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ABSTRACT 

This thesis focuses on the psychological applications of Multidimensional Scaling (MDS) 

theory and methodology. The results are investigated of treating certain kinds of dissimilarity 

data (triadic data, to begin with) as comparisons between dissimilarities. This is a fami liar 

idea but many of its implications are unexplored. 

First, when data are available from more than one subject, it becomes possible to apply 

models of individual variation, in non-metric form. The Weighted Euclidean (or INDSCAL) 

model is the one used most often in this thesis, but the more general IDIOSCAL model is 

used to investigate individual differences in the case of colour vision. The data sets need not 

be complete. This is important when the size of the stimulus set means that there are too 

many comparisons for a single subject to respond to them all .  

Second, Maximum Likelihood Estimation (MLE) becomes a straightforward generalisation 

of the standard hill-descent algorithm for minimising Stress. 

Third, data collected with the sorting and hierarchical sorting methods can also be regarded as 

dissimilarity comparisons. The convenience of the sorting method and the lesser demands it 

makes on subjects when the number of stimuli is large have led to its widespread use, but the 

best way of analysing such data is uncertain. A 'reconstructed dyad' analysis is described and 

shown to be better than the usual co-occurence approach in a number of examples in which 

evidence about the true perceptual or conceptual space is available independently. 

Finally, when the data are interpreted as dissimilarity comparisons, an interactive method of 

scali ng large stimulus sets becomes possible, in which one selectively acquires incomplete 

data, concentrating on comparisons which are expected to contain most information about the 

configuration. This approach has been applied twice, with the stimuli being simple 

synthesised sounds in one example, and complex natural sounds (canine heartbeats) in the 

second, working well in both cases. The potential applications for training people to 

recognise sounds are briefly considered. Some possibilities for future research arising from 

this work are described. 
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PARTIAL LIST OF SYMBOLS 

N number of elements (items, stimuli) 

i.j,k.l usually element indices, 1 � i.j,k,l � N 

(E;,E) or (i.j) dyad consisting of the i-th and j-th elements 

Nd number of possible dyads. Nd = N (N-1) I 2 

<E;,E1,E_v 
or <i.j,k> 

Nt 

p 

triad consisting of i-th,j-th and k-th elements 
number of triads in a data set. For a complete set, N1 = N (N-1) (N-2) I 6 

number of dimensions 

usually a dimension index, 1 �p � P p 

X a reconstructed configuration of N points (a single point in (N F)-dimensional 
configuration space) 

X 

/). 

D 

£) 

M 

m 

w 

E 

fij 

position of the i-th element in X 

configuration considered as a (N-by-P) matrix 

matrix of dissimilarities 

element of /1. 8iJ > 8k1 is equivalent to writing (i.j) » (k,l) .  

matrix of reconstructed distances 

element of D 

matrix of disparities ( 'pseudo-distances')  

element of D 

distance comparison coefficient. EiJ,kl = 1 if 8iJ > 8k1, 0 otherwise. 

the number of subjects 

usually a subject index, 1 �m� M 

dissimilarities, reconstructed members for subject m (elements are dm,iJ• 8m.iJ) 

distance comparison coefficient for subject m (comparing 8m.iJ and 8m.kl) 

(M-by-P) matrix of dimensional weights (saliences) 

element ofW 

sorting data co-occurence matrix for subject m 

element of cm 

matrix of averaged co-occurences 

element of E. eiJ = l!M I:cm,iJ 

corrective force exerted between the i-th and j-th elements 
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1. INTRODUCTION 

Within the experiments and theoretical work reported in this dissertation, three general 

directions can be discerned. In order to summarise them, I separate the three objectives, as 

follows: 

1. Improving the analysis of certain widely-collected forms of psychological dissimilarity 

data, by extensions of multi-dimensional scaling techniques (MDS); 

2. When performing a MDS analysis on a data set which combines data collected from 

several subjects, to recognise differences between subjects. Any contrasting of differences 

must be done without forfeiting the greater reliability given to the map by the larger data set. 

3. Eliminating redundancy in the data, so as to ease the burden of data collection for subjects 

(or alternatively, to keep the burden the same while allowing a greater number of stimuli to 

be scaled). 

A thorough d iscussion of MDS is not the province of this Introduction, but some explanatory 

remarks are necessary before expanding upon these objectives. 

MDS makes it possible to construct a geometrical model of a restricted perceptual or 

semantic domain, using information about the dissimilarity of stimuli in that domain, in the 

experience of subjects. Stimuli are represented by points in the model; distances between 

points reflect, as accurately as possible, the experienced dissimilarity between stimuli. 

An analogy is reconstructing a map of a country from a roadmap that has been damaged and 

oil-stained until the only part sti l l  legible is the table of inter-city travel distances. However, 

MDS models are not limited to two dimensions. The dimensionality is generally a 

compromise, with more dimensions providing a better reflection of the dissimilarities, at the 

expense of  decreased simplicity. 



Point-to-point distances are not the only geometrical metaphor for modelling dissimilarity or 

proximity data. Network structures, trees in particular, are one widely-used alternative [e.g. 

Arabie, 1991; Carroll, 1976; Pruzansky, Tversky & Carroll, 1982; de Soete, DeSarbo & 

Carroll, 1985] - though they are outside the scope of this dissertation. For more general 

definitions of'distance' (involving more than two points), see lunge [1991]. 

In perceptual domains, examples of stimuli might be Munsell colour chips, or notes played by 

different musical instruments; examples of conceptual stimuli are "numbers (0 to 9)", or 

"occupations". Henceforth, the terms "stimulus", "element" and "item" will be used 

interchangeably, since MDS is abstract enough to make no distinctions between the varied 

natures of the raw material it's used on. Thus no attempt is made to analyse the actual stimuli, 

or to access whatever qualities that might be contained in them; they are treated as 

benchmarks, for a task which has parallels in surveying. 

Many complex phenomena fail to lend themselves to analysis or quantification, but they can 

still be studied with MDS. A particular example of interest to developmental psychologists is 

baby cries. These complex sounds can be analysed into a variety of acoustic properties 

[Gustafson & Green, 1989; Michelsson, Raes, Thoden & Wasz-Hockert, 1982], but it is not 

obvious which of these correlates with the qualities that make one cry more aversive to 

listeners than another, or distinguishable from non-cry sounds [though see Zeskind, 1987; 

Zeskind & Marshall, 1986]. These qualities survive a certain amount of distortion, e.g. 

filtering by intervening walls. They could not serve their evolutionary function if they relied 

upon perfect acoustics. 

Given a table of perceived similarities between pairs of these auditory stimuli, MDS would 

derive a map of"cry space". The map's dimensions (i.e. independent ways in which one cry 

can differ from another) could perhaps be interpreted in terms of acoustic measurements. 

Clusters of points would provide a taxonomy of cries and hint at distinct classes amongst 

them. The researcher would then be in the favourable position of studying cries using readily­

obtainable equipment, which despite its cheapness has been fine-tuned over countless 

generations to respond to their salient properties: the human ear. There is no need to approach 

the cries with a battery of scales for measuring them, with the associated risk of prejudicing 
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the research's outcome, since scales can omit important qualities, or over-represent irrelevant 

ones. 

But are such similarities available? 

Applications of MDS allow proximi ties to be obtained in several ways. They can be 

estimated indirectly, by "stimulus generalisation" methods. An illustration is provided by a 

classic example of the MDS technique: Rothkopfs statistics of how often one Morse Code 

symbol is mistaken for another, which Shepard used to create a two-dimensional map of 

"Morse Space" [Shepard, 1962], interpreting them as a measure of the symbols' proximity. 

Confusion data are obtained more easily if there is a set of labels or pigeon-holes, "right 

answers", with which subjects can categorise the stimuli. In market research, an indication of 

the similarity between products comes from how frequently consumers switch their 

preferences. However, these indirect methods limit the size of the sensory or semantic map, 

since items must resemble one another enough to be confused or exchanged (failing that, to 

increase confusion probabilities, it is necessary to degrade the observing conditions [e.g. 

Miller and Nicely, 1955] or restrict observation time [e.g. Killam, Lorton & Schubert, 1975; 

Plomp, Wagenaar & Mimpen, 1973]). 

More directly, one simply asks subjects to rate the dissimilarities, e.g. on a scale of 1 to 10, or 

by making a mark somewhere along a line. However, the complexity which makes some 

stimuli into candidates for MDS research, also hampers evaluation of their dissimilarities. 

The human mind lacks the kind of internal yardstick required to assess distances between 

pairs of sounds, colours, smells, or concepts consistently. When presented with a series of 

cries, each pair displaces the previous pair, leaving no stable, calibrated context for making 

the assessments. It comes as no surprise that when one group of cry researchers asked their 

subjects to repeat their judgments, the inferred reliabilities (Pearson correlations between 

repeated cry pairs) ranged from 0.94 down to 0.29 - and that was after eliminating three 

subjects with consistencies between 0.23 and -0.11 [Green, Jones & Gustafson, 1987]. 

Often one is forced to combine data from several subjects, which makes the inconstancy of 

the yardstick worse. But when there are many items it is impractical for every pair to be 
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assessed by a single subject. If, instead of using the Method of Sorting (with overlapping item 

sets so that each subject only sorted 90 items), Kraus, Schild and Hodge [1978] had elicited 

pairwise data in their study of 220 occupation terms, they would have needed 24 090 

comparisons (or a significant proportion thereof). In a study on the vocabulary of pain, 

Verkes, van der Kloot and Van der Meij [1989] scaled 176 adjectives, again using the 

Method of.Sorting, whereas 15 400 pairwise comparisons would have been necessary. 

Generally such problems arise in applications of MDS within psychology. I ignore the many 

MDS applications in other fields, where data collection is straightforward and their analysis is 

untroublesome. One exception to this policy of neglect is the study of social groups: later 

chapters will call upon Struhsaker' s observations of vervet monkey sleeping groups, and 

Sampson's observations of social distances within a monastery. 

In these problematical situations, where we are in the position of surveyors unable to measure 

the distance from one benchmark to another, we resort to more roundabout approaches to data 

acquisition (examples are the triadic procedure, and sorting into groups), which deliver their 

results directly at a higher level of abstraction than a table of dissimilarities. To quote an apt 

description: "Every response from assessors in these methods can be [ ... ] reached by a process 

of binary comparisons of dyads, where every comparison results only in a decision about 

which dyad spans the greater subjective distance" [MacRae, Howgate & Geelhoed, 1990, p. 

697]. 

I concentrate for the moment on the triadic procedure. This involves presenting elements 

three at a time, accompanying each with questions equivalent to "Are I and J more alike than 

I and K, or less so?'' Each triad provides its own context. It is analogous to a theodolite that is 

broken but can still inform the surveyor which of two landmarks is more remote from a 

reference 
·
point. 

I will present an approach for performing MDS with triadic data, and demonstrate its 

advantages over the commonly-used "vote-counting" approach of converting the data into a 

table of dissimilarities. 
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The artifacts introduced by vote-counting into the final configuration are not necessarily 

serious, given a complete set of triads, which contains enough redundancy to mask the 

distortions. However, a complete data set is not always available. As the set of elements 

grows larger (greater than 12, say), it is preferable to take advantage of the redundancy to 

reduce the number of triads, which otherwise becomes prohibitively large, increasing as the 

third power of the element number. When it is not practical to confront each informant with a 

complete list of stimulus triads, I will look at the question of choosing the optimal incomplete 

list. 

Whatever the experimental procedure, a subject's capacity to provide information is limited 

by factors such as fatigue and boredom. Unavoidably there is a ceiling on the number of 

points in the space under scrutiny, where the sparseness of an individual's data set forces one 

to pool data from several subjects. This raises the issue of how individual variations fit into 

the geometrical model: a question I have so far begged. 

Individual variations cannot be ignored when the data have been collected via the Sorting 

procedure (or the related hierarchical sorting procedure, or in the form of ranked preferences). 

Scaling such data relies on some disagreement between subjects; complete unanimity results 

in degenerate configurations. 

Individual variations can be treated as errors, and multiple subjects regarded as experimental 

replications, by assuming that the "space" one is mapping is held in common, while any 

differences from one replication to the next are brought about by random, non-systematic 

effects. However, some research has the identification of individual differences as its 

objective. One may be investigating colour blindness. Developmental psychologists are 

interested in how perceptual and semantic maps evolve with age and experience. In the baby­

cry example, there is evidence that parental status and exposure to the stimuli affects one's 

"cry map". It has been suggested that an important aspect of parent-infant dynamics is the 

ability, not granted to everyone, to differentiate one kind of cry from another. 

At the very least, a version of MDS tailored for processing triadic data should offer an 

equivalent to the INDSCAL option of standard MDS. I will focus on continuously-varying 
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models of individual variation, ignoring the latent class model [Meulman & V er boon, 1993; 

Winsberg & de Soete, 1993] (in which "latent classes" or sub-populations are postulated; it is 

not initially known which class each subject is a member of; each class has a distinct 

configuration, shared by its members). 

I will attempt to convince the reader that even in situations where the data sets are too 

incomplete to scale a single subject's data in isolation, such sets can be combined in a way 

that leaves open the possibilities of assessing individual variations, and making meaningful 

comparisons between subjects. 

These same points apply to the sorting procedures. They similarly benefit from a version of 

MDS which by-passes the preliminary Procrustean conversion of the data into a dissimilarity 

table- a form of vote-counting. Being less redundant than triadic data, they are more 

vulnerable to vote-counting artifacts. 

With these initial observations out of the way, I am in a position at last to outline the contents 

of the following chapters. 

Chapter 2 will delineate MDS in greater detail, revisiting the pioneering work of Shepard, 

Guttman, Kruskal, et al. Johnson's approach, the most versatile, is the one I concentrate on. I 

argue that "vote-counting" data before scaling them is both undesirable and unnecessary. 

Analyses of real data are introduced in Chapter 3, in which the triadic procedure is covered, 

as a way of giving concrete value to the theoretical points made previously. The examples 

include five applications of the triadic procedure to auditory stimuli: cries, in one example; 

synthesised sounds in the other four .. MTRIAD, a program for analysing these data, makes its 

first appearance. 

Chapter 4 will return the focus to the mathematical background. Generalisations are described 

which allow variations between subjects to be analysed, and which accommodate the 

possibility of non-Euclidean "spaces". 
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In Chapter 5, inspired by work by Ramsay [1977, 1978], Takane [1981] and Takane and 

Carrell [1981], I introduce Maximum Likelihood Estimation (MLE), implemented in a novel 

way. MLE has a number of advantages, helping, for instance, with the problem of degenerate 

solutions. 

Chapter 6 will generalise the discussion to various forms of ranked data, of which triadic data 

are a special case; other special cases are conditional ranking and ranked preferences. 

The cases of the sorting and hierarchical sorting procedures are interesting enough to devote a 

chapter to them, which is Chapter 7, the longest by far. Some of the stimulus sets used in the 

examples have already appeared in Chapter 6, providing independent 'maps' of stimulus 

spaces to corroborate the ones obtained from sorting data. The inadequacies of the standard 

methods for analysing sorting data have not detracted from the popularity of the procedure. 

Unfinished business remains from Chapter 3. Chapter 8 will look at variations of the triadic 

procedure which collect incomplete data, in order to circumvent the limitations which arise 

from the third-power proliferation of triads. Among these methods is an interactive one, 

modelled on ISO [Young, Null & Sarle, 1978]. 

Chapter 9 will draw conclusions and point out possible directions for future study. 

This thesis began as a far more circumscribed project. On a first encounter with triadic data 

(for cries), I felt that the existing procedure for scaling them was distortion-prone and 

wasteful of information, and that an improved method was possible which would better 

reflect the time and concentration invested by the subjects who had provided them. Unaware 

that Roskam had pointed out the same flaws in vote-counting in 1970, I set about tailoring a 

program to the data. It subsequently turned out to re-state Johnson's 1973 algorithm. 

As well as the advantage of its versatility with different data formats, Johnson's formulation 

of MDS seems to be appealingly intuitive, leading to its frequent rediscovery. See, for 

instance, the series of papers by Schneider and his eo-workers. 
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The work reported here may seem dated. But despite recent theoretical progress in MDS, I 

believe that the "classic" approaches still repay close attention, with much extension and 

elaboration remaining to be done before they are completely mined-out. 

The practitioners of MDS are mainly concerned with wringing every drop of meaning out of 

finite data sets. If the literature is any guide, MDS is generally applied in situations which do 

not warrant enormously sophisticated mathematics or models of mental functioning. With 

this in mind, I offer small improvements to the collection and analysis of triadic and sorting 

data, in the belief that the number of potential users makes them worth reporting. 

Reflecting a computational bias, I prefer to spell the nested surnmations of the equations out 

in full, even when concise matrix forms are available. 

Current or anticipated applications of this work include: 

• a contribution to the long-standing debate on the dimensionality of facial expressions; 

• market research on Paulownia wood involving large numbers of wood-block stimuli; 

• the taxonomy of complex sounds (cries; heartbeats), with implications for classifying 

them by acoustic criteria only; 

• feedback for students being trained to diagnose such sounds; 

• scaling adjectives used in self-descriptions of pain. 

Many of these will surface in later chapters, demonstrating different facets of the theory, amid 

the inevitable Monte Carlo simulations and the borrowed and synthetic data sets. 
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2. MULTIDIMENSIONAL SCALING 

"Multidimensional scaling" is not a particularly helpful name for the techniques I describe in 

this chapter. The name derives from the older tradition of one-dimensional scaling: the 

process of assigning scalar values to items, i .e. sequencing them along a single axis, on the 

basis of information about their relative positions (Thurstone' s Case V comparisons). 

Borg and Lingoes [ 1 987] point out that the term "MDS" has the misleading connotation that 

the dimensions are meaningful, in that items should lie along each axis in a sequence, as in 

the one-dimensional case. To shift the emphasis away from premature interpretation of the 

axes, they prefer "multidimensional similarity structure analysis". Similarly motivated, 

Guttrnan and Lingoes had previously coined the phrase "smallest space analysis" to describe 

their MINIS SA suite of programs [Guttman, 1 968], but familiarity counts for more than 

clarity, and MDS remains the term in widest circulation. 

The common goal of all MDS techniques has already been introduced: in lieu of analysing a 

set of stimuli ,  to represent them as simple points in a geometric model, arranged so as to 

uncover the structure (if any) of the similarities experienced between pairs of stimuli. The 

goal can be reached by a variety of paths. I will not attempt to survey the field thoroughly (a 

S isyphean task, given the rate of progress, with new advances published on a monthly basis). 

This chapter dwells only on the details relevant within a limited, rather revivalist perspective. 

For a broader coverage of MDS, see Schiffman et a/ [ 1 98 1  ], or Borg and Lingoes [ 1 987]. 

For the moment, with a loss of generality which can be corrected later, I use the Pythagorean 

formula for "distance" to model similarities. 

Let X be the configuration, in a P-dimensional Euclidean space. Given a set of N elements, 

{El> E2, ... EN}, each is represented by a point 

Keeping i <j to avoid duplication, the number of dyads or pairs of stimuli, (E;,E), is 

Nd = N (N-I) I 2. The distance separating X; and xj is 
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p 
dij = (�(X;p - Xjp/) l/2 p=l 

(2. 1 )  

Distances are invariant under arbitrary rotations of the configuration. This is one reason for 

caution when interpreting the dimensions. These diJ are entries in an N-by-N matrix D. 

In the simplest case, data takes the form of a matrix of dissimilarity ratings, /1. The matrix entries 

8iJ are initially assumed to be proportional to diJ, apart from random errors: 

8iJ = <l>(diJ) + (random error term) 

I find it fruitful to imagine building a simple analog device for scaling such data, by taking N 

nodes and linking them with Nd springs, where the spring linking the i-th andj-th nodes has an 

equilibrium length 8iJ. When this contraption is held in some initial configuration x<o> and then 

released, I imagine it flexing furiously, springs stretching and contracting and dragging the nodes 

this way and that towards some optimal arrangement which minimises the strain on them. To 

start with they overshoot but the reverberations slowly die away as equilibrium emerges. 

Computer simulation of this spring model is an intuitively-appealing way of performing MDS.  

One iteration wil l  not be enough: when a corrected configuration i s  produced on the basis of  the 

clashes between the distances of the initial configuration and the ideal spring length, there will be 

a degree of overshoot, taking some springs farther from equilibrium, but eventually an 

arrangement results which is not necessarily free of strain, but any residual spring forces acting 

each node are in balance. 

The iterative approach is superfluous: for this simple case of ratio data ( i .e. distances in the 

model are assumed to be proportional to dissimilarities), an eigenvalue solution is available 

[Young & Householder, 1 938] .  The case of interval data is only slightly more difficult: the 

unknown constant c2 in 

is assigned the smallest value necessary to make the triangle inequality true [Torgerson, 1 952]. 

10 



These are "metric methods". The case of ordinal data, where nothing is assumed about the 

psychophysical function <I>(x) linking dissimilarities and stimulus-space distances except that it 

is monotonic, requires non-metric methods, which recover <I>(x) concurrently with the 

configuration. The Introduction has already mentioned some examples of ordinal-level data, 

collected indirectly. As well as judged similarity and confusion rates, other possibilities include 

response latency time, error rates in paired associates tests, the degree of generalisation of a 

conditioned response, galvanic skin response, time taken to sort multiple copies of two stimuli 

into separate groups (constrained classification tasks), and cross-modal interference (the Stroop 

effect). 

Non-metric methods have become the norm; "non-metric" is taken for granted when MDS is 

mentioned without further qualification (an exception being INDSCAL and related software). 

The point about ordinal-level dissimilarities or proximities is that the actual values acquired are 

irrelevant, and only their relative values matter: whether 8if < 8*" 8if > 8*" or 8if = Bkl· For the 

purposes of analysis, dissimilarity (or proximity) ratings can be reduced to inequalities. 

I write (Ei,E) « (Et.E1) if f>iJ. < 8*" i.e. if stimulus Ei is judged more similar to Ej than E* is to E1• 

In some experiments a rank order is obtained directly, bypassing any assignment of values 8if, by 

asking subjects to rank all Nd dyads in order of increasing dissimilarity [e.g. Shepard & 

Chipman, 1970]. This is a full rank order; every dyad's position relative to every other one is 

known: 

or simply 
(Ei1,Ej1) « (E12,E12) « (Ei3,Ej3) « ... 

(il,J2) « (z2,j2) « (i3,j 3) « ... 

labelling the stimuli with their indices, sacrificing clarity for the sake of concision. 

(2.2) 

Shepard [ 1962] argued that for large enough N, ranked data serves as well as metric ratings for 

the purpose of reconstructing the configuration. 

With modifications, the spring model accommodates ranked data. Instead of the (iJ)-th spring 

exerting a corrective force on i andj, dependent on how far its length deviates from an ideal 
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length 8iJ, each spring has a relative ideal position in the ranking order. One must imagine the 

(iJ)-th spring consulting with all others, accumulating contributions to the force it exerts, 

expansive contributions for every spring longer than it although before it in the rank order (2.2), 

and contractive ones for every spring shorter than it although putatively longer (according to 

(2.2)). The magnitude of each contribution is proportional to the corresponding distance 

discrepancy. 

I call this the "smart spring" model. 

Expressing the ranking order relationships (2.2) in the form of coefficients E iJ,kb similar to 

Guttman' s "signature" coefficients [ 1968]: 

Eij,kl = J 1 if (iJ) » (k,l) l 0 otherwise, 
(2.3) 

and giving the springs a spring constant K, then the spring device has total potential energy 

= L EiJ, 
(iJ) 

Here H(x) is the Heaviside step function, H(x) = r 1 if X > 0 l 0 if X=:; 0 

(2.4) 

When summing over dyads, it is understood that i <j, to avoid duplicating contributions when 

implementing the summations as computer programs. 

= 2 K E iJ,kl H(dkr diJ) (d*1- diJ) 

= 2 K E ij,kl 8(dk/- dij) 

where E>(x) is the ramp function, E>(x) = { x if x> 0 
Oif x=s;O. 
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Figure 2 . 1 .  Contributions to potential energy (solid line) and spring force (dotted line) o f  (iJ)-th dyad from 
comparison with (k,/)-th dyad, for two sorts of spring, (a, left) and (b, right) 

41J ... 

t 
••• 

The magnitude of the (iJ)-th spring force fu is derived by summing these contributions: 

Its direction comes from the fact that the force on i and j is exerted parallel to the spring. The 

total force on X; is the vector sum of such forces; its components are 

(2.5) 

Young [ 1 97 5]  provides a similar geometrical derivation. The springs in this case are obedient to 

Hooke's Law. There are other possibilities. A case can be made for linear contributions to the 

potential energy, as in figure 2. 1 (b). Convergence seems faster, with the oscil lations dying away 

more rapidly, and a single large discrepancy is less likely to dominate several small 

discrepancies. 

Eu = K L: £u.k1 H(dk1- du) (dk1- du), 
(k.l) 

and hp= -K L: (x;p- x1p) I du L: EiJ,kl H(dkl- du) 
j (k.l) 

(2.6) 

Certain caveats must be made. Though I have treated rating data as reducible to rank orders, the 

two are different cases in the theory of data. When a subject sorts proximi ties into ascending 

order, as in the earlier example of Shepard and Chipman, I assume that each of the implicit 

comparisons between dyads is actually made; it becomes legitimate to speculate about the chance 

of a given comparison result being erroneous: this is part of the Maximum Likelihood approach 

to MDS (Thurstonian pairwise data provide the comparisons explicitly). One cannot make this 

assumption for ratings. 

1 3  



There is information in ratings which rankings lack. Thus the second caveat: the discussion so far 

has ignored "quasi-metric" forms of MDS, which treat the data at a level intermediate between 

interval and ordinal. In these, the function modelling the proximities belongs to a restricted 

family (polynomials, or sums of exponential functions, or splines, for instance), instead of 

allowing an unrestricted monotone function. Fewer degrees of freedom are involved. The 

stronger function assumptions may be based on psychophysical considerations, or they may 

simply impose the restrictions of non-abruptness or convexity. Some algorithms for MDS allow 

the user to specify the admissible transformations. 

The values 8ij are retained in these quasi-nonmetric approaches. They are not applicable when the 

inequalities (2.2) are all that is known, as in the rank-ordered data sets already mentioned, and in 

the more general forms of inequality data covered by subsequent chapters (triadic, conditionally 

rank ordered, etc.) 
1• 

Fully rank-ordered data (whether obtained directly, or derived from dissimilarities) is only one 

special case among many. More general, less structured forms of dyad comparison do not 

necessarily possess its two important properties: completeness, and transitivity. Putative 

inequalities (iJ) » (k,l) obtained through a Thurstonian procedure of pairwise comparisons [e.g. 

Bissett and Schneider, I992] are not guaranteed to be transitive. Triadic data are incomplete: two 

dyads (ii) and (k,l) are only compared and their relationship known if they belong to the same 

triad, sharing an element in common. With three comparisons per triad, and N (N-I) (N-2) I 6 

triads, the maximum number of inequalities is N (N-I) (N-2) I 2, instead of Nd (Nd- 1 )  I 2. The 

same is true for data obtained through the conditional rank-order procedure. A converse 

possibility is that (ii) may be compared against (k,l) more than once. So even if such data are 

consistent, the dissimilarities cannot be arranged in a linear, monotonic order (2.2); a complex 

network of relationships is all that's possible. This is partial rank order. 

How does this affect scaling? 

1 Some dyad comparisons may disagree between one experimental replication and the next. 
Given enough replications, it is possible to estimate the (unmeasured) 8ij values by applying the 
Law of Comparative Judgment to such disagreements: e.g. Torgerson's analysis of triadic data, 
or the approach used by De Soete and Winsberg [ 1993] to reconstruct the preference function 
from pairwise preference comparisons. 
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The inequalities of the data cannot be treated as absolute constraints, for as we have seen, there is 

no guarantee that they are consistent, even before any distortions of the distances required to 

cram them into a low-dimensional space. The optimal solution is one where the inter-element 

distances contradict the data inequalities to the smallest possible extent. 

Define a configuration space, having (N · P) dimensions, in which a given configuration X can be 

represented by a single point, the coordinates of the elements being listed in vector form rather 

than as a matrix: 

Some possible points X violate many inequalities; others violate few. Kruskal [ 1 964] had the 

inspiration of quantifying the degree of that violation with a function which he called 

STRESS(X). [also Guttman, 1968]. Subsequently, alternative definitions have been put forward. 

It will be worth examining several, to check their flexibility, i.e. how far each one relies on the 

data following a standard fonnat. 

For now, I use S(X) as a generic label for an unspecified badness-of-fit measure. Other possible 

names for it are "height", or "potential energy", imagining the configuration space as an (N · P)­

dimensional landscape ranging from valleys of low data violation up to mountains where the 

violations are maximal. At each X there is a gradient, Y'S(X). Its components OS(X) I Ox;p can be 

considered as components of forces OS(X) I Ox; which push the i-th point in directions which 

reduce S(X) by lengthening or shortening the various dij. In this light, an obvious way of seeking 

out the deepest valley - not the fastest - is a hill-descent algorithm. Given x<'>, a non-optimal 

configuration, the next approximation 

.x<t+l) = x'> + !lX'> 
= X'>- (step size) Y'S(X1>) (2.7) 

This is continued until S(x<'>) stabilises. There is no guarantee that following the slope downhill 

has led to a global minimum. There may be many local minima, each with its own basin of 

attraction, its own "watershed" in the configuration-space landscape. 
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The step size should be large enough to reach the minimum in a reasonable number of iterations, 

and to have a good chance of jumping across the smaller "watersheds" of local minima, without 

continually overshooting in violent oscillations. Following Kruskal's lead, MTRIAD (our 

implementation ofMDS) uses an adjustable step size which is increased when consecutive 

vectors D.J!'l point in the same direction (D.J!'l · D.J!t· I)> 0) and decreased in the case of an 

overshoot, when Ml) backtracks on the previous vector (D.J!'l · D.J!'· I) < 0). 

Another important issue is the choice of starting configuration X0>. MTRIAD estimates its X0l 
by performing metric MDS (Principal Coordinates Analysis) on a table of dissimilarities, 

themselves estimated by "vote-counting" the data. 

This algorithm is not the fastest. A priority has been to keep MTRIAD within the size limitations 

of an IBM PC running DOS. The exact details are not coupled tightly to other aspects of MDS, 

such as the particular definition of S(X), so there is the option of installing a faster algorithm, 

later (such as estimating step size with the conjugate gradient method, or using second 

derivatives of the Stress in the hill descent [de Leeuw, 1988; Ramsay, 1978; Takane 1978a]). 

Some Alternative Definitions. 

A desirable feature for S(X) is scale-invariance. Arbitrary expansions of X (as well as translations 

and rotations) should not affect S(X). Normally, the lowest possible value- for an X meeting all 

constraints- is 0. Conversely, the greatest possible value should be I. 

Johnson [1972] defines a lack-of-fit function 92: 

where his '6 ··Id = 1), 

92 = L 'Dr.Jd(dk/ - d/)2 I L (dk1
2- d/)2 

(iJ) � (k.x (iJ) � (k.l) 

{ 
0

1 if sign( dii- dk1) * sign('6ii- '6k1) 

otherwise. 

Clearly the values of the dissimilarity measurements 8ii do not contribute to 92, only their rank 

order, so binary pairwise comparisons provide a valid form of input (this is implied by Johnson's 

term for the algorithm, "Pairwise non-metric MDS". A similar possibility is implicit in 

Guttman's [ 1 968] explanation of Smallest Space Analysis). If dyads have not been compared, the 

corresponding terms should be removed from the denominator as well as the numerator (and 
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equally, if pairs of dyads have been compared more than once, the replications can be 

incorporated into the equation with the use of another summation). Bissett and Schneider [ 1 992] 

expand on this point. 

Changing the order of the summation, and eliminating tenns dupl icated in numerator and 

denominator: 

(2.8) 

The cf tenns in (2.4) are a source of concern: they give undue weight to comparisons involving 

larger dissimilarities. Since there is nothing vital about squaring the distances, only a matter of 

algebraic convenience, allowing 82 to be expressed and solved in elegant matrix form, I have no 

qualms about substituting linear terms into (2.4), producing a slightly different function 

S = raw Stress I L EiJ.Icl (dt1 - diJ/ 
(iJ) (k.l) 

where raw Stress = 1:. EiJ,kl H(dkl- diJ) (dkl - diJ)2 
(iJ) (k.f) 

(2.9) 

(2. 1 0) 

Approximate the denominator as constant (making this Guttman's "soft squeeze"). 

Then O(raw Stress) I 8diJ 

p 
The definition of dij 2 = L(X;p - X;p)2 gives adij I axip = (x;p - xjp) I dij p 

(2. 1 1 )  

This is familiar from the spring model. They are different metaphors for the same algorithm. 

Instead of 'hill-descent', one might equally well describe the iterative process as ' relaxation' . 

The relaxation metaphor is a reminder that an efficient order for performing the calculations is to 

iterate first over the known comparisons, accumulating a matrix of spring tensions; then iterate 

over springs, resolving each tension into components of the force on its end-point elements, and 

accumulating those force components. 

KYST, MDSCAL and POLYCON use a Stress function expressed in terms of how extensively 

the reconstructed dif need changing to bring them into the desired rank order [Schiffinan et a/, 
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1 98 1  ] .  In an intermediate step which Kruskal calls "monotone regression", the three algorithms 

all calculate "pseudo-distances" or disparities i!JiJ (or £> as a matrix), which are correctly rank­

ordered, but which are otherwise as close as possible to the diJ. Plotting i!JiJ against diJ, deviations 

from a straight line through the origin should be as small as possible. This is achieved by 

adjusting d;.i to maximise the coefficient of congruence, or equivalently, to minimise a raw Stress 

defined as the least-squares difference between D and D :  

normalised STRESS2 
= 'L:(d· · - i!J . .  )2 / L: d . . 2 I) I) I) (iJ) (iJ) 

The monotone regression is roundabout. Element dyads are first listed in order of their putative 

dissimilarity. When the distances for a sequence of dyads within that list violate the desired 

order, order is restored by replacing them with their mean value. For a given dyad (i.j) 

immediately to the right of (k,l), diJ should be greater than du If diJ. < dkJ, both dyads are assigned 

disparities oiJ. = o1e1 = (diJ + d�eD I 2. This averaging of neighbouring dyad distances is extended 

until it produces a monotonic sequence of i!JiJ values. Kruskal shows that this definition 

minimises "L(dij - oij)2. 

If we tinkered with the Stress, trying different potentials, consistency demands a corresponding 

change to what quality between distances and disparities is minimised in the definition of the 

latter. Using a ramp function instead of a quadratic potential energy would require us to replace 

order-violating distances with their mode, rather than their arithmetic mean, thereby minimising 

For fully rank-ordered data and large N, this algorithm gains a speed advantage over Johnson's, 

since each dyad is compared only with immediately adjacent neighbours in the list, not with all 

other dyads. The advantage is lost during modification of the algorithm to handle general binary 

comparison data. A network of inequalities replaces the one-dimensional list, and instead of 

being limited to two, the number of adjacent neighbours to be checked against diJ for consistency 

becomes open-ended. The modification requires sprawling data structures, nested iteration loops, 

and programmi ng infelicities too numerous to contemplate. 

Roskam [ 1 970] has described a restricted generalisation of the Kruskal Stress in his program 

MINITRl which brings triadic data under the aegis ofMDS. Chapter 3 wil l  return to this. 
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The Stress used by Lingoes and Guttman in their MINISSA software is similar, except in 

providing an alternative definition of o!i, the "rank image". The rank-image sequence is made 

monotone by permuting rather than averaging the du: if (i,j) » (k, l), but du < dk" then oiJ = dk" 

ok, = du. 

Computationally this is more efficient than Kruskal's definition of disparities, and Guttman 

argues that it results in faster convergence. This approach has been found to less liable to 

entrapment in local minima. However, the concept of the rank image does not extend to partial 

rank order data, so the Lingoes-Guttman Stress does not generalise. 

To wind up this non-exhaustive presentation of alternative Stresses, let us consider the ALSCAL 

program, one of the Alternating Least Squares suite [Takane, Young & de Leeuw, 1977; 

Schiffman et a!, 1981]. This is not a hill-descent algorithm but disparities still play a part in it. 

For X1>, D is calculated, and subjected to metric MDS, producing x<t+ l>. Whether the algorithm 

generalises to non-transitive or partial rank orders depends on whether Kruskal's definition of 

disparities is used, or the Guttman and Lingoes rank-image definition. 

Young proves that this process converges, minimising a Stress in the process: for a single 

subject, 

2 ""' 2 2 2 f " 4 SSTRESS(1) = L.J(diJ - oiJ ) L.J diJ 
(iJ) (ij) 

This is a case where the discovery of the Stress function being minimised came after the 

algorithm minimising it. Note the squared distances. Weinberg and Menil [1993] found that 

these gave undue prominence to order violations involving large distances, affecting ALSCAL' s 

performance to the extent that metric MDS performed better even when the simulated data were 

non-metric. 

What conclusion is to be drawn from this look "under the hood"? The chief lesson is that there is 

no intrinsic limitation in the central concepts of MDS, that only permits data in the form of a 

table of proximi ties or dissimilarities to be scaled. One can construct an algorithm similar to 

Johnson's Pairwise Comparisons scaling, and capable of handling less structured sets of dyad 
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comparisons, not necessarily complete or transitive. Other algorithms can be modified for the 

general case as well (though less easily). 

The next chapter will go into more detail about MTRIAD, the computer implementation of this 

algorithm, looking at it in the context of triadic data. But before that, there remains the usual 

treatment of triads to consider, to whit, simply converting the data into a table of dissimilarities 

8ii (a process Coombs [ 1 964] calls "decomposition"), suitable for processing by any of the 

standard software suites. We have seen that these dissimilarities are intermediate values, which 

the software promptly discards, retaining only their rank-order relationships, in the hope that 

these are not too badly distorted a version of the relationships in the original data. 

"Vote-counting" is a commonly-used method of decomposition, especially with triads [e.g. 

Burton & Nerlove, 1 976; Levelt, van der Geer & Plomp, 1 966; Plomp, 1970]. The vote-count 

estimate for 8ii is simply the number of comparisons between (i,J) and other triads (k, l) in which 

(i,j} is judged to be less similar: 

vcii = L Eij.kl 
(k.l) 

In the case of unbalanced incomplete data sets, where the number of comparisons each dyad 

takes part in is not constant, the word "number" in this definition should be "proportion": 

vcii = L E · · kl I L(E · · tl + Ek.J · ·) 1). 1). .1) 
(k.l) (k.l) 

(2. 1 2) 

This approach seems plausible enough. vcif is high when i and} are distant. But situations arise in 

clustered configurations whereby a particular (i,j) gains a high vote count despite being close 

together, through comparisons against even closer pairs. Burton and Nerlove [ 1 974] give glaring 

examples of the distorted configurations this can produce, when the data are incomplete. 

Furthermore, with a maximum value for vcii of2(N- 1 )  in the triadic case, cases will arise of 

multiple candidates for the position of most separated dyad, all acquiring the same vote count 

and equal rank in the rank ordering. 

In general, vote counting introduces new relationships, purporting (iJ) to be more distant or 

closer or equal to (k,l), when the subject has made no judgment because the two dyads were not 

compared, and their actual relationship is unknown. This is additional to ranking judgments 
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made by the subject but over-ridden in the vote-counted version. Roskam [ 1 970] called attention 

to these problems, with Monte Carlo simulations to back up his case. 

Perhaps there are less Procrustean procedures for decomposing data into dissimilarities. Coombs 

( 1 964] describes a tabular .. triangular analysis" technique (so called because it involves 

permuting the Nd-by-Nd half-matrix), intended to minimise the number of raw-data judgments 

over-ridden. Its usefulness is restricted by its reliance on an error rate lower than those 

commonly encountered in practice: intransitivities in the rank order are assumed to be rare 

enough that they occur in isolation, without forming compounded intransitive cycles, which are 

harder to correct. Deciding where to break such cycles often comes down to an arbitrary choice. 

More complex indices of similarity obtained by summing comparisons have been proposed. 

There is no need to discuss them in detail since they all fail a criterion put forward by Torgerson: 

"The relative distances amongst any three stimuli, for example, should remain the same 

regardless of what other stimuli are included in the experiment." See Torgerson [ 1 958] for 

details; Gladstones ( 1 962b] compares two of these vote-count variants against Torgerson's 

analysis in practice. 

Despite this, I have looked at a second-order vote-count dissimilarity index: 

v/2> ij = L Eij.kl vckl = L L Eij.kl EkJ,mn 
(/c,l) (/c,l) (m.n) 

The summation proceeds in a wider context. Dyads (m,n) do not need to be compared with (i.j) 
directly in the experiment - they can contribute to vc<2> ij through intermediate dyads (k, f) which 

were compared to both. The effects of the limited range of values are less, since the maximum 

attainable vc<2> ij is O(Jil). 

Monte Carlo simulated experiments show this function to be an improved estimator of dij. 
However, Torgerson's observation still applies. 

The basic problem remains: decisions about ordinalising the dyads should be made in the 

broadest possible context. Whenever error is greater than zero, contradictions and intransitivities 

appear in the data, and the information needed to resolve them is distributed through the entire 

data set. Distilling it (to use Shepard's choice of words) takes more than a formula; deciding 
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whether to over-ride a dyad comparison to allow the configuration to fit other data depends on 

basic scaling details such as the dimensionality of the space being used. The only efficient way to 

recover the contextual information we seek is to embed the items in a ?-dimensional space, and 

use the scaled distances diJ to weight the comparisons for vote-count estimates. In other words, 

the ideal preliminary for MDS is MDS .  This may sound paradoxical, yet it is the principle behind 

ALSCAL. 

Later chapters wil l  pursue the shortcomings of vote-counting further. 
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3. TRIADS 

A set of triadic data can be expressed as a list of inequalities between dissimilarities, of the 

form 

i.e. (iJ) » (k. !) 

where i, j, k, I range over a list of N perceptual elements (stimuli), and (i.j) must have one 

element in common with (k. !) for the two dyads to be compared. 

A number of ways of obtaining these inequalities are available. First described was the "method 

of triadic combinations" [Klingberg, 1941; Richardson, 1 93 8]. As originally formulated by 

Richardson, this methodology presents a subject with a series of triads <i.j. k>, asking which is 

the "most similar" and "least similar" within each. Call the number of triads in the series Nt. The 

crucial premise here, that such pairings are reducible to distance comparisons, is vindicated by 

data such as those collected by the Project on Occupational Cognition [Coxon et al, 1975], where 

independently-obtained estimates of element similarity produced the same configuration as 

triadic data. However, at the end of this chapter we will encounter situations in which a minority 

of subjects make their judgments on avowedly non-geometrical, non-distance-based bases. 

The same questions can be phrased less abstractly in terms of "odd-one-out". The subject selects 

element i as the odd one out of <i.j, k>, which is equivalent to making the two judgments 

(iJ) )) (j, k), (i,k) )) (j, k). 

Call this the 'primary comparison' .  The subsequent selection, from the remaining two elements, 

of k as closer to i (the 'secondary comparison')  amounts to making a third judgment 

(i.j) )) (i, k) .  

I defer discussion of variant triadic tasks till later in this chapter. 

A common use of this triadic task is for mapping colour space [Bechtel, 1976; Helm, 1964; 

Krantz, 1967; Messick, 1956; Stalmeier & de Weert 1991a, 1991b, 1994; Torgerson, 1956; 

Wright, 1965]. It has also been applied to: 

• visual space [Indow, 1968] 

• visual textures [Harvey & Gervais, 1981] 

• facial expressions [Gladstones, 1962a, 1962b] 
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• three-dimensional shapes [Arabie, Kosslyn & Nelson, 1 975] 

• plant species (varieties of gourd) [Berlin, Breedlove & Raven, 1968]. 

Not all triad studies have been of elements capable of being presented simultaneously: 

• odours [MacRae, Rawcliffe, Howgate & Geelhoed, 1992] 

• baby cries [Lyons, Kirkland, Castle & Lawoko, 1991] 

• musical intervals [Levelt, van der Geer & Plomp, 1966] 

• vowels [Hansen, 1967; Pals, van der Kamp & Plomp, 1 969] 

• complex tones varying in phase [Hall & Schroeder, 1 971; Plomp & Steeneken, 1969] 

• musical instruments (timbre space) [Plomp, 1970] 

• organ stops [Plomp, 1970] 

• complex tones simulating the place-dependent effects of acoustics [Plomp & Steeneken, 

1973]. 

Examples with semantic rather than sensory items include: 

• kinship terms [Burton & Nerlove, 1976; Nerlove & Burton, 1972; Romney & D' Andrade, 

1964] 

• personality traits [Kirk & Burton, 1977; Miller, 1974] 

• digits [Miller & Gel man, 1 983; Lyons et a!, 1 991] 

• animal names [Henley, 1969] 

• countries [Dong, 1983; Klingberg, 1 94 1 ]  

• occupations [Coxon et al, 1975]. 

A feature common to all these is the difficulty of quantifying how dissimilar two items are. Each 

dyad in turn is sui generis; informants cannot describe its dissimilarity as a multiple of a mental 

unit, nor as a fraction of some maximum imaginable dissimilarity. The researcher compensates 

for the lack of internal units by providing an external basis for a "greater than I less than" 

comparison, in the form of a second dyad. Three elements suffice for the comparison (the dyads 

having one element in common): thus the triadic procedure. 

It has been used with children [Miller & Gelman, 1983; Seitz, 1971, with 5-year-old subjects]. 

The odd-one-out phrasing of the notion of triadic combinations comes naturally to young 

subjects, who baulk at the task of describing dissimilarity in numeric or distance terms (nor 

should we impose a distance metaphor on them. B y  assumption, the mental representation of the 
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stimuli under investigation can be modelled geometrically, so the result of what should be a test 

of this assumption is prejudiced if it is implicit in the questions). The usefulness to 

developmental psychologists is obvious. 

Another group to benefit are anthropologists, whose attempts to map their informants' mental 

representations are hindered by linguistic rather than developmental barriers [Berlin, Breedlove 

& Raven, 1968; Kirk & Burton, 1977; Truex, 1973]. Even animals can provide triadic data. 

Pigeons have been trained to associate key-pecking with one particular stimulus, and then 

presented. with two stimuli from which they must 'choose' the one that is closer to the target [e.g. 

Wright & Cumming, 1971]. 

My first example comes from a study of baby cries [Lyons et a!, 1991] . Stimuli were 8 tape­

recorded cries, selected from a set of 12 for which a configuration was already available, the 

dissimilarities having been estimated directly [Green, Jones & Gustafson, 1987] and also derived 

by rating the cries on scales [Gustafson & Green, 1989] . These stimuli (provided by Green and 

Gustafson) were digitised and stored in a 'sound library' on a Mac computer, which also ran 

software to present the triads in a random sequence while storing the subject 's  responses. Eight 

subjects took part. I will refer to them with the letters ' B '  to ' I ' .  

With 8 stimuli, 56  different combinations of three are possible. 12 triads out of this 56 were 

presented three times, once at the beginning to provide practice, and again at the end to check for 

fatigue or satiation effects degrading the data. Finding no such effects, or differences between the 

practice triads and the subsequent ones, I include all 80 in the analysis. Table 3.1 (a) is excerpted 

from the raw responses from subject B. Table 3.1(b) lists the same responses, now dissected into 

putative order relationships. Finally, Table 3.1(c) shows these relationships collated to form an 

input file for the analysis package MTRIAD. We see that (1,2) has been experienced as more 

dissimilar than (2,3). (1.3) is more dissimilar than (1,2), (2,3), (3,6), and so on. 
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Table 3 . 1 (a) Excerpt from raw data file Table 3 . 1  (b) Implied order relationships 

Triad 7 1 5 ,  oddity 2, similarity 1 ,  delay 40 ( 1 ,7) )) (5 ,7), ( 1 ,5 ) )) (5,7), ( 1 ,5) )) ( 1 ,7) 
Triad 4 6 I ,  oddity 3,  similarity 2, delay 8 1 ( 1 ,4) )) ( 4,6), ( 1 ,6) )) ( 4,6), ( 1 ,4) » ( 1 ,6) 
Triad 6 4 3 ,  oddity 2 similarity 1 ,  delay 27 (3 ,4) )) (3,6), (4,6) )) (3,6), (3 ,4) )) (4,6) 
Triad 4 2 8, oddity 1 ,  similarity 3,  delay 22 (2,4) )) (2,8), (4,8) )) (2,8), (2,4) )) ( 4,8) 
Triad 5 1 4, oddity 2, simi larity 1 ,  delay 28 ( 1 ,4) )) (4,5) ,  ( 1 ,5) )) (4,5), ( 1 ,4) » ( 1 ,5)  
Triad 5 2 1 ,  oddity 1 similarity 2, delay 23 ( 1 ,5) )) ( 1 ,2), (2,5) )) ( 1 ,2), ( I  ,5) » (2,5)  
Triad 8 7 2,  oddity 2,  similarity 1 ,  delay 20 (2, 7) )) (2,8) ,  (7 ,8) )) (2,8), (2, 7) )) (7 ,8)  

Triad 4 7 8, oddity I ,  similarity 2,  delay 22 ( 4,8) )) (7 ,8) ,  ( 4, 7) )) (7 ,8),  ( 4,8) ) )  (7 ,8) 
Triad 2 1 4, oddity 3 similarity 1 ,  delay 1 6  ( 1 ,4) )) ( 1 ,2) , (2,4) )) ( 1 ,2), ( 1 ,4) )) (2,4) 
Triad 8 5 6, oddity 1 similarity 2, delay 1 1  (6,8) )) (5,6), (5,8) )) (5 ,6), (6,8) )) (5 ,8)  

. . . . .  . . . . .  

Table 3 . 1  (c) Excerpt from B.LDC, a file of order relationships formatted for MTRIAD 

8 stimul i  
1 2 is greater than . . .  1 5 is greater than . . .  
2 3 ,  1 2, 1 3 ,  1 6 ,  1 7, 1 8,2 5 ,  3 5,4 5 ,5  6 ,  5 7 ,  5 8 ,  

1 3 is greater than . . .  . . . . . . .  
1 2, 2 3 ,  3 6, 6 8  is greater than . . .  

1 8, 3 6 ,  3 8 ,  4 6, 5 6, 
1 4 is greater than . . .  
1 2, 1 3 , 1  5 , 1  6, 1 8 ,  2 4 ,  3 4, 4 5 ,  4 6 ,  4 7, 4 8, 7 8  is greater than . . .  

1 8 ,  2 8 ,  3 8 ,  6 8, 

The previous chapter described most details of the MTRIAD algorithm (equivalent to a 

generalised form of Johnson's "pairwise non-metric MDS") . Recall the Stress, (2.9) : 

Following the precedent of Guttman's "soft squeeze" route to minimisation, I treated the 

denominator as constant, neglecting terms in the gradient coming from its dependence on X. The 

loss of rigor is more than compensated by the simplicity in the computations: the gradient is now 

BS(X) I Bx;p = 2 (L (x;p - xjp)/d!J L Eij.kl 0(dk1 - d!J) ) I constant denominator. 

Imagining the pairs of elements as l inked by "smart springs" clarifies the best order for 

summations within this formula. MTRIAD iterates over putative order relationships first, 

comparing each with the reconstructed distances d!J and dkl. Every discrepency, dij < d*'' adds an 
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increment of 2(dk1 - d;) to the spring force pushing i andj apart, while decrementing the (k, l)-th 

force by the same amount. 

With all contributions to the spring forces summed, the program iterates over springs (dyads), 

converting each force in turn into contributions to the net forces acting on its endpoints. Each 

force fu· is exerted parallel to the spring, but it can be resolved into components along the p-th 

axis which yield, when summed, the components of the net force on i: 
N 

;; = LJu j = l 
p N 

= L. ep 'Ljij (x;p - x1p)ldu p = I j =  I 

where eP is the unit vector parallel to the p-th axis. 

(3 . 1 ) 

So far no constraint has been placed on the overall scale of the configuration. X may change in 

scale as successive M are added, expanding indefinitely or col lapsing to a single point, without 

altering the Stress. For ease of display it is worth imposing some arbitrary scale. Define "scale", 

in this context, as the sum of distances squared. Within configuration space there is a surface of 

configurations having a particular value, C, for this scale; we want X to lie on this surface: 

p 
scale(X) = L d/ = .L .L (x;p - x1p)2 = C. 

(ij) p = I (iJ) 
(3 .2) 

X0) is placed on the surface by multiplying all coordinates by an appropriate scale factor. Each 

subsequent ��> vector can be resolved into a component tangential to the constant-scale surface, 

and one radial to it; remove the second component. 

where g is the unit vector perpendicular to the surface. 

Even using t::.. 'Xt) instead of �1), it proves necessary to periodically renormalise the 

configuration, since the constant-scale surface is curved: t::.. 'X1> may be tangential, but if its length 

is non-zero, scale(X + /1'�1>) may differ from scale(X). 
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Figure 3 . 1 MTRIAD (a, left) and vote-counting (b, right) solutions for subject B 
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After al l this, the MTRIAD solution in two dimensions for the data from B is shown in figure 

3 . 1 (a). For comparison, figure 3 . 1 (b) shows the vote-count solution described in chapter 2 .  

In the MTRIAD solution, the separation into three distinct types of cry, (A, D, J; C, E,  K; and 

G, I), as shown in an independent MDS analysis for the same stimuli [Green, Jones & Gustafson, 

1 987], is clearer than in the vote-count solution. 

I note for later reference that this data base also contains confidence ratings provided by subjects 

H and I. A refinement in the computer interface allowed them to rate their degree of confidence, 

after every primary and secondary comparison they made, as 1 ,  2 or 3 .  High 

confidence ratings are associated strongly with 

large differences between the MTRIAD 

reconstructions of the distances being 

compared. This is shown, for subject H' s data, 

in figure 3 .2. The distance difference is 

ld!i - d;kl , for secondary comparisons, while in 
. . • 

the case of primary comparisons, the distance 

difference plotted against the confidence is the 

average of ld!i - �kl and ld;k - ��-

c 0 .. 
L Cl Q E 0 u ·- ·· . . .. • . ... .. .. • . . 

0 
11 u c 11 "tl 
c 0 u 

..... . . . .. . .  , . . . 
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Figure 3.2 Distance difference against confidence 

Chapter 2 discussed some theoretical problems with the vote-count procedure. In practice, it may 

be that the issue is academic, with any distortions it adds to the rank order disappearing again 

during the scaling process. We find that inserting vcu into (2.9) produces a value of0.0026 for 
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Stress (these low Stresses reflect the small ,  marginal numbers of stimuli and triads) .  Embedding 

vciJ in a two-dimensional space produces d*iJ• the distances of figure 3 . l (b), which yield 0.0075 

when inserted in (2 .9). Finally, the Stress for the diJ of the MTRIAD solution is 0.0004. 

It seems that the more elements, and the more evenly they are distributed in the configuration, 

the better the vote-count approximation (here I am generalising from observations, rather than a 

systematic exploration). 

Systematic distortions might not show up in correlation statistics. I conducted a Monte Carlo 

experiment, generating synthetic triadic data for 1 00 random configurations and reconstructing 

them with the vote-count procedure. N was 1 5 .  Radial coordinates of elements are accumulated 

and p lotted, for the actual and reconstructed configurations, in the left and right panels 

respectively of figure 3 .3 .  There are signs of a "centrifugal effect": points tend to migrate toward 

the periphery. This agrees with Gladstones'  obervation of " . . .  the tendency of the approximate 

methods [for analysing triadic data] to overestimate distances between stimuli near the centroid." 

[ 1 962b, page 200] , and also with observations of the distortions produced by low-resolution 

dissimilarity estimates [Green & Rao, 1 97 1 ;  also Borg & Lingoes, 1 987]. Viewed with a 

sufficiently unskeptical eye, figure 3 . 1  (b) reveals the same distortion. 

Figure 3 .3  
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Tendencies for elements to appear in particular radial coordinate bands, for 1 00 randomised 
configurations (left) and their vote-counted reconstructions (right) 
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Another approach to analysing triadic data, suitable when the triads have been judged repeatedly 

(not necessarily by the same judge), comes to us from Torgerson [Gladstones, 1 962a, 1 962b; 

Torgerson, 1 952, 1 956]. Torgerson' s  name is also l inked with a variant triad procedure, but I 

prefer to describe his method of processing the data separately from its collection. The method 

combines variability in the replications with arguments borrowed from one-dimensional scaling 

theory, to achieve interval-level data, grist for metric MDS. Briefly, if two dyads (i.j) and (j, k) 

have been repeatedly compared, Torgerson invokes the Law of Comparative Judgment and 

applies a pro bit transform (the inverse of the cumulative density function). The result is an 

interval relationship between the two distances: dij = 0k + a(p ), where p is the proportion of the 

comparisons in which (i,j) « (j, k) and the function a(p) is known. 
1 

For i,j and k, points defining a triangle in a mental map which we wish to reconstruct, responses 

for a single triad are a statement about the triangle' s  orientation: which corner is acutest and 

which most obtuse. With this approach we learn more about its geometry. 

These interval relationships form a set of simultaneous equations. The second phase of 

Torgerson's  analysis performs a least-squares calculation to produce an approximate, low­

dimensional solution for the coordinates X;p· 

As a result, triadic data could be scaled before the advent of non-metric tools rendered proximity 

data equally tractable. This, as much as the advantages described earlier, accounts for the 

popularity of the triadic method during the 1 950s and 1 960s. Torgerson' s method is of more than 

historical interest, and is summarised here to foreshadow the use of similar arguments in Chapter 

5 .  

After that digression, one commonly-used alternative analysis remains to  be described; MINITRI 

[Roskam, 1 970], also implemented as TRISOSCAL, part of the Cambridge package for MDS 

[Coxon & Jones, 1 978; MacRae, Howgate & Geelhoed, 1 990]. 

MINITRI is a version of the KYST algorithm, tailored to handle triadic data: the averaging of 

distances which violate the rank-order of the data, yielding disparities, is performed only within 

1 Compare with Klingberg's  use of the legit function, to transform vote-count estimates (summed 
over many respondents) into a form suitable for metric analysis (principal coordinates). 
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triads. Reconstructed distances are simultaneously adjusted to improve their fit to a separate list 

of disparities for each triad in the data set. It is instructive to inspect the stress contributions from 

each triad in isolation. Let the /-th triad be <i,j, k>, with its elements ordered so that 

(i, k) )) (i.j) )) (j, k). 
The corresponding l-th list of disparities is o;kof• oiJ.I• oJkJ 

When the rank order of reconstructed distances is a complete reversal of the data, d;k < diJ < �k· 
then 

and the contribution to raw stress from triad l is then 

= { d;k - (d;k + diJ + 0k) I 3 }  2 + { diJ - (d;k + diJ + 0k) I 3 }  2 + { 0k - (d;k + diJ + 0k) I 3 }  2 
= { (d;k - dij)l3 + (d;k - 0k)l3 } 2 + { (dij - d;k)l3 + (dij - 0k)l3 } 2 + { (�k - d;k) 13 + C0k - du-)13 } 2 

= 219 (d;k - dui + 219 (d;k - 0k)2 + 219 (diJ - �-ki 
+ 219 (d;k - dij) (d;k - �k) + 219 (d;k - dij) (dij - �-k) + 219 (d;k - 0k) (dij - 0k) 

(3 .3)  

(3 .3) is equal (apart from the factor 1 13) to the contribution of such a triad to the MTRlAD stress. 

If the reconstructed configuration clashes with just one of the inequalities - the first, for example 

- then: 

and the contribution to raw stress becomes 

(dk - o -k .1\2 + (d. - o - -.1)2 I I , / I) 1), 

(3 .4) 

Again, (3 .4) boils down to the same contribution to Stress (and therefore to restorative forces), 

albeit with a different scale factor. 
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For confirmation of the closeness of the two programs, I applied MTRIAD to data from a triadic 

study of odours (kindly provided by MacRae ) ,  yielding a solution which agreed with that 

published by MacRae et al. [ 1 992] . A second source of confirmation is the POOC data, which 

includes triads from 4 7 subjects for 1 3  names of occupations. MTRIAD duplicates the Coxon 

and Jones solution [ 1 978, p. 77]. In this case, the responses varied from subject to subject, and 

often were fraught with internal contradictions within one subject's data, leading to higher 

Stresses. The Stress from inserting vciJ into (2.9) is 0. I 1 1 6 . This becomes 0. 1 498 for d* ii• the 

result of scaling the vc!J, i .e. embedding them in two dimensions (figure 3 .4(b)) . Finally, the 

Stress in the MTRIAD solution, figure 3 .4(a), is 0. 1 333 .  

figure 3 .4 MTRIAD (a, left) and vote-count (b, right) solutions for occupational-title data (Coxon et a[) 

"" 

Key to the occupations: 
BM Barman 
C Carpenter 
CT Commercial traveller 
LD Lorry driver 
MPN Male Psychiatric Nurse 
PM Policeman 

AD 
BSL 
CA 
CST 
MIN 
MTO 
QA 

Ambulance driver 
Building-site labourer 
Chartered accountant 
Comprehensive school-teacher 
Church of Scotland Minister 
Machine tool operator 
Qualified actuary 

" '  

, .  

A possible advantage of the MINITRI approach over MTRIAD is that the former can be 

extended to Guttman's rank-image disparities. In other respects it is less flexible. Forms of data 

other than the Method of Triadic Comparisons require different programs from the MINISSA 

senes. 
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Variations on the Triadic Theme 

Andrews and Ray recommend making the triad procedure less onerous by omitting the secondary 

comparisons. "It appears that adequate information may be gathered from a triad by a single 

though more complex judgment if the S is requested merely to select from each triad the stimulus 

that does not 'belong ' ." (Andrews & Ray, 1 957]. Theirs was a factor-analytic context, but for an 

MDS confirmation of the simplified tasks's validity, see Gladstones [ 1 962b] - a  vote-count 

analysis. Upon first glance, it might seem that the varying number of comparisons involving 

different dyads would be a source of distortion when vote-counting them, but the effect is 

systematic, and non-metric methods correct it. 

Anthropologists are common users of this variation [Berlin, Breedlove & Raven, 1 968;  Borgatti, 

1 99 1 ;  Burton & Nerlove, 1 976; Kirk & Burton, 1 977; Nerlove & Burton, 1 972; Rornney & 

D' Andrade, 1 964; Truex, 1 973], though they phrase the question differently, asking for the 

"most similar pair", which implies the same two comparisons. 

Coxon and Jones are dismissive of it. Nevertheless, the procedure has advantages: for only half 

as many responses, two-thirds of the comparisons are provided. Moreover, those choices are 

often disproportionally easy (though not always so. One can imagine three stimuli positioned at 

roughly equal intervals along a straight line in the mental map, so that once the odd-one-out is 

chosen, the central stimulus stands out as more similar to it, but making that initial choice is  

difficult). There is indirect evidence for asserting that the odd-one-out judgment is easy to make, 

in the form of the confidence ratings from subj ects H and I in the Lyons et a/ cry data. The 

primary comparisons were made with confidence, and vice versa (the data are not complete for 

subject I ,  who was called away before finishing all the triads). 

Subject H 
Confidence ��----�2� __ _.2 

Primary comparisons 3 9 68 
Secondary comparisons 5 1  28 1 

Confidence 
4 
3 1  

Subj ect I 
2 3 
23 3 3  
29 0 

The effects of omitting secondary comparisons from the cry and occupation data are minor. But 

some caution is required. If elements happen to be arranged in an elongated strip, so that the 

major d imension(s) dominate the primary comparisons, then secondary comparisons are vital for 

resolving separations along the minor axis, which can disappear without them. 
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The focus so far has been on the Method of Triadic Comparisons. In the "Complete method of 

triads" [Torgerson, 1 952], the three comparisons per triad are made separately. The subject is 

presented with the triads, usually in a randomised order, and asked "Is i or k closer to j?" for each 

<i,j, k> : the other two comparisons ( Ci:i) against (i, k), and (i. k) against (i. k) ) being separate 

questions. Examples of this procedure are Arabie, Kosslyn and Nelson [ 1975], Seitz [ 1 97 1  ] ,  

Stalmeier and de Weert [ 1 991  b, 1 994]. The nomenclature is unclear, with some authors reserving 

the name "complete method of triads" for Torgerson's algorithm, described earlier. Coombs 

[ 1 964] objects to both phrases, "method of triadic comparisons" and "complete method of 

triads", and puts forward "Method of similariti
.
es" for the former, regarding it as a specific case 

of the more general ' cartwheel '  method. 

The same format that was used with the Method of Triadic Comparisons data is used again to 

collate data obtained this way into input files for MTRIAD. However, the methods are not 

completely equivalent. In the former one, there are 23 = 8 possible ways of responding, compared 

to only 6 in the latter method, where the primary comparison restricts possible secondary 

comparisons. Analyses such as Torgerson's, which involve Thurstone's Law of Comparative 

Judgment axioms, and rely on the comparisons being independent, require the Complete Method 

of Triads for full  rigor. 

Stalmeier and de Weert [ 1 99 1 a], describe an ingenious variant, relying on gestalt fusion, which 

enables subjects to cope with N = 16 stimuli (colours) and N1 = 560, i .e. 1 680 separate 

comparisons. For each comparison, stimulus} is presented on a computer display, as a solid 

hexagon of colour, flanked by six triangles (three each, alternating, of colours i and k), creating a 

star-of-David pattern. The eye simplifies this pattern by fusing the hexagon with whichever 

set of triangles are closer in colour, to form a 

larger triangle: the other three triangles being 

excluded. The comparison is phrased as the 

question, "which way is the large triangle 

pointing", which can be answered without 

conscious effort (figure 3 .5). 

Presumably this would work as well with 

visual textures [Harvey & Gervais, 1 98 1 ] . Figure 3 .5  The 'Star-of-David' design 
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Figure 3 .6  
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Stalmeier generously provided me with copies of his data. Figure 3 .6 is an MTRIAD analysis of 

the data for subject PE. The differences from the vote-count solution are negligible. The 

positions of these stimuli within colour space are shown in Stalmeier and de Weert [ 1 99 I a] .  

Luminance was constant, so  there are two dimensions (reflecting the conversion, in  the retina, of 

cone-cell signals into a pair of opponent-process signals). There is a red-green axis, intersected 

by tritanopic confusion lines running roughly in a blue-yellow direction. Compared to the 

configuration which Stalmeier and de Weert obtained using more conventional ways of 

presenting triads [ 1 99 1  b], the red-green axis is more pronounced. Perhaps colour dissimilarity, as 

measured by the tendency of adjacent areas of colour to fuse, conflates two things. Edge 

distinctness is not identical with perceived colour d issimilarity [Tansley & Valberg, 1 979] . It is 

known that the parvo cell pathway which mediates edge discrimination responds poorly to blue­

yellow differences, compared to the magno pathway mediating colour recognition [Livingstone, 

1 988] .  Anyone planning to replicate the Stalmeier-de Weert gestalt-fusion work should consider 

separating the coloured polygons with gaps of background colour, to avoid this problem. 
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In experiments with this method, I encountered another problem, which might be termed a 

transparency effect. Besides the two gestalts described, the left- and right-pointing triangles, 

some combinations of stimuli lead to the perception of a third gestalt, in which one coloured 

triangle is visible behind a second, partially transparent one, with the hexagon being their area of 

overlap. 

Torgerson suggested modifying the triadic procedure to collect distance ratios directly, to be 

solved as simultaneous equations. Several researchers took up this proposal [Helm, 1 964; Indow, 

1 968 ;  Wright, 1 965] ,  but the variant has since fal len into neglect. The need for it was obviated by 

Shepard's well-known demonstration [Shepard, 1 962] that for a reasonable number of elements 

(N > 7), distance comparisons provide sufficiently stringent constraints on the configuration to 

position each element with confidence. Once the orientation of each triangle in a map is 

identified by label ling one corner as the most acute and another as most obtuse, very l ittle added 

precision comes from knowing its exact proportions. 

No-one holds a copyright on the word ' triad' ,  and some of its meanings fall outside the domain 

of this dissertation. 

It straddles the borderline when used in connection with repertory grids. Kel ly [ 1 955] pioneered 

the argument that reliable judgments of separation or quantity require at least three items. Thus 

triads are used with repertory grids as a way of eliciting scales for rating purposes: the two most 

similar elements (the construct) forming one pole of the scale, and the odd-one-out of the triad 

(the "contrast") forming the other. From there, their role varies. See, for instance, Tyska and 

Goszczynska [ 1 993],  Vlek and Stallen [ 1 9 8 1  ], in which subjects were asked to sort the e lements 

into two piles, placing each element with either the construct i or the constrast (j,m) (repeating 

this for eight randomly-picked triads <i,j, k>). Although presented as a sorting task, this 

procedure is closer to a triadic one, not so much in its treatment of <i,j, k>, but in the judgment 

the subject makes for each e lement m �  <i,j, k> - whether O;m is greater or less than m's distance 

from the (j, k) nucleus. Equivalently, it is a low-resolution scale. In some other applications, the 

scales have higher resolution but are stil l  anchored by the triads which elicited them; these could 

be regarded as variants of ratio triads. 
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Bechtel reminds us that any scale data can be converted to triadic form, while Coombs makes the 

same point about preference data: the elements in effect are ranked by their proximity to an 

implied third point (the scale endpoint, which may be at infinity, in the first case; the "ideal 

point" in the case of preferences). The data become explicitly triadic if pairwise comparisons are 

used to order the stimuli along the scale [Rams ay, 1 980] or preference gradient [de Soete & 

Winsberg, 1 993] .  Processing them becomes a matter of adding additional 'virtual ' elements for 

the end points or ideal points. If  stimuli are ranked, it is more a situation of conditional rank 

ordering, to be discussed in Chapter 6.  

Element numbers 

What is the optimal number of stimuli? N = 6 is too few to reliably recover the configuration: 

there are only 20 triads, 60 comparisons, not enough constraints on stimulus positions. B issett 

and S chneider [ 1 992] recommend 20 N R comparisons for credible recovery. Combined with 

vote-count artifacts, this shortfal l could explain why Hall and Schroeder' s study [ 1 97 1 ]  of six 

complex tones (differing only in the phase of the two constituent tones) gave results divergent 

from studies with eight and 1 5  stimuli [Plomp & Steeneken, 1 969] and a small-scale project, 

shortly to be described, with the author as the subject, where N = 1 2. Seitz used only four items 

in her research with children [Seitz, 197 1 ]  but her interest was in individual differences, not the 

configuration. 

Eight, in my experience, is minimal . Even there, there are only 56 · 3 comparisons, whereas 

B issett and Schneider argue for twice that number, but their criterion is overcautious, if the 

consistency amongst individual-subject configurations for the data of Lyons et al is any guide. 

With I 0 or more elements, a new problem impinges: the number of triads goes up as the third 

power of N (specifically, N1 = N (N- 1 )  (N-2) I 6). Limits to the endurance and good humour of 

one 's  subjects impose a ceiling on N. 

Dong [ 1 983]  found evidence that satiation and fatigue were increasing the fallibility of responses 

as the 84 triads of a nine-element set of country names progressed. On the other hand, Stalmeier 

and de Weert 's  subjects [ 1 99 l a] viewed each of the 1 680 comparisons four times (to use both 

orders, <i,j,k> as well  as <k,j, z>, doubled again to check reliability), over the course of three 
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hours, without obvious differences between the first time and the fourth. It may be that 

conceptual stimuli are more tiring. 

In a truly heroic study, Harvey and Gervais [ 1 98 1 ]  used 3 0  stimuli (visual textures). However, 

the 4060 triads were administered in daily sessions spaced over a month, and the two subjects 

(the authors) were highly motivated. 

The triadic method has fallen into relative neglect, as researchers weigh the greater precision it 

offers against the prospect of large areas of terra incognita in their maps. Whatever the triad 

threshold where open rebel lion breaks out in the laboratory, we wil l  always want to scale more 

stimuli, more landmarks. This raises an issue: can the list of triads be thinned out, somehow? 

There are encouraging precedents, in the experimental designs for dissimilarity data which allow 

a larger N by treating some proportion of the dyads as missing data [Spence & Domoney, 1 974] . 

A finer-grained approach is possible here: instead of neglecting a dyad, one omits a proportion of 

its comparisons with other dyads. Chapter 8 looks in detail at the choice of which to omit. 

Balanced Incomplete B lock Designs (BIBDs) are widely used [e.g. Arabie, Kosslyn & Nelson, 

1 975; Burton & Nerlove, 1 976; Kirk & Burton, 1 977; MacRae, Howgate & Geelhoed, 1 990]. 

These involve selecting a subset of the triad list to ensure that each dyad takes part in an equal 

number of triads, A (where A �  N-2). A BIBD (N = 1 3 , A =  2, N1 = 52) was used in collecting the 

POOC data which furnished figure 3 .4. 

Triadic Experiments with sounds (1 )  

The four fol lowing applications of the Method of Triadic Combinations a l l  used synthesised 

sounds, reproduced on a Voicecard 1 000 sound board, manufactured by Teleste Oy, installed in a 

286 PC.  The Voicecard 1 000 samples sounds at 20 kHz and 8-bit precision. The board and its 

associated software driver were intended for digitising and storing sound input, for playing back 

later, but a little trial-and-error revealed the format used for the storage. This enabled me to write 

simple additive-synthesis programs to create files which contained the waveforms of novel 

sounds, including ones which would be hard to produce in any other way. 
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The board is monophonic. In three experiments, its output was connected to a stereo amplifier, 

with the 'mono' switch set so that the subject could adjust the balance of the volume from the 

two speakers to a comfortable level. These experiments were conducted at home and created 

consternation among the neighbours when they found themselves apparently living next door to 

an avant-garde musician .  In the third experiment to be described (chronological ly, it was the 

first), amplification of the board's output was with a tape-deck, which lacked a ' mono' switch, 

and subjects heard the sounds through one or other earpiece of a headphone set: it was not 

possible to equalise the output through both earpieces at once. This is a source of variation 

(neglected in the analysis), since depending on their hemispheric laterality, people differ in 

which ear is most sensitive to the details of complex sounds. Also ignored are diurnal variations 

in auditory acuity. 

The 1 2  sounds used in the first experiment were synthesised using tones which were carefully 

chosen to remove the sense of a particular pitch from the combinations, while leaving each one 

with a distinct musical key ("chroma"). These ingenious sounds were first described by Shepard 

[ 1 964] so in what fol lows I call them "Shepard tones". They are comprised of power-of-two 

harmonics and sub-harmonics of the frequncy of the key. If that frequency is fl > then the 

components are fh = f1 ·2
h
, where h E  { . . .  -3, -2, - 1 ,  0, 1 ,  2, 3 ,  . . .  } .  The list of harmonics and sub­

harmonics is prevented from extending indefinitely into ultrasonic and infrasonic frequencies by 

a cosine amplitude envelope, peaking at fP, with y being the number of octaves spanned: 

ah = a1 { 1 + cos(2n logifh I fp) I y)} I 2 (3 .5)  
for fmin � fh � fmax• where fmin = fp TY12, fmax = fp 2y/Z 

Then the combined waveform is A(t) = L ah cos(27t fh t). 
h 

The resultant tones are notes as opposed to chords. Each has a rich, organ-l ike quality, 

undefinable in octave, comparable to simultaneously striking all the C keys (for instance) on a 

piano keyboard. 

For the 1 2  tones synthesised for this experiment, the peak frequency fP was 400 Hz, and f1 took 

on the frequencies of the 12 semitones within the middle octave (well-tempered scale) . Each 
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Figure 3 .A waveforms (each 0.064 s long) for Shepard tones with y " 8 (top) and 10 (bottom). 
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stimulus lasted for 1 second, with a1 constant for the central 0.8 s, tapering to zero during the first 

and last 0. 1 s to prevent transients. The subject (the author) adjusted the stereo amplification to a 

comfortable level. Details of the computer interface collecting responses to each triad are given 

in Chapter 8; for now, the salient points are that each triad was presented by playing the three 

stimuli, in a randomised order, separated by 0.5 s pauses; while judging them the subject could 

replay any of the stimuli as often as needed. The 220 triads for N = 1 2  were reduced to 1 32 with 

a Balanced Incomplete Design (A. = 6)'!'I underwent this experiment twice, once providing both 

primary and secondary comparisons, and the second time providing primary comparisons only. 

The replications also differed in the number of octaves spanned by the stimulus sets, with y = 8 

in the first replication (i.e. fmin = 25 Hz, fmax = 6.4 kHz) and y = 1 0  in the second (fmin = 1 2.5 Hz, 

fmax = 1 2.8  kHz). Segments (0.064 s long) of the resulting waveforms are plotted in figure 3 .A 

Although there were subtle timbre differences between the tones, I found that my main criterion 

for dissimilarity was "perceived pitch difference". Hearing two stimuli close in key, e.g. C and 

D, the illusion of a pitch difference is very strong. In fact, average pitch is the same for all 

stimuli ,  and the perceived pitch ranking is not transitive: there are tones X, Y, Z such 

Figure 3 .B Configurations for 1 2  Shepard tones with y = 8 (left) and 1 0  (right) 
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that X sounds higher than Y, Y higher than Z, and Z higher than X.2 They are no more "high" or 

"low" than 1 1  on a clock face is earlier or later than I (of what day?). 

The triads boil down to the panels of figure 3 .B .  Both exhibit the expected circular sequence of 

the tones. Shepard estimated the dissimilarity between pairs of tones indirectly (for N =  1 0) and 

obtained a similar circular arrangement. Basically the configuration is one-dimensional , but it 

requires a second dimension in order to loop back on itself, like hours on a c lock-face. In a 

serious investigation of the properties of these stimuli, it would be possible (and desirable) to 

incorporate the cyclic nature of the "pitch" dimension into the definition of "distance", thus 

eliminating the need for the second dimension. As it is, if the stimuli do vary significantly along 

some second dimension, accommodating such differences in the configuration would involve 

displacing points away from the circle along a radial dimension (with non-Euclidean effects on 

the d istances between them), or else would require a third dimension. 

Perhaps the departure from circularity in figure 3 .B reflects some second dimension (though it 

seems equally plausible to ascribe it to the incompleteness of the data). 

A final remark about figure 3 .B:  it was produced using a Maximum Likelihood generalisation of 

the stress-minimising algorithm, the subject of Chapter 5. This applies also to the remaining 

experiments to be reported in this chapter. 

Experiments with Sound (2) 

It is known that changing the relative phases between components of a complex tones can affect 

the tone's timbre to a small, but detectable, extent. Plomp and Steeneken [ 1 969] demonstrated 

this in an elegant application of the Method of Triadic Combinations. In a series of six 

experiments, they used eight, nine, and 15 stimuli, each analysable into the same components: 

the first 1 0  harmonics of a fundamental frequency (f1 = 292.4 Hz, except in their experiment 4). 

In most of their experiments, the amplitudes of successively higher harmonics dropped off 

according to a slope of -6 dB I octave, i,e, the amplitude of the h-th harmonic was ah = a1 I h. 

These harmonics produce a triangular or saw-tooth wave-form when combined in 

2 Deutsch [ 1 9 92a, 1 992b] and Shepard [ 1 964] have exploited this non-transitivity and devised 
ingenious auditory i l lusions: the counterparts of visual illusions. 
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Figure 3 .7 Shepard-tone intervals with 1 2  different phase shifts between the components (each sample 0.064 s 

long) 
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sine phase. To create the other stimuli, Plomp et a/ shifted the phase of various harmonics. They 

found that all-sine and all-cosine stimuli were very similar, 

1 0 
A(t) = L a11 sin(21t f11 t) 

h = l 
and 

1 0  
A(t) = L a11 cos(21t f11 t), 

h = l  

as were stimuli composed of alternating sine and cosine terms, 

A(t) = L a11 sin(21t f11 t) + .L a11 cos(21t f11 t), 
even h odd h 

and A(t) = L a11 cos(21t f;, t) + L a11 sin(27t f;, t). 
even h odd h 

The maximum dissimilarity was between all-sine and al l-cosine stimuli on one hand, and 

alternating-term stimuli on the other, lying at the extremes of the major axis of 'phase space' .  

They did not attempt to interpret higher dimensions. 

I set out to replicate this work with the same hardware as in the previous experiment. The stimuli 

were 1 2  phase-shifted versions of an interval made by combining two Shepard tones (fp = 400 

Hz), with f1 (I) = 400 Hz and f1 (
h) = 600 Hz. To generate a s imple family of waveforms, 

parameterised by a single cyclic variable �. I shifted the phase of the second set of harmonics: 

n-th stimulus = A(n, t) = L ah(l) cos(21t f11<
1l t) + L a11(

hl cos(21t fh
(h) t + �n) 

h h 

where the n-th phase shift �n = 21t n I 1 2, for 0 � n < 1 2, and the ampl itudes ah of the components 

were defined as before by (3 .5) . Figure 3.7 illustrates the resulting waveforms. The experiment 

used a A =  5 BID ( 1 1 0  triads), with both primary and secondary comparisons. There was only 

one subject, the author. Subjectively, the differences between the tones were ones of pitch as 

much as timbre, as if the perceived amplitudes of the various harmonics varied with the phase 

relationships between them, some 'masking' others, affecting their contributions to the average 

pitch. 

The resulting configuration, figure 3 .8, supports Plomp and Steeneken, in that a single dimension 

dominates the perceived dissimilarities, with the all-cosine stimulus (n = 0) at one extreme and 

n = 6 (alternating terms) at the other. This contradicts a triadic study [Hall & Schroeder, 1 972] ,  

which used only six tones (each consisting of  two components), and found two dimensions, with 

equal salience. A second dimension is shown in figure 3.8 ;  it could be a genuine feature of the 
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phase shifts, but could also be an artifact produced by hardware limitations, or by the 

incompleteness of the data. Very few conclusions can be drawn from a single-subject study. 

Figure 3 . 8  Configuration for 1 2  stimuli varying in  the phase between components 
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The third and fourth experiments look at simultaneous musical intervals, i .e. tones made up of 

simpler tones with small-integer ratios between their fundamental frequencies. S imultaneous 

intervals are also called harmonic; they are distinguished from sequential, or melodic, intervals. 

Examples are tone combinations with frequency rations of 1 :2  and 2 :3 .  These are the Octave and 

the Third respectively (in "just intonation"). 

Such ratios are more consonant or euphonious to the average Western ear than larger-integer 

ratios such as 1 1  : 1 2  or 8 :  1 5 . According to the prevail ing theory, the net dissonance of an interval 

is a sum of contributions from each of the harmonics of one tone interacting with each of the 

harmonics of the other. Each harmonic lies in the centre of a range of frequencies, the critical 

band, such that other harmonics in the band interfere to create beats which are perceived as 

'roughness' and contribute to dissonance .  When the lower of the two fundamentals is a simple 

fraction of the higher, many harmonics coincide, removing potential interactions. The simplest 

fraction is 1 /2, an octave difference: all harmonics of the higher tone coincide with those of the 

lower, producing no more critical band interference than would occur between the harmonics of 

each tone heard separately. 
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When the two tones comprising the interval are sine waves, having no higher harmonics, the only 

interaction is between the two fundamentals. Simple-integer ratios should be irrelevant, in this 

case, and the only factor in the consonance or dissonance of the combination should be the 

difference between the frequencies; the smaller the gap, the more dissonantly they combine 

(unless they are very close, each inside the other's  critical band, in which case they merge, and 

the interference is heard as an amplitude modulation imposed on a single tone). 

In scaling studies previously conducted using intervals for stimuli, the consonance-dissonance 

dimension was expected to emerge as a major contributor to dissimi larity. 

Levelt, van der Geer and Plomp [ 1 966] applied the Method of Triadic Combinations to 1 5  

intervals, with ratios ranging from 2 : 5  to 1 5 : 1 6 . They pioneered the use of Balanced Incomplete 

B lock Designs, applying a A =  4 design. Eight subjects took part, each judging 35 triads ( a  A =  1 

block of the balanced design). Thus each block was judged by two subjects. Levelt et a! collected 

two sets of data, the intervals being formed from simple sine tones in one set, and complex tones 

in the other, produced by filtering a train of short pulses with the right period (all harmonics 

approaching equal amplitude) to remove harmonics higher than 40 kHz. 

To keep the average pitch of all intervals the same, the fundamental frequencies f1 (I) and f1 (u) of 

the lower and upper tones constituting each interval were adjusted: (f1 (I) +  f1 (u)) I 2 = 500 Hz. 

Table 3 .2 lists all (f1(1), f1(u)) pairs. As the frequency ratio approaches unity, f1(l) increases and f1(u) 

decreases, and the frequency gap shrinks. It is convenient to express ratios and frequency gaps i n  

semitones, a logarithmic scale. An Octave i s  1 2  semitones. Two notes forming a musical Fourth, 

i .e. in a ratio of2:3 ,  are 5 semitones apart; the Fifth, with a 3 :4 ratio, is 7 semitones. 

This adjustment had the purpose of ridding the dissimilarities of extraneous, potentially 

confounding effects from pitch differences, but its efficacity is uncertain. In an experiment to be 

described below, scaling the same stimuli as Levelt et a!, for most subjects the perceived pitch of 

an interval was governed, not by the (constant) average frequency, but by f1<1> (or less often, f1 <u>). 

Consequently, perceived pitch stil l  varied between stimuli. 
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Table 3 .2 

Interval fl 
1 :2 333  
2 : 3  400 
3 :4 429 
2 :5  286 
3 :5 375 
4 : 5  444 
5 :6 455 
4 :7  364 

f1 (I)' f1 <u>, frequency difference (all rounded to nearest Hz), and predicted 
dissonance (the logarithm of the lowest common harmonic), for 1 5  intervals 

�fl Dissonance Interval fl �fl Dissonance 

666 333  2.82 5 : 7  4 1 7  583 167 3 .46 
600 200 3 .08 5 : 8  385  6 1 6  23 1 3 ,49 
5 7 1  1 43 3 .23 4 :9  308 693 385 3 .44 
7 1 5  429 3 . 1 6  8 :9  470 530  59 3 .63 
625 250 3 .27 1 1 : 1 2  478 522 43 3 .75 
555  1 1 1  3 .35 8 : 1 5  348 652 304 3 .71  
546 9 1  3 .44 1 5 : 1 6  484 5 1 6 32 3 .39 
637 273 3 .4 1  

Levelt e t  al arrived at a configur- :� .. 00.1101 ! 1 1 .,_ C*""' CO'"'P .II .. 1 •o" • C. 7; ; J ':' •u • C. 6005 

ation in which the intervals are '": '? 

arranged in an approximate 9: ! 5 
: 1 : : 2  

parabola, from large to small semi-
1 : 5  : 5: : 6 

• :  7 

tone difference. One interpretation 
. . . 

9: 9 

of this arrangement is  as a scale of J: 5 '5: B 

increasing dissonance, but as we !: ::; 
• : '5  

have seen, it could simply be that 2: J J: � 

the stimuli were ordered by f1 ( I ) _  �: 7 

Their combined simple- and 
0 1 "'•"" • 1 0 '"  : 

complex-tone data are scaled, in 
figure 3 .9 Two-dimensional configuration for vote-counted 

two dimensions, in figure 3 .9. triadic data for 15  intervals from Levelt et  a/ 

A second prominent aspect of their configuration is the second dimension: the parabolic 

sequence of intervals bends back on itself, to bring the extremes of frequency gap about as close 

to each other as both are to intermediate gaps. It may be that as well  as pioneering the use of 

balanced designs, Levelt et a/ were early victims of the 'horseshoe artifact' [Shepard, 1 97 4 ], 

exaggerated by vote-counting the triads before MDS. 

But in this case, the horseshoe may reflect a genuine feature of the data. This is the special 

relationship enjoyed by pairs of intervals for which the sum of the semitone gaps is 1 2 . For 

instance, the Fourth and the Fifth: if f1 <
1> is in a ratio of 2:3 with f1 <u>, then f1 (u) is in a ratio of 3 :4 

with (2 f1 (I)). To an extent, f1 (I) and (2 f1 (I)) are interchangeable in musical terms, and the intervals 
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are correspondingly similar. The archetypal pair of similar intervals is of course 1 : 1  and 1 :2, the 

Unison and the Octave, with semitone gaps of O and 1 2. 3 :5  is close to 5 :6, etc. 

These similarities are hard to accommodate in a spatial model. The configuration must 

compromise between the close proximity of 3 :5  to 5 :6, and the remoteness of 3 : 5  from the 

neighbours of 5 :6. In the event, it bends back on itself, the hinge being the six-semitone-gap 

interval (the Tritone, also known as the diminished Fifth or the augmented Fourth; a frequency 

ratio of 5 : 7). A second bend is added to the configuration, at the Octave, by the proximities of 

2 :5  to 4:5 and 5 :8 ,  and of 4 :9 to 8:9. 

Figure 3 . 1 0  Configurations for confusion data for 1 2  intervals from Plomp et a/ (a, left) and Ki l l  am et a/ (b, right) 
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For 1 2  of these 1 5  intervals, pairwise similarities have been measured in confusion experiments 

[Plomp, Wagenaar & Mimpen, 1 973 ; Killam, Lorton & Schubert, 1 975], in which an index of 

the similarity is how often one interval is misidentified as the other. The 1 5  subjects in Plomp et 

al were musically sophisticated (conservatory students), trained to concentrate on the key of 

notes as more important than octave differences between them; consequently,
. 
the 8 : 1 5  interval 

was frequently misidentified as 1 5 : 1 6  and vice versa, 5 :8  and 4:5 and vice versa, and so on. In 

thir collected confusion matrices (one for simple-tone intervals and one for complex tones), this 

shows up as a band of high confusions along the minor diagonal, intersecting the band along the 

major diagonal consisting of confusions of intervals with their neighbours in the sequence. The 

result of applying MDS to the combined matrices is the two-dimensional configuration of figure 

3 . 1  O(a) - again, a sequence curving back, with a special status for the Tritone. 
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In Kill am et a/, the subjects were less experienced ( 1 5  undergraduate music students). The 

stimuli were longer (0. 1  and 0.2 seconds, instead of 0.0 1 5  to 0. 1 25 s - mere blips - in Plomp et 

a!), easing the identification of near-unity ratios, since there is more opportunity to observe the 

'beating' between the fundamentals of small-frequency-gap intervals. One anticipates a more 

linear sequence, less curvature . Indeed, see figure 3 . I O(b). An added complication in Kil lam et a/ 

is that their published confusion matrix averages data for melodic as well as harmonic intervals. 

Balzano [ 1 977] found the same circle of intervals, hinged at the Tritone, using as his index of 

similarity the times subjects took to arrive at same I different judgments. Finally, Shepard [ 1 974] 

derived the same configuration from direct pairwise-comparison data. 

It isn' t  really important whether the proximity of extreme intervals in Levelt et a/ is genuine, or 

an artifact of the scaling process; in this context, what does matter is the way it obscures other 

contributions to dissimilarity, such as consonance I dissonance. As in the Shepard-tone 

experiment, the contributions of additional dimensions to inter-stimulus distance can only be 

approximated crudely, by displacing points radially towards or away from the centre of the 

circle. Otherwise a third dimension is required (or more). 

I checked this point by jointly scaling the published data (Killam et a/; Levelt et a/; Plomp et a!) 

in three dimensions. See figure 3 . 1 1 .  The stimuli are arranged along the third dimension from 

discordant intervals (8 : 1 5 , 1 1 : 1 2, 1 5 : 1 6) at one end to euphonious ones ( 1 :2, 2 :3 ,  3 :4) at the 

other. This leaves less extraneous variation to confound the neat frequency-gap sequence of the 

intervals in dimensions 1 and 2. Levelt et a/ deduced on theoretical grounds that the logarithm of 

Lowest Common Multiple(f1 (I), f1 (h)) should predict an interval ' s  dissonance reasonably well .  In 

this case the correlation between this dissonance index (last column in Table 3 .2), and the 

positions of the intervals along the third dimension of figure 3 . 1 1 , is 0.823. 

Applying the INDSCAL model (described in Chapter 4) reveals that the matrices for complex­

tone dissimilarities had higher saliences on the third dimension than those for simple tones, as 

one would expect, from the lack of higher-harmonic contributions to dissonance in the latter. 
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Figure 3 . 1 1 
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intervals, combining data from Levelt et a/, Plomp et a/ and Killam et a/, rotated to maximise the 
correlation between the third dimension and the expected dissonance indices of Table 3 .2 
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Experiments with Sounds (3) 

I now describe an attempt to replicate the simple-tone interval part of Levelt et al. The 

experiment differed only in the details of which triads were presented to the subjects. It used 

primary-comparison triads, which in retrospect was not such a good idea, since for stimulus sets 

aligned along one dominant axis, as is the case here, secondary comparisons are useful for 

locating the stimuli upon minor axes. 

Instead of a Balanced Incomplete Design, the experiment involved selecting the incomplete sets 

of triads interactively on the basis of previous triad responses. Details of Triskele, the program 

performing this selection, as well as presenting the triads, appear in Chapter 8. For now, suffice 

to say that a 'basis set' of stimuli is  mapped, to start with, providing ' landmarks' which Triskele 

uses to triangulate the remaining stimuli . The idea behind this procedure is that when the number 

of triads is limited, each should be invested carefully, in the way that will return the greatest 

dividend in terms of information about the locations of the stimuli. Balanced Incomplete Designs 

are sub-optimal, since many of the comparisons which they call upon the subject to make have 

answers which merely confirm what is known from other triads. 

I thought it best to test Triskele thoroughly before moving on to a study of baby cries. 

1 1  subjects were recruited from amongst acquaintances. Each provided 1 68 triads, 84 for 

mapping a basis set of 9 stimuli ,  and seven triads for locating each of the remaining six stimuli .  

The membership of the basis set, and the sequence in which the non-basis stimuli were located, 

was different for each subject. The time taken to judge all the triads varied considerably, one 

subject accomplishing this feat in less than an hour, while another devoted three hours to the 

task, trying all possible combinations of the stimuli in each triad, playing and replaying them in a 

search for the sequence which most effectively emphasised the oddness of the odd-one-out. 

The responses from two subjects were barely discernable from chance. They did not seem to 

have grasped the nature of the task. These sets are omitted from the analysis. 

The configurations from the remaining nine data sets are in general agreement with each other, 

and also with the published matrices discussed above (figure 3 . 1 2). The sequence of elements 

along the main axis (be it frequency gap or perceived pitch) is very clear, and that axis is bent in 
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the same two points by the special proximity of interval pairs such as 5 :8 and 4 :5 ,  requiring a 

second d imension. However, the degree of that bend is smaller than in Levelt et al. I remain 

suspicious that their parabolic configuration was exacerbated by vote-counting artifacts. 

When the configuration is allowed to expand into a third dimension, the same segregation of the 

intervals by dissonance occurs. 

This pilot study does not demonstrate any superiority of the Triskele procedure over 

conventional BIDs, since a BID with A =  4, enough to provide a good recovery of the 

configuration, would involve the same number of triads. Further work is required. 

Figure 3 . 1 2  Two-dimensional configuration for 1 5  simple-tone intervals, using triadic data from n ine subjects. 
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In this fourth experiment, I applied the triadic method to complex intervals. In order to minimise 

differences of apparent pitch, and focus on differences of consonance or dissonance, the stimuli 

were synthesised by combining Shepard tones. I synthesised 1 5  Shepard tone intervals using the 

f1 <
1l and f, <u> from Levelt et al. fP in this case was 500 Hz. Figure 3 . 1 3  plots the amplitudes of the 

components (vertical axis) against frequency (the horizontal axis, on a 
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Figure 3 . 1 3  Spectra of 1 5  Shepard-interva1 stimul i  (frequency scales are logarithmic) 
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logarithmic scale) for these stimuli. Chords composed from Shepard tones have previously been 

used to study musical keys [Krumhansl ,  Bharucha & Kessler, 1 982;  Krumhansl & Kessler, 

1 98 1 ] . 

In these stimuli ,  the special relationship between pairs of  intervals with semitone gaps summing 

to 1 2  is reinforced. If a stimulus contains f1 (l) and f1 (uJ in the ratio 2 : 3 ,  by definition it also 

contains (2 f1 (I)), so it is simultaneously a 3 :4 interval. The stimuli labeled 2 :5 ,  4 : 5 ,  and 5 : 8  are 

effectively  all the same interval (although they differ in the actual frequencies of their constituent 

tones). Figure 3 . 1 3  may clarify this. There is a limit, then, to how widely-separated the 

constituent tones can be in these Shepard intervals. Starting with the 1 5 : 1 6  stimulus, the gap 

between f1 (I) and f1 (u) can be progressively increased as far as the Tritone; increasing the gap any 

further brings f1 (I) closer to f1 (u) 12 . 

As anticipated, a frequency-gap axis dominates the MDS solutions. Figure 3 . 1 4  combines data 

from nine subjects. Some differences in perceived frequency remain, hence the second 

dimension, serving to separate same-interval stimuli (linked by dotted lines in the diagram). 

Figure 3 . 1 4  Two-dimensional configuration for 1 5  Shepard intervals using triadic data from nine subjects 
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More precisely, it separates intervals where the gap between the two highest-amplitude 

components is less than six semitones (e.g. 1 5 :  1 6, 5 :6, 3 :4) from those with a gap greater than six 

semitones (8 :  1 5 , 3 : 5 ,  2 :3) .  The INDSCAL model (Chapter 4) was used to find the best-fitting 

axes for this configuration. 

Judging from its position in the configuration, the Octave stimulus is qualitatively different from 

the others. The octave has only half as many constituent tones, making it stand out, for most 

subj ects, in most of the triads containing it, and placing it high on the second dimension. 

One exception to the orderly arrangement of the intervals along a frequency-gap axis is the 

Tritone, 5 : 7. As we have seen, it should be the most harmonious of the stimuli, apart from the 

Octave: the particular harmonics which make a tritone combination of complex tones so 

dissonant are absent from these Shepard-tone intervals. However, it takes fourth place. This 

could reflect the unfamiliarity of the Tritone, which is avoided in Western music, whereas 2 : 3  

and 3 :4 ratios occur frequently. But the subjects were not particularly musically experienced. 

Alternatively, this observation could be taken as evidence for the 'periodicity' or ' long pattern' 

theory of human responses to tones: that the relatively long period that it takes a combination of 

incommensurate frequencies to repeat (as opposed to simple ratios like the Fourth, where the 

waveform of the combination has a frequency of 3 f1 (I) = 2 f1 (u)) is perceived directly as 

dissonant, regardless of the presence or absence of higher harmonics. 

Further experiments would be required to settle this point. One might, for instance, construct 

intervals using "stretched" tones [Mathews & Pierce, 1 980; Pollack, 1978; Slaymaker, 1 970] in 

which the ratio between successive "octave" harmonics (more correctly in this case, partials) is 

s lightly greater than 2. If the ratio is not too great (e.g. 2.05), the ear still fuses such tones into a 

gestalt, though one having a percussive, bell-like timbre instead of the organ quality of a Shepard 

tone . Intervals formed from stretched tones should still be recognisable (with the Tritone sti l l  

unfamiliar), but they would all have long periods. 

Another possibility is to find subjects accustomed to non-Western styles of music. 

The nine subjects were recruited opportunistically. This is the Casablanca technique: "Round up 

the usual suspects". Each listened to a different set of triads, the l ists being BIDs with A. =  3 or 4 
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( 1 05 or 1 40 triads), except for two subjects who did not complete the task. There are enough data 

to derive an individual configuration for each subject (apart from the two incomplete-data 

exceptions) ,  though they show the same features as in figure 3 . 1 4. There are differences in 

dimensional salience. According to figure 3 . 1 5 , the configuration for the author's data, I placed 

considerable emphasis on the consonance-dissonance dimension - hardly surprising, given my 

awareness of the purpose of the experiment. Another subject with high 

salience for dimension I had 

chosen to turn up the 

amplification of the stimuli 

unusually  high. It is possible 

that at his preferred level of 

loudness, the dissonance of 

some intervals was increased 

by subj ective harmonics and 

difference tones (generated 

by the non-linearity of the 

middle and inner ear). 
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For subjects AK, RX and JM, the residual differences in pitch were more salient: figure 3 . 1 6  i s  

the configuration for AK. 
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Subjects were given no hints as to the criteria 

on which to judge "similarity". A tenth subject, 

a musician (or at least a guitarist) explained 

that his criterion for "similarity" between two 

intervals was how well they would go together 

in a chord. This is a non-geometrical model of 

proximity, the "ham and eggs" metaphor: ham 

and eggs are similar, because they go together 

well. That subject's results were too 

idiosyncratic to use in the pooled data. 
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4. GENERALISING THE MODEL 

Introduction. 

Several of the situations discussed in Chapter 3 involved pooling triads provided by more than 

one informant to make a single data set. The discussion assumed that subjects have similar 

response patterns, i .e. that their judgments are all based on copies of one mental map, and can 

safely be treated as if obtained from a single source. 

This chapter abandons that assumption and considers general frameworks for coping with 

individual variations. It also introduces the concept of alternative definitions of "distance", other 

than the Euclidean distance function assumed in Chapter 2 .  

Though made in the context of triadic data, the generalisations are equally valid for other 

formats. See Wexler and Romney [ 1 972] for a extraction of individual differences from 

specifically triadic data. 

I have already asserted that a fully rank-ordered table of dissimilarities can be treated as pairwise 

comparisons. This point will be expanded on later; for now, note that multiple tables should be 

treated as multiple sets of pairwise comparisons. To turn dissimilarities into a matrix for MDS 

by averaging, as if they are ratio- or interval-level, is undesirable. 

I wil l  frequently refer to the spring metaphor of Chapter 2, to help maintain an intuitive feel for 

the models outlined in this chapter. The mathematical treatment remains elementary. 

Divers Weights 

"The difference between men is in their principle of association. Some men classify objects by 

eo/or and size and other accidents of appearance; others by intrinsic likeness, or by the relation 

of cause and effect. " [Emerson] 

I n  some studies there are sufficient data to scale each subject's configuration in isolation, thus 

revealing the degree of variation that is concealed when they are combined. Figures 4. l (a), 
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4. l (b) are for two of the 47 subjects who contributed to figure 3 .4. Recognising how subjects' 

maps differ is not a problem. If one pools the data, it is because individual deviations from the 

consensus mental map can be dismissed as random fluctuations, and eliminating them is 

desirable. 

Figure 4. 1 (a) and (b) Two sample individual configurations from the Coxon et a/ triad sets 
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An interesting situation, however, is where triads are shared out among subjects; there being too 

many for a single subject, with the result that no single subject provides enough responses to 

scale in isolation (the third-power proliferation can make this unavoidable) . I seek a middle 

ground between analysis in isolation, and treating the data as if obtained from one subject; like 

drunks, unable to stand individually, the data sets should provide mutual support, while stil l  

allowing individual variations to emerge. 

Even for complete data sets, one may want to perform some kind of mutually-constrained 

analysis, to separate genuine variations from the effects of random noise. 

Permitting individual variations means that the dissimilarities perceived and compared by 

different subjects are not the same; each subject is working from a private mental map which is 

derived by some form of distortion from a group configuration. An obvious class of distortion is 

to vary the importance of the P dimensions between subjects. For two subjects SI and S2, SI may 

fjnd that elements' values along the first dimension make a greater contribution to inter-element 

dissimilarities, and hence to the selection of the odd-one-out from a triad, while S2 is more 

sensitive or better attuned to the second dimension. L, the index of inter-subject variation 
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extracted by Wexler and Romney [ 1 972] from triads of kinship terms, in effect measured the 

relative salience between two dimensions (out of four). 

This class of distortions is encompassed by the INDSCAL model [Carroll & Chang, 1 970] . In 

this model, a modified Euclidean distance takes such variations into account: 

p 
dm.ij = [1: wmp (X;p - Xjp)2] I12 p = l  

(4. 1 ) 

dm,if being the (i,j)-th dyad separation within the m-th subject's perceptual space; if M is the 

number of subjects, I :::; m :::; M. The weights w mp• representing the importance or salience of the 

p-th dimension to the m-th subject, form a M-by-P matrix W. One can interpret ( 4. 1 )  by 

imagining the configuration X being copied from what Carroll and Chang call the "group 

stimulus space" into the subject's own perceptual space, suitably contracted or dilated: 

1 12  Xm, ip = Wmp X;p 
and dissimilarities then computed with the standard Pythagorean formula. 

For any X, a single point in configuration space, the range of private distorted versions X m 

constitutes a (P- 1 )-dimensional subspace, and when X is varied in search of the optimal 

explanation of the observations, it is this whole range of configurations which vary; the 

parameters W, which specify which members of that range appply to each subject, should be 

optimised concurrently. As well as the group space, there is a P-dimensional "subject space", in 

which W is represented by the positions of M points with coordinates wm. Optimising W consists 

of moving those points. 

In this model, all subjects' dyad comparisons have a bearing on the group configuration, but the 

contribution of a given judgment depends on the judge's dimensional weights. Upgrading the 

spring model developed in Chapter 2, to include data from several subjects, is a matter of linking 

the nodes with multiple sets of springs, each set governed by the appropriate matrix of private 

distances Dm. For the sake of concreteness, suppose that S1  and S2 have both compared dyad (i,J) 

against (k,l), coming to the same conclusion, oif > OtJ· Even though they agree, their judgments 

o, ,ij > ou, 
o2.ij > o2,kl 

are kept separate, affecting only that subject's spring tensions. Let Em.ij.kl be the value of £ij.kl in  

subject m's  data set: 
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Em,ij,kl = f 1 if om.if > om.kl 
0 otherwise. 

Contradictions between reconstructed distances and comparisons can now be summed over M 

subjects to calculate the Stress: 

M 
raw S(X: W) = 2: Sm(X wm) 

m = I 

where Sm(X: wm) = L Em,ij,kl H(dm,kl - dm.ij) (dm,kl - dm,ij)2 
(iJ) (k.l) 

For the simple cases of M =  1 (a single subject), or when data sets are pooled under the 

assumption that individual perceptions are the same (i.e. treated as replications), clearly 

wmp = 1 for all m,p. 

(4.2) 

In other cases, add constraints on the weights, since it is undesirable for perceptual spaces to 

vary freely in scale between subjects: 

p 
L wmp = P for all m p = I 

or equivalently, 

p - I 
P - Z: w  mp p � l  

(4.3) 

i .e.  the weights vector wm for the m-th subject has only (P- I ) independent components. (4.3) 

restricts the corresponding point in subject space to lie on a (P- I )-dimensional hyperplane, 

intersecting the axes at (P,O,O, . . . O), (O,P,O, . . . ,O), . . .  (O,O,O, . . . ,P). The M= 1 point ( I ,  I ,  I ,  . . .  , I )  is 

also on this plane. 

Further constraints can be imposed on W. We wish the group stimulus space to be at the centre 

of the individual spaces, i.e. the M points in subject space should have their centre of gravity at 

the M =  1 point, the "centroid configuration" [Lingoes & Borg, 1 978] : 

1 I M L Wmp = 1 
m 

� 2 2 Thus 1 I M � xm,ip = X;p . 
m 

W has only (M- 1 )  (P- 1 )  degrees of freedom. 

(4.4) 
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As in Chapter 2, it remains to vary the sundry parameters - W as well as X- until  S(X, W) is 

minimal. The matrix decomposition used by Carroll and Chang [ 1 970] assumes ratio data and is 

not applicable here. The absence of a matrix !::. of disparities precludes a matrix solution for W, 

as in ALSCAL [Takane et a/, 1 977] . Rather than Carroll and Chang's approach of successive 

approximation, we optimise the configuration progressively through the iterations of a step-wise 

hill descent. Each iteration replaces x<r> with x<�+I l  = x<r> + (step-size) VX, as before, also 

replacing w<r> with w<�+I l  = w<r> + !::.W = w<r> + (step-size) VW 

The gradients are aS(X,fV) I axip = L asm(X wm) I axip m 

where asm(X wm) I 8x;p = L(asm I adm.iJ) (adm.iJ I  8x;p) j 

Similarly, 8S(X, W) I awmp = 8Sm(X wm) I awmp 

= - 112 L (X;p - Xjp)2 I dm,ij (2 L Em.ij./cl 0(dm,lcl - dm,ij)) (4.6) 
{iJ) (le,/) 

These calculations are easily implemented. MTRIAD calculates the personalised distances dm.iJ 
for each subject, then iterates over all dyads (i,j) and (k. l) for which Em.iJ.Icl > 0, accwnulating 

contributions to that subject's "spring forces". As well as contributing to !::.x; and &1, the (i.J)-th 

spring forcefm.iJ contributes to !::.wmp• in proportion to the separation of i andj along the p-th 

axis. * 

Consider V X m (the contribution to V X from the m-th data set) in the form of a vector in 

configuration space. ( 4.6) amounts to projecting V X m onto the subspace of allowable 

transformations of X. The component of V X m tangential to that subspace is an indication of how 

much w m should be altered. If V X itself has a non-zero projection onto the subspace, X needs to 

be stretched or compressed. 

Like overall scale, the constraints (4.3) and (4.4) are enforced by rescaling after each !::. W. 

*
By inspection of (4.5) and (4.6), the derivatives of S are defined for all X, W, although 

they are discontinuous, because of the step functions. Loss functions defined in terms of 
disparities [Kruskal, 1964] are not guaranteed to be everywhere differentiable [de Leeuw, 
1988] . De Leeuw also discusses convergence properties when loss functions are 
minimised by using the majorization algorithm. 
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Figure 4.2 Group configuration (a, left) and subject space (b, right) for Stalmeier-de Weert colour data (M = I 0) 
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Applying this to data col lected by Stalmeier and de Weert [ 1 99 1  b ], with N = 1 6  colour stimuli 

and M= 1 0, in two dimensions, yields figure 4.2 .  Panel 4.2(a) shows the group configuration; 

panel (b) is the subject space, plotting wm1 112 horizonally and wm2 112 vertically. Individual 

variations are indicated; for instance, subject PE is evidently relatively attentive to the red-green 

axis. Comparing back to PE's individual configuration (figure 3 .5) confirms this. But note the 

slight rotation between the two configurations. This highlights the important point that 

orientation in Euclidean space is arbitrary; rotation of the set of axes into another set leaves 

distances (and Stress) unchanged. The axes in 3 .5  are inherited from the original metric solution 

for x<0>. Principal Coordinates Analysis aligns the axes with any elongation of the configuration, 

so to maximise the variance they account for. Depending on the configuration, they may 

coincide with meaningful dimensions (as in this case), but one cannot rely on this .  

Weighted Euclidean space - the "INDSCAL model" - breaks the symmetry. If the model is 

applicable, the configuration rotates in the course of minimising Stress, finding the alignment 

wbere the spread of subjects' weights is greatest. A sufficient reduction in Stress gives one 

confidence that the resulting axes are interpretable, as ways in which subjects can vary, if 

nothing else. This is the justification for using INDSCAL. The option for individualised weights 

is to be used cautiously, as with any model introducing additional degrees of freedom.
1 

1 "Divers weights, and divers measures, both of them are alike, abominations to the Lord." 
[Proverbs 20: 1 0] 
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We are fortunate in having external evidence to ease any doubts about figure 4.2. Of those ten 

informants, eight participated in a second experiment [Stalmeier & de Weert, 1 99 1  b ], using a 

different procedure, with six fewer colours in the stimulus set (N = 1 0). Instead of the "Star-of­

David" pattern, coloured circles (each subtending a visual angle of 1 .06°) were presented in a 

triangle (with a 0.6° gap between each pair): subjects assessed the colours' dissimilarities 

consciously rather than relying on gestalt fusion. Analysing the results shows the same ordering 

of subjects. Moreover, these dimensional weights emerge when each of the four replications 

comprising each subject's data set is analysed separately. 

Similar variations in colour sensitivity appear in previous studies: see Wish and Carroll  [ 1 974] 

for INDSCAL reanalyses of data collected by Helm, and by Indow and Kanazawa. Stalmeier 

[personal communication] suggests several explanations for these idiosyncracies. As well as 

differing cone-cell responses, affecting the relative strengths of the red-green and blue-yellow 

opponent processes, there is pre-retinal filtering of light, varying with the amount of (yellow) 

fovea! macular pigment, and the extent of yellowing of the lens: also likely to align the second 

INDSCAL dimension with the yellow-blue axis (tritanopic confusion lines). 

The POOC triadic data, for 1 3  names of occupations [Coxon et a/, 1 975] have already been 

mentioned (figure 3 .4). Here M =  47. A Balanced Incomplete Design was used, with A. =  2, 

collecting only 52 triads from each subject, though not all subjects completed the whole list (in 

the despairing words of the User's Guide, "Missing data just isn't there"). Repeating the analysis 

with the INDSCAL model results in a reduced Stress. The evidence for the validity of these axes 

is that if the configuration is rotated, it rotates back to this preferred alignment. They concur 

with the dimensions proposed by Coxon and Jones, one being Income I Status, and the other 

corresponding to the amount of personal interaction involved in different occupations. The 

anticipated variation of weights with informant's social status did not show up. 

When the model is applied to the musical-intervals data discussed in Chapter 3, combining all 

14 data sets (three confusion matrices, two matrices of vote-counted triads, and nine sets of 

simple-tone triads from the third experiment), it turns out that six sets place high weights on the 

third dimension (simple-ratio consonance-dissonance). lbree of these are the observations made 

using complex tones: two complex-tone confusion matrices [Killam et al, 1975; Plomp, 

Wagenaar, & Mimpen, 1973], and the vote-counted complex-tone triads [Levelt et al, 1966]. 
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This fits in with the theory that simple ratios become a factor in consonance when intervals 

include harmonics. There are also three sets of triads having a high wmJ· One of these came from 

the experimenter, who was aware of the purpose of the study, while for a second set the subj ect 

was a musician. 

Applied to the data from the 4th experiment (Shepard-interval triads), the INDSCAL model 

highlights two subjects placing a high weight on the consonance-dissonance dimension (wmi > in 

this case) .  One was myself. The second, subject AG, chose to play the sounds loudly enough 

that subjective harmonics (produced by nonlinearities in the inner ear) were possibly 

contributing to dissonance. 

A similar reduction of Stress with 

axial realignment occurs when 

one applies the INDSCAL model 

to the cry data of Lyons et al 

[ 1 99 1 ], where M= 8 .  The result, 

Figure 4.3,  confirms that the 

configuration derived earlier 

from subject B 's data is 

representative of the other 

subj ects. 

Sparse data sets 

Figure 4.3 INDSCAL solution for cry triads 

The N =  1 6  Stalmeier-de Weert material affords a demonstration that individual variations can 

still be discerned in sparser data sets. I constructed a new data set for eight of the 1 0 subjects, 

discarding 7/8 of the data and apportioning triads so that each triad was judged by one and only 

one subject (thus each data set comprises 70 triads). Using the MTRIAD and the vote-count 

procedures to recover the configuration for subject PE results in figures 4.4(a) and 4.4(b) 

respectively, and highlights the weakness of the latter when dealing with incomplete data. 

Moreover, the same individual variations still show up upon pooling the data sets (figure 4.5). 

64 



figure 4.4 

figure 4.5 

MTRIAD (a,  left) and vote-count (b, right) solutions for 1 /8 of the Stalmeier-de Weert data for 
PE 
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A second demonstration apportions triads with some overlap. I winnowed subject ER's data to 

retain only those 2 1 0  triads <i,j, k> in which stimulusj is one of the colours 'a' and ' i ' ;  subject 

EU retained only triads in whichj is 'b' or 'j ' ;  and so on to subject PI (the 2 1 0  triads in whichj 

is 'h'  or 'p') .  The resulting data sets are conditional ranking data and must be combined for 

analysis; they are too imbalanced for treatment in isolation. The resulting subject space (figure 

4.6) illustrates how individual variations are stil l  resolved, even under these adverse conditions. 

One point remains to be made about the Stalmeier-de Weert data. The set of 1 6  stimuli used in 

their first experiment [ 1 99 1 a] includes the 1 0  colours ofthe second experiment [ 1 99 1 b],  making 

it possible to scale and weight them all in one grand combination. Figure 4. 7 shows the 

unexpected result. Individual variations in colour sensitivity are superimposed on a larger 
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difference between experiment designs. It would appear that separation along the Blue-Yellow 

dimension contributes more to the conscious assessment of colour dissimilarity, than to the 

mechanisms of gestalt fusion underlying the Star-of-David design. In retrospect, this should not 

have been so surprising, for edge distinctness presumably plays a part in gestalt fusion, and 

colour awareness and edge detection are known to be mediated by separate cellular pathways in 

the retina and brain, with the latter displaying a partial tritanopic colour-blindness [Livingstone, 

1 988] .  Edge distinctness is not a valid index of colour dissimilarity. Scaling subjects' 

assessments of the distinctness of edges between monochromatic stimuli leads to a colour ellipse 

instead of the expected colour circle [Tansley & Boynton, 1 976] . 

Figure 4.7 
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The observation demonstrates one situation when the INDSCAL model serves a useful purpose: 

when one suspects that multiple data sets originate in distinct sub-populations, differing in their 

perceptual maps, and one seeks to resolve them. This includes issues such as diagnosing colour­

vision deficiencies. 

Sometimes the results of a course of tuition are also measurable as dimensional weights, as in 

studies like Pollard-Gott [ 1 983] (where subjects comparing sections of music for dissimilarity 

showed growing awareness of a "thematic" dimension as exposure increased, with musicians 

weighting the thematic dimension most highly), and Green, Jones and Gustafson [ 1 987). 

In an application of the INDSCAL model to study pain [Clark, Janal, & Carroll, 1 989], 48 

subj ects (24 healthy volunteers, and 24 cancer pain patients) provided dissimilarities between 9 

pain descriptors. The "pain intensity" dimension of the resulting configuration was more salient 

for the patient group; healthy subjects were more attentive to the "emotional quality" dimension 

of the descriptors. The authors concluded: "The MDS approach suggests that questions such as, 

'Is this patient really in pain or merely depressed?' will be replaced by ' What are the patient 's  

coordinates in the multi-dimensional global pain space and what dimensions are most relevant 

for him?'" (page 297). 

When the configuration is known in advance, and need not be recovered from the data at hand, a 

complete set of dissimilarity comparisons can be replaced with comparisons selected solely to 

determine W. It is clear from (4.4) that asm I awmp is more sensitive to some comparisons than 

others. When S(X W) is minimised by varying W (i.e. holding X constant), these are the 

comparisons with the greatest potential effect on wm. The relative salience of axis p is most 

sensitive to comparisons between two distances which are roughly equal (in the stimulus space 

for the m-th subject), with one dyad parallel to the axis and the other perpendicular to it. 

By now, no-one will be surprised when I simulate an example of W-only scaling using the 

Stalmeier-de Weert data (N = 1 6). From each subjects' data set I took their responses to 1 6  

triadic comparisons (listed in Table 4. 1 ), picked for their weight-discriminating value by 

examining figure 4.2(a). Scaling them under the INDSCAL model, with X held constant by 

including a table of distances dif in the analysis (these being the inter-point distances obtained by 

analysing the complete data), results in figure 4.8, in good agreement with figure 4.2(b). 
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Table 4. 1 .  1 6  triadic Figure 4.8 Subject space with X constant and 16 comparisons per subject 

weight -discriminating 
comparisons. 
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If this were used as a test of colour perception in practice, where the range of potential variation 

is wider, a larger set of triads would be required. Two students at Massey University (Emma 

Barraclough and Don Kirkland) are conducting research along these lines. 

The Star-of-David experiment design involved in acquiring this data has much in common with 

the widely-used Ishihara test for colour-vision deficiency. Both are gestalt procedures, which 

present the visual system with two alternative interpretations, mutually incompatible, to be 

resol ved by vision's opponent processes. The interpretation which pairs up closer colours will 

"gel" and exclude the alternative interpretation. Ignoring incidental details of gestalt design, the 

major contrast between the two is the us� of a white background in the Ishihara test, preventing 

edge-distinctness effects from confounding the outcome. I conclude that Ishihara results are 

triadic data. 

Consider the Famsworth-Munsell D 1 5  test of colour vision in the same l ight. This involves two 

sets of 1 6  colour samples, each set varying only in hue, spaced at equal intervals around a colour 

circle (colour brightness and saturation are fixed at 5/4 for one set and 8/2 for the second, so 

there are separate circles, one for each set). With one sample serving as the initial anchor, the 
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subject chooses the colour closest to it. That choice becomes a new anchor and the closest of the 

remaining colours to it is chosen; a process which continues until the 1 6  colours are all arranged 

in a sequence. This is still a form of dissimilarity comparison (specifically, it is a pick 1/N 

procedure - to be discussed in Chapter 6 - modified by the dwindling choice for "closest 

colour") . For a subject whose stimulus space is sufficiently distorted, with the colour circles 

collapsed into ellipses by extreme values for wmp• the sequence is abnormal . 

This procedure appears in a more extensive form as the Farnsworth-Munsell 1 00-Hue test. 

The IDIOSCAL model 

Not all forms of variation between individuals' perceptual maps (or between the same individual 

under different conditions, or at different stages of training) lend themselves to description in 

terms of dimensional weights. One step up in generality is the IDIOSCAL model [Carroll  & 

Wish, 1 974], which still involves compression or expansion of the group configuration along a 

set of dimensions, but these are not necessarily the axes of the stimulus space. One form of this 

model (the "Carroll-Chang decomposition") subjects the configuration to a rotation before 

weighting is applied2• This introduces another M(P- 1 )  degrees of freedom since a separate 

rotation is fitted for each subject. The classification of colour vision deficiencies is a situation to 

which this model i s  admirably suited. Depending on which of the three cone-cell pigments is 

abnormal, the private colour space (in two dimensions) of a colour-vision-deficient subject is 

compressed along one of three axes. Two of these axes (for proteranopes and deuteranopes) are 

only 30° apart, with roughly 90° between them and the third, tritanope axis, so the INDSCAL 

model is a useful first approximation. 

In the IDIOSCAL model, as well as looking for a component of \/ m indicating that Xm should be 

stretched along the m-th set of axes, we look for a rotational component. The range of 

transformations Xm of a given X now constitute a 2(P- 1 )-dimensional subspace of configuration 

space, but finding the individual-variation parameters is still a matter of projecting \1 m onto the 

subspace to extract its tangential component. 

2 There is also the Tucker-Harshman decomposition, also known as the PARAF AC model, 
which allows for affme transformations of the group configuration: the axes of expansion or 
compression are not constrained to be at right angles. 
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So far I have used W to label the M-by-P matrix of dimensional weights, with individual subject 

weights being wmp• or wm to label a point in subject space. Often in scaling theory, weights are 

represented as P-by-P diagonal matrices W m• while the coordinates of the i-th point, in the 

personal and group stimulus spaces respectively, are written as column vectors xm. i and X;. This 

has the advantage of letting one write Xm.i = w m . X; (and xm = w m . X). 

The IDIOSCAL model interpolates a rotation matrix, Rm: 

X = W  . n  · X  m m .. 'm 

So d 
2 T T T m.ij = (X; - X) · Rm · W m • W m • Rm · (X; - X) (4.7) 

In two dimensions, as well as a single weight parameter wml (since wm2 = 2 - wm1), there is a 

single rotation parameter per subject, em, and 

As before, the situations we are interested in involve no distance estimates &if, and (4.7) cannot 

be decomposed directly. Once again, the answer is to minimise Stress iteratively. Inserting (4.7) 

into (2.9), the differentiation is not particularly laborious. We get 

where fm.iJ = 2 L Em,iJ,kl 8(dm.kl - dm.ij) 
(k.l) 

osm I Oxa = Lfm.ij [(wml Sm
2 + wm2 Cm

2
) (xa - x,1) + (wm2 - wmd Cm Sm (xil - xjl )] I dm.ij 

j 

Figure 4.9 was produced by applying this model to four sets of distance-comparison data, all 

elicited using the D 1 5  stimuli [Barraclough, unpublished data] . Two data sets used the standard 

D 1 5  protocol, for the saturated and unsaturated stimulus sets (12 and 1 1  subjects respectively). 

The other two used a 'hierarchical sorting' procedure, which I describe in Chapter 7, performed 
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on both stimulus sets (by 1 9  subjects for the saturated, and 1 7  for the unsaturated sets) .  I do not 

show the configuration itself (which was circular, by constraint). Instead, figure 4.9 is a 

depiction of subject space. It uses radial coordinates, plotting (wm 1 - 1 ) 112 against (28). This is to 

eliminate a redundancy in the parameters of the IDIOSCAL model .  A rotation through 8, 
followed by dimensional weighting with weights (wm 1 112, (2-wm 1 ) 112) has the same effect as 

rotating through e + 90° and weighting with ((2-wml) 112, Wmt
112). 

Subjects who had been diagnosed as colour-vision deficient using the Ishihara test or 

anomaloscope examination are marked on the diagram. There is a clear separation of the 

protanope and deutanope groups. Had there been tritanopes among the subjects, they would 

presumably have been positioned somewhere to the left of the diagram . 
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The Points-of-View model 

I should also mention the Perspectives model [Lingoes & Borg, 1 978]. This provides for a 

different form of individual variation: the private spaces differ in how far each stimulus lies 

from the centre of the configuration, though the direction of the stimulus is fixed (so there are an 

additional N degrees of freedom per subject). Lingoes and Borg incorporated this and 

previously-described models in a framework, PINDIS, where they are arranged in increasing 

generality (requiring progressively more degrees of freedom). 

The options presented by all these models for distorting a group configuration into private 

configurations are stil l  restricted. Indeed, this is part of their appeal. The assumptions they make 

are precise enough to be falsifiable. The problem is, deciding a priori which model to apply. For 

colour vision, reasons for using the IDIOSCAL method were known before analysing the data, 

but this is seldom the case. 

If the data are abundant, one can scale each data set in isolation, producing M solutions, then 

scale the M-by-M matrix of congruence coefficients between those solutions (in other words, 

scaling a matrix of distances between points in configuration space\ Often the arrangement of 

points can be approximated in far fewer than (M- I )  dimensions. This was the approach taken by 

Kirk and Burton [ 1977] . In that example, their informants responded to triads data for 1 3  

personality descriptors, in M =  8 situations: the descriptors were presented in isolation, in one 

test, while the other seven tests consisted of applying the same descriptors to particular 'social 

identities' in Maasai culture. Kirk and Burton compared the separate solutions (semantic 

structures) organised around these (7+ 1 )  social identities, and found that a two-dimensional map 

was adequate for portraying the dissimilarities between them. 

One might discover, in fact, that the arrangement of the solution points in configuration space is 

more-or-less one-dimensional. In such a situation, the picture can be simplified by fitting a 

regression line through the points, and replacing each individual solution with the point on the 

line closest to it, thereby fitting the data with only M +  2 N P degrees of freedom instead of 

3 Borg and Leutner [ 1985] explain why the congruence coefficient, instead of the product­
moment correlation, should be used to assess the similarity between two configurations. 
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M N P. This is a form of the Points-of-View model, introduced by Tucker and Messick [ 1 963] :  

an  especially general alternative to the preconceptions of the INDSCAL model. 

In this account the "viewpoints" are the extremes of variation, alternative perceptual maps in 

their purest form; these are mixed, in various linear combinations, to model the subjects' 

responses. In the simple situation I 'm concentrating on, there are two viewpoints, x· and X", 
defining a spectrum of configurations, 

(4.9) 

Points on that line correspond to idealised individuals, more or less compatible with the 

observations of actual subjects. Idealised individuals should not be confused with viewpoints. 

Another name for viewpoints, "sources of dissimilarity" [Meulman & V er boon, 1 993] is perhaps 

misleading, since it focusses attention on the inter-stimulus distances. Ross [ 1 966] emphasised 

that mixing the distances between items in two viewpoints is not valid; one must take linear 

combinations of the coordinates. Not just any vector of N (N- I )  I 2 numbers can be distances 

between N points - there are very tight constraints to be satisfied. Though two vectors may 

satisfy them, in general a l inear combination of the vectors wil l  not. 

Modelling the data as accurately as possible becomes a matter of optimising the whole spectrum 

by altering X' and X' ·, and the subjects' mixture parameters am, concurrently. The way this is 

done in the Tucker-Messick analysis is equivalent to performing a matrix decomposition on the 

data. The data are assumed to be at ratio level, and the analysis is a metric one. I hope to 

convince the reader that like the INDSCAL model, the Points-of-View model can be applied to 

triadic data (and other forms of distance comparison) directly. 

The general case of V points-of-view confines idealised-individual solutions to a ( V- 1  )­

dimensional subspace of the configuration space, defined by a simplex having the points-of­

view for apices. V =  1 returns us to the simplest case of a single configuration. This reduction in 

dimensionality is the key point. It allows scaling to proceed, even when the data from each 

subject are too sparse to process in isolation: constraints are placed on X m by the equally-sparse 

data from the other (M- 1 )  subjects, indirectly, with the viewpoints as intermediaries. 
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Meulman and Verboon [ 1 993] present an interesting variation of this model, in which subjects 

are assumed to embody one or other of V points-of-view; there are no intermediate mixtures. 

This comes back to assuming that a subject's data arises from a randomly-perturbed replication 

of a shared configuration, but allowing more than one such configuration. So the points-of-view 

partition the subject group into V non-overlapping, internally homogeneous sub-populations. To 

further simplify the model, the V configurations are assumed to differ only in dimensional 

saliences. This variation has much in common with the Latent Class model [Winsberg & de 

Soete, 1993].  It has the advantage that points-of-view are uniquely specified, whereas in the 

Tucker-Messick formulation, points of view are not unique. For instance, setting V =  2, 

constraining individual solutions to line on a line segment through configuration space, does not 

specify the segment's end points X' and X"; there are infinitely many pairs to choose from. 

Multiple solutions exist to the matrix decomposition. 

However, the emphasis in Tucker and Messick's paper is on continuous variation, rather than 

distinct populations. This seems to me to be closer to the spirit of developmental psychology. I 

return now to that original form of the model [used in a number of early studies: Helm & 

Tucker, 1 962; Landis, Silver, Jones & Messick, 1 967; Silver, Landis & Messick, 1 966] . 

Note, first, that end-points are not necessary. X' and X" have the purpose of delimiting a l ine 

segment, but it is equally easy to define one point (the group configuration: call it X0), and a line 

passing through it in the direction Y, so that X= X0 + a Y. Thus the configuration for subject m 

(the m-th idealised individual) is 

(4. 1 0) 

This is stil l  the points-of-view model, but without the points of view. From ( 4. 1 0), 

I.e. 

Inserting this into (2.9) gives the derivatives of Sm, the m-th contribution to raw Stress, as 

(4. l l a) 
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(4. l l b) 

(4. I I c) 

In the more general case of V> 2, where (V+ I )  dimensions are required to represent how the 

individual solutions are arranged in configuration space, one could write X =  am Y + bm Z + . . .  

This can be expressed more conveniently as a matrix multiplication: Xm = am · Y, where am is  a 

row-vector of ( V- I )  elements, while the colwnns of Y are Y, Z, etc. 

The INDSCAL model in P dimensions is simply one way of confining individual solutions to a 

(P- I )-dimensional subspace of configuration space. The principal difference between it and the 

Points-of-View model is that the orientation of that subspace (a line or a plane, for P = 2 or 3 )  is 

established in advance, instead of being determined by the data. Other models offer subspaces 

with different alignments. 

An interesting special case of the Points-of-View model is the simple situation of V = 2 ,  P � 2. 

Consider X m, the configuration for the m-th idealised subject: N points arranged in P dimensions. 

I find it helpful to imagine this arrangement as a horizontal cross-section through 

a (P+ 1 )-dimensional space, where the vertical 

axis, the (P+ I )-th, represents a. The lines 

passing obliquely through figure 4. I 0, a 

hypothetical example for P = I ,  are the 

possible positions for the N stimuli; their 

intersections with a horizontal plane at am are 

the elements' positions in Xm. MDS on data 

from multiple subjects is a matter of arranging 

the lines and the heights of the cross-sections 

so as to best account for the relationships 

observed within each section. Figure 4. 1 0  Points-of-view model with V =  2, P = I 

Some examples which can be visualised in this way come from studies of social networks (a  

college fraternity, in  Nordlie [ I 958]; a monastery, in  Sampson [ I 968]), in which the personal 

distances between persons (the elements) evolved in the course of repeated observations. The 
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vertical axis in such cases would be a time dimension, with each am slice being a 'snapshot'  of a 

developmental proce�.5. 

The mathematics is the same for situations in which it is the stimuli or the relationships between 

them which change, rather than the subjects assessing them. 

In the Points-of-View model, there is no connection between the slope of one oblique line 

(stimulus) and another - they pass through the (P+ I )-dimensional space independently of each 

other. This is another way of clarifying the restrictions built into models such as IDIOSCAL, 

where the lines are coordinated and coherent. 

Just as with INDSCAL, this model retains ambiguities of scale, which need to be squeezed out 

in the course of minimising S. X0 is periodically renormalised to keep Scale(X0) constant. 

Although I have glibly described the X m as single points in configuration space, an ambiguity 

remains, in that rotated versions are equally good solutions, not to mention reflections and 

dilations. It is possible, but undesirable, for Y to have a rotational moment. Reverting for a 

moment to the idea of the range of allowable X being defined by view-points x· and X' ·, 

consider the case where X' is a copy of X'·, rotated so that x ';p = -x · ';p· Then configurations 

mixing these viewpoints vary in scale - Xm in (4.9) collapses to a single point when am = 0.5 .  

Rotational and dilational components of Y can be eliminated in  the course of the scaling. In the 

(P+ 1 )-dimensional model, the stimulus lines should on average be vertical, with no net 

rotational moment. To put it another way: the transformation mapping X0 onto Xm should be 

Procrustean. 

There are three other constraints to be imposed on Y in order to remove forms of non­

uniqueness. First, let L Y;p 2 = 1 ,  i .e. 1 1111 = 1 .  Second, let Lam = 0, i .e. X0 should be 'central' .  

Third, in  the case of  V >  2,  the columns ofY should be orthogonal. 

For the data sets presented so far, this form of analysis leads to the same results as the 

INDSCAL model. The same is true for triadic data which will be presented in Chapter 8, where 
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the stimuli were tape -recordings of canine heartbeats, compared for dissimilarity by various 

members of the Mc..ssey veterinary faculty. 

A Residual-Forces Subject Scaling 

This thesis concentrates on sparse data sets, for which MDS solutions in isolation cannot always 

be derived. This rules out the first stage of individual-variations analysis, that of scaling the 

differences between solutions. Another tactic which is sometimes used - scaling differences 

calculated directly between the responses in each data set - is seldom applicable either, since the 

data wil l  often have been elicited to minimise the overlap between data sets so that they 

complement one another. 

I suggest that even with data sets too sparse to be usefully compared with each other, it is still  

possible to measure the extent of each set's disagreement with the solution derived by scaling 

1hem in combination, and more importantly, to measure the direction of that disagreement. 

When the downhil l  descent reaches a minimum of Stress, the m-th data set will stil l  conflict with 

X (1mless Sm = 0). It contributes V X m, pushing X in a direction which will bring it more into 

agreement with that subject's response (:E vxm = 0 since the downhill descent has converged). 

Similar data sets wil l  disagree with the group configuration in a similar way, and exert roughly 

parallel forces. It  turns out that in many cases, the vxm (vectors in configuration space) can be 

scaled in l ieu of individual solutions, taking the Euclidean distance between V X m and V Xn as a 

first approximation to the dissimilarity between the m-th and n-th data sets. As wel l  as providing 

a starting value of y<o> for the Points-of-View analysis, this is interesting in its own right. 

Applying this ' residual forces' approach to the Shepard-interval sound experiment of Chapter 3, 

where the data are not complete and each subject (M = 9) has responded to a different list of 

triads, the residual forces at  equilibrium can be compressed into two dimensions, with the 

dominant form of individual difference coinciding with variations in dimensional salience 

revealed by INDSCAL: figure 4. 1 1 (a). In the case of the Stalmeier-de Weert 1 6-colour triad 

data, where M =  1 0, I found that a two-dimensional solution again was sufficient (figure 

4.1 1(b)). Most of the differences between the VXm are along the first dimension, which 

coincides with the variations in dimensional salience. The second dimension reflects curvatures 

77 



in the subjects' private colour spaces which cannot be obtained by stretching or compressing a 

group space (figure 4. 1 2) .  

Figure 4 . 1 1  Subject spaces for Stalmeier-de Weert data (a, left) and Shepard-interval triads (b, right), mapped 
using residual forces. 

'5• .. ••• • o,o,.·.... S • • • • •  • o.l�% 

"' 

Figure 4 . 1 2  Individual solutions for Stalmeier's subjects PI and YV, il lustrating forms of individual variations 
not covered by dimensional weighting 
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Divers Measures 

It  is not at all obvious that perceptual spaces should all be governed by the Euclidean metric. 

Attneave [ 1 950] was the first to raise doubts. The only intrinsic requirement for a function to be 

a "distance" is that it satisfy the triangle inequality, diJ + 0* � d;k· A small, tentative step in the 

direction of generality, avoiding introducing too many parameters, brings us to a family of 

distance functions known as the Minkowski r-metrics. In general, in a P-dimensional 

Minkowski r-metric, the distance between points i and j is 

p 
jr) _ ["' 1 ... lr] llr a' ij - .t.J 1-"ip - Xjp p -=l 

(which is not easily expressed 

Pythagorean equation for distance. 

( 4. 1 2) 

in matrix form). For r = 2 this becomes the standard 

MDS theory interprets these r-metrics as a family of alternative rules for combining differences 

along underlying dimensions to arrive at the perceptual dissimilarity. 

At one stage, researchers hoped that the appropriate combination rule for the dimensions of a 

given perceptual domain could be determined by scaling dissimilarity data, inserting a variety of 

distance definitions ("metrics") into the Stress equation and seeing which one resulted in the 

lowest Stress. However, it is known now that Stress values are not comparable across metrics 

[Shepard, 1 974] . The question must be settled in other ways (Shepard and Cermak [ 1 973] 

plotted the isosimilarity contours directly, in a known configuration of complex figures, to 

reveal a roughly city-block metric). The choice of metric for scaling data will generally be 

determined a priori, reflecting one's knowledge (or assumptions) about the underlying 

psychophysics, more than it sheds light thereon. 

Since Attneave, it has been traditional to distinguish between analyzable (separable) and non­

analyzable (unitary, integral) stimuli4• In the unitary case, one assumes that the dimensions of 

4 The nomenclature for these non-Euclidean cases is muddied by the failure of early researchers 
to consider the cases where r > 2. Gamer and Felfoldy [1 970] only consider two cases, the 
Euclidean and the city-block metrics, labelling the former "integral" and the latter "non­
integral", basing the distinction on the independence of dimensions in the latter (i.e. lack of 
interference: the absence of fa-cilitatory or inhibitory effects during a constrained classification 
task), versus the dependence observed in the former. This leaves open the question of describing 
intermediate cases, or r > 2, where there is certainly interference between dimensions. 
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the perceptual space are not considered separately in the process of assessing dissimilarities. The 

definitions are couched in words such as "holistic". An example of unitary stimuli is locations 

within familiar physical space, where the distance from a chair to a particular corner of the room 

is more likely to be measured directly than by combining two displacements, each measured 

parallel to one side of the room. 

Even if one were to separate dimensions, measuring along the axes of the room, any other 

orthogonal set of axes would serve equally well. So r = 2 seems appropriate in this case. 

Conversely, metrics with r * 2 apply to analyzable stimuli. These have qualities which can be 

considered in isolation: for example, duration, loudness, and frequency of a musical note. It may 

be that the recipients of the stimuli are representing these qualities separately, with verbal or 

conceptual labels. The important point is that the dimensions of the perceptual space - the 

possible ways one stimulus can differ from another - are distinguishable, their contributions to 

the dissimilarity easier to disentangle. 

In one limiting case of dimensional independence, the contribution to the dissimilarity from a 

displacement (x;p - xjp) on the p-th dimension is the same, whatever the displacements on other 

dimensions. Then the dissimilarity is the sum of absolute displacements: 

p 
Jl> ij = L lx;p - Xjpl ' p =l 

the r-metric with r = I ,  or city-block metric. 

(4. 1 3 )  

At the other extreme of unitary stimuli is r = eo, the supremum or dominance metric:  

(4. 1 4) 

Here, the contribution from the p-th dispacement is either 0 or lx;p - xjpl ,  depending on whether or 

not the (absolute) displacement on some other dimension p '  is larger. The greater r, the greater 

the degree to which a dyad's dissimilarity is dominated by the dimension in which the greatest 

displacement occurs (this dimension varying from dyad to dyad). 

Oddly enough, in two dimensions these two limiting metrics are equivalent. Consider two 

configurations, identical apart from a 45° rotation. We calculate the same distances between 
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elements (apart from a constant factor) when we apply the city-block metric to either 

configuration and the supremum metric to the other. 

This illustrates a key aspect about the non-Euclidean r-metrics. As with the weighted Euclidean 

metric, rotational invariance of distance is broken, and consequently, some choices of axes result 

in lower values of Stress than others. 

In practice, the distinction between unitary and analyzable stimuli is not so clear-cut. Unitary 

dimensions can be made analyzable, in tests designed to focus attention on their distinctive 

qualities [Bums & Shepp, 1 988; Stalmeier & de Weert, 1 99 1 b] .  Even when a subject does not · 

report being aware of the dimensions in isolation (for instance, hue and saturation of areas of 

colour), he or she may still be processing them separately at a level below · awareness. 

Stimuli such as the consonants of speech, with clearly analyzable characteristics, become unitary 

in confusion-matrix experiments [Miller & Nicely, 1 955] where subjects are prevented from 

consciously attending to the auditory features. A quasi-sorting task applied to the same 

consonants [Pruzansky, 1 969], in which subjects perhaps separate the dimensions to label or 

conceptualise the stimuli, resulted in a different configuration, as have studies where subjects 

assessed the similarity between consonants directly. 

To add to the confusion, hybrid situations are conceivable, with some of the dimensions unitary, 

while others are analyzable. A simple example would be physical space, with altitude as a 

qualitatively different dimension from the North-South and East-West axes, unlikely to be 

mistaken for either. Such metrics may sound artificial and far-removed from psychophysics, but 

mentioning them is not a case of obfuscation for its own sake, since a similar distinction 

between classes of dimensions has been proposed for pain experiences [Torgerson & BenDebba, 

1 983]. In the case of colour space, brightness is qualitatively different from the hue and 

saturation dimensions. See also the stimulus-specific dimensions proposed by Winsberg and 

Carron [ 1 989] . 

Shepard [ 1 964] contrived stimuli where the metric is not a constant function, but varies from 

point to point in the perceptual space, superimposed on individual variations (dimensional 

weights). In this case, it is the values of stimuli on a dimension, rather than the experimental 

design, which focus attention on displacements along that dimension. Shepard remarked that for 
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all their apparent generality, the fami ly of r-metrics are little less specialised than the Euclidean 

case. 

Implementation 

It is a relief to return from these contentious areas to the definition of Stress, and to find the 

arithmetic of non-Euclidean MDS to be far simpler than the arguments as to its applicability. I 

derive them, to show that the metrics are compatible with the pairwise-comparison definition of 

Stress as well as the Kruskal form, not because of any vociferous demand for the options. 

The implications of altering the definition of "distance" are two-fold. First, by (4. 12), the Stress 

(i.e. in the spring model� the potential energy stored by compressing and stretching springs) is 

changed: some distance relationships which previously agreed with the subject's  judgements do 

so no longer, and vice versa. Secondly, the direction in which the {i.j)-th spring exerts its 

corrective force on i and j is different as well, which the calculation must take into account while 

in its second phase of iterating over (i,JJ to accumulate the total force on the i-th item. 

Springs push and pull radially, but the word "radial" needs re-defining in non-Euclidean space 

where "circles" (the set of points equidistant from a central point) are non-circular. Shepard 

terms them isosimi/arity contours. The only requirement for an isosimilarity contour is that it be 

convex, in order to satisfy the triangle inequality. In the supremum metric, a "circle" of radius r 

is a square. In the city-block metric it is a rhombus (reminding us of the equivalence of the two 

extremes. This equivalence fails in two or more dimensions, with an isosimilarity surface 

becoming cubic in the supremum metric and octahedral in the city-block metric). 

Re-phrase spring behaviour thus: the force on element i from the (i,;)-th spring force jr> if i s  

exerted perpendicularly to  the surface of  a hypersphere passing through i and centred onj. Force 

components are diagonal in the city-block, and axial in the supremum metrics. 

jr> if resolves into components along the p-th dimension: jr> if =  :E ePjr> if,p 

jr) _ jr) ( ) lv I r -l [� lv lr] llr - l  ij,p - r ij sgn X;p - Xjp 1-"ip - Xjp � 1-"ip - Xjp 

Obtaining the gradient of S gives the same results: 

(4. 1 5) 
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OS(X) I i1x;p = L (OS(X)!adij) (8d;ji1x;p) 
j 

_ "" "" lr) lr) ) I I r - l  ["' 1 .,... lr] llr - I  
- £.... £.... Eij,k/ 0(a· kf - a· ij) sgn(X;p - Xjp X;p - Xjp .t... 1-'ip - Xjp j (kJ) 

which reduces to particularly simple forms at the limiting metrics: 

r = 1 ,  8S(X) I Ox;p = L sgn(X;p - xjp) L Eij.kl eccf' lk/ - cf' >;) 
j (/d) 

( 4 . 1 6) 

i.e. dimensions contribute to Stress independently. There are convergence difficulties in 

minimising this Stress [ Arabie, 1 99 1 ] :  the optimal order of points must be sought along each 

dimension in isolation, because of their independence. In effect there are P separate one­

dimensional configurations to minimise. Points cannot swerve out of one another's  way in the 

course of the convergence, and are thus more liable to become trapped in local minima. 

Combinatorial algorithms are more appropriate than gradient ones. 

When r = eo, 8S(X) I Ox;pf= sgn(x;p - �Jp) L EiJ:kl �(cfao>kl - cf«>lij) 
If p maxtmtses lx;p - x1Pi 

= 0 for other p. (4. 1 7) 

(only a single dimension in each dyad contributes to Stress). 

Non-circular isosimilarity contours have already appeared in the weighted Euclidean model, 

where they are elliptical. In the IDIOSCAL model they are ellipses with subject-specific 

orientations. Thus ( 4. 1 )  and ( 4. 7) conceal another example of peculiarly-behaved spring force 

directions. In passing, I note that within the weighted Euclidean model, a group of subjects can 

be contrived whose weights are distributed so that their isosimilarity contours average to mimic 

a r < 2 metric [Fischer & Micho, 1 972]. A situation seemingly governed by the city-block metric 

may turn out, upon applying the INDSCAL model, to be Euclidean. More generally, when 

individual weights vary, and dissimilarity matrices !!m are averaged, the effect is to decrease the 

apparent r. "[F]rom an averaged metric little can be inferred about individual metrics, attention 

distributions, mental mechanisms" [Fischer & Micko]. 

Examples ofr < 2 are common though sometimes contrived [Hyman & Well, 1 968]. When the 

dimensions are completely separable, in the limiting city-block case, they can be studied in 
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isolation, and there seems little need for MDS. For examples of r > 2, see Gregson's  studies of 

taste [ 1 966a, 1 966b] and Arnold' s monograph on semantic distances [ 1 97 1 ] . 

There is no barrier to combining non-Euclidean metrics with dimensional weights (when 

"circles" would be rectangular or rhomboidal), but nor is there any compelling need to do so. 

There is a final reason for caution in the use of the two limiting-case metrics, worth mentioning, 

to back the earlier claim that Stress minima are not comparable across metrics. This is a 

geometrical feature (Shepard, 1974] . We have seen the isonormal surfaces to be (hyper)-cubic in 

the Supremum case - with the result that 2P elements can be placed on the corners of a ?­

dimensional hypercube, all equally distant from each other (as opposed to P+ I in the Euclidean 

case). The Stress for such a configuration is zero, whatever the data. It is a trivial configuration, 

containing no structural information. Similarly, 2P elements at the corners of a ?-dimensional 

hyper-octahedron are equidistant in the city-block metric. 

The next chapter examines the problem of degenerate solutions in more detail. 
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5. MAXIMUM LIKELIHOOD ESTIMATION 

Maximum Likelihood Estimation is a long-established statistical approach to problems which 

involve parameters, to be estimated, underlying data which are not complete. Ramsay [ 1 977, 

1 978] championed its application to the specific problems of MDS, where the parameters are the 

elements' coordinates in  perceptual space. For Ramsay's program, MULTISCALE, the data are 

dissimilarities. For a version of MLE handling partially rank-ordered directional data 

(conditional rank-ordering; also triads), see Takane and Carrell [ 1 98 1 ] . 

The implementation of  MLE discussed in this chapter preserves the conceptual framework I 

have already constructed :  the extended Johnson pairwise approach to MDS, interpreted by the 

spring model. Ramsay's  presentation follows a different track, though the destination is the 

same. 

I wil l  not delve too deeply into the theoretical foundations. The central concept, a particular 

application of Bayesian probability, is taken as axiomatic. In normal uses of probability, one 

would calculate the probability of observing each of an array of potential data sets, when a 

particular configuration is given. But in MLE the data set is given; in a reversal of causality, one 

derives the most l ikely configuration, X0, such that 

Pr(X0 I data) > Pr(X'I data) for all other X'. 

According to B ayesian reasoning, we can search configuration space, and find the configuration 

Y0 for which the probability of producing the observed data is maximal, 

Pr( data I Y0) > Pr( data I Y) for all Y' "* Y 

then Y0 is the best available estimate of X0• This is not obvious. 

Before proceeding with the details of the search, the reader might ask, is there a need? What 

advantages can MLE offer over the Stress-minimising algorithms considered so far? What are 

the disadvantages of the latter? 

One useful feature of the Maximum Likelihood approach is the ability to draw a confidence 

region in configuration space around some X and say, there is a 95% chance of the true answer 

85 



lying somewhere therein. Of course the region is more conveniently portrayed as P-dimensional 

ellipses around the N items in the perceptual-space representation of X, as offered by 

MUL TISCALE. The size of these confidence ellipses is chastening to those of us who have ever 

built an elaborate theoretical superstructure upon the exact positions of the stimuli in an MDS 

output. 

The way to highlight the deficiencies of Stress-based MDS is by contriving pathological 

situations. Imagine three stimuli, A, B and C. Information is limited to the following: 1 9  

observers report that B i s  more similar to A than to C, (A, B) « (B, C), while a single dissenter 

considers that B and C are the more similar pair, i .e. (A,B) » (B, C). In the �bsence of other 

constraints on the configuration, Stress is minimised by arranging the points at equal intervals. 

This offends common sense. Common sense tells us that dAB < dBC• how much smaller 

depending on the "spread" in the observers' judgments. Torgerson's triad analysis agrees. In this 

regard, the advent of Stress-minimising non-metric MDS was a retrograde step. 

The assumption of data sets from multiple subjects is not an essential part of the argument. The 

whole Stress-minimising approach to MDS for a single subject works by balancing dissimilarity 

comparisons made explicitly against comparisons implied by the totality of judgments. Perhaps 

the subj ect judges that (A,B) « (B, C), while the relationship �AB > �BC can be inferred from other 

comparisons when they are embedded in Euclidean space. Without such inferred judgments, 

scaling would be stopped by incomplete data, such as the absence of a comparison between 

(A,B) and (B, C). 

Whether the conflicting comparisons are explicit or inferred, the algorithms so far described 

have a tendency to reconcile the conflict by assigning the same value to all the distances 

involved. Stress is thereby minimised, in a trivial way that yields no useful structural 

information as to the true arrangement of stimuli. Such solutions are degenerate. Sometimes 

their uninformative nature is obvious, as when the distance assigned to a number of dyads is 

zero, as the elements collapse to a single point; but it is just as unhelpful if they arrange 

themselves in an equilateral triangle [Borg & Lingoes, 1 987; Shepard, 1 974] .  Figure 4. 1 (b) is an 

example of such degeneracy. The remedies put forward by Borg and Lingoes owe more to 

pragmatism than to theoretical rigor. 
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In its early optimistic years, non-metric MDS was seen as potentially a method of "purifying" 

data; it was hoped that the configuration derived from fallible, noisy data would be a more 

reliable way of predicting the subjects' future j udgments on given comparisons than previous 

judgments, from the same subjects, considered in isolation. Isaac [ 1 970] conducted ingenious 

"odd-one-out" experiments to test this prospect, within a perceptual space of facial expressions, 

with negative results. Alas, the more fallible the subjects, and the greater the need for data 

purification, the greater the chance of a degenerate (and unhelpful) solution arising from the 

reconci liation of the conflicting comparisons. 

I return now to the question of improving the way conflicts are reconciled. The reasoning has 

much in common with early, metric approaches to MDS :  Torgerson's treatment of triads, and 

Messick's analysis of Successive Intervals data. 

Two crucial assumptions about the comparisons between dyads will be made, to bring them 

under the rubric of the Law of Comparative Judgment (Thurstone's  Case V). This predicts that 

the probabi lity of the informant judging (i,j) to be a less similar pair of stimuli than (k, l) is 

1 -1 D;i.kl 

Pr { (i,j) » (k,l)  I DiJ,kl } = -./2 1tJ 
x
e
=
x�(-i I 2<1) dx 

where DiJ,kl is the difference between distances in the perceptual space, 

D iJ,kl = diJ - dkl 

(5. 1 )  

This is variously known as the normal integral, the error function, or the cumulative density 

function ( c.d.f). 

Decreasing fallibility corresponds to a � 0, with the ideal case (a = 0) being a perfectly reliable 

subj ect who responds with (i,j) » (k, l) (or r.iJ,kl = 1 )  whenever diJ > dk1, and r.iJ.kl = 0 (while r,kl.iJ = 
1 )  otherwise. For a '#  0, Pr{r.iJ.kl = 1 } becomes 1 or 0 only asymptopically, for IDiJ,kA � oo. 

In this model, the probability of the judgment being incorrect ( i.e. not in accordance with 

distances) varies with DiJ,kl as well ,  peaking at 0.5 when DiJ.kl = 0. 

87 



Therefore the likelihood of observing the data set in its entirety, 

Pr{ data I X} = IT Pr{ E!i.kl = 1 }  
(iJ) )) (k,f)  

When Eij.kl = 0, either (i,j) and (k, l) were not compared (missing data), or (i,j) « (k,l), in which 

case there is a factor in the product for Ekl,ij· 

It is safe to use log-likelihood instead, since maximising the logarithm is equivalent to 

maximising the probabi lity itself. For further mathematical simplicity I substitute the logistic 

function for the c.d.f. 

Pr' { Eij.kl > 0} = { exp(-Dij.kl -r) + 1 }  · I 

where the parameter -r is approximately n I (3 112 cr) . 

Then L = log(Pr{ data I X} )  = L L Eij.kl log(Pr' { E!i.kl > 0 } )  
{iJ) (k,f) 

= L: L: l(iJ, k, l) 
(iJ) (k,f) 

= L: l(iJ) 
(iJ) 

where l(i,j) = L l(i,j, k, l) 
(k,f)  

and l(i,J. k. l) = -E!i.kl log(exp(-Dij.kl 't) + 1 )  

(5 .2) 

(5 .3) 

(5 .4) 

Clearly -oo < L < 0.  As well as being simpler, the logistic function corresponds to Luce's model 

of choice (choosing which quantity is smaller). 

As with Stress, L can be maximised with a gradient algorithm (though following the slope up­

hill rather than down). 

aL 1 axip = L: (al(i,J) 1 adij) (adij 1 &:;p) = L: L: (al(iJ. k. l) 1 ad!i) (adij 1 ax;p) 
j j �f) 

= -r L (x;p - x1p) I d!i L Eij.kl { 1 + exp(-r D!i.kl) + 1 }  -I 
j (k.l) 

(5.5) 

Glancing back a few chapters to compare equations (5 .4) and (5.5) against (2.5), we find that 

they are still encompassed by the spring model: the potential energy of the (i,j)-th spring is made 

up of contributions -l(i.j, k, l) from comparisons between (i,j) and (k, l); each comparison 
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contributes -8l(i,j, k, l) I 8diJ to the force fiJ exerted by that spring on elements i and j. The force 

contributions are simply the logistic function again (figure 5 . 1 ) .  

-81(i,j, k, l) I adiJ = -t { 1 + exp(t DiJ.kD + 1 }  - I (5 .6) 

-8l(i,j, k, l) I 8diJ asymptopically approaches 0, for diJ >> dkb and - 1  for diJ << dkl. As t increases, 

(5 .5) is approximated more and more closely by the step-function force contributions (2.5). 

Figure 5 . 1  Contributions to the {i.j)-th spring's  energy (left) and force (right), for logistic equation ('r = I ) 

1 Potential Energy 
contribution: 

-I(i,j,k,f) 

...  

Force contribution: 
-?JI(i,j,k,f)IC>d ij 

. ., 

Horizontal axes are dij" dij = dkl where the vertical axes cross the horizontal axes. 

t is functioning as a scale parameter. I think of t -I as the "characteristic length" of errors in the 

perceptual space under examination: if the absolute difference between diJ and dkb IDiJ,kA >> t- 1 , 

then the judgment is highly reliable; conversely, if IDiJ,kl i << t - I ,  the chance of the judgment 

being erroneous approaches 50%. 

There is no denominator to normalise (5.5), so the scale factor is not arbitrary: instead, it is  a 

function of t .  Once a value is assigned to t, the whole configuration shrinks or expands in the 

course of maximising L, until t is in the ratio to configuration scale which best accounts for 

erroneous judgments (in the earlier sense of judgments conflicting with the reconstruction). t 

itself is arbitrary. For display purposes, I find it convenient to hold sca1e(X) constant (by regular 

renormalising) while allowing t to expand or shrink. It is just another parameter to optimise 

over. I use 

-8L I en =  L: 8l(ij,k,l) I en = L EiJ,kl DiJ,kl { 1 + exp(t DiJ,kl) + 1 } -t (5 .7) 
ij,k,l ij,k,l 

89 



Figure 5 .2 plots this dependence. If 

all judgments are in accordance with 

the reconstructed configuration, L 

can be increased by raising 't 

(affecting the next iteration of the 

gradient algorithm, since when the 

reliability ascribed to each judgment 

changes, so does the gradient Y'L). 

Erroneous judgments are indications 

that 't should be smaller; the weight 

given to that indication is 

proportional to the size of the error. 

-?A(i,j,k,[)l d 'C  

Figure 5 .2  Force on t when (i.j) » (k,l): t = 1 

The only modifications involved in incorporating a Maximum Likelihood Estimation option in 

MTRIAD are the new spring function, and the optimisation of 't .  The models of individual 

variation covered in the previous chapter, and the non-Euclidean metrics, are not dependent on 

the shape of the spring function, and retain their usefulness in this new context. I have sought, 

without success, to find equally simple modifications for the disparity framework used in 

programs such as KYST. The difficulty is calculating the disparities o!J themselves, dependent as 

they are on the particular Stress function being minimised; merely averaging the out-of-rank­

order d!J or replacing them with the rank image is no longer enough. 

Any of the data sets analysed so far could be re-analysed to illustrate the improvements 

delivered by MLE. Once again I refer to the POOC study of 1 3  occupation titles since, as noted 

in Chapter 3, the data are incomplete. In this example, the configuration is known independently 

since the POOC files also includes dissimilarity estimates from 286 subjects for 1 6  occupations 

which include the 1 3  scaled with triads. The result of scaling those dissimilarity matrices in 

combination is figure 5 .3 .  Applying MLE to the triadic data gives figure 5 .4, which, compared 

to figure 3 .4(a), is generally more convincing, i .e. closer to 5 .3 .  Note in particular the positions 

of BSL, MIN and MPN. The value ofL for figure 5.3 could be increased by averaging the 

dissimilarity matrices and concealing the considerable variation between subjects. 
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Figure 5.3 Dissimilarity estimates for occupational titles, N = I 6; Maximum Likelihood solution 
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Figure 5 .4 Triadic data for occupational titles, N = I 3; Maximum Likelihood solution 
Pr obab t l t t � per compar t son = 0. 5 8 � �  
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Key to the occupations: 
BM Barman 

CA Chartered accountant 

C ST Comprehensive school-teacher 

MPN Male Psychiatric Nurse 

QA Qualified Actuary 

C T  

AD 

BM 

Cn T O  

d 1 mens: a on 1 

BSL Building-site labourer 

CSE Civil servant (Executive) 

LD Lorry driver 

MTO Machine tool operator 

RP Railway Porter 

PM MPN 

AD 

c 
CT 

T .au = 0. 3067 

M ! N  

C S T  

O A  

C A  

Ambulance Driver 

Carpenter 

Commercial traveller 

MIN Church of Scotland Minister 

PM Policeman 

SOL Country solicitor 
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Included in this figure, in lieu of Stress, are two indicators of the goodness of fit between data 

and solution. For both, the higher the better. One is 't, in the upper right of the diagram. In the 

upper left is P, the geometric mean over all comparisons of the likelihoods l(i,j, k, l). 

Clearly 0 < P < 1 .  

The results of four triad experiments, at the end of Chapter 3 ,  were achieved using the MLE 

option of MTRIAD. In the fourth experiment the way the data were collected (with an 

interactive procedure to be described in Chapter 8) left them incomplete as well as unbalanced. 

Scaling them with Stress rather than MLE leads to barely recognisable results. 

A second demonstration uses the Stalmeier-de Weert data. Refer back to figure 4.4{a), depicting 

the configuration recovered (rather poorly) from 1 18 of the responses from subject PE. The 

overall trend of the configuration is recognisable, but individual elements have strayed far from 

their  rightful places; the overall crudeness of the recovery reminds us of the guideline 

for Balanced Incomplete Designs 

[Burton & Nerlove, 1 976], that A 

should be at least 2, i .e. that each 

dyad should participate in at least 

two triads. Here the design is not 

balanced but on average A = 1 4/8. 

Scaling the same data with 

logistic-function spring-force 

contributions results in figure 5 .5 ,  

a closer approximation to the 

solution for complete data. Figure 5.5 MLE solution for incomplete data from PE 

Did the earlier simplifying decision to replace the c.d.f. in  (5 . 1 ) with a logistic function make 

any difference to the solution? 

The log of the normal integral is shown as the solid  line in figure 5 .6 .  It is asymptopically flat 

for diJ >> dkb and asymptopically quadratic for diJ << dkt· So the derivative of the curve (dotted 

line) can be approximated with a ramp function (with slope 't- 1  ).The parameter cr in (5 . 1 )  is 

analogous to 't- 1 and indicates the accuracy of the approximation. As we approach the ideal case 

of an infallible subject, cr goes to 0, and the spring-force contributions regain the ramp-function 
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form used to minimise Stress, (2. 1 1  ). Recall that as 't' -I goes to 0, the limiting case of the 

logistic-force spring force is the step-function spring force. Chapter 2 reported that any 

differences between configurations reached via these rival definitions of  Stress are insignificant. 

Switching between the two definitions of Likelihood (logistic function and c.d.f.) is equally free 

from practical effects. 

Figure 5.6 Contributions to the (ij)-th spring energy (left) and force (right), for nonnal integral (cr = I )  

. IJ .. . .  

Horizontal axes are dij' dij = dkl where the vertical axes cross the horizontal axes. 

It has long been known, for the comparable situation of unidimensional scaling [Mosteller, 

1 95 8] ,  that details of the function G(u) used to model subjects' responses are not crucial. G(u) 

should be symmetric around 0 (with the corollary that G(O) = 0.5). As u goes to infinity, G(u) 

should approach 1 .  Finally, dG(u)/du should be unimodal (by symmetry, the slope is highest at 

u =  0). 

. IJ 

The key feature, responsible for the improvement of MLE, seems to be the smooth transition of 

l(i,j, k, l), as a function of DiJ.kl• between its asymptopic behaviours at DiJ.kl >> 0 (where it tapers 

smoothly to 0) and DiJ.kl << 0 (a plateau or ramp).  For Stress, at DiJ,kl = 0 there is a discontinuous 

transition. 

The "tail" of the spring force, tapering off smoothly instead of dropping abruptly to zero when 

DiJ.kl = 0, is responsible in the pathological ABC situation for shortening dAB at the expense of 

dBc• even when dAB < dBc• the desired effect. Even when they reach an equilibrium, a residuum 

of spring tension is always present, though in balance. 
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Note that as 't increases, and the Dij,kl = 0 transition becomes sharper (closer to the classical 

case), the benefit from repeated comparisons (actual or inferred) is less; they have less capacity 

to push the equilibrium past the dij = dk1 point. When 't is large relative to dij - dk1 for a given 

i,j, k, l, repetitions of that comparison have low information content because the first observation 

is reliable. 't might be interpreted as an indication of the redundancy of the data. This has 

implications for the problem of optimal omission, to be encountered in Chapter 8 . 1 

An unexpected benefit of the MLE modification is that it ameliorates the problems of local 

minima, and of violent oscillations during the iterations, which arise when a gradient algorithm 

is used to minimise Stress. 

Oscil lations are a by-product of the simple-minded process by which MTRIAD adjusts the step 

size in (2.  7) to cope with consecutive !0!1). Because of the extreme non-linearity of S(Dij.kf), 
small changes in X can increase as I ax dramatically in a feedback loop which the step-size 

adjustments react too slowly to stabilise. 

Local minima were mentioned as a problem in Chapter 2. They are a particular problem when 

pooling multiple data sets: perhaps because of the increased number of conflicting comparisons. 

Elements become positioned in a partially degenerate equidistant arrangement so that forces 

from the conflicting comparisons balance out. In these situations, progress towards 

accommodating other, non-contradictory judgments require a small, temporary disruption of this 

equidistance, which is energetically unfavourable (a "potential barrier", in the configuration 

terrain: see Chapter 2), paralyzing the whole process. Once again, the gradual nature of l(i,j, k, l) 

1 One feature of the Lyons et a! cry data has not been fully exploited yet. In an attempt to find 
the bounds of subject cooperation, subjects H and I were asked, immediately after making each 
comparison (primary and secondary), to rate their level of confidence (on a 1 -3 scale) in it. This 
is a rare form of data (another instance of confidence-rated triads is MacRae, Howgate and 
Geelhoed [ 1 990]), and the question arises of how to use the information. The confidence rating 
cij,kl could be taken as an indication of the magnitude of 11ij,k/ = oij - okb more informative than the 
"greater than zero I less than zero" binary judgments so far encountered. One can treat a 
judgment where cij.kl = 3 as equivalent to the same judgment, made three times, and simply 
weight a comparison's contribution to Stress or Likelihood, by setting Eij,kl = cij.kt· 

As with explicitly replicated judgments, in the MLE approach this has the effect of lengthening 
dij and shortening d*'' even when dk1 is less than dij already. In the Stress minimising approach, 
the additional comparisons are wasted in the likely event of the configuration agrees with them. 
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in the vicinity of DiJ,kl = 0 is the key to solving the problem: small departures from equidistant 

arrangements are less severely penalised. 

It remains to go into detail about the two suppositions required by my rationale for applying the 

Law of Comparative Judgment. 

First, independence of the comparisons is assumed. This assumption breaks down if using the 

Method of Triadic Comparisons rather than the Complete Method of Triads. However, 

independence seems to be a good approximation, and I have few qualms about applying MLE to 

Triadic Comparisons data. Here, there are only six possible rankings of dissimilarities within 

each triad (the primary comparison within each triad reduces the options for the secondary 

comparison), compared to eight possible pairwise ways - two of them intransitive - of ranking 

the dyads when the three comparisons are made independently. 

Secondly, I assume that errors in the data conform to the Additive error model [Ramsay, 1 977], 

i .e. that the standard deviation of DiJ.kl is a constant (cr in (5 . 1 )), independent of (i,j) and (k, l). 

The implied model for what happens during each judgment is something like this: the subject 

some-how assesses distances between elements in his or her mental representation, a process 

perturbed by a normally-distributed error, and compares the error-perturbed assessments 8il. and 

8k/· 

8iJ = diJ + e(cr I ...f2), 

with 8iJ assessed afresh every time (i,j) is involved in a comparison. The observed datum is 

(i,j) )) (k, l) 
(i,j) (( ( k, l) 

if /).ijjk > 0, 
if /).ijjk < 0, 

where 11iJJk = 8iJ - 8k1 = DiJJk + e(cr). 

This way of simulating errors has been used in a number of Monte Carlo simulations of MDS. 

Calculating the unperturbed distance between elements with randomly-perturbed positions is the 

other common error-simulation approach. 
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There are unsatisfactory aspects to the Additive mechanism. For diJ << cr, we find a significant 

possibility that oiJ < 0, not that we care, since oiJ is never observed directly. Ramsay proposed a 

second, Multiplicative form of error: 

8 = d ee(cr /..J2) 
lj I) 

or log(oiJ) = log(diJ) + e(cr I ..J2). 

This "log normal" error distribution appeals to common sense. ou is always positive. The 

variance of oij is proportional to dij, in line with the property of physical quantities, that the noise 

in measurements increases with the value being measured ( 1  mm can be measured more 

accurately than 1 km). A sort of scale independence of errors results: for two dyads, (i,j) and 

(k,l), with diJ > dk" where the probability that 8u < ok1 is P, the same probability of error applies 

to the comparison between (s, t) and (u, v) where ds1 I du = duv I dkl· Triadic comparisons for 

geometrically similar triangles in the configuration have the same error rates. 

Incorporating a Multiplicative-error option .to MTRIAD is straightforward. I t  is only necessary 

to use log(du) in place of du in calculations of the Likelihood and the restorative forces. The 

effect is to devalue comparisons within large triangles, so that a judgment from a large-scale 

triad which conflict with X decreases the total Likelihood no more than a conflicting triad which 

is smaller but of the same proportions. This contrasts with ALSCAL, where d/ is used in Stress 

calculations, in effect ascribing more accuracy to comparisons, the greater the distances being 

compared. 
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6. FORMS OF RANKING DATA 

To a child who's just been given a hammer, everything looks like a nail .  The hammer is 

Johnson' s  formulation of MDS, as implemented in MTRIAD, with the useful features 

(individual variation models and MLE) introduced in Chapters 4 and 5 .  In this chapter I 

examine various non-triadic forms of proximity data to see how nail-like they are, i .e. 

whether they can be interpreted as pairwise comparisons between dissimilarities. 

If data in two different formats are both reducible to dissimilarity_ comparisons, they can be 

combined (MTRIAD pays no attention to the method used to elicit any given comparison). 

This is my post-facto validation and justification for rashly performing such combinations. 

Two intriguing forms are the methods of Sorting and Hierarchical Sorting, which warrant 

separate detailed scrutiny, so my attempt to bring them within the ambit of pairwise 

comparisons is postponed to Chapter 7. 

Ranked Dyads 

The most obvious case comprises experiments where comparisons between dissimilarities are 

made explicitly: a subject is presented with stimuli i,j, k, I and asked which pair is more 

similar: (i,j) or (k, l)? (or some equivalent question). With each judgment made independently, 

such tetradic  data cry out for a Maximum Likelihood scaling as discussed in Chapter 5 .  

The number of pairwise comparisons increases as the fourth power of N. Bissett and 

Schneider [ 1 992] discuss possibilities for omitting some or most of the comparisons, and 

perform Monte Carlo simulations to quantify how much the solution's  accuracy is degraded 

by such omissions. For any i,j, some of the comparisons between (i,j) and other dyads can be 

missed out, while retaining others. Contrast this with directly rated dissimilarities, where the 

only option is to avoid assessing some oiJ (chosen randomly, or with a balanced design, or 

interactively), which precludes all comparisons between (i.j) and other dyads. Triadic data 

form a subset of the set of tetradic comparisons, and clearly the triadic procedures are an 

example of selective omission. 
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This explicit method of pairwise comparisons is seldom used. In addition to Monte Carlo 

simulations, Takane [ 1 978] applies his MLE analysis to tetradic comparisons between colour 

stimuli (plus Torgerson's triadic data for the same stimuli). In Schneider [ 1 980], Schneider 

and Bissett [ 1 98 1  ], Schneider, Parker and Stein [ 1 974], the stimuli are sounds varying in 

volume in a single-dimensional configuration .  

When the requirement of  transitivity (consistency) i s  added to the completeness of  pairwise 

comparisons, one has fully rank-ordered data. Chapter 2 described the special properties of 

full rank ordering: inequalities can be summarised by listing the dyads, 

(il.j2) « (i2.j2) « (i3.j3) « . . .  « (iNd. jNd) 

Each pair is less similar than all the pairs left of them in the list, and more similar than all the 

pairs to their right. 

In practice, this is exactly how the data are el icited. One prepares Nd = N (N- 1 )  I 2 cards, one 

for each dyad: if, for instance, the stimuli are colours, each card consists of samples of the 

two colours, pasted to a neutral background. A subject sorts the cards into order of increasing 

dissimilarity. N is thus limited by the size of the surface on which the sorting is done, as well 

as by the subject's patience. Respondents, ranking pairs of countries [Klingberg, 1 94 1 ]  

reported that more than the 2 1  dyads of N = 7 items would be unacceptable. Several decades 

later, more compliant subjects were willing to rank five times as many dyads, for N =  1 5  US 

states [Shepard & Chipman, 1 970] . 

Shepard is the most notable practitioner of this method, applying it to states, digits [Shepard, 

Kilpatric & Cunningham, 1 975], and colours [Shepard & Cooper, 1 992] . In all cases, visual 

images were presented as one set of stimuli and the corresponding verbal label as another. 

Fillenbaum & Rapoport [ 1 97 1 ]  applied the procedure to colour names, kinship terms, and 

nouns for emotions (in Hebrew), in each case with N = 1 5 . An early appl ication of MDS in 

New Zealand [Clarke, 1 976], with 9 names of fruit as stimuli, took full rank ordering for 

granted as being the only form of dissimilarity data. 
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All reported applications have used stimuli suitable for simultaneous presentation. All cards 

are out on the table at once, enabling the informants to perform the O(JI) comparisons 

between cards "in parallel" as they sort them into order. 

Clearly such data can be analysed as a table of dissimilarities, by setting f>u equal to the 

ordinal position of (i.j) in the rank order: f>u = 1: EiJ,kl· The recovered <I>(x) (mapping du onto 

8u) must be monotonic, but that is all; the ipsatised nature of these values means that none of 

the quasi-metric arguments for restricting <I>(x) to exponential, or convex, or simple spline 

functions apply. 

Is Maximum Likelihood Estimation appropriate? At best, it is an approximation. The 

comparisons are no longer independent. The nature of their dependence (which j udgments are 

predetermined by previously-made ones) is unknown: they are not "directional data" [Takane 

& Carroll, 1 98 1 ] . Multiple strategies are available to a subject ordering the cards, such as 

working inwards after initially picking the extremes of most and least similar, or grouping the 

cards into bands of similarity, prior to ranking them within each band. The experimental 

instructions sometimes recommend one strategy or another. 

I turn now to variant forms of rank ordering which retain the transitivity feature while 

relaxing the requirement of completeness. The motivation is the usual one of lightening the 

burden on subjects. 

One can specifically reduce the number of comparisons between proximities of similar 

magnitude (arguably, the hardest ones to make) by asking the subject to sort the cards into 

groups of similar proximi ties. Barraclough [personal communication] performed a study 

where the groups have fixed sizes, in a manner similar to Stephenson's [ 1 953]  Q-sort 

procedure. There were 9 e lements (colours), making a total of 36 cards. The two stimuli on 

each card were 2 cm squares, subtending about 3° when viewed at a comfortable distance. 

Subjects were requested to select the three cards (dyads) showing greatest similarity, and to 

place them in one pile;  then to place the three least similar in a second pile; then to create two 

more piles containing the five next most similar and the five next most dissimilar; and so on .. 

When finished, the cards are distributed in 7 piles, thus: 
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number in pile: 3 5 6 8 6 5 3 
(most similar) 2 3 4 5 6 7 (least) 

The number of judgments is thereby reduced from 630 to 546: the 84 comparisons between 

similarities in the same pile remain unmade, imposing no constraints on the solution (when 

analysing the data, this is Kruskal 's Primary treatment of ties). Analysing the comparisons 

with MTRIAD yields figure 6. 1 ,  a roughly circular arrangement of the stimuli. This replicates 

an earlier study of the same colours [Shepard & Cooper, 1 992] which used complete ranking. 

In addition to colour samples, Shepard and Cooper scaled colour concepts. The coloured 

papers in that study could not be duplicated exactly so Barraclough used the nearest available 

Pantone sheets, having the following Munsell codes: 

�Q!Qur PantQne H V C  (Munsell) 
(a) red 
(b) orange 
(c) gold 
(d) yellow 
(e) green 
(f) turquoise 
(g) blue 
(h) violet 

(i) pm:pl� 

032U 4.6R 5.5 I 4.6 
02 1 U  9.9R 6.5 I 14.5  
1 1 6U 8.4YR 8.0 I 1 0.9 

'yellow' 6.7Y 9.0 1 1 1 .7 
354U 4.3G 5.8 I 9.3 
3 1 3 U  8 . 1 B  5.2 I 7.8 
072U 9.3PB 3.5 I 8 .6 
266U 2.2P 4.5 I 1 0 .9 

'pyrpl�' Q,4RP 5.1 I 12.8 

Figure 6. 1 Configuration for nine colours 
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Of the 1 7  participants in this experiment ( 1 4  male, 3 female), nine also provided hierarchical 

sorting data for the same stimuli. Four of the participants were colour-vision deficient in 

various degrees of severity. 

Figure 6. 1 was obtained using the INDSCAL model to rotate the axes to best fit. I will 

consider individual variations at more length in Chapter 7, combining the two kinds of data. 

For now, note that the experimental design is not ideal for detecting qualitative differences 

(colour-blindness), given the saturation and the large angular size of the stimuli. 
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The situation is subtly different when the number of cards in each pile is left up to subjects. It 

then becomes an application of the Method of Successive Intervals [Messick, 1 956] .  The 

distinction is particularly graphic in a series of studies where a binary sorting procedure was 

used, with 30 abstract geometrical shapes for stimuli [Silver, Landis & Messick, 1 966] . 

Subj ects were instructed to sort the 435 cards into two piles, "quite similar" pairs as opposed 

to "less similar" pairs. That done, they proceeded to subdivide each pile into two more, and 

so one, until 1 6  piles resulted. Another example was Landis, Silver, Jones and Messick 

[ 1 967] . 

It would seem that at each stage of binary sorting, dyads are not being compared against each 

other, but rather, against some abstract threshold levels of dissimilarity. Label these 

thresholds I> 1  to I> 1 5  (I> 1 < I>2 < . . .  < I>14  < I> 1 5) .  At the first stage, the (i,j)-th dyad is placed in 

the "quite similar" pile if '6iJ < I> 8, and in the "less similar" pile if '6iJ > I>8. In the first case, 

dyads are next compared against I>4; otherwise they are compared against I> 12, and so on. A 

total of 4 · 435 comparisons are made. Without the benefit of a binary procedure, more 

judgments are required to sort dyads into groups, but unless the group sizes are fixed as in the 

Q-sort method, it can still be done by comparing dyads against threshold levels of similarity. 

This is very close to the method of directly rating dyad dissimilarities. The POOC tried both 

methods [Cox on et al, 1 975, Interviewing Instructions] , asking some interviewees to assign 

numbers ( 1  to 9) to each pair of occupational titles, while others sorted cards, displaying the 

titles in pairs, into nine groups. The latter method takes advantage of the familiarity and ease 

of card-sorting tasks. I note that the Method of Successive Intervals restricts the possible 

stimuli - they must be suitable for displaying on cards - while probably raising consistency, 

since the cards are all present on the table as cross-checks and reminders of the threshold 

levels, cross-checks not available in a rating task, when a number is assigned to each dyad in 

isolation. 

In Takane's ML analysis of successive interval data, the threshold levels between similarity 

bands emerge as part of the solution [Takane, 198 1 ] .  Foreshadowing MLE, part of the 

rationale for generalising successive interval methods from a single axis to the multi­

dimensional case [Attneave, 1 956; Messick, 1 956] was a probabilistic argument. Like 
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Torgerson's treatment of triads [ 1 952], the argument transforms non-metric responses to a 

form suitable for metric MDS. 

The added complication of determining the thresholds is unncessary in Stress-minimising 

versions of MDS. This is easier to see in Kruskal 's formulation. If two dyads are in adjacent 

intervals, (i,j) » (k, l), but d!J < dkt in the reconstructed configuration, then the lowest-stress 

value for the threshold between the two intervals is identical to the disparities, I> = oil = okt = 

(d!J + dk1) I 2.  Moreover, the forces acting on elements to minimise I(oif - dui, bringing the 

distances into the same order as the dissimilarities, are identical to the forces which would act 

on elements to segregate distances within interval bounds correctly by minimising I(I> - dif)
2
. 

Conditional Ranking 

More radical reductions in the data requirements are brought about by using the method of 

conditional ranking (also known as rotating anchor points, group ranking, or multi­

dimensional ranking [Klingberg, 1 94 1 ] . This method involves choosing each element in turn 

as the anchor point, or hub, and ranking the remaining (N- 1 )  elements in terms of increasing 

dissimilarity from that hub. 

The ranking of the remaining elements could be done with pairwise (Thurstonian) 

comparisons, which would return us to the case of the Complete Method of Triads, with the 

triadic comparisons presented in a particular sequence. Normally a rank ordering is done 

[Klingberg, 1 94 1 ;  Jacobowitz, reported in Young, 1 975; Kosslyn, Pick & Fariello, 1 974] . 

Thus the same comparisons are implied as in the triadic case - the relationship between (i,j) 

and (k, l) is only known if the two dyads have a common element - but the requirement of 

transitivity within the conditional rankings takes away their independence (in Coombs' terms, 

each comparison provides fewer bits) . For each anchor point there are (N- 1 ) !  possible rank 

orders for the remaining elements, a smaller number than the 2N - 1 possible triadic responses. 

As wel l  as implying the same judgments, conditional rank-ordered and triadic data took 

equally long to provide, when Neidell [ 1 972] compared the completion time between 

questionnaires worded in these two alternative form. However, the triadic form was 
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seemingly perceived by its physician targets as harder, judging by the poorer response rate to 

mailed questionnaires. More systematic comparisons [Henry & Stumpf, 1975] found the 

triadic task taking between twice and three times as long to complete as conditional ranking, 

with N ranging from 7 to 1 5 .  

The Interactive Similarity Ordering procedure [Young, Null & Sarle, 1 978] deserves a 

mention. ISO relies on a numerical sorting algorithm, 'mergesort ' ,  to order the (N- 1 )  

dissimilarities oij (where i is constant), using multiple-choice questions of the form "which 

pair is closer?" The questions can be triadic in form. It is assumed that responses are error­

free and transitive, allowing the relationships between uncompared dissimilarities to be 

inferred from them, minimising the number of explicit comparisons to be made. ISO is not 

limited to conditional data; it has an option for rank-ordering data fully. 

Before moving on to the analytical 

implications for this conditional form of 

ranking, an illustration. The data are 

provided by Kirkland [personal 

communication] . At the end of a seminar 

on Human Development he asked the 14 

students to conditionally rank the 9 

schools of thought or approaches to 

human development that the course had 

covered.  One data set was incomplete, 

but the other 1 3 ,  combined, yield figure 

6.2. Two dimensions in the 

configuration seemed to be enough. 

Examining the individual 

Figure 6.2 Nine approaches to human develop­

ment, conditionally ranked (M = 1 3) 
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configurations before delivering them back to the participants gave the impression that much 

of the variation between them could be accounted for by dimensional weights, so I used the 

INDSCAL model. The orientation does not seem accidental : to reach it, the initial 

configuration rotated through about 30°. The dimensions are interpretable, with the theories 

arranged along the vertical axis from "social" (e.g. Social Learning, Behavioural) up to 
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"physical" ones (Maturation), while the horizontal axis separates general theories of 

development (e.g. Medical) from more personal, "idiographic" ones (the Dynamic and 

Differentiation approaches). 

Their conditional nature means there is no correspondence between an element's positions in 

the rankings from different anchor points. Depending on the configuration, elementj may be 

most similar to i, while k is only second most similar to l, although diJ > dkl· Conditional 

rankings arrange dyads in a partially rank-ordered network. As with triadic data, distortions 

are introduced if one converts conditional rankings into a table of dissimilarities for scaling, 

approximating 8iJ as the sum of the ordinal position of (i,j) in the i-th andj-th conditional 

ranking, i .e. 

N 
bij ::::: VCij = L (Eij,ik + Eijjk) = L Eij,kl 

k = l  (k,f) 

It brings in constraints which have no basis in the data. 

I have already mentioned the rigorous MLE treatment of conditional ranking data [Takane & 

Carroll, 1 98 1  ] .  Their analysis assumes that the ranking is, in their terms directional, i .e.  it 

presupposes that subjects start by selecting the element most similar to the anchor point, 

progressing to the least similar, without revising the ranks at any stage. 

Jacobowitz [Young, 1975] demonstrated that school-age subjects, the youngest being 6-year­

olds, were capable of arranging semantic stimuli (words for colours, kinship, and body parts) 

in conditional rank orders. 

Work by Indow and his collaborators with colour stimuli reveals the sizes of element sets this 

method can handle: N = 2 1  [Indow & Uchizono, 1960] and N = 24 [Indow & Kanazawa, 

1 960] . Their experimental design explicitly used the geometrical metaphor: samples of the 

(N- I )  stimuli (colours) being rated for dissimilarity from an anchor point were presented 

concurrently, and slid back and forth by the subject until physical distances correspond to 

dissimilarities, yielding ratio-level data (other instances of ratio-level conditional rating 

appear in Amold [ 1 97 1 ] , Hyman and Weil [ 1 968], and Wish and Carrell [ 1 974], the first 
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detailing how response bias corrections should first be made to the ratings if they are to be 

treated as dissimilarities). 

But N is never high enough, and the question arises of further increasing element sets by 

reducing the data requirements. Several variants of conditional ranking are in use. 

One obvious option when there are enough subjects is sharing the anchor points amongst 

them. In I SO, each subject ranks elements' dissimilarities from c anchor points, c being set by 

the experimenter ( 1 � c � N). The artifical example in Chapter 4 of a reduced triadic data set 

was of this kind. Figures 4.3 and 4.4 remind us that although the distribution of the 

comparisons may preclude the recovery of a configuration from any single subject 's  

responses, both the configuration and individual differences can be recovered if enough 

subj ects contribute data. 

This approach seems especially appropriate for investigating social networks, when the 

subjects are also the elements [Young, 1 975]. Each subject is asked to rank all other subjects 

in terms of social distance. This covers the famous fraternity data [Nordlie, 1 958] ,  where 1 7  

students, members of a newly-created fraternity, each listed the other 1 6  members in order of 

"favourable-ness of feeling" towards them. These rankings were elicited at weekly intervals 

over a four-month period, making them ideal material for analysis with the INDSCAL or 

Point-of-View models, to trace the evolution of the social structure. Tilstra [personal 

communication] applied this procedure to the nine departments within the Business Studies 

Faculty at Massey University: each departmental head rated the other departments, first in 

terms of actual closeness, then in terms of optimal (desirable) closeness. 

In Shepard and Cermak [ 1 973], subjects ranked 8 1  abstract forms for four levels of proximity 

("very similar to the target", "next most s imilar to the target", "looks like or gives the same 

impression as the target", and the rest) from nine anchor points. The anchor points were the 

same for all 1 8  subjects. The configuration was known in this case, with the emphasis being 

to determine dimensional weights and the distance function (metric). 

A second form of data incompleteness includes four variants, abbreviated to Order kiN, Order 

any/N, Pick kiN, Pick any/N [Coombs, 1964] . By the standards ofMDS nomenclature, the 
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names are self-explanatory. The first two entail the subject considering each element in turn, 

ranking the k elements (out of the remaining N- I )  closest to it. A value for k is fixed by the 

experimenter in the first variant, and left up to the subject's  whim in the second. 

The third and fourth variants are similar, except that the subject need only select the k 

elements closest to each anchor point, instead of ranking them. Thus, in their study of the 

perceived closeness of countries, Robinson and Hefner [ 1 967] collected pick 31 1 7  data. White 

[ 1 978] acquired pick 5137 data, the 37 stimuli being personality-trait descriptors in the A'ara 

language. One interpretation and analysis open for such data would be as low-resolution 

conditional ratings: each element is either close to the anchor point, or less close. 

The variants can be combined with the form of incompleteness described first. Thus, for one 

group of subjects in the Robinson-Hefner study, each subject only used nine of the 1 7  

possible anchor points (different subsets of nine). Another example is Sampson' s data [ 1 968] 

for social distances within a monastery. 1 8  monastery members each ranked the other 1 7  on 

four relationships - Liking I Antagonism, Esteem I Disesteem, Influence I Negative influence, 

"" 
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Figure 6.3 

Pr obabl l l t � p � r  compar 1 son = 0. 6870 T a u  = 0. '1 6 '1 5  

d l Me>ns t on 1 
Monastery personal distances (time 4)  
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Praise I Blame: picking a first, second and third closest person for each relationship, and a 

first, second and third most distant. This leaves 1 1  persons in each ranking who are closer 

than the distant three but farther away than the closer three; the distances between them are 

unranked. The members repeated thisfor five time periods. Some made multiple first choices. 

Others declined to provide negative choices. Nevertheless, when these rankings are treated as 

low-resolution conditional distance ranks and scaled, the resulting two-dimensional 

configuration, figure 6.3,  duplicates Sampson's social analysis (made on other grounds) of 

the members. The nested contours drawn around the points in figure 6.3 are the successively 

finer clusters obtained from the same data by applying the CONCOR algorithm [Breiger, 

Boorman & Arabie, 1 975] .  

Thompson [ 1 983] considered a variety of incomplete rankings. H e  collected conditional 

ranking data for a set of animal names, and observed the effects on the configuration of 

selectively including or omitting the ranks of stimuli in particular distance ranges from each 

anchor point. 

The problem with picking or ranking only the nearest elements to each anchor point is the 

absence of rank-order information about larger dissimilarities. Graef and Spence found in 

Monte Carlo simulations [ 1 979] that knowing the larger dissimilarities is vital for recovering 

the global structure of the configuration. If limited to short-range information, one can only 

reconstruct small portions of the "map", which are not guaranteed to fit together accurately. 

The problem becomes glaringly obvious when one deals with a highly clustered 

configuration, where Pick kiN or Order kiN responses constrain how the elements are 

arranged within each cluster, but give no indication about the relative positions of the 

clusters. 

Rao and Katz [ 1 97 1 ]  evaluated these methods with simulated, noise-free data. They found 

that spurious dimensions intruded: setting P = 2, the dimensionality of the (known) 

configuration, left much variance unaccounted for in the vote-counted 8ij and resulted in 

values of Stress in the range 0.22 to 0.3 1 (non-metric solutions). However, the two­

dimensional solutions (ignoring individual differences and pooling data for 20 simulated 

subjects) gave reasonable recovery of the configura-tion. Under their analysis, the Order kiN 
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and Order any IN methods displayed no superiority over the Pick methods. Individual 

dimensional weights were less accurately recovered than from fully ranked dissimilarity data. 

Robinson and Hefner [ 1 967] summarise their subjects' responses in the form of a vote­

counted proximity matrix, which, analysed with MDS, illustrates again the weakness of vote­

counting. There are many dyads for which little is known (there are few constraints on their 

lengths), which thus receive small or zero proximities. MDS analysis takes this to indicate the 

rank order of their lengths and minimises Stress by positioning elements equally far apart, in 

a hyperspherical shell, occupying the full number of dimensions available. The 

dimensionality becomes high, perhaps spuriously so. 

See also Green and Rao [ 1 97 1  ], for a simulation of low-resolution ratings of dissimilarities, 

from which the familiar artifact of a circumplex configuration emerged. 

3 2 3 
4 

c c 

7 

Figure 6.4: Aberrant closest-colour sequences for D l 5  stimuli (normal sequence is C, I ,  2, . . . , 1 5) 

7 

An extreme form, the pick 1 /N procedure, is used in the Farnsworth-Munsell D 1 5  test of 

colour vision. To further summarise Chapter 4's outline of this test, one colour sample out of 

1 6  (the stimuli) is the initial anchor, a, and from the remaining 1 5  stimuli, the subject chooses 

b, closest to a. This provides 1 4  dissimilarity comparisons: Oab < 00;, (i * a, i * b). b now 

becomes the new anchor, and and c, the closest stimulus to it, is chosen from the remaining 

1 4: providing another 1 3  comparisons. This process continues until the sequence of stimuli is 

finished and a total of 1 05 comparisons have been made - too few to reconstruct the 

configuration, even when data from several subjects with differing dimensional weights are 

combined (see figure 6.5) .  But Chapter 4 emphasised the point that when the circular 
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configuration is given a priori, there is enough information to identify a subject's variations 

from normal. For someone with a significant colour-vision deficiency, the circular configu-

ration becomes an ellipse in that person's 

private colour space, resulting in an 

aberrant closest-colour sequence (figure 

6 .4). However, the l ist of comparisons of 

the D 1 5  test is too restricted for reliable 

assessment of subtle gradations of colour 

vision, for which the distorted circle is 

only slightly elliptical. The Farnsworth­

Munsel l  1 00-Hue test can be considered 

in the same light. 

Figure 6 .5  Solution for D 1 5  responses (M = 23)  
treated as  pick 1/N comparisons 
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A third form of data incompleteness has aspects in common with the first two. Partition the 

items into two groups, Na hubs and N5 spokes. Only hubs serve as anchor points. For a given 

hub, only distances to spoke elements are ranked. Generally such experiments are cross­

modal. Gregson [ 1 966a, 1 966b] champions cross-modal methods for situations where the 

sensory modality of the stimuli (taste, in Gregson's studies) makes direct comparisons 

between them difficult; they become hubs and are compared instead against easily-ranked 

visual analogues for the spokes. 

In many cases the spoke items are categories or labels for the hubs. An example comes from 

the colour-naming experiment used in Boynton and Gordon's  third experiment [ 1 965], where 

the hubs were flashes of colour. Subjects opted for one or two colour names, chosen from a 

set of four choices (the spokes), which best matched each stimulus as it was briefly displayed. 

A more congenial way of collecting similar data is a wine-tasting [Winton, Ough & 

Singleton, 1 974] . Participants select one or more wine varieties (spokes) as best descriptions 

of each wine (the hubs). Sometimes confusion matrices are treated in this way [van der Camp 

& Pols, 1 97 1 ] .  

To describe this procedure as "conjoint scaling" invites confusion with other uses of the word 

"conjoint". It is also known as "unfolding" (generalising Coombs' term for preference scaling 
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[ 1 964]). Coombs describes it as Qla data. I prefer the term "cross-modal" for the procedure, 

even though the hub and spoke elements are not necessarily of different modalities. 

Thus, in a incomplete triadic design, Bechtel [ 1 976] partitioned a set of Munsell colour chips 

into three "standards" and six "comparison" stimuli ,  the latter being compared, two at a time, 

for relative dissimilarity from each of the former (45 comparisons instead of 252). The 

distinction between standard and comparison stimuli is made frequently in applications of 

MDS to odours. Olfactory space (assuming the spatial model to be valid) is high-dimensional, 

and to map it in full requires many stimuli, too many for complete data to be conveniently 

collected, so Yoshida [ 1 975] partitioned 72 odour stimuli into 32 test odours which were 

compared against 40 essential o ils, requiring 1 280 similarity ratings instead of 2556.  

A final term for this kind of data is "off-diagonal", 

reflecting the partitioned nature of the dissimilarity 

matrix.  In figure 6.6, sub-matrices 1 and 4 are 

unknown. Sub-matrix 3 = 2 T_ Values are compar­

able only along rows of 2 (and columns of 3). 

figure 6.6 

l 

3 

2 

4 

A good example of cross-modal data appears in the documentation provided with the "I­

FEEL" test. The I-FEEL pictures (Infant Facial Expressions of Emotion from Looking at 

Pictures) are supplied by the University of Colorado Health Sciences Center. They are 30 

photographs of the faces of infants and young children, captured in various expressions, 

intended for use in a projective psychology test. Here I treat them as stimuli to be scaled. 

Chapter 7 will present two- and three-dimensional maps of these stimuli, created using 

hierarchical sorting data. 

Part of the I-FEEL documentation is a table summarising people's reactions to the 

photographs. This table consists of the emotional terms ascribed to each photograph by 1 45 

subjects, as percentages of total descriptions, in 1 3  columns: e.g. photograph ' 1 03' was 

described as displaying "Interest", 23 .4% of the time; as "Sad", 1 4.5%; as "Distress", 1 3 .8%; 

and so on. I ignored the column of "Other" responses, and also the columns of "Shame" and 

"Disgust" responses, which were hardly ever used. This left a 30-by- 1 0 matrix of stimuli and 

the emotions attributed to them. For the analysis, I assumed that the labels and the 
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photographed expressions could be represented as 40 points in an "emotion space", with the 

percentages indicating the proximity between a photograph (a hub) and the labels (spokes). 

The resulting two-dimensional map is figure 6.7, in which "Interest" lies at the centre of a 

rough circle formed by the other labels - an arrangement closely agreeing with maps such as 

Russell [ 1 980]. 

The reader is invited to compare figure 6.7 with 7. 1 2, a map derived from hierarchical data, 

and to admire the similarity between them. The labels allow the axes of the two diagrams to 

be identified as a vertical scale of Intensity or Activation (ranging from ' 1 22 ' , a photograph 

of a sleeping child, to the extremes of fear and surprise) and a horizontal Pleasantness­

Unpleasantness scale. 

Figure 6.7 Two-dimensional configuration: distances between 30 I-FEEL faces and 1 0  emotion descriptions 
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Equivalent pick kiN procedures have been applied with personalities as hubs and personality 

traits as spokes [Rosenberg & Sedlak, 1 972; Wing & Nelson, 1 972] ;  pains and pain coping 

methods [Moo re, 1 990] ; varieties of pain and pain-descriptive phrases [Clark, Janal & Y ang, 

1 984, Moore & Dworkin, 1 988] ;  syndromes and symptoms. This is not to say that they were, 

or should be, analysed as conditional rank-orders. 

The key requirement for cross-modal data to be analysed as conditional rank-orders is that 

hub and spoke elements must be represented within the same perceptual or semantic map. 

Nothing is known directly about the distances between pairs of hubs or pairs of spokes 

because such dyads never undergo comparison. This increases the opportunity for error in the 

reconstruction (the size of the confidence ellipsoids does not bear contemplating). 

For a final, hypothetical example, consider using the Stroop effect to measure the proximity 

between colour names and actual colours. The Stroop effect is the slight increase in time 

taken to recognise a colour word when it is displayed in letters of a different colour. I 

speculate that displaying "RED" in pink letters would produce a smaller recognition delay 

than green lettering would, i.e. that the delay is somehow related to the distance between 

points representing colours and names in a conceptual I sensory colour space. Only the 

pressure of time, and its extreme irrelevance to the aims of this dissertation, prevent me from 

attempting such an experiment. 

Cross-modal data have the same limitations as the use of scales. A dimension may be present 

amongst the stimuli, but it will not be detectable if it fails to separate the hubs. In Chapter 7, I 

present hierarchical sorting data which support the theory that emotions (as manifested in 

facial expressions) occupy a space of at least three dimensions. However, among the more 

common English nouns for emotions, a third dimension is weak or absent; two dimensions 

are enough to accommodate them. Thus, allowing a third dimension when analysing the table 

of emotions attributed to the 1-Feel photographs does not produce any useful new 

distinctions. Instead, a two-level configuration is the result, with the labels all in one roughly 

planar group, displaced from another plane containing the stimuli .  
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Preferences 

In his magisterial analysis of the different forms data can take, Coombs [ 1 964] considered 

cross-modal conditional rank ordering as a more abstract case of preference data. 

Coombs' unfolding model is a spatial representation for preferences (see also Roskam, 

[ 1 968]). Points indicating the stimuli under investigation are positioned in a geometrical 

space, of low dimensionality, for I assume that relatively few forms of variation between 

stimuli suffice to explain the preferences of many subjects. I further assume that for each 

subject there is a combination of quantities which is optimal : no actual stimulus can be 

preferred more than it, and the more similar a stimulus is to the combination, the more it is 

preferred .  Ideal points within the stimulus space represent these combinations. 

Interpret the preference judgements as distance inequalities: if subject o prefers stimulus i out 

of the options i and j, xi is closer than x1 to the ideal point X0• 

i.e. Eaj, oi = 1 .  

A list of preferences is clearly a conditional ranking, with the stimuli being ranked in order of 

their distances from a hub. So Na = M, the number of subjects. 

In many studies, each subject compares each pair of stimuli separately - "pairwise 

preferences" - creating triadic data [e.g. de Soete & Winsberg, 1 993] .  Ramsay [ 1 980] points 

out that such data are richer in information and lead to more robust conclusions. In Delbeke' s  

study [ 1 968] on  fami ly composition preferences, the preferences of 84  university students 

were e licited as pairwise comparisons, but in the published form of the data these are summed 

and rank-ordered. 

This seems l ike a good place to pause for an example. 1 2  blocks of Paulownia wood, identical 

in shape (20 x 85 x 285 mm) but varying in numerous aspects of the wood-grain, were ranked 

for preference by 43 subjects [Barraclough, personal communication]. A three-dimensional 

solution is adequate: figure W. l (in Appendix W). The same subjects also provided similarity 
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data for the blocks, following the hierarchical sorting procedure, so I will discuss the 

perceptual space in more detail and propose interpretations for the axes in the next chapter. 

I preempt that discussion to the extent of noting here that the similarity-based configuration 

agrees with the preference solution. The postulated equivalence between preferences and 

distances is upheld. The results agree with Steinheiser's finding [ 1 970], that preferences are 

more variable than similarity structures, reached after he elicited both forms of data from his 

subjects. 

However, there remains the possibility that the two tasks involve different d imensional 

weights. There is no reason why the ' iso-preference' contours around a subj ect's ideal point 

should be circular or spherical. The subject can quite reasonably place a high emphasis on 

one or two particular features of the stimuli ,  while making a preference decision, and then 

proceed to equally weight the contributions the features make to the overall dissimilarity. It is 

even feasible that the features (i.e. dimensions) most salient to preferences do not show up in 

the similarity structure, where they are obscured by other features relevant to dissimilarities 

but not preferences. One can only hope that this is not the case for the stimuli in question. 

Fitting individual dimensional weights (the INDSCAL model) may help [Carroll, 1 972]. 

There is a paradoxical flavour to this business of scaling preference data, though fortunately 

no real contradiction. I am assuming, firstly, that all the subjects derive their preferences from 

the same perceptual map (apart from random perturbations), and secondly ,  that their l ists 

disagree, because of differing ideal points. Consistent preference lists, resulting from a single 

ideal point, would make life easier for market researchers and boring for everyone else, but 

scaling them would lead to degenerate solutions. If all ideal points have the same value er on 

the r-th dimension (i.e. they lie on a plane, X0r = en 1 � o ::; M), that dimension disappears 

from the solution - just as with other cross-modal situations. 

In Chapter 7 I will combine the block preference data (N = Na + N5) with similarity data for 

the N5 wood blocks alone to derive a configuration more trustworthy than either data set 

could produce in isolation. It is worth stressing the instability of solutions for this kind of 

hub/spoke ranking data, with their absence of information about at least half of the distances, 
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those corresponding to (hub, hub) and (spoke, spoke) dyads. Borg and Lingoes [ 1 987] point 

out that there are always degenerate solutions with Stress = 0: e.g. all the ideal points at the 

centre of a hollow sphere of stimuli points. In the analysis of such data, one hopes that the 

algorithm will become caught in a meaningful local minimum rather than reach the 

degenerate global minimum. 

I have noticed that MLE has many advantages over Stress minimising, much as in the case of 

incomplete triad designs. It seems better at avoiding both local minima and degenerate 

solutions. Figure W. 1 is a MLE result. 

One variety of data covered by this unfolding model is the Q-sort [Stephenson, 1 953] .  A 

universe of possible statements and opinions about some issue - Stephenson's 'concourse' ­

is represented as a multidimensional space. Embedded therein is a point for each statement, 

and an ideal point associated with each participant's  own opinion. How far the o-th 

participant agrees with the i-th statement should correspond to the proximity of x; to x0• 

I have applied MTRIAD to a number of Q-sort data sets: from Mrtek (34 statements about 

substance abuse, ranked by 85 medical students); Browne (40 suggestions for increasing 

faculty productivity, ranked by 1 1  academics); Kirkland (40 statements about future 

directions for Massey University, ranked by 1 3  Heads-of-Departments). The results were 

meaningful. In these examples, as in the majority of Q-sorts, N5 is too large for a complete 

ranking. Instead, the experimenter decides in advance on a restricted number of levels of 

agreement, and how many statements must go into each level (e.g. three statements "most 

agreed with", five "next most agreed with", and so on, down to five "next least agreed with" 

and three "least agreed with"). 

MDS on such data characterises the subject relationships: who agrees with whom. It also 

maps the concourse of statements itself. This is its advantage over the conventional factor­

analysis treatment of Q-sorts. However, further work is in order. Independent, confirmatory 

maps of these concourses are needed, before proclaiming the superiority of MDS. One cand­

idate for the cartography of concourses is the method of Sorting, the subject of Chapter 7.  
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It remains to specify the initial configuration, which is still an important factor in reaching the 

best final one. The incompleteness of preference data makes selecting x<o) difficult. The 

procedure used in MTRIAD is to position the N5 stimulus points first, applying PCO to a 

matrix of estimated inter-stimulus distances, which in turn are derived by correlating over 

hubs: 

dij(o) = (Ns Ld0; doJ - Ld0; LdoJ) I (Ns l:do/ - (LdoiY12 I (Ns Ldo/ - (LdoJ/Y12 
0 0 0 0 0 0 0 

Each of the Na ideal points is then assigned the same position as that subject's most preferred 

stimulus (we cannot simply combine the D(O) matrix with a submatrix of hub-hub distances, 

estimated by correlating over spokes, plus the rank orders themselves for estimates of hub­

spoke distances, since each sub-matrix has a different and unknown scale). 

The Vector Model 

The number of degrees of freedom in the ideal point model can be reduced by constraining 

the ideal points to lie outside the configuration of stimulus points - infinitely far out, in fact. 

True infinity is not necessary; it is sufficient for the ideal points to lie on a hypersphere at a 

fixed distance R, large enough that the vectors pointing from each of the stimuli to a given 

ideal point can be approximated by parallel lines (which would be springs, to return to that 

metaphor). Then the iso-preference contours for that ideal point are effectively planar. 

This is  the vector model for preferences, so-called because it is easier to treat the subjects' 

preferences as comparisons between vector products than between distances. It is therefore 

peripheral to the topic of this thesis, and will not be discussed at length; also, there is little to 

add to Roskam's discussion [ 1 968] .  The model might apply to qualities which have no finite 

optimum level; more is always better. Ramsay's example [ 1 980] is sweetness, for which 

adults have ideal points - if a taste exceeds one's ideal sweetness, preference goes down ­

whereas children behave as if that optimum is an infinite concentration. In Coombs' 

taxonomy it is QIII data. 

Represent the stimuli as a configuration of points, X;, 1 :5 i :5 Ns. I imagine vectors passing 

through the origin in the directions of the ideal points, at infinity, like knitting 
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needles skewering a ball of wool; represent each by a unit-length vector Yo• 1 :::;; o :::;; Na. As R 

approaches infinity, d0; approaches R - X; · Yo· Ignoring the constant R (since all the data are in 

the form of comparisons, i .e. differences between distances), 

doi = - X; · Yo· (6. 1 )  

These "distances" are the projections o f  the i-th stimulus point onto the o-th "knitting 

needle". The best alignment of the vector (to be found in the course of MDS) is that which 

maximises the rank correlation between d0; and the observed preferences. If one scans across 

the configuration in the direction of the o-th ideal point, one should encounter the stimuli in 

order of increasing preference, encountering the most preferred stimulus last: it should have 

the most negative projection onto Yo· Any violations of preference order contribute to Stress. 

I adapt the familiar hill-descent algorithm to optimise the configuration, by inserting the new 

definition of "distance" into the Stress, and differentiating by X; and y0: 

Sv(.X) = L £0ij H(doj - d0;) (doj - doi I L £0ij (doj - doi 
�� �� 

where £0ij = Eoi.oj r = 1 ifj preferred to i by 0 l = 0 otherwise. 

asv I ax; = 2 L Yo L Eoij 0((x; - x) . Yo/ I constant denominator 
0 j 

asv I ayo - 2 L (x; - x) Eoij 0((x; - xj) . Yo)2 I constant denominator 
ij 

(6.3a) 

(6.3b) 

Recalling that Yo must remain on the unit sphere, i .e. L y / = R2, decompose asv I ay o into 

components perpendicular and tangential to that sphere, and jettison the former (to put it 

another way, remove the component of 8Sv I Oy0 parallel to y0). This task of keeping the 

magnitude ofy0 constant could be avoided by expressing y0 in angular coordinates. 

Some corollaries follow. 

First, nothing is gained in this model by fitting individual dimensional weights. Planar iso­

preference contours are still planar after transformation by a dimensional factor; it is not like 
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transforming a circular contour into an ellipse. Any such transformations are equivalent to 

changes in y o· 

Similarly, nothing is gained by shifting to non-Euclidean geometries: the iso-preference 

contours remain planar. Perhaps one should think of the vector model as a special kind of 

geometry in its own right: the "infinity metric". In the limiting cases of the supremum and the 

city-block geometries, the available contours are restricted drastically: they must lie either 

perpendicular to an axis (in the first case) or diagonally (in the second), a reminder of 

Shepard's observation that these geometries have a propensity towards degenerate solutions. 

Thirdly, zero-Stress solutions are always possible, just as in the ideal point model . In one 

instance of a degenerate solution in three dimensions, all the stimulus points are confined to a 

two-dimensional "pancake", with the preference vectors perpendicular to it. 

MLE avoids this degeneracy. Again, the definition of L and the derivatives for maximising it 

follow from inserting the new "distance" function: 

Lv = -L c0!i log(exp(t (d0; - do)) + 1 )  
o, ij 

= -L c0!i log(exp(t (xi - X;) · Yo) + 1 )  o,ij 
= - t 2: c0!i (xi - X;) ( 1 + exp(-t (xi - X;) · Ya)Y1 

IJ 

= - t L Yo L c0ij ( 1 + exp(-t (xi - X;) · Yo))- 1 0 i 

= -L caij (xr X;) · Yo ( 1 + exp(-t (xr X;) · Yo))- 1 
o,ij 

(6.4) 

(6.5a) 

(6.5b) 

(6.5c) 

I note that nothing about the vector model restricts it to use with preferences. A feature which 

it shares with the ideal point model is that it can accommodate rankings of the stimuli on 

other scales, e.g. utility or beauty, known in the general case as dominance data: Em!i = 1 if 

element i dominatesj, i.e. is placed higher in the m-th rank order. 

For a set of 1 3  facial-expression photographs, selected from the Lightfoot series, Cliff and 

Young [ 1 968] obtained both pairwise dissimilarities and ratings of"Intensity" (presumably 
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their quoted value of 7.65 for the Intensity of photograph 20, "physical exhaustion", is a 

misprint for 1. 65. I also assume that the point labeled 3 1 in their figure 1 is a misprint for 51, 
"knows her plane will crash"). Using the ideal point model, they found that Intensity ratings 

were correlated with distance from a low-intensity "ideal point". It is probable, given that 

point's peripheral position in the configuration, that the vector model would have accounted 

for the ratings equally well. 

Scale-based ratings are also covered, e.g. Semantic Differential scores, personal-construct 

ratings (the repertory grid procedure), or ratings on continuous or Likert-style 7-point scales. 

The crucial assumption is that each scale can be modelled by planar same-value contours in 

the stimulus space. Further candidates for this interpretation are the low-resolution pick any/N 

scales - syn-dromes, personality traits, etc. - which have only one same-value contour per 

scale. To bring them under the umbrella of Johnson's pairwise MDS, let v(m, i) be the value 

on scale m of item i: then 

Emif[= 1 if v(m, i) > v(m.j). 
= 0 otherwise. 

Recall the remarks by Bechtel and Coombs - previously mentioned in the context of triads ­

that preferences and scale values are both interpretable as forms of triadic data. 

A common situation in MDS is where scale ratings and proximity data are both available. To 

this extent, the vector model is inside the scope of this thesis. I have already performed joint 

scalings on different proximity data sets, combining triads with dissimilarities, dissimilarities 

with ideal-point-modelled preferences. The concern now is with a joint analysis of scales and 

proximities [Ramsay, 1 980, 1986], where the Stress-minimising (or Likelihood-maximising) 

forces which rearrange the configuration are responsive to both sets of data. 

Here, Sj(.X) = S(X) + Sv(X) 
Lj(X) = L(X) + Lv(X) 

This is distinct from both the External treatment of preferences, (also known as "conditional 

scaling of preferences", PROFIT for Property Fitting, or Prefmap for Preference Mapping 

[Carroll, 1 972]), where the vectors (or ideal points) are adjusted to optimise their fit within a 
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pre-established configuration of stimuli which is not altered in the process (often with the aim 

of helping interpret it), and the Internal treatment, or preference scaling, as just seen. 

A case in point is the woodblock stimulus set of appendix W. As well as providing the 

preference and similarity data mentioned before, the blocks were rated by wood-technologist 

judges. The vectors Ym for the 1 2  scales with the highest correlations with the configuration of 

figure W. l were added to the model, with a corresponding Lv term, which introduced 

additional terms in 'VL. Initial values Ym (O) come from least-squares regression lines fitting the 

scale values v(m, i) to X0>. 

After scaling, the result was figure W.4. The configuration is much the same, but the presence 

of the scales allows its axes to be identified. 

Configurations like W.4, where one dimension accounts for less variation than the others, 

creates an irritating artifact when combined with poorly-fitting scales. In a recurrence of the 

degenerate "pancake" solutions, Stress is minimised when such scales are aligned parallel to 

the minor axis. Likelihood is maximised as well, i .e. the effect persists under MLE. It can be 

difficult to distinguish scales which label the minor axis from those which are aligned with it 

as an artifact, though the latter have higher Stress contributions. 

It was possible to test the validity of the wood block configuration and the scales, because an 

additional 1 2  stimuli were on hand. Though they had not been used in similarity experiments, 

they had been rated on the same scales by the same judges. We could incorporate them in a 

24-block configuration, _ in which the extra 1 2  points (woodblocks) were defined 

by scale values alone, predicting where they would lie if proximity data were available as 

well. For joint analysis, it is not necessary for the element sets in the different data sets to be 

identical, only that they overlap. Later, preferences and similarities did indeed become 

available for the additional blocks, producing figure W.S, which verifies the prediction and 

vindicates the chain of assumptions. 

24 stimuli being too many to be conveniently ranked by preference, they were partitioned into 

two sets, of 1 2  stimuli each, to be ranked separately by the subject and scaled separately, with 
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two ideal points. This partitioning was arbitrary and different for each subject. The closeness 

of the two ideal points per subject is a source of confidence in the model. 

Curiosa 

This illustrates the multiple aspects of supplementary data. Data sets which were originally 

collected for scaling purposes can also function as tests of one's  basic assumptions. Thus, my 

confidence that triads are a form of dissimilarity comparison was bolstered when the triadic 

data for occupational titles [Coxon et al, 1 975] arranged them in the same configuration as 

the dissimilarity ratings. 

In an experiment with a set of animal names [Henley, 1 969], triadic and other forms of data 

were collected, providing similar convergent validity when scaled. With the assumptions 

validated, the data sets can be combined in a joint analysis. Examples of this will appear in 

the next chapter. 

But conversely, data collected with the intention of testing a configuration's validity can also 

be used to refine it. I mention these collection procedures for the sake of completeness, 

without advocating their use for scaling purposes, though some may have a role to play, e.g. 

to augment sparse data sets (pick k/N, etc). They serve as a reminder that no single data­

collection procedure is ideal for all purposes, and that some situations may require a 

combination of complementary procedures. 

An example is Isaac's  "odd-one-out" test. The subject is given one stimulus, i, and asked to 

select another three j, k, l such that the initial stimulus will stand out as the least similar of the 

four. It is predicted, if the spatial model is applicable and the configuration is correct, that the 

test is one of distance inequalities: the distances dij, d;k, du should all be greater than the three 

�k• dkl• �I· 

In one example I have already discussed, baby-cry triads [Lyons, Kirkland, Castle & 

Lowoko, 1 99 1  ] ,  the additional data are the estimates from subjects H and I of their 

confidence in their judgments. There is a correlation of 0.674 between the estimates and the 
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differences between the reconstructions of the distances being compared, ldu - d;ki ,  in figure 

3 .2. With faith in the reconstructed map thereby bolstered (not to mention faith in the 

estimates themselves), one can include them in the construction of the map, though the 

changes from doing so are minor. 

Rumelhart and Abrahamson [ 1 973] used a method of analogies to test configurations in 

semantic space [McAdams & Cunible, 1 992; Wessel, 1 979 applied this method to timbral 

space] . The questions are multiple-choice: "a is to b, as c is to (t, u, . . .  )?" 1 In an extension of 

the Henley [ 1 969] work, Rips, Shoben & Smith [ 1 973] had the good fortune to find two 

semantic domains (bird names; mammal 

names), both two-dimensional, with 

homologous dimensions: "size", and 

"domesticated-tame-feral-predatory". This 

enabled them to perform "cross-modal" 

analogy tests, taking a and b from one 

domain and c, t, u from the other. They 

found the distances in the recovered 

configurations to be better predictors of 

analogy choices than than the raw, 

"unpurified" dissimilarities were. 

a 

Figure 6.8 

b �  

t . \ 
_ ., a 

-

U ·  

Parallelogram of vectors locating cr 

If the spatial model is correct, the analogy creates a virtual stimulus, cr (see figure 6.8) :  

1 Kant considered analogies with three empirical, observable terms while the candidates for 
the fourth term are metaphysical or mystical : "nicht etwa, eine unvollkommene Ahnlichkeit 
zweier Dinge, sondern eine vollkommene Ahnlichkeit zweier Verhiiltnisse zwischen ganz 
uniihnlichen Dingen " [Prolegomena to Every Future System of Metaphysics that May Ever 
Arise in the Way of a A Science] 
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(x6 - X0) being the vector that translates stimulus point X0 onto x6• The distances between Xa 

and the possible answers x1, xu, etc. are being compared: by choosing t, the subject asserts 8cr1 

« 8cru• etc. Any disagreements between the actual and the predicted choice contribute to 

Stress, which we can minimise, as before, by calculating gradients, i .e. corrective forces 

as I 8x1, as I axu are straightforward. As for as I axcr, note that changing the positions for any 

of the three items a, b, c affects the virtual stimulus. The force on cr resolves into corrective 

forces on a, b, c, since 8x6 I axa = axe I axcr = -axa I axa = I .  

a(raw Stress) I 8x6P = a(raw Stress) I axcp = -a(raw Stress) I axap = a(raw Stress) I axcrp 
= :l:(a(raw Stress) I ada1) (ada1 I axap) 

I 

This kind of data is conceivably useful for scaling a set of elements where N is less than the 

threshold for reliable recovery of the metric and configuration; one could augment the 

available stimuli with virtual stimuli cr, adding landmarks to the map. A simpler way to create 

virtual stimuli using fewer points (tetradic data, rather than pentadic) involves multiple­

choice questions of the form "Which stimulus, c or d, is closest to being midway between a 

and b?" Then X0 = (x0 + x6) I 2 (putting it another way, x6 - Xa = X0 - X0) . 

Carrel l  and Chang [ 1 972] considered both forms of data, analogies and mid-points, as vector 

equations, and wrote a program, SIMULES, for exploiting them as material for MDS (relying 

on ratio-level data). Another paper which looks at performing MDS using vectors [Gordon, 

Jupp & Byme, 1 9 89] deals with a slightly different form of data, where the direction from 

one point to another is known, but not the distance between them. 

The analogy-task nature of a third example of vector equation (relevant to the research with 

facial expressions to be described in Chapter 7) was not recognised by the researchers 

[Russell & Fehr, 1 987]. Here, photographs of facial expressions were presented in pairs. The 

first expression displaced the second within "emotion space", affecting the way it was 

perceived. For instance, if the face in the first photograph was smiling, a neutral, relatively 

expressionless face presented second looked sad in comparison. Subjects indicated the 
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location of the second stimulus x2 ' in a two-dimensional emotion space by rating it on scales 

or by picking the closest verbal label (cross-modal data). Thus x2
' is a virtual stimulus: 

x2
' 

= x2 + 0.4 1 (x0 - x i ) 

where x0 is the origin of the coordinate system (corresponding to neutrality or lack of 

emotion) and xi and x2 locate the first and second stimuli as observed in isolation. The factor 

0.4 1 was found by Russell and Fehr empirically. They found the displacement to be additive: 

with two stimuli, x i  and x3, to displace x2, 

x2 ' 
= x2 + 0.4 1 (x0 - xi ) + 0.4 1 (x0 - x3) 

Russell has argued [Russell 1 980] in favour of interpreting emotion space with a system of 

polar coordinates (in which an angle and a distance from the origin suffice to specify an 

expression or emotion), as an alternative to an x-y system of axes.  Mathematically the 

coordinate systems are interchangeable. However, these results indicate that the x-y system is 

a better model of subjects' internal representations of expressions. To account for their 

observations, Russell and Fehr are reduced to converting the polar coordinates for a stimulus 

into x-y coordinates and performing the vector sum before converting back to the polar 

representation. Their subjects did not combine the angular and radial components of two 

expressions directly. 

Another case for choosing between rival geometrical representations is Colour. Holding 

luminance constant, colour space can be interpreted with polar coordinates (the radial 

coordinate being saturation, while the angular coordinate is hue: the standard colour wheel), 

or with a pair of axes at right angles (i.e. the CIE system). Polar coordinates seem intuitively 

more natural (to someone with colour-normal vision), but x-y coordinates are a closer 

representation of the early levels of colour processing where opponent processes are at work, 

as shown by individual variations, subjects' versions of colour space displaying compression 

along one or other axis. It is perhaps worth conducting analogy tests to see whether subjects 

conform to a single coordinate system in their internal representation of colours, and if so, 

what that system is. 
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7. SORTING AND HIERARCHICAL SORTING 

One aspect of the sorting and the hierarchical sorting methods is important enough to warrant 

mentioning before going on to describe the nature and the analysis of the data. This is the fact 

that disagreements between the subjects' responses are not only expected, but necessary. 

Given complete unanimity among infonnants, the only solutions possible are degenerate. 

This reliance on disagreement links the sorting methods to Torgerson's analysis of triadic 

data. It also serves as a pleasant metaphor for the conflicting views required in science if any 

progress is to be made. 

For the INDSCAL model to be applied, or any other model of individual variation, we must 

somehow sift out systematic differences in a subject's responses from the random inter­

replication errors required in order to scale them. It will be interesting to see if this is 

possible. 

Sorting 

The method of sorting involves a simple partition of N stimuli into groups or piles 

("partitioning" having the sense of defining an equivalence relation: the groups do not 

overlap but between them include all the stimuli). Usually the items are printed on cards: in 

the form of samples if they are perceptual, or words, pictures or labels for conceptual stimuli .  

The subjects are asked to sort these cards into piles, on the basis of similarity, so that stimuli 

which are most similar are in groups together. The exact wording varies. The criteria for 

assessing similarity, the number of stimuli in each group, and usually the number of groups 

are all left up to the subject. Hence it is also known as unconstrained sorting, or free sorting 

(F-sorts). Fillenbaum and Rapoport [ 1 97 1 ]  use the tenn "direct grouping". 

I stress the simplicity and ease of administration of the method, which have led to its wide­

spread use, despite being amongst the most recent of the procedures I have mentioned; it was 

first used by linguists, to explore semantic "spaces" in the late 1 960s [Anglin, 1 970; Clark, 

1 968; Miller, 1 969; Steinberg, 1967]. It has been used with children as young as 3-year-olds 

[Russell & Bullock, 1985, 1 986], and with other cultures [Berlin, Breedlove & Raven, 1968; 
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Lutz, 1 982; Russell, 1 983;  Russell, Lewicka & Niit, 1 989]. As the flip side of this simplicity, 

the quantity of data obtained per subject is not enough for individual solutions. Miller [ 1 969] 

recommends recruiting at least 20 judges, but more are usual . With only 1 3  judges [Lutz, 

1 982], the reliability of the results is questionable. 

Contributing to the popularity of the method is its capacity to scale large N, essential in any 

attempt to map a culture's cognitive structure (as indicated by persons' use of words). 1 00 

stimuli are not unknown [Kraus, Schild & Hodge, 1 978; Miller, 1 97 1  ]. With the objective of 

comparing cognitive structures across cultures, Church and Katigbak [ 1 989] asked 1 5  

Filipino students to sort 74 (English) personality descriptors, while another 1 5  sorted 89 

descriptors (in Tagalog), and 1 5  sorted the combined, bilingual set of 1 63 .  The record (in the 

English-language literature) is perhaps 1 76 pain-descriptive words [Verkes, van der Kloot; & 

van der Meij ,  1 989] . 

The sorting task as just described, where the elements are physically rearranged on a flat 

surface, is unsuitable for administration en masse. For eliciting data from a room of people 

simultaneously, the triadic method in combination with screen-projected stimuli is more 

appropriate [e.g. Gladstones, 1 962a] . 

The nature of the task restricts it to stimuli that can be presented in parallel. There are 

exceptions to this: sorting has been successfully applied to tactile textures, presented 

sequentially [Hollins, Faldowski, Rao & Young, 1 993 ], and to odours [Lawless, 1 989; 

MacRae, Howgate & Geelhoed, 1 990; MacRae, Rawcliffe, Howgate & Geelhoed, 1 992; 

Paddick, 1 978]. 

A search of the literature uncovered the following sorting applications. They are listed in no 

particular order. 

• "verbs of having" (English) [Fillenbaum & Rapoport, 1 97 1 ;  Takane, 1980] 

• "verbs of breaking" [Hojo, 1 993] 

• prepositions [Clark, 1 968; Fillenbaum & Rapoport, 1 97 1 ]  

• countries [Wish & Carroll, 1 974] 

• body parts [Miller, 1 969] 
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• kinship terms [Rosenberg & Kim, 1 975] 

• role terms [Burton & Romney, 1 975] 

• statements about occupations [Coxon & Jones, 1 978, 1 979a, 1 979b] 

• occupations [Burton, 1 972, 1 975; Coxon & Jones; Kraus, Schild & Hodge, 1 978] 

• forms of interpersonal behaviour [Burton, 1975] 

• strategies of getting one's own way [van der Kloot & van Herke, 199 1 ]  

• values [Jones, Sensenig & Ashmore, 1 978] 

• stereotypical adjectives, and often-stereotyped ethnicities (Jones & Ashmore, 1 973] 

• adjectives of "good" and "bad" [Fillenbaurn & Rapoport, 1 97 1 ]  

• media explanations for riots [Schmidt, 1 972] 

• influential figures in psychology [Rosenberg & Gara, 1 983] 

• pain behaviours [Turk, Wack & Kerns, 1 985;  Vlaeyen, van Eek, Groenman & Schuerman, 

1 987] 

• pain coping strategies [Wack & Turk, 1984] 

• pain descriptors (Clark, Janal & Carroll, 1 989; Morley, 1 989; Reading, Everitt & 

Sledmere, 1 982; Torgerson & Melzack, 1 970; Verkes, van der Kloot & van der Meij ,  

1 989] 

• pain varieties [Moore & Dworkin, 1 988; Moore, Miller, Weinstein, Dworkin & Liou, 

1 986] 

• personality traits [Church & Katigbat, 1 989; Miller, 1 974; Rosenberg, Nelson & 

Vivekananthan, 1 968; van der Kloot & van Herk, 1 99 1 ]  

• environments (Ward, 1977] 

• hand-signs for letters in American Sign Language (with two criteria for sorting; similarity 

of visual appearance and of three-dimensional conformation) [Richards & Hanson, 1 985] 

• facial expressions [Nurnmenmaa, 1 988, 1 990; Russell & Bullock, 1 985 ,  1 986; Russell, 

Lewicka & Niit, 1 989; Stringer, 1 967] 

• words for emotions (Lutz, 1 982; Russell, 1 980, 1 983; Russell, Lewicka & Niit, 1 989] 

• visual textures [Harvey & Gervais, 1 978] 

• plant varieties (species of gourd) [Berlin, Breedlove & Raven, 1 968] 

• names of colours [Fillenbaum & Rapoport, 1 97 1 ;  Takane, 1 980]. 
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The subjects can be entire cultures, for when one word in a particular language extends to 

label more than one item (colours, emotions, animal species, prepositions), those items have 

been sorted. MDS can be as easy as looking up words in multi-lingual lexicons. 

I note that the sorting method is also applicable to social networks. In that case it is a question 

of analysing observations rather than experimental outcomes. See, for instance, the 

Struhsaker observations of vervet monkey sleeping groups [Arabie & Boorman, 1 973]: 

instead of stimuli, the items were individual monkeys, partitioned into groups every night as 

they settled down to sleep in separate trees. Multiple nights, rather than subjects, provided the 

replications. Similar data can be obtained wherever a group of primates is accessible, e.g. 

who shares a table at an office cafeteria, or which Supreme Court judges vote together in 

j udgments. 

The list is not intended to be exhaustive. Its size is a result of a determined search through the 

l iterature for papers which quote the original, unprocessed sorts themselves. The size also 

suggests that there is a potential market for alternative scaling procedures for sorting data. 

Note also the large number of studies applying the sorting method to pain-related fields. Their 

results have implications for both the diagnosis and the treatment of pain. lbis potential for 

affecting people's lives, unusual in psychology, gives a certain degree of immediacy to any 

improvements in analysis. One powerful diagnostic tool, the McGill Pain Questionnaire, was 

developed by Melzack and Torgerson [ 1 970] from sorting data. The MPQ sets out lists of 

pain-descriptive words. The subject locates the pain afflicting him or her in the same 

mulitdimensional space as the words by picking which ones describe it (pick any/N data). 

The absence of the sense of hearing from the list is disappointing, given my specific interest 

in baby crying. A trial sorting of the 1 5  complex tones of the fourth experiment of Chapter 3 ,  

using a version o f  the procedure ofFaldowski et a/, was a failure. I t  became apparent that 

the groups would be formed on the basis of verbalised representations of the stimuli :  the 

subj ects' memories of the tones themselves were too ephemeral to classify like with like 

directly. Bricker and Pruzansky [ 1 970] and Pruzansky [ 1 969) are often cited as sorting 

experiments, but the abstracts of the papers make it clear that subjects provided two-
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dimensional representations of the dissimilarities, by arranging pegs in a pegboard (linked to 

a computer). This intriguing procedure ("spatial sorting" is Miller's [ 1 976] term for it) is 

worth reviving with a mouse replacing the pegboard interface (Goldstone, 1 994], but it 

contains more information than sorting in the sense used here. 

My proposal for a dissimilarity-comparison approach for scaling sorting data will be easier to 

explain in the context of hierarchical sorting data (H-sorts). I turn to this procedure now. 

As before, the procedure begins with N stimuli, usually in the form of cards which can be 

spread out up a table or floor. The subject's task is to arrange them into progressively fewer 

groups, selecting the two most similar groups at each stage and merging them into a single 

group, a process repeated until one group remains. This process is hierarchical in that a group 

inherits all the members of the two groups which were merged to make it. There is no way for 

two items which are first grouped together at stage g to be separated again in some later stage. 

The result can be shown as a hierarchy, or tree diagram, or dendrogram, as in figure 7. l (a). 

It is helpful to consider the initial situation as consisting of N piles, each containing a single 

stimulus. In what follows, I use upper-case letters /, J, K, . . .  to label the piles or groups, to 

distinguish them from i,j, k, . . .  , the lower-case items, elements or stimuli. However, to 

suggest such an interpretation to subjects is a recipe for confusion and looks of bafflement. 

For the first group-merging stage, them, the subject is instructed to select the two most 

similar stimuli, i and j, and to place them in a pile r .  

For the second stage, there are two possible cases the subject must consider: the most similar 

pair of piles may be (a) two single cardsj and k; or (b) r and a single stimulus. At subsequent 

stages, as well as joining single cards and adding cards to piles, a third option appears: the 

most similar pair may be (c) two piles, each comprised of more than one card. The challenge 

for the experimenter is to explain these multiple interpretations of "most similar pair", 

without giving in to the subjects' understandable requests for an exact definition of "most 

similar". 
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With each stage decrementing the number of piles by one, N- 1 stages are required, the last 

being trivial. 

Figure 7. 1 Different representations of an H-sort 
(a) Dendrogram (b) nested clusters (c) matrix, cm 

a - 1 5 5 5 
b 5 5 5 
c - 2 4 
d - - - - 4 
e - - - - -
f - - -

a b c d e f 

5 
5 
4 
4 
3 
-

Figure 7. 1 depicts several ways of presenting the same information: as a dendrogram, in panel 

(a); as nested 'contour lines' in panel (b). The same information is present when one records 

explicitly the subject's sequence of merges. Each time two piles are merged, it is not necess­

ary to repeat all their members - a single member is enough. So figure 7. 1 is equivalent to 

a,b I c,d I e,f I c,e 

Coxon et a/ used a less linear way of recording the merging sequence: 

CsC t a b)1 C4G c d)2 G e tl)4)5 
Here the indexed parentheses ( 1 and ) 1 enclose the first two stimuli grouped together, G and )2 

enclose the next merging stage, and so on. Effectively this is figure 7 . I  (b), in one dimension. 

A final form is cumbersome but suitable for computer input (it is the format MTRIAD 

expects): 

(((((a b)))) (((c d)) (e f))) 
The stage at which two groups are merged is indicated by the number of nested parentheses 

enclosing them. This format can be obtained from figure 7. l (a) by traversing the tree, writing 

'( ' every time one descends a level and ')' on every ascent. 

In the POOC research [Coxon et a/, 1 975] H-sorting was conducted with 1 6  occupational 

labels. Coxon and Jones testify as to the method's convenience and acceptance among their 

informants. Fillenbaum and Rapoport used it with a variety of semantic items: 24 names of 

1 30 



colours, 1 5  kinship terms, 30 verbs of"judging", 20 adjectives each of"good" and "bad", 1 6  

pronouns, 1 5  Hebrew words for emotions, 29 prepositions, 1 8  conjunctions, 2 9  verbs of 

"having". It seems odd that the method has not been used more widely, since it returns 

substantially more information than F-sorting, for little extra labour on the participants' part. 

However, Barraclough has applied H-sorting to a variety of stimulus sets, and I am fortunate 

in having had access to her unpublished data, as well as my own, for the examples which 

follow. 

Filllenbaurn and Rapoport's subjects took about one hour to H-sort sets of 29 and 30 items. 

For less motivated subjects or more complex stimuli, a value of 1 6  for N is approaching the 

practical limit. An option for scaling larger N is to ask each subject to H-sort a subset of 

items, the subsets overlapping to make up the complete set: in other words, an incomplete 

design. Fillenbaum and Rapoport used such a design to scale 40 adjectives of "good" and 

"bad". They asked their subjects to H-sort the 20 "good" and 20 "bad" adjectives separately, 

then to pair up the subsets to indicate how the separate configurations overlapped. 

The smallest number of informants in the experiments to be described was 1 2. More are 

required with incomplete designs. 

Cox on and Jones used a process comparable to vote-counting to convert the data into a table 

of distance estimates, for MDS: 

where eiJ = I IML cm.iJ  (7. 1 )  m 

Here cm.if is the stage when i andj were first grouped together by the m-th subj ect (see figure 

7. 1 (c)). With some of their data sets (conjunctions; verbs of judging), Fillenbaum and 

Rapoport asked subjects to rate the dissimilarity level at each merging of piles; one can use 

these values for cm,iJ instead of the merging stage. However, I argue now that a better analysis 

is possible. 

What are subjects going through in their minds when they choose the closest two groups, at 

the g-th stage, out of the (N-g) (N-g+1 )  I 2 possible pairs? How are they defining the perceived 
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dissimilarity between groups I and J, Ou ? Of sundry definitions which come to mind, two 

stand out: 

(a) 0/J = max oij i E I 
(b) o/J = min oij i E I 

(7.2) 

j e J j e J 

These are simply the two Hierarchical Clustering Methods (HCAs) described by Johnson 

[ 1 967], the Maximal (or Diameter) and the Minimum (or Link) algorithms respectively. The 

appealing feature of the two forms is that they reduce inter-group distances to dyadic 

dissimilarities, allowing observations such as "the m-th informant merged piles I and J at 

stage g, judging them to be closer than I and K, J and K, et cetera" to be interpreted as (iJ) « 

(i. k), (i.j) « (j, k), . . .  

Thus H-sorts become another special case of distance comparison data, with this peculiar 

feature, that the data do not explicitly identify the dyads being compared. It is necessary to 

deduce them. 1 

The items i.j for which oiJ = ou are defined by (7.2). This is of little help since it defines 

unknown quantities in terms of other unknowns, the dissimilarities Ou not being part of the 

data either. I fall back on the central assumption ofMDS:  that oiJ = <f>(diJ) + an error term 

(where <t>(x) is monotonic). Given a provisional reconstruction .X'> of the configuration, and 

assuming that the subject uses either (a) or (b ) of (7.2) - MTRIAD offers both options, but 

for the sake of concreteness let us settle on the Link algorithm, (7 .2(b )) - one can deduce 

which dyads determined the inter-group dissimilarities at a given stage g in a particular 

subject's sequence of merging, by applying (7.2) to the reconstructed distances diJ. These are 

precisely the dyads which must be moved together, or further apart, to bring _x<t + l) into closer 

accordance with the observations. 

1Note that in Fillenbaum and Rapoport's version of the H-sort procedure, these dyads are 
identified. Subjects were prompted at each stage for the dyad which provided the actual 
bridge between the piles they merged, and directed to follow the Link algorithm for 
clustering, resulting in a minimum spanning tree from each subject. See also Rapoport 
[ 1 967]. Though providing more information, this variant has the disadvantage that it forces 
subjects to follow a pile-merging strategy which may not be the one they would use naturally. 
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I write ij(l,J) to indicate the pair of elements i e I and j e J having minimal (maximal) 

reconstructed separation, dij. Thus du = dij. There is no need to search through the members of 

the group after every merging stage to find the defining dyads, because of another pleasant 

feature of the Link and Diameter algorithms, their recursive definition. The notation is more 

cumbersome than the arithmetic: 

when the subject merges piles I and J into r, 
for all other pi les K (where K * I, K * J), 

if d/K < dJK 
then drK = diK• ij(/', K) = iJ(I, K) 
else dn = dJK• ij(/',K) = ij(J,K). 

(7.3) 

This is a good point to mention a third feature of the two HCAs. They are extreme forms. If 

they lead to similar results, I will  be spared the task of writing software to handle more 

complex algorithms (ceritroid, U-statistic, etc) wherein the distance between two groups I and 

J is not localisable to a single dyad but rather emerges as a communal property of all the 

dyads (i,j) (where i e I andj e J). We will find that the choice of HCA for reconstruction 

makes l ittle difference, both in Monte Carlo simulations where the particular HCA used to 

generate the data is known, and in the case of real-world data. 

It is worth emphasising that the HCA is not being applied to the configuration to cluster the 

elements: the subj ect has already done that. It is being used within the constraints of the 

subject's clustering, to deduce the inter-group distances and the dyads determining those 

distances. 

These preliminary remarks have provided practically all the components necessary for 

defining a Stress for H-sort data. 

N - l 
s = L: m g = l 

L Em.g.IJ,KL H(dij(/,.1) - dki(K.L)) (dij(/ . .1) - dki (K.Li /,J e (.?(m.g) 
K.L e p(m.g) 

(7.4) 

Here p (m,g) is  subject m's partition into (N+ 1 -g) groups prior to the g-th stage of merging, 

f.J (m,g) = { Il >  h, I3, . . .  IN +l-g } ,  

and E m.g.IJ,KL { = 1 ,  if the m-th subject selects I and J as closest at stage g; 
= 0 if I and J are not selected, or if (/,J) = (K,L). 
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This has the desired property that sm = 0 if the configuration correctly predicts which piles 

are closest at each stage in the sequence. The worst possible reconstruction, creating the 

largest possible Stress contribution, is one where the pair of piles which are closest according 

to the data (i .e. which the subject merges) have maximal du. To keep the total Stress � 1 ,  

write 

M 
raw Stress = 2: Sm 

m = I 

S = raw Stress I normalisation factor 

= L sm I 2: 2: 2: E (d d )2 m.g.IJ.KL ij(J.J) - lcJ (K.L) m m g JJ.KL e .P(m,g) 
Note how Stress is dominated by comparisons made at early stages, presumably between 

short distances: at stage g there are (N + 1 -g) (N-g) I 2 - 1 comparisons between the pair the 

subj ect chooses as closest, and all other pairs, each contributing a term to the denominator 

and potentially to the numerator. At the later stages where larger dissimilarities are compared, 

there are fewer piles and less effect on Stress. Hence, one cannot rely on accurately 

recovering the global structure of a mental map from H-sort data alone. 

a( raw Stress) I &.:;p = 2:( odij I &.:;p) ( O(raw Stress) I odij) 
j 

= L(x;p - x1p)ldij 2: 
j g L om.g.ij/J LEm,g,/J,KL 0(dij(J,J) - dki(K.Lj) IJ e p(m.g) KL e p(m,g) 

where Om,g,ijJJf= 1 if {i,]J = ij(J,J) for i.j and J,J E f.J (m, g) 
= 0 otherwise 

(7. 5) 

MDS by minimising Stress turns out to be inadequate. Succumbing to the form of degeneracy 

described in Chapter 5,  Stress is minimised by configuration of items spaced at equal 

intervals. The scarcity of large-dissimilarity comparisons allows this artifact to emerge. 

As before, we have recourse to the Maximum Likelihood method. Let DJJ.KL = dw.J> - dkl (K.L). 

L = L L m 

N · l 
where L = - L m g= l 2: tm.g.IJ.KL log(exp(Du.KL "t) + 1 )  

U,KL e p(m,g) 
(7.6) 
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aL I Ox;p = - 't L L(x;p - Xjp)ldij L 
m j g L am.g.ij/J LEm.g.IJ.KL { 1 + exp(Du.KL 't) } - I  

/J e p(m.g) KL e p(m.g) 

It remains to specify the starting configuration in this procedure. X0> comes from Principal 

Coordinates Analysis of a table of estimated dissimilarities, E, obtained as in (7 . I ). 

Figure 7.3 illustrates the equal-spacing arti-

fact, by showing a Stress-minimising 

analysis of sorting data with M= I 03 for 

N = 1 6  occupational titles (using the Link 

form of hierarchical clustering). Figures 

7.4(a) and 7.4(b) maximise Likelihood for 

the Link and Diameter forms of 

hierarchical clustering respectively. Both 

are very close to figure 5.3, the results of 

scaling dissimilarity data from 286 
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Figure 7.3 
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Stress-minimising configuration 

informants for the same items. The close resemblance between (a) and (b) of figure 7.4 

supports my earlier assertion that the assumption of one hierarchical clustering strategy as 

opposed to another has little effect on the outcome. 

Many of the subjects in the H-sort tests I have conducted personally (for colours, kinship 

terms, and facial expressions) volunteered the information that they were adding a stimulus 

card to a pile, or combining two piles, by taking the two closest stimuli from two piles to 

determine the distance between them. From now on, only results from the Link strategy wil l  

be reported. 

This reanalysis of the occupations data does not demonstrate any clear-cut advantage over the 

conventional "vote-counting" approach of scaling the co-occurence matrix (7 . 1 )  (see figure 

U .3 .2 in Coxon and Jones [ 1 979b ]). I collected data to test for any difference. 

Stimuli were 1 6  sample swatches of Dulux® housepaint, selected to cover the widest possible 

range in hue and saturation, while minimising the variation in brightness. The selection was 
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Figure 7.4 (a) 
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MLE reconstructed-dyad analysis for occupational-title H-sorts (M = 1 03), using Link HCA 
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necessarily a compromise between these incompatible goals; brightness could be kept only 

approximately constant, while parts of the colour circle were not represented (there is a lack 

of vivid orange and violet housepaints). All swatches were of size 35 mm by 70 mm. 

Numbers for these colours are arbitrary, but are listed with their Munsell notations in Table 

7. 1 .  Figure 7 .5(a) gives approximate locations for the stimuli in the (Hue,Chroma) colour 

plane. 

The H-sorts from 9 subjects, in the Coxon-Jones format, are listed in Table 7.2. Barraclough 

collected a further I 0 H-sorts, making a total of 1 9  subjects, (6 F, I 3  M). Their data were 

analysed by this Method of Reconstructed Dyads, producing 7.5(c). Figure 7.5(b) is the result 

of applying the "vote-counting" procedure to the same data: a plethora of high 8iJ values 

results in a circumplex solution, with the unsaturated tans, pinks and beiges (included among 

the stimuli to ensure that the true configuration is not a circumplex) flung to peripheral 

positions as if  by centrifugal force. 

Table 7. 1 .  
Munsell 
7 .5Y 9. I I 6.2 
3 .0R 7.3 I 8.2 
1 .8PB 7. 1 I 5.8 
4 .4GY7.4 I 5 . 1 

.\': 2.2Y 8.4 I 6.6 
2.0R 6.0 I 5 .3 
5.8G 6. 1 I 2.2 
9.2YR6.7  I 2.6 

Munsell 
9.2YR 7.0 I 6.2 
5 .5RP 6 . 1  I 3 . 3  

�,,;;;,:,;,..,:;,:;,:,:,,:l 5.  8G 7. 0 I 5. 5 
4. I R  7 .0 1 2.3 

Munsell 
9.0R 7.4 I 7.2 
5 .9PB 6.4 I 3 . 5  
O. I G  7.8 I 6.0 
9.38 6.8 I 1 .3 

Table 7.2 H-sorts from nine subjects for the colours (numbering them I to I 6) .  

In my next example, the true configuration is a circumplex. The D 1 5  test for colour 

perception uses two stimulus sets of 1 6  colour samples each. Within each set the saturation is 

constant (as is luminance), leaving only hue to vary. Thus the I 6  stimuli in each set are 
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Figure 7.5(a) 16  stimuli in the Munsell plane 
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(c) Reconstructed-dyad analysis for 19 H-Sorts of 1 6  colour stimuli (using MLE and the Link HCA) 
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arranged in a circle in colour space. Barraclough obtained a total of 3 7 hierarchical sorts of 

the two stimulus sets, many subjects sorting both sets. 

To an observer with normal colour vision, the stimuli are equally spaced around the 

appropriate (saturated or unsaturated) circle, far enough apart (compared to 1/r:) that the two 

stimuli closest to a given stimulus are its nearest neighbours in the circle: there is little chance 

that the nearest-but-one will be picked as "closest". This means, in practice, that in the course 

of hierarchically sorting the stimuli, a pile grows by merging with piles or single stimuli 

adjacent to it in the circle. 

For the purposes of scaling H-sort data, the configuration is effectively one-dimensional . 

There is only local information, relating to each element's  position relative to its two 
Pl"" oOaOi l l t� P4'1"" CQniOM I .Ot"' • 0. 1478 , ..., • 0.7!11 

immediate neighbours, with none 

of the global information which 

would be required to recover the 

circularity. The data could equally 

likely have come from a string of 

stimuli bent into an ell ipse or 

oblong. The outcome of applying 

MTRIAD to Barraclough' s D 1 5  

data, in two dimensions, is figure 

7 .6, resembling a dropped 

necklace. 

I' 

11 

I J  

Figure 7.6 

, 
1 2  

1 0  1 1  

Solution for D- 1 5  H-sort data (M = 37) 

This demonstrates that some configurations lend themselves to reconstruction more readily 

than others. As the number of close neighbour elements j, k, /, . . .  to i increases (such that 

• 

ld!i - d;kl < l lt, ld!i - dui < l lt, . . .  ), so does the number of distance comparisons involving i. 

Hierarchical sorting is sensitive to the positioning of landmarks within the perceptual space to 

be surveyed. 

As a preliminary test of whether individual variations are discernible on H-sort data, I 

imposed the known circular configuration on the H-sorts, by scaling them jointly with a 
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circulant d istance matrix (recall from Chapter 4 that when the configuration is  known in 

advance, less data are required to determine individual variations). In this situation the 

interesting aspect of the solution is  the extent that individuals disagree with it. Individual 

Likelihoods are listed as table 7.3 .  Subject initials are in upper-case, for H-sorts using the 

Saturated stimulus set, and lower-case for the Unsaturated set. Note the low Likelihoods for 

subjects JH, MR, JW, MM (i.e. jh, mr, jw), etc. ,  who have been diagnosed independently as 

colour-vis ion deficient (protanopic and deutanopic), and who sorted the stimuli in abnormal 

sequences. 

Table 7.3 Likelihoods for 37 H-sorts. 

0 .8222 
0.7283 

�: ::'·''\\?': 0 .  7869 
'::;: 0.6 1 82 

0 .4983 

Is there room for the INDSCAL or the Points-of-View models in the analysis of H-sorting? 

Before pursuing the question, I summarise some previous work on distinguishing individual 

differences between hierarchical groupings. 

Michon [ 1 972] compared the dendrograrns for a set of complex sounds (audible radar 

signals), from subjects before and after they were tutored in recognising the sounds, and from 

the tutors. The dendrograms were not obtained directly, but by applying a clustering 

algorithm to dissimilarity matrices (themselves estimated by vote-counting triadic data): there 

is no guarantee that the subjects would have H-sorted the stimuli in the same way. Michon 

interpreted these derived hierarchies as search trees for identifying sounds - each branch 

being a test in the identification, "Is this feature present or not?" - and compared them on a 

single, pre-determined criterion, balance. Balanced trees, which involve fewest branches or 

tests as they are traversed from the root to the twigs, correspond to more efficient searches. 

As he expected, Michon found that such trees characterise expert l isteners. 
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Several papers define "distance" functions (or spectra of functions) between dendrograrns 

[Boorman & Olivier, 1 973; Fowlkes & Mallows, 1 983] .  For dendrograms from M subj ects, 

the result is an M-by-M table of distances, suitable for MDS. This approach has much in 

common with the first stage of the Messick-Tucker points-of-view analysis: the construction 

and scaling of a matrix of correlations between subjects' configurations. The perceptual space 

remains unexplored, and cannot contribute to the interpretation of differences between the 

hierarchies. 

Coxon and Jones used this approach. They also performed in-depth analyses on the POOC 

H-sorts, examining each participant's sequence of merges in conjunction with a close 

semantic scrutiny of the interview transcript in order to determine the criteria or constructs 

used in each choice of groups to combine. This tour-de-force is time-consuming and does not 

generalise directly to other sets of elements. 

I note now that there is no barrier to incorporating the INDSCAL model in the Method of 

Reconstructed Dyads. As in Chapter 4, it is only necessary to define a separate distance 

matrix Dm for each subject, defined in terms of the individual dimensional weights (4. 1 ), to 

use in selecting the representative dyads ij(/,J). Thus there are different coefficients 8m.g.iJJJ in 

(7 .5). Also in (7 .6), Dm.JJ.KL = dm.ij(I,JJ - dm.Jcl (K.L)·  Finally, the factors (x;p - x1p)/dif are replaced 

with wmp (X;p - x1p)/dm,iJ• as in ( 4.5), and the calculation of 8Lm I Owmp proceeds as in ( 4.6). 

Figure 7.7 Two aberrant merging sequences for D- 1 5  stimuli, i l lustrating effect of dimensional weighting 
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Evidence for dimensional salience variations between subjects (elliptical rather than circular 

similarity contours) would be a tendency toward elongated groups during the intermediate 

stages of merging. Consider a situation where subject m must choose between combining 

piles I with J, or K with L, where duwJ = dkt(KLJ• but dm.U is reduced relative to dm,kl by a 

flattening of his or her perceptual space along some dimension, p; the likelihood increases of 

groups growing by accretion preferentially parallel to the p-th axis. 

However, the effect is small, and its appearance relies on the right configuration. Recall the 

finding that recovery of individual variations is reduced in sorting and incomplete ranking 

data [Rao & Katz, 1 97 1 ] .  

To be convinced that any wmp values recovered are meaningful, warranting the additional 

degrees of freedom, we need more than an increased Likelihood for the configuration. There 

are two other desiderata: 

(a) Non-arbitrary axes, i .e. loss of rotational symmetry. If the initial configuration is not 

aligned with the true axes, the process of maximising L should include a rotation to a better 

fit. If, alternatively, one can choose any set of dimensions and find subjects who arrange the 

stimuli into groups aligned roughly parallel with those axes, so that no set of axes is more 

appropriate than another, there is no justification for the INDSCAL model . 

(b) We look for convergent validity: when the same subjects provide dissimilarity data in a 

different form, scaling them should produce the same dimensions and the same weights. 

The POOC H-sorts satisfy (a). If rotated, the configuration finds its way back to the preferred 

axial orientation, albeit slowly. As for (b), within the available data pool there are regrettably 

no H-sorts and dissimilarity matrices from the same subjects. 

Partly to test whether the dimensional weights obtained from H-sorts and from assessed 

dissimilarities were comparable, Barraclough elicited data from 1 8  subjects, for 9 colours. 

The nature and the analysis of the dissimilarity ratings - resulting in the familiar colour 

circle, figure 6. 1 - were briefly discussed in Chapter 6. 
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I am not concerned with reconstructing the configuration from the H-sort data (which is j ust 

as well, since the small number of stimuli and their specific arrangement precluded doing so). 

Instead I analyse the two data sets together, so that the dissimilarity ratings hold X constant 

and L is maximised by altering the wmp only. 

The INDSCAL model is used to approximate 

the more accurate IDIOSCAL model. Figure 

7.8 shows the H-sort subject space. Subject 

points for nine subj ects who contributed both 

forms of data are indicated by upper-case 

initials for the H-sorts, and lower-case 

initials for dissimilarities (the eight subjects 

provid ing dissimilarities only, and the one 

providing an H-sort only, are indicated by 'x '  

and ' X ') . 

i 

i ;; 

Figure 7.8 

·..a. 
•< 

Subject space for nine colours 

"" 
JU 

Two subjects, 'JW' and ' WM', had colour-vision deficiencies which showed up despite the 

saturated colours and the large angular extent of the stimuli (squares, 3° across, in both parts 

of the experiment). Otherwise, for those nine subjects overall, the correlation between wmp as 

derived from their dissimilarity responses and from their H-sorts is only 0.674. 

Figure 7.9 Aberrant merging sequences for subjects JW and WM, superimposed on the true configuration. 
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I return at last to the D 1 5  stimuli. H-sorting them is a rather imprecise means of obtaining 

individual differences. For reasons already discussed, only obvious colour deficiencies are 

likely to show up, in the aberrant H-sorts produced when the configuration collapses to a 

near-l inear ellipse in the subj ect's colour space (the standard procedure for the D 1 5  stimuli is 

no more likely to discriminate fine variations in colour perception; this is not its goal). Figure 

4.9 was the result of applying the IDIOSCAL model to the D 1 5  H-sorts, as well as to data 

elicited with the standard D 1 5  procedure. Protanopes and deutanopes can be distinguished 

from judges with normal colour vision, and from each other. 

Kinship 

In this experiment, 1 1  subjects (4F, 7M) H-sorted a set of 15 kinship terms ("kincepts"), the 

targets of previous scaling studies [Burton & Nerlove, 1 976; Burton & Romney, 1 975 ; 

Fillenbaum & Rapoport, 1 97 1 ;  Jacobowitz, 1 974; Lopes & Oden, 1 980; Romney & 

D' Andrade, 1 964 ; Rosenberg & Kim, 1975). 

Table 7.4 1 5  kinship terms and their abbreviations. 

Grandfather 
Grandmother 
Grandson 

·::::�:�. Granddaughter 
son 
daughter 

Table 7.5 Kinship H-sorts from 1 1  subjects. 

uncle brother 
sister 
cousm 

These stimuli were printed in 36-pt lower-case Bookman, then pasted on strips of cardboard 

sized 3 cm by 1 3  cm. The instructions to subjects asked them to ignore these kincepts' 
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various degrees of  similarity to Self, and not to consider them as applied to their own family, 

or to any other families they knew, but to assess the similarity between various abstractions 

of "relative", free from context. More than any other study, this set ofemotionally-loaded 

stimuli raised suspicions in subjects' minds as to the purpose of the test, and frequent 

reassurances were required that there were no "right" or "wrong" responses, nor any intention 

of tracking down latent psychopaths. 

An aid to understanding multidimensional configurations is to portray them in the form of a 

dendrogram. Figure 7 . I  0 was obtained by applying a hierarchical clustering algorithm to the 

values of diJ reconstructed when P = 3 (assuming different dimensionality, or non-Euclidean 

space, would result in different distances). As with other forms of dissimilarity comparison 

data, there are no values of &iJ to cluster directly. Like the aggregate dendrograms which 

Fillenbaum and Rapoport extracted from their data [ 1 97 1 ,  Chapter 4, figures 3 - 7] , figure 

7. 1 0  is recognisable as the tree predicted by the Romney-D' Andrade componential analysis. 

See also Boorman and Olivier [ 1 973] who consider kinship dendrograms at length to 

i l lustrate their distance functions for tree-comparison. 

Figure 7. 1 0  Dendrogram reconstructed from 1 1  H-sorts by scaling them in three dimensions 

gf gm fa mo gs gd sn dr br sr au un np ne 

In agreement With the previous papers, the three dimensions are reciprocity, relative 

generation, and collaterality, in order of increasing salience. Carroll [ 1 976] interprets the 

"relative generation" dimension in other ways (such as "dependence", since grandparents, 

CS 
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children and grandchildren tend to be dependent on Self, economically and otherwise, more 

so than parents) .  

Many subjects began by pairing off the sexes - Mother with Father, Nephew with Niece, etc. 

Thus the distances between members of these pairs is small .  When a fourth dimensions is 

added to the scaling, in the belief that it would become a Sex dimension, some separation of 

stimuli did take place - the male kincepts displaced one way and the females ones the other ­

but this was not clear-cut. Structure which had not fitted into other dimensions overflowed 

into this fourth one, obscuring the separation, so that identifying the dimension as 'Sex' 

required some prior knowledge. 

Facial Expressions - Lightfoot series. 

The stimuli in this experiment were the Lightfoot series of photographs of facial expressions. 

Original proof-sheets from the Kirkland archives were re-photographed and enlarged to 

passport-photograph size (unavoidably losing some details such as fine facial l ines, which we 

expected would make identification of the expressions harder). Despite their antiquity, the 54 

Lightfoot stimuli were an ideal test of the reliability of H-sort data and the method of 

analysis, since as wel l  as the paper originally describing them [Engen, Levy & Schlosberg, 

1 958],  subsets have been scaled by Abelson and Sermat [ 1 962], Cliff and Young [ 1 968], 

Gladstones [ 1 962a, 1 962b] . 54 being too large a set, I selected 24 photographs: 

2,  4, 6 ,  7, 9, 1 3 , 1 5 , 1 6, 1 7, 1 8, 1 9, 20, 22, 24, 28, 29, 30, 3 1
' 32, 36, 3 7, 42, 46, 5 5  

This set maximises the overlap with the subsets used in the previous studies, t o  allow 

comparison between results. 

24 was still too many for the limited patience of unpaid subjects (even the author had 

difficulty H-sorting 1 8) .  Our solution was to shuffle the photographs into two sub-sets of 1 2, 

to be H-sorted separately. The subsets were selected randomly afresh for each subject. For i,j 

in different sub-sets, cm,if is treated as missing data. This does more than simplify the sorting 

task; it also ensures that each item appears in a variety of contexts, which ultimately has the 

effect that more of the dyads involving a given item undergo comparisons. What is good for 
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the "reconstructed dyad" analysis is bad for vote-counting. The varying contexts cause cm.iJ to 

vary (i.e. the stage at which two items first eo-occur is affected by the presence or absence of 

other items), leading to "noisy" eiJ values, obscuring the structure of the MDS solution. 

Table 7.6 Two H-sorts of 1 2  photographs from each of 1 2  subjects, plus one H-sort of 1 8  
photographs. 

( IO G 28 29/ (9 (8 (7 (6 32 1 5)6 55)7 ( (4 (3 24 9i 20)4 1 3)5 )8 ( 46 3 1 ) 1 )9 ) 1 0 1 6  
(6 (5 (4 (3 G C 1 1 7  7) 1 2)2 42)3 4)4 1 8/ 1 9)6 (1 (8 (7 3 6  37) 7 20)J (9 22 6)9) 1 0 
(9 (2 ( 1 9 3 7) 1 36)2 (7 1 7  (6 7 (3 28 24)3 )6 )7 } ( 1 ( 1 8  (4 55 42)4 )8 (5 1 9  3 1 )5 ) 1 0 
( 1 0 (5 2 ( 1 6 29) 1 / (8 (7 G 20 22)3 46)7 (2 30 1 3)� )� ) 1 0 (9 (6 4 1 5)\4 1 6 32)4 )9 
(8 (6 1 6  32)6 (5 4 G ( 1 1 5  1 8) 1 55)3 i )8 ( 1 0 (4 1 7  46)\9 (7 3 1  6)7 G 9  24)2 )9 ) 1 0 
( 1 0 (9 (6 20 ( 7 42)3 )6 (7 1 3  (5 30 37)5 )7 )9 (8 ( 1 22 36) 1 (4 28 G 2  29)2 )4 )8 ) 1 0 1 6  
(7 (6 20 1 9l( 1 9 29) 1 )7 ( 1 0 (9 (2 42 4)2 (4 1 5  32)4 )9 (8 (5 1 8  30)5 (3 2 3 1 )3 )8 ) 1 0 
C 1 0 (5 1 6  (4 1 7  55)4 i (9 (2 ( 1 7 36) 1 24)2 (7 37 (6 46 1 3)6 )7 )9 ) 1 0 (8 (3 28 22/ 6)8 
(3 1 5 1 8)3 ( 1 0 (8 ( 1 30 3 7) 1 1 3)8 (9 42 (7 (5 20 (4 9 36)4 )5 (6 46 (2 7 1 7)2 )6 )7 )9 ) 1 0 
( 1 0 (8 22 ( 1 6 29) 1 )8 (7 ( 2 3 1 )2 (s 28 24)5 )7 ) 1 0 (9 (6 32 1 6)6 (4 4 e 1 9  55)3 )4 )9 
(6 (5 4 1 9)5 ( 1 1 5 1 8) 1 /( 1 0 (2 37 42)2 (9 (3 30 9)3 (8 22 (7 46 (4 3 1 28)4 )7 )8 )9 ) 1 0 
(9 (4 G C2 1 3  24)2 1 7)3 2)\8 20 7)8 )9 (7 36 (1 6 29) 1 )7 (d5 55 1 6)5 32)6 
( 1 0 (7 G 2  20)3 (6 7 42)6 )7 (8 ( 1 22 29) 1 ( 6 28)2 )8 ) 1 0 (9 1 0  (5 4 (4 1 8  55)4 )5 )9 
C 1 0 (9 G 1 6  36/ (s 1 7  37)5 )9 (7 (2 1 3  30)� ( 1 1 5  32) 1 )7 ) 1 0 (8 (4 3 1  46)4 (6 9 24)6 )8 
(9 (8 20 (s 1 5  (2 1 6  32/ )5 )8 (7 7 (6 1 3  3 1 )6 )7 )9 ( 1 0 G 22 9)3 (4 29 ( 1 6 1 9) 1 )4 ) 1 0 
C 1 0 (9 24 G 36 3 7)3 )9 (7 28 (5 2 30)5 ) 7 ) 1 0 (8 42 (6 (4 46 1 7)4 (2 4 ( 1 5 5  1 8) 1 )2 )6 / 
( 1 0 (5 6 1 9)\9 (6 46 42)6 (4 1 3  ( 1 9 7) 1 )4 )9 ) 1 0 (8 32 (7 G 4  ( 1 5  1 8)2 i 55)7 )8 
1 6  C 1 o (8 C2 22 28)2 (5 (30 ( 1 36 37) 1 )5 )8 (9 (6 29 (3 2 3 1 /  /c7 20 (4 1 7  24)4 )7 )9 ) 1 0 
C 1 0 (9 (7 42 C2 4 55/ )7 (8 C 1 2 3 1 ) 1 ( 20 46)5 )8 )9 (6 29 (4 7 G 22 28i )4 )6 ) 1 0 1 6  
(9 (7 (6 1 3  1 7)6 (2 3 1  ( 1 1 5 1 8) 1 )2/(5 30 37)5 )9 ( 1 0 (8 36 (4 9 24)4 )8 (3 6 1 9)3 ) 1 0 
(6 (5 9 37)5 20)6 (9 (8 22 (7 24 3 1 )7 )8 6)9 (4 46 G G ( 1 1 5  55) 1 32)2 1 3)3 )4 
( 1 0 (6 7 36)6 (7 28 29)7 ) 1 0 (9 (5 42 (4 1 7  30)4 )\8 2 G 1 6  G ( 1 1 8  1 9) 1 4)2 )3 )8 )9 
6 (9 (8 1 6  (7 30  ( 1 4 1 7) 1 )7 )8 (4 42 G 1 9  55)1 )4 )9 (6 37 (5 3 1  G 9 24i )5 )6 
(9 G G 1 8  32)2 1 5)3 (6 (5 (4 7 46)4 ) 1 3  )5 36/ )9 ( 1 0 (8 20 22)8 (7 2 ( 1 28 29) 1 )7 ) 1 0 1 5  7 9 1 4 ( 1 4 1 6 (9 (7 32 1 8) 55)  ) . . .  

I 8 4 2 3 6 1 1  5 1 0 1 2 1 3 • • •  ( 1 3 (8 ( 1 3 1  2) 29) (1 2 ( 1 1 (4 1 3  20) (6 G G 46 1 7) 7) 9) ) C 1 0 37 (5 30  42) ) ) ) 

25 subjects undertook this double H-sort ( 1 3  for me, 1 2  for Barraclough). They were 

instructed to sort on the basis of similarity of emotion; and to ignore incidental features of the 

photographs, such as the varying sizes and contrasts of the prints, and the angles of the 

photographs. Stimuli 2 and 3 1 are different prints from the same negative (one slightly 

darker); I did not realise this when selecting the 24 stimuli, but the duplication has the 

advantage that the distances between x2 and x3 1 give some indication of the experimental error 
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Figure 7. 1 1  Three-dimensional configuration for 24 Lightfoot expressions (M = 5 1 ) 
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in the reconstructed configuration. 23 of the subjects also provided F-sorts for the complete 

set of 24 stimuli .  

The results are in unexpectedly close agreement with Engen et al. Three dimensions for the 

solution were meaningful (figure 7. 1 1 ). The effect of applying the INDSCAL model is that 

the configuration rotates (albeit slowly) to align these dimensions with the axes of the 

diagram. 

On first glance, the three-dimensional positions for the items agreed with triadic results for 1 0  

items [Gladstones, 1 962a, figures 3 ,  4]; closer examination showed high correlation with the 

three scales (Pleasantness-Unpleasantness, Attention-Rejection, Tension-Sleep) postulated by 

Engen et al. These scales are indicated in the figure (I incorporated the scale ratings in the 

configuration using the vector model and the Property-Fitting approach described in Chapter 

6). The first dimension of the solution can be identified with the P-U scale. Following 

Osgood's [ 1 966] analysis of cross-modal data (verbal identifications of 40 posed emotions), I 

tentatively identify the second as an Activation or Arousal or Intensity dimension. 

The solution includes sequences of stimulus points with similar values on the Pleasantness 

and Activation axes, separated along the third axis: 37-30-42, 22-28, 4-32- 1 6, 1 3- 1 7-46, 9-20. 

The general impression from inspecting the corresponding expressions is that the 

distinguishing factor in these sequences is an increasing sense of spontaneity (Osgood 

suggests 'Control'  for a third dimension, to discriminate, for instance, loathing, rage, and 

horror). This is not to rule out other labels. Gladstones suggests 'Expressionless-Mobile' ,  and 

(rather despairingly), 'difficulty of interpretation' , "[ . . .  ] with expressions at one extreme 

which are difficult to interpret, and at the other extreme, stereotyped expressions which no 

one from a given culture would be likely to misunderstand" [Gladstones, 1 962a, p.99] . If the 

object of the exercise had been to identify the dimensions beyond doubt, rather than a 

comparison of the "reconstructed dyads" analysis against earlier results derived from different 

forms of data, it would be easy to incorporate more stimuli in the configuration (it is a moot 

point whether the Lightfoot series is sufficiently representative of the range of normal, 

spontaneous facial expressiveness to make such an exercise worthwhile). 

1 49 



Clearly the A-R and S-T scales are not orthogonal (again, replicating Gladstones' results), but 

this does not justify conflating them to a single axis. It seems more reasonable to argue that 

both scales are l inear combinations of two underlying dimensions. The matrix of dissimilarity 

ratings obtained for 1 3  Lightfoot photographs by Abelson and Sermat [ 1 962] have generally 

been cited as two-dimensional [Borg & Lingoes, 1 987; Shepard, 1 962] . However, when I 

scaled those data in three dimensions, the positions on the third dimension for 1 1  items (the 

extent of the overlap between their stimulus set and the ones scaled in this work) showed a 

good degree of  agreement with the H-sort analysis third dimension, the correlation being 

0.784. This convergence suggests that the third dimension in both cases is genuine. 

A final contribution to the identification of the axes comes from Cliff and Young [ 1 968], who 

obtained ratings for "Intensity" for 1 3  Lightfoot photographs. Ten of the items they used also 

feature in this work's stimulus set, enough of an overlap to allow me to fit an "Intensity" 

vector to the configuration (again, using the joint scaling approach). It lay very nearly half­

way between the vectors fitted to the A-R and S-T ratings from Engen et al. 

A separate analysis of the F-sort data, using the Reconstructed Dyads method in a generalised 

form, discussed below, yields a similar solution: see figure 7. 1 2. 

Figure 7. 1 2  Configuration for Lightfoot expressions derived from M =  23 F-sorts 
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1-Feel Faces. 

Again, in this experiment the stimuli were photographs of facial expresssions, the faces being 

those of infants and young children. The 30 photographs come from the "I-FEEL" projective 

test distributed by the University of Colorado Health Services Center. When they are used as 

the test' s  designers intended, a subject describes the emotions displayed in each face; these 

descriptions are tabulated, and compared against base-line descriptions, to see if the subject is 

projecting undue amounts of happiness, sadness, anger, etc. onto the faces. Instead, 

Barraclough asked 20 subjects to H-sort them. For each subject, the stimuli were shuffled and 

split into two, each subset of 1 5  being H-sorted separately, resulting in 40 data sets. Barra­

clough also elicited F-sort data (using the complete set of 30 stimuli) from the same subjects. 

I scaled the data in two and three dimensions. It is not certain whether young children 

actually experience three dimensions of emotion [Osgood, 1 966), but this is not germane to 

the sorting, or indeed to the original I-Feel test, since what is at issue is the dimensionality of 

the emotions which subjects are projecting onto the stimuli . . . animal faces, or cars, or urban 

environments [Russell & Pratt, 1 980] would presumably serve equally well. 

A three-dimensional scaling, combining the two sets of data, leaves the first two dimensions 

more-or-less unchanged. At this point, the third dimension sti ll awaits a satisfactory 

interpretation, and I will say no more about it. 

There were no significant differences when I scaled the F-sort and H-sort data separately, and 

combinged, they produce the two-dimensional solution Figure 7. 1 3(a). Comparison with 

figure 6.7 (derived independently, by scaling the 1-Feel documentation's matrix of baseline 

emotion-attribution rates, treating it as cross-modal data) reveals a high level of agreement, 

apart from the overall curvature of the sorting configuration. The axes can be interpreted as a 

Pleasantness-Unpleasantness dimension, running horizontally from the joyful expressions of 

1 0 1 ,  1 04, 1 06 and 1 24 across to 1 02, 1 1 7, 1 1 9 ,  faces on the verge of tears or screams, if the 

photographs are any guide. There is a second Activation I Arousal dimension, running 

vertically from a sleeping child ( 122), up past the "Interest" label, to the surprised expressions 
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Figure 7. 1 3(a). Configuration for the I-FEEL stimuli, combining H-sort and F-sort data (M = 40) 
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of 1 08 and 1 1 4. Given the compatibility of the sorting and H-sort responses with the emotion 

attribution data, I combined them, resulting in figure 7 . 1 3 ( c). 

Wood blocks. 

A jump from the most recent to the earliest H-sort data I processed. I am indebted to the 

1 994- 1 995 work of Barraclough for all of the data analysed in this section. Barraclough 

performed three series of H -sorts, using blocks of Paulownia wood, or photographs of blocks 

(as well as el iciting preference data for the same stimuli. A preliminary scaling of the 

preferences was shown in the previous chapter). The woodblocks, the photographs, and scale 

ratings for them were all provided by Bruce Glass of the Forest Research Institute. 

Series 1 compared two versions of the hierarchical scaling procedure. To distinguish these, I 

call them Synthetic and Analytic H-sorting. The former has already been described. Groups 

are combined into larger groups in a process beginning with N groups of a single stimulus 

each and ends with a single group of N stimuli. The reverse process is Analytic H-sorting. A 

deck of N stimulus cards (or blocks) is presented to the subject, who is asked to separate them 

into 2 piles (of any size) comprising stimuli which "go together". Subsequent steps are to 

sub-divide either pile into two, continuing this until there are N single-stimulus piles. 

I argue that this second version of H-sort can be treated in the same way as the first. At each 

step, the "distance" between piles should be greater than "distances" between stimuli within a 

given pile (distances in both cases being calculated with the help of an HCA). An economical 

use of the clustering algorithm is to view the stages of the successive sub-division in reverse 

time-order, i .e. as a Synthetic H-sort, calculating the Stress or Likelihood as before. 

The earlier representations for H-sorts suffice to describe the Analytic version, so long as it i s  

understood that time flows in  the opposite direction, from the root of  a dendrogram toward to  

twigs. 

1 4  subj ects sorted the 1 2  woodblocks with the Synthetic hierarchical procedure, and 1 4  with 

the Analytic procedure. The belief that the two procedures are equivalent was supported by 
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the results of processing the two data sets separately. The two configurations were very 

similar - closer to each other (and to the preference data solution) than either was to the 

configuration produced by vote-counting that data-set. 

I therefore combined the data set for a single configuration, figure W.3 . In this the 

INDSCAL model is used. There is no evidence that the first and second 1 4  subjects 

(Synthetic and Analytic procedures) come from different populations: their respective spreads 

in subject space overlap. Figure W.2 illustrates two dimensions of the vote-counted result 

when the 28 data sets are combined. It is broadly similar but stimuli are clumped, obscuring 

much detail. 

Barraclough finds the Analytic H-sort more convenient, and in light of its equivalence, has 

subsequently used it exclusively. This covers the data sets for the 0 1 5 ,  the I-Feel , and the 

9-colour elements. Some Dulux and half the Lightfoot data sets were obtained with the 

Analytic version; for the remainder I used the Synthetic version. 

In a second series, Barraclough compared H -sorts of photographs of the wood blocks with the 

ones already obtained using the blocks themselves. 1 2  subjects sorted the photographs. Apart 

from the possibility of a lower average salience for the third dimension (colour), the 

configuration was not significantly different from figure W.3 (using "significant" in an 

informal sense). Photographs appear to be sorted in the same sequence as blocks. 

A joint analysis of the data from these 1 2  subjects, pooled with the previous 28, plus the 40 

preference rankings, was the source of figure W.5. 

Glancing between this configuration, and the actual items, made it clear that the first 

dimension had something to do with grain spacing. At one extreme are blocks like 16 and 1 4  

which are "quarter-sawn" so that the broad faces cut at right angles across growth rings, 

which show up as regular and most finely spaced. Spacing increases steadily along the axis to 

the widely-spaced growth rings of "plain-sawn" blocks (where they are parallel to the broad 

faces, revealing irregularity or "waviness"). 
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The cluster (32, 36, 3 7) turn out, on inspection, to be marred by knots (marred in the 

assessment of most subjects, that is, but a minority preferred them to unknotted blocks). The 

second dimension, then, serves to separate blocks with knots from those without. 

More formal identification of the dimensions is made possible by additional data in the form 

of ratings of the blocks, by 1 3  judges varying in their level of expertise, on a number of 

scales. I incorporate them in the joint analysis (averaging the ratings of 7 expert judges, and 

abandoning the scales which exhibit low correlations - the grain features they measure 

presumably contribute too l ittle to dissimilarity in "wood space" to show up as dimensions). 

As discussed in Chapter 6, the result is a set of vectors, Y, aligned so that the projections of 

the stimuli onto the vector Yo for the o-th scale (i.e. the scalar products X; · y0) have the 

maximal rank correlation with the corresponding scale ratings. 

Figure W.S was constructed using H-sorts, preferences, and scales. The axes are as follows: 

* Dimension 1 .  

* Dimension 2. 

* Dimension 3 .  

Grain angle and straightness; uniformity 

Defects; colour tones (black) 

Colour (shade); colour tones (brown) 

There were 1 2  additional items which had been rated on the scales but not involved in 

dissimilarity comparisons. Figure W.4 incorporates these items in the map: their positions are 

predicted purely on the basis of scale ratings. Barraclough set out to incorporate these extra 

items in wood space, adding to its rigidity, using the third series of H-sorts. These were 

conducted with photographs and Analytic H-sorting. Each H-sort used only 1 2  items (as with 

the expressions, 24 proved to be impractical). Some subjects sorted the additional set only, 

while for other subjects the old and new photographs together were divided randomly into 

two sets of 1 2, to be sorted separately. These data are scaled in figure W.5, verifying the 

predicted positions. 
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F -Sorting data. 

When a subject sorts stimuli into groups, the algorithm he or she is following remains 

unknown and unobservable, but we are now in a position to propose a relatively tractable 

model for it. I agree with Takane [ 1980] that some kind of hypothesis about the process 

producing the sorts is a pre-requisite for calculating how likely it is that a given configuration 

produced them, and for constructing the best configuration. 

Comparing procedures for large element sets, Rao and Katz [ 1 97 1 ]  consider a hybrid form of 

data (calling it "hierarchical subjective clustering"). This hints at the solution. Stoop [ 1 986] 

asked 460 subjects to sort 1 8  social services into groups on the basis of similarity, then to 

merge those groups progressively until one group contained all the services. Sherman [ 1 972] 

applied a similar procedure to adjectives. The result is an incomplete hierarchical sort, where 

the twigs and higher branches or the sorting tree (earlier stages of the merging sequence) are 

unknown. A final example of an incomplete hierarchical sort appears in Shweder [ 1 972], 

where the subjects were 25 temple priests of Oriya, India, and the 81 stimuli they sorted were 

personality descriptors. A different form of incomplete H-sort, this time missing the later 

stages of merging (lower dendrogram branches) occurs when subjects are unwilling or unable 

to combine the last few groups, on the grounds of their extreme dissimilarity. There are cases 

of this in the Kinship and Lightfoot data. 

Figure 7. 14  Two forms of  incomplete hierarchical sort 
r---------------------------------� 

a b c d e f g a b c d e f g 

1 56 



Without the subsequent mergings, Stoop's similar-service groups would be a slice through 

the dendrogram at a single height. This is my suggested interpretation for unconstrained 

sorting data: that they are incomplete hierarchical sorts. I envisage each subject grouping the 

stimuli according to an (unknown) hierarchical clustering algorithm, stopping at some stage 

to provide the experimenter with a snapshot of the merging sequence. The experimenter may 

elect to take the snapshot at a particular stage by specifying the number of groups in advance. 

More complete forms of data are possible. For example, the subject's task might be to sort the 

stimuli into 1 3  groups; then to merge those groups until 8 remain; then to merge those 8 into 

5; thereby capturing a series of slices through the subject's dendrograms.  Alternatively, Clark 

[ 1 968] asked subjects to sort stimuli (prepositions) into an unspecified number of groups, 

then to divide each group into sub-groups, thereby providing two snapshots of an Analytic 

hierarchical sort. Multiple sorts feature in Russell ( 1 980], Russell and Bullock ( 1 985,  1 986], 

Ward ( 1 977]. 

With groups growing by accretion or combination during the early, unobserved stages of a H­

sort, there is  no reason to expect them to be compact at the point it terminates. Stimuli i and j 

can belong to the same group, without being particularly similar, so long as there are stimuli 

located between them, providing a chain of high similarities. I am reminded of Wittgenstein' s 

"family resemblance" account of how general concepts relate to the range of specific objects 

they encompass (he rejected the notion of a Platonic ideal which all specific instances must 

approximate).
2 

Note also Vygotsky's concept of "proximal development". 

This was the model Rao and Katz used [ 1 97 1 ]  used, simulating the sorting data for their 

comparison by interrupting a hierarchical clustering (Maximum HCA) of items. 

2 "Look for example at board-games, with their multifarious relationships. Now pass to card­
games; here you find many correspondences with the first group but many common features 
drop out. When we next pass to ball-games, much that is common is retained, but much is 
lost. - Are they all 'amusing '? Compare chess with noughts and crosses. Or is there always 
winning and losing, or competition between players? Think of patience. [ . .  ] We see a 
complicated network of similarities overlapping and criss-crossing: sometimes overall 
similarities, sometimes similarities in detail. " Ludwig Wittgenstein, Philosphical 
Investigations. 
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The treatment described so far for H-sorts has no difficulty accommodating incomplete data. 

If the exact sequence of group mergings which led up to a given partition of the stimuli is 

unknown, the HCA allows us to reconstruct it. For the sake of concreteness, suppose that 

subject m partitions the N stimuli into G(m) groups, 

which can be expressed as a co-occurence matrix Cm : 

cm.iJ = (i if i.j E h for some h E  p (m) t 0 if i E h , j  E I1 for k :t:- 1. 

Interpreting this as distance comparisons in order to calculate J(.J + I )  depends on interpolating 

N - G(m) merging steps from x<t). Constraints are imposed on that interpolation by p .  Each 

interpolated partition is SQ g = { Ig, J >  Ig,2, . . .  Ig.N-g } where 0 :5 g < G(m), and the transition from 

p g to p g+ l is interpolated by finding groups I,J E p g such that du is minimal, and cm.iJ = I for 

the limiting dyad ij(l,J) - i.e. the transition must be compatible with p .  g such merging steps 

result in p .  At each g, du should be less than dKL for all pairs K,L E p g which the data insist 

must go unmerged, i .e. cm.kl = 0 for kl(K,L). There is a contribution to Stress for any situations 

involving I,J,K,L, where dKL < du but K and L are prevented from merging by the data. 

With the missing p g interpolated, specifying I, J, K, and L, Stress and Likelihood and their 

derivatives can be calculated as before. A clustering algorithm must be assumed: in what 

follows, the Link HCA is used. Analysis of sorting data can be expected to provide higher 

Likelihoods (and lower Stresses) than H-sort data, since in the former, I and J are chosen out 

of the available alternatives in order to minimise du, whereas in H-sorts they are provided by 

the subject, increasing the chances of encountering rank-order violations of the form dKL < du. 

Note that if a subject has provided no data at all - only the final stage of merging is observed, 

the s ingle group of N stimuli - then the HCA proceeds to interpolate earlier stages, 

untrammelled by data, and produces a zero-Stress dendrogram in complete agreement with 

the configuration. We have already encountered this situation, in the treatment ofH-sort data, 

when I considered the question of constructing an average dendrogram for comparison with 

outside data (e.g. kincepts). 
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More general forms of this model lead to the same result. The assumption that the subjects 

have followed a HCA is not essential : it is merely a way of stressing the similarity of the H­

sort method. A much weaker assumption is that the subject starts with a threshold 

dissimilarity I>m, and proceeds to look for dyads (i,j) such that ()!i < I>m, merging the groups I 

and J to which i and} belong, not necessarily merging the closer dyads first. Let this continue 

until i and} are grouped together for all ()ii < I>  m. The final composition of the groups, and the 

Stress, are not affected by the order of merging. 

If one imagines I> m starting small, so that each item is in a pile of its own, then progressively 

increased, this is an alternative model for the H-sort method; it results in the same series of 

slices through the dendrogram. However, these simpler models do not generalise to the 

Diameter HCA. 

We have already seen results for the Lightfoot and 1-Feel sets of expression stimuli, which 

displayed an encouraging resemblance to independent maps of expression space. Thanks to 

the generosity of other researchers, I can now apply this approach to several sets of 

previously-analysed data. 

Occupations 

In addition to the triads for 1 3  occupational titles, and the H-sorts and pairwise dissimilarities 

for 1 6, the POOC database includes sorting data from 3 1  subjects for an enlarged set of 32 

titles (seven titles recur in all these sets, so they can be thought of as subsets of a s ingle set of 

39 stimuli). I applied MTRIAD to the 32-occupation sorting data. However, there is no out­

side basis for deciding whether the MTRIAD results are better or worse than vote-counting. 

There is a second set of sorting data in the POOC files. 65 subjects sorted 50 predicates 

relating to occupations: simple statements such as "They work very long hours" and "They 

have a boring repetitive job" (these statements and abbreviations for them are listed in Table 

7.7). The statements are general ones, to be grouped according to their similarities in their 

own right, independently of  whatever specific jobs they might be applied to. 
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Table 7 .7 

Abbreviations 

strike 
2 hours 
3 manage 
4 clock-w 
5 s-emp 
6 phys 
7 serve 
8 c losed 
9 appr 
1 0  1rreg 
1 1  a cad 
1 2  switch 
1 3  otime l 
1 4  sons 
1 5  perks 
1 6  most 
1 7  otime2 
1 8  casual 
1 9  tu 
20 day off 
2 1  any 
22 wkends 
23 men 
24 paywk 
25 clock in 
26 30+ 
27 prof 
28 train 
29 help 
30 boring 
3 1  month 
32 money 
33 status 
34 fees 
35  move 
36 various 
37 cty 
38  young 
39 hour 
40 people 
4 1  spec 
42 educ 
43 esse 
44 n-train 
45 later 
46 30-
47 fit 
48 secure 
49 exam 
50 solidy 

Occupational predicate descriptions used in POOC sorting task (modified from 
Coxon and Jones ( 1 978], Table 2.2, pp. 1 6- 1 7) 

Statements about occupations 

They would receive very little publ ic support if they went on strike 
They work very long hours 
They are involved in managing people as part of their work 
They spend a lot of time at work clock-watch ing 
They are often self-employed 
They have mainly physical skills 
They provide a service to the community 
They have their job organised as a closed shop 
They have served their apprenticeship to become tradesmen 
They have irregu lar hours 
They have to have a h igh standard of academic education 
They often switch their jobs 
They earn a lot of their salary by working overtime 
They often encourage their sons to go into the same work as themselves 
They have a lot of fringe benefits and ' perks' in their job 
Most people have thought of being one at some time in their l ives 
They get paid overtime for work they do out of normal hours 
They usually do their work dressed in ordinary casual clothes 
They have a strong trade union 
They often take the day off from work 
Anyone with average inte l l igence could do the work for which they are paid 
They often work at weekends 
They are almost always men 
They are paid by the week 
They have to clock in and out of work with a time-card 
Y ou expect them to be over 30 years old 
They regard themselves as professionals 
They have to undertake a long arduous training for their job 
They are involved in helping other people 
They have a boring repetitive job 
They are paid by the month 
They earn a great deal of money 
They have a high social standing in the community 
They are not paid regularly, but earn fees for what they do 
They often move into some other l ine of work after a few years 
They have often had experience of working in various l ines of work 
They tend to be active in the affairs of their local community 
They earn a lot when young, but their incomes don't rise much after that 
They are paid by the hour 
They build up relationships with other people as part of their work 
They work in a very specialised field 
They are required to have high educational qualifications 
Society could not continue to exist without them 
No special training is required to be one 
They do not earn much at first, but do have high incomes later on 
They are mostly younger than 30 
They have to be physically fit to do their job 
They have a secure job 
They have to pass difficult examinations 
They have a tradition of solidarity with each other 
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Informants used more complex criteria to group these stimuli than in the case of the 

occupation titles. Coxon and Jones note [ 1 978, p.53]  that only 8% of subjects claimed to have 

based their groupings on one-dimensional rankings, as opposed to 3 1 %  for the occupation 

titles. By this consideration, the vote-count solution for the sorts is inadequate. Whether 

scaled in two dimensions (figure 7. 1 5) or three, the descriptions are basically polarised along 

a single axis. There is a cluster of descriptions relating to high status and level of skill, and 

another of low status and skill. Closer examination reveals finer structure along the second 

dimension (Coxon & Jones, 1 978, p. 52, figure 2. 1 0), but the central gap along the first 

dimension remains unbridged. 

Figure 7. 1 5  Vote-count solution for occupational attributes F-sort 
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As it happens, independent evidence is available. Coxon and Jones [ 1 978] conducted a pilot 

study using the 'sentence frame' method. 47 sociology students assessed how well each of the 

50 statements described each of 20 occupations (these 20 being the 16  from the H-sort 

stimulus set, with four added). The assessment could be • Always' (Statement i is always true 

of occupation o ), 'Sometimes' and 'Never'. 

Table 5 .2 of Coxon and Jones [ 1 978, pp. 14 1 - 1 42] is a 50-by-20 matrix listing the percentage 

of students who answered 'always' for each description-title pair. These are cross-modal data, 

best treated as a sub-matrix of a 70-by-70 matrix of proximi ties. Given their incomplete 

nature, not much should be read into figure 7. 1 6(a), the result of scaling these data in two 
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dimensions. But both the overall distribution and the individual positions ofthe descriptions 

have much in common with figure 7. 1 6(b), which comes from applying the reconstructed­

dyad method to the sorting data. 

For once, we have a situation where a circular arrangement of points around a central void is 

plausible, since using statements for stimuli restricts their distribution in 'occupation space' .  

They were selected to specify how a job can stand, how it differs from the average, so  the 

central, neutral, non-committal region of the map should be sparsely occupied. To the extent 

that they focus on occupational qualities, the descriptions should form a circle. 

Figure 7 . 1 6(b) is a classic example of Guttman' s circumplex, not only in its shape, but in the 

sequence of the descriptions around it. Any given nexus or combination of descriptions is 

linked to any other by a continuous, gradual shading of meaning, continuing in a complete 

circle. Any starting point is as good as another. Arbitrarily beginning in the upper right 

quadrant, one finds a small cluster of characteristics of what one might broadly call "social­

work" jobs, e.g. 'They are involved in helping other people' .  From there, through 'They build 

up relationships with other people as part of their job', one comes to managerial 

characteristics ('They are involved in managing people as part of their work'), then security 

and status ( 'They have a high social standing in the community'), which are characteristics 

shared with the 'professions ' .  The professions are singled out by the next descriptions ­

specialisation ( 'They work in a very specialised field')  and training ( 'They have to undertake 

a long arduous training for their job' ) . This is quarter of the way around the circle from the 

starting point, and these characteristics are at right angles, as it were, to those originally 

encountered. 

Following these l inked, overlapping qualities further (in less detail), halfway around the 

circle there are descriptions which emphasise physical fitness and physical skills instead of 

social ones. Still further, diametrically opposite the 'professional' descriptions, are ones 

pertaining to low status, non-specialisation ('Anyone with average intelligence could do the 

job for which they are paid'), and lack of training ( 'No special training is required to be one'). 

And so on, with opposite characteristics being diametrically opposite, back to the upper right 

quadrant. 
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Figure 7. 16  
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Power Strategies (data courtesy of Willem van der Kloot). 

The stimuli in this study were 1 6  strategies, described in Dutch, for getting one's own way. 

The English translations are ( I )  to manipulate, (2) to hint, (3) to put someone in a good mood, 

(4) to deceive, (5) to look sincere, (6) to evade, (7) to threaten, (8) to pose afait accompli, (9) 

to assert, ( 1 0) to persist, ( 1 1 )  to state simply, ( 1 2) to claim expertise, ( 1 3) to reason, ( 1 4) to 

compromise, ( 1 5) to bargain, and ( 1 6) to persuade. These were sorted by 25 subjects [van der 

Kloot & van Herk, 199 1 ] . 

A two-dimensional solution is the result, figure 7. 1 7(a). Two polarities stand out in the 

configuration, between Cooperative strategies ('compromise' ,  'bargain') and Coercive ones 

( 'threaten'), and between Overt strategies (' state' ,  ' reason') and Covert, Machiavellian ones 

( 'evade' ,  ' look sincere'). These provide possible interpretations for the axes. 

V an der Kloot and van Herk also collected pairwise dissimilarity ratings from the same 

subjects for the same stimuli, providing an opportunity for a direct comparison between 

solutions. The configuration for the dissimilarities is not a circumplex: figure 7. 1 7(b) (see 

also their figure 8, p. 576). Like figure 7. 1 7(a), it includes stimuli in the central region. 

Kinship 

Rosenberg and Kim [ 1 975] elicited sorting data from 340 subjects for the 1 5  kinship terms 

already considered. Three of the anticipated four dimensions are present in their analysis, but 

fine gradations are lost. Their solution consists basically of an equilateral triangle of three 

clusters (nuclear family, grandparents and grandchildren, and the collateral relatives: Aunt, 

Nephew, Cousin, etc.), further subdivided on the Sex dimension, to form six clusters located 

at the corners of a triangular prism. Thus there is a "relative generation" dimension, which 

fails however to separate Brother and Sister (same generation as Self) from parents and 

children, or Cousin from the other collaterals. Fine gradations are missing. 

This appears to be an artifact of their analytical method rather than a feature of the data. The 

groups created by 85 subjects (the female, single-sort fraction of the total subject population) 
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Figure 7. 1 7  
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were published [Rosenberg, 1 982, Table 7. 1 ,  pp. 1 2 1 - 1 23] .  Presumably this is the same list of 

85 sortings which Carroll [ 1 976] analysed using non-spatial and hybrid models. The 

published list contains a number of respondents who separated siblings from parents and 

children, and Cousin from other collaterals, and others who distinguished between three 

levels of collateral ity (direct ancestors I descendants; siblings; and Cousin, Aunt, Nephew, 

etc). However, these distinctions are only discernible in a subject-by-subject inspection of the 

groups: they are lost in the summed co-occurence matrix. 

S ince Rosenberg et al had not found the sub-population of 85 F-sorts to be significantly 

different from the other 255, I subjected them to MTRIAD. Figure 7. 1 8  shows the results. 

F iner gradations become apparent when the context of each subject's distinctions is thus 

preserved. Note that three dimensions are interpretable; the data contain "absolute 

generation" distinctions (subjects who distinguished parents from children, grandparents from 

grandchildren, Aunt from Niece), as well as the relative generation dimension, although vote­

counting obscures the former. Vote-counting also exaggerates the salience of the Sex 

dimension: of the 85 subjects, only five sorted the kincepts into a male and a female group 

(with Cousin separate). Another four partially sorted by Sex. 

Alternative models for sorting data: Scales 

The Rosenberg and Kim kincept data are not typical sorts. I suspect, after examining the data, 

that when the dimensions are as apparent and the stimuli spaced along them as regularly as in 

this case, then subjects may group stimuli together which share a value on some axis of their 

internal representations, rather than group them according to proximities. This is an 

alternative model for sorting data. If it applies, then essentially the groups are scale ratings 

(though in unknown order), suitable for processing with the stronger assumptions of 

Homogeneity analysis. Parallel hyperplanar slices through the configuration should separate 

each subject' s groups. Coxon and Jones were perhaps thinking along these lines when they 

prompted some of their sorting-task informants to arrange the piles of stimuli, having sorted 

them, in some kind of order. 
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Figure 7. 1 8  Three-dimensional solution to 85 F-sorts of kinship tenns (Rosenberg et al) 
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Alternative Models: Pick Any/N 

During the 1 970s, a number of studies of personality and trait attribution were conducted in 

which subjects grouped trait-descriptive words and phrases together so that the descriptors in 

a given pile were similar in the sense of all applying to a particular person (real or imagined). 

"Sorting by exemplar", this might be called. The distances between descriptor points play no 

part in the formation of the groups or the reconstruction of a configuration of them. Thus, the 

data should not be affected by the addition of a new descriptor to the stimulus set; there are 

no chains of linked stimuli, no chance for a newly-provided stimulus to combine groups by 

bridging the gap between them (these properties apply to the previous model as well). 

In some of these studies [Rosenberg & Sedlak, 1972; Wing & Nelson, 1 972], descriptors 

could appear in several groups, or in none. Such sets of data are not strictly sorting data, in 

the sense of exhaustive, exclusive partitions; they are covered by the pick any/N variant of the 

hub-and-spoke model. In Chapter 6 I interpreted such data as low-resolution proximities or 

vector products: the i-th descriptor either belongs to the o-th group, i.e. xi is close to the 

corresponding personality "ideal point" X0, or it is less close, and doesn't belong 

(alternatively, it lies far enough I not far enough out along the corresponding vector). dio is 

compared with some constant }:>.  

Other studies required that each descriptor be applied to one and only one personality 

[Friendly & Glucksberg, 1 970; Rosenberg, Nelson & Vivekananthan, 1968, Rosenberg & 

Olshan] . It is less clear how to model the scaling process in this case ( though one might start 

by arguing that it is still a hub-and-spoke situation, with the requirement of exclusiveness 

dividing "attribute space" into a Voronoi tessellation, the i-th descriptor belonging to the o-th 

group if and only if dio < diq for all other ideal points xq). 

This seems an appropriate place to mention Takane's program for the scaling of sorting data, 

MDSORT [Takane, 1 980, 1 98 l a] .  The underlying model is not spelled out, but the program 

works by minimising the distances, in each subject's sorting, from the centroid of each group 

to its constituent stimuli, i .e. by arranging points to maximise group compactness, summed 

over subjects. Takane observes that this can be considered as a special case of Coomb's 
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unfolding model . In effect this is a pick any/N analysis, treating group centroids as the ideal 

points. 

Alternative models: Stochastic 

A variant of the sorting procedure presents stimuli to the subject sequentially, in a 

randomised order. For each stimulus, the subject has the choice of starting a new group with 

it as the first member, or adding it to an existing pile, if it is close enough to any of them 

(only the former option exists when the first stimulus is presented). Hollins, Faldowski, Rao 

& Young [ 1 993] applied this variant procedure to tactile textures. 

Another example, arguably, is Struhsaker's observations of vervet monkey sleeping groups 

(published in Boorman & Arabie, 1973] .  One imagines the troupe of monkeys, one or two 

dozen of them, preparing to settle down for the night. The first to feel sleepy chooses itself a 

tree. One by one, each of the remaining monkeys must decide which sleeping group it prefers 

to join, or if it prefers none of them, it can initiate a new sleeping group in a tree of its own. 

Suppose we model the monkeys' preferences in terms of social distance. The distance 

between monkey i and sleeping group J could be defined_ as the minimum of the distances 

between i and the members of J: 

di.l = min d. 
j E J I) 

or alternatively, di.l = max d 
j E J I) 

when the monkey's  social distance is limited by the member of J it dislikes least. Write this 

as du, I being the group containing only i. In either case, there is some threshold value p: if 

du < p, for at least one J, then I merges with the group J for which du is minimal; otherwise, 

it remains separate (and the monkey starts a new sleeping group). 

These definitions of inter-group distances make it clear that this model of group formation 

has much in common with the interrupted hierarchical clustering model. However, groups can 

only merge if one or both are single items. Once created, two separate groups do not merge 

upon pres-entation of a new stimulus close to them both. For a constant distance matrix D, 

the final partition depends on the order of stimulus presentation: whether i andj are grouped 
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together depends on whether other stimuli were presented in the right order to build a bridge 

between them. 

Unfortunately this model cannot be applied to the two available data sets, Struhsaker's and 

that of Hollins et a!, because both consist only of the final partition of the elements into 

groups, not the sequence in which elements were presented. Knowing that sequence would 

remove much of the role of guesswork and reconstructed distances in reducing the sorts to the 

level of dyad comparisons. Instead, I resort to the interrupted hierarchical model, despite the 

differences pointed out in the previous paragraph, hoping that the effects of presentation order 

introduce only additional error, and not systematic distortions. 

In Hollins et a!, 1 9  subjects followed this procedure to sort 1 7  tactile texture (bark, tile, etc). 

The published configuration, derived from the co-occurence matrix, is three-dimensional, but 

two tight clusters account for the majority of the stimuli; the rest of the configuration is only 

sparsely occupied (figure 7. 1 9(a)). Subjects also rated the textures on five scales. Vector­

model scaling of these ratings on their own also indicates three dimensions, but with less 

bunching of the elements: see figure 7 . 1 9(b ). When the subject 's  sorts are analysed with 

MTRIAD (I am grateful to Faldowski and Hollins for access to their data), stimuli are spread 

more evenly through the three-dimensional result, figure 7 . 1 9( c). 

Alternative models :  Low-resolution Proximities 

This model interprets the sorts as low-resolution proximity data: the co-occurence matrix for 

each subject is assumed to be a table of dissimilarities, 

= ( 1 iU )m,ij < �m l 0 otherwise 

for some cut-off dissimilarity �m' which varies between subjects. In other words, cm.ii > cm.Jcl is 

interpreted as a comparison between dyads, (i,j) « (k, l). The matrices Cm can be analysed by 

INDSCAL to preserve dimensional weights [Rao & Katz, 1 97 1  ], but are more usually 

averaged to form a matrix E. This model is taken for granted by every study of sorting data in 

which MDS techniques are applied to E. Hojo [ 1 993] examined it explicitly and described a 
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Figure 7. 1 9  Configurations for 1 7  tactile stimuli .  (a) Vote-count solution 
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Stress-minimising technique: contributions to Stress come from clashes between 

reconstructed distances and the data of the form diJ < dkt despite cm.if > cm.kt· Not surprisingly, 

Hojo's  solutions are very close to those produced by standard treatment ofhis data. 

A commonly-cited precedent for using a co-occurence matrix as a substitute for pairwise 

comparisons is Ward [ 1 977] , in which the two forms of data were compared and their 

configurations found to be reasonably similar. Regrettably, the exact degree of similarity 

remains in doubt, since the paper does not display the configurations or put a figure to the 

correlation between them. Ward's data is no longer available; we cannot tell whether other 

forms of analysis would have worked better than applying MDS to E. 

Rosenberg [ 1 982] reviewed the comparisons between these kinds of data. As support for 

sorting co-occurences as a substitute for pairwise comparison, he cites unpublished masterate 

theses by Drasgow and Davison, and the spatial-sorting work of Brick er and Pruzansky 

[ 1 970] . 

Conversely, Sherman [ 1 972] followed Bricker and Pruzansky by eliciting pairwise 

comparisons and partial hierarchies for a set of20 trait-descriptive words. They differed 

dramatically. The configuration for the latter was degenerate, stimuli collapsing into one of 

two tight clusters. 

Paddick [ 1 978] used the sorting method on 1 8  odour stimuli .  The 3 subjects who sorted the 

odours had already rated them on a number of Semantic Differential scales, but despite their 

familiarity with the stimuli, there was little agreement between the three-dimensional 

configurations derived from the sorts and the Semantic Differentials. Only the first dimension 

of the former lent itself to interpretation. 

At the risk of boring the reader, I now recapitulate points already made about the flaws in the 

low-resolution proximity model. 

I have already noted that grouping i andj together when 8if < Pm results in the same partition 

that would be produced by applying the Link HCA, merging groups in sequence, closest first. 
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In other words, if cm.if = 1 ,  then hiJ < Pm• where hif is a 'hierarchical clustering metric' as 

defined by Johnson [ 1 967] (Johnson uses the symbol d(i,j), but that would invite confusion). 

This does not constrain f>if directly. A group I may include f>if > Pm (for Ill > 2) because shared 

membership is transitive: if f>;k < Pm• f>Jk < Pm• then i and k are grouped together, as are j and k, 

so i and j are necessarily in the same group whatever the value of f>if. I venture the statement 

that the larger 11], the more likely it is that the mean dissimilarity between members of I 
exceeds Pm; in fact, that on average, the mean dissimilarity between members of I increases 

with 11] . 

In the i llustration, the presence in stimulus 

space of elements a, b, etc increases the 

probability of q and r ending up in the same 

group, reducing the apparent eqr in 

comparison with esr This effect is not 

cancelled out by aggregating data from 

subjects using different Pm, nor is there 

reason to expect other forms of individual 

variation to eliminate it. 

Figure 7 .20 
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· C  · b  

• r 
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The second problem springs from the paucity of low-similarity information in sorting data: 

sufficiently dissimilar elements i and} might only be grouped together by one or two 

subjects. However, MDS on E does not allow for the larger statistical fluctuations when eif is 

small, and treats our ignorance about dif as spurious constraints. It is precisely those low 

values of e if in which we can have least confidence which MDS depends on the most. For 

examples of this second artifact, if more are needed, see the behaviours scaled in Burton 

[ 1 975] ;  a three-dimensional spherical shell of occupations [Burton, 1972]; or a circumplex of 

facial expressions showing mixed emotional states [Nummenmaa, 1990]. This "centrifugal 

effect" is also produced when applying vote-counting to incomplete H-sorts [Shweder, 1 972, 

shown in White, 1 978] .  Sometimes these two artifacts are present simultaneously and one 

sees a configuration where tight clusters of stimuli are spaced at intervals around a circle or 

on a sphere, to maximise their mutual separation. 
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In such a situation where the estimates of large diJ are noisy, lowest Stress values are obtained 

when the elements are arranged in a hyperspherical shell in the available dimensionality, 

maximising the distances between them in an approximation of the degenerate solution in 

which they are mutually equidistant and Stress drops to zero. The more dimensions the better 

the approximation. Characteristic of this effect is the absence of a sharp 'elbow' ,  indicating 

the optimal number of dimensions, in the plot of Stress against dimension. Russell [ 1 983] 

comments on this absence in two out of seven cases where non-English words for emotions 

were sorted. 

Rao and Katz observed spurious dimensions appearing in their MDS analysis of synthetic co­

occurence matrices. Many researchers found sorting co-occurences too noisy for MDS, 

demanding an implausible number of dimensions to bring the Stress down to acceptable 

levels, and confined themselves to clustering analysis [Jones & Ashmore, 1 973; Miller, 1 969; 

Reading, Everitt & Sledmere, 1 982]. 

My chief concern is that less cautious researchers will interpret a scaling solution, artifacts 

and all, and misinterpret artifacts as genuine features of the stimulus space (for instance, 

interpreting both dimensions of a horse-shoe created from a one-dimensional set of stimuli, 

such as the 22 pain descriptors scaled by Morley [ 1 989]). Note also that the similarity 

between MDS solutions (as in White's [ 1 978] cross-cultural comparison) is exaggerated by 

an artifact shared in common. 

Variant vote-count distance estimates 

Several researchers have suggested modifications to the way the co-occurence matrix is 

compiled, before scaling it. In all of these variations on vote-counting, the position of an 

element in stimulus space still affects the estimated distances between two elements nearby, 

which is undesirable, as Torgerson argued in his critique of vote-counting in the context of 

triads. 

Ward [ 1 977] proposed weighting the m-th sort's contribution to E by G(m), the number of 

groups the elements were sorted into. The fact that i andj have been sorted together is more 
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informative when there are more groups, because the opportunities to place them in different 

piles are greater (this is still treating group co-occurence as a form of low-resolution 

proximity data. Preferentially weighting the sorts with more and smaller groups is a way of 

placing higher emphasis on proximities obtained with smaller PnJ Russell and his colleagues 

have used this weighting scheme extensively. They also followed Ward by using a procedure 

in which subjects are asked to repeatedly sort the stimuli, with the numbers of groups set in 

advance. 

This is only a first approximation, which breaks down at extremes. To split N stimuli into N 

single-stimulus groups conveys no more information than lumping them into one pile. Burton 

[ 1 975] proposed a more sophisticated weighting scheme which modulates a sort 's  

contribution to the dissimilarities of dyads (i,j) ( i  andj grouped together) and (i,k) (i  and k in 

different groups): 

If subj ect m partitions the element set into p(m) = { 11 > h, . . .IG(m) }, the probabil ity of finding 

any two elements chosen at random in pile I is 

HI �  (�')/( �) 
and Qm = 1 - L H1 

I e (<� (m) 
is the probability that the random elements will be in different piles. Burton defines a distance 

estimate 

zi.J. = Lom.!i m 

if i = j 
if i,j E I 
if  i,j in different piles 

where C = 2 log2 {N! I (2 (N-2)! )  + 1 }  

Thus z!i takes into account both the number of groups and their sizes. Co-occurence of i and j 

in  a small group is less likely, and indicative of greater similarity, than if the group were 
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larger. This is reasonable, given the correlation I noted previously between I� and average d;.J 

(for i,j E [). 

Using occupations and behaviours as stimuli, Burton found that his weighted matrix Z 

produced more plausible reconstructions than the standard co-occurence E, though at the 

expense of higher Stress values. Burton also tried a third measure G to which larger groups 

contributed more than smaller groups; it produced the worst results of the three (in terms of 

forming tight clusters). 

Finally, there is a measure of dissimilarity which Rosenberg calls the delta transform (besides 

Rosenberg and his eo-workers, see Jones and Ashmore ( 1 973] ;  Jones, Sensenig and Ashmore 

( 1 978];  Paddick [ 1 978]). The transformed estimate of distance tP\j is a function of the 

averaged co-occurence matrix which takes into account indirect links between i andj (i .e. 

elements k which bridge i andj by frequently co-occuring with one or the other), as well as 

direct links: 

N 

("" 
2) 1 /2 = £.... ( e ik - e.Jk) 

k = l  

In effect this is treating rows of E as profile data (scale ratings), and computing Euclidean 

distances between them. 

Drasgow and Jones ( 1 979] proceeded from Monte Carlo experiments to the conclusion that 

the delta transform reduces Stress without improving the interpretability of dimensions. They 

also found the untransformed matrix to be more closely related to the underlying 

configuration than ll (2). This seems to be because the transform is non-monotonic, increasing 

large dissimilarities while small ones become smaller. The clusters which have a tendency to 

appear in co-occurence data, because of indirect links between elements, thus become tighter 

(reducing Stress in the process - recall that degenerate configurations are Stress-free). Van 

der Kloot and van Herk observed this unwanted clustering when they scaled both E and 

/l<2>(E) in their study [ 199 1 ]  of personality-trait adjectives and verbs of "getting one's  way", 

data we encountered above. 
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Incidentally, the Block-model method of cluster analysis [Breiger, Boorman & Arabie, 1 975;  

also McQuitty & Clark, 1 968] uses a similar transformation, with the express purpose of 

bunching elements together; a proximity matrix is replaced with the correlations between its 

columns, transforming the matrix iteratively until it is reduced to 1 s  and Os. 

Individual d ifferences 

One digression finishes and another begins immediately: this time on the subject of 

individual variations. Examining a representative specimen of sorting data, one is struck by 

the range of subjects' sorts. Can all the differences be attributed to random fluctuations of a 

mental map (shared by all subjects) of the stimuli - the kind of fluctuations required if sorting 

data are to be scaled at all? Or can they be traced to systematic differences between subjects? 

Differences could take the form of continua - the INDSCAL and Points-of-View models; 

another possibility is distinct sub-populations of subjects, each sub-population having their 

own (shared) mental map. 

Certainly the process I have described (reconstructing the map on the assumption that each 

sort is a slice through a clustering dendrogram) raises no barriers to fitting individual 

dimensional weights. But I do not expect such weights to be meaningful. There is simply not 

enough information in each sort, too few comparisons involving large dissimilarities. 

Applying the INDSCAL option of MTRIAD to the van der Kloot-van Herk data, the 

algorithm takes advantage of the additional degrees of freedom to increase the solution's 

Likelihood. But crucially, the axes of figure 7. 1 7  are arbitrary. One can rotate the solution 

through 45° and the program achieves a comparable increase in Likelihood by assigning a 

different set of dimensional sa1iences. Unlike the situation when processing H-sorts, there is 

no single optimal aligrunent for the program to rotate the solution to. 

In this example, independent values are available for the subjects' dimensional weights: each 

subject also assessed the dissimilarities between pairs of stimuli directly. The sorting-data 

weights and those produced by scaling these dissimilarities show no significant correlation. 
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The same comparison is possible with the POOC material, where there are 33  respondents 

who provided both sorting and pairwise data. The stimulus sets are of different sizes, with 

little overlap between them, but they inhabit the same ' occupation space', and dimensional 

weights should be comparable between them. However, there is no correlation between the 

two sets of dimensional weights for each correspondent. The conclusion is inescapable that if 

systematic variations exist among people's strategies for sorting stimuli, then the 

nonsystematic variation (noise) drowns them out. 

Little success has been reported from applying the INDSCAL model directly to the Cm 

matrices. Richards and Hanson [ 1 985] found no differences in how American Sign Language 

letter-signs were sorted by native and second-language signers. Turk, Wack and Kerns [ 1 985] 

compared how two sets of health professionals sorted "pain behaviours", and found no 

differences. 

This does not rule out the possibility of detecting individual differences in other ways, 

independently of reconstructing a map. 

There have been a number of attempts to derive meaningful indices of personality variation 

from sorting data, without scaling them. They are outside the scope of this thesis, but in 

passing I note a study [Arabie & Boorman, 1 973] which examined the question of 

distinguishing different "cognitive styles" in the ways subjects sorted stimuli .  Coxon and 

Jones [ 1 979a] looked at the 'height' of a sort, as a reflection of the level of semantic 

generality for that subj ect's representation. 

More to the point is a paper by Hubert and Levin [ 1 976] . This describes statistics for disting­

uishing whether two sorts differ significantly. Is the difference between a subject's sorting 

performance, and an expected partition (or more generally, a proximity matrix), greater than 

chance can account for? (Bersted, Brown and Evans [ 1 970] considered the same problem). 

This suggests the idea of defining a function to quantify the dissimilarity between pairs of 

partitions. Given a table of ' distances' between sorts, MDS on the space of subjects becomes 

possible (a Q-analysis, as opposed to the P-analysis performed on stimulus space). 

1 78 



Numerous distance functions have been proposed. Arabie and Boorman [ 1 973] tested 12  of 

them, using simulated data (see also Boorman and Arabie [ 1 972]). The simplest function for 

sort distance - "pairbonds" - seemed better than more complicated information-theoretic 

measures. A later survey is Hubert and Arabie [ 1 985] .  Many of the functions they consider 

are generalised correlations while others are generalisations of the "profile distance" 

(differing in the details of correction or normalisation). Either way, the co-occurences are 

treated as distance matrices. 

A problem common to all such functions arises when sorts with different G(m) are compared. 

How dissimilar are the partitions ( 1 ,2)(3 ,4,5) and ( 1 ,2)(3)(4,5)? The unequal numbers of 

groups leaves open the possibility that they come from the same mental map; the same 

dendrogram, sliced at different heights; in which case they are not dissimilar at all. But 

( 1 ,2)(3 ,4,5) is equally compatible with a third partition, ( 1 ,2)(3,4)(5), which clearly is 

dissimilar to ( 1 ,2)(3)(4,5). Perhaps one should set the value of G(m) in advance, and only 

compare dendrograms sliced at the same height. 

As it is, a distance function's dependence on variations in G(m) (unavoidable if it is to be a 

metric) dominates the scaling solutions, forming a primary dimension, to which other forms 

of variation are secondary. See, for example, the scaling of the Struhsaker data for vervet 

monkey s leeping groups, in Arabie and Boorman [ 1 973] .  The sorts with high G(m) form a 

tight central cluster, round which other sorts are arranged in concentric circles of diminishing 

G(m). 

To summarise studies in which sorting data were Q-scaled, the results were negative, when­

ever external criteria were available with which to assess the meaningfulness of the scaling 

solution. In a study in which psychologists sorted the names of influential figures in psych­

ology, Rosenberg and Gara [ 1 983] performed a Q-scaling on their respondents, anticipating a 

connection between sorting behaviour and professional affiliation, but found none. 

I suspect that if information about how individual subjects differ is to be derived, the 

configuration of stimuli must be scaled in parallel. It is easier to compare how two sorts differ 
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from a configuration (their degrees of incompatibility) than to compare the compatibility 

between them (one can readily construct situations where seemingly quite different partitions 

result from two subjects viewing a configuration with only slight variations in their 

dimensional saliences). 

It may be that the residual-forces form of Q-analysis presented in Chapter 4 is still useful. If 

nothing else, it is potentially a way to identify sub-populations (latent classes) among the 

sorters, if  the differences between sub-population configurations are larger than in  the cases 

we have encountered. 

Conclusions 

The sorting procedure has proved its value many times over since it was introduced. In 

situations involving large numbers of stimuli, no other procedure is practical . The hierarchical 

sorting method provides richer information - the example using D 1 5  stimuli shows that it 

allows the discrimination of individual variations - and deserves to be used more widely. 

Large element sets can be handled by the H-sort method by having each subj ect H-sort a 

subset of the total elements, with the subsets overlapping. In the examples I have described, 

each subj ect sorted two subsets, between them containing all the elements, but this is not 

essential. In an analogous case, using free sorting, Kraus, Schild and Hodge [ 1 978] arranged 

their 220 items (occupation titles) into four overlapping subsets of90 items, with subjects 

sorting one subset each. 

However, the analysis of partitioned sorts and H-sorts proves to be beyond the capacity ofthe 

vote-counting method - too much "noise" is added to the aggregated co-occurence matrices. 

On top of this there are the characteristic artifacts which vote-counting introduces. I argue 

that there is room for improvement in the analysis of sorting data, and propose a 

"reconstructed dyad" method. 

The analyst must bear in mind the limitations of the sorting and hierarchical methods 

(notably, the paucity of the large-dissimilarity comparisons which convey the global structure 
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of the perceptual space) and eschew forms of analysis which purport to extract more 

information than warranted by the observations. 

For mapping large sets of stimuli there is a lot to be said for augmenting sorting data with 

triads or pairwise comparisons for a limited subset of them, providing an "armature" and 

relying on local information to fill in the gaps between them with the remaining stimuli . A 

hypothetical example might involve combining the sorting data for 24 faces from the 

Lightfoot series with Gladstones' rigorous treatment, l imited to 1 0  faces by the restrictions of 

the triadic method. "Scaling methods [triadic or pairwise data] should probably be reserved 

for those cases where we want a particularly accurate study of a relatively small number of 

items" [Miller, 1 970, p. 57 1 ] .  

Another possibility i s  combining sorts with scale ratings to provide the global structure. 

There are many cases where ratings were elicited and preference-mapped a posteriori to the 

configuration, to help interpret the axes [e.g.  Burton, 1 972; Jones, Sensenig & Ashmore, 

1 978] .3 Since the configuration is distorted by precisely the lack of the information which the 

ratings contain, this seems less than optimal. I argue for joint scaling of the scale and sorting 

data, as in the woodblock example. Each form of data makes up for the other's deficiencies. 

The same argument applies to other forms of data deficient in large-dissimilarity 

comparisons, such as the pick k/ N form. 

3 Schmidt [1 972] presents an interesting variant: instead of individual stimuli, subjects were 
asked to rank the clusters they had formed, on a scale of "degree of agreement with". 
Similarly, Kraus et al [ 1 978] asked subjects to rank their clusters of occupation titles 
according to "social standing". 
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8. TRIADS REVISITED - ASPECTS OF DATA COLLECTION 

A theme of this thesis has been the problem of constructing large-N well-landmarked 

perceptual maps when the stimuli are not visual, making it impossible to present them 

simultaneously in order to sort them. This brings me back to the Method of Triads. 

The size of the list of all possible triads is the factor limiting applications of the Triadic 

methods. Dong [ 1 983] found that subjects' boredom and fatigue were already increasing the 

fallibility of their responses, for as few as nine stimuli (84 triads), though not systematically 

enough to distort the MDS solution. With more elements, the number of triads, proliferating 

as N3, soon grows prohibitively large. 

Semantic and non-visual stimuli, with their requirements of conscious processing and internal 

representation, seem to be more tiring than visual ones. The gestalt-forming, parallel­

processing features of vision made 2240 triadic comparisons between colours acceptable 

[Stalmeier & de Weert, 1 99 1  a, 1 99 1  b], and even 83 720 triads, in a truly heroic study of 

visual textures [Harvey & Gervais, 198 1  ] .  

Experiments with more than 1 1  or 12  non-visual stimuli can only proceed by winnowing 

down the list of triads to be presented. Which triads to include? I will review previous 
• 

answers to this question, before describing a new approach. 

Balanced Incomplete Designs 

A BID is a l ist of N (N- I )  A triads in which each dyad (i,j) appears A times, where the 

constant A is at least 1 and at most N-2.  To scale N = 1 7  odours, MacRae, Rawcliffe, Howgate 

and Geelhoed [ 1 992] used a A =  3 design, amounting to 20% of the complete list of triads. 

Balanced Incomplete Designs have also been used by Arabie, Kosslyn and Nelson [ 1 975] 

(where N = 1 2  and A. =  3), the POOC [Coxon et a/, 1975], and Kirk and Burton [ 1977] 

(N = 1 3 ,  A =  4). B urton and Nerlove [ 1 976] describe the combinatorial principles involved in 

the construction of BIDs, and provide examples for various N < 2 1  and for a variety of A 

values. 
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There is an analogy with balanced incomplete designs for pairwise dissimilarity data: designs 

which omit dissimilarities so that for each i, f>ij is known for fl values ofj, fl being fixed. 

Often these are cyclic. See Spence and Damoney [ 1 97 4] ; Giraud and Cliff [ 1 97 6] . 

I will describe the construction of a BID for a case not covered by Burton and Nerlove, that of 

N = 12 and A = 4. In what follows, the stimuli will be labelled with integers from 1 to N. 

Begin with the triad < 1 ,3,7> plus its eleven cyclically incremented equivalents, 

< 1EB  i, 3 EB i, 7EB z> (0 < i < 1 2), where EB is addition (modulo N). Let the cyclic increments be 

implicit and represent the whole family as {<1 ,3,7>} .  The object is a set of triad families in 

which each of the 66 dyads of the complete connected graph appears four times. 

It is easy to check that the seven triad families, {<1 ,3,7>} ,  {<1 ,2,7>} , {<1 ,2,4>} ,  {<1 ,5, 1 0>} ,  

{<1 ,6, 1 0>} , {<1 ,3 ,6>} , {<1 ,2,3>} ,  plus one of the form {< 1  EB i, 5 EB i, 9 EB z>} where 

0 � i < 4 add up to 4 copies of the complete connected graph, so the eight triad families form 

a BID. 

Tinkering with lines on clockfaces for N = 1 5, I found three solutions for A =  3 (1 05 triads 

each). They contain the triad families: 

• solution 1 :  {< 1 ,3,7>} ,  {<1 ,4,8>} , {<1 ,2,3>} , {<1 ,5, 1 0>} ,  {<1 ,4,9>} ,  {<1 ,3,6>} , {<1 ,2,8>} 

• solution 2 :  {< 1 ,5,7>} ,  {<1 ,5,9>} ,  {<1 ,6,7>} , {<1 ,6,9>} ,  {<1 ,4,6>} ,  {<1 ,7,8>} ,  {<1 ,2,4>} 

• solution 3 :  { < 1 ,5,6>} ,  {<1 ,3 ,4>} ,  {<1 ,5,8> } ,  {<1 ,3,9>} ,  {<1 ,3,8>} ,  {<1 ,2,6> } , { < 1 ,7, 1 0>}  

Any two of  these combine to form a A = 6 design, while the sum of  all three is a A = 9 design, 

which is mainly of interest because it provides a solution for A = 4, which is simply the set of 

all triads not included in the A = 9 design. 

Finally, an unpublished solution for N = I 2, A = I comprises 22 triads, 6 in each of the 

families { < 1  $12 2i, 2 EB12 2i, 3 EB12 2z>} ,  { <2 EB12 2i, 4 EB12 2i, 9 EB12 2z>} and 

{<IEB12 2i, 4 EB12 2i, 7 EB12 2z>}  for 0 � i � 5, 

plus for of the form {<I EB12 i, 5 EB12 i, 9 $12 z>} for 0 � i � 3 .  
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The case of A. =  9, N = 1 5  is an example of a Balanced Incomplete B lock Design (BIBD). The 

special feature of a BIBD is that it  consists of several blocks of triads, each being a BID in its 

own right: the separate A. = 3 designs, in this case. No two blocks contain triads in common. 

BIBDs are a convenient way of sharing out a balanced set of triads among multiple subjects, 

to reduce the individual workloads, or to cover a wider range of triads without including any 

one triad repeatedly. Thus, a study of 1 5  musical intervals [Levelt, van der Geer & Plomp, 

1 966] and another on the effects of phase differences on timbre [Plomp & Steeneken, 1 969] 

both used a BIBD with A. =  4, composed of 4 A. =  I BIDs, so that each subject made 

judgments on 3 5  triads. This is different from the A. =  4 BID described earlier. 1 

Burton and Nerlove concentrate on BIBDs. For N =  1 3 ,  they provide two BIDs for f.... = 1 ,  

which together constitute a A. = 2 BIBD: 

1 .  {< 1 ,4,5>} and {<1 ,6,8>} 

2 .  {<1 ,2,5>} and {<1 ,3 ,8>} 

I found two more BIDs, which combine with the first two, forming the BIBD for f.... = 4 :  

3 .  {<1 ,2,4>} and {< 1 ,3 ,6>} 

4. {<1 ,5, 1 0>}  and {<1 ,2,8> } 

Similarly, Burton and Nerlove provide a A. =  2 BIBD for N = 1 9, made up of two A. =  1 BIDs: 

1 .  {<1 ,3,6> } ,  {< 1 ,8,9>} ,  { < 1 ,5, 1 1>}  

2 .  {<1 ,2,6> } ,  {<1 ,4, 1 1 > } ,  {<1 ,3,9>} 

I augmented these with another two, forming the f.... = 4 BIBD: 

3. {<1 ,4,6>} ,  {<1 ,2 ,9>} ,  {<1 ,7, 1 1> }  

4.  {<1 ,5,6> } ,  {< 1 ,8 , 1 1> } ,  {<1 ,7,9>}  

1 In the domain ofpairwise dissimilarities i t  is  known [Spence & Domoney, 1 974] that some 
partial designs are more "effective" than others. Given two incomplete sets of oij, both 
balanced with the same J.l. the better design for recovering the configuration design is 
generally the one containing fewest triplets oiJ, BJI" B;k· It is a moot point whether similar 
statements can be made about rival BIDs having the same value of f..... 
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However, there is no compelling reason to balance a data set at the level of individuals (other 

than habits of thought inherited from factorial experiment designs in agriculture, along with 

the terminology of "blocks"). When MacRae et a! found 8 assessors willing to judge the 1 36 

triads constituting a J... = 3 BID for 1 7  odour stimuli, they simply shared the triads out 

randomly, 1 7  per assessor, unconcerned as to whether each assessor judged each dyad the 

same number of times. 

Unbalanced Designs 

It is interesting to note that the designs of a number of experiments which the researchers 

believed to be balanced were in fact unbalanced [Burton & Nerlove; Kirk & Burton; etc] 

because they used the odd-one-out variant of the triadic method. When one picks i as the odd 

one out of <i,j, k>, this provides the information that (i,j) » (j,k), and (i, k) » (j,k). Thus (j, k) 

takes part in two comparisons; (i,j) and (i, k) are participants in only one each, reducing the 

number of judgments - which is, after all, the point of the variant. First described by Andrews 

and Ray, this variant has been widely used in anthropological studies: there is no option in the 

triads-analysis section of the ANTHROP AC software [Borgatti, 1 99 1 ]  for any other type. 

I draw two conclusions from this. First, shorter distances are specified more reliably by odd­

one-out data: the further j lies from i, the fewer inequalities constraining the value of du. In 

view of what is known about the important role of large dissimilarities, this argues for 

caution in acquiring and scaling odd-one-out triads. Chapter 3 made the same point. Ideally, 

stimuli wil l  be scattered evenly enough for small-scale relatively precise maps of portions of 

the perceptual space to fit together and recover the space's global structure despite the paucity 

of long-distance comparisons. Elongated configurations are bad. 

The second conclusion is that incomplete data do not have to be balanced. Though 

unbalanced data contain more comparisons for some du than others, this may not be a bad 

thing. The varying number of comparisons should be borne in mind if the data are vote­

counted: 
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VC · · = LE kf I L(E . kl + Ek, . .) lj lj. lj, ,lj (k,f) (k,f) 
(2. 1 2) 

An example of an unbalanced incomplete design in Bechtel's study of nine Munsell chips. 

Recall that three chips were made "standards", the other six "comparison" stimuli .  Instead of 

84 triads, Bechtel 's design used 45 : each containing one standard and two comparison 

stimuli .  

It is  hard to see why balance of the data should make any difference when MDS is performed 

directly on the dyad inequalitites. In Monte Carlo simulations, for the more general case of 

tetradic comparisons, Bissett and Schneider [ 1 992] found no difference between BIDs and the 

same number of comparisons selected at random. But when Takane performed similar 

simulations [ 1 978] as part of evaluating his MLE analysis of tetradic comparisons, he found a 

complete (hence balanced) set of triads to give more accurate recoveries than an equally large 

but randomised set (presumably unbalanced) of tetrads. 

However, we saw in Chapter 5 that Stress is not wholly adequate as a badness-of-fit function. 

A sufficient level of incompleteness in the data unmasks its potential for distortions and 

artifacts . I have gained the impression that data which are unbalanced as well as incomplete 

become more vulnerable to these artifacts. The remedy is to switch from minimising Stress to 

maximising Likelihood. 

I argue now that some triads are more informative than others. If a tentative sketch of 

the configuration is available (perhaps the perceptual space has been coarsely mapped by 

scales, or triads from previous subjects are available), it becomes possible to omit triads for 

which the judgments can be predicted with reasonable confidence, and to concentrate on 

presenting others for which the expected information content is greater. 

Consider the approach taken by Wright [ 1 965] with an element set of 1 7  colours. Wright 

divided the region of colour space occupied by the colours into 6 compact, overlapping sub­

regions, each containing 7 elements (many were shared between sub-regions), and judged 

only those triads where i,j,k belonged to the same sub-region. As well as reducing the number 
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of triads to 2 1 0  ( 6 x 3 5), this restricts the range of distances being compared, excluding many 

elongated triads of low information content, where two elements belong to one subset while 

the third, in a different sub-region, is the obvious one out. 

Another unbalanced design features in Krantz [ 1 967] . Again, the stimuli were colours. The 

design consisted of comparisons between dissimilarities expected to be roughly equal; some 

triads comparing large dissimilarities, others comparing small ones. Krantz was using 

Torgerson's analysis, in which there is no point comparing highly unequal dissimilarities, 

since the conversion of p (the proportion of replications in which (i,j) » (j,k)) into an equation, 

du = �·k + a(p), becomes impossible ifp is 0% or 1 00%. 

For tetradic data, B issett and Schneider noted that many comparisons could be omitted since 

the responses were predictable from other comparisons. However, their argument only applies 

to scaling in one dimension. 

My final example is the Interactive Similarity Ordering method (ISO) described by Young, 

Null & Sarle [ 1 978]. Multiple-choice questions are presented to the subject, who must choose 

which of a l ist of stimuli is most similar to a target stimulus. When the length of the lists is 

restricted to two, this procedure reduces to triadic comparisons. Triads are omitted when the 

response can be predicted from previous responses (assuming them to be transitive). 

Interactive Incomplete Designs 

In this context, the pertinent feature of the ISO procedure is its interactivity. Triads are 

selected on the basis of the subject's responses to earlier triads. . 

With interactive selection it is possible to map a perceptual space using fewer triads than a 

BID. I will describe an interactive procedure, implemented in a computer program "Triskele", 

which selects O(N) triads to map N stimuli (as opposed to the O(N) required by BIDs, for 

constant A.). 
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Reduced to the broadest outlines, the Triskele procedure consists of two phases. In the first 

phase, a basis or skeletal set of Nb stimuli (8 ::; Nb ::; 1 0) is mapped, using a BID with A.b or a 

complete set of triads (of the "triadic combinations" form). This phase is non-interactive but 

it provides a framework within which the remaining Nr = N - Nb stimuli can be located 

interactively. 

The second phase is repeated for each of the remaining Nr stimuli .  The 1-th stimulus 

(Nb < I ::;  N) is located using triads <i,j, l>, for i,j < /. I  divide this second phase into phases 2a 

and 2b. 2b consists of presenting the subject with triads chosen for high expected information 

content, having the maximum potential to refine the provisional position x1• The information 

gained from each triad is incorporated in the map by iterating the optimising algorithm: 

downhill descent, in Triskele. Thus each triad affects the information content expected from 

subsequent ones, and the positions X; and xj are refined as a side-effect of locating /. 

An initial x1 must somehow be obtained. That is the role of phase 2a, which presents a small 

number (typically 6 to 9) of triads <i,J. l> where nothing is assumed about x1 except that it is 

somewhere in the area of perceptual space spanned by the previous /- 1 elements. In this 

situation, good criteria for selecting <i,j, l> are that X; and xj should be neither particularly 

central nor excessively peripheral, with above-average dij. 

2a can be omitted if tentative positions for the remaining elements are available from some 

other source (e.g. scale ratings or another subject' s perceptual map, or theoretical 

considerations). 

Note the contrast with BIDs. Far from being balanced, a Triskele session involves the various 

dyads in different numbers of triads, ranging down to zero. It is not necessary for the majority 

of ( i,j) to take part in triads at all, and if they did, a N- term would dominate the size of the 

triad list. 

The Triskele procedure differs from ISO in its use of a provisional configuration, constructed 

from triads so far, as a basis for selecting subsequent ones. In this, Triskele has much in 

common with the ISIS procedure (Interactive Scaling oflndividual Subjects) [Giraud & Cliff, 
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1 976; Young & Cliff, 1 972], which has been implemented in two programs, ISIS and 

INTERSCAL [Cliff, Giraud, Green, Kehoe & Doherty, 1 977; Kehoe & Reynolds, 1 977]. 

Both programs begin by eliciting enough data to construct a configuration for a basis set of 

stimuli .  The principle underlying ISIS is that in a ?-dimensional space, a point can be located 

by specifying the distances from that point to (P+ 1 )  known points. For the 1-th stimulus (Nb < 

l ::;; N), it prompts the subject for at least (P+ 1 )  dissimilarities '6j/, where the "benchmark" 

points xj are chosen for their peripheral positions in the configuration, thereby maximising 

their effectiveness for triangulating x1 (if x1 is sufficiently peripheral, it can become a 

benchmark for locating subsequent stimuli). For ISIS to proceed past the first phase, a value 

must be assigned to P. Triskele shares this requirement. 

These early forms of ISIS are metric. They expect ratio-level data. A non-metric version of 

the ISIS procedure has been described [Ham er, 1 98 1  ] ,  closer to Triskele. Ham er's ambitious 

extension was also capable of supplementing the judgments from the current subject with 

data elicited from previous judges, as an aid to selecting the benchmark itemsj, while 

allowing for individual variations between the current and previous subjects. Despite these 

features, Ham er found no significant improvement in the procedure's  performance. 

To explain the logic ofTriskele in more detail, I should quantify the vaguely-worded 

descriptions of some triads being more "informative" than others. 

Imagine a situation such as figure 8. 1 ,  

where precise postions xi, xj, xk have 

already been found (somehow) for three 

of the elements, while element l is in the 

process of being located, a process that 

has provisionally localised x1 to 

somewhere in a circular region, L (cross-

hatched). L could be a 90% confidence 

region, or 95%; the exact figure, and the 

Figure 8 . 1 

i • 

Triad involving new element, I 

• j 

k .  

I . 

exact radius of the circle, are not crucial in this argument. There is no point in presenting the 

subject with <i,j, l>, since the response is unlikely to come as a surprise; it is likely to be 
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8 - < 8 ., I) I ' 

which imposes no fresh constraints on x1• <j, k, l> would be more informative (in the sense of 

telling the analyst something not known already). 

In the comparison between 8u and 8;1, let < and > stand for the responses 8u < 8i/ and 8u > 8i/ 

respectively. Let p = Pr(<) and q = Pr(>) = I - p. The information value of < and > are ­

log2(p) and -logiq) respectively. Thus, the expectation value of the information received 

from that comparison is 

I(i.j, i, l) = -p log2(p) - q log2( q) (8. 1 )  

As in Chapter 5 ,  I approximate the probabilities with logistic functions: 

Pr(>) = { I +  exp(--r Du. i/) } " 1 , 

where Du;1 = du - d;/> the difference in reconstructed distance, while -r subsumes all 

contributions to the uncertainty of the response: the small uncertainties in X; and x1 (shown as 

zero in figure 8.3), the large uncertainty in x1, plus subject error. The approximation is a crude 

one, concealing a number of assumptions, but it suffices. 

I(i.j, i, l) becomes a roughly Gaussian function of 11u.;1, with a maximum of I at Du.u = 0, and 

standard deviation inversely proportional to -r.  

The same argument applies to the comparisons between (i.j) and (j, l), and (i, l) and (j, l). The 

uncertainties are different, since L is not necessarily circular, but one can still argue that the 

expected information content is maximised when the distances being compared are equal. Let 

I(i.j,l) be the total expected information from that triad, I(i.j,l) = I(i,j, i, l) + I(i.j.j, l) + I(i, l.j, l). 

This treats the comparisons as independent - as if presented with the Torgerson method of 

"complete triads" - which introduces another approximation. 

I conclude that the most informative triad is one forming an equilateral triangle in the 

provisional reconstruction of perceptual space. 

1 90 



An alternative to maximising expected information, is to select those triads for which the 

expected contribution to Likelihood is most negative. I liken the problem of interactively 

locating I to a process of forming a hypothesis about x1, which one then attempts to falsify, in 

order to replace it with an improved hypothesis. Another rationale for selecting Likelihood­

minimising triads is that they are the ones from which one expects the greatest contributions 

to forces on the elements, providing the strongest constraints on their positions 

The expectation value ofthe contribution to log Likelihood from comparing (i,j) against (i, l) 

follows from the definition of log Likelihood: 

l*( i,j, i, I) = p ln( { 1 + exp(t Dii.il) } " 1) + q ln( { I + exp( -t Dii.il) r 1 ) (8 .2) 

= l(i,j, i, l) times a constant. 

These are all approximations to a rigorous approach to triad selection, which would set 

confidence ellipsoids for the stimuli [see Ramsay, 1 978], and for each <i,j, l>, calculate the 

expectation values for reductions in their extents, finding the (ij) which effect the greatest 

shrinkage of the ellipsoids. Equivalently, one might envisage this as a process of shrinking 

the (NP)-dimensional confidence ellipsoid around the single point X in configuration space, 

an ellipsoid which is most elongated along axes corresponding to the positions of elements 

which have not yet been located. 

In practice Triskele uses a simpler criterion. It chooses the <ij, l> which is closest to being 

equilateral, i .e. which has minimum 

Id!!. - dui + ldu - ��� + ldii - ��� = I Dij,i/ 1 + I  Di/j/ 1 + I Dijj/ 1 

(<1$ long as that triad has not been previously used). Though not optimal, this criterion is fast. 

Sometimes it results in the selection of triads which have the effect of locating x1 in the 

direction of the short axis of its confidence ellipsoid, while ignoring the looser constraints on 

x1 in the direction of the long axis. 

Selecting triads to minimise Likelihood has a drawback. Low Likelihood in a finalised 

configuration (or high Stress) could be caused by noisy data, too few dimensions, or simply a 

felicitous choice of triads. Dependent as they are on the particular triad choice, Stresses and 
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Likelihoods cannot be compared between Triskele sessions; nor do the usual tests of 

dimensionality apply. It remains to be seen whether -r remain sufficiently independent of triad 

choice for it to be comparable across sessions. 

Returning to phase 2a, the triads presented therein are complete stabs in the dark. To change 

our metaphors for a moment, if we think of the configuration explored so far as an atlas of 

stimuli, the role of these preliminary triads is to determine the page On which Xt lies, before 

the 2b triads localise it more precisely. Triskele presents triads in groups of three, <i,j, l>, 

<i, k, l>, <j, k, l>, after considering all triplets of items i,j,k in search of the three which mark 

out a triangle with the greatest area. Barring pathological configurations, this ensures that i,j 

and k are peripheral, but not outliers, and that their centre of gravity is more or less central, 

and that du, 0h dik are above average. Triads selected by these guidelines seem reasonably 

effective at triangulating x1 , whereever in the configuration it happens to be. This is repeated 

for further triplets until the specified number of phase 2a triads has been made up. Iterations 

of the downhill-descent algorithm follow, to integrate the responses into the configuration. 

This is  the process for P = 2. If, instead, the dimensionality is assumed to be 3, the program 

chooses quartets of elements, h, i,j, k, forming a tetrahedron of maximum volume, and presents 

<h, i, l>, <i,j, l>, <j, k, l> and <k, h,l>. The generalisation to higher dimensionalities is 

straightforward though not yet implemented in Triskele. 

Monte Carlo simulations comparing the Triskele approach against BIDs (analysed with vote­

counting) indicate that both deteriorate with the decline in the amount of information as 'A is 

decreased. However, BIDs deteriorate faster; they are vulnerable to the fluctuations caused by 

comparisons between (i,j) and atypically close and atypically distant pairs. 

I also conducted Monte Carlo experiments using the Stalmeier-de Weert sets of triads to 

simulate a subject's responses instead of random numbers - consulting their data to see what 

a given subject' s  actual responses were to a given triad. The crucial test was whether 

Triskele's  performance i s  superior to a Balanced Design involving the same number of triads. 

1 92 



I used two BIDs as the standards for comparison, with A = 2 and 4, i .e. 80 and 1 60 triads. 

Three Triskele settings involving similar numbers of triads were as follows: 

T 1 . 60 triads in phase 1 (Nb = 9, Ab = 5); 1 4  triads to locate each of the remaining 7 

elements (5 in phase 2a, 9 in phase 2b), for a total of 1 5 8  triads. 

T2. 8 1  triads in phase 1 (Nb = 1 1 , Ab = 5); 1 4  triads to locate each of the remaining 5 

elements (5 in phase 2a, 9 in phase 2b), for a total of 1 6 1  triads. 

T3 . 44 triads in phase 1 (Nb = 1 2, Ab = 2); 9 triads to locate each of the remaining 4 

elements ( 4 in phase 2a, 5 in phase 2b ), for a total of 80  triads. 

Entries in the table are the congruences between a reconstructed configuration based on 

partial data, and the complete-data configuration (see note 3 ,  page 72) . 

Design: A = 4  Tl T2 A. = 2  I3 
subject:ER 0.88 1 0.950 0.942 0.78 1 0.789 

EU 0.958 0.962 0.976 0.900 0.884 
GE 0.942 0.896 0.899 0.875 0.860 
JA 0.983 0.989 0.99 1 0.828 0.975 
MA 0.949 0.946 0.889 0.789 0 .847 
NA 0.964 0.987 0.979 0.892 0.948 
PE 0.975 0.988 0.987 0.963 0.954 
PI 0.970 0.970 0.980 0.90 1 0.864 
RE 0.884 0.906 0.974 0.83 5 0.856 
YV Q.254 Q.2Z2 Q.267 Q.241 Q,22Q 

averag�; Q.246 Q.251 Q.258 Q.813 Q.821 

For some subjects, the Triskele strategies actually perform poorer than a BID. Nevertheless, 

on average the Triskele reconstructions are better. The differences may seem small ,  but it 

must be remembered that small changes in a congruence close to 1 corresponds to a large 

increment in accuracy. 

A slightly different strategy is called for if the user opts to reduce the workload for subjects 

by asking for odd-one-out judgments only, instead of following the full Method of Triadic 

Combinations. Additional uncertainty is thereby introduced into the information content of 
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the response. The response contains only two comparisons rather than three, with the subject 

deciding which two to include. 

Instead of calculating I(i.j, l) for each possible triad by weighting each of the three possible 

responses by the probability of its occurence, I programmed Triskele to expect the worst: 

following a minimax strategy, it assumes that the subject's response to <i,j, l> will  be the least 

informative (least surprising) one; in other words, the odd-one-out will always be the one 

predicted by the configuration. Thus Triskele selects (i.j) to minimise the maximum of 

( ID!iJtl + IDif), ID!i. ill + ID;1JA • ID!i. ill + ID!iJtl) . So behind the selection of the next triad for 

presentation is the assumption that the subject will grudgingly respond in whatever way 

returns least information. 2 

Implementations of the Triskele procedure exist for PC and Mac computers. 

PC-Triskele 

Like MTRIAD, the PC incarnation is written in Turbo Pascal. The user interface routines (i.e. 

the sections handling interaction with the subject) are rudimentary. They are minor parts of 

the program, added almost as an after-thought, invoked by other parts which do all the real 

work of integrating previous triads into the configuration and selecting the next one. 

The interface leans heavily on a geometrical metaphor. Stimuli are presented - in written 

form, if they are conceptual or semantic; played through the soundboard-amplifier 

combination, in the event of sounds; in either case, labeled with a 1 ,  2 or 3 - and a choice or 

choices made by typing the corresponding digit key. As a prompt for confirmation of 

judgments, the subject is presented with a scalene triangle, with the appropriate numbers at 

the corners; or an isosceles triangle if only primary j udgments are being made. 

The program reads N, Nb, the BID for Nb (if any), and the stimuli themselves (or identifying 

labels, if they are auditory) from an initialisation file. The first Nb stimuli in the list provide 

2 This pessimistic policy seems in keeping with the motto of the original Triskele: Quocunque 

Jeceris Stab it. 
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the basis set; the order of the remaining ones determines the sequence in which they are 

incorporated into the configuration. An optional field in the file allows the experimenter to 

specify a BID to use with the basis set. When Nb = N, the basis set contains all the stimuli ,  

and the interactive phases do not arise: this was the arrngement in three out of the four 

experiments in Chapter 3. In the experiment with Nb < N, I varied the order of stimuli for 

each subject, so that order effects, if any (fatigue, or the relative unfamiliarity of new items in 

comparisons with old ones) would not be systematic. 

There is an option for specifying files, from which Triskele loads the triads from previous 

subjects' sessions, to provide a scaffolding for phase 2b triad selection and do away with 

phase 2a triads. 

Tie-handling in Triadic Data 

Tied comparisons are not normally encountered in triadic data; the usual experimental design 

does not offer subjects the option of saying that they cannot decide which of (i, k) and (j, k) is 

more dissimilar, i .e. which of i andj is more similar to k. It is a forced choice procedure. 

Several participants in Triskele sessions volunteered the suggestion afterwards that for some 

triads, the difference between dissimilarities was small enough that effectively the choice 

between dyads was a random one, and that they would have preferred a "can't distinguish" 

option for such cases. 

This option was easily incorporated in later versions of the PC-Triskele version. Subjects opt 

for "can't distinguish", at the primary or secondary judgment stage, by typing 0 instead or 1 ,  

2 or 3 .  These choices have a contingent nature which most easily described as a tree (figure 

8.2). The primary-comparisons-only variant omits the branch points pertaining to secondary 

compansons. 

At the terminus of each pathway through the tree, a geometry is implied for the arrangement 

of <i,j,k> in perceptual space: a scalene or isosceles or equilateral triangle. An appropriate 
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Figure 8 .2 Branching series of possible responses when ties are pennitted 
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triangle is presented to the subject, along with a invitation to confirm the arrangement as an 

adequate summary of his or her perception of the dissimilarities, or to reject it. 

Having provided this facility, I was faced with the question of how such choices should be 

included in analysis. It is convenient to treat the negative response, "can't  distinguish", as 

equivalent to the positive statement that the two dissimilarities are equal (within a tolerance 

limited by the subject's discrimination and wil lingness to concentrate). Write this as 8iJ = 8il" 

or (i,j) ::::: (i, k). 

In Coombs' taxonomy of data, tied comparisons are quadrant QIVb, as opposed to QIVa, 

which covers greater than/less than rankings. Data including both types of response are QIV.3 

Kruskal proposed 'primary' and ' secondary' treatments of tied distance ratings - alternative 

terms are "weak" and "strong" ties. The primary treatment is to pretend that the distances 

3 Exclusively QIVb datasets are not unknown. In colour research they are sonetimes collected 
using a tetradic method [lndow & Aoki, 1 983] :  subjects indicate the dissimiliarity of two 
colours by choosing an equally dissimilar pair - these latter two both coming from a scale of 
greys. 
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were never compared, and to set EiJ.ik = E;k, iJ = 0. The tie is interpreted in a negative sense, as a 

lack of information about how diJ and d;k should be rank-ordered; the difference between them 

does not contribute to the configuration's badness-of-fit. 

I am arguing that the secondary treatment is more appropriate. Here, any deviation away from 

strict equality between diJ and d;k contributes to Stress (and Likelihood). Each tie is expanded 

into a pair of inequalities: (i,j) )) (i, k); (i,k) )) (i,j) . Eij,ik = E;k,ij = 1 .  This creates terms in 8L I oX 

corresponding to forces acting to minimise any such deviations as the hill-descent progresses. 

In passing, I note that these seemingly dichotomous treatments are ends of a spectrum. More 

generally, for tied dissimilarities, the constraints of equality between the distances can be 

enforced with strictness sigma: EiJ.ik = E;k, iJ = cr (0 � cr � 1 ). 

It seems preferable (or more productive) to allow a "can't distinguish" response, and interpret 

it as a strong tie, meaning that the difference between distances is small, than to demand that 

the subject tip the balance and make the less informative response that one distance is greater 

(with no indication of how much greater) . 

The effect of providing an option for ties is to expand the binary nature of the distance­

comparison data into a ternary scale. My earlier reference to the subject's distance-discrimin­

ating tolerance glosses over the question of whether tied judgments correspond to a range of 

distance difference. A subject's responses might be governed by thresholds p 1  and p2: 

(i,j) « (i,k) 
(i,j) =:: (i, k) 
(i,j) )) (i, k) 

if Llijik � p 1 
if p l  < Llijik < p2 
if p2 � Llijik 

(8.3) 

where LliJik = 8iJ - 8;k, and pl  and p2 are to be fitted to the data. Kruskal' s  secondary tie 

treatment is a special case of this with p 1  = p2 = 0. If in fact p2 - p1 is large (i.e. the subject is 

using the tie option in excess), the assumption of strong ties introduces a possibility of 

distortion. Another possible subject response, based on the ratios of the dissimilarities, is 

(i,j) « (i,k) 
(i,j) =:: (i,k) 
(i,j) )) (i,k) 

if LliJ;k I (8iJ + 8;k) � p 1 
ifpl  < Ll;jik I (8ii + 8;k) < p2 
if p2 � LliJ;k I (8ii + 8;k) 

(8.4) 
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I performed Monte Carlo simulations to assess this danger, simulating '&ij = dij + e(cr). The 

limited discrimination of the hypothetical subject was modelled as in (8.4 ), with p 1 = -p2 = p .  

The criterion for recording a tie (to be expanded into inequalities) from the comparison 

between (i,j) and (k, !) was IL'lijktl I ('f>ij + '6k1) < p. The Method of Triadic Comparisons was 

simulated, where it is not obvious how to simulate tied primary comparisons, since two 

distance comparisons are implicit, so the ties were only applied to secondary comparisons. 

Each entry is the congruence coefficient between the true and the reconstructed configuration, 

averaged over 1 00 random three-dimensional configurations (with the three dimensions of 

equal salience). cr varied between 0 and 0.4 (as a proportion of the average dij in a 

configuration). N was 1 5 . The simulations involved a range of BIDs, with 2 :::;; A.::;; 1 3 . 

For p = 0, 

a =  Q Q. 1  Q.2 Q.3 Q.4 
A. 2 0 .967 0.964 0.943 0.9 1 5  0.8 8 1 

4 0.99 1 0.984 0 .969 0.955 0.939 
6 0 .995 0.99 1 0.982 0.971 0.96 1 
9 0.998 0.993 0.988 0.982 0.974 
13 Q.999 Q.996 Q.988 Q.982 Q.974 

For p = 0.05 (affecting about 1/8 of secondary comparisons), 

a =  Q Q,l Q.2 Q.3 Q,4 
A. = 2 0 .976 0.964 0.947 0.9 1 9  0 .88 1 

4 0.989 0.982 0.967 0.952 0 .935 
6 0.991 0.986 0.979 0.966 0.955 
9 0.993 0.989 0.982 0.974 0.957 
13 0.995 9,991 0,982 Q.974 Q,971 

For p = 0. 1 (affecting about 1 14 of secondary comparisons), 

a - Q Q,l Q,2 0.3 Q,!! 
A. = 2 0.974 0.967 0.947 0.9 1 8  0.887 

4 0.993 0.984 0.969 0.953 0.936 
6 0.995 0.990 0.98 1 0.971 0.957 
9 0.997 0.993 0.985 0.976 0.962 
13 0.228 Q.22!! 0.281 0.2:Z8 0.2:Z2 
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Here we see the expected decline in accuracy of reconstruction as ').. decreases and cr 

increases. For a high level of tied responses, we see a small degradation in the accuracy, 

especially when cr is high. However, for a more reasonable number of ties, the degradation is 

negligible; indeed, the performance is increased at low /.., which makes sense since more 

information - that the distances are close - is  conveyed. These simulations were run using the 

Stress-minimising form of MDS, and it may be that MLE would make a difference. 

Similar results arise, simulating the Complete Method of Triads. Not many more tied 

responses are introduced: the secondary comparisons, in the Method of Triadic Comparisons, 

include most of the problematical choices between dissimilarities of similar magnitude. 

Other researchers have made the similar point that a tie between (i,j) and (i,k) should be 

interpreted and scaled as equivalent to the assertion that JD!i;kl is less than the smallest 

difference between a pair of dyads which were not tied. 

Another special form of triadic response which might be modeled as an expanded scale of 

dissimilarity difference is the confidence rating, encountered in chapters 3 and 5.  Arguably, 

there are thresholds p 1 ,  p2, p3 (to be recovered in the course of scaling), such that (i,j) and 

(j, k) are ranked with a confidence rating of 3 if l�!iJkl > p3, while a confidence rating of 2 

implies that p3 > l�!iJkl > p2, and so on. In this interpretation, a tie i s  the special case of a 

zero-confidence judgment. However, I am loath to digress any further into dissimilarity­

difference scales. It is hard enough to assign scale values to the dissimilarities themselves: if 

it were any easier, the triadic form of data would not be necessary. 

The Gestalt-fusion paradigm: a special case 

A modified version of PC-Triskele was written to replicate a series of explorations of colour 

space by Stalmeier and de Weert [ 199 1a,  1 994]. The stimuli are presented in the 'Star-of­

David '  form (described in Chapter 3), and the subject indicates whether i or k is closer to j by 

pressing a left- or right-pointing arrow key, according to the direction of the triangle formed 

by gestalt fusion of three coloured triangles with a central hexagon. The other two 

comparisons in <i,j,k> are made separately (Complete Method of Triads). 
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During pilot studies, an interesting effect appeared: this is a transparency illusion. For some 

combinations of colours i,j, k, the eye tends to interpret the star-of-David in a different way, as 

a pair of overlapping triangles, the one more distant from the viewer being partially visible 

through the closer triangle, with the resulting mixture of colours being the central hexagon. 

This interpretation interferes with the left I right judgment, but it has the potential to provide 

useful information in its own right. 

When the background is black, as in the Stalmeier-de Weert studies, the transparency illusion 

is most likely to appear when the central hexagon is brighter than its surrounding trJangles. 

This becomes apparent from examining one of the data sets which Stalmeier generously 

provided, one not previously discussed, where N = 1 3  and the colours varied in luminosity as 

well as hue and saturation. The confounding effects of transparency make it difficult to 

reconstruct the known configuration from these data. A spurious dimension intrudes, in 

which the extremes of luminosity are similar, and a four-dimensional solution is required to 

recapture the known three-dimensional structure. However, the picture is clarified by ridding 

the data of all transparency-prone comparisons in whichj is brighter than i or k; three 

dimensions then suffice. 

In this situation with a black background, the coloured polygons are perceived as self-lumin­

ous. Let xi> x1, xk be the points corresponding the the stimuli in some colour space. Then if 

(8.5a) 

the display invites interpretation as a triangle of colour k and transparency ph overlapping a 

second triangle of  colour i. Conversely, if 

(8.5b) 

then the i-coloured triangle is overlapping the k-coloured one, and has transparency P;· In 

either case,j must be brighter than either of the colours contributing to it. 

Suppose that we give subjects the options of indicating that i,j,k evince the transparency 

illusion. Suppose, further, that a subject sees a triad as a k-coloured triangle overlapping an i-
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coloured one, given X;, xi, xk which have no exact solution for Pk in (8.5a). Then this is vector 

information, comparable to the forms of data considered at the end of Chapter 6. Each 

'transparency' response is an indication that X;, xi, xk should be adjusted to make (8.5a) 

soluble. 

The argument is speculative, since the colour-triad project is in abeyance until enhancements 

to a PC monitor can be acquired for displaying specified colours with sufficient accuracy and 

stability. 

Mac-Triskele 

The differences between the PC and the Max platforms are substantial. On the latter, the user 

interface is paramount; the computational sections of a program are relegated to secondary 

status. For the Mac version, I reorganised the structure of Triskele to demarcate user­

interaction from the processing of responses. 

A Mac consultant (Steve Paris, of Wellington) converted the processing half into Apple 

Pascal. In its compiled form, as "executable external routines", this was inserted into the 

interaction half, which takes the form of a "stack" prepared in the Hypercard scripting 

language (the programmer being Mario Leonti, a Mac specialist in Palmerston North). 

The stack contains screen images, "cards", which are repeated for each triad. They contain 

buttons which the subject clocks on with the mouse to play the sounds and other buttons with 

which the subject records a decision. Other screens explain the task, and offer tuition and help 

(figure 8.3). Further details  appear in Kirkland, Bimler and Leonti [ 1 992, 1 993]. 

Mac-Triskele is readily modified for different sensory rnodalities, but the current version is 

sound-centred, using the Mac's 'Sound Library' and ' Sound Librarian' facilities. Sounds are 

fed in, sampled at 22 kHz, and stored. The Sound Librarian allows the experimenter to select 

the sounds for a Triskele session by clicking on buttons with the mouse, the order of selection 

also being the order of presentation. 
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Figure 8.3 Sample screens from Mac-Triskele session 

Click button to hear sound. 

C lick a rrow to choose the "different" one.  

Click another arrow to change chosen sound. 

( g 0 2  ) 

( gO t ) ( g03 ) 

To il lustrate your decision the sound you chose : g01 is moved away. You 

can still hear each sound by clicking buttons. (Click onto each button 

once more. If you've changed your mind click REDO. Should you like to 

take a break then click PAUSE. Otherwise click Leave tutor to conti nue.) 
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Canine Heartbeats 

Members of the Massey University Veterinary Faculty have used Triskele intensively, the 

stimuli being 20 tape-recordings of canine heartbeats exhibiting various fonns of heart 

abnormality. The tapes are a standard training set. For this application the stored sounds were 

looped, so that they keep playing for as long as the mouse button is held down: the unit of 

repetition being sometimes a single heartbeat cycle, sometimes several cycles, since some 

abnormalities are characterised by their intermittency. 

The attractive feature of heartbeats, from psychology 's  point of view, is that a trained, 

experienced listener can diagnose a particular syndrome and its degree of severity from the 

sound alone. However, isolating the acoustic properties giving rise to a diagnosis can be very 

difficult. In this, heartbeats are akin to baby cries, and numerous other complex sounds, 

including many used by clinicians. 

As well as the qualities, whatever they are, which make diagnosis possible, a sound has other, 

accidental, irrelevant features, which the expert l istener has learned to ignore. The relevant 

features are not necessarily to be localised to a particular spectral band or a particular segment 

of the time domain; they may take the form of complex relationships between several parts of 

the spectrum or time domain, allowing them to survive transfonnations (such as absorption of 

frequency bands, by intervening walls in the case of cries, by varying thicknesses of chest, for 

heartbeats). 

The chief objective of this project was to map an idealised (average) experienced clinician's 

mental representation of heart abnormalities. The dimensionality of 'heartbeat space' was not 

initially known. Indeed, it is not certain whether a spatial model or some kind of tree structure 

is more appropriate. 20 stimuli, hopefully, include enough specimens of the various 

syndromes, in enough levels of severity, to reveal the relationships between them. 

A secondary objective is to explore how actual subject's mental maps vary with their degree 

of proficiency. Are all novice listeners the same, with a standard progression of intermediate 

maps as they accumulate experience at making the important distinction? Or are there as 
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many mental maps as there are novices? Landis, Silver, Jones & Messick [ 1 967] explored 

similar questions for visual displays of airport flight-control situations. See also Michon's 

study [ 1 972], where the stimuli were complex sounds, and triadic data from trainees were 

converted into dendrograms and compared against dendrograms from experienced l isteners. 

The research I am describing was conducted by three Massey students - Emma Barraclough, 

Greg Jones and Don Kirkland. With Triskele still in a pilot-study stage, 20 stimuli were 

thought to be too many for any one subj ect, so this was reduced to 1 4  stimuli per Triskele 

session, with the 1 4-stimulus subsets containing all 20 between them. The experimenters 

varied the stimuli in each I4, and the order of presentation, according to no particular system. 

In each session, 9 stimuli formed the phase I basis set (84 triads), and locating each 

remaining stimulus took 14  triads (6 in phase 2a, 8 in 2b), for a total of 1 54 triads. Primary 

comparisons only were elicited (odd-one-out triads). 

The database consists of triad sets from 1 8  Triskele sessions. Four are from Professor Boyd 

Jones, who also completed half of a fifth for a colleague. Several staff members sat through 

two sessions. 

I have been provided with identifications for 14 of the stimuli, as follows: 

I :  normal dog, mitral region 
5a: systolic murmur 
5b: systolic murmur 
6: musical systolic murmur 
8 :  systolic murmur o f  pulmonic stenosis 
I 0: systolic crescendo 
I 2: diastolic murmur 
1 3 :  machinery murmur 
14 :  systolic murmur, mitral region 
1 8 : systolic click, mitral 
1 9: diastolic gallop, mitral 
23 :  incomplete dropped beat 
24: atrial fibrillation 
26:  premature ventricular beat. 

With these labels in hand, it becomes possible to reach some conclusions from the map 

produced by combining all the data sets (figure 8.4). The most noticeable feature is the 
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Figure 8 .4 Three-dimensional configuration for triadic data for 20 canine heartbeats 
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separation of 'murmur' sounds from others along the first dimension. The other two 

dimensions are harder to identify, but they seem to be significant to the diagnosticians. The 

INDSCAL model was used to rotate figure 8.4 to the most relevant orientation. 

It seems from the subject space produced by the INDSCAL option (figure 8.5) that a major 

form of variation between our informants is the importance they attach to the first dimension. 

They ranged from 'an2' at one end, and 'bj I ' and 'bj 2' (both aliasses for Prof. J ones) to ' fr 1 ' ,  

' fr2' and 'ad'  at the other. I t  i s  worth noting that the Points-of-View analysis reveals much 

the same picture: variation along a one-dimensional range, with the extremes (the viewpoints 

in their purest form) represented by 'ad' and ' im2 ' .  

Given the elongation of the configuration along the first dimension, i t  i s  possible that the 

second and third dimensions each have more than one role, i.e. that the quality separating 

beats 2 and 6 to the left of the configuration is different from that separating 24 and 25 to the 

right, although both are accommodated within a third dimension. 

Figure 8.5 Heartbeat triad data: Subject space from INDSCAL for 18 subjects 
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Feedback from the triad contributors was favourable: they found the configuration 

meaningful. Nevertheless, the question was whether diagnostic terms could be embedded in 

the perceptual space derived from triads. Do the two forms of element actually occupy a 

coomon mental representation? Are the forms of auditory variation contributing to 

"difference", according to the expert listeners (not necessarily obvious forms of difference to 

a spectrograph or untrained l istener) the ones used to discriminate diagnoses and prognoses? 

Cross-modal supplementary data 

More data were collected to supplement the triads. This involved the 1 4  stimuli l isted earlier, 

and 9 labels or diagnostic categories (possibly overlapping): 

a Mitral inefficiency 
b pulmonial stenosis 
c tricuspid inadequacy 
d ventricular septal defects 
e split heart sounds 
f patent ductus arteriosis 
g aortic insuff iciency 
h teratology of F ollot 

aortic stenosis 

For each stimulus, judges (six of them) picked the first, second and third most appropriate 

categories, making this rank 3/N cross-modal data. For some judges, some of the sounds were 

so clear-cut in diagnostic terms that only a "most appropriate" choice was possible. 

In fact, scaling these data jointly with the triads did embed the categories in the same 

representation (see figure 8 .6). There are some surprising features. Category b, 'pulmonic 

stenosis ' ,  is not as close to heartbeat 8 ( ' systolic murmur of pulmonic stenosis') as one might 

expect. 

Further explorations are continuing, using scales to identify the axes. The scales are the low­

resolution form discussed in Chapter 3 ;  the subject (Professor Jones) listens to each sound in 

turn, with a discriminating feature in mind, deciding whether or not the sound exhibits it. 
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Figure 8.6 20 canine heartbeat stimuli, plus 9 diagnostic labels, 'a' to ' i '  
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Implications for Training 

I want to make a few points about the educational possibilities of multidimensional scaling 

methods. I will avoid details since the topic is not central to this dissertation, but it is one of 

the reasons for the Veterinary Faculty's enthusiasm, and reveals another aspect of the Method 

of Triads. 

The problem facing a vet. student is to learn to recognise auditory features (or absence of 

features) that can be used to situate a heart sound at its correct position in heartbeat space, and 

to learn which features are irrelevant, signifying nothing by their presence or absence. One 

way to learn this is to listen to sounds in groups of three, two sharing a feature which is 

lacking in the third: in a word, triads. To borrow Kelly's terms [ 1 955],  a triad invites the 

listener to distinguish a construct from a contrast. A series of triads might begin with ones 

forming quite elongated triangles in heartbeat space, so that the odd-one-out is easily spotted, 

progressing to closer and closer approximations of equilateral triangles, with the difficulty of 

distinguishing the odd-one-out keeping pace with the student' s  growing skill .  Each elongated 

triangle should be aligned with one of the discriminatory directions (not necessarily axes) 

identified through studies with scales. 

Triads are not the only possibility - having a map of the space makes several options 

available. One is to present the student with groups of four stimuli, with one in each group 

standing out [Isaac, 1 970]. A third option again uses four stimuli at a time, the subject this 

time being to arrange each tetrad into closest pairs (i.e. to pick i, j, k, l so that d;k + �1 and dil + 

�k are both greater than diJ + dkD· 

I noted in passing in Chapter 4 that in situations where perceptual space has been mapped, 

triadic comparisons can be selected specifically to estimate a subject's dimensional weights. 

The selection can be interactive. A process of successive refinements similar to Triskele is 

possible. Given an estimated weights vector, i .e. an estimate of the pri vate stimulus space for 

the subject, one can calculate how much information about the weights each triad can be 

expected to provide. Particularly informative triadic comparisons are ones between (i,j) and 
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(j, k) that are roughly aligned with different axes while dm,ij and dmJk are roughly equal (similar 

statements can be made for other models fo individual variation). 

Consider now the question of determining 't for a particular subject, again given a map of 

perceptual space. One approach is to start by guessing that 't is small, and to present 

comparisons between large and small distances (elongated triangles), every correct response 

being an indication that 't can be increased (as in Chapter 5) and that the elongation of the 

next triad can be less. 

As well as mapping heartbeat space for sheer curiosity, we are concerned with the diagnostic 

possibilities. Locating a new stimulus within a well-landmarked configuration is equivalent to 

specifying the syndrome with the minimum amount of effort. Perhaps an atlas is a better 

analogy than a map. The first comparisons involving a novel stimulus specify the page; from 

there, successive comparisons straiten the scope. The goal is an optimum "search tree" (is this 

what experienced clinicians have?) 

A second example is cries (at last). Here, there are the same dual concerns with diagnosis 

(considerable effort has gone into the possibility that some cries indicate forms of il lness or 

stress or birth defect) and with distinguishing experienced from novice judges, so that the 

latter can receive feedback and targeted tuition. 
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9 CONCLUSIONS AND FUTURE DIRECTIONS 

We have made little headway toward the original goal of preparing a comprehensive atlas of 

cry space, but have covered a lot of ground and forged tools of more general application in the 

process. 

Concentrating on triadic and sorting data, this thesis has discussed sundry forms of data where 

the common feature is that they can be interpreted as greater than I less than comparisons 

between inter-point distances in an abstract perceptual space. 

The advantages of this interpretation are several. It allows the introduction of Maximum 

Likelihood Estimation methods, as a straightforward extension of the familiar Stress­

minimising method. Moreover, one can perform multi-dimensional scaling directly on the 

comparisons, as proposed by Johnson [ 1 973] ,  without converting them first into a matrix of 

dissimilarities; the degradation and distortions brought about by that Procrustean conversion 

are avoidable. 

I have not attempted to optimise the details of this scaling. For didactic purposes and for ease 

of programming, the current version of MTRIAD adheres to a simple hill-descent algorithm 

for arranging points in perceptual space so as to maximise agreement between the modelled 

distance and the actual point, although more efficient algorithms exist. If switching to one of 

the alternative algorithms (e.g. the conjugate gradient method for estimating step size, or 

majorisation [de Leeuw, 1 988] or other second-order hill-descent algorithms) we would seek 

to preserve the flexibility of hill-descent: the freedom to vary such things as the distance 

function, and the definition of the agreement being maximised. 

In this dissertation I have not explored the interesting problem of representing perceptual I 

semantic structure in non-spatial or hybrid ways (e.g. trees). The question of choosing a tree 

which best describes a set of distance observations is the opposite of the problem considered 

in Chapter 7, of deriving the distances given a set of observed trees. I suspect that existing 

algoritluns for fitting non-spatial representations to dissimilarity matrices, by iteratively 

minimising mismatches [de Soete, de Sarbo & Carroll, 1 985], could be modified to accept 
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dissimilarity comparisons (triads, etc.) as their raw material. A further possibility there i s  

refining a tree model by  acquiring comparisons interactively: an extension of  the Triskele 

approach. 

The distance comparison interpretation of data has corollaries for the question of efficiently 

selecting incomplete data, when human frailty precludes the collection of a complete set. I 

have looked at the opportunities for selecting and acquiring incomplete data interactively. An 

interesting special case arises when an unknown element is be positioned within a known 

configuration (for purposes of identification and perhaps diagnosis) with the fewest number of 

compansons. 

Related to this are conclusions one can draw about which comparisons are contained in 

particular data formats. When the sorting or hierarchical sorting or pick any/N methods are 

used as a way of scaling large stimulus sets, their lack of long-distance comparisons leaves the 

global structure of the configuration in doubt, unless they are complemented by other forms of 

data. Triads or dissimilarity rankings on a subset of stimuli can "cross-brace" the 

configuration. Other sources of global structure are preferences or scale ratings, which are 

difficult raw material for MDS on their own, fraught with potential artifacts because of the 

lack of direct constraints on the distances between ideal points or scale endpoints. Even 

analogy tasks are potentially a way of removing the unwanted flexibility from the 

configuration. 

One goal for future research is to acquire analogy data as a test of the validity of the I-FEEL 

and Lightfoot expression solutions. In the description given in Chapter 6, the analogy task has 

the drawback that when it is used to test whether a spatial configuration of stimuli is an 

adequate model for people's  mental representations, it incites subjects, by its wording, to 

think in the geometrical terms which one wishes to test. Fortunately the nature of the I-FEEL 

and Lightfoot stimuli make a non-geometrical form of analogy test possible. 

This form involves a list of emotion-altering events (in the I-FEEL case, the faces are those of 

infants and young children, so this list might include parental interventions, examples being 

"loses toy", "familiar face", "loud noise", "change of nappy", etc.). Given one of these events, 
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the task is to imagine it applied to a given facial expression, and to choose (from a small list 

of possible answers) the stimulus best representing the subsequent expression I emotion. A 

data set comprised of such choices would make it possible to tell whether each action corres­

ponds to a vector in emotion space (x units increment along one axis, y units along another) . 

For a valid spatial model of expressions, the vectors should be independent of position, with a 

given event producing the same displacement, whatever stimulus it is applied to. 

I have demonstrated the practicality of pooling the responses of several subjects to amass 

enough data for recovery of a group configuration, without obscuring the variations between 

the subjects' personal versions of that configuration. Useful models of individual variation 

(e.g. the INDSCAL, IDIOSCAL, and Points-of-View models) allow solutions to be obtained 

for the sparse individual data-sets by imposing constraints, confining them to a low­

dimensional subspace of configuration space (to a single point, if they are treated as 

replications). The appearance of gaining something for nothing is misleading. 

The forms of data most useful for scaling large numbers of stimuli are low in redundancy, and 

must be pooled. I described a program (Triskele) which implements an interactive approach to 

lowering the redundancy and increasing the usefulness of triadic data, and considered the 

diagnostic implications of locating a novel stimulus, interactively, within a pre-existing 

perceptual map. 

To date, the chief application of Triskele has been to map a 'heartbeat space' of canine 

heartbeat irregularities. Triskele has now been appraised with sufficient thoroughness to 

consider applying it to map a large set of cry stimuli. 

One theme running through this thesis has been this problem of mapping large sets of stimuli 

(N > 20). As well as the Triskele program, which I hope is a useful contribution to the triadic 

method, I have presented a method for the analysis of sorting and hierarchical sorting data. 

The low demands made by these methods on subjects make them ideal for large-N data 

collection, so long as an adequate analysis for those data is available. 
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In some cases, the fine discrimination of subject variability is the objective, as considered in 

Chapters 4 and 8 .  There are several relevant lines of research. 

Green, Jones and Gustafson [ 1 98 7] used judged similarities between baby cries to map the 

perceptual space, and found differences in dimensional weights between sub-populations. One 

research priority is to look for the same kind of differences in triadic data. Are the variations 

discernible at the level of individuals, without averaging over groups? To be useful, such 

variations should be consistent enough to predict a subject's sex and parental status. 

If the group configuration is known from other sources, we saw that some comparisons are 

more useful than others for locating a subject on the spectrum or spectra of individual 

variations. It becomes possible to acquire such comparisons selectively. 

Analogous to the "selective deafness" of some populations [Green, Jones & Gustafson, 

1 987] - their insensitivity or lack of attunement to affordances in the cries which other 

subjects picked up - are the several forms of colourblindness. 

Recall that as well as revealing the expected colour circle, ranked dissimilarities for a set of 9 

colours provided a crude test of colour vision. The H-sorts of the 9-colour set and of the 1 6  

colours of the D-1 5  stimulus set were not enough to recover the global structure of colour 

space (the configurations being locally one dimensional), but they contained enough 

information about subjects' dimensional weights, limited by the relatively minor parts these 

weights played in the comparisons. 

"Informative" comparisons can be acquired more selectively using the various triadic 

methods: for instance, the Star-of-David experimental design. The Stalmeier-de Geert data 

sets provided a demonstration of this. I note that this process is an candidate for conversion 

into an interactive process, akin to Triskele. It comes down to hypothesising a set of 

dimensional weights for subjects and selecting triads for their potential to refme the 

hypothesis. The choice of triad having the greatest expected influence on the values assigned 

to the weights is affected by their provisional values. 

214 



This is one of my major conclusions. The dissimilarity comparisons implicit in several forms 

of data - triads, hierarchical sorting, and the D 1 5  procedure - can define a subject's position 

in 'subject space' ,  especially if the configuration of stimuli (the group space) is known. The 

IDIOSCAL model is particularly rewarding. Current tests for colour vision are designed to 

pick up blatant deviations from normal. They are not sensitive to variations within the bounds 

of 'normality ' ,  and leave many questions unanswered about colour-vision variations amongst 

the heterozygous female relatives of overtly colour-blind male homozygotes. Furthermore, 

knowing the precise extent of a subject' s  colour-vision deficiency can help with advising him 

what adaptations to make at home and at work. Work on fine-tuned triad tests is continuing. 

Unlike colour-blindness, selective deafness is remediable through training [Green, Jones & 

Gustafson, 1 987; but also the growth of sensitivity to dimensions of musical appreciation, 

Pollard-Gott, 1 983;  the effects of tuition in the recognition of complex sounds, Michon, 

1 972] . Thus, a potential application of the work reported here is to monitor the progress of a 

course of training, and to provide feedback for the trainee. 

I reported research with canine heartbeats where many of the judges subjected themselves to 

repeated Triskele sessions, making it possible to plot their progress towards acquiring the 

perceptual space of an expert. Now that the "expert" configuration is known, future work with 

these stimuli will concentrate on determining how individuals differ from it, at stages in their 

training, using triads optimised for that purpose. We found that recognised syndromes (verbal 

labels) can be located in perceptual space too, so cross-modal forms of data can be used to 

build up the configuration and to probe to what degree a subject has internalised it. 

The INDSCAL model is not the only way of accommodating individual variability. It may 

turn out that the extent of a person's colour-vision deficiency depends on the saturation of the 

colours1 ,or that the development of expert listening involves greater changes in perceptual 

space than simply becoming attuned to a dimension of previously low salience. We must bear 

such possibilities in mind, and be prepared to use more complex models if the observations so 

dictate. 

1 Not to mention stimulus size, and intake of coffee - to mention just two parameters known 
to make a difference in borderline cases. 
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The line separating the effects of tuition from normal development is fine. Jacobowitz's 

conditional rank-order data [Young, 1 975], obtained from children of different ages, show 

how the semantic structures of colours, body parts and kinship terms evolve. Miller and 

Gelman [ 1 983] obtained triadic data to show the development of the concept of number. 

The same analysis applies. I note the possibility that such data, analysed in the framework of 

INDSCAL or some other model of individual variation, may not need to be averaged 

beforehand over subjects presumed to be at similar developmental levels. Are a subject' s  

dimensional weights, in  the INDSCAL model, o r  am values in  the Points-of-View model - his 

or her location in the trend of the combined data sets - a  predictor of development? 

The strategies and variant methods I have discussed for minimising the data requirements of 

MDS come to the fore when children are included among the subjects. 

The emphasis in this thesis has been on developing methods, as opposed to experimental 

work. Consequently, none of the experimental conclusions made along the way are 

particularly novel or in contradiction to any long-held scientific consensus. This is j ust as 

well, since I have applied these methods in a number of fields, and relied upon their 

agreement with the consensus view in order to validate them. 
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APPENDIX W. WOOD BLOCKS 

An on-going market-research research project, aimed at determining which aspects of 

Paulownia wood contributed most to its desirability, was the source of the data analysed here. 

The researcher was Emma Barraclough, of Massey University, in association with Bruce 

Glass of the Forest Research Institute. Here I ignore the market-research aspects of the data 

and consider the raw material of their research - finished slabs of Paulownia wood, 20 x 85 x 

285 mm, cut at a range of angles - as stimuli to be scaled, with their dimensionality to be 

determined. Appropriate sections of Chapters 6 and 7 discussed details of the analysis of the 

various forms of data collected. 

One set of data consisted of 3 7 preference scales, for a basis set of 1 2  blocks. These were 

analysed in three dimensions with the Ideal-point model for preferences, the first two 

dimensions being shown as Figure W. l .  Ideal points themselves are represented as ' . '  to 

distinguish them from the stimuli. Most of the variation in the third dimension involved the 

ideal points, rather than element points, an arrangement which is probably artifactual. 

Figure W. l Two of three dimensions obtained from preferences for 1 2  woodblocks (M = 3 7 ideal points, 
shown as full  stops) 
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Figure W. l provides a good basis for comparison with dissimilarity data. The same subjects 

provided hierarchical sorting data, using several procedures (synthetical H-sorting; analytical 

H-sorting; the analytical procedure, using photographs rather than the blocks themselves). 

Scaled with the reconstructed-dyad method, these result in a three-dimensional configuration. 

The third dimension manifests in subsets of the data, and appears to be both robust and 

interpretable. The overall configuration is similar to that derived from preferences. See figure 

W.3 .  F igure W.2 is a vote-counted configuration for the H-sorts; the same structure can be 

discerned in it, but much of the detail has been obscured by elements clumping together. 

Figure W.2 Vote-count configuration, for 1 2  woodblocks, from hierarchical sorting data 
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Figure W.3 
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Three-dimensional configuration for 1 2  woodblocks, using dissimilarity data (H-sorts) 
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Glass obtained ratings, on 1 8  scales, for a larger set of 24 blocks. When these scales are 

analysed, using the vector model, in two dimensions, the result is figure W.4. Again, the same 

overall structure appears. Because figure W.4 contains 12 elements which were not present in 

the previous dissimilarity data, it provides a test of the validity of the spatial scaling model. 

Barraclough proceeded to collect dissimilarity data (H-sorts, F-sorts, and preference rankings) 

for the complete 24-block set. When all these diverse forms of data are pooled, in combination 

with the scales, the result is figure W.5 .  

The accuracy with which the scales on  their own predicted the positions of  the 1 2  new stimuli 

gives some assurance that this research is on the right track. 

Figure W.4 Configuration for 24 e lements, derived from ratings on 1 8  scales (analysed in three 

dimensions) 
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Figure W.5 
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Overall configuration for 24 woodblocks, combining preferences, H-sorts, F-sorts 
and scale-rating data 
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