev/urandom device.

Assuming that the 3GHz computerweused is 6–10 times faster than the 502MHz computer used by LeGall and adjusting
accordingly, all our computations complete in comfortably less than 1 s — the minimum running time for any of Le Gall’s
computations. Some of Le Gall’s runs took substantially longer (more than 27 min in one case).

6. Conclusion

We have presented GreedyModeFind, an algorithm for discovering the modes of a multinomial distribution that
dramatically improves on earlier algorithms in terms of real-world performance on large instances. In addition, our
algorithm avoids numerical precision problems to which earlier algorithms are susceptible. We provide asymptotic bounds
on the time complexity of our algorithm.

A C++ implementation of GreedyModeFind is freely available for download at http://awcmee.massey.ac.nz/
downloads/Data/wtwhite/multmodes.htm.

References

Feller, W., 1957. An Introduction to Probability Theory and its Applications, 2nd ed. Wiley, New York.
Finucan, H.M., 1964. The mode of a multinomial distribution. Biometrika 51, 513–517.
Le Gall, F., 2003. Determination of the modes of a multinomial distribution. Statistics & Probability Letters 62, 325–333.

104

Chapter 7

Conclusion

Somewhere between the beautiful abstractions of mathematics and the natural

beauty of biology lies the grittier world of computational science. As we press

on into the age of genomics and beyond, the importance of this field can only con-

tinue to grow. Like the plumbing in a large city, it is vital but most of the time

lies hidden in the shadow of its more illustrious counterparts; it is, in effect, the

infrastructure that makes modern biology possible and gives practical meaning to

the mathematics behind it. And despite its plain appearance and tendency to linger

in the background, there exists the occasional odd person who finds satisfaction in

pushing the computational infrastructure of science to its limits—even to the point

of writing a thesis on the subject!

7.1 XMP

As well as bringing faster computation of maximum parsimony trees, XMP serves

as a model for the development of efficient parallelised B&B search algorithms in

general.

In science, it is frequently the case that the value of the work done consists

not only in the paths that were eventually taken, but also in the many paths that

were explored but eventually discarded as unproductive or counterproductive. Per-

haps the most frustrating unproductive path on this occasion was my attempt to

exploit the apparent redundancy of highly multifurcating MP trees by collapsing

ml0 edges. The possibility that I was missing some obvious shortcut that would

105

enable enumeration of just the dense trees was so vexing that I eventually resorted

to searching for a proof that no such technique could work in all cases. Although

a negative result, it was satisfying to discover a counterexample that proved that

enumerating only dense trees must miss some MP trees. On a similar note, the

promising prospect of lower bounds based on the MinMax Squeeze (Holland et al.,

2005) led to disappointing results in practice: although the bounds produced were

significantly better, they produced only a small speed increase in most cases. But

despite these setbacks, XMP emerged the clear winner against parsimony programs

already carefully optimised for speed.

In nearly all parallel systems, communication between CPUs is slow compared to

computation on a single CPU. Consequently, the easiest way to kill the performance

of a parallel algorithm is to force computation to wait for communication. The

clearest offence is to use blocking communication calls: these explicitly wait for the

communication operation (send or receive) to complete before returning, wasting

time that could be spent on calculation. XMP uses no blocking calls in its main

loop, instead preferring overlapped calls that initiate send and receive operations

and then allow computation to continue.

However, even with overlapped communications, it is necessary to wait for the

completion of I/O operations at certain points so that senders and receivers oper-

ating at different speeds1 do not lose synchronisation. Communications protocols

that involve only overlapped I/O can still lead to huge slowdowns if they allow the

workloads transferred between CPUs to become arbitrarily small. This occurred

sporadically in an early version of XMP, in which the master process held the base

tree and split off smaller and smaller jobs to hand to idle workers. I was finally able

to eliminate this problem by inventing the remaining edge pair list (REPL) data

structure. This data structure, which is used for efficiently subdividing remaining

work into jobs, is immediately applicable to any branch and bound (B&B) algo-

rithm that searches through the space of all possible trees. In particular, the REPL

approach can be applied to Maximum Likelihood B&B—a promising new direction

for future work.

1Even identical CPUs running on the same motherboard cannot be assumed to run at identical
speeds.

106

7.2 COIL

There is already a vast amount of DNA sequence data in the world, and not only is

the amount increasing, the rate at which it is increasing is also increasing, thanks

to continuing developments in next-generation sequencing technologies. Although

physical storage sizes and network speeds have increased as well, the need to use

these resources more efficiently is ever-present. coil takes a novel approach to com-

pressing databases of DNA sequences inspired by the parsimony principle, in which

trees linking similar sequences in the database are discovered, and only the edits

(insertions, deletions or substitutions) required to move between adjacent sequences

are recorded.

The secret to making coil practical was reducing the time taken to find groups

of similar sequences, which necessarily involves comparing every sequence to every

other sequence—an expensive O(n2) operation. Many carefully optimised exact so-

lutions were tried, but none was fast enough to scale to the size of realistic databases

containing millions of sequences.

The crucial gain in performance was achieved by introducing the concept of

lossiness : watering down the guarantees made by a data structure in return for

a dramatic size or speed improvement. Lossiness is what makes possible the as-

tounding levels of compression achieved in JPEG images and MP3 audio. These

formats use lossiness directly to compress a file down to a smaller file that, upon

expansion, appears to human senses to be almost identical to the original. With

DNA sequences we cannot tolerate any differences between the original database

and the reexpanded version, but we can still employ the principle of lossiness as a

means to the end of lossless compression. In the case of find edges, although find-

ing exactly the closest b neighbouring sequences of any given sequences is extremely

time-consuming, for the purpose of compression it suffices to find b sequences that

are highly likely to be very close to it, and this can be done much faster. This was

accomplished through the invention of a new data structure, the leaky move-to-front

hashtable, that remembers only recent and promising matches as we move along a

search sequence.

It is particularly encouraging to see that coil has recently inspired a new com-

pression program, ReCOIL (Yanovsky, 2011), which recognises disk I/O as an impor-

107

tant bottleneck and explicitly focuses on minimising it. ReCOIL incorporates other

improvements, such as searching for matches using reverse-complemented sequences

in addition to forward sequences, and compresses DNA databases both faster and

better than coil and leading general-purpose compression programs. There is no

question that further advances in the compression of DNA sequence databases will

continue to prove useful to the bioinformatics and phylogenetics communities as

time goes on.

7.3 Treeness Triangles

Humans have a limited capacity to directly process raw numeric data, hence the need

for effective visualisation techniques. Any visualisation method must find the right

balance between keeping too much information (which overwhelms the reader with

clutter) and discarding too much information (which hampers understanding). Of

primary interest to an evolutionary biologist is how “treelike” his or her alignment

is: how well it corresponds to a hypothesis of treelike evolution. This notion is well

captured by building a tree on the alignment and then partitioning its sites into 3

categories: those corresponding to internal tree edges, to external tree edges, and

to edges that are absent from the tree. The proportions of sites in each category

can be intuitively represented by a single point in a ternary plot that is “pulled”

towards each of the 3 corners.

Because a dataset is described by a single point, a single Treeness Triangle di-

agram can compactly summarise many different datasets, or many different treat-

ments of a single dataset. The ability of Treeness Triangles to concisely show the

total amount of conflicting signal present in a dataset makes them a powerful com-

plement to other visualisations like Lento plots (Lento et al., 1995) and networks.

Treeness Triangles are thus an important tool for assessing the fit of phylogenetic

datasets to a tree model.

Through experiments with both simulated and real chloroplast datasets, we

demonstrated that increasing sequence lengths (which reduces sampling error) moves

Treeness Triangle points closer to the I-E line, and that datasets containing deeper

divergences have Treeness Triangle points closer to the E corner.

108

Although we expect Treeness Triangles to be most often used with trees built

from DNA alignments, the method readily generalises to different types of input

data, and different treebuilding methods. This flexibility will allow Treeness Trian-

gles to remain useful for visualising model fit as more complex and realistic models

of evolution are introduced in the future.

7.4 ML Bias

It remains an implicit assumption of much work in phylogenetics that the taxa under

consideration evolved “on a tree”. Although this is typically true for a short segment

of DNA such as a gene, it is now widely appreciated that different genes can evolve

on different trees due to lineage sorting. In other words, we must face the possibility

that the alignment we wish to analyse contains sites from a mixture of two or more

trees. It is reasonable to ask: How will a standard single-tree ML inference method

handle such data? In particular: If all trees in the mixture share a particular edge,

and have the same edge length for that edge, will ML inference recover that edge

and its length accurately?2

By considering a very simple mixture model consisting of a mixture of two trees

on 4 taxa, or two trees on 5 taxa, we show that single-tree ML inference does intro-

duce a bias to estimates of these shared edges. This should be taken as a warning:

ML inference, though rightly lauded for its consistency properties, introduces a bias

in the common case of tree mixtures that share edges—a model violation that almost

certainly afflicts a large number of alignments. We argue that a shift in thinking

towards networks needs to occur in phylogenetics to address this problem.

As awareness of non-treelike evolutionary processes continues to increase, new

methods have been devised for handling them. Schliep (2009, chapter 2) considers

more complex versions of our mixture model in his PhD thesis. Le et al. (2008)

describes a mixture model that can learn different rate matrices for sites in a protein

alignment having different secondary structure categories (exposed, buried, α-coil,

β-sheet). Mixture models are a powerful way to generalise existing phylogenetic

models to handle these processes, meaning that their impact in the field will likely

2I elaborate on our formulation of “shared parameter values” in the surrounding text of chap-
ter 5.

109

increase with time.

7.5 Multinomial Modes

Given how central the multinomial distribution is to statistical analysis of all kinds,

it seems staggering that in 2010 there was no published algorithm for quickly and

accurately inferring the mode or modes of such a distribution. Although two pub-

lished algorithms did exist, they were slow, had unknown computational complexity,

and allowed rounding error to creep into intermediate calculations. Our new algo-

rithm addresses all these shortcomings; with luck it will see application in diverse

fields. Future work involves incorporating this algorithm into the popular statistical

package R (2010).

7.6 How Much Optimisation is the Right Amount?

We should forget about small efficiencies, say about 97% of the time:

premature optimization is the root of all evil.

Donald E. Knuth

Knuth’s famous quote alludes to a widespread tendency among programmers to

rework their straightforward, maintainable programs into fragile, incomprehensible

spiderwebs in a bid to eliminate every wasted CPU cycle. He rightly reminds us that

the runtime saved by such optimisation3 (frequently nanoseconds) is almost never

worth the programmer time spent (frequently hours, or weeks), nor the additional

complexity introduced. Given that one of the goals of this thesis is the efficient

implementation of algorithms, it is appropriate to reflect on the extent to which the

tradeoffs made have been worthwhile.

When attempting to get the most performance out of a lengthy computational

analysis, the biggest gains are usually achieved by using algorithms and data struc-

tures with good performance for large n (see section 1.4). Every computational

3“Optimisation” here refers to the process of speeding up or shrinking a program without
changing its functionality in other respects; it is never taken to imply that the resulting program
is optimally fast or small. This unfortunate usage has meant that attempts to generate provably
shortest-possible program fragments have been forced to adopt the term “superoptimisation” to
differentiate themselves (Massalin, 1987).

110

scientist aspires to develop new, asymptotically faster methods for such analyses,

and there can be no question that pursuing this kind of optimisation is worthwhile.

The GreedyModeFind algorithm of chapter 6 is an example of this kind of advance.

But eventually algorithmic cleverness runs out, and at that point, if the analysis is

still too slow, the only way to improve performance further is by chipping away at the

constant factors. Usually this means resorting to a lower-level language that enables

tighter control over the computer hardware, at the cost of increased development

time and reduced portability.

In this thesis I have attacked two problems using this kind of low-level optimi-

sation: the Fitch parsimony calculations for xmp (chapter 2), and the inner loop of

the find edges program in coil (chapter 3). In both cases, I reimplemented these

inner loops with handcoded SSE2 assembly language, which is a set of extended

instructions that takes advantage of the 128-bit registers available in Intel Pentium

4 and newer processors. Using these instructions enables a potential 4-fold increase

in performance over the standard instructions, which operate on 32-bit registers.

In the case of xmp, the result was a significant improvement in speed, as clearly

demonstrated in Fig. 1 on p. 27. This improvement was particularly strong for

datasets having many sites. Here the SSE2 implementation behaves essentially the

same as the C code, except on 128 bits (32 nucleotides) at a time instead of 32 bits

(8 nucleotides). This meant that only a moderate amount of time was required to

develop and test it.

In the case of coil, the result was actually a slight decrease in speed—around 6%

on the ems100 dataset as reported in Table 3 on p. 58. This disappointing result was

despite the careful construction of an inner loop code fragment free of conditional

branch instructions, which tend to slow down modern pipelined CPUs. It must

be noted that this measurement was produced on an Intel Core 2 processor; the

SSE2 code fragment was originally developed for the Pentium 4, with its instruction

timings in mind, and in the original version of coil, which was tested on that

CPU, the SSE2 code produced a speedup of around 25% (unpublished data). This

outcome should be considered a lesson: the performance advantage of a piece of

code that has been carefully tuned for a particular CPU is extremely fragile.

111

Despite the mixed outcomes of these low-level optimisation attempts, I believe

that in the context of doctoral research focused on maximally efficient computation,

trying them out was the right thing to do. Whether such a thoroughgoing approach

is justified for the day-to-day development of computational analyses is harder to

say. However, considering the amount and diversity of program code in the world,

a strong case can be made that the inner loops of heavy computational analyses are

among the 3% of code that Knuth would have us focus our collective optimisation

efforts on. The growing presence of GPU-based computation in bioinformatics (e.g.

Manavski & Valle, 2008; Blazewicz et al., 2011) suggests that reducing constant

factors is indeed important enough to deserve our time and attention.

7.7 Other Directions

Computational research is a large field. During the course of my thesis work, I have

also worked on other projects that touch the borders of the work covered here. Chen

et al. (2008) describes a computational analysis that detected spliceosomal introns in

the Giardia genome. Ongoing work involves extending and simplifying the ancestral

sequence reconstruction of PAML (Yang, 2007) to enable ancient DNA sequences to

be rebuilt from extant sequence data.

7.8 Summary

I find it encouraging that 3 of the 5 papers presented in this thesis have been

cited by other authors—this suggests that the work is of interest to others in the

phylogenetics and bioinformatics community.

In short, I see a future in which computational techniques grow increasingly

essential—both for managing and for extracting meaning from biological data. At

the same time, as the tide of data continues to rise and the models we use to analyse

it continue to become more complex, the need to concern ourselves with issues of

goodness-of-fit and model misspecification becomes ever more crucial, if we are to

avoid deceiving ourselves about what our data is telling us. It is my hope that this

thesis advances the lines of battle in both these domains.

112

Appendix A

Work Breakdown

The papers contained in this thesis were written in collaboration with other authors,

though no other author is present on every paper.

A.1 XMP

The xmp project is contained in chapter 2.

A.1.1 Author Contributions

WTJW is responsible for 90% of the paper “Faster Exact Maximum Parsimony

Search with XMP”. He was exclusively responsible for:

• Designing and implementing the xmp program, including:

– Final parallelisation strategy

– PARTBOUND lower bound

– Fast Fitch algorithm

– SSE2-optimised version of fast Fitch algorithm

• Researching existing work

• Debugging, notably including building and carefully tuning an MPI-Spin model

of the system of communicating processes

• Negotiating access to the BlueFern supercomputer

113

• Performance measurement

• Writing a near-complete draft of the paper

BRH is responsible for 10% of this paper. The idea of parallelising MP tree

search originated with her, as did the notion of developing a new type of lower bound

based on the MinMax Squeeze. An early parallelisation strategy was the result of

discussion between WTJW and BRH, although it proved to be temperamental and

was replaced by a new strategy developed by WTJW. BRH additionally provided

guidance and helped edit the final manuscript.

114

115

A.2 COIL

The coil project is contained in chapter 3.

A.2.1 Author Contributions

WTJW is responsible for 90% of the paper “Compressing DNA Sequence Databases

with coil”. He was exclusively responsible for:

• Designing and implementing the coil software, including:

– Underlying concept (edit-tree coding)

– Leaky move-to-front hashtable data structure

– SSE2-optimised version of find edges

– All code improvements subsequent to previously examined work (see next

section)

• Researching existing work

• Performance measurement

• Writing a near-complete draft of the paper

MDH is responsible for 10% of this paper. He provided guidance and helped edit

the final manuscript.

A.2.2 Previously Examined Work

It is important to note that an early version of coil, implemented as coil v1.0, was

examined as part of a Postgraduate Certificate in Science (PGCertSc) undertaken

by WTJW in 2003. For this certificate, a collection of programs was implemented

and a report was produced describing the design and implementation in detail, and

measuring performance on a test dataset.

The paper presented in this thesis was prepared subsequent to the completion

of the PGCertSc; the writing of this paper represents entirely new work. Preparing

this paper involved researching new developments in the literature, such as the CD-

HIT program (Li & Godzik, 2006) and techniques for searching within compressed

116

Files Lines
coil v1.0 45 45,680
coil v1.1 43 8,091
Differences 2,045

Table A.1: coil source code comparison of all .c and .h files.

databases (Ferragina & Manzini, 2005; Russo & Oliveira, 2006; Foschini et al., 2006),

and also entailed new and more comprehensive performance testing.

In addition, extensive improvements have been made to the code itself, although

the core design has not changed. Table A.1 attempts to summarise the amount of

source code modification between the version submitted for the PGCertSc (coil

v1.0) and the version available for download at the time of submission of the journal

paper (coil v1.1). The figure reported for the “Differences” row is the number of

lines reported by diff -r when set to ignore whitespace changes. This underesti-

mates the amount of change, since only one line is output for each of the 40 files that

exist in only one version of the software. The dramatic reduction in the number of

lines of code represents an increase in the level of organisation of the source code, not

a reduction in functionality. The original coil software contained large amounts of

near-duplicate code—particularly in the implementation of find edges, due to the

wide variety of approaches tried. Duplication encourages the proliferation of bugs

by making it harder to ensure that all instances of erroneous behaviour are fixed

when a bug is found.

Other important changes to the code include:

• As Figure 3 in the paper shows, coil consists of a number of separate pro-

grams, and compressing a database using them is a complicated process that

produces numerous files. Only a subset of the files produced are needed for de-

compression, and exactly which files are needed depends on whether standalone

or incremental compression is being used. Additionally, several programs have

configuration options that must be matched when running downstream pro-

grams. In order to simplify this process for the user, a 514-line Perl script,

coil.pl, was written. This script manages the entire compression process, in-

voking programs as necessary, using sensible defaults where none are provided,

and packaging just the relevant output files into a single .tar.bz2 archive file.

117

• The decode program has likewise been enhanced to make working with archive

files more convenient.

• With coil v1.0, compressing and decompressing a database would in general

cause the recovered sequences to appear in a different order. Usually this is

adequate, but for some purposes it may be necessary to preserve the order

of the sequences, so that the original FASTA file and the final result of de-

compression are byte-for-byte identical. For this reason, and for parity with

general-purpose compression programs, the -x option was added. Supplying

this option at compression time causes coil to store additional sequence-order

information, enabling exact recovery of the original file.

• All files that store binary integers now use little-endian format (the least-

significant byte of a 4-byte word is stored first). This enables archives com-

pressed on a little-endian machine (such as Intel x86) to be decompressed on

a big-endian machine (such as PowerPC) and vice versa.

• OS X compatibility was added.

• A Makefile was created to enable the software to be built painlessly on most

Unix-like operating systems.

• Speed improvements:

– encode: An early attempt at speeding up the Myers (1986) edit script

operated by finding all 8-tuple exact matches between the parent and

child sequence. The results of these calculations were no longer being

used, despite the fact that the calculations were still being performed.

These extraneous calculations were removed, speeding up encode by 40%

on one dataset.

– find edges: Code for calculating the highest hit count produced by each

k-tuple was found to be extraneous and was removed from the innermost

loop.

• Numerous small usability improvements and bug fixes, such as:

– The ability to process lowercase DNA data.

118

– Help for each program available via --help.

All in all, coil has grown from a fragile and temperamental “research project”

in v1.0 to a well organised, well tested and highly usable piece of software in v1.1.

119

120

A.3 Treeness Triangles

The Treeness Triangles project is contained in chapter 4.

A.3.1 Author Contributions

WTJW is responsible for 30% of the paper “Treeness Triangles: Visualizing the Loss

of Phylogenetic Signal”. He was exclusively responsible for:

• Designing and implementing all software

• Designing computational experiments for simulated datasets

• Performing all computational experiments (both for simulated and real datasets)

• Producing figures 2, 3A-F, 4 and 5

• Quality control of real datasets

WTJW contributed strongly but not exclusively to:

• Writing the Materials and Methods section

• Writing the Results section

• Editing the final manuscript

WTJW also contributed to the introduction by researching and writing about the

likelihood-mapping approach of Strimmer & Von Haeseler (1996) and the dekapen-

tagonal mapping approach of Zhaxybayeva et al. (2004).

SFH and RG both worked on assembling and aligning a range of chloroplast

datasets that were used in the analysis. These datasets had a range of deeper

divergence times, enabling the “treeness” to be evaluated over a range of timescales.

BRH and DP designed the project and were responsible for its overall direction.

121

122

A.4 ML Bias

The ML Bias project is contained in chapter 5.

A.4.1 Author Contributions

WTJW is responsible for 30% of this paper. He was exclusively responsible for:

• Designing and implementing all software used, including:

– Scripts to build datasets for PAUP* and extract the relevant results

– A program to estimate the proportion of 2 trees in a mixture model via

hill-climbing

• Performing all computational experiments

• Producing figures 1A, 1B, 1D and 2

WTJW contributed strongly but not exclusively to:

• Discussions regarding the purpose and direction of the manuscript

• Editing the final manuscript

123

124

A.5 Multinomial Modes

The Multinomial Modes project is contained in chapter 6.

A.5.1 Author Contributions

WTJW is responsible for 80% of this paper. He was exclusively responsible for:

• Originally conceiving the project

• Designing the GreedyModeFind algorithm and implementing it in C++

• An early proof of correctness of the algorithm

• Researching existing work

• Analysis of asymptotic running time and numerical stability

• Performance measurement

• Writing a near-complete draft of the paper

As well as providing guidance and helping to edit the final manuscript, MDH

made suggestions that considerably simplified the proof of correctness of this algo-

rithm.

125

126

Bibliography

Atteson, K. 1999. The performance of neighbor-joining methods of phylogenetic

reconstruction. Algorithmica, 25(2-3), 251–278.

Blazewicz, Jacek, Frohmberg, Wojciech, Kierzynka, Michal, Pesch, Erwin, & Wo-

jciechowski, Pawel. 2011. Protein alignment algorithms with an efficient back-

tracking routine on multiple GPUs. BMC Bioinformatics, 12(1), 181.

Buneman, Peter. 1971. Mathematics in the Archeological and Historical Sciences.

Edinburgh: Edinburgh University Press. Chap. The recovery of trees from mea-

sures of dissimilarity, pages 387–395.

Cavalli-Sforza, L. L., & Edwards, A. W. F. 1967. Phylogenetic analysis: Models and

estimation procedures. American Journal of Human Genetics, 19, 233–257.

Chang, Joseph T. 1996. Full reconstruction of Markov models on evolutionary trees:

Identifiability and consistency. Mathematical Biosciences, 137(1), 51–73.

Chen, Xiaowei Sylvia, White, W. Timothy J., Collins, Lesley J., & Penny, David.

2008. Computational Identification of Four Spliceosomal snRNAs from the Deep-

Branching Eukaryote Giardia intestinalis. PLoS One, 3(8).

Cook, Steven A. 1971. The Complexity of Theorem-Proving Procedures. Pages

151–158 of: Third Annual ACM Symposium on Thoery of Computing.

Degnan, James H., & Rosenberg, Noah A. 2009. Gene tree discordance, phylogenetic

inference and the multispecies coalescent. Trends in Ecology & Evolution, 24(6),

332–340.

Drummond, A., & Rodrigo, A. G. 2000. Reconstructing genealogies of serial samples

127

under the assumption of a molecular clock using serial-sample UPGMA. Molecular

Biology and Evolution, 17(12), 1807–1815.

Felsenstein, J. 1978. Cases in which parsimony or compatibility will be positively

misleading. Systematic Zoology, 27, 401–410.

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood

approach. J. Mol. Evol., 17, 368–376.

Felsenstein, J. 2004. Inferring Phylogenies. Sunderland, Massachusetts: Sinauer

Associates, Inc.

Ferragina, P., & Manzini, G. 2005. Indexing compressed text. Journal of the ACM,

52(4), 552–581.

Finucan, H. M. 1964. Mode of Multinominal Distribution. Biometrika, 51(3-4),

513–517.

Fisher, R. A. 1922. On the mathematical foundations of theoretical statistics. Philo-

sophical Transactions of the Royal Society of London, Series A, 222, 309–368.

Fitch, W. M. 1971. Toward defining the course of evolution: Minimum change for

a specified tree topology. Systematic Zoology, 20, 406–416.

Fitch, W. M., & Margoliash, E. 1967. Construction of phylogenetic trees. Science,

155, 279–284.

Foschini, Luca, Grossi, Roberto, Gupta, Ankur, & Vitter, Jeffrey Scott. 2006. When

indexing equals compression: Experiments with compressing suffix arrays and

applications. ACM Trans. Algorithms, 2(4), 611–639.

Garey, Michael R., & Johnson, David S. 1979. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman and Co.

Gladstein, David S. 1997. Efficient Incremental Character Optimization. Cladistics,

13(1-2), 21–26.

Goldman, N. 1993. Statistical Tests of Models of DNA Substitution. Journal of

Molecular Evolution, 36(2), 182–198.

128

Goloboff, Pablo A. 1993. Character Optimization and Calculation of Tree Lengths.

Cladistics, 9(4), 433–436.

Goloboff, Pablo A. 1996. Methods for faster parsimony analysis. Cladistics, 12(3),

199–220.

Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and

their applications. Biometrika, 57(1), 97–109.

Heled, Joseph, & Drummond, Alexei J. 2010. Bayesian Inference of Species Trees

from Multilocus Data. Molecular Biology and Evolution, 27(3), 570–580.

Hendy, M. D., & Penny, D. 1982. Branch and bound algorithms to determine

minimal evolutionary trees. Mathematical Biosciences, 59(2), 277–290.

Hendy, M. D., & Penny, D. 1989. A framework for the quantitative study of evolu-

tionary trees. Systematic Zoology, 38, 297–309.

Hendy, M. D., Foulds, L. R., & Penny, D. 1980. Proving phylogenetic trees minimal

with l-clustering and set partitioning. Mathematical Biosciences, 51(1-2), 71–88.

Hendy, Michael, & Penny, David. 1993. Spectral analysis of phylogenetic data.

Journal of Classification, 10(1), 5–24.

Holland, B. R., Huber, K. T., Dress, A., & Moulton, V. 2002. Delta Plots: A Tool for

Analyzing Phylogenetic Distance Data. Molecular Biology and Evolution, 19(12),

2051–2059.

Holland, B. R., Huber, K. T., Penny, D., & Moulton, V. 2005. The MinMax squeeze:

Guaranteeing a minimal tree for population data. Molecular Biology and Evolu-

tion, 22(2), 235–242.

Huber, Katharina T., Langton, Michael, Penny, David, Moulton, Vincent, & Hendy,

Michael. 2002. Spectronet: a package for computing spectra and median networks.

Applied Bioinformatics, 1(3), 159–61.

Kahan, W. 1965. Further Remarks on Reducing Truncation Errors. Communications

of the ACM, 8(1), 40–40.

129

Karp, Richard M. 1972. Complexity of Computer Computations. New York: Plenum.

Chap. Reducibility Among Combinatorial Problems, pages 85–103.

Klee, Victor, & Minty, George J. 1972. How good is the simplex algorithm? In-

equalities, III (Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969;

dedicated to the memory of Theodore S. Motzkin), 159–175.

Le, S. Q., Lartillot, N., & Gascuel, O. 2008. Phylogenetic mixture models for

proteins. Philosophical Transactions of the Royal Society B-Biological Sciences,

363(1512), 3965–3976.

Le Gall, Francoise. 2003. Determination of the modes of a Multinomial distribution.

Statistics & Probability Letters, 62(4), 325–333.

Lento, G. M., Hickson, R. E., Chambers, G. K., & Penny, D. 1995. Use of Spectral

Analysis to Test Hypotheses on the Origin of Pinnipeds. Molecular Biology and

Evolution, 12(1), 28–52.

Li, Ming, & Vitányi, Paul. 2008. An Introduction to Kolmogorov Complexity and

its Applications. 3rd edn. Texts in Computer Science. New York: Springer Sci-

ence+Business Media, LLC.

Li, W. Z., & Godzik, A. 2006. Cd-hit: a fast program for clustering and comparing

large sets of protein or nucleotide sequences. Bioinformatics, 22(13), 1658–1659.

Manavski, Svetlin, & Valle, Giorgio. 2008. CUDA compatible GPU cards as efficient

hardware accelerators for Smith-Waterman sequence alignment. BMC Bioinfor-

matics, 9(Suppl 2), S10.

Massalin, Henry. 1987. Superoptimizer: A Look at the Smallest Program. Pages

122–126 of: Proceedings of the second international conference on architectual

support for programming languages and operating systems. Palo Alto, California,

United States: IEEE Computer Society Press.

Mau, Bob, Newton, Michael A., & Larget, Bret. 1999. Bayesian Phylogenetic Infer-

ence via Markov Chain Monte Carlo Methods. Biometrics, 55(1), 1–12.

130

Meacham, C. A. 1981. A Manual Method for Character Compatibility Analysis.

Taxon, 30(3), 591–600.

Metropolis, Nicholas, Rosenbluth, Arianna W., Rosenbluth, Marshall N., Teller,

Augusta H., & Teller, Edward. 1953. Equation of State Calculations by Fast

Computing Machines. The Journal of Chemical Physics, 21(6), 1087–1092.

Myers, Eugene W. 1986. An O(ND) Difference Algorithm and its Variations. Algo-

rithmica, 1(2), 251–266.

Nelder, J. A., & Mead, R. 1965. A Simplex Method for Function Minimization.

Computer Journal, 7, 308–313.

Neyman, J. 1971. Statistical Decision Theory and Related Topics. Academic Press,

New York. Chap. Molecular studies of evolution: A source of novel statistical

problems, pages 1–27.

Penny, D., Hendy, M. D., & Steel, M. A. 1992. Progress with methods for construct-

ing evolutionary trees. Trends in Ecology and Evolution, 7(3), 73–79.

Penny, David. 2011. Darwin’s Theory of Descent with Modification, versus the

Biblical Tree of Life. PLoS Biol, 9(7), e1001096.

R Development Core Team. 2010. R: A Language and Environment for Statistical

Computing.

Rannala, B., & Yang, Z. 1996. Probability distribution of molecular evolutionary

trees: A new method of phylogenetic inference. Journal of Molecular Evolution,

43(3), 304–311.

Ronquist, F. 1998. Fast Fitch-parsimony algorithms for large data sets. Cladistics,

14(4), 387–400.

Russo, L. M. S., & Oliveira, A. L. 2006. String Processing and Information Retrieval,

Proceedings. Lecture Notes in Computer Science, vol. 4209. lsr@algos.inesc-id.pt

aml@algos.inesc-id.pt: Springer-Verlag Berlin. Chap. A compressed self-index

using a Ziv-Lempel dictionary, pages 163–180.

131

Saitou, N., & Nei, M. 1987. The neighbor-joining method: a new method for recon-

structing phylogenetic trees. Molecular biology and evolution, 4(4), 406–425.

Schliep, Klaus. 2009. Some Applications of Statistical Phylogenetics. Ph.D. thesis,

Palmerston North, New Zealand.

Schliep, Klaus Peter. 2011. phangorn: phylogenetic analysis in R. Bioinformatics,

27(4), 592–593.

Semple, Charles, & Steel, Mike. 2003. Phylogenetics. Oxford Lecture Series in

Mathematics. Oxford: Oxford University Press.

Seward, Julian. 1997. bzip2 and libbzip2 - A program and library for data compres-

sion.

Shepherd, L. D., & Lambert, D. M. 2008. Ancient DNA and conservation: lessons

from the endangered kiwi of New Zealand. Molecular Ecology, 17(9), 2174–2184.

Steel, M., & Penny, D. 2004. Two further links between MP and ML under the

Poisson model. Applied Mathematics Letters, 17(7), 785–790.

Steel, M. A., Hendy, M. D., & Penny, D. 1993. Parsimony Can Be Consistent.

Systematic Biology, 42(4), 581–587.

Steel, Mike, & Penny, David. 2000. Parsimony, Likelihood, and the Role of Models

in Molecular Phylogenetics. Molecular Biology and Evolution, 17(6), 839–850.

Strimmer, K., & Von Haeseler, A. 1996. Quartet puzzling: A quartet maximum-

likelihood method for reconstructing tree topologies. Molecular Biology and Evo-

lution, 13(7), 964–969.

Sullivan, J., & Swofford, D. L. 2001. Should we use model-based methods for phylo-

genetic inference when we know that assumptions about among-site rate variation

and nucleotide substitution pattern are violated? Systematic Biology, 50(5), 723–

729.

Swofford, David L. 2001. PAUP*. Phylogenetic Analysis Using Parsimony (*and

Other Methods).

132

Swofford, David L., Olsen, Gary J., Waddell, Peter J., & Hillis, David M. 1996.

Molecular Systematics. 2nd edn. Sunderland, MA: Sinauer Associates. Chap.

Phylogenetic Inference, pages 407–514.

Tarjan, R. E. 1985. Amortized computational complexity. SIAM Journal on Alge-

braic and Discrete Methods, 6(2), 306–318.

Tuffley, C., & Steel, M. 1997. Links between maximum likelihood and maximum

parsimony under a simple model of site substitution. Bulletin of Mathematical

Biology, 59(3), 581–607.

Yan, M., & Bader, D. A. 2003. Fast character optimization in parsimony phylogeny

reconstruction. Tech. rept.

Yang, Ziheng. 2007. PAML 4: Phylogenetic Analysis by Maximum Likelihood.

Molecular Biology and Evolution, 24(8), 1586–1591.

Yanovsky, Vladimir. 2011. ReCoil - an algorithm for compression of extremely large

datasets of DNA data. Algorithms for Molecular Biology, 6(1), 23.

Zharkikh, Andrey. 1977. Matematicheskie Modeli Evolyutsii i Selektsii. Novosibirsk:

Institut Tsitologii i Genetiki. Chap. Algoritm postroeniya filogeneticheskikh drev

po amino-kislotnym posledobatel’nostyam, pages 5–52.

Zhaxybayeva, O., Hamel, L., Raymond, J., & Gogarten, J. P. 2004. Visualization

of the phylogenetic content of five genomes using dekapentagonal maps. Genome

Biology, 5(3), 11.

133

