
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Design and Implementation of Internet of
Things for Home Environment

A thesis presented in partial fulfilment of the
requirements for the degree of

Master of Engineering in
Electronics and Computer Systems

Engineering

at Massey University, Manawatu,
New Zealand.

Sean Kelly
2013

 pg. i

Abstract
An integrated framework for smart home monitoring towards internet of things based on ZigBee and

6LoWPAN wireless sensor networks is presented. The system was developed to retrofit existing sub

systems of wireless technologies in order to reduce cost, and complexity. The practical

internetworking architecture and the connection procedures for reliable measurement of smart

sensors parameters and transmission of sensing data via internet are presented. A ZigBee based

sensing system was designed and developed to see the feasibility of the system in home automation

for contextual environmental monitoring. The ubiquitous sensing system is based on combination of

pervasive distributed sensing units and an information system for data aggregation and analysis.

Results related to the home automation parameters and execution of the system running

continuously for long durations is encouraging. The prototype system (ZigBee based) was tested to

generate real-time graphical information rather than using a simulator or a test bed scenario. A trail

has also been performed with 6LoWPAN technology to provide functionality as the ZigBee based

system.

The overall internetworking architecture describes the integration of a low power consumption

wireless sensor network with the internet. The proposed prototype has advantages in terms of low

cost, flexibility of usage. The design of the integrated framework provides a template for other

applications related to the Internet of Things.

 pg. ii

Acknowledgements

I would like to thank my family for supporting me during my course of study.

I would like to thank my supervisor Prof. Subhas Mukhopadhyay for his patience and support.

I would like to thank Nagender Suryadevara for his technical help and support.

 pg. iii

Abstract .. i

Acknowledgements ... ii

List of Figures ... viii

List of Tables ... xiii

1 Introduction .. 1

1.1 Outline of Thesis ... 1

2 Literature Review .. 3

2.1 Wireless Sensor Networks integrated with Internet of Things ... 3

2.2 Existing Internet of Things Systems ... 4

2.3 Home Automation through Internet of Things ... 5

2.3.1 Existing Wireless Technologies used for Home Automation ... 6

2.3.2 Existing Wireless Sensor Network Architectures for Home Automation 6

3 Contribution to the topic .. 11

4 System Structure ... 12

4.1 Introduction .. 12

4.1.1 Integrated Platform for IoT ... 13

4.2 Smart sensors requirements ... 13

4.2.1 Signal conditioning .. 14

4.2.2 Signal Input and Output Processing .. 15

4.2.3 Network communication .. 15

4.3 XBee Structure .. 16

4.3.1 XBee Stack Specifications .. 16

4.3.2 XBee Topologies .. 17

4.3.3 XBee Hardware Specification .. 18

4.3.4 IoT adaptation ... 19

4.4 6LoWPAN Structure... 19

4.4.1 6LoWPAN Stack Requirements .. 20

4.4.2 6LoWPAN Topologies .. 21

 pg. iv

4.4.3 6LoWPAN Hardware Specifications ... 21

4.4.4 6LoWPAN Hardware Options .. 22

4.5 IoT Gateway .. 22

4.5.1 Gateway Hardware .. 22

4.5.2 WSN Interface ... 23

4.5.3 IoT communication ... 23

4.6 IoT Server .. 23

4.6.1 Minimum requirements .. 24

4.6.2 Network connectivity .. 24

4.6.3 Data Reception, Storage and Web server ... 24

4.7 Summary ... 24

5 Implementation .. 26

5.1 Software Development Environment .. 26

5.1.1 Code Composer Studio Setup – 6LoWPAN Module .. 26

5.1.1.1 Obtaining and installing Code Composer Studio .. 26

5.1.1.2 Project creation for CC430 .. 26

5.1.1.3 Debugging a CC430 Project ... 28

5.1.2 OpenWRT Toolchain with Eclipse IDE ... 31

5.1.2.1 Windows OpenWRT Toolchain Setup .. 32

5.1.2.1.1 Cygwin Installation .. 32

5.1.2.1.2 Windows configuration ... 34

5.1.2.1.3 OpenWRT tool chain compilation ... 36

5.1.2.2 Eclipse ... 38

5.1.2.2.1 Required directories from the OpenWRT toolchain ... 38

5.1.2.2.2 Eclipse Setup for Windows/Linux .. 38

5.1.2.2.3 Eclipse Project Creation .. 39

5.1.2.2.4 Eclipse Remote Debugging .. 42

5.1.3 Visual Studio Setup ... 51

 pg. v

5.1.3.1 Installation ... 51

5.1.3.2 Project Creation .. 51

5.1.3.3 Project Debugging ... 54

5.2 Software Configuration ... 55

5.2.1 Windows Apache MySQL and PHP (WAMP) ... 55

5.2.1.1 WAMP Installation... 55

5.2.1.2 WAMP Configuration .. 55

5.2.2 Open source embedded Linux installation ... 57

5.2.2.1 OpenWRT Compilation .. 57

5.2.2.2 OpenWRT installation ... 59

5.2.3 OpenVPN ... 63

5.2.3.1 OpenVPN Installation .. 63

5.2.3.2 OpenVPN Certificate and Key Generation .. 64

5.2.3.3 OpenVPN Server Configuration ... 68

5.2.3.4 OpenVPN Client Configuration .. 71

5.2.4 XBee Configuration ... 74

5.2.4.1 XBee Configuration Software .. 75

5.2.4.2 XBee Coordinator Configuration ... 76

5.2.4.3 XBee End Device Configuration ... 79

5.3 Network Interface Implementation Techniques ... 82

5.3.1 Tunnel Driver Interface.. 82

5.3.2 Parsing raw data from buffers ... 83

5.3.2.1 Host and network byte order .. 83

5.3.2.2 XMacro technique ... 85

5.3.2.3 XStruct technique .. 87

5.4 ZigBee IoT Platform Implementation .. 91

5.4.1 ZigBee Hardware Implementation .. 91

5.4.1.1 XBee Gateway ... 92

 pg. vi

5.4.1.2 XBee Temperature Sensor Module ... 96

5.4.1.3 XBee Hot Water System Monitor .. 98

5.4.2 Address Translation ... 109

5.4.3 IPv6 UDP Encapsulation .. 110

5.4.4 Software implementation on IoT Gateway for XBee... 114

5.4.4.1 Initialise Serial and Tunnel .. 115

5.4.4.2 Select from Tunnel and Serial ... 116

5.4.4.3 Processing Tunnel Data ... 118

5.4.4.4 Serial Has Data .. 120

5.4.5 ZigBee IoT Platform Summary ... 125

5.5 6LoWPAN IoT Platform Implementation ... 125

5.5.1 6LoWPAN Development Hardware ... 126

5.5.1.1 6LoWPAN Node ... 126

5.5.1.2 6LoWPAN Gateway .. 127

5.5.2 6LoWPAN Node Firmware Implementation .. 129

5.5.2.1 6LoWPAN stack ... 129

5.5.2.2 Microcontroller Radio Interface for 6LoWPAN stack .. 131

5.5.2.3 Application to acquire and send sensor data using 6LoWPAN 135

5.5.3 6LoWPAN Gateway Implementation ... 135

5.5.3.1 Radio interface for 6LoWPAN gateway ... 135

5.5.3.2 Software for 6LoWPAN Gateway ... 136

5.6 IoT Server Implementation ... 136

5.6.1 Sensor Data Acquisition and Storage .. 136

5.6.1.1 Receiving Sensor Samples ... 136

5.6.1.2 Storing Sensor Samples ... 137

5.6.2 Graphical Web Interface ... 137

5.6.2.1 Retrieving Sensor Samples from Database ... 137

5.6.2.2 Plotting Retrieved Sensor Samples in Graph ... 138

 pg. vii

5.6.2.3 Controlling WSN Nodes ... 138

5.7 Summary ... 138

6 Experimental Results ... 140

6.1 Fabricated Sensor Modules for monitoring the Smart Home ... 140

6.2 Efficient mechanism for sensor data storage .. 145

6.3 Quality of Service parameters for XBee IoT Platform ... 146

6.3.1 Reliability ... 146

6.3.2 Throughput ... 147

6.3.3 Jitter .. 149

7 Conclusion ... 150

8 Challenges and Opportunities ... 151

8.1 Future Works ... 151

8.1.1 ZigBee based IoT Platform Future Works .. 151

8.1.2 6LoWPAN based IoT Platform Future Works .. 151

9 References ... 153

10 Publications ... 164

 pg. viii

List of Figures

Figure 1 Topology and stack based approches .. 7

Figure 2 Structure of integrated IoT platform ... 13

Figure 3 ZigBee start topology .. 17

Figure 4 ZigBee Mesh topology ... 17

Figure 5 XBee Module pin numbering (top view) ... 18

Figure 6 IPv6 and 6LoWPAN stact operation to give Server application to Sensor Application

communication ... 20

Figure 7 6LoWPAN and IPv6 network topology .. 21

Figure 8 Code Composer Studio - Create new project. ... 26

Figure 9 Code Composer Studio - Create new project options for “Hello World” project. 27

Figure 10 Code Composer Studio - "Hello World" project contents. .. 28

Figure 11 Code Composer Studio - Debug button to start debug process. .. 28

Figure 12 Code Composer Studio - Loading "Hello World" project onto microcontroller. 29

Figure 13 Code Composer Studio - No debugging hardware connected to the computer Error. 29

Figure 14 Code Composer Studio - Debugging hardware failing to communicate with microcontroller

Error .. 29

Figure 15 Code Composer Studio - Microprocessor variant incorrectly set for current microprocessor

connected Error. .. 30

Figure 16 Code Composer Studio - Procedure for setting the microprocessor variant for "Hello World"

project. .. 30

Figure 17 Code Composer Studio state after sucessfully starting a debug session. 31

Figure 18 Selecting a Cygwin package to install .. 33

Figure 19 Selecting a Cygwin package to install with source code ... 33

Figure 20 Selecting the libncurses version 5.7-16 Cygwin package for installation 34

Figure 21 Editing registry to make windows case sensitive. ... 35

Figure 22 Adding Cygwin bin directory to the path .. 35

Figure 23 Adding CYGWIN environment variable to suppress warnings .. 35

Figure 24 Selecting build options for OpenWRT. .. 37

Figure 25 Eclipse - packages required for remote debug of OpenWRT software. 39

Figure 26 Eclipse - new project dialog setting the project name and type ... 40

Figure 27 Eclipse - selecting "Paths and Symbols" in project properties to configure header and

library paths. ... 40

Figure 28 Eclipse - setting the include path for OpenWRT toolchain. .. 41

 pg. ix

Figure 29 Eclipse - setting the library path for the OpenWRT toolchain. ... 41

Figure 30 Eclipse - setting the cross-compiler prefix and path for the OpenWRT toolchain. 41

Figure 31 Creating a new source file main.c ... 42

Figure 32 Eclipse - output of a successful build of the project "Hello World". 42

Figure 33 Eclipse - displaying Remote Systems view .. 43

Figure 34 Eclipse - selecting the remote resource type "Linux" for the OpenWRT router.................... 44

Figure 35 Eclipse - setting the Host name and Connection name for a remote resource. 44

Figure 36 Eclipse - configuring remote resource file access. .. 44

Figure 37 Eclipse - configuring remote resource process access method. ... 44

Figure 38 Eclipse - configuring remote resource shell access method. .. 45

Figure 39 Eclipse - configuring remote resource terminal access method. .. 45

Figure 40 Eclipse - User name and password for connecting to a remote resource (OpenWRT router).

 .. 45

Figure 41 Eclipse - sucessful connection to a remote resource "192.168.1.100" which is the OpenWRT

router. .. 46

Figure 42 Eclipse - Menu to show debug configurations. ... 46

Figure 43 Eclipse - Main remote application debugging configuration for "Hello World" project. 47

Figure 44 Eclipse - Setting Location of GDB produced by OpenWRT toolchain. 48

Figure 45 Eclipse - "Hello World Debug" configuration location. ... 48

Figure 46 Eclipse - Confirming automatic change to Debug Perspective. ... 48

Figure 47 Eclipse - Unable to locate source files error. ... 49

Figure 48 Eclipse - Debug perspective for the debugging of "Hello World" project. 50

Figure 49 Eclipse - Program output in a debugging session.. 50

Figure 50 Visual Studio - Creating a new project. ... 51

Figure 51 Visual Studio – New project creation dialog for “Hello Word” project. 52

Figure 52 Visual Studio - Opening reference manager for "Hello World" project. 52

Figure 53 Visual Studio - Adding MySQL.Data reference to "Hello World" project. 53

Figure 54 Visual Studio - Adding a breakpoint to the "Hello World" project. 54

Figure 55 Visual Studio - Button for starting debug session. .. 54

Figure 56 Visual Studio - Debugger stopped at "Hello World" breakpoint. .. 54

Figure 57 Visual Studio - "Hello World" Executable output. ... 54

Figure 58 WAMP - "Put Online" to enable access to WAMP from external IP addresses..................... 55

Figure 59 WAMP - Enabling "php_sockets" from the menu. .. 56

Figure 60 WAMP - opening a MySQL console session. ... 56

 pg. x

Figure 61 MySQL - succesfully chaning the root users password. .. 56

Figure 62 WAMP - phpMyAdmin in Internet Explorer. ... 57

Figure 63 OpenWRT - Uploading and flashing OpenWRT on WRT54GL router. 60

Figure 64 PuTTY settings for connecting to WRT54GL after OpenWRT installation. 60

Figure 65 OpenWRT - telnet connection to set root password. ... 61

Figure 66 PuTTY settings for SSH access to the WRT54GL router. .. 61

Figure 67 PuTTY key mismatch error. .. 62

Figure 68 OpenWRT - Secure Shell session login. ... 62

Figure 69 OpenWRT - IP Configuration for joing local network. ... 63

Figure 70 OpenVPN - Starting a command prompt. ... 64

Figure 71 OpenVPN - Changing to easy-rsa directory and running init-config. 64

Figure 72 OpenVPN - Running "vars.bat" and "clean-all.bat" to setup the environment. 65

Figure 73 OpenVPN - Running "build-ca.bat" to create the main key and certificate for the OpenVPN

server. .. 65

Figure 74 OpenWRT - Generating server certificate and key. ... 66

Figure 75 OpenVPN - Generating IoT application gateway certificates and keys. 67

Figure 76 OpenVPN - Generating Diffie Hellman parameters. ... 67

Figure 77 OpenVPN GUI application on the server. .. 69

Figure 78 OpenVPN - Sucessfully creating a tunnel service. ... 69

Figure 79 OpenVPN - Method to show status window. .. 70

Figure 80 Opening networking and Sharing Center .. 70

Figure 81 Opening properties for OpenVPN tap driver. .. 71

Figure 82 Selecting IPv6 properties. ... 71

Figure 83 Changing IPv6 address for OpenVPN tap driver. ... 71

Figure 84 OpenVPN - Downloading certificates and keys onto WRT54GL router. 72

Figure 85 OpenVPN - sever status window showing sucessful router connection. 74

Figure 86 X-CTU - XBee module configuration software showing connection settings and module

settings. ... 76

Figure 87 X-CTU - Selecting module type and firmware for coordinator. ... 76

Figure 88 X-CTU - Setting network parameters for coordinator XBee module. 77

Figure 89 X-CTU - Setting serial connection parameters for coordinator XBee module. 77

Figure 90 X-CTU - upper is programming coordinator XBee module and lower is configuring

coordinator XBee module. .. 78

 pg. xi

Figure 91 X-CTU - serial configuration for testing connection to coordinator XBee module for the

OpenWRT router. .. 78

Figure 92 X-CTU – Verifying settings by reading them from coordinator XBee module. 79

Figure 93 X-CTU Setting module type and firmware for End Device. ... 80

Figure 94 X-CTU Setting PAN ID for End Device. ... 80

Figure 95 X-CTU Setting Sleep Mode settings for End Deivce... 81

Figure 96 X-CTU Setting Input/Output settings for End Device. ... 82

Figure 97 WRT54GL - serial port pins provided on the board obtained from [73] 92

Figure 98 WRT54GL router with XBee Coordinator attached to serial port using fabricated PCB 93

Figure 99 Schematic and PCB design for hardware interface between XBee S2 coordinator module

and WRT54GL board ... 94

Figure 100 Raspberry PI with fabricated PCB for XBee coordinator to connect to serial port 94

Figure 101 Raspberry PI header pins from [94] .. 95

Figure 102 Schematic and PCB design for hardware interface between XBee S2 coordinator module

and Raspberry PI ... 96

Figure 103 XBee temperature sensor hardware interface schematic ... 98

Figure 104 XBee temperature sensor hardware interface PCB... 98

Figure 105 Hot water system and solar heating system ... 100

Figure 106 Graph of temperature Vs Voltage for hot water cylinder probe 101

Figure 107 Schematic for circuit to condition signal from hot water cylinder probe 101

Figure 108 LTSpice simulation results for water cylinder temperature probe voltage signal

conditioning .. 104

Figure 109 Graph of temperature Vs votlage for solar heater probe ... 105

Figure 110 Schematic for circuit to condition signal from solar heater probe 106

Figure 111 XBee to IPv6 Address translation technique ... 110

Figure 112 Flow of sample information from XBee end device to Server .. 112

Figure 113 Converting an XBee S2 API packet to an IPv6 UDP packet .. 112

Figure 114 Flow of information from Server to XBee Module .. 113

Figure 115 Converting an IPv6 UDP command packet to an XBee API command packet 113

Figure 116 Flow of information through software and hardware elements between XBee module and

Server .. 114

Figure 117 Flowchart of XBee IoT gateway custom software implementation 115

Figure 118 Flowchart of select process in XBee IoT gateway software .. 117

Figure 119 Flowchart of reading tunnel data in XBee IoT Gateway software 118

 pg. xii

Figure 120 Flowchart for writing an XBee API packet to the serial port ... 120

Figure 121 Flowchart for reading an XBee API packet form the serial file handle in the XBee IoT

gateway software .. 122

Figure 122 Flowchart for the process to parse different types of XBee API Packets 123

Figure 123 Texas instruments EM430F6137RF900 (left) and Olimex MSP430-CCRF (right) 126

Figure 124 MSP430 Launchpad attached to the Olimex MSP430-CCRF for firmware upload and

debugging ... 127

Figure 125 6LoWPAN gateway using a WRT54GL router connected to a Texas Instruments

CC430F6137 development board with MSP430 JTAG debugger attached. .. 128

Figure 126 6LoWPAN gateway using the Raspberry PI connected to an Olimex CC-RF development

board ... 129

Figure 127 Flow chart for process of transmitting data using CC1101 radio 132

Figure 128 Flowchart for process of receiving a packet using the CC1101 radio 134

Figure 129 Real-time Graph of sensor information for the solar water heater, and hot water cylinder

 .. 141

Figure 130 Real-time graph of sensor information on website for light intensity and ambient

temperature .. 142

Figure 131 Real-time graph of sensor information on website for voltage and current useage of

electric pump .. 143

Figure 132 Graph of temperature data from three temperature sensors for 45 days 143

Figure 133 Correlation of sensor information depicting two days typical usage................................ 144

Figure 134 Real-time graph of temperature data from a temperature sensor for 45 days 145

Figure 135 Throughput of an electrical sensing unit for a period of one month 147

Figure 136 Throughput of temperature sensor units ... 148

Figure 137 Jitter for a sensing unit for a period of one month ... 149

 pg. xiii

List of Tables
Table 1 Comparison of various wireless sensor network technologies [47] ... 9

Table 2 Etherios Device Cloud Services pricing (in NZD) ... 9

Table 3 ZigBee Stack .. 16

Table 4 XBee Module pin information .. 19

Table 5 6LoWPAN Development Hardware ... 22

Table 6 Memory storage locations of the value 0x12345678 with different endianness 84

Table 7 IPv6 header in network byte order ... 84

Table 8 IPv6 header structure in memory, or host byte order .. 85

Table 9 TMP3x parameters from [96] ... 96

Table 10 Temperature range for TMP3x sensor when using XBee module .. 97

Table 11 IPv6 and UDP header structure .. 111

Table 12 CC430 Development Boards Comparison ... 127

Table 13 6LoWPAN header for sending UDP packet to server .. 130

Table 14 IEEE 802.15.4 header for 6LoWPAN UDP packet .. 131

Table 15 Comparison of compressed and uncompressed data for temperature sensors 146

Table 16 Reliability of the data transmission in the integrated ZigBee –IPv6 networks of two sensing

units for a period 31 days.. 147

pg. 1

1 Introduction
Home automation means the monitoring and control of household objects intelligently for effective

usage. In order to have an intelligent home monitoring and control system (smart home), the

household objects should be intelligently interconnected as well as provide information for better

operation. The existing home automation systems consist of embedding household objects with

sensors for getting usage information. The interconnection of various household objects have been

realized into a sensor network for collective information gathering to perform home automation.

Home automation augmented with the Internet of Things (IoT) provides better flexibility in managing

and controlling household objects in a wider aspect. This will support the interconnectivity of a large

number of smart homes for better resource utilization in wider area.

The present work describes the integration of home automation with the IoT. The amalgamation of

WSN and IoT involves the application of various wireless technologies with internetworking

mechanisms.

1.1 Outline of Thesis

Design and development of the integrating the WSN with the IoT for Home automation is organised in

the following chapters.

Chapter 2 is the literature review which provides the background information about the integration of

WSN and the IoT. Existing IoT integration systems related to Home Automation is also presented.

Commercially available systems with their features have also been described.

Chapter 3 highlights the important tasks that have been successfully implemented with the developed

prototype.

Chapter 4 describes the system structure of the integrated WSN-IoT platform. It also, specifies the

requirements needed to have a compatible integrated networking architecture. The hardware and

software components required for the design and development of the WSN-IoT system for Home

Automation have been described. It also specifies low power wireless communication technologies to

be used for the home automation.

Chapter 5 details the implementation strategy for developing the components of the integrated

system. It includes the following:

 Software tools required for configuring and managing various hardware resources and used for

controlling the developed sensor modules.

pg. 2

 Configuration of wireless technologies.

 Techniques for internetworking the WSN with the IoT.

Chapter 6 provides details of the experimental evaluation of the integrated WSN-IoT Quality of Service

(QoS).

Chapter 7 and 8 describes the conclusion derived from the developed prototype and suggests

improvements in the form of future work for an effective utilisation of integration WSN-IoT platform.

pg. 3

2 Literature Review

2.1 Wireless Sensor Networks integrated with Internet of Things

The term Internet of Things (IoT) was initially given by Kevin Ashton [1] in a presentation in 1998. The

IoT “allows people and things to be connected Anytime, Anyplace, with Anything and Anyone, ideally

using any network and any service” [2]. It is expected that 50 to 100 billion devices will be connected

to the Internet by 2020 [3]. According to the BCC Research [3], global market for sensors was around

$56.3 billion in 2010 [3]. In 2011, it was around $62.8 billion [3]. Global market for sensors is expected

to increase up to $91.5 billion by 2016, at a compound annual growth rate of 7.8% [3]. Due to the large

number of internet connected devices, the connection, configuration, and management of these

devices is not feasible if not done automatically.

The sensor networks are the vital elements of the IoT. Sensor networks have one or more sensor

nodes which communicate between each other using wired or wireless means [4]. Each sensor node

may have the capabilities to sense, communicate and process data either locally or remotely. In sensor

networks, sensor nodes may be homogeneous or heterogeneous. The sensors nodes are installed in

densely manner around the phenomenon which we want to sense [4].

With the advancement of software and hardware technologies, the combinations of Wireless Sensor

Networks (WSN) and “intelligent” objects of real-world entities, with the Internet capabilities have

been a realistic approach. The IoT is the integration of distinctively recognizable Smart Objects,

fabricated devices of real semantic objects and their realizations to the Internet. IoT developers work

in-conjunction with the hardware of WSNs, but the procedures for installing and interpreting the

sensor devices as smart (intelligent) objects are not trivial. Application development for the IoT is

related to the usage features of WSNs in particular context. Design and development of IoT systems

require addressing the basic issues such as [5]:

 Networking and connectivity issues related to hardware and software heterogeneity,

 application flexibility and scaling,

 standardized communication services and their descriptions,

 Automation procedures,

 Handling big data management.

The IoTs have the capabilities to deploy trillions of low cost wireless sensor nodes supported with

internet protocol (IP), this will enable sensor nodes to detect and monitor every object, or entity

around the real world [6]. The combination of sensing entities will allow us to interact with the

pg. 4

environment around us easily [6]. Each device connecting to the internet, requires an IP address. The

present IPv4 has 32-bit address space (i.e.) around 4.3 billion unique IP addresses, less than the

present world population. In order to overcome the limitation of 32-bit address space problem, a new

version known as IPv6 is active and playing an important role in the implementation of IoTs. IPv6 is

capable of addressing over 340 undecillion addresses (128-bit address space). Hence, the IPv6 is

capable of identifying trillions of sensor nodes for WSN [7].

Internet technologies and Wireless Sensor Networks (WSN), a new trend in the era of ubiquity is being

realized. Enormous increase in users of Internet and modifications on the internetworking

technologies enable networking of everyday objects [8]. “Internet of Things (IoT)” is all about physical

items talking to each other, machine-to-machine communications and person-to-computer

communications will be extended to “things” [9]. Key technologies that will drive the future IoT will be

related to Smart sensor technologies including WSN, Nanotechnology and Miniaturization.

2.2 Existing Internet of Things Systems

In recent times, there has been significant activities in the context of combining WSNs and IoT [10] [11]

that lead to a number of trials with enormous experiments and fabrication of systems dedicated on

gathering sensing data from a diversity of sources. Global Sensor Network (GSN1) [12] is cluster of data

streaming engines. Xively (formerly cosm) [13] is a secure, scalable platform that connects devices and

products with applications to provide real-time control and data storage. Xively provides an online

database service which allows developers to build their own applications based on the Xively sensor-

derived data. Simple Measuring and Actuation Profile sMap [14] is a web service which allows

instruments and other producers of physical information to directly publish their data. Its strengths are

that it is easy to consume, easy to implement for new device types, and simple to process. SenseWeb

[15] is a prototype system which provides a .NET API. Applications using SenseWeb can initiate and

access sensor data streams from shared sensors across the entire Internet. SenseWeb allows multiple

applications to share concurrent common sensing resources. Sen.se is a platform to not only integrate

the IoT but the “Internet of Everything where Humans, Nature, Machines, Objects, Environments,

Information, Physical and Virtual spaces all mix up” [16]. It provides services to publish data to feeds

and subscribe to feeds. The data in the feeds may be coming from or going to the IoT, and/or people,

and/or the internet. Etherios Device Cloud (formerly iDigi Device cloud) allows the connection of any

device to any application, anywhere [17]. The platform allows the development of embedded devices

that connect with the device cloud, and providing access to the devices in applications using a RESTful

interface. Management of the devices in the cloud is also provided.

pg. 5

At present, Commercial WSN frameworks in practise are similar in terms of their hardware architecture

[18], which are fabricated using either the 16bit MSP430 microcontroller unit (MCU) or the 8bit

ATmega128 MCU and the communication medium using the 802.15.4 Zigbee based network

architecture, such as EPIC, IRIS, MicaZ, and Mica2, Sky, Tmote, and TelosB [19]. The popular use of the

microcontrollers either MSP430 or ATmega128 is due to several reasons such as: Ultra Low Power

energy consumption, community support, open source compilers based on GNU-GCC, and TinyOS

support and flexible to design WSN platforms [20].

2.3 Home Automation through Internet of Things

Humans usually inside their home interact with the environment settings like light, air, etc., and

regulate accordingly. If the settings of the environment can be made to respond to human behaviour

automatically, then there are several advantages. The automation of home settings to act according to

the inhabitant requirements is termed as intelligent home automation system. Ambient intelligence

responds to the behaviour of inhabitants in home and provides them with various facilities [21].

In general, intelligent home automation system consists of cluster of sensors, collect different types of

data, regarding the residents and utility consumption at home. Systems with computing capabilities

analyse the assimilated data to recognize the activities of inhabitants or events. These can automate

the domestic utilizations effectively and also can support the inhabitant by reducing the costs and

improving the standard of living. In the recent past, several research activities were actively involved

with IoT such as [22] [23] [24]. Most of the research activities related to IoT are confined to

management of resource constraint devices [25], and different mechanisms of interconnection [26]

[27].

The future cyber-age networked infrastructures of household appliances in homes are likely to be

reliant on sensors embedded in/on the infrastructure. Such technologies will act as a catalyst to the

evolution of a new generation services that will have a great impact on the social and technological

eco-system. According to [21], it can be envisaged that the next generation systems and services will

encompass several domains such as e-Governance, Health Care, Transportation, Waste Management,

Food Supply Chains, and Energy & Utilities. New technologies and applications built on top of smart

devices may fulfil the vision of Intelligent Infrastructure.

There are several examples of intelligent home automation or “Smart Home Monitoring” in research

labs around the world, such as the GatorTech Smart House [28], Casas Smart Home [29], iDorm [30],

Georgia Tech Aware Home [31], Place Lab [32], etc. To date, there has been no complete development

of a monitoring smart home of commercial perspective, nor any investigation into how such a house is

perceived by either the inhabitants or their careers. The smart homes designed so far are for different

pg. 6

purposes such as information collection and decision support system for the wellbeing of the

inhabitants [33] [34], storing and retrieving of multimedia data [34] and surveillance, where the data is

captured from the environment and processed to obtain information that can help to raise alarms, in

order to protect the home and the inhabitants from burglaries, theft and natural disasters [34].

2.3.1 Existing Wireless Technologies used for Home Automation

In order to have low-power consumption, the ZigBee protocol follows the physical and data link layer

stack of IEEE 802.15.4. On the other hand, it has limitations on network and application layer

functionalities such as addressing, routing and interoperability with the internet. Alternatively,

adapting to IPv6 Low Power Personal Area Network (6LoWPAN) protocol, help us to have better end-

end communication with the sensing devices. However, translation mechanisms such as SOAP/REST,

GRIP [35] will increase the complexity of the network system.

The concurrence impact of wireless sensor network on the IEEE 802.15.4 devices was assessed in [36].

Studies in [37] [37] have been proven theoretically that WSN performance is more perceptible to

reduce when interfered with other radio networks and likelihood of faults in 802.15.4 network is high.

In [38], the authors have studied the coexistence of IEEE 802.15.4 and other radio networks, based on

outage probability, packet loss rate and changes in RSSI value.

Research for internetworking 802.15.4 with IP networks has been conducted. 6LowPAN [39] provides

well-defined method for transferring IPv6 packets over 802.15.4 network. However, complexity to

deploy in 802.15.4 network nodes is very difficult [40]. IPv6 over 6LoWPAN is proposed by the Internet

Engineering Task Force (IETF) working group to accomplish the concept of IP-based WSN. A new layer

is incorporated between IPv6 network layer and 802.15.4 MAC layer, which is entitled adaptation layer.

It was observed that the adaptation layer, in particular the fragmentation process may increase the

energy consumption of a sensor node by 5 to 10 percent [18]. As mentioned above there are many

issues related to integrating IPv6 with the WSN.

The advantages of interconnecting WSN with IoT model is for remote monitoring of a contextual

environment, where in heterogeneous data will be capable to work together and deliver collective

facilities. According to an internetworking perception, a WSN can be fully integrated into the IoT by the

kind of integration approach used for both the infrastructures.

2.3.2 Existing Wireless Sensor Network Architectures for Home Automation

The integration approaches of WSN and IoT can be categorized in two different ways: i) stack-based [7]

and ii) topology-based [8]. In the first approach, the integration between the IoT and a WSN is

contingent on the connections among their network stacks [41]. The second type of integration

pg. 7

approach (topology based) categorization depends on the definite position of the nodes in the

environment that can provide access to IoT [42].

The exterior IoT hosts and WSN nodes certainly not communicate openly. The sensor node is entirely

autonomous from the IoT. This has its specific customary protocols such as WirelessHART [43].

Interconnections among the external entities and the WSN are accomplished by centralized,

coordinator (base station). The base station will collect the data arising from the sensor node, and it

can well send data to the external entities through Web Services [15]. Also, requests coming from IoT

hosts will come through the central coordinator.

The second approach (topology based interconnecting), reflects the presence of a base- station and

perform as application layer gateway. This will interpret the TCP/IP routing information from one

socket to alternative socket. The IoT hosts and WSN nodes can interchange info without establishing

really a thru association. In this approach, the Wireless sensor nodes are self-regulating from the IoT.

Figure 1 Topology and stack based approaches

In the developed system a third method, i.e. using only IP inter-connection a WSN is integrated with

the IoT. The WSN nodes implement the TCP/IP stack (using compatible protocols such as ZigBee /

6LoWPAN stacks of 802.15.4). This method completely assimilates the wireless sensor nodes with the

IoT. Wireless sensor nodes can be easily interconnected to the central coordinator (base station), and

have communication vice-versa. This will also have the facility to implement different substation

protocols onto a subgroup of the wireless sensor network.

The following are the No-IP based solutions related to wireless technologies available in the market.

 ZigBee is just a wireless technology produced by the ZigBee Alliance for low-data rate and

short-range applications [44]. ZigBee stack consists of 04 basic levels: i) physical level, ii)

pg. 8

medium access control level, network level, and the application level. Physical and medium

access control level of ZigBee is defined by the IEEE 802.15.4 standard, whilst the remaining

portion of the stack is defined by the ZigBee specification.

 Z-Wave is just a wireless protocol design produced by ZenSys and promoted by the Z-Wave

Alliance for automation in home and commercial environments. The key intent behind Z-Wave

is allowing reliable transmission of short messages from a controller device to a number of

nodes in network [45].

 INSTEON [46] is a solution developed for home automation by SmartLabs and promoted by the

INSTEON Alliance. Distinctive options that come with INSTEON is the provision of a mesh

topology consists of RF and power line links. Smart objects could be RF/power line/ has the

ability to support different kinds of communication.

 Wavenis [47] is just a wireless protocol stack produced by Coronis Systems for control and

monitoring applications in many environments, including home and building automation. It

defines the functionality of physical, link, and network layers. Wavenis services could be

accessed from upper layers via application programming interface (API).

pg. 9

Table 1 shows a comparison of existing wireless sensor network technologies with respect to their

functionality. It can be seen that apart from 6LoWPAN a translational gateway is required for internet

interconnectivity.

Table 1 Comparison of various wireless sensor network technologies [48]

Table 2 shows the cost of a commercially available internetworking to connect wireless sensor network

to the internet. As an example a system with 100 sensors and 10 gateways would have an initial cost of

$7300 NZD. The monthly cost for running the system, with data storage, and 1000 transactions per day

would be approximately $5700 NZD per month.

Table 2 Etherios Device Cloud Services pricing (in NZD)

Communication

Module Cost

Gateway Cost IoT Services [49]

Devices (per month) Web Services Data Storage

$45 [50] $280 [51] 1-5 devices: Free

6-100 devices : $1.99

101-10000 devices: $0.74

$0.19 per

1000

transactions

$2.49 monthly

subscription

$0.11 per day

pg. 10

pg. 11

3 Contribution to the topic
The following tasks have been implemented in integrating WSN with IoT for the purpose of Home

Automation.

 An effective low-cost and flexible solution for condition monitoring and energy management in

home is presented.

 The basic operations include remote monitoring of household appliances or conditions

through IoT.

 The novelty of the developed system is the internetworking mechanisms, which are

practicable to integrate with co-modules like intelligent home monitoring systems for wellness

determination of inhabitants [52] [53] [54] [55] [56].

 Performance measurements of network QoS for the integrated WSN with IoT with the

proposed design have been presented.

 Design and development of a front-end for effectively isolating the WSN sensors from the

Internet.

 Design and development of a gateway, allowing direct data exchange between sensors and a

centralized server.

 Implementation of high-level internetworking technologies and integration of open source

software for effective middleware management of the integrated WSN – IoT.

pg. 12

4 System Structure

4.1 Introduction

An integrated platform for IoT allows things to communicate with the internet. There are several

challenges associated with connecting things to the internet (IoT). These are:

- A Network to connect things, which requires a communication bus and protocol.

- Providing internet connectivity to the network of things, which is achieved by an internet

application gateway.

- Discovering and accessing services provided by the things, which requires a software service

that can run on a server.

- Storing data produced by things, which requires a storage location which can be a server.

The end result of the internet of things is to provide people with access to information and services

provided by things. Accessing things (from a client) can be done either directly or via a server. A server

provides a centralised access point for an IoT platform, making service discovery, data storage, data

access and security simple. Directly connecting to things from a client requires more advanced service

discovery techniques, and more security measures. This thesis presents an integrated IoT platform that

is server based, meaning clients communicate with things through a server.

pg. 13

4.1.1 Integrated Platform for IoT

The Integrated platform for IoT presented in this thesis consists of mainly four components, which is

shown in Figure 2. The first component is the WSN as seen in Figure 2, which consists of sensor nodes

and a coordinator. The second component is the Application gateway, as seen in Figure 2, which is

connected to the coordinator of the wireless sensor network, and the internet. The application

gateway provides the wireless sensor network with internet connectivity. The third component is a

service running on a server, which is inter-connected via the internet to the application gateway. The

Server stores data obtained from the WSN and provides access to the WSN and the stored data. The

fourth component is a website, hosted on the server, which provides access to the stored data and the

WSN. There are mainly two network domains involved with the integrate platform for IoT, the wireless

sensor network and the internet. The application gateway bridges between these two network

domains.

Wireless Sensor Network

End Device

Router

Coordinator
(Base Station)

Application Gateway

Hardware
Interface

Server

WebsiteIoT Service W

Internet

Figure 2 Structure of integrated IoT platform

The smart sensors consist of an XBee module and sensing device(s) OR a 6LoWPAN module and

sensing device(s). The structure and requirements for the following components is given in the

respective sections:

 ZigBee based implementation is given in section 4.3.

 6LoWPAN based implementation is given in section 4.4.

 IoT Gateway is in section 4.5.

 IoT Server is in section 4.6.

4.2 Smart sensors requirements

A smart sensor is a sensor that can condition a signal, digitize the signal and communicate the signal. In

order to do this a smart sensor consists of a sensor, microcontroller and communication bus. An

analogue sensor converts a measurable quantity into an analogue voltage or current, this signal is

converted to a digital representation of the signal by the microcontroller, and the digital representation

pg. 14

of the signal is sent via the communication bus. A digital sensor produces a digital value that

represents the measurement, which fed into the microcontroller to be sent via the communication

bus.

The following are types of sensors and examples of each type:

 Electrical – Voltage, Current, Phase Angle, Inductance, Capacitance, Resistance etc.
 Physical – Force, Movement, Acceleration, Orientation, Position etc.
 Environmental – Temperature, Humidity, Light intensity, Rain fall etc.

The communication is facilitated by either ZigBee standard or custom 6LoWPAN stack.

The combination of a sensor and communication bus produces a smart sensors. In the current context,

examples of smart sensors and their use are:

 Electrical – Home appliances monitoring.
 Force Sensors – Home object usage monitoring.
 Motion detector – Inhabitant movement monitoring.
 Temperature, Humidity, Light intensity – Environmental monitoring.

4.2.1 Signal conditioning

Signal conditioning is required from analogue and digital inputs from sensors. Analogue inputs are

provided in the form of a range of voltages, which must be conditioned to meet the input

requirements for an analogue to digital converter (ADC) of the microcontroller. Analogue outputs are

given to actuators in the form of a voltage produced by a digital to analogue converter (DAC). Digital

inputs are provided in the form of voltages that indicate on or off, which must be conditioned to meet

the input requirements of the microcontroller.

 Analogue inputs and outputs may need condoning such as increasing or decreasing the gain, removing

or adding an offset and filtering. Increasing or decreasing the gain of a signal may be need to allow the

signal to use the full range of the ADC or DAC in the microcontroller to achieve the desired input or

output. Adding or removing an offset may also be required to use the full range of the ADC or DAC. To

get an accurate measurement from the signal, noise filtering may be required as there are various

sources of noises that are added to an analogue signal.

Digital inputs and outputs are in the form of two distinct voltage levels, which are determined by the

specifications. Adjustment of these levels may be required in order to satisfy the requirements of the

microcontroller for a digital input. For digital outputs the microcontroller may produce voltages that

are not sufficient or exceed the voltage levels required.

pg. 15

4.2.2 Signal Input and Output Processing

Signal Input processing involves the conversion of signals to a digital form, then packaging and

transmitting the digital form. Signal output processing involves receiving and un-packaging signals in a

digital form, then converting the digital form to a signal.

An analogue signal requires conversion with an ADC to obtain a digital measurement of the signal. The

accuracy and granularity of the measurement depends on the specifications of the ADC. After being

obtained the digital measurement must be packaged and transmitted via the communication bus.

To obtain an analogue output that represents a digital value received by the communication bus must

be converted by a DAC. The digital value representing the analogue output must be in a packaged form

in order to be received by the communication bus. The packaged form must be unpackaged to obtain

the digital value, which can be converted by the DAC to obtain the analogue signal.

To produce digital output requires a packaged digital value to be received on the communication bus.

The digital value must be unpacked in order to produce the digital output represented by the digital

value.

Digital Input must be sampled and packaged in order to be transmitted on the communication bus. The

digital input sample will be a digital value representing the state of the input, this value must be

packaged in order to be transmitted on the communication bus.

The XBee modules provide analogue input and digital input or output, including the packing and

unpacking of digital representations of the signals.

The 6LoWPAN modules use custom implementation to provide similar functionality to the XBee

modules.

4.2.3 Network communication

The communication bus provides communication between smart sensors, and this requires

management in order to create a network of smart sensors. In most cases a dedicated unit connected

to the communication bus is required to manage and maintain the network of smart sensors. There

are two requirements of a network of smart sensors, the first is that smart sensors can participate in

this network, and the second is that smart sensors can send and receive sensor information on this

network.

In order to create a network of smart sensors a dedicated unit connected to the communication bus is

required. This dedicated unit is usually called the coordinator, as it coordinates the data obtain from

smart sensors to form a network. The coordinator requires configuration of parameters that specify

pg. 16

the identity and operation of the network, and these settings must be identical for the smart sensors in

order for them to join the network.

The primary function of a network of smart sensors is to provide access to sensors and actuators. This

requires that information is exchanged between the coordinator of the network and the smart sensors.

Smart sensors will produce measurements that must be sent to the coordinator, and to operate

actuators information from the coordinator must be received.

4.3 XBee Structure

The XBee WSN consists of end devices and a coordinator which communicate using modulated radio

signals. The arrangement of the end devices, coordinator and their links is the topology. There are two

topologies, mesh and star, provided by the XBee modules. A ZigBee stack facilitates the communication

between XBee modules, network configuration and management. This ZigBee stack is provided by the

XBee module. Sensor output sampling is provided by an internal ADC of the XBee module.

4.3.1 XBee Stack Specifications

The XBee module provides a ZigBee stack as defined in Table 3. The structure of the stack follows the

Open System Interconnection model, where the upper layers are the ZigBee stack and the lower layers

are the IEEE 802.15.4 standard. The XBee ZigBee stacks operation is proprietary and details are not

provided.

Table 3 ZigBee Stack
ZigBee Layer Description

Physical Defines the operation of the radio device which includes receive sensitivity, channel rejection,

output power, number of channels, chip modulation, and transmission rate specifications.

Most ZigBee applications operate on the 2.4 GHz ISM band at a 250kbps data rate as per the

IEEE 802.15.4 specifications [57].

Media Access

Control

Manages transactions between neighbouring devices (point to point). The MAC includes

services such as transmission retry and acknowledgment management, and collision

avoidance techniques.

Network Adds routing capabilities that allows data packets to traverse multiple devices to route data

packets from source to destination.

Application

Support Sub layer

Application layer that defines various addressing objects including profiles, clusters, and

endpoints.

ZigBee Device

Object

Application layer that provides device and service discovery features and advanced network

management capabilities

pg. 17

4.3.2 XBee Topologies

The XBee modules provide two network topologies, Star and Mesh. The star topology is a simple

topology, which consists of a coordinator and end devices connected to it, as shown in Figure 3.

Communication between end devices is by means of the coordinator from destination to source. Each

node (coordinator or end device) in the network a packet passes through is called a hop, therefore

there are two hops in order for end devices to communicate with each other.

End Device A

Router End Device

End Device B

Network Coordinator

Figure 3 ZigBee start topology

All nodes in the star network communicate directly with the coordinator and not with each other. For

example if end device A wants to communicate with end device B they communicate via the

coordinator.

The mesh topology is a complex topology, consisting of a coordinator, routers and end devices, as

shown in Figure 4. Each device can communicate with any device adjacent to it, therefore

communication is via routing devices in a path between destination and source. The coordinator can

also function as a routing device. The number of devices in this path between destination and source is

called the number of hops a packet has to make to reach its destination. The advantage of a mesh

topology is that it increases range, with the disadvantage that it is complex to implement.

End Device A

Router End Device

End Device B

Network Coordinator

Figure 4 ZigBee Mesh topology

pg. 18

End devices communicate with routers if the destination is not adjacent the end device, the routers

determine the route a packet will take to reach its destination. For example if end device A wants to

communicate with end device B then any routers between them will be used to as a route for the

communication to take place. The number of routers between device A and B are the number of hops.

When in operation the XBee modules may use a mesh topology or star topology with the appearance

of each node be a single hop away. This means that routing decisions and packet transmission

techniques are provided by the XBee module so that all packet transmissions appear as a single hop

from peer to peer or peer to coordinator.

4.3.3 XBee Hardware Specification

The XBee module has 20 pins, which are used for powering the module, controlling the module,

communicating with the module and input/output from the module. The details of these pins are

given in Table 4 and their position on the XBee module given in Figure 5. There are 4 analogue input

channels with 10 bit resolution capable of reading from 0 to 1.2 volts. These analogue channels can be

configured as digital inputs or outputs, 7 additional digital inputs/outputs can also be configured.

Figure 5 XBee Module pin numbering (top view)

pg. 19

Table 4 XBee Module pin information
Pin# Name Direction Default State Description

1 VCC - - Power supply

2 DOUT Output Output UART Data Out

3 DIN / CONFIG Input Input UART Data In

4 DIO12 Both Disabled Digital I/O 12

5 RESET Both Open-Collector with

pull-up

Module Reset (reset pulse must be at least

200ns)

6 RSSI PWM / DIO10 Both Output RX Signal Strength Indicator / Digital IO

7 DIO11 Both Input Digital I/O 11

8 [reserved] - Disabled Do not connect

9 DTR / SLEEP_RQ/ DIO8 Both Input Pin Sleep Control Line or Digital IO 8

10 GND - - Ground

11 DIO4 Both Disabled Digital I/O 4

12 CTS / DIO7 Both Output Clear-to-Send Flow Control or Digital I/O 7.

CTS, if enabled, is an output.

13 ON / SLEEP Output Output Module Status Indicator or Digital I/O 9

14 VREF Input - Not used for EM250. Used for programmable

secondary processor. For compatibility with

other XBEE modules, we recommend

connecting this pin voltage reference if

Analog sampling is desired. Otherwise,

connect to GND.

15 Associate / DIO5 Both Output Associated Indicator, Digital I/O 5

16 RTS / DIO6 Both Input Request-to-Send Flow Control, Digital I/O 6.

RTS, if enabled, is an input.

17 AD3 / DIO3 Both Disabled Analog Input 3 or Digital I/O 3

18 AD2 / DIO2 Both Disabled Analog Input 2 or Digital I/O 2

19 AD1 / DIO1 Both Disabled Analog Input 1 or Digital I/O 1

20 AD0 / DIO0 /

Commissioning Button

Both Disabled Analog Input 0, Digital IO 0, or

Commissioning Button

4.3.4 IoT adaptation

In order to provide internet connectivity to an XBee based WSN an application gateway is required to

translate ZigBee to IPv6 as there are no mechanisms for connecting the XBee WSN to the internet

without a gateway.

4.4 6LoWPAN Structure

A 6LoWPAN WSN consists of nodes and an edge router (application gateway) which communicate over

a medium that uses modulated radio signals. The way in which the nodes communicate with the edge

pg. 20

router and each other is the type of topology. A star topology was implemented for simplicity as there

is a high complexity in implementing nodes that can act as routers for the mesh or tree topologies. The

nodes require a 6LoWPAN stack, and the edge router requires a 6LoWPAN-IPv6 translation stack.

4.4.1 6LoWPAN Stack Requirements

A 6LoWPAN stack enables application to application communication between an application on a web

server and an application on a 6LoWPAN node, as shown in Figure 6. The stack on the edge router

must translate between IPv6 format and 6LoWPAN format and the node must decode and encode the

6LoWPAN format to achieve application to application communication. The stacks allow the

abstraction of the communication to a simple peer to peer connection between the applications.

Similar to ZigBee the 6LoWPAN stack operates above a MAC and PHY layer, defined by the IEEE

802.15.4 standard.

Figure 6 IPv6 and 6LoWPAN stack operation to give Server application to Sensor Application communication

The IEEE 802.15.4 Standard defines radio parameters in the PHY layer, and in the MAC layer network

management, and communication techniques are defined. The 6LoWPAN stack requires the

functionality provided by the IEEE 802.15.4 MAC layer to operate.

pg. 21

4.4.2 6LoWPAN Topologies

A simple star topology is possible using the IEEE 802.15.4 MAC and PHY layers as they allow for node to

node communication. Additional mechanisms in the 6LoWPAN stack for other network topologies are

in the draft stage and therefore were not used. These mechanisms allow for a tree or mesh topology as

nodes can perform routing, which is in the draft stage. Figure 7 shows a possible topology of 6LoWPAN

with IPv6 using the draft standards for routing between 6LoWPAN nodes.

Figure 7 6LoWPAN and IPv6 network topology

4.4.3 6LoWPAN Hardware Specifications

A microprocessor attach to a radio transceiver is required to create a 6LoWPAN node. The 6LoWPAN

stack will run on the microprocessor using the radio transceiver to communicate as per IEEE 802.15.4.

The hardware specifications for a 6LoWPAN node have been made similar to that of an XBee module in

order for them to operate with the same sensors.

At least 4 analogue input channels must be supported by the 6LoWPAN node, and must be of at least

10 bit resolution to sample a range of 0 to 1.2 volts. In addition to the analogue input, 11 digital inputs

and outputs are required. These requirements will allow sensors for the XBee based IoT platform to be

used with the 6LoWPAN based IoT platform.

pg. 22

In order to develop and test the 6LoWPAN stack on the microprocessor a debugging hardware

interface is required. In addition to this an Integrated Development Environment (IDE) that supports

the debugging hardware is required.

4.4.4 6LoWPAN Hardware Options

There are several hardware platforms that can support the development of a 6LoWPAN stack, these

are listed in Table 3. The CC430 platform by Texas Instruments was chosen for development of a

6LoWPAN stack and the implementation details are in section 5.5.2. It was chosen for the following

reasons:

 Low cost of the modules and debugging hardware. The cc430 based modules are similar in

cost to em250 based modules however the debugging hardware is much cheaper.

 Low current consumption and high power output. The cc430 based modules provide higher

power output for a similar current consumption when compared to other modules. This is

because it operates in the 900MHz band.

Table 5 6LoWPAN Development Hardware

Hardware

Price in NZD Microcontroller Parameters Radio Parameters

M
od

ul
e

N
um

be
r o

f
M

od
ul

es

De
bu

gg
in

g
Ha

rd
w

ar
e

Fr
eq

ue
nc

y
(M

HZ
)

RA
M

(K
B)

RO
M

(K
B)

Fr
eq

ue
nc

y

Po
w

er
 O

ut
pu

t
(d

Bm
)

Tr
an

sm
it

Cu
rr

en
t

(m
A)

Re
ce

iv
e

Cu
rr

en
t

(m
A)

AVR Raven 226.6 [58] 2 [58] 81.30 [59] 20 [60] 16

[60]
128 [60] 2.4GHz [61] 3 [61] 17.0 [61] 16.0 [61]

STM32W 62.50 [62] 1 [62] 34.82 [63] 24 [64] 16

[64]
256 [64] 2.4GHz [64] 3 [64] 31.0 [64] 27.0 [64]

EM250 45.00 [50] 1 [50] 4175.00 [65] 24 [66] 5 [66] 128 [66] 2.4GHz [66] 5 [66] 36.0 [66] 36.0 [66]

CC430 47.20 [67] 1 [67] 7.00 [68] 20 [69] 4 [69] 32 [69] 900MHz [69] 10 [69] 32 [69] 15.0 [69]

4.5 IoT Gateway

The integrated platform requires IoT gateway to connect the WSN with Internet, by translating

between the two networks. The gateway needs an interface to the WSN, and an interface to the

internet. The interface to the WSN is a hardware based as it needs to interface with an XBee

coordinator for the ZigBee based system, or a radio transceiver for the 6LoWPAN system. This means

that a suitable hardware platform is required to support network interfaces and hardware interfaces.

4.5.1 Gateway Hardware

The gateway needs to be compact and low cost with network capabilities, and therefore an embedded

platform is required. Adequate processing power and storage to support an embedded operating

pg. 23

system is required in order to provide networking functionality. The embedded platform needs to

provide a serial interface for communicating with the XBee Coordinator for the ZigBee based platform

and the 6LoWPAN radio. The 6LoWPAN platform will provide access to a radio transceiver via a serial

port for simplicity. To support internet connectivity either a WiFi or Ethernet port is required. A

WRT54GL router and a Raspberry PI were used for the gateway hardware, details of these are in

sections 5.4.1.1.

4.5.2 WSN Interface

To interface with the ZigBee based WSN, an XBee Coordinator is required. The coordinator provides a

serial interface to communicate with the module. The IoT gateway must communicate with the

coordinator over this serial interface. The customised software running on the IoT gateway must

interface with the XBee coordinator using the XBee API packet format. The implementation details of

the hardware interface created to interface with the XBee coordinator are in section 5.4.1.1.

To interface with the 6LoWPAN based WSN, a radio interface is required. The radio interface must be

capable of sending and receiving packets from the 6LoWPAN nodes and provide these packets to the

IoT gateway. 6LoWPAN coordinator. Management of the 6LoWPAN network is done by the IoT gateway.

The implementation details of the hardware interface created to interface with the 6LoWPAN radio are

in section 5.5.3.1.

4.5.3 IoT communication

The WSN Interface described in the previous section will allow for packets form the WSN to be sent

and received. These packets need to be processed in order to provide the WSN with internet access.

The processing will involve address translation of addresses, encapsulation of data to form an internet

packet and unpacking of internet packets to form a WSN packet. The address translation requires the

translation of WSN network addresses to an Internet addresses and vice-versa. The encapsulation of

data requires the extraction of data from a WSN packet and encapsulation of this data in an internet

packet. The unpacking of internet packets requires the extraction of data from an internet packet and

the encapsulation of this data in a WSN packet. The implementation details of the XBee based IoT

gateway are in section 5.4.4, and the implementation details of the 6LoWPAN IoT gateway are in

section 5.5.3.

4.6 IoT Server

In order to collect and store data from the WSN via the IoT gateway an internet connected server is

required. Controlling the WSN via the IoT gateway must also be performed by the server. To access the

stored data and control the WSN a website hosted on the server is required.

pg. 24

4.6.1 Minimum requirements

A server is a computer running an operating system, running a customised software service for the

integrated platform. In order to support the operating system and customised service the following

minimum requirements need to be met:

 1 GHZ Processor.

 512 MB of RAM.

 20 GB hard drive for storage.

 Ethernet port or WiFi for internet Connectivity.

4.6.2 Network connectivity

An internet connection is required to communicate with the IoT gateway and provide access to the

website. The internet connection must support high download and upload rates in order to decrease

network delay and handle traffic generated by the IoT gateways and website.

The IoT gateways will connect to the server using a Virtual Private Network over the internet. The VPN

connection must be secure in order to protect the communication between the server and IoT gateway

from intrusion and attempts to acquire sensor data or disrupt the network. The software used to

create a VPN was OpenVPN, further details are in section 5.2.3.

4.6.3 Data Reception, Storage and Web server

A custom software service on the server is required to collect and store data from the WSN via the IoT

gateways. The service must receive and unpack sensor data, and then store this data accordingly in a

database. Sensor data must be stored in a way that the sensor that produced the data, and the time

the data was produced can be retrieved. Additional information such as conversion formulae and

sensor information must also be stored in the database. The implementation of the software service is

given in section 5.6.1.

The sensor data stored in the database must be accessible from a website hosted on the server. The

website is required to display individual sensor data in a graph, which requires the selection of a sensor

and a time period to display. Graphed sensor data must be in the unit that the sensor measures, which

requires the conversion formulae stored in the database to be used. Details of the implementation of

the website are given in section 5.6.2.

4.7 Summary

A smart sensor system requires signal conditioning, processing and networking. The XBee modules

provide this functionality, and the 6LoWPAN modules must be implemented to provide similar

functionality. The XBee modules require an IoT gateway to provide internet connectivity to the XBee

pg. 25

WSN. The 6LoWPAN modules are require an implementation that will operate in a similar way to the

XBee system in order to make a comparison. An IoT gateway for the 6LoWPAN modules is required to

provide internet connectivity.

The core part of the integrated platform is the interconnection between WSN and the internet which

must be provided by the IoT Gateway. This means the IoT gateway is required to interface with the

WSN, connect to the internet, and provide a service that translates between the WSN and internet

protocols.

A server running on a computer is required to collect data from the WSN connected to the internet

and display this data on a website. The data collection must be achieved by the WSN communicating

through the IoT gateway with a software service running on the server, in order to store sensor data on

the server. The stored data must be accessible through a website that can display it in a graphical form.

pg. 26

5 Implementation
This chapter deals with the implementation required to create a WSN-IoT platform. The first two

sections (5.1 and 5.2) provide information about the software tools required to develop the platform,

and the software packages to support the platform. Details of techniques for network interfacing and

parsing network packets are given in Section 5.3. The Implementation of the ZigBee based platform in

is section 5.4, and the 6LoWPAN based platform is in section 5.5. The IoT server which aggregates and

displays sensor information from either the ZigBee base platform, or 6LoWPAN platform is given in

section 5.6.

5.1 Software Development Environment

There were several tools required to create a software development environment for developing the

software required for the IoT platform. These tools are incorporated into an Integrated Development

Environment (IDE) which is used to manage, edit, compile and debug source code. The following

sections give details on how to setup and configure the tools in order to develop the software required

for each component of the IoT platform. Working examples are given to illustrate various configuration

steps to create an executable and debug the executable.

5.1.1 Code Composer Studio Setup – 6LoWPAN Module

The 6LoWPAN Modules required software to be developed, which needs an IDE with microcontroller

debugging capabilities. Code Composer Studio (CCS) was used to create the firmware and debug the

firmware on the microcontroller. The following sections give details on how to obtain CCS, creating an

example project and debugging the example project.

5.1.1.1 Obtaining and installing Code Composer Studio

Code Composer Studio can be obtained from [70] which requires an account with TI. The account can

be registered for free. Install Code composer with the default options, and when asked for a licensing

option use the free code limited option.

5.1.1.2 Project creation for CC430

1. Create a new Code Composer Studio Project by clicking File, New and CCS Project as shown in

Figure 8. This displays a dialogue box with configuration options for a new project.

Figure 8 Code Composer Studio - Create new project.

2. The configuration options for a simple “Hello World” project are shown in Figure 9. The project

name is the name that will appear in the project list in Code Composer Studio and is “Hello

pg. 27

World”. The output type must be “Executable” as this will be the main program running on the

microcontroller. In the device section the Family is “MSP430” and the variant must be chosen

according to the microcontroller used. The CC430F5137 must be used for the OLIMEX MSP430-

ccrf development board, and the CC430F6137 must be used for the TI CC430 development

board. The connection configuration option should only be used when there are more than

one debuggers attached, so the default option is used when only one debugger is connected.

The project template allows for additional project types to be created to give additional

features. Select the “Empty Project (with main.c)” to create a blank project with a main.c

source code file. Click “Finish” to create the “Hello World” project.

Figure 9 Code Composer Studio - Create new project options for “Hello World” project.

3. The newly created “Hello World” project will appear in the CCS Project Explorer as shown in

Figure 10. When a project is selected it becomes the active project for debugging which is

shown by “[Active – Debug]” appearing next to the project. The configuration options for

debugging the microcontroller are stored in a ccxml file, with the name of the file

corresponding to the type of microcontroller. When “[Active]” appears next to this file it

means that the configuration is being used for the current debug settings, this allows for

multiple debug configurations for multiple microcontrollers to be present. The debug

configuration contains the type of microcontroller and what type of method is used to debug

pg. 28

it. In addition to debug configuration, a compiler configuration is needed which has the

extension cmd. The compile configuration contains memory organisation information.

Figure 10 Code Composer Studio - "Hello World" project contents.

4. For a simple demonstration of debugging the following code was placed in the main.c file:

#include <msp430.h>

int main(void)
{
 WDTCTL = WDTPW | WDTHOLD;
 P1DIR = BIT0;
 P1OUT = BIT0;
 return 0;
}

This code disables the watch dog timer and sets the output of a pin connected to an LED to

make it glow.

5.1.1.3 Debugging a CC430 Project

1. To start a debug session click the debug button as shown in Figure 11.

Figure 11 Code Composer Studio - Debug button to start debug process.

2. The first step to establish a debug session is the code must first be compiled into an

executable, which is done automatically. The output for the compilation is shown in the

Console. If there are errors in the code a dialogue box appears with the title “Errors in

Workspace” asking if it should proceed from the launch. Clicking cancel will return to the

pg. 29

workspace in order to rectify the problem, after which repeating step 1 will restart the

debugging process.

3. The next step is loading the compiled program onto the microcontroller and initialising debug

parameters, which is done automatically. The dialogue box shown in Figure 12 will appear

showing the status.

Figure 12 Code Composer Studio - Loading "Hello World" project onto microcontroller.

If the debugger is not connected to the computer the error shown in Figure 13 will appear.

Check that the debugging hardware is connected with the computer.

Figure 13 Code Composer Studio - No debugging hardware connected to the computer Error.

If there is a problem with the debugging hardware communicating with the microcontroller

the error shown in Figure 14 will appear. Ensure that all the hardware connection to the

required pins for debugging are correct, the microcontroller is powered and that the

debugging hardware is correctly grounded with the microcontroller.

Figure 14 Code Composer Studio - Debugging hardware failing to communicate with microcontroller Error

pg. 30

If the incorrect microprocessor variant is selected then the error in Figure 15 appears. The

microprocessor variant can be changed by right clicking on the project, selecting properties,

and in the properties window in the general section select the correct microprocessor variant

as shown in Figure 16.

Figure 15 Code Composer Studio - Microprocessor variant incorrectly set for current microprocessor connected Error.

Figure 16 Code Composer Studio - Procedure for setting the microprocessor variant for "Hello World" project.

pg. 31

Figure 17 shows the state of code composer after the previous steps have taken place. The

debugger has attached to the hardware and is ready for debugging. By default the debugger

stops on the first line of code, as shown by Figure 17, where the line of code is highlighted

green and an arrow appears next to that line.

Figure 17 Code Composer Studio state after successfully starting a debug session.

Program flow is controlled by the buttons at the top of the Debug tab. In order to step through

the program one line at a time the step button can be used. The resume button will execute

the program until a break point is reached. Break points can be added by double clicking in the

left column next to the line to break on.

4. Press the resume button to run the program and the led on the development board should

light up.

This concludes the steps required to setup a development environment for the 6LoWPAN modules

with a working example.

5.1.2 OpenWRT Toolchain with Eclipse IDE

The OpenWRT toolchain compiles source code into native programs that can be executed on hardware

running OpenWRT. Coupling this toolchain with the Eclipse IDE provides a streamlined and effective

way to write and debug software for OpenWRT based routers.

pg. 32

5.1.2.1 Windows OpenWRT Toolchain Setup

OpenWRT is an embedded version of Linux and therefore the OpenWRT toolchain was developed in

Linux. In order to get the toolchain to work with Windows a Linux environment that runs in Windows is

required. Cygwin provides this environment, however Linux programs must be recompiled in Cygwin to

work with Windows. In the following chapters details on the installation of Cygwin and compilation of

the OpenWRT toolchain will be given.

5.1.2.1.1 Cygwin Installation

1. Download and run the Cygwin setup, it can be obtained from [71]. The Cygwin setup consists

of a wizard for configuring various options.

2. The first panel in the wizard is an introduction to the setup, click next.

3. The second panel configures download options. Cygwin consists of packages that need to be

downloaded from the internet, the download options for these are selected on the second

panel. Select “Install from Internet” and click next.

4. The third panel configures the installation directory, by default Cygwin is installed to

“C:\cygwin”. Note the directory Cygwin is installed to, it will be used for configuring the

OpenWRT toolchain and Eclipse.

5. The fourth panel configures a directory for the setup to store downloaded Cygwin packages.

6. The fifth panel configures the internet connection method, select direct connection.

Connection through a proxy can be used however it is not possible to download the OpenWRT

source code for the toolchain through a proxy.

7. The sixth panel configures mirrors to download the Cygwin packages from. Selecting a mirror

that is geographically closer will usually increase download speeds. For example in New

Zealand the mirror “http://ucmirror.cantebury.ac.nz” can be used. After clicking next the setup

will download a package list from this mirror.

8. The seventh panel provides the selection of packages to be downloaded and installed. The

packages are organised into categories. To install a package click “skip” in the new column of

the package, a tick should appear in the “bin?” column, for example in Figure 18 the package

“git” is selected to be installed. Searching for the package name makes finding and selecting

packages easier, this is shown in Figure 18. The following packages are required to build the

OpenWRT toolchain.

From the “devel” category:

 git

 subversion

 flex

pg. 33

 gcc-core

 gcc-g++

 make

From the “lib” category:

 zlib

 libiconv

From the “python” category:

 python

From the “web” category:

 wget

From the “archive” category

 unzip

From the “utils” category:

 patch

 util-linux

Figure 18 Selecting a Cygwin package to install

9. The OpenWRT toolchain requires source code for particular packages. To install the source

code in addition to the package click on the check box in the “Src?” column as shown in Figure

19. The following packages and their source code need to be installed.

From the category “libs”:

 libmpc-devel

 libgmp-devel

 libmpfr-devel

Figure 19 Selecting a Cygwin package to install with source code

10. Once all the Cygwin packages have been selected click next to continue to the eighth panel.

pg. 34

11. The eighth panel contains a list of additional packages that need to be installed to support the

packages selected. After clicking next the setup will download and install all the Cygwin

packages. This may take a significant period of time depending on the bandwidth of the

internet connection.

12. Re-run setup.exe all the settings (installation directory, download directory, proxy and mirror)

are saved from the previous setup. Proceed through and install the package libncurses-devel

(under devel) binary and source with version 5.7-16. The version can be changed by clicking

the number, the result is shown in Figure 20.

Figure 20 Selecting the libncurses version 5.7-16 Cygwin package for installation

13. A Cygwin tool called make used to build projects in Eclipse produces errors. An updated

version is available at [72]. This fixes an error caused when multiple source files belonging to a

project are built using make.

5.1.2.1.2 Windows configuration

Modifications to the windows configuration are required in order for windows to operate with Cygwin

correctly. Cygwin provides Linux functionality which requires a case sensitive file system as Linux

provides this. Additionally access to the cygwin binaries is required, and therefore their path must be

added to the system so that their location is known.

5.1.2.1.2.1 Making Windows Case-Sensitive

The OpenWRT toolchain requires a case sensitive operating system. A case sensitive operating system

means that files and folders are case sensitive. Windows is not a case sensitive operating system, this

means that files and folders are not case sensitive, however the file system windows uses has the

capability to be case sensitive. The following steps configure Windows to be case sensitive.

1. Open the registry editor, to do this press the windows key and “r” to open run dialog, enter

“regedit” into the text box and click OK.

2. Navigate to

 “HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\Kernel”

in the registry editor.

3. Double click on the key name “obcaseinsensitive” and change its’ value from 1 to 0 as shown in

Figure 21.

pg. 35

4. Restart the computer in order for the file system to become case sensitive.

Figure 21 Editing registry to make windows case sensitive.

5.1.2.1.2.2 Adding Cygwin to the Path

The path of Cygwin Executables needs to be known to Windows, and therefore needs to be added to

the path. To add a directory to the path open the “System Properties” and navigate to the advanced

tab. Click the “Environment Variables…” button and add the path of the Cygwin executables as shown

in Figure 22. To suppress file path warnings the User variable shown in Figure 23 can also be added.

Figure 22 Adding Cygwin bin directory to the path

Figure 23 Adding CYGWIN environment variable to suppress warnings

pg. 36

5.1.2.1.3 OpenWRT tool chain compilation

1. Open a Cygwin console and create a directory for OpenWRT:

mkdir ~\openwrt
cd ~\openwrt

This directory is located in the Cygwin home directory for the user, which is for example

C:\cygwin\home\Sean\openwrt

2. Checkout OpenWRT source code:

svn co svn://svn.openwrt.org/openwrt/trunk/
https://dev.openwrt.org/wiki/GetSource

Checking out the trunk from the SVN will download all the files needed to compile OpenWRT

and the toolchain. These files will be located in a subdirectory “trunk” of the directory created

in step 1, for example:

C:\cygwin\home\Sean\openwrt\trunk

3. Update and install feeds:

cd attitude_adjustment
./scripts/feeds update
./scripts/feeds install

In OpenWRT feeds are the source code and methods to build additional packages [73]. These

packages act in the same way as packages for other distributions of Linux.

4. Modify scripts\patch-specs.sh by finding this section:

1 echo -n "Locating cpp ... "
2 for bin in bin usr/bin usr/local/bin; do
3 for cmd in "$DIR/$bin/"*-cpp*; do Add * to end of –cpp*
4 if [-x "$cmd"]; then
5 echo "$cmd"
6 CPP="$cmd"
7 Break
8 Fi
9 done
10 done

Add “*” to –cpp on the third line, this is because the windows file system uses the extension

“.exe” for an executable, however Linux doesn’t, so the script will fail to find executables in

windows without this modification.

5. Start the configuration using the command:

make menuconfig

This performs a dependency check (packages installed in the Cygwin installation section

5.1.2.1.1 are used). If a package is missing use the steps in the Cygwin installation section

5.1.2.1.1 to install the required package. The package “ncurses” commonly gives problems as

the Cygwin installer uninstalls the source files, therefore after installing any packages a final

and separate install of ncurses is needed.

pg. 37

6. After the dependency check a graphical menu will appear, it can be navigated with the arrow

keys. In the menuconfig select and configure the following options, as shown in Figure 24.

a. “Target System”, for example the WRT54GL router target is “Broadcom

BCM947xx/BCM953xx” [74].

b. Advanced configuration options (for developers), select Toolchain options, and select

“Build gdb”.

c. “Build the OpenWRT based Toolchain”.

Figure 24 Selecting build options for OpenWRT.

7. Build and install the tools needed to build the toolchain using the commands:

make tools/libtool/install
make tools/autoconf/install
make tools/pkg-config/install
make tools/xz/install
make tools/automake/install
make tools/gmp/install
make tools/mpfr/install
make tools/mpc/install
make tools/libelf/install
make tools/flex/install
make tools/bison/install
make tools/mklibs/install
make tools/sstrip/install
make tools/ipkg-utils/install
make tools/genext2fs/install

8. Build the toolchain using the command:

make toolchain

Building the toolchain takes a considerable amount of time, as it is creating all the tools

required to develop software for a router with OpenWRT installed.

pg. 38

5.1.2.2 Eclipse

Eclipse is a cross platform IDE that is used to edit, build and debug source code. It can be used to cross

compile and remotely debug OpenWRT applications. The complex procedures to compile and debug

OpenWRT software are handled by the Eclipse IDE, which makes designing software streamlined and

efficient.

5.1.2.2.1 Required directories from the OpenWRT toolchain

The OpenWRT toolchain contains various tools to compile and debug software for OpenWRT. Eclipse

uses these tools and therefore their locations need to be known. A list of these tools and examples of

their locations is as following.

 The location of the toolchain, for example:

“C:\cygwin\home\Sean\openwrt\attitude_adjustment\staging_dir\toolchain-mipsel_gcc-4.6-

linaro_uClibc-0.9.33.2”

 The location of GDB, for example:

“C:\cygwin\home\Sean\openwrt\attitude_adjustment\staging_dir\toolchain-mipsel_gcc-4.6-

linaro_uClibc-0.9.33.2\bin\mipsel-openwrt-linux-gdb.exe”

 The location of the headers, for example:

 “C:\cygwin\home\Sean\openwrt\attitude_adjustment\staging_dir\toolchain-mipsel_gcc-4.6-

linaro_uClibc-0.9.33.2\lib”

 The location of the libraries, for example:

“C:\cygwin\home\Sean\openwrt\attitude_adjustment\staging_dir\toolchain-mipsel_gcc-4.6-

linaro_uClibc-0.9.33.2\include”

5.1.2.2.2 Eclipse Setup for Windows/Linux

1. Eclipse can be obtained from [75], select Eclipse IDE for C/C++ developers as this has additional

packages required for C/C++ development. Eclipse does not have an installer and is

downloaded in an archive (zip file). The downloaded archive can be extracted to any location

for example “C:\eclipse”. A Java Runtime Environment (JRE) is required to run Eclipse, this can

be obtained from [76].

2. Run Eclipse by executing “eclipse.exe” (a shortcut can be placed on the desktop/start menu for

easier access). When prompted to select a workspace click ok and use the default workspace,

for example “C:\Users\Sean\workspace”. This is where the projects and source code is stored.

3. Additional packages are needed to cross compile using the OpenWRT toolchain and remotely

debug software. These can be installed by click on the “Help” menu then “Install New

Software”. In the Install New software dialog select all available sites from the drop down box

pg. 39

as shown in Figure 25, this will download a package list. Once the list has downloaded check

the boxes next to “C/C++ GCC Cross Compiler Support” and “Remote System Explorer End-

User Runtime” as shown in Figure 25.

Figure 25 Eclipse - packages required for remote debug of OpenWRT software.

4. To complete the installation of the additional packages click next and agree to the terms and

conditions, and finally click finish.

5.1.2.2.3 Eclipse Project Creation

Eclipse uses projects to manage source code, and compilation of software. The steps to create a simple

“Hello World” project are presented in order to show how to configure Eclipse to compile and debug

software for OpenWRT.

1. To create a new project, open eclipse and in the main window click File, New, and C Project.

This brings up the new project dialog.

pg. 40

2. The first panel configures the project name and type. This is a simple example project so the

name given is “Hello World’. Select Empty Project under the Executable category for the

project type and “Cross GCC” for the toolchain as shown in Figure 26. Click next to proceed to

the next panel.

Figure 26 Eclipse - new project dialog setting the project name and type

3. The second panel provides access to the advanced project properties. Click on the “Advanced

settings…” button to display the advanced project properties.

4. The paths of the headers files and libraries provided by the OpenWRT toolchain need to be

added to the projects configuration because the Cygwin headers and libraries cannot be used

for OpenWRT. These settings are found in the properties window for the project (from the

previous step). In the tree view on the left of the properties window expand the Category

“C/C++ General” and click “Paths and Symbols”, this displays a number of tabs for configuring

the paths and symbols as shown in Figure 27.

Figure 27 Eclipse - selecting "Paths and Symbols" in project properties to configure header and library paths.

The paths can be added as following:

a. To add the OpenWRT toolchains’ headers path click on the “Includes” tab. Ensure that

under languages (on the left) “GNU C” is selected. Click add and enter the directory

pg. 41

that contains the header files for the OpenWRT toolchain, for example:

“C:\cygwin\home\Sean\openwrt\attitude_adjustment\staging_dir\toolchain-

mipsel_gcc-4.6-linaro_uClibc-0.9.33.2\include”

The result is shown in Figure 28.

Figure 28 Eclipse - setting the include path for OpenWRT toolchain.

b. To add the OpenWRT toolchain libraries click on the “Library Paths” tab, and click add.

Enter the directory that contains the libraries for the OpenWRT toolchain for example:

“C:\cygwin\home\Sean\openwrt\attitude_adjustment\staging_dir\toolchain-

mipsel_gcc-4.6-linaro_uClibc-0.9.33.2\lib”

The result is shown in Figure 29.

Figure 29 Eclipse - setting the library path for the OpenWRT toolchain.

Click ok in the bottom right to save the include and library paths, this will close the dialog and

return to the second panel. Click next to proceed to the third panel.

5. The third panel configures the cross compiler, which is the OpenWRT toolchain. The cross

compiler prefix is a prefix given to the tools used to compile in order to differentiate them

from the native compilation tools. Set the Cross compiler prefix to the OpenWRT toolchain

prefix, for example:

“mipsel-openwrt-linux-“

Set the Cross compiler path to the OpenWRT toolchain directory, for example:

“C:\cygwin\home\Sean\openwrt\attitude_adjustment\staging_dir\toolchain-mipsel_gcc-4.6-

linaro_uClibc-0.9.33.2”

Figure 30 shows the settings for the cross compiler. Click finish to create the project.

Figure 30 Eclipse - setting the cross-compiler prefix and path for the OpenWRT toolchain.

6. To test the cross compiler settings source code to compile is needed. A simple “hello world”

program will be used to test it. Right click on the newly created project and select “New” and

pg. 42

then “Source File”. Set the Source file to main.c as shown in Figure 31. Click “Finish” to create

a new source file.

Figure 31 Creating a new source file main.c

Add the following lines of code to “main.c”:

#include <stdio.h>

int main()
{
 printf("hello world\r\n");
 return 0;
}

Save main.c so that it can be compiled.

7. To test that the cross compiler settings are correct the project needs to be built. Right click on

the project and click Build Project to start the build process. Figure 32 shows the output of a

successful build. The build process compiles and links the source code into an executable that

will run on the OpenWRT based router.

Figure 32 Eclipse - output of a successful build of the project "Hello World".

5.1.2.2.4 Eclipse Remote Debugging

Debugging software written for OpenWRT is essential to streamlining and improving efficiency. The

problem is that the embedded hardware the software is designed for is very limited and does support

graphical user environments for debugging. Therefore the debugging must be done remotely from

Eclipse running on a computer. Eclipse provides remote debugging capabilities using the OpenWRT

toolchain, the following steps setup remote debugging for the “Hello World” Project in the previous

section.

pg. 43

5.1.2.2.4.1 Remote Resource

Eclipse needs a connection to target system in order to remotely debug it. These connections are

called remote resources, which is managed by the Remote Systems. The following steps show how to

configure an OpenWRT router on a local network as a remote resource. This can then be used to

configure remote debugging, which is in the next section 5.1.2.2.4.2.

1. The OpenWRT router is a remote resource which needs to be added to the Remote System

Explorer in eclipse. By default the Remote System Explorer is hidden. To show the explorer

click “Window”, “Show View”, and then “Other” as shown in Figure 33. This will bring up a new

window containing a list of views that can be added to the eclipse interface. Type “remote”

into the search box at the top of the window, select “Remote Systems” as shown in Figure 33

and then click OK. This will put the Remote Systems view at the bottom of the main Eclipse

window if the C/C++ perspective is active.

Figure 33 Eclipse - displaying Remote Systems view

2. To create a remote resource right click in the Remote Systems view and select new. This will

show a wizard to configure a new remote resource for the OpenWRT router.

3. The first panel shows the types of remote resources available, select “Linux” from the

“General” category, as shown in Figure 34. Click next to proceed to the second panel of the

wizard.

pg. 44

Figure 34 Eclipse - selecting the remote resource type "Linux" for the OpenWRT router.

4. The second panel configures the host name and connection name. The host name can either

be a host name given by a domain name service (not applicable in most cases) or the IP

address. The IP address of the OpenWRT router on the local network which was configured

with an IP address of 192.168.1.100 which can be used as shown in Figure 35. The connection

name is the user friendly name given to the connection, by default it is the host name given, as

shown in Figure 35. Click next to proceed to the third panel of the wizard.

Figure 35 Eclipse - setting the Host name and Connection name for a remote resource.

5. The third panel of the wizard configures the method to upload files to the remote resource.

Select “ssh.files” as the method to use, as shown in Figure 36. This uses a Secure Shell (ssh) to

upload files to the OpenWRT router. Click next to proceed to the fourth panel.

Figure 36 Eclipse - configuring remote resource file access.

6. The fourth panel configures the method to manage processes on the remote resource. Select

“processes.shell.linux” as the method to use, as shown in Figure 37. This uses a shell to

manage the processes on the OpenWRT router. Click next to proceed to the fifth panel.

Figure 37 Eclipse - configuring remote resource process access method.

pg. 45

7. The fifth panel configures the method to connect to a shell on the remote resource. Select

“ssh.shells” as the method to user, as shown in Figure 38. This uses a Secure Shell (ssh) to

access the shell on the OpenWRT router. Click next to proceed to the sixth panel.

Figure 38 Eclipse - configuring remote resource shell access method.

8. The sixth panel configures the method to connect to a terminal on the remote resource. Select

“ssh.terminals” as the method to use, as shown in Figure 39. This uses a Secure Shell (ssh) to

access the terminal on the OpenWRT router. Click finish to complete the wizard.

Figure 39 Eclipse - configuring remote resource terminal access method.

9. The remote resource will appear in the Remote Systems view, to test it right click on the newly

created remote resource and click connect. The first time a connection is made a user name

and password dialog will appear, as shown in Figure 40. The user name and password are for a

user on the OpenWRT router, and a user with root access is preferable. Selecting “Save user

ID” and “Save password” will save the user name and password so that they do not have to be

entered each time a connection is made.

Figure 40 Eclipse - User name and password for connecting to a remote resource (OpenWRT router).

If the connection is successful a green plus icon will appear next to the remote resource in the

Remote Systems view, as shown in Figure 41.

pg. 46

Figure 41 Eclipse - successful connection to a remote resource "192.168.1.100" which is the OpenWRT router.

5.1.2.2.4.2 Remote Debugging

To remotely debug the “Hello World” project configuration of the remote debugging in eclipse is

required. The following steps give the details of configuring remote debugging and starting a remote

debugging session to test the configuration.

1. A debug configuration needs to be added in order to remotely debug the “Hello World”

program. The debug configuration can be added by clicking the arrow next to the debug icon

and selecting “Debug Configurations…” as shown in Figure 42. This brings up the Debug

Configuration dialog.

Figure 42 Eclipse - Menu to show debug configurations.

2. The Debug Configuration dialog allows for several types of debug configuration to be added.

Click the “C/C++ Remote Application” category in the tree view on the left, as shown in Figure

43. To add a configuration click the “New launch configuration” button which is the left most

button above the tree view. This will add a new configuration called “Hello World Debug”

under the “C/C++ Remote Application” category as shown in Figure 43. The right side of the

dialog will show parameters for this configuration. In the main tab the following settings need

to be set (which can be seen in Figure 43):

a. C/C++ Application needs to be set to the path of the executable generated by the

compilation. Click the “Search Project” button to locate the executable. If different

architectures are used an executable for each architecture will be present, and the

according executable needs to be selected.

pg. 47

b. The Connection needs to be set to the remote connection configured in the previous

section. This is connection used to upload the executable and debug the executable

remotely.

c. The “Remote Absolute File Path for C/C++ Application” is the name that the executable

will be given when uploaded to the OpenWRT router. “hello_world” was used as

spaces are not allowed in the file names.

Click the “Apply” button at the bottom of the dialog to save these settings.

Figure 43 Eclipse - Main remote application debugging configuration for "Hello World" project.

3. Remote debugging is performed by a program specifically compiled by the OpenWRT toolchain

for the architecture of the OpenWRT router. This program is called GNU Debugger (GDB) and

its location is required in order for eclipse to remotely debug the OpenWRT router. An example

of the location of the GDB executable produced by the OpenWRT toolchain is:

“C:\cygwin\home\Sean\openwrt\attitude_adjustment\build_dir\toolchain-mipsel_gcc-4.6-

linaro_uClibc-0.9.33.2\gdb-linaro-7.2-2011.03-0\gdb\gdb.exe”

Use the Browse button as shown in Figure 44 to locate and set the location of the GDB

executable. Click the “Apply” button at the bottom of the “Debug Configuration” dialog to save

the configuration and then close the dialog.

pg. 48

Figure 44 Eclipse - Setting Location of GDB produced by OpenWRT toolchain.

4. The newly created “Hello World Debug” configuration will now appear in the list of debug

configurations as shown in Figure 45. The list is accessed by clicking the arrow next to the

debug button. Clicking on the “Hello World Debug” configuration will start the debug process.

Figure 45 Eclipse - "Hello World Debug" configuration location.

5. If the debug process has been started for the first time a dialog shown in Figure 46 will appear.

Clicking “Yes” will allow Eclipse to automatically switch to a different perspective that contains

debugging related information.

Figure 46 Eclipse - Confirming automatic change to Debug Perspective.

pg. 49

6. The process to start a debugging session includes compiling the project, uploading the

executable to the OpenWRT router, and starting debugging services on the OpenWRT router.

After completing those tasks Eclipse should be in a debug perspective. The error in Figure 47

occurs due to the difference in file naming schemes between Cygwin and Windows. To correct

this error click the “Locate File” button and locate the main.c file contained in the “Hello

World” project. For example the location of the main.c file is:

“C:\Users\Sean\workspace\Hello Wolrd\main.c”

Figure 47 Eclipse - Unable to locate source files error.

7. The debug perspective should appear similar to Figure 48 once the location for the main.c file

is known. The location of additional source files in the project do not require the same process

as this initial step establishes the location of all sources files in the project. The initial state of

the debugger is to break on the first line of code, which is shown by an arrow next to the line

of code, and the green highlighting of the line of code as shown in the bottom of Figure 48.

Breakpoints can be added by double clicking in the column next to the line. Buttons to control

the program flow are located in the toolbar shown in the top of Figure 48 and are as following:

a. The resume button executes the program until a break point is reached.

b. The stop button stops execution of the program and the debug session.

c. The step buttons provide line by line stepping of the code.

pg. 50

Figure 48 Eclipse - Debug perspective for the debugging of "Hello World" project.

8. A simple console for program output is provided at the button of the eclipse windows as

shown in Figure 49. Pressing the step button will execute the line of code that outputs “hello

world”, which should appear in the console.

Figure 49 Eclipse - Program output in a debugging session.

This concludes the setup and configuration of the development environment for the OpenWRT router

with a working example.

pg. 51

5.1.3 Visual Studio Setup

Visual Studio was selected to develop the services required on the server to receive and store sample

data. The following sections give details on installing Visual Studio, installing required libraries and a

simple example Visual Studio project. The version of Visual Studio used was the Premium edition,

however details on installing the free Express Edition are given. The functionality of each edition is

similar for the purpose of developing the required services for the server.

5.1.3.1 Installation

Visual Studio 2012 Express Edition can be obtained from [77]. Install Visual Studio Express Edition with

default settings. In order to support MySQL an additional library is needed, this can be obtained from

[78]. Install the MySQL library with default settings.

5.1.3.2 Project Creation

The following steps create an example project that uses a MySQL library to connect to a database

located on the local machine. This can be used to check that the MySQL database and MySQL library

are functioning correctly in order to provide database access. Setup of the MySQL database is given in

section 5.2.1.

1. Start the “Create New Project” wizard by click file, new and project as shown in Figure 50.

Figure 50 Visual Studio - Creating a new project.

2. From the new project wizard select the Windows category from the Visual C# category in the

left tree view as shown in Figure 51. Next select a console Application and give a Name to the

Project, in this example it is “Hello World”. Click OK to create the project.

pg. 52

Figure 51 Visual Studio – New project creation dialog for “Hello Word” project.

3. The next two steps are to add the MySQL library to the project in order to communicate with

the database. First a reference to the MySQL library needs to be added, this can be done by

right clicking on the references section of the project and clicking add as shown in Figure 52.

This will show the Reference Manager.

Figure 52 Visual Studio - Opening reference manager for "Hello World" project.

4. In the Reference Manager select Browse on the left hand side, and then click browse at the

bottom of the screen, this will bring up a dialogue to select the location of a library. Locate the

“MySQL.Data.dll” library which is by default installed in the following directory for 64 bit

systems:

“C:\Program Files (x86)\MySQL\MySQL Connector Net 6.6.5\Assemblies\v4.0”

Or in this directory for 32 bit systems:

pg. 53

“C:\Program Files\MySQL\MySQL Connector Net 6.6.5\Assemblies\v4.0”

After locating the file the reference manager should appear like Figure 53. Click OK to confirm

adding the new reference. The MySQL.Data library should appear in the references section of

the project.

Figure 53 Visual Studio - Adding MySQL.Data reference to "Hello World" project.

5. The final step is to add code to test the MySQL library and MySQL database, the following code

was added to program.cs in the project.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using MySql.Data.MySqlClient;

namespace Hello_World
{
 class Program
 {
 static void Main(string[] args)
 {
 MySqlConnection conn = null;
 try
 {
 string conns = @"server=localhost;userid=user12;
 password=34klq*;database=mydb";
 conn = new MySqlConnection(conns);
 conn.Open();
 Console.WriteLine("MySQL Connection sucess!");
 Console.WriteLine("Sever version: {0}", conn.ServerVersion);
 }
 catch (MySqlException ex)
 {
 Console.WriteLine("Error: {0}", ex.ToString());
 }
 finally
 {
 if (conn != null)
 {
 conn.Close();
 }
 }
 Console.Read();
 }
 }
}

This code uses the MySQL library to create a connection to the database running locally on the

computer. The connection parameters are stored in a string called “conns”, which are the

server to connect to, user id, password, and database to connect to.

pg. 54

5.1.3.3 Project Debugging

1. When a debug session is started in Visual Studio execution of the program continues until a

break point is reached. To add a breakpoint click in the column next to the line required as

shown in Figure 54.

Figure 54 Visual Studio - Adding a breakpoint to the "Hello World" project.

2. A debug session can be started by clicking the button shown in Figure 55. This will execute the

program until a break point is reached. The breakpoint chosen in the previous step will stop

the program execution at the line chosen.

Figure 55 Visual Studio - Button for starting debug session.

3. The state of the Visual Studio interface after the breakpoint is reached is shown in Figure 56.

The menu bar contains buttons for controlling the program flow such as stepping and

continuing. Pressing the Continue button will resume program execution.

Figure 56 Visual Studio - Debugger stopped at "Hello World" breakpoint.

4. The output of the program is shown in Figure 57, the error produced is due to the absence of a

MySQL server which will be setup in section 5.2.1. However the error does indicate that the

MySQL library is working correctly as it attempted to create a connection. This program can be

used to test the configuration performed in section 5.2.1.

Figure 57 Visual Studio - "Hello World" Executable output.

This concludes the setup of Visual Studio for developing the required services for the IoT platform with

a working example.

pg. 55

5.2 Software Configuration

Software packages and operating systems are required for the IoT integrated platform to operate,

which require specific configuration. The server requires web hosting capability to display sensor data

and a database for storing sensor information, which is provided by the Windows Apache and MySQL

and PHP (WAMP) software package. The IoT gateway requires a customised Linux operating for

networking functionality. In order to have secure communication between the IoT gateway and the

server a secure communication software package called Open Virtual Private Network (OpenVPN) was

used. The following sections give details on how to configure the various software components to

create the supporting architecture for an IoT integrated platform.

5.2.1 Windows Apache MySQL and PHP (WAMP)

To provide web hosting and database capability is the WAMP software package was chosen, however

after a default installation some parameters or settings need to be changed for the IoT integrated

platform. A windows based server with a permanent internet connection is required to run the WAMP

software package.

5.2.1.1 WAMP Installation

The version of WAMP used was 2.22E and can be obtained from [79]. Install WAMP using the default

settings.

WAMP requires the Visual Studio redistributable package to be installed, this can be obtained from

[80].

5.2.1.2 WAMP Configuration

Configuration to setup a WAMP service running on a server is given in the following steps.

1. Run the WAMP executable which will place an icon in the system tray as shown in Figure 58.

2. WAMP by default does not allow external IP addresses to connect to the Apache server. To

allow external IP addresses to connect right click the WAMP icon and select "Put Online" as

shown in Figure 58.

Figure 58 WAMP - "Put Online" to enable access to WAMP from external IP addresses.

pg. 56

3. PHP Sockets are required for the implementation, to enable them right click the WAMP icon

then navigate to PHP -> PHP Extensions and click on "php_sockets" as shown in Figure 59.

Figure 59 WAMP - Enabling "php_sockets" from the menu.

4. The MySQL database is by default unsecured, and therefore a password for the root user

needs to be set. Right click the WAMP icon and select MySQL then MySQL Console to start a

MySQL console session as shown in Figure 60.

Figure 60 WAMP - opening a MySQL console session.

5. Use the following commands to set the password for the root user.
update mysql.user SET password=password(“password”) where user=”root”;
flush privileges;
quit

The update statement selects the root user from the user table in the database and updates

the password field to password. In this case password is an example, it is recommended to use

a complex password to improve security. The flush command ensures that all the fields are

update and the quit command terminates the MySQL session. An example of successfully

setting the root password is shown in Figure 61.

Figure 61 MySQL - successfully changing the root users’ password.

pg. 57

6. In order for phpMyAdmin to work with the database it needs root access, therefore it needs

the root password. Change following line in file

“C:\wamp\apps\phpmyadmin3.5.1\config.inc.php”

to reflect changes to the MySQL root password.
$cfg['Servers'][$i]['password'] = 'password';

Replace “password” with the password set in the previous step.

7. “phpMyAdmin” is used to administer the database which can be accessed from

“http://127.0.0.1/phpmyadmin/”. There were problems accessing “phpMyAdmin” from

“http://localhost/phpmyadmin/” in Internet Explorer.

Figure 62 WAMP - phpMyAdmin in Internet Explorer.

This concludes the setup of the WAMP server for the IoT integrated platform. To complete the IoT

integrated platform custom software for receiving sensor data, and displaying this data on a website

was developed, details of this software is in the section 5.6.2.

5.2.2 Open source embedded Linux installation

OpenWRT is an open source embedded Linux created for routers and can be freely downloaded and

modified. It contains a number of useful software packages to create an IoT Application gateway.

Remote debugging of customised software can be achieved using a free toolset provided by OpenWRT

coupled with the Eclipse IDE. Communication between the IoT application gateway and server needs

to be secure, and OpenWRT provides secure VPN connectivity capabilities from its software packages.

The next section gives specific details on compiling a customised firmware image, this image is hosted

on the google code website for the project so that the lengthy process to create the firmware image

does not need to be repeat. The last section elaborates on installing the custom firmware image on the

WRT54GL router in order to provide a platform to develop an IoT Application gateway.

5.2.2.1 OpenWRT Compilation

OpenWRT has many features some of which are not needed for the IoT implementation. A custom

firmware image was compiled to create a minimal operating system for the IoT application gateway.

The following steps are based on the guides available on the OpenWRT website [81] [82]. This process

pg. 58

requires Linux as the windows environment requires significant changes to the toolset source code.

The version of Linux used to create the firmware was Ubuntu 12.04 64bit.

1. To create the environment to cross compile and create a firmware image certain software

packages are required, these can be installed using the following command.

sudo apt-get install build-essential subversion libncurses5-dev zlib1g-dev gawk gcc-multilib flex git-
core gettext

2. Next a directory for the required files needs to be created this was done in the home directory

using the following commands.

mkdir openwrt
cd openwrt

3. The source code can now be checked out from the OpenWRT subversion using the following

command.

svn co svn://svn.openwrt.org/openwrt/branches/backfire

4. After the source code has been checked out the feeds need to be updated and installed. Feeds

are the source code to software packages that will be installed into the firmware image. The

following command will update and install the required feeds.

./scripts/feeds update

./scripts/feeds install

5. The OpenVPN and secure FTP must be installed using the scripts in the previous step using the

following.

./scripts/feeds install openvpn

./scripts/feeds install openssh-sftp-server

6. A menu system is provided to configure the parameters needed to build the firmware as there

are many software packages and platforms available. To start the menu use the following

command.

make menuconfig

7. The platform the firmware is to be built for is selected in “Target System”. The WRT54GL router

is based on the BCM947xx chip therefore the target system “Broadcom BCM947xx/953xx”

must be selected.

8. Enabling the toolchain option allows for debugging options to be selected. It can be enabled by

the selecting the “Advanced configuration options” item and then selecting “Toolcahin

options”.

9. IPv6 support is added by installed the IPv6 kernel module. This is added to the firmware by

selecting “Kernel Modules” then “Network Support”, located “kmod-ipv6” and select it until an

pg. 59

asterisk (“*”) appears next to it. If an “M” appears next to it the package will be compiled but

not installed into the firmware. This must be done for all the following steps.

10. Select the OpenVPN software package which is located in “Network” then “VPN”. This is

needed to create a secure connection between the IoT application gateway (router) and the

server.

11. A secure file transfer protocol (SFTP) service is required for uploading software to be debugged

from the Eclipse IDE. The package “openssh-sftp-server” provides a SFTP service, it can

selected in “Network”, then “SSH”.

12. To debug software remotely on the router using eclipse the software package “gdbserver” is

required. This can be selected in the “Utilities” section.

13. Save the above configuration, which will be used to build a customised firmware for the

WRT54GL router.

14. The build process is initiated using the following command.

make

15. This will take a considerable amount of time as all the components will be downloaded and

compiled to create the firmware image. The resulting firmware image is located in the bin

directory for example: ~/openwrt/backfire /bin/brcm2.4/openwrt-brcm2.4-squashfs.trx

This process will produce a firmware image, a copy has been placed in the google code repository

created for this thesis.

5.2.2.2 OpenWRT installation

The following steps install the firmware image created in the previous section onto the WRT54GL

router.

1. Locate the custom OpenWRT firmware image for the WRT54GL router created in the previous

section, or download a pre made custom firmware at [83].

2. Connect the power adapter to power the WRT54GL router. Connect an Ethernet cable

between port 1 of the WRT54GL router and the computer. Set the IP address for the Ethernet

adapter on the computer to 192.168.1.2 with a subnet of 255.255.255.0 in order to

communicate with the WRT54GL router. See [84] for details on IP Address configuration in

windows. By default the ip address of the WRT54GL router is 192.168.1.1. Using a web

browser navigate to http://192.168.1.1/ to access the configuration of the router in order to

upload the firmware. The “Firmware upload” page is located in the “Administration” section as

shown in Figure 63. Click the “Browse” button and locate the firmware file from the previous

pg. 60

step. Click the Update button to start the upload and flashing of the firmware which is shown

in Figure 63.

Figure 63 OpenWRT - Uploading and flashing OpenWRT on WRT54GL router.

3. The lights marked “power” and “dmz” will flash while the router boots into OpenWRT. When

the power light is constantly on the boot process is finished. The initial state of the firmware is

there is no password set for the root user and a telnet service is running which makes the

WRT54GL unsecure. The telnet service gives access to a shell, in which the root users’

password can be set. To set the password open PuTTY and connect to the router (the IP

address remains the same – 192.168.1.1) using the “Telnet” connection type as shown in

Figure 64. Click the Open button to establish a telnet connection to the WRT54GL router.

Figure 64 PuTTY settings for connecting to WRT54GL after OpenWRT installation.

4. If the telnet connection is successful a banner and prompt should appear in a new window as

shown in Figure 65. To set the password use the “passwd” command, this will prompt the user

pg. 61

to enter a new password twice as shown in the bottom of Figure 65. Once the password is set

the session can be ended using the “exit” command. After the session is closed the telnet

service will stop and the WRT54GL router will be secure. A Secure Shell (SSH) service will be

started in order to provide shell access which will require the password set previously.

Figure 65 OpenWRT - telnet connection to set root password.

5. To connect to the SSH on the WRT54GL router the settings shown in Figure 66 should be used.

This will create a secured shell session with the router. Click Open to start the session.

Figure 66 PuTTY settings for SSH access to the WRT54GL router.

6. The first time a secure session is made keys must be generated for the connection. This means

the warning shown in Figure 67 will appear, click “Yes” to connect to the router.

pg. 62

Figure 67 PuTTY key mismatch error.

7. Login to the router with the user “root” and the password set in Step 4. Figure 68 shows the

result of a successful login and the shell prompt.

Figure 68 OpenWRT - Secure Shell session login.

8. The next steps are to allow the router to connect to the internet via a local network. An

internet connection is required to connect to the server using OpenVPN. The IP configuration

of the router needs to be changed in order to exist on the local network and use the internet

connection on the local network. A dynamically assigned address is not preferable as the

router needs to be at a known address to be accessible. The network settings are in the file

“/etc/config/network” which can be edited using the vi command as following.

vi /etc/config/network

pg. 63

For further information on how to use vi see [85]. Figure 69 shows specific settings for

connecting to a home network.

Figure 69 OpenWRT - IP Configuration for joining local network.

9. Once the networking configuration file has been changed the networking interfaces need to be

restarted in order for the configuration to take effect. The following command will restart the

networking interfaces.

/etc/init.d/network restart

The PuTTY window can be closed as the new network configuration will end the SSH session.

The router will now be at the IP Address assigned in the file. A new SSH session using PuTTY

will need to be established using steps 5 and 6.

This concludes the Setup of OpenWRT on the WRT54GL router. In the next section OpenVPN will be

configured on the router and server to create the base for the communication between the router and

server to create an IoT integrated platform. The customised software developed to send sensor data

from the router to the server requires the secure connection created by OpenVPN.

5.2.3 OpenVPN

OpenVPN is open source software that creates a Virtual Private Network, and runs on many platforms

such as Linux and windows. OpenVPN has been ported to the OpenWRT, making it suitable to create a

secure connection between an OpenWRT based router and a server. Sensor data can be transmitted

via this secure connection as it supports IPv6. The following sections give details on installation and

configuration of OpenVPN on the server and router.

5.2.3.1 OpenVPN Installation

OpenVPN version 2.2.2 was used and can be obtained from [86]. This is not the most current version of

OpenVPN as the most current version was released after the system was developed. Due to changes in

the functionality of the new version of OpenVPN it cannot be used, and OpenWRT does not support

the new version. OpenVPN must be installed with the default settings in order to follow the steps in

the following sections.

pg. 64

5.2.3.2 OpenVPN Certificate and Key Generation

Certificates and keys are required to secure the connection between the IoT application gateways and

the server. The following steps give details on creating a Certificate Authority (CA) and issuing

certificates and keys for the server and clients (IoT application gateways). The steps must be

undertaken on the server to make configuration and distributing keys and certificates a simple process.

The steps are based on the guide provided at [87].

1. Open a command prompt by pressing the windows key and “r”. Put “cmd” into the textbox as

shown in Figure 70 and click ok, this will open a command prompt.

Figure 70 OpenVPN - Starting a command prompt.

2. In the command prompt change the directory to the “easy-rsa” subdirectory and run the batch

file “init-config” as shown in Figure 71. This will create a batch file called “vars.bat” which

contains variables needed to generate the certificates.

Figure 71 OpenVPN - Changing to easy-rsa directory and running init-config.

3. The “vars.bat” file needs to be edited to change the variables at the end of the file. The

following values are examples:

a. set KEY_COUNTRY=NZ - this changes the country which the certificate is associated

with, and it must be two letters.

b. set KEY_PROVINCE=Manawatu – this changes the province/area which the certificate

is associated with.

c. set KEY_CITY=Palmerston North – this changes the town/city which the certificated is

associated with.

pg. 65

d. set KEY_ORG=Massey University – this changes the organisation with the certificate is

associated with.

All other variables can remain the same.

4. Running the vars.bat batch file will initialise the variables needed for the key and certificate

creation. Figure 72 shows the result of running “vars.bat” and “clean-all.bat” which sets up the

variables and directories for key and certificate creation.

Figure 72 OpenVPN - Running "vars.bat" and "clean-all.bat" to setup the environment.

5. The CA is generated using “build-ca.bat” as shown in Figure 73. The variables in “vars.bat” are

used to automatically fill out the required parameters as shown by square brackets around the

values. Pressing enter will use the default value in the square brackets. The “Common Name”

and “Name” needs to be changed to the name of the server as shown at the bottom of Figure

73. After filling out the required parameters the CA will be generated in the directory

“C:\Program Files\OpenVPN\easy-rsa\keys” with the file name being “ca.crt”.

Figure 73 OpenVPN - Running "build-ca.bat" to create the main key and certificate for the OpenVPN server.

6. The server certificate and key is generated using “build-key-server.bat” as shown in Figure 74.

The parameter “iots2is.org” specifies the name of the key and certificate being generated. The

values requested are the same as those in step 5 with two additional parameters which can

remain default. After giving the required parameters a request to sign the certificate is

presented. Pressing “y” will sign the certificate and pressing “y” again will commit the new

pg. 66

certificate to the CA database as shown in the bottom of Figure 74. The server certificate and

key will now be in the keys directory with the file names “iots2is.org.ca” and “iots2is.org.key”.

Figure 74 OpenWRT - Generating server certificate and key.

7. The client (IoT Application Gateway) certificate and key is generated with “build-key.bat” as

shown in Figure 75. The “router1” parameter specifies the file name of the certificate

generated. The procedure is similar to the previous step however the “Common name” and

“Name” must be changed to the name of the client, “router1” in this case. The certificate must

also be signed and committed to the CA database as shown at the bottom of Figure 75. This

step must be repeated for each client that needs to connect to the server with a different file

name, “Common Name” and “Name” for each client.

pg. 67

Figure 75 OpenVPN - Generating IoT application gateway certificates and keys.

8. The final step is to generate the Diffie Hellman parameters using “build-dh.bat” as shown in

Figure 76.

Figure 76 OpenVPN - Generating Diffie Hellman parameters.

If more certificates or keys need to be generated after the command prompt is closed, “vars.bat” must

be run in the new command prompt to initialise the environment and then Step 7 can be followed to

generate the required certificate and key.

pg. 68

5.2.3.3 OpenVPN Server Configuration

OpenVPN provides a service on the server to allow VPN connections to be made to the server. This

service requires configuration which is given in the following steps.

1. A sample configuration for a server is contained in

“C:\Program Files\OpenVPN\sample-config\server.ovpn”

copy this file to the directory

“C:\Program Files\OpenVPN\config”

This is the location where the OpenVPN graphical user interface (GUI) looks for configurations

as multiple configurations can be present in that directory.

2. Edit the server configuration file located in the config directory from the previous step and

make the following changes:

a. In order to allow for forwarding through routers the protocol OpenVPN uses must be

changed to TCP. Change the protocol from UDP to TCP by commenting and

uncommenting as following:

proto tcp
;proto udp

b. For IPv6 to operate with OpenVPN the type of tunnel must be changed from a tunnel

that operates on the transport layer (tun) to a tunnel that operates on the data layer

(tap). Change the tunnel type from a “tun” to “tap” by commenting and

uncommenting as following:

dev tap
;dev tun

c. The locations of the CA, certificate and key for the server are required. The location of

these files is based on the previous section. Due to OpenVPN being multiplatform the

paths must be specified in quotation marks and the slash character must be escaped.

Change the locations as following:

ca “C:\\Program Files\\OpenVPN\\easy-rsa\\keys\\ca.crt”
cert “C:\\Program Files\\OpenVPN\\easy-rsa\\keys\\iots2is.org.crt”
key “C:\\Program Files\\OpenVPN\\easy-rsa\\keys\\iots2is.org.key”

d. The location of the Diffie Hellman parameters is required for the server. The location of

this files is based on the previous section. Change the location as following:

dh “C:\\Program Files\\OpenVPN\\easy-rsa\\keys\\dh1024.pem"

e. Due to problems with packet fragmentation in windows the following option should be

appended to the bottom of the configuration.

mssfix 1000

pg. 69

This completes the configuration, save the configuration with the above changes.

3. Run the OpenVPN GUI application, it will appear in the task tray as shown in Figure 77. Right

click the icon and “Connect” should appear at the top of the menu as shown in .Click on

“Connect” menu item to start the OpenVPN server.

Figure 77 OpenVPN GUI application on the server.

4. A status window will appear showing the connection progress as shown in Figure 78. If the

tunnel is successfully created this window will close with no error messages and the icon in the

task tray will turn green.

Figure 78 OpenVPN - Successfully creating a tunnel service.

pg. 70

5. The status window is useful for displaying when a client connects and troubleshooting any

problems. It can be shown by clicking on the OpenVPN GUI icon in the task tray then clicking

“Show Status” as shown in Figure 79, this will display the window shown in Figure 78.

Figure 79 OpenVPN - Method to show status window.

6. OpenVPN version 2.2.2 does not support auto configuration of IPv6 addresses, therefore the

IPv6 address for the server must be configured. The following steps show how to configure the

address in Windows 7 or Windows 8. First open the “Network and Sharing Center by right

clicking on the network icon in the system tray as shown in Figure 80.

Figure 80 Opening networking and Sharing Center

7. In the “Network and Sharing Center” choose adapter settings in the column on the left side of

the screen, this will open a window containing a list of the network adapters installed on the

computer. Locate the network adapter for the OpenVPN tap driver as shown in Figure 81 and

right click on it then choose properties. This will show the properties dialog for the adapter.

pg. 71

Figure 81 Opening properties for OpenVPN tap driver.

8. In the adapter settings dialog for the OpenVPN tap driver choose “Internet Protocol Version 6

(TCP/IPv6)” from the list and click on the “Properties” button. This will show a window to set

the IPv6 address for the adapter.

Figure 82 Selecting IPv6 properties.

9. The IPv6 address and subnet for the adapter can be set by clicking “Use the following IPv6

address” and then filling out the appropriate text boxes as shown in Figure 83.

Figure 83 Changing IPv6 address for OpenVPN tap driver.

The OpenVPN GUI application will need to be run and the connection started if the computer is

restarted. The next section give details on configuring OpenVPN on the router in order to connect to

the OpenVPN service setup on the server.

5.2.3.4 OpenVPN Client Configuration

The configuration of OpenVPN on the router is similar in some aspects to the server, however due to a

Unified Configuration Interface (UCI) [88] used in OpenWRT the specification of parameters is

different. The following steps provide details on configuring OpenVPN running on OpenWRT to

connect to the OpenVPN server setup in the previous section.

1. In order to create a secure connection between the router and server the certificates

generated on the server (in the beginning of the previous section) must be available on the

pg. 72

router. The following files are needed, the certificate authority certificate which is “ca.crt” and

the certificate and key file for the client. To transfer the certificates to the router the certificate

files were placed in a temporary directory “tmp” in the WAMP “www” directory. This made

them accessible through the apache http server in WAMP. Figure 84 shows the commands to

download the certificates onto the router, which was connected via the LAN to the server. First

the directory is changed to the “/etc/openvpn” directory which is used to store the

configuration, certificate and key files. Next the “wget” command was used to download the

files form the WAMP server. Due to the server being on the local network the IP address of the

server was used, this may need to be changed based on the network setup.

Figure 84 OpenVPN - Downloading certificates and keys onto WRT54GL router.

2. A configuration file provided by OpenVPN is present in the location “/etc/config/openvpn”, this

needs to be edited in order to connect to the server. Editing software called “vi” can be used to

edit the configuration using the following command. Details on how to use “vi” can be found

at [85].

vi /etc/config/openvpn

3. The configuration file contains two sample configurations, a server configuration and a client

configuration. Locate the client configuration by finding the following.

Sample client-side OpenVPN 2.0 uci config #
for connecting to multi-client server. #

The settings following the lines above need to be altered to configure the client.

a. Both the sample configurations are disabled by default, therefore to use the client

configuration it must be enabled by changing enabled from 0 to 1 as following.

option enabled 1

b. The tunnel type needs to be changed to tap from tun to enabled IPv6 support. To do

this comment the tun line and uncomment the tap line as shown below.

option dev tap
#option dev tun

pg. 73

c. To allow forwarding through a router the TCP protocol must be used by commenting

the UDP protocol and uncommenting the TCP protocol as shown below.

option proto tcp
#option proto udp

d. The address of the OpenVPN server is set as following

list remote “iots2is.org 1194”

Where “iots2is.org” is the host name of the server and 1194 is port. The port must

correspond with the port number set in the server configuration (port 1194 is the

default port).

e. To fix problems with fragmentation in windows the following option should be

appended to the end of the configuration file.

option mssfix 1000

f. Due to the lack of IPv6 address auto configuration in this version of OpenVPN a script

is used to set the IPv6 address of the router. The following line executes a script

“up.sh” located in the “/etc/openvpn” directory. This script will be created in future

steps.

option up /etc/openvpn/up.sh

g. The following option should be appended in order for the script to have the

permission to change the IPv6 address.

option script_secturiy 2

4. A script to change the IPv6 address of the router can be created using “vi” with the following

command.

vi /etc/openvpn/up.sh

The following lines can then be added to the script in “vi”

#!/bin/sh
ifconfig add %2 2004::2

The first line indicates that the file is a script, and the second line changes the IPv6 address of

the tunnel adapter. The “ifconfig” command on the second line is given three parameters, the

first is the command “add”, the second is the name of the network adapter, and the third is the

address to add to the network adapter. The name of the tunnel adapter is passed to the script

as a parameter, and this parameter is accessed using “%2”, this ensures that the correct

adapter is given the IPv6 address as the name of the adapter may change. The IPv6 address

given to the router must be unique to the router meaning that the script file on each router

must contain a different IPv6 address.

pg. 74

5. The configuration of OpenVPN for the router is now complete and the OpenVPN client service

can be started using the following command.

/etc/init.d/openpvn start

The status of the client service can be checked using the “logread” command which will display

a log file containing status information from various services including OpenVPN.

6. If the configuration and there is a functional network connection (via the internet or LAN) the

router will successfully connect to the server to create a secured VPN connection. Figure 85

shows the output in the status window on the server of a successful connection form

OpenVPN running on a router.

Figure 85 OpenVPN - sever status window showing successful router connection.

A common problem that occurs is that the router will rapidly connect and disconnect, which may be

due to the router have an incorrect date and time. The WRT54GL does not have a real time clock that

can maintain the time after it has been powered off. This means the time has to be set using the

internet, which may fail in some cases. If the time is not correctly set the certificates used in OpenVPN

will not be valid as they are only valid after the date they are issued for security reasons.

This concludes the setup required to configure the software packages required by the custom

developed software to create and integrated IoT platform.

5.2.4 XBee Configuration

The XBee modules need to be configured in order to establish a ZigBee network. This network is then

accessible via the coordinator, which will be connected to the IoT gateway. There are two main types of

configuration which are End Device and Coordinator. The End Devices requires configuration for sensor

input and to join a ZigBee network. The Coordinator requires configuration for establishing ZigBee

network and serial communication parameters. The following sections give details on configuring the

End Devices and Coordinators.

pg. 75

5.2.4.1 XBee Configuration Software

Specialised software called “X-CTU” is provided to configure XBee modules, it can be downloaded from

[89]. When run the X-CTU program presents a windows that consists of four tabs, of which “PC

Settings”, and “Modem Configuration” are used to configure an XBee module. The other tabs “Range

Test”, and “Terminal” are for range testing and directly communicating with the modem respectively,

these are not used for configuration.

The “PC Settings” tab on the left side of Figure 86 is used to configure the serial connection to the

XBee module. The following parameters need to be selected:

 The com port that the XBee Module is connected to which this appears in the “Select Com

Port” list box. The Sparkfun XBee Explorer USB appears as “USB Serial Port (COM…)” in the list.

The com port number is usually randomly assigned when the Explorer is connected to the

computer.

 The baud rate that the XBee Module uses. This is selected using the drop down list next to

“Baud”. The default baud rate for an XBee module is 9600. The coordinator that connects to

the OpenWRT router will use a baud rate of 115200.

 If API mode is enabled on the XBee module “Enable API” needs to be checked. API mode can

also use escaped characters in which case “User escape characters (ATAP = 2)” needs to also be

checked. The coordinator that connects to the OpenWRT router uses API mode and escaped

characters.

 All other settings do not need to be changed as they remain default.

To test the serial connection click the “Test/Query” button, and a message box will appear with various

parameters of the connected module if the communication is successful.

The “Modem Configuration” tab on the right side of Figure 86 is used to configure the XBee module by

displaying the modules configuration. The “Read” button reads the current XBee module configuration

which is then displayed in the tree view. The “Write” button writes the configuration settings displayed

in the tree view. There are several hardware variants of the XBee modules, the series 2 XBee module

appears as “XB24-B” in the drop down box under “Modem: …”. For each hardware variant there are

various firmware options, this is displayed in the drop down box under “Function Set”. The settings in

the tree view are arranged into sections, and each setting is formatted with the value in brackets

followed by the name. A setting can be changed by clicking on it which displays a text box where the

value can be modified.

pg. 76

Figure 86 X-CTU - XBee module configuration software showing connection settings and module settings.

5.2.4.2 XBee Coordinator Configuration

A Coordinator is required to create a ZigBee network, and from the coordinator the nodes on the

ZigBee network can be accessed. The XBee module provides a serial interface which can be used to

configure the XBee module or communicate with the ZigBee network. The following steps show how to

establish a ZigBee network and configure the communication over a serial connection to the router.

1. Setup the serial connection in the “PC Settings” by selecting the com port and baud rate. Test

the serial connection using the “Test/Query” button to ensure that the XBee module is

connected.

2. The coordinator firmware needs to be selected for the XBee module. Click on the “Modem

Configuration” tab, select “XB24-B” from the drop box under “Modem: …”, and select “ZNET

2.5 COODINATOR API” from the drop box under “Function Set” as shown in Figure 87. This will

populate the tree view with settings for an XBee Coordinator.

Figure 87 X-CTU - Selecting module type and firmware for coordinator.

pg. 77

3. ZigBee uses a unique 16 bit identifier to determine which network a node belongs to. This 16

bit identifier is called the PAN ID, and is displayed in the tree view under “Networking” as seen

in Figure 88, and is displayed in hexadecimal form. The value can be changed by clicking on the

PAN ID in the tree view, this displays a text box next to the PAN ID to set it, as shown in Figure

88. The value “1234” is used in this example, each end device must have the same PANID in

order to connect to the end device.

Figure 88 X-CTU - Setting network parameters for coordinator XBee module.

4. The OpenWRT router has a serial port that is configured by the XBee routing software with a

baud rate of 115200 bits/second, and uses API mode with escaping. The coordinator needs to

be setup in order to connect to the OpenWRT router with these settings, which are in the tree

view under “Serial Settings”. The baud rate appears as “BD – Baud Rate” and is set using a drop

down box and needs to be set to “7 – 115200” as seen in Figure 89. The API mode appears as

“AP – API Enable”, which needs to be set to the value of “2”, as seen in Figure 89. This means

API mode is enabled and character escaping is enabled. A value of “1” would mean that only

API mode is enabled.

Figure 89 X-CTU - Setting serial connection parameters for coordinator XBee module.

5. The tree view now contains all the settings required to establish a ZigBee network and connect

to the OpenWRT router. These settings need to be written to the XBee module, and depending

on the firmware present, a firmware upgrade may be required. Clicking on the “Write” button

will initiate the process to upgrade the firmware and write the settings to the XBee module. A

progress bar will appear as in the top of Figure 90 to indicate the status of a firmware update.

This will be followed by text output to indicate the status of writing the settings to the XBee

module as seen in the bottom of Figure 90.

pg. 78

Figure 90 X-CTU - upper is programming coordinator XBee module and lower is configuring coordinator XBee module.

6. The serial settings for the XBee module can be verified by click on the “PC Settings” tab and

testing the connection. The baud rate and API settings need to be changed before the

connection can be tested. Set the baud rate to 115200 and under the API section check the

boxes next to “Enable API” and “Use escape characters (ATAP = 2)” as shown in Figure 91. Click

the “Test / Query” button to test the serial connection, this should display a dialog with the

XBee module parameters if the connection was successful.

Figure 91 X-CTU - serial configuration for testing connection to coordinator XBee module for the OpenWRT router.

7. The last step is to verify the network settings were written correctly to the XBee module.

Navigate back to the “Modem Configuration” tab, and click the “Read” button, which will

pg. 79

populate the tree view with the modules settings as shown in Figure 92. The PAN ID should be

identical to the one set in the previous steps.

Figure 92 X-CTU – Verifying settings by reading them from coordinator XBee module.

5.2.4.3 XBee End Device Configuration

ZigBee end devices connect to a ZigBee coordinator using a unique identifier (PAN ID) in order to

communicate with other end devices and the coordinator belonging to the ZigBee network with the

unique identifier (PAN ID). The XBee end device needs to be configured with this unique identifier (PAN

ID) so that it can send sensor data to the XBee coordinator and/or the coordinator can send commands

to the end device. In order to send sensor data the end device needs to be configured to sample the

data by selecting the channel and sampling rate. The XBee module can also go into a low powered

mode between sampling in order to save power, this also needs to be configured. The following steps

give details on configuring the XBee end device to exist in a network created by a coordinator, sample

analogue data, and sleep between sampling analogue data.

1. Setup the serial connection in the “PC Settings” by selecting the com port and baud rate. Test

the serial connection using the “Test/Query” button to ensure that the XBee module is

connected.

pg. 80

2. The end device software needs to be selected for the XBee module. Click on the “Modem

Configuration” tab, select “XB24-B” from the drop box under “Modem: …”, and select “ZNET

2.5 ROUTER/END DEVICE API” from the drop box under “Function Set” as shown in Figure 93.

This will populate the tree view with settings for an XBee end device.

Figure 93 X-CTU Setting module type and firmware for End Device.

3. The 16 bit unique identifier (PANID) determines which network the node belongs to. Set the

value to 1234, as shown in Figure 94, this is the same as the PAN ID set on the coordinator.

Figure 94 X-CTU Setting PAN ID for End Device.

4. If the node is required to sleep to conserve power the following settings in the “Sleep Modes”

can be set:

a. “Sleep Mode” enables and selects the type of sleep mode. Set this value to “4 – CYCLIC

SLEEP” in the drop down box, as shown in Figure 95. Cyclic sleep mode means that the

node will sleep for a given time (“Cyclic Sleep Period”), stay awake for a given time

period (“Time before sleep”), and power down the input/out for a given number of

cycles (“Number of cycles to power down IO”).

b. “Time before Sleep” is the amount of time the XBee module remains awake (powered

on) before it powers down and goes to sleep. This value is in hexadecimal form and is

in the unit milliseconds. Set the value to 32, as shown in Figure 95, this means the

XBee module will remain awake for 50 milliseconds before sleeping. During this time

the radio will be active and the XBee module will request any queued messages from

the coordinator.

c. “Cyclic Sleep Period” is the amount of time the XBee Module remains powered down

or in the sleep state. The value is in hexadecimal for in is the unit 10s of milliseconds.

Set the value to 7D0, as shown in Figure 95, this means the module will sleep for 20

pg. 81

seconds. During this time the radio and microcontroller of the XBee module will be

powered down, and hence not able to receive data from the coordinator or serial.

d. “Number of Cycles to power down IO” is the number of cycles the XBee module will

not power the input/output when in the power on state. This allows an XBee module

to power up and check for messages from the coordinator without sending sample

packets. Set the value to 3, as shown in Figure 95, this means that the XBee module

will only send a sample packet after every 3rd time the XBee module wakes up.

Further information on the sleep cycle of XBee modules can be found in the XBee Product

Manual [89].

Figure 95 X-CTU Setting Sleep Mode settings for End Device.

5. An XBee module has a number of digital inputs/outputs, and ADCs (analogue to digital

converters). These are multiplexed to various pins which need to be configured based on

where each sensor or actuator is connected. The configuration shown in Figure 96 shows the

first 3 pins are configured as ADC inputs. The rate at which these pins are sampled (“IO

Sampling rate”) is given in terms of milliseconds in a hexadecimal format. The value of the

sampling rate depends on the sleep mode used. If no sleep mode is used the module will

continuously send samples with the period between samples being the value of the “IO

Sampling rate”. If a sleep mode is used the module will send samples at the given rate until the

module sleeps. In Figure 96 the sampling rate is configured so that it is greater than the time

the module will be awake for (specified in the previous step), therefore only one sample will be

sent each time the module wakes up.

pg. 82

Figure 96 X-CTU Setting Input/Output settings for End Device.

6. The tree view now contains all the settings required for the End Device, clicking the “Write”

button will write the settings to the XBee module, and if necessary update the firmware. After

the process completes the settings can be confirmed by clicking the “Read” button to populate

the tree view with the current settings of the module. These current settings should reflect the

changes made. If a sleep mode has been set the module may fail to respond when reading the

settings, this requires the module to be reset. The module can be reset by shorting the reset

pin to ground with a wire for a second.

5.3 Network Interface Implementation Techniques

Techniques for receiving, parsing, sending, and creating network packets are given in this section. The

first section 5.3.1 shows how to send and receive raw packets from a network interface in Linux. The

second section 5.3.2 demonstrates a technique to parse and create network packets.

5.3.1 Tunnel Driver Interface

Network connectivity (and hence internet connectivity) is provided by an embedded Linux operating

system and networking hardware. The connection to the internet is provided by Ethernet or WiFi in

most cases, these hardware interfaces have a driver that provides a network interface. In order for a

WSN to interconnect with the internet it must have a network interface present in the embedded Linux

operating system. Routing between the WSN network interface and internet network interface is what

gives the WSN internet connectivity. The network interface can be provided by drivers developed for

the embedded Linux operating system, however driver development is a difficult time consuming task.

The alternative to developing a driver is to use user space software to interface with the hardware and

provide a network interface. In this case the network interface still requires a driver, which is provided

by a virtual network interface known as the tun/tap driver in Linux.

pg. 83

Normally a Linux kernel network driver is attached to a hardware interface such as an Ethernet card or

Wi-Fi adapter. However the tun/tap driver is a virtual network device driver that can attach to software

running in the user space providing a raw network interface. When software interacts with the Linux

kernel networking functionality it is commonly done via an abstracted interface called sockets where

the raw data sent via the network interfaces cannot be accessed or modified. The tun/tap driver

provides direct access to the raw data sent and received by the interface. There are two levels at which

the network interface can be used, the tun (tunnel) level or the tap level. The tun operates at the

network layer, and the tap operates at the link layer. For the WSN network only the network layer is

required so the tun driver was used.

The tun driver provides a method to directly send and receive IPv6 UDP packets for a virtual subnet.

The wireless sensor network can be mapped to the subnet defined by the tun interface allowing the

nodes in the wireless sensor network to receive an IPv6 address.

5.3.2 Parsing raw data from buffers

The data formats used in network packets require parsing in order to interpret the data in code. The

following sections give details on the XStruct technique to extract data from network packets and to

create network packets.

5.3.2.1 Host and network byte order

In most networking standards the order of the bytes contained in packets is big endian, this was

instigated in the first definitions for networking standards such as [90], and is known as network order.

However most CPU architectures, such as x86, use a little endian format (or host byte order) when

storing data in memory. This presents a problem when parsing or creating network packets as the data

is stored in a different order.

The order of bytes in a data type is also known as the endianness, which can be either little endian or

big endian. Big endian means that the byte order is from least significant byte to most significant byte

as the memory addresses increase. Little endian is the opposite with the most significant byte

appearing first and the least significant byte appearing last as the memory addresses increase. The

hexadecimal value 0x12345678 is shown in Table 6 with different endianness in memory.

pg. 84

Table 6 Memory storage locations of the value 0x12345678 with different

endianness

Memory address 1 2 3 4

Little Endian 0x78 0x56 0x34 0x12

Big Endian 0x12 0x34 0x56 0x78

From the table it can be seen that in order to produce a network order representation of the host

order data (or vice-versa) a conversion technique is needed if the CPU architecture is little endian.

Table 7 shows the structure of an IPv6 header in a packet in network byte order and Table 8 shows the

structure of an IPv6 header in memory. It can clearly be seen that the host byte order structure and

network byte order structure appear differently, which means conversion of the structure representing

the IPv6 header is required.

Table 7 IPv6 header in network byte order

Bytes 1 2 3 4

0
Version Traffic Class Flow Label

0x6 1 0x2 3 0x45 0x67

4
Payload Length Next Header Hop Limit

0x00 0x20 0x11 0x40

8
Source Address

0x20 0x04 0x00 0x00

12
Source Address

0x00 0x00 0x00 0x00

16
Source Address

0x00 0x00 0x00 0x00

20
Source Address

0x00 0x00 0x00 0x01

24
Destination Address

0x20 0x04 0x00 0x00

28
Destination Address

0x00 0x00 0x12 0x34

32
Destination Address

0x00 0x13 0xa2 0x00

36
Destination Address

0x26 0xe4 0x7e 0xf4

pg. 85

The colours of each section of the IPv6 header shown in Table 7 correlate with the colours in Table 8. It

can be seen that the Version parameter takes up the entire byte in host byte order (Table 8), where as

in the network byte order (Table 7) it takes up 4 bits and the lower 4 bits are allocated to the Traffic

Class. The Traffic Class is located at the next byte boundary in the host byte order (Table 8), where as in

the network byte order (Table 7) it is between the byte boundaries.

Table 8 IPv6 header structure in memory, or host byte order

Bytes 1 2 3 4

0
Version Traffic Class Padding

0x06 0x12 0x00 0x00

4
Flow Label

0x67 0x45 0x03 0x00

8
Payload Length Next Header Hop Limit

0x20 0x00 0x11 0x40

12
Source Address

0x20 0x04 0x00 0x00

16
Source Address

0x00 0x00 0x00 0x00

20
Source Address

0x00 0x00 0x00 0x00

24
Source Address

0x00 0x00 0x00 0x01

28
Destination Address

0x20 0x04 0x00 0x00

32
Destination Address

0x00 0x00 0x12 0x34

36
Destination Address

0x00 0x13 0xa2 0x00

40
Destination Address

0x26 0xe4 0x7e 0xf4

The following sections introduce the techniques required for converting between network byte order

and host byte order, in order to parse and create packets.

5.3.2.2 XMacro technique

XMacros are a technique that uses macros to create initialisers for variables at compile time [91]. This

means that when code is compiled a macro defines the variable and type instead of implicitly defining.

The following code defines a variable called “an_integer” with the type “int”.

1 int an_integer;

pg. 86

Using the XMacro technique, the same variable can be defined using the following code.

1 #define X(type, name) type name;
2 X(int,an_integer)

The “#define” statement (line 1) is used to define the macro “X” which takes the parameters type and

name. When these parameters are passed to the at compile time macro they simply get placed in the

order that they appear after the macro definition which is the type, a space, and the name. This means

the result at compile time is a variable definition specified by the parameters given to the macro,

therefore the code above performs a variable definition identical to the single line of code used to

define the variable “an_integer”.

Macros can be undefined, which allows the “X” macro defined above to be repurposed to perform

additional functions. This means a variable can be defined using a definition macro, and then operated

upon using a functional macro. The following macro code gives an example of repurposing the “X”

macro to perform definition, initialisation, and display of variables defined in the macro

“VARIABLE_LIST”

1 #define VARIABLE_LIST \
2 X(int,integer_1,1)\
3 X(int,integer_2,2)\
4 X(int,integer_3,3)
5 #define X(type, name, value) type name;
6 VARIABLE_LIST
7 #undef X
8 #define X(type, name, value) name = value;
9 VARIABLE_LIST
10 #undef X
11 #define X(type, name, value) printf("name:%s type:%s value:%i",#name,#type,name);
12 VARIABLE_LIST

At compile time the following code will be produced from the above macro code.

1 int integer_1;
2 int integer_2;
3 int integer_3;
4 integer_1 = 1;
5 integer_2 = 2;
6 integer_3 = 3;
7 printf("name:%s type:%s value:%i","integer_1","int",integer_1);
8 printf("name:%s type:%s value:%i","integer_2","int",integer_2);
9 printf("name:%s type:%s value:%i","integer_3","int",integer_3);

Lines 1 to 3 are generated by the first “X” Macro defined on line 5 in the macro code, which define the

variables. Lines 4 to 6 are generated by the second “X” Macro defined at line 8 in the macro code

section, these lines set the variables. The last three lines (7 to 9) then print out the variables and are

generated by the macro defined on line 11 in the macro code.

This means that a single macro (for example “VARIABLE_LIST”) can be repurposed in order to define,

initialise and perform and function on a variable.

pg. 87

5.3.2.3 XStruct technique

The XStruct technique uses the XMacro technique with structures for conversion of data between host

and network byte order. This involves using an XMacro to define the structures then redefining the

macro to call appropriate conversion functions. The advantage of this technique is that code for

conversion of each structure type is not required, reducing the amount of effort required in writing

code to parse and create network packets. The disadvantage of this technique is that it will make the

code generated inefficient and difficult to understand and debug.

Each data type used in a structure requires a conversion function that converts from and to network

byte order. In order to do this an XMacro is used to define the variable of a given type, and then

repurposed to define a function call to a conversion function for the given type with reference to the

variable in the structure. The conversion function operates on memory addresses of the structure and

a buffer which are specified as parameters. The structure memory address will contain the host byte

order and the buffer memory address will contain the network byte order. To simplify the XMacros

only a single conversion function is used, therefore the type of conversion (network to host, or host to

network) is also specified as a parameter.

The implementation of the XStruct technique works by defining a structure using macros in headers. In

the source code files the macros are repurposed to call conversion functions defined in the source

code. This allows for the definition and conversion of a structure without writing specific conversion

code for that structure.

An example of XStruct structure definition is shown in the code example below. The structure defined

is the XBee API header which has 3 members, the start delimiter (“SD”), the Length, and the command

ID (“cmdID”).

1 #define XSTRUCT_DEF
2 #include "xstruct.h"
3
4 #define _XBeeAPIHeader\
5 X(Uint8, SD)\
6 X(Uint16, Length)\
7 X(Uint8, cmdID)
8
9 typedef struct
10 {
11 _XBeeAPIHeader
12 }XBeeAPIHeader;

The first part is the definition of “XSTRUCT_DEF” on line 1 and the inclusion of “xstruct.h” on line 2.

The “xstruct.h” header creates the XMacro definitions for defining variables in structures when

“XSTRUCT_DEF” has been defined.

The second part is the definition of the macro to create the variables in the structure which is on lines

4 to 7. These lines create a macro that uses the XMacro to define the variable name and type. Multi-

pg. 88

line macros are made possible by escaping the return character at the end of each line with the

backslash character.

The third part is the definition of the structure type which is on lines 9 to 12. Line 11 uses the macro in

the second part to populate the members of the structure.

The result at compile time of the code above is the following structure definition in the header.

1 typedef struct
2 {
3 Uint8 SD;
4 Uint16 Length;
5 Uint8 cmdID;
6 }XBeeAPIHeader;

To perform a conversion of the structure, conversion functions of the types “Uint8” and “Uint16” must

be defined in the code. The following code gives an example of the conversion function for the

“Uint16” type.

1 void memop_Uint16(Uint16 * structP,
2 Uint8 * bufP,
3 Uint16 * bufPos,
4 Uint16 bufSz,
5 Uint8 op)
6 {
7 switch(op)
8 {
9 case NtoH:
10 *structP = ((Uint16)bufP[*bufPos] << 8) + bufP[*bufPos + 1];
11 break;
12 case HtoN:
13 bufP[*bufPos] = (Uint8)(*structP >> 8);
14 bufP[*bufPos + 1] = (Uint8)(*structP);
15 break;
16 }
17 *bufPos+=2;
18 }

The function is defined using the following convention.

 The function name must start with “memop_” with the type name after (the type name is case

sensitive) this is shown on line 1.

 The first parameter must be a pointer of the type the conversion function is converting. This

pointer locates the variable in the structure in memory, which is in host byte order. Line 1 also

contains the definition for this parameter.

 The second parameter must be a pointer to buffer (shown one line 2), which is used to contain

network order data.

 The third parameter must be a pointer to an unsigned integer (shown on line 3) which contains

the current offset in the buffer. This is used to keep track of the current location in the buffer

and must be incremented the size of the type in the conversion function. A pointer is required

as the value is changed in the function.

pg. 89

 The fourth parameter must be an unsigned integer (shown on line 4) that contains the length

of the buffer. This prevents buffer overruns from occurring (the third parameter, offset, must

not be greater than the fourth, length).

 The last parameter (shown on line 5) is used to determine which conversion is taking place

(network to host or host to network).

The function contains a switch statement on line 7 which is used to determine which conversion

operation is required. Line 10 performs the network to host conversion by copying data from the

buffer at the required offset to the structures member given by the pointer. Line 13 and 14 performs

the host to network conversion by copying the individual bytes from the structures member to the

buffer. Line 17 moves the offset in the buffer to the position of the next data item, this must occur for

both operation types therefore it is not in the switch statement.

Conversion functions in “xstruct.h” called ntoh (network to host) and hton (host to network) then use

the XMacros to convert the structure defined using the XStruct method. The following lines of code

demonstrate the conversion from a network order buffer to a host order structure. This code is located

in the source file with the “.c” extension.

1 #undef XSTRUCT_DEF
2 #include "xstruct.h"
3 ...
4 Uint8 HeaderBuf[] = {0x7e, 0x00, 0x18, 0x92};
5 XBeeAPIHeader APIheader = {0};
6 ntoh(XBeeAPIHeader,APIheader, &HeaderBuf[0],sizeof(HeaderBuf));

The first two lines of code are used to repurpose the XMacros to call the definition functions. The

“xstruct.h” header defines the XMacros as function calls to the conversion functions if no definition of

“XSTRUCT_DEF” is found, line 1 ensures that it is undefined. These lines appear at the beginning of the

source file where the headers are included.

Line 4 is a declaration and initialisation of a variable that contains the network order data of an XBee

header. The first byte is the frame delimiter which is the hexadecimal value 0x73. The next two bytes

are the frame length which is the value 0x0018 (24 in decimal). The last byte, 0x92, is the command id.

Lines 5 and 6 will appear in function, line 4 declares a variable with the XStruct type “XBeeAPIHeaer”,

and line 5 is a macro to perform the network to host conversion from the buffer. The parameters for

the “ntoh” function are the name of the type of structure, the variable name of the structure, a

pointer to the buffer, and the length of the buffer. The “ntoh” macro in the previous code section will

become the follow code at compile time.

The following code sections show the stages of the macros produced by the “ntoh” macro. The first

stage is the expansion of the “ntoh” macro.

pg. 90

1 ntoh(XBeeAPIHeader,APIheader, &HeaderBuf[0],sizeof(HeaderBuf));

Expands to:

1 Uint8 op = NtoH;
2 XBeeAPIHeader * s = &APIheader;
3 Uint8 * pbuf = (Uint8 *)&HeaderBuf[0];
4 Uint16 bufPos = 0;
5 Uint16 bufSz = sizeof(HeaderBuf);
6 memset(&APIheader,0,sizeof(XBeeAPIHeader));
7 _XBeeAPIHeader

Line 2 to 7 contain variables required for the conversion function. Details of these are given later.

Line 9 contains the macro for defining the members of the XBeeAPIHeader. Expanding the macro gives

the following code.

1 Uint8 op = NtoH;
2 XBeeAPIHeader * s = &APIheader;
3 Uint8 * pbuf = (Uint8 *)&HeaderBuf[0];
4 Uint16 bufPos = 0;
5 Uint16 bufSz = sizeof(HeaderBuf);
6 memset(&APIheader,0,sizeof(XBeeAPIHeader));
7 X(Uint8, SD)
8 X(Uint16, Length)
9 X(Uint8, cmdID)

This gives multiple X macros for each member of the structure which are on lines 8 to 10. The original

purpose of the X macro was to provide a declaration of these members, but when repurposed the

macro then creates a function call to the conversion function. The definition for repurposing the “X”

macro function to call a conversion function is as follows.

1 #undef X
2 #define X(type, name)\
3 if(bufPos < bufSz)\
4 memop_ ## type(&s->name, pbuf, &bufPos, bufSz, op);\

Line 1 removes the previous definition of the macro “X”, which was to declare the variable.

Line 2 to 4 redefines the “X” macro to first check for a buffer overrun, and call the conversion function

if there is no buffer overrun. The conversion functions naming convention is given by the definition of

the “X” macro. It can be seen on line 4 that the function name is created by concatenating “memop_”

with the macro variable “type” to create. The parameter convention is also given by the “X” macro.

The parameters are generated using the macro variables to create specific function names

The final result of all the macros is the following code.

1 Uint8 op = NtoH;
2 XBeeAPIHeader * s = &APIheader;
3 Uint8 * pbuf = (Uint8 *)&HeaderBuf[0];
4 Uint16 bufPos = 0;
5 Uint16 bufSz = sizeof(HeaderBuf);
6 memset(&APIheader,0,sizeof(XBeeAPIHeader));
7 if(bufPos < bufSz)
8 memop_Uint8(&s->SD, pbuf, &bufPos, bufSz, op);
9 if(bufPos < bufSz)
10 memop_Uint16(&s->Length, pbuf, &bufPos, bufSz, op);
11 if(bufPos < bufSz)

pg. 91

12 memop_Uint8(&s->cmdID, pbuf, &bufPos, bufSz, op);

Lines 2 to 7 declare and set the variables required by the conversion functions.

Line 2 declares and set the operation variable used to tell the conversion function which operation to

perform.

Line 3 creates a pointer variable that contains a pointer to the memory address of the structure

variable given to the “ntoh” macro. This uses the first and second parameters given to the “ntoh”

macro.

Line 4 creates a pointer variable that contains a pointer to the memory address of the buffer. This uses

the third parameter given to the “ntoh” macro.

Line 5 creates a variable to store the current offset in the buffer.

Line 6 creates a variable that contains the size of the buffer.

Line 7 sets the all the memory of the structure to a value of 0.

Lines 8 to 13 are generated form the XMacros defined in the structures definition macro. These are the

repurposed macros to call the conversion functions. Before calling the conversion function a simple

check to make sure there isn’t a buffer overrun is performed.

The Xstruct technique demonstrated provides a technique to convert between data formats used on

the host CPU architecture and network packets. This technique makes the conversion between

structures and buffers possible with a single line of code, making writing code quicker and easier to

read. However if the macro malfunctions debugging the cause of the malfunction is difficult as the

macros are expanded at compile time, meaning the expanded code is not visible.

5.4 ZigBee IoT Platform Implementation

The first IoT platform developed consisted of a ZigBee based WSN connected to a gateway to provide

access to the WSN from an internet server. The following sections provide the implementation details

of connecting the ZigBee WSN to the gateway, and software running on the gateway to allow the

server to communicate with the WSN.

5.4.1 ZigBee Hardware Implementation

XBee modules are used to create a ZigBee network, and the WRT54GL router to create a gateway to

the ZigBee network. A Raspberry PI was also used to create a gateway, however it was not used as

extensively as the WRT54GL as it is a new product. The following sections give details of the hardware

interface, and sensor modules. The hardware interface is the hardware created to connect the XBee

pg. 92

module to the WRT54GL, and the sensor modules are various hardware interfaces for connecting

sensors to the XBee modules.

5.4.1.1 XBee Gateway

Two hardware platforms were considered for the IoT gateway, the WRT54GL router and the Raspberry

PI. The WRT54GL was primarily used as it was available before the Raspberry PI and has a more robust

framework. A hardware interface was required for both platforms in order to connect the XBee

coordinator module via serial to the platform.

The primary hardware used to create an IoT gateway was a Linksys WRT54GL router running an

embedded version of Linux called OpenWRT [92]. This router is based upon the WRT54G router which

became popular as it ran embedded Linux which could be modified. The WRT54GL was released

specifically for modifying the firmware. There are several versions of Linux that were developed for the

hardware such as DD-WRT [93], Tomato [94], and OpenWRT. DD-WRT does provide source code and

development tools, but OpenWRT provides a more complete and comprehensive toolset for

configuration and compilation of the Linux operating system which is why it was chosen.

The WRT54GL provides two serial ports [74], one of which is available to connect to the XBee

coordinator. The serial pins provided are shown in Figure 97. Serial port 2 was used to connect to the

XBee coordinator because serial port 1 is used by OpenWRT to provide a terminal to access the Linux

shell from hardware. A power pin is also provided that can supply the 3.3V required by the XBee

coordinator module.

Figure 97 WRT54GL - serial port pins provided on the board obtained from [74]

pg. 93

A PCB was designed to attach the XBee coordinator module to the WRT54GL board. Figure 98 shows

the PCB attached to the WRT54GL board.

Figure 98 WRT54GL router with XBee Coordinator attached to serial port using fabricated PCB

Figure 99 shows the schematic and PCB design for the PCB shown in Figure 98. This design conforms to

the antenna keep-out requirements in [89]. The requirement is that no PCB traces should be in a zone

around the antenna, which is located at the top of the XBee module. In the schematic the part named

WRT is the header to connect to the header on WRT54GL board shown in Figure 97. The pin numbers

do not match the pin numbers on the board because only a single row header was required.

pg. 94

Figure 99 Schematic and PCB design for hardware interface between XBee S2 coordinator module and WRT54GL board

In addition to the WRT54GL hardware, the Raspberry PI was also used. A PCB was fabricated to

interface with the Raspberry PI and is shown in Figure 100.

Figure 100 Raspberry PI with fabricated PCB for XBee coordinator to connect to serial port

The raspberry pi provides 3.3V and 5V on the header shown in Figure 101. The 5V pin is on the same

row and is in close proximity to the ground, transmit and receive pins. However the 3.3V pin is on a

separate row, meaning a separate header would be required to connect to the 3.3V pin. Due to the

pg. 95

requirement for an additional header, and the current required from the 3.3V line the 5V pin was used

instead. Using the 5V pin requires a voltage regulator to provide 3.3V to the XBee coordinator module.

The 5V pin is directly connected to the USB header where power is supplied to the Raspberry PI,

therefore current consumption on this pin depends on the power supplied to the Raspberry PI and not

regulators on the Raspberry PI.

Figure 101 Raspberry PI header pins from [95]

The PCB shown in Figure 100 to connect the Raspberry PI and XBee module has the schematic and PCB

design in Figure 102. The component Q1 is a voltage regulator (LE33CZ) which takes 5 volts from the

5V pin and outputs 3.3 volts for the XBee coordinator. The capacitors C1 and C2 are recommended in

the datasheet for the LE33CZ [96]. SV1 is the header that connects to the Raspberry PI header

providing power and communication. The first pin is the 5V pin on the Raspberry PI, the third and

fourth pins are for the serial transmission lines and the fifth pin is the ground. The resistor R0 is used a

jumper over the ground plane and may be a length of wire.

pg. 96

Figure 102 Schematic and PCB design for hardware interface between XBee S2 coordinator module and Raspberry PI

5.4.1.2 XBee Temperature Sensor Module

The XBee temperature sensor module uses the TMP3x temperature sensor, which is connected to the

XBee modules’ ADC pin. The TMP3x is a low power temperature sensor that draws 50 μA [97]. Table 9

shows the parameters of the three variants of the temperature sensors available. All the variants use

the same physical package and can therefore be interchanged easily.

Table 9 TMP3x parameters from [97]

Temperature Sensor TMP35 TMP36 TMP37

Output Voltage Range 100 mV to 2000 mV 100 mV to 2000 mV 100 mV to 2000 mV

Output Voltage Scale (10 mV/°C 10 mV/°C 20 mV/°C

Output Voltage Offset (0 mV 500 mV 0 mV

Input Temperature Range 10°C to 200°C -40°C to 150°C 5°C to 100°C

Accuracy over Range ±2°C ±2°C ±2°C

The input range for the XBee Module is from 0V to 1.2V which is represented by a 10 bit integer. The

following formulae show how the temperature () was derived for any of the TMP3x sensors,

given the output voltage scale (), the output voltage offset (), output voltage (),

and the ADC value ().

pg. 97

Table 10 was created using the TMP3x characteristics in Table 9 and the formulae above for the ADC

values produced from an XBee module. The minimum and maximum values for each sensor was

determined based upon the minimum and maximum ADC value produced by the XBee module. The

formulae for converting an XBee ADC value to a temperature for each sensor is also given.

Table 10 Temperature range for TMP3x sensor when using XBee module

 TMP35 TMP36 TMP37

Temperature (

Minimum 0.1 V 0.1 V 0.1 V

Minimum 85 85 85

Minimum 10°C -40°C 5°C

Maximum 1.2 V 1.2 V 1.2 V

Maximum 1024 1024 1024

Maximum 120°C 70°C 60°C

°C/ADC division 0.117°C 0.117°C 0.059°C

Figure 103 shows the schematic for connecting three TMP36 temperature sensors to the analogue

inputs of an XBee Module. Any of the TMP3x sensor module could be used in the schematic as they

have the same footprint. The input pins used are DIO0, DIO1, and DIO2 which need to be configured as

analogue input pins. A 3.3V low-dropout voltage regulator (Q1 in the schematic) provides the power

supply to the TMP36 temperature sensors and XBee module. The input range of the LE33CZ used is

from 3.5V to 18V meaning it can be used with a large range of power supplies. An LED (LED1 in the

schematic) is attached to the association indication pin of the XBee module in order to give visual

status information. The resistor R0 is a current limiting resistor for the LED.

pg. 98

Figure 103 XBee temperature sensor hardware interface schematic

The PCB designed from the schematic in Figure 103 is shown in Figure 104. The PCB was designed to

be as minimal as possible and the keep-out zone for the XBee modules antenna was also observed.

Figure 104 XBee temperature sensor hardware interface PCB

5.4.1.3 XBee Hot Water System Monitor

Hot water is supplied by a hot water cylinder in a typical household, and the hot water cylinder is

heated either by electricity or gas. Solar heating systems can be used to heat the water during the day

reducing the gas or power consumption provided there is sufficient solar energy. The system shown in

pg. 99

Figure 105 shows a solar water heater attached to an electric water cylinder. The solar heater system

consists of the following.

 Solar heating panels, which heat the water using solar energy.

 A pump to circulate the water in the system. The water heated in the solar heater panels

needs to be pumped back to the hot water cylinder, and replaced with cooler water to be

heated.

 Temperature sensors in the Solar water heater, and hot water cylinder. These provide

information to the controller to determine when to turn on the pump.

 The solar heat controller controls the pump based on the temperature sensors. When there is

a predetermined temperature difference between the solar heat panel temperature and water

cylinder temperature the pump circulates the hot water into the cylinder and cool water to the

solar heater panels. The temperatures of each temperature probe are displayed on the solar

heater controller.

The temperature sensors provided by the solar heating system are monitored by an XBee module.

The electric water heater uses a coil inside the cylinder to heat the water, this is controller using a

thermostat that turns the coil on or off depending on the temperature. To monitor the current

consumption of the water cylinders’ coil a current transformer is used. The current transformer is

monitored by the XBee module.

pg. 100

Pump

Hot Water
Supply to

House

Cold Water
Supply

Hot Water
Cylinder

Hot Water Cylinder
Temperature Probe

Pump Relay

Current TransformerThermostat

240V AC

Solar Heater
Controller

XBee
Module

Figure 105 Hot water system and solar heating system

The inputs from the temperature sensor and current transformer required signal conditioning in order

to be monitored by the XBee module. Measurements of the voltage output from the temperature

probes were taken for various temperatures indicated on the solar heater controller in order to

determine the signal conditioning required. The temperature probe signals must be scaled and offset

to meet the input requirements for the analogue pins of the XBee module.

Figure 106 shows the input voltage versus the indicated temperature on the solar heater controller for

the hot water cylinder. The trend line fitted to the data shows a good linear relationship between the

output voltage and temperature. The formulae from the trend line in Figure 106 to give the input

voltage () of the probe for a given temperature () is as following.

pg. 101

The range of temperatures that need to be measured is from 20 °C to 80 °C, substituting these values

into the formulae above gives the following.

This gives the output range 0.59 V to 2.02 V which must be scaled to the input range 0 V to 1.2 V of the

XBee Module. This means the signal needs to be attenuated by 83% and negatively offset by 0.59 V.

Figure 106 Graph of temperature Vs. Voltage for hot water cylinder probe

Figure 107 is a circuit designed to scale and offset the output voltage from the hot water cylinder

temperature probe () to the input range required by the XBee module ().

Figure 107 Schematic for circuit to condition signal from hot water cylinder probe

The values of the resistors were determined using the circuit in chapter 5.4 of [98], which gives the

following formulae for the circuit in Figure 107.

y = 23.76x + 116.02
R² = 0.9998

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60 70 80

Pr
ob

e
Vo

lta
ge

 (m
V)

Control pannel temperature (°C)

pg. 102

Where is the gain, is offset, and the rest of the variables are shown in Figure 107. The following

assumptions have been made; the gain is 0.833, the offset is 0.58, and the reference voltage is

3.3V. From these assumptions the values for , , , and can be determined as following.

The resistor values were rounded so that they would correspond with the e24 resistor scale when

scaled. To produce achievable resistor values and reduce the input impedance the calculated values

must be scaled. The values for , and are scaled by 105. The values for , and are

scaled by 2x105. The final values are given in the circuit shown in Figure 107.

Due to the rounding of the resistor values the range of the temperatures measured will changed the

following calculations determine this range. Substituting the values into the formulae above for

obtaining and gives the following.

pg. 103

The values for the gain and offset are different from those specified for the range 20 °C to 80 °C. The

temperature range is determined by the substituting the minimum and maximum value for into

following formulae using the calculated gain and offset values. The minimum and maximum value for

 is 0 and 1.2 respectively.

This gives the range 22 °C to 88 °C that the signal conditioning circuit will produce using the calculated

resistor values.

The XBee modules ADC is of 10 bit resolution meaning it produces values between 0 and 1024. To

convert an ADC value to a temperature a conversation formulae is required. The formulae given above

specifies the output voltage for the temperature sensor, the following formulae describes the

relationship between the output voltage given to the XBee modules ADC and the numerical

value obtained from the ADC. From this a relationship between the temperature of the solar heater

and the XBee Modules ADC value.

pg. 104

The formulae above can be used to obtain a temperature of the solar heater for a given ADC value.

The circuit was simulated in LTSpice to check the output was correct for the input range, the result of

the simulation is shown in Figure 108.

Figure 108 LTSpice simulation results for water cylinder temperature probe voltage signal conditioning

Figure 109 shows the output voltage versus the indicated temperature on the solar heater controller

for the solar heater. The trend line fitted to the data shows a good linear relationship between the

output voltage and temperature. The formulae from the trend line in Figure 109 to give the output

voltage (v) of the probe for a given temperature (T) is as following.

pg. 105

Figure 109 Graph of temperature Vs. voltage for solar heater probe

The range of temperatures that need to be measured is from 20 °C to 80 °C, substituting these values

into the formulae above gives the following.

This gives the output range 3.2 V to 4.4 V which must be scaled to the input range 0 V to 1.2 V of the

XBee Module. This means the signal needs to be negatively offset by 3.2 V. To achieve this the circuit

and formulae used above are used with the following assumptions; offset is 3.2, the gain is 1 and

the reference voltage is 5.0. The variables used in the following formulae are shown in Figure 110.

y = 0.02x + 2.8
R² = 1

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

15 25 35 45 55 65 75 85

Pr
ob

e
Vo

lta
ge

 (V
)

Control pannel temperature (°C)

pg. 106

Figure 110 Schematic for circuit to condition signal from solar heater probe

The resistor values need to be scaled and rounded to produce values that correspond with the e24

resistor scale. This is why the resulting resistor values were multiplied by 2 and rounded to one decimal

place. Multiplying by 105 the resistor values will produce a value that will be on the e24 resistor scale.

The resistor values are not equal to the calculated resistor values meaning the gain and offset are

different creating a different temperature range. The new temperature range is determined by

obtaining the gain and offset from the resistor values, then using the minimum (0V) and maximum

(1.2v) input voltages. The following determines the gain and offset from the resistor values.

Using this gain and offset in the equation for the output voltage, combined with the equation for the

input voltage in relation to the temperature gives the following.

pg. 107

This gives the range 21.5 °C to 81.2 °C for the signal conditioning circuit when the calculated resistor

values are used.

A conversion function between the ADC value produced by the XBee Module and the temperature is

given by the following.

The current transformer requires signal conditioning as the output is an AC waveform representing the

AC current flowing to the hot water cylinders heating coil. The AC waveform has peak values less than

100 mV and is sinusoidal in nature. The approximate RMS value of this waveform needs to be

measured meaning the waveform needs to be scaled and then filtered to obtain a DC value.

Half wave rectification of the wave form produced by the current transformer was achieved using an

op amp with a single rail power supply. The half wave was then filtered to obtain an average using a

low pass filter. Assuming the waveform is sinusoidal the average value obtained from the low pass

filter can be determined as following.

As the wave is half rectified we are only measuring the positive part of the sinusoidal wave, therefore

we are obtaining the average between 0 and of the sine function. To find the normalised average,

the area under the sine function between 0 and is divided by as following. Multiplying the

normalised average by the peak voltage () then gives the average voltage for half wave rectified sine

wave.

The current transformer used was an ASM 010 [99] which outputs approximately 3 mV per Ampere.

The following equation was derived from the data sheet, where is the rms output voltage of the

pg. 108

current transformer, is the peak output voltage of the current transformer, and is the RMS

current supplied to the cylinder heater coil. A scaling factor () is used to scale the peak voltage for

the input of the XBee Module ()

Substituting the formulae for into the formulae for gives the relationship between the

average scaled voltage to be output to the XBee module and the current seen by the current

transformer.

The hot water cylinder coil is rated at 3 kW meaning that it uses 12.5 Amperes RMS at 240 Volts RMS.

To ensure the maximum value of 12.5 Amperes RMS is included in the measurement range, 13

Amperes RMS was chosen as the maximum value. Substituting the maximum current of 13 Amperes

(), and the expected average output voltage () of 1.2 Volts gives the required gain to scale

the input signal of the current transformer.

The average voltage is fed into the XBee modules ADC converter, therefore the following conversion

function was derived to give the RMS current () for a given ADC value.

pg. 109

An inverting op-amp circuit was used to achieve the gain of 62 as determined by the previous

equation. The following determines the resistors (, and) needed to create an inverting op-amp

with a gain of 62.

The low pass filter was designed with an arbitrary cut-off frequency of 0.5 Hz in order to obtain an

average voltage of the half sinusoidal wave without a significant amount of ripple or delay. The

following shows the calculation of the capacitor for the filter assuming the frequency () is 0.5, and

the resistor () is 12000 ohms.

5.4.2 Address Translation

An XBee module needs to be addressable from the internet so that it can communicate with the

internet. In order for an XBee node to addressable from the internet it requires an internet address.

The most commonly used addressing format is IPv4, however the IPv4 address space is not large

enough to contain XBee addresses. The address space is given by the number of bits used to create an

address, IPv4 uses 32 bits to address a node. XBee uses 64 bits to address a unique node in a network

and 16 bits to identify the network (PAN ID), therefore 80 bits are required to address an XBee node.

The XBee nodes can also be addressed in a shorter 16 bit format, however it is a dynamically assigned

address and is not unique to that XBee node. Due to the limited number of addresses in IPv4 a new

standard was created called IPv6, which uses 128 bits to address a node. This means that the unique

80 bit address for an XBee node can be contained within a 128 bit IPv6 address, which can be used to

give the XBee node an IPv6 address.

There are 4 elements required to assign an XBee node an IPv6 address, these elements are shown in

Figure 111. The first element identifies the gateway, which is the first 48 bits of the IPv6 address

assigned to the gateway. The PAN ID given by the coordinator of the XBee network is the second

pg. 110

element, which is 16 bits long. The last two elements are the serial high and low of the XBee node,

these are 32 bits in length each. The serial high and low are a unique number assigned to an XBee

module when it is manufactured [89]. All of these elements are combined to produce an IPv6 address

that identifies an XBee module connected to a Coordinator with a given PANID, which is connected to a

Gateway with a given Network ID.

Figure 111 XBee to IPv6 Address translation technique

5.4.3 IPv6 UDP Encapsulation

Packets originating and destined for an XBee network can be encapsulated in an IPv6 UDP packet. In

order to send and receive XBee packets encapsulated in IPv6 UDP packet various elements must be

placed into the packet, such as the Address of the XBee module, the type of data contained the in the

payload and the payload itself.

In an XBee network, IEEE 802.15.4 packets are used to configure and maintain the wireless network

and to transport ZigBee packets between XBee modules. Configuration and maintenance of the

wireless network is performed by the XBee modules based on their parameters, such as PAN ID,

operating channel and role in the network. ZigBee packets are used to exchange information between

modules which are commands, and notifications. Notifications can either be generated automatically

by the module or in response to a command. Access to notifications and commands is provided by a

structured packet format used with the serial interface, known as the XBee API.

There are two basic types of API packets that are produced by an XBee coordinator, which are

notification and command. Notification packets consist of network status messages, command

response messages, and messages containing digital and analogue samples. Command packets consist

of commands to get information from an XBee module or set a modules’ parameters. Command

pg. 111

packets therefore generate a response from the XBee module in the form of a notification message.

Notification and command messages can be encapsulated into an IPv6 UDP packet.

An IPv6 UDP packet contains a number of parameters to facilitate the transport of a payload from

application to application over a network. Table 11 shows the size and organisation of parameters

contained in an IPv6 header and UDP header. The first parameter indicates which version of the IP

protocol is used. The Traffic Class and Flow Label parameters are not used as the deal with the quality

of service which is not needed for XBee API packet encapsulation. The payload length is the number of

bytes in the UDP header and payload. The next header parameter dictates the type of header following

the IP header, which is a UDP header. The Hop limit parameter determines the number of hops the

packet can pass through. The source address contains the 128 bit IPv6 address of the source of the

UDP packet, and the destination contains the 128 bit IPv6 address of the destination. The next four

parameters belong to the UDP header. The source and destination port are used to multiplex the

payload to the required application. The length field is the length of the payload in bytes. The

checksum parameter is a 2's complement sum of the payload and pseudo header. The payload of a

UDP packet follows after the checksum.

Table 11 IPv6 and UDP header structure

Section Bytes 1 2 3 4

IP
v6

0 Version Traffic Class Flow Label
4 Payload Length Next Header Hop Limit
8

Source Address 12
16
20
24

Destination Address 28
32
36

U
DP

 40 Source Port Destination Port
44 Length Checksum

Payload 49
to1280 UDP Payload

The IPv6 source and destination addresses in the IPv6 UDP headers are determined by the type of API

packet. For an XBee command API packet the IPv6 source address is the IPv6 address of the network

device issuing the command, and the IPv6 destination address is the IPv6 address of the XBee module

(determined using the method described in the previous section). For an XBee notification API packet

the source address is the XBee modules IPv6 address (using the method described in the previous

section) and the destination address is the predetermined IPv6 address of a server. The source and

pg. 112

destination port of the UDP header are used to store the type of XBee packet, and the UDP payload

contains the XBee packet payload.

When an XBee end device takes a sample it sends the sample to the coordinator, and the coordinator

then produces an XBee S2 API packet that contains the sample information and the source address of

the module that produced the sample. This API packet is then received on the serial port of the IoT

gateway (WRT54GL) and is translated to an IPv6 UDP packet. The IoT gateway then sends this IPv6 UDP

packet to the server, where a program listening for the packets decodes and stores the sample

information in a database. The flow of information from the XBee end device to the Server is show in

Figure 112.

Figure 112 Flow of sample information from XBee end device to Server

To achieve this flow of information the IoT gateway is required to convert XBee S2 API packets to IPv6

UDP packets. The placement of information from the XBee S2 packet into the IPv6 UDP packet is

shown in Figure 113.

Figure 113 Converting an XBee S2 API packet to an IPv6 UDP packet

Control of XBee modules can be achieved from the server, and this requires data to flow from the

server to the XBee module as shown in Figure 114. XBee S2 API command messages are used to

pg. 113

change parameters of the XBee module such as pin assignments and sampling rates. These commands

can be encapsulated into an IPV6 UDP packet that is sent from the server to the IoT gateway. The UDP

packet is then translated to an XBee API command packet by the IoT gateway and sent to the XBee

coordinator attached to the IoT Gateway.

Figure 114 Flow of information from Server to XBee Module

The IoT Gateway must convert IPv6 UDP packets to XBee API command packets in order for the

information to flow from the server to the XBee module. The placement of information in an IPv6 UDP

packet to contain an XBee API command packet is shown in Figure 115.

Figure 115 Converting an IPv6 UDP command packet to an XBee API command packet

The software components involved in the data flow between the XBee module and server are shown in

Figure 116. The blue coloured blocks are software elements that were custom developed for the IoT

integrated platform.

pg. 114

Server
IoT Gateway XBee S2

Coordinator
XBee S2 End Device

UDP

IPv6 IPv6

UDP to XBee API XBee API

ZigBee Device Object

802.15.4 MAC
802.15.4 PHY

802.15.4 MAC
802.15.4 PHY

XBee API to UDP

UDP
Application Support

Sublayer and Application
Framework

Network

802.2
802.3

802.2
802.3

ZigBee Device Object

Application Support
Sublayer and Application

Framework

Network

XBee API

Application ApplicationRS232 RS232

Figure 116 Flow of information through software and hardware elements between XBee module and Server

The techniques to obtain information from XBee sensor modules, and set parameters of the XBee

modules from a server over the internet have been defined in this section. The next section shows how

these techniques are used in the software implementation on the IoT gateway to allow information to

flow between the server and XBee modules.

5.4.4 Software implementation on IoT Gateway for XBee

Customised software for the IoT Gateway was created to translate between the XBee network and the

IPv6 network. The software was designed to run in Linux meaning it can run in OpenWRT on the

WRT54GL and requires the hardware interface previously described. The Raspberry PI also runs Linux

meaning that the same software also worked on the Raspberry PI. The software was created using the

toolchain and IDE described in section 5.1.2.

pg. 115

The following flowchart in Figure 117 gives and overview of the internal processes in the software that

give the functionality required to create an IoT gateway. Each process is in a block, which are linked

together with arrows. Decisions are in diamonds with the outcomes labelled on the arrows exiting the

diamond.

Program StartInitialise Serial and
Tunnel

Select from Tunnel
and Serial

Tunnel Handle
has Data

Serial Handle
has Data

No

Read IPv6 packet

UDP Packet
destined for Xbee

network

Translate IPv6 UDP
packet to Xbee

packet and store
source address and

port in lookup.

Read Xbee packet

Sample Packet Command
Response

Send Xbee packet to
serial port.

No

Yes

Yes

Yes

Translate XbeeS2
sample packet to
IPv6 UDP packet

with server as
desitination.

Write IPv6 UDP
packet to Tunnel.

Translate XBeeS2
response packet to

IPv6 UDP packet
using lookup for

destination.

Yes

No

Yes

No

No

Figure 117 Flowchart of XBee IoT gateway custom software implementation

5.4.4.1 Initialise Serial and Tunnel

The Initialise serial and Tunnel block performs the initial setup required to interface with the tunnel

driver and serial port. The following steps are executed in this block:

1. Initialisation of the serial port with the correct baud rate, and options. The location of the

serial port is provided as the first parameter to the program in the command line.

2. Test the serial connection by reading parameters from the XBee S2 coordinator attached to the

serial port. The parameters read are the PAN ID, serial high and serial low (ID, SH, SL) and these

are used to setup the tunnel driver.

3. Initialise the tunnel driver by performing the following.

pg. 116

a. Set the IPv6 address of the tunnel driver to a translated XBee address of the

coordinator attached to the serial port. To do set the IPv6 address the following

command is executed by the program.

ifconfig [tun] add [ipv6]/[subnet]

Where [tun] is the name of the tunnel adapter, [ipv6] is the ipv6 address of the

coordinator, and [subnet] is the subnet mast of the network.

b. Add a route to the subnet which represents the Xbee network created by the XBee

coordinator attached to the serial port. To add the route the following command is

executed.

route -A inet6 add [ipv6]/[subnet] dev [tun]

5.4.4.2 Select from Tunnel and Serial

Linux provides multiplexing capabilities for from reading multiple file devices from a single process.

This functionality is accessed the select function. The select function is given the file handles of the

tunnel driver and the serial port, and then blocks the process execution until data is available on any of

the file handles. This allows a single process to service multiple file handles without the need for

complex multithreading.

pg. 117

The flowchart in Figure 118 elaborates on the process to select from the serial and tunnel file handles.

The “Zero Select Structure” and “Add tunnel and serial file handle…” blocks initialise a structure used

by the select function. This structure is then passed to a select function (this is the block “Pass select

structure to select function”) which blocks until there is data available to read on either of the file

handles.

Start Select

Zero Select
Structure

Add tunnel and
serial file handle to

select structure

Pass select structure
to select function

Is serial handle set Is tunnel handle set

Process Serial Data Process Tunnel Data

No No

Yes Yes

Figure 118 Flowchart of select process in XBee IoT gateway software

pg. 118

5.4.4.3 Processing Tunnel Data

When the select function determines there is data available to be read from the tunnel file handle, the

process in Figure 119 is used. The process extracts IPv6, and UDP headers from the data and creates an

XBee API command from this information and the UDP payload. In order for a response message to be

sent back to source of the command request the address and port of the source are stored in a lookup

table.

Start Read Tunnel
Data

Read Packet into
bufferIs buffer length > 0

Yes

Parse IPv6 Header
from buffer Is next header UDP Yes Parse UDP Header

from buffer

Is UDP
destination port

for Remote
Command
Request

Add NAT entry in
lookup table using
source address and
port, this generates

a frame ID

Yes

Translate IPv6
destination address

to XBee Module
Address

Create an Xbee API
command packet
header using the

module address and
frame

Copy the Xbee API
command header

and UDP payload to
a buffer

Write the buffer to
the serial file handle

End

No

No

No

Figure 119 Flowchart of reading tunnel data in XBee IoT Gateway software

The details of each element in Figure 119 are as following, they are in the order of execution in the

software.

 “Read Packet into buffer” performs the read operation from the tunnel file handle into a

buffer. When reading from a tunnel the amount of data read is not the size of the buffer

specified, but the amount of data available to be read from the handle. This means that the

buffer used is the maximum size that an IPv6 packet can be on the interface (1500 bytes). The

read function returns the actual number of bytes read, and hence the length of the IPv6

packet.

 “Is buffer length > 0” block checks that data was written into the buffer. If there was no data

written an error has occurred and the process is stopped.

pg. 119

 “Parse IPv6 Header from buffer” extracts the IPv6 header into a structure from the buffer read

from the tunnel file handle. Parsing the header uses the technique described in section 5.3.2.

The IPv6 header should contain the IPv6 address of the XBee module, which will be used later

to create the XBee API packet.

 “Is next header UDP” checks if the next header field in the IPv6 header contains the value 17

which means the next header is a UDP header. If the next header is not a UDP header the

process ends.

 “Parse UDP header from buffer” extracts the UDP header into a structure from the buffer using

the technique described in section 5.3.2. The UDP header contains the source and destination

port, and the length of the payload. The destination port is used to determine what type of API

message to send to the XBee coordinator module. At present only the remote command

request API message is supported, additional commands can be added in this process.

 “Is UDP destination port for Remote Command Request” checks the UDP destination port. If

the destination port is not a predetermined port for a Remote Command Request then the

process ends.

 “Translate IPv6 destination address to XBee Module Address” uses the technique in section

5.4.2 for translation the IPv6 address. This uses the destination address contained in the IPv6

structure parsed from the buffer.

 “Add NAT entry in lookup table using source address and port…” allows for the response to the

command to be sent back to the source of the command. To create a response IPv6 UDP

packet the destination address and destination port must be known, these are taken from the

lookup table entry generated in this step. To know which entry to use the frame ID is used as a

key for each entry. The frame ID is a field in the XBee API Remote Command Request header.

 “Create an XBee API command packet header…” combines information from the IPv6 header,

UDP header and UDP payload in order to create a remote command request XBee API packet.

A general XBee API header is created with the length of the payload and the command id of a

remote command request, and is placed in a buffer. The remote command request is created

using the IPv6 header and UDP payload, and then placed in the buffer after the general header.

Lastly the payload of the remote command request is taken form the UDP payload. The result

is a buffer that contains the raw XBee API packet for a remote command request with

parameters specified using the IPv6 UDP packet.

 “Write the buffer to the serial file handle” is described in the next paragraph. Writing the

buffer to the serial file involves escaping some of the characters and appending a checksum.

pg. 120

To write an XBee API packet to the serial port the process in Figure 120 is used. The process consists of

creating the XBee general API header, putting the header at the beginning of buffer, appending a

checksum to the buffer, and then writing the buffer to the serial port. When writing the buffer certain

characters need to be escaped because the coordinator is in escaped API mode. The escaping of

characters ensures that the start character 0x7e for XBee API packets only occurs at the start of a

packet, and not inside the packet. This makes detection of the start of the packets more reliable.

Start Write XBee API
packet to serial

Create Xbee API
general header with

length of buffer,
and command ID

Put general header at
the beginning of the

buffer and the
checksum at the end

Write 0x7E to serial
handle

Does the current byte in the
buffer need escaping

Write 0x7d, and
write the current
byte in the buffer

XORed with 0x20 to
the serial handle

Is there data to be
written in the buffer

Write the current
byte in the buffer to

the serial handle

Select the next byte
in the buffer

End

Yes

No

No

Yes

Figure 120 Flowchart for writing an XBee API packet to the serial port

5.4.4.4 Serial Has Data

When data is available from the serial file handle it will be a notification XBee API packet sent via serial

by the XBee coordinator. Every XBee API packet contains a general header which is used to identify the

start of an XBee API packet, the length of the packet, and the type. This must be read from the serial

buffer in order to determine how many bytes to read to obtain the full XBee API packet and how to

parse the contents of the packet. Once the header is read, the payload of the XBee API packet can be

read into a buffer.

pg. 121

The flowchart in Figure 121 shows the process of reading the XBee API packet from the serial port. The

details of each element shown in Figure 121 are as following, they are in order of executing in the

software.

 The “Read byte…” and “Is byte 0x7E” detect the start of an XBee API packet by continually

reading a byte from the serial handle until the 0x7E character is read. The byte 0x7E will only

occur at the beginning of an XBee API packet when in API mode and escaping is enabled.

 The “Create a Buffer…” block allocates a buffer with the length of a general header, which is 4

bytes.

 The next five elements after the “Create a buffer…” block create a loop that reads the rest of

the header. In the loop the decision “Is byte 0x7D” checks if an escape character has been

read, if so the next character read must be escaped, otherwise the current character is put

into the buffer. The loop continues until the buffer is full.

 “Parse XBee API General Header” parses the header into a structure using the technique in

section 5.3.2. The general header contains the length of the payload which is needed in order

to determine how much data must be read form the serial handle.

 “Extend buffer…” allocates more memory to the buffer so that it can contain the payload of

the packet. The amount of memory to allocate is determined by the length field in the general

header.

 The next five elements after “Extend buffer…” perform a loop to read the payload of the XBee

API packet. This is the same process as the next five elements after “Create a buffer…”

described above.

 “Calculate XBee API…” determines the checksum from the buffer. The checksum is calculated

using the method described in the XBee Product Manual [89].

 “Checksum OK” compares the calculated checksum with the checksum in the buffer. If they are

similar the process completes.

 “Clear buffer…” occurs if the checksum is not correct. Clearing the buffer is required as the

contents of the buffer is not correct. An error is generated and is only displayed when the

software is started with a debugging parameter. Additional error handling is required and

depends on the amount of reliability required.

pg. 122

Read byte from
Serail Handle Is byte 0x7E

Read byte from
Serial HandleIs byte 0x7D

No

Read byte from
Serial Handle, XOR

byte with 0x20
Buffer full

Place byte in next
free position in

Buffer

Create a Buffer with
a length of the Xbee
API general header

Start Xbee API
Packet Read

Yes

Yes

No
No

Yes

Parse Xbee API
General Header
from Buffer into

structure

End

Extend buffer by the
length specified in
Xbee API general

header

Calculate Xbee API
packet checksum Checksum OK

Clear buffer, and
generate error

No

Yes

Read byte from
Serial Handle

Is byte 0x7D
Read byte from

Serial Handle, XOR
byte with 0x20

Buffer full

Place byte in next
free position in

Buffer
Yes

No

Figure 121 Flowchart for reading an XBee API packet form the serial file handle in the XBee IoT gateway software

pg. 123

The result of the reading process is a structure containing parameters from the general XBee header,

and a buffer containing the rest of the API packet. The next step is to determine what type of packet is

present in the buffer, and then parse it into an appropriate structure, which is shown in the flowchart

in Figure 122.

Start Xbee API
Packet to IPv6 UDP

conversion

Command ID is
command response

Command ID is
sample packet

Parse sample packet
header

Parse command
response header

Lookup frame ID in
NAT table

NAT entry exists

Set IPv6 destination
address and UDP
destination port
using NAT entry

Set IPv6 source
address to Xbee

module address in
command response

header

Set UDP source port
to predetermined
port for command

responses

Create IPv6 and
UDP headers

Create buffer. Put
IPv6 header, UDP
header, command
response header
and payload in

buffer

Create IPv6 and
UDP headers

Set IPv6 source
address to Xbee

module address in
sample packet

header

Set IPv6 destination
address to

predetermined
server address

Set UDP source port
and destination port

to predetermined
port for sample

packets

Create buffer. Put
IPv6 header, UDP
header, sample

packet header and
payload in buffer

Write buffer
containing IPv6 UDP

packet to tunnel
handle

End

Yes

Yes

Yes

No

No

Figure 122 Flowchart for the process to parse different types of XBee API Packets

The details of the elements shown in the flowchart in Figure 122 are as following, they are in the order

of execution in the software.

pg. 124

The first two decisions “Command ID is command response” and “Command ID is sample packet”

determine the type of packet based upon the command ID in the general header. The following is the

details of the process for the command response. If the command id is a sample packet then this

process is skipped.

 “Parse command response header” uses the technique in section 5.3.2 to extract the header

from the buffer into a structure. The command response header contains information about

the XBee module that sent the response.

 “Lookup frame ID in NAT table” uses a table containing the IPv6 address and UDP port that

command requests have originated from. The frame ID is used as a key to find the correct IPv6

address and UDP port in order to create an IPv6 UDP packet to contain the command

response.

 “NAT entry exists” checks if there is an IPv6 address and UDP port to send the command

response to. If there is none then the process ends.

 “Create IPv6 and UDP headers” creates the structures needed to contain the IPv6 header and

UPD header.

 “Set IPv6 destination and UDP destination…” uses the NAT table to populate the IPv6

destination address and UDP destination port. The IPv6 source address is the IPv6 address of

the XBee module that the response command originated from.

 “Set IPv6 source address…” uses the technique in section 5.4.2 to translate the XBee module

address to an IPv6 address.

 “Set UDP source port…” uses a predetermined port number which is the same as the

command request port in order for the response to go back to the application that sent the

request.

 “Create buffer. Put IPv6 header, UDP header, command response header and payload in

buffer” creates the raw IPv6 UDP packet containing the command response to be written to

the tunnel file handle. The technique for generating the packet from the structures is given in

section 5.3.2. Some of the command response header is not placed in the buffer such as the

source XBee addresses as they are used for the IPv6 source address.

The second decision “Command ID is a sample packet” has the following process, and is similar to the

above process.

 “Parse sample packet header” uses the technique in section 5.3.2 to extract the header from

the buffer into a structure. The sample packet header contains information about the XBee

module that sent the sample packet and the number and type of samples.

pg. 125

 “Set IPv6 destination address…” uses the IPv6 address of the server given to the software as a

parameter at start-up.

 “Set UDP source port and destination port…” ensures that the UDP packet is delivered to the

correct application for the given IPv6 address. The application running on the server to receive

the samples will need to listen to this port in order to receive the UDP packets containing the

samples.

 “Create buffer. Put IPv6 header, UDP header, sample packet header and payload in buffer”

creates the raw IPv6 UDP packet containing sensor samples to be written to the tunnel file

handle. The technique for generating the packet from the header structures is given in section

5.3.2. Parts of the sample packet header are not used as they contain redundant information,

such as the XBee module address.

Both of these processes produce a buffer that contains a raw IPv6 UDP packet, “Write buffer…” then

writes the buffer to the tunnel file handle. The tunnel driver can then send the IPv6 UDP packet to the

required network interface in order to be sent to the required IPv6 destination.

The processes detailed in this section demonstrated the software required to allow communication

from an internet server with an XBee WSN via a gateway. This allows the internet server to collect

sensor information from the XBee WSN, and provides mechanisms to control the XBee WSN.

5.4.5 ZigBee IoT Platform Summary

The customised software presented in this section demonstrates a method of connecting an XBee

WSN to and internet server with a gateway. IPv6 UDP packets are used to transport data to and from

the WSN via the gateway. The gateway translates these IPv6 UDP packets to corresponding XBee API

packets. To complete the IoT platform software on the server is required to communicate with the

XBee WSN through the gateway. The implementation of the software on the server to collect data

from the WSN, and control the WSN is given in section 5.6.

5.5 6LoWPAN IoT Platform Implementation

The implementation of 6LoWPAN involved the development of the firmware for the sensor nodes and

the software for the gateway. The firmware development of the sensor nodes used hardware

development kits coupled with an IDE. The development of the gateway software was similar to the

development of the XBee gateway.

The firmware for the sensor nodes contains a 6LoWPAN stack, an IEEE 802.15.4 stack and a radio

driver. The 6LoWPAN stack implements the 6LoWPAN communication by parsing 6LoWPAN packets or

creating 6LoWPAN packets. In order to receive a 6LoWPAN packet to parse, or send a 6LoWPAN packet

pg. 126

the IEEE 802.15.4 stack was created, which manages the point to point communication between the

nodes. The IEEE 802.15.4 stack then interfaces with the radio driver to transmit and receive 802.15.4

frames containing the 6LoWPAN packets.

5.5.1 6LoWPAN Development Hardware

The hardware used to develop the nodes and gateway used existing hardware development kits

coupled with platforms to run embedded Linux. The sensor nodes used either the Texas Instruments

EM430F6137RF90 development board, or the OLIMEX MSP430-CCRF development board. The gateway

software was developed on the WRT54GL router.

5.5.1.1 6LoWPAN Node

A microcontroller coupled to a radio is needed to create a sensor node, several companies provide a

single chip solution that contains a radio and microcontroller. The CC430 microcontroller range by

Texas Instruments was chosen as the platform for the sensor nodes because the development

environment is freely available and provides good debugging functionality. The CC430 microcontroller

is an MSP430 microcontroller coupled with a C1101 radio [100] in the same package which reduces the

number of components and board size.

The development boards used are shown in Figure 123, they use different variants of the CC430

microcontroller. The Texas Instruments EM430F6137RF900 [101] is a development board created by

Texas Instruments for the CC430 microcontroller, it comes in a kit with two development boards and a

JTAG debugger. The Olimex MSP430-CCRF [102] is a development board created by Olimex for the

CC430 microcontroller and is sold individually without debugging hardware.

Figure 123 Texas instruments EM430F6137RF900 (left) and Olimex MSP430-CCRF (right)

pg. 127

The differences and similarities between the development boards are shown in Table 12.

Table 12 CC430 Development Boards Comparison

 TI EM430F6137RF90 Olimex MSP430-CCRF

Microcontroller CC430F6137 CC430F5137

RAM 4 KB 4KB

Flash 32 KB 32 KB

LCD controller Yes No

Antenna External (Omni directional) PCB

In order to develop software for the 6LoWPAN modules a debugging interface and software

environment was used. The software environment (Code Compose Studio) is described in section

5.1.1, Code Compose Studio requires the debugging interface to upload code and debug the

development boards. The Texas Instruments evaluation development board was provided as a kit with

a debugging interface which can be seen attached to the board in the bottom of Figure 2. The Olimex

development board however is provided without a debugging interface. Texas instruments developed

a starter development kit call the MSP430 Launch Pad [103] which can provide debugging capabilities

to any MSP430 product that supports the Spy-Bi-Wire (SBW) protocol [104]. An adaptation board that

connects the debug connecter to the SBW pins in the launch pad is shown in Figure 124, which allows

Code Composer Studio to upload code and performing debugging.

Figure 124 MSP430 Launchpad attached to the Olimex MSP430-CCRF for firmware upload and debugging

5.5.1.2 6LoWPAN Gateway

For the 6LoWPAN gateway the WRT54GL router and Raspberry PI were used. The gateway was

primarily developed using the WRT54GL router, as the Raspberry PI was unavailable. The gateways

required a radio interface in order to communicate with the 6LoWPAN nodes. A development board

was used to provide the radio interface via a serial connection to the gateway.

pg. 128

Figure 125 shows the initial development system for the gateway, with the WRT54GL router attached

via its serial port to the serial port of a Texas Instruments Development Board. The development board

is also attached to a JTAG debugger to allow debugging with Code Compose Studio, see section 5.1.1

for details. The WRT54GL can be debugged with Eclipse via an Ethernet connection, see section 5.1.2.2

for details.

Figure 125 6LoWPAN gateway using a WRT54GL router connected to a Texas Instruments CC430F6137 development board

with MSP430 JTAG debugger attached.

MSP430 JTAG debugger

TI
 C

C4
30

 D
ev

el
op

m
en

t
Bo

ar
d

WRT54GL Router

FTDI

USB to Serial

pg. 129

Figure 126 shows the Olimex MSP430-CCRF attached to the Raspberry PI, which provides power and

serial communication. The Olimex board has a voltage regulator that can be supplied up to 12 V [102]

which means it can be attached to the 5V supply pin of the Raspberry PI (refer to section 5.4.1.1). The

serial port pins are provided on the UEXT header of the Olimex development board, which are

connected via the cable seen in Figure 126 to the Raspberry PI header to create the serial connection.

Figure 126 6LoWPAN gateway using the Raspberry PI connected to an Olimex CC-RF development board

5.5.2 6LoWPAN Node Firmware Implementation

The firmware on the 6LoWPAN node has three components, which are the 6LoWPAN stack, the radio

interface, and the application to quire and send sensor data using the 6LoWPAN stack. The 6LoWPAN

stack performs the parsing of packets received by the radio interface, and can generate me packets to

be sent via the radio interface. The radio interface performs the necessary setup and functions to

operate the internal CC1101 radio in order to send or receive packets. The application reads analogue

voltages using the ADC, and packages them into a UDP packet to be transmitted to the IoT server.

5.5.2.1 6LoWPAN stack

The 6LoWPAN stack incorporates IEEE 802.15.4 for the lower level communication between nodes. A

lower level Media Access layer (MAC) and physical layer are required by the 6LoWPAN stack to operate

[105]. The IEEE 802.15.4 stack performs basic network joining functions, and facilitates the

transmission and reception of data packets [57].

pg. 130

In order for the 6LoWPAN node to send a UDP packet to the server a LoWPAN header, and compressed

UDP header must be created. Table 13 shows the structure of these headers.

Table 13 6LoWPAN header for sending UDP packet to server

Section Bytes\Bits 1 2 3 4 5 6 7 8

LoWPAN
IPHC

0 0 1 1 Traffic & Flow Nxt Head Hop Limit

1 Context Src Adr C Src Adr Mode Mlti Cst Dst Adr C Dst Adr Mode

IPv6 Dst
Adr

2

Server IPv6 Address

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

UDP

18 1 1 1 1 0 Chk Sum Ports

19 Source Port Destination Port

N UDP payload

The 6LoWPAN header compression standard [105] defines the technique to create the LoWPAN

compressed header. This LoWPAN compression header specifies which address information in an IPv6

header can be omitted and obtained from the IEEE 802.15.4 layer or a context. A context is a number

assigned to an address which is shared between the node and the router, however the technique of

sharing this address and its’ context is in the draft stages [106]. The servers IPv6 address cannot be

obtained from the IEEE 802.15.4 information and is therefore included after the LoWPAN header. Any

information that cannot be compressed by 6LoWPAN appears in the order that it appears in an IPv6

header, after the LoWPAN compression header. The 6LoWPAN header compression uses information

from the IEEE 802.15.4 header to reconstruct the IPv6 address of the 6LoWPAN nodes.

The compression of the UDP header is also defined in [105], which operates in a similar way to the

compression of IPv6 information. A UDP compression header defines which fields have been

compressed, and is then followed by the compressed or uncompressed fields as they appear in an

uncompressed UDP header. After the uncompressed fields is the payload of the UDP packet.

pg. 131

The format of the header that precedes the 6LoWPAN header is given in Table 14.

Table 14 IEEE 802.15.4 header for 6LoWPAN UDP packet

Section Bytes\Bits 1 2 3 4 5 6 7 8

Frame
Control

0 Frame Type Security Frm
Pend AR Pan ID 0

1 0 0 Dst Adr Mode 0 1 Src Adr Mode
Seq 2 Sequence Number

Ad
dr

es
sin

g

3 Destination PAN
4
5 Destination Address 6
7 Source Address 8

6LowPAN N 6LoWPAN header, Compressed UDP header, and UDP payload

5.5.2.2 Microcontroller Radio Interface for 6LoWPAN stack

The IEEE 802.14.5 component of the 6LoWPAN stack requires access to a radio for transmission and

reception of packets. Functions to initialise the radio, transmit a packet using the radio, and wait for a

packet to be received from the radio are provided by the radio interface to the IEEE 802.15.4

component of the 6LoWPAN stack.

The interface between the CC1101 radio and the MSP430 microcontroller is provided through registers

on the MSP430 which define logical channels [107]. The logical channels provide access to the CC1101

registers and commands. Feedback from the CC1101 is also obtained via and interrupt, which is used

to indicate certain events have occurred such as receiving a preamble, or the transmit buffer or receive

buffer is below a threshold.

The initialisation of the CC1101 radio involves setting registers that control the following.

 Carrier frequency - this is the base frequency for the first channel that the radio will operate at.

The operating frequency of 915 MHz was chosen.

 Channel spacing – the frequency spacing between adjacent channels.

 Channel number – the channel number determines which carrier frequency the radio will

operate at and is the channel number multiplied by the channel spacing added to the

Operating Frequency. The channel number can be set using a function provided by the radio

interface. Initially the channel is set to channel 0.

 Data rate – this is the rate at which information will be sent. 38 kilo-bits per second was

chosen as the data rate.

pg. 132

 Modulation type – this is the type of modulation to use, which can be Gaussian Frequency

Shift Keying (GFSK) or Frequency Shift Keying (FSK) or Amplitude Shift Keying (ASK) or On/Off

Keying (OOK). FSK was the modulation type chosen.

The values for the registers can be obtained using a tool provided by Texas Instruments called

“SmartRF Studio”, which can be obtained here [108]. It allows easy configuration by specifying the

parameters above which generates a list of registers and values. This list is then put into an array and

iterated through programmatically by the radio interface to setup the CC1101 radio.

Transmitting or receiving data using the CC1101 radio is achieved using buffers. There are individual

buffers for transmitting and receiving, both are 64 bytes in size. The buffers can be read and written to

while transmitting or receiving in order to accommodate packets larger than 64 bytes. This is achieved

using interrupts that occur when the amount of data in the buffers are below a certain threshold so

that appropriate action can be taken.

The process in Figure 127 is used to transmit a buffer containing a packet.

Set transmit buffer
threshold interrupt,
and end of transmit

interrupt

Fill transmit buffer with
packet buffer at current

offset, and increment offset
by amount number of bytes

written

Is packet buffer > transmit bufferSet transmit end
interrupt

Fill Transmit buffer
then put radio into
transmit mode and
MSP430 into low

power mode

No Yes

Start transmit
packet buffer Set packet length

Transmit buffer
threshold interrupt

Put MSP430 back
into low power

mode

End of transmit
interrupt

Exit MSP430 low
power mode

End transmit packet
buffer

Figure 127 Flow chart for process of transmitting data using CC1101 radio

The first part of the process determines which interrupts should be used based on the length of the

packet buffer. Several Interrupts can be generated by the radio, so if the packet buffer’s length is less

pg. 133

than the transmit buffer the end transmit interrupt is used, otherwise both the end transmit interrupt,

and transmit buffer threshold interrupt is used. After the appropriate interrupts are chosen the

transmit buffer is filled with the packet buffer and the length of the packet buffer is set as the packet

length register, the radio is put in transmit mode, and the MSP430 is put to sleep. In the sleep mode

the MSP430 can be woken up by interrupts caused by the CC1101 radio. The CC1101 knows when a

packet has been transmitted as a register containing the length of the data to be transmitted is set

before putting the radio in transmit mode.

When the transmit buffer threshold interrupt occurs it means that the transmit buffer is nearly empty

and must be refilled. After refilling the transmit buffer with the packet buffer, the MSP430 re-enters

the low power sleep mode.

When the end of transmit interrupt occurs the CC1101 radio has completed sending the packet buffer

and therefore the MSP430 is taken out of low power mode to continue with any other required

operations.

pg. 134

The process to receive a packet is similar to transmitting a packet, however the start of receiving a

packet needs to be detected with an interrupt. The flowchart in Figure 128 shows this process.

Start packet
reception

Set interrupts for
receive buffer

threshold, sync, and
end of packet

Put radio into
receive mode, and

MSP430 into
transmit mode

Receive sync
interrupt

End of packet
interrupt

Exit MSP430 low
power mode

End packet
reception

Read packet length Packet length >
Receive buffer

Disable receive
buffer threshold

interrupt

Enter MSP430 low
power mode

Read remaining
data from receive
buffer into packet

buffer

Yes
No

Receive buffer
threshold interrupt

Read available
receive buffer into

packet buffer at
current offset, and
increment offset by
the number of bytes

read

Enter MSP430 low
power mode

Figure 128 Flowchart for process of receiving a packet using the CC1101 radio

As with the transmitting process, the receiving process starts with enabling interrupts. These interrupts

are as following.

 Receive sync interrupt occurs when the preamble and packet length have been received.

 Receive buffer threshold interrupt occurs when the receive buffer has been filled past a

predetermined threshold.

 End of packet interrupt occurs when the packet has been received.

The receive sync interrupt is used to determine if the receive buffer threshold interrupt should be

enabled based on the length of the packet being received. After the interrupt occurs the MSP430 is put

back into sleep mode, to wait for either the end of packet interrupt or receive buffer threshold

interrupt.

pg. 135

The receive buffer threshold interrupt is used to empty the read buffer into the packet buffer. The

MSP430 is put into sleep mode once the buffer is emptied in order to wait for either another receive

buffer threshold interrupt, or the end of packet interrupt.

The end of packet interrupt means the packet reception is complete and any remaining data must be

flushed from the receive buffer into the packet buffer. After the interrupt is complete the MSP430 exits

the low power mode to continue with processing the packet.

5.5.2.3 Application to acquire and send sensor data using 6LoWPAN

A simple application to acquire sensor data and send it to the server using 6LoWPAN was developed to

mimic the behaviour of the XBee based IoT platform. The sensor data is in a format similar to the

format of a sensor sample produced by the XBee Gateway implementation. This means that when the

server receives a UDP packet containing a data sample it can be interpreted using the same technique

as a sample produced by and XBee module. The 6LoWPAN gateway will produce UDP packets

containing sensor samples which have an identical format to those produced by the XBee gateway.

5.5.3 6LoWPAN Gateway Implementation

The gateway implementation comprises of firmware for a CC430 development module and software

for the gateway (the WRT54GL or Raspberry PI). The firmware for the CC430 development module

provides an interface to configure the radio, transmit packets using the radio, and listen for packets

from the radio. The software for the gateway uses a serial interface to communicate with the

6LoWPAN network, a tunnel interface to communicate with the IPv6 network, and performs

translation between the two networks.

5.5.3.1 Radio interface for 6LoWPAN gateway

The radio interface uses the same code as the radio driver for the CC430 development board in section

5.5.2.2. The radio driver provides transmit and receive functions which are accessed by commands

sent from the gateways’ serial port to the CC430 development boards’ serial port.

The transmit command payload contains the packet to be transmitted by the CC1101 radio. When the

transmit command is received from the serial port of the CC430 developer board, the radio driver

initiates the transmit function using the transmit commands’ payload as the packet buffer. After the

packet is transmitted a confirmation message is sent out the serial port back to the gateway to indicate

that the packet has been sent.

When the receive packet command is received from the gateway, the CC430 board uses the receive

function of the radio driver to wait for a packet to be received. Once a packet is received it is

transmitted via the serial port to the gateway.

pg. 136

5.5.3.2 Software for 6LoWPAN Gateway

The software running on the gateway performed the task of translation between IPv6 and 6LoWPAN.

The software was developed using the environment described in section 5.1.2. 6LoWPAN packets

received by the radio interface which are destined for networks other than the 6LoWPAN network are

decompressed into IPv6 packets by the software running on the gateway. The technique to

decompress the 6LoWPAN packets if defined in [105]. Once they are decompressed they are sent using

the tunnel interface technique described in section 5.3.1. IPv6 packets received by the tunnel interface

which are destined for the 6LoWPAN network are compressed into 6LoWPAN packets and sent using

the radio interface. The technique to compress IPv6 to 6LoWPAN is defined in [105].

5.6 IoT Server Implementation

A customised software service running on a server acquires data from the WSNs and stores it in the

database. A website then provides access to the stored sensor data in the form of graphs. The sensor

data from WSN is sent to the server via a gateway, and the gateway is connected via the internet to the

server using a secure tunnel (OpenVPN). A service running on the server collects the received sensor

data and stores it in a database. The sensor data can be accessed, and plotted in graphs from a

website.

5.6.1 Sensor Data Acquisition and Storage

The software service running on the server performs two tasks, which are acquiring the sensor data

and storing the sensor data. The first task uses a UDP listening socket to receive the UDP packets

containing sensor data created by the gateway. Once a UDP packet is received, the sample data is

extracted from the payload, and the source address of the XBee Module that sent the data is extracted

from the IPv6 source address of the UDP packet. The second task involves using the information

extracted from a UDP packet to create a database entries for each sensor sample extracted from the

UDP packet.

5.6.1.1 Receiving Sensor Samples

In many operating systems the application interface to perform basic network communication is called

a socket. There are two modes of operation for a socket, client and server. In client mode the socket is

used to connect to a server to exchange information with the server. In server mode the socket listens

for incoming connections from clients, once a connection is made a new socket for that client is

created in order for data to be exchanged with the client.

The IoT service used a socket in server mode to listen for incoming UDP packets from clients (XBee

modules). However, as UDP is connectionless there is no connection stage when a socket is in the

pg. 137

server mode, therefore a single socket must handle data coming in from multiple clients. When data is

received from the socket, the address of the source of the data is also present.

5.6.1.2 Storing Sensor Samples

When taken individually sensor data is meaningless, in order to give the sensor data meaning it must

have a context. The context of the sensor data is the source of the sensor data which is the sensing

modules address (which includes the channel the sensor data was obtained from), and the time the

sensor data was received. Therefore, the structure of database to store acquired sensor data must be

well defined in order for the sensor data stored in it to have relevant meaning.

The sensor data decoded from the UDP packet is stored in a MySQL database so that it can be accessed

from the website. The sensor data must be stored with the source address and channel of the sensor

data as well as the time the data was received in order to maintain the context of the sensor data. This

means the following columns in the database table are required.

 Sensor ID – the IPv6 address of the sensor module that sent the sample data.

 Sensor Channel – the channel that the sample was taken from.

 Date and time – the date and time the UDP packet arrived containing the sample information.

 Sample Data – the raw sample data.

5.6.2 Graphical Web Interface

The purpose of the graphical web interface is to display the sensor data from each sensor in a graph on

a web page. In order to do this sensor data from a specific channel and device is recalled from the

database and sent to the web browser. The web browser converts the raw sample data into the unit

that the sensor measuring then displays it in a graph. Screenshots of the graphing website can be

found in the results, section 6.1.

Additionally simple control of the digital output pins was also implemented to demonstrate remote

control of the sensor modules. A simple webpage with a button that toggles the state of the digital

output pins was created to control an electrical device.

5.6.2.1 Retrieving Sensor Samples from Database

In order to retrieve the sensor samples from the database the sensor id, sensor channel, and data and

time range are required. These parameters are used to create a query to the database to retrieve the

required sensor samples. Conversion of the sensor samples is also required meaning the conversion

function for the sensor data must also be retrieved.

pg. 138

A sensor data retrieval PHP script was written to obtain sensor data for a given time period from a

given sensor and channel. The PHP script creates a SQL query with the sensor identifier, sensor

channel, and date range to return a set of results with the required sensor data. The sensor data is

then formatted into a Java Script Object Notation (JSON) array with the sensor sample and

corresponding time the sample was taken. The JSON array is then output.

A sensor information retrieval script was written to obtain sensor information for a given sensor. The

PHP script formats a SQL query with the sensor identifier and sensor channel in order to return the

sensor information, such as the sensors name, and conversion formulae. The result is formatted into a

JSON object, which is the output.

5.6.2.2 Plotting Retrieved Sensor Samples in Graph

The output of the sensor sample retrieval is placed into a JSON array, which is transmitted to the web

browser. In order to convert the sensor samples to units a conversion function is needed, which is also

retrieved from the database. The web browser uses the conversion function on the sensor samples to

produce points to plot in a graph.

The sensor data retrieval PHP script provided access to the samples from a given sensor, for a given

time period. The output of the script is an array with the sample and time the sample was taken. A

JavaScript script running on the web browser queries the PHP script for sensor data. The sensor

information retrieval script provided access to the conversion function, which is queried by the

JavaScript script to obtain the formulae. The conversion of the sensor data to standard units that

represent the measurement of the sensor is performed by the JavaScript script running in the browser.

After the sensor data has been converted it is plotted in a graph using a graphing library called

HighCharts [109].

5.6.2.3 Controlling WSN Nodes

Control of the sensor modules digital output is given via a webpage. A PHP script on is called by

webpage, which creates an IPv6 UDP packet with a control message to send to the XBee module.

5.7 Summary

Section 5.1 provides the details of the software tools used to develop firmware and software required

for the WSN-IoT platform. The firmware software tools were required to develop the 6LoWPAN nodes.

The software required for the gateway needed a custom toolset for cross compiling.

Section 5.2 provides the details of the software required to support he WSN-IoT platform. Connection

between the gateway and server was provided by a secure tunnel software which is open source. The

website and database running on the server uses open source software to provide these services.

pg. 139

Sections 5.3 provides the details of the implementation technique used to achieve networking

connectivity on the gateway, and techniques used for parsing information in network packets.

Section 5.4 provides the details of the ZigBee based IoT platform implementation. The ZigBee platform

consists of a ZigBee based WSN and a gateway to interconnect the ZigBee based WSN with a server.

Details of various sensors fabricated for the system are provided. The implementation of the software

required for the gateway to interconnect the ZigBee WSN with the server is given.

Section 5.5 provides the details of the 6LoWPAN based IoT platform implementation. The 6LoWPAN

platform consists of 6LoWPAN nodes, and a 6LoWPAN gateway. Details of the 6LoWPAN sensor nodes,

and the required firmware implementation are given. The software implementation to translate

between 6LoWPAN and IPv6 for the gateway is also given.

Section 5.6 provides the details of the IoT Server platform implementation. The IoT server platform

consists of an IoT service to receive sensor information, a database to store sensor information, and a

website to display sensor information. The IoT service can receive data samples from the 6LoWPAN

gateway, and the ZigBee gateway.

pg. 140

6 Experimental Results
The following sections give results related to the ZigBee based WSN-IoT platform. The 6LoWPAN

system was tested, however it was not stable enough to run for prolonged periods to produce

satisfactory results.

6.1 Fabricated Sensor Modules for monitoring the Smart Home

The developed system was tested by installing smart sensing units and setting up a ZigBee based WSN

connected to the gateway at a household. Interconnecting ZigBee network with IPv6 network is

performed by connecting and configuring the gateway. The Integrated system was continuously used

and generated real-time graphical representation of the sensing information on request.

Figure 129, Figure 130, and Figure 131 show the graphical representation of different types sensing

unit’s information in real-time on the website. Measurements related to the hot water system

described in section 5.4.1.3 are shown in Figure 129. Measurements from a light intensity sensor, and

temperature sensor are shown in Figure 130. Measurements from an electrical sensing unit attached

to the electric water supply pump are shown in Figure 131.

Figure 129 shows temperature measurements taken at the hot water cylinder and the solar heater, and

the power consumption of the hot water cylinder. From the graphs it is easy to determine when hot

water was being used and the reduction in power consumption when the solar heater is active.

pg. 141

Figure 129 Real-time Graph of sensor information for the solar water heater, and hot water cylinder

Figure 130 shows temperature measurements taken outside the home and the approximate light

intensity that the solar heater is subjected to. When compared with Figure 129 it can be seen that

when the light intensity and temperature outside the home is above a threshold the solar heater

becomes active.

pg. 142

Figure 130 Real-time graph of sensor information on website for light intensity and ambient temperature

Figure 131 shows measurements of the voltage and current at the water supply pump. The voltage

measurement has large amount of noise, and is due to several factors such as ungrounded inputs,

insufficient filtering and power supply fluctuations.

pg. 143

Figure 131 Real-time graph of sensor information on website for voltage and current usage of electric pump

Figure 132 shows measurement of three same type of temperature sensor fabricated on a single board

to study the variation and degradation of the temperature sensors. It was clearly observed that the

temperature sensors are not shown any variation from the mean in the collected readings.

Figure 132 Graph of temperature data from three temperature sensors for 45 days

Figure 133 depicts the correlation of typical household usage scenario of an inhabitant. The

parameters measured are: the temperatures of the hot water cylinder and solar heater, the power

20.00

22.00

24.00

26.00

28.00

30.00

32.00

°C

T1 T2 T3

pg. 144

consumption of the hot water cylinder and the light intensity outside the home. These parameters

allow for analysis of the water heating system.

Figure 133 Correlation of sensor information depicting two days typical usage

The times when hot water was used can be clearly identified when the water cylinder temperature

decreases, subsequent increases in power consumption by the water cylinder can be seen. These

times are highlighted in blue. The light intensity measurements give an indication of when there is an

adequate amount of sunlight to heat the water in the solar heater. The first yellow section shows that

light intensity was too low to heat the water, as this was an overcast day. The second yellow section

pg. 145

shows that the light intensity was significantly higher and therefore the solar heater heated the water.

The temperature of water in the solar heater does not exceed the water cylinder temperature due to a

circulation pump providing colder water.

Figure 134 shows the ambient temperature of a room over a continuous period of 45 days. It is

observed that the day light temperatures are higher and night time temperatures are lower when

compared with the average temperature of a day. This is a real-time graphical depiction of ambient

readings of a room in a smart home.

Figure 134 Real-time graph of temperature data from a temperature sensor for 45 days

6.2 Efficient mechanism for sensor data storage

Compression of the real-time data storage for the temperature sensor recordings is done by

considering the variations on the successive temperature readings. If there is a change in the

consecutive temperature readings then the new reading is stored thereby reducing the amount of

sensor recordings to be stored. This technique of variable sensor data recordings has improved the

performance for plotting the real-time graphs on the web significantly. This is mainly because the client

browser is receiving fewer points of data to be plotted. Table 15 shows the amount of compression

achieved for each sensor devices, which was an average of 78% less stored data.

pg. 146

Table 15 Comparison of compressed and uncompressed data for temperature

sensors

Sensing Unit Channel

Sample Packets

received

Samples

Stored

Compression (%)

Module 89 T1 74836 11277 84.93

 T2 74836 10576 85.87

 T3 74836 8555 88.57

Module 50 T1 74866 19262 74.27

 T2 74866 16377 78.12

 T3 74866 15552 79.23

Module 94 T1 74932 21166 71.75

 T2 74932 22032 70.6

 T3 74932 20568 72.55

Average 78.43

6.3 Quality of Service parameters for XBee IoT Platform

The data from two sensors of hot water system for the duration of a month was analysed to determine

the reliability, throughput and jitter of the system. The Xbee- S2 devices were configured to send

samples every 10 seconds. The arrival time of these samples on the server are recorded in the

database accordingly. The time between these recorded times is the interval at which the Xbee device

is sending sample information. The total amount of sample information received by the server was

calculated by dividing running time of the system with the sample interval.

6.3.1 Reliability

The reliability of the system was determined by comparing the calculated value with the amount of

sensor information received correctly. The difference between arrival times of successive sensor

information gives the interval value. If the time interval is greater or less than 10 seconds then there

was an error. When the interval is less than 10 seconds then the sample information received was

incorrect or duplicated and therefore it is erroneous. When the interval is greater than 10secs sample

information has been lost, the amount of information lost can be determined by dividing the greater

interval by the expected interval, Table 16 shows the reliability of two devices sensor information

transmission of ZigBee data encapsulated in IPv6 packet.

pg. 147

Table 16 Reliability of the data transmission in the integrated ZigBee –IPv6

networks of two sensing units for a period 31 days
Sensing
module

Average time between correctly
received samples (seconds)

Number of lost
packets

Expected number
of packets

Number of correctly
received packets

Reliability
(%)

1 9.80 7502 272908 265406 97.25

2 10.55 7354 253774 246420 97.10

6.3.2 Throughput

The throughput of the sensing module is the amount of data sent from the sensing module to the

server in a given time period [20]. The amount of data in each sample packet was 16 bytes, which is

sent every 10 seconds. Therefore the throughput of the sensing module was 1.6 bytes per second. To

measure the throughput of the sensing module, the number of packets received in a 5 minute time

span was considered. The throughput was obtained by dividing the time interval of 5 minutes. Figure

136 shows the throughput of a sensing unit for the period of one month.

Figure 135 Throughput of an electrical sensing unit for a period of one month

The average throughput is 1.55 bytes/second since the reliability was 97%. Investigation into the

sporadic significant change in throughput is in process. Causes are likely to be the interferences from

other networks such as WiFi.

The throughput for temperature sensor units was measured by considering the number of packets

received in an hour. Figure 136 Throughput of temperature sensor units shows the throughput of the

temperature sensors for a period of 45 days. The average throughput was 61.3 packets per hour this is

pg. 148

because the XBee module timers are inaccurate, as they were set to 1 minute interval. The reason for

throughput above average is either due to: XBee module resetting and resending or the application

gateway duplicating packets. The reason for throughput below the average is either due to: XBee

module failing to send packet or application gateway failing to send packet.

Figure 136 Throughput of temperature sensor units

pg. 149

6.3.3 Jitter

The jitter was measured as the delay between two consecutive packets following the technique as

mentioned in [110]. Figure 137 shows the jitter of sensing data for a period of one month. The

instances of large jitter relate to the correlated low throughput. The other QoS parameters such as

delay, energy consumption measurements are in the trial stage.

Figure 137 Jitter for a sensing unit for a period of one month

pg. 150

7 Conclusion
With the advancements in technology, it is expected that the availability of internet is everywhere and

online at all time. Low-cost smart sensor node development enabled things to be connected easily and

corresponding information can be accessible globally. With the features of scalability, fault tolerance

and effective power consumption of nodes and transceiver “Internet of Things” have facilitated

ubiquity computational ability to internetwork heterogeneous smart devices easily and facilitate

availability of data anywhere. An efficient method for internetworking of WSN and the internet is

given. The key idea of proposed method is to provide low-cost solution and flexible connection

mechanisms for integrating Internet of things with home automation systems. The advantages of the

developed system are to have greater control over routing of packets (security and customization) and

ability to adapt to other wireless sensor networks.

Chapter 2 provides a background into the IoT to give a context and scope to the WSN-IoT platforms

developed.

Chapter 4 provides the structure of the ZigBee based WSN-IoT platform, and the 6LoWPAN based

WSN-IoT platform.

Chapter 5 provides the implementation details of developing the WSN-IoT platform. Details of the

software tools, and software packages required for the IoT-WSN platform are given. Two WSN-IoT

platforms were developed using ZigBee and 6LoWPAN. The implementation of the ZigBee based WSN-

IoT platform consists of the ZigBee WSN, and ZigBee IoT gateway. The implementation of the 6LoWPAN

based WSN-IoT platform consisted of the 6LoWPAN nodes, and a 6LoWPAN gateway. An IoT server to

collect the sensor data from the ZigBee based platform and 6LoWPAN platform was implemented. The

server consisted of an IoT service to collect sensor information, a database to store sensor information,

and a website to display sensor information.

Chapter 6 provides results from the WSN-IoT platform, which are data collected from a smart home,

and quality of service parameters of the platform.

pg. 151

8 Challenges and Opportunities
Issues like availability of IPv6 connectivity may be major concern in implementing the methods as

discussed. As most of the internet domains still operate using IPv4 and IPv6 adoption is low. Better

compression techniques can be implemented for minimizing storage requirements and effective

retrieval of data. Security Issues related to data transmission in the WSN need to be investigated to

ensure sensor data is transmitted securely to the gateway.

8.1 Future Works

There are several improvements that can be made to both implementations (ZigBee based and

6LoWPAN based). The following sections give details of improvements that could be made to each

implementation.

8.1.1 ZigBee based IoT Platform Future Works

It was observed that collecting multiple sensor data over long periods of time generates a huge

amount of data. In order to reduce the amount of data stored without losing important information we

have implemented the variable sensor data recording technique. This has resulted in significant

performance improvement for the real-time data display. The next step will be investigating an

appropriate model for continuous heterogeneous sensor data storage mechanism.

Additional management of ZigBee nodes needs to be implemented to facilitate the deploying and

tracking of wireless sensor nodes. Storage of information such as a nodes location, calibration

information, and networking parameters would facilitate the management of the sensor nodes.

8.1.2 6LoWPAN based IoT Platform Future Works

The 6LoWPAN implementation had several stability problems, which can be improved with more

rigorous testing methods. The combination of several software and hardware components made

debugging errors very difficult when the system was running. Compartmentalising the software

components into controlled simulated environments would allow for rigorous long term testing.

The 6LoWPAN node needs to be tested for long term stability in an environment where there are no

other sources of error. This means the 6LoWPAN stack needs to be tested independently of the radio

driver. The radio driver may cause the 6LoWPAN stack to fail or vice-versa, making finding the source of

the problem difficult when it occurs at random after a long period.

The radio interface provided to the gateway also needs to be tested independently to ensure it is

reliable and fault tolerant if the gateway fails. The radio interface also needs to be tested in

pg. 152

combination with the radio driver for the 6LoWPAN node to ensure data transmission is reliable and

incorrectly received data is handled appropriately.

Once the stability and reliability of the 6LoWPAN nodes has been improved the following features

need to be implemented in order to fully utilize 6LoWPAN technology.

 Neighbour discovery [106] which will allow for address auto configuration.

 Constrained Application Protocol (CoAP) [111] which will allow for RESTful services to be

developed, making the wireless sensor network behave similar to most web related protocols.

However this protocol is still in the draft stages, meaning it should not be used until it becomes

a RFC.

pg. 153

9 References

[1] K. Ashton, “That 'Internet of Things' Thing,” [Online]. Available:

http://www.rfidjournal.com/articles/view?4986. [Accessed 20 05 2013].

[2] P. Friess and P. Guillemin, “Internet of things strategic research roadmap,” The Cluster of

European Research Projects, 2009.

[3] BCC Research, “Sensors: Technologies and global markets,” BCC Research, 2011.

[4] I. F. Akyildiz, Y. Weilian, Y. Sankarasubramaniam and E. Cayirci, “A survey on sensor networks,”

Communications Magazine, IEEE, vol. 40, no. 8, pp. 102-114, August 2002.

[5] O. Corcho and R. Garcia-Castro, “Five Challenges for the Semantic Sensor Web,” Semantic Web,

vol. 1, no. 1,2, pp. 121-125, 2010.

[6] L. Atzori, A. Iera and G. Morabito, “The Internet of Things: A survey,” Computer Networks, vol.

54, no. 1, pp. 2787-2805, 2010.

[7] A. Dunkels and J. P. Vasseur, IP for Smart Objects, IPSO Alliance White Paper No. 1, 2008.

[8] D. Surie, O. Laguionie and T. Pederson, “Wireless sensor networking of everyday objects in a

smart home environment,” in Intelligent Sensors, Sensor Networks and Information Processing,

Sydney, 2006.

[9] H. Sundmaeker, P. Guillemin, P. Friess and S. Woelffle, Vision and challenges for realising the

Internet of things, Luxembourg: European Union, 2010.

[10] C. Bizer, . J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak and S. Hellmann, “A

crystallization point for the Web of Data,” Web Semantics: Science, Services and Agents on the

World Wide Web, vol. 7, no. 3, pp. 154-165, 2009.

[11] M. Compton, C. Henson, L. Lefort, H. Neuhaus and A. Sheth, “A Survey of the Semantic

Specification of Sensors,” in 8th International Semantic Web Conference (ISWC 2009), 2nd

International Workshop on Semantic Sensor Networks, Washington DC, 2009.

[12] K. Aberer, M. Hauswirth and A. Salehi, “The Global Sensor Networks middleware for efficient

and flexible deployment and interconnection of sensor networks,” in 7th International

pg. 154

Middleware Conference, 2006.

[13] LogMeIn, Inc, “Xively – Public Cloud for the Internet of Things,” [Online]. Available:

https://xively.com/. [Accessed 2 June 2013].

[14] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz and D. Culler, “sMAP: a simple measurement and

actuation profile for physical information,” in SenSys '10 Proceedings of the 8th ACM

Conference on Embedded Networked Sensor Systems, New York, 2010.

[15] A. Kansal, S. Nath, J. Liu and F. Zhao, “SenseWeb: An Infrastructure for Shared Sensing,” IEEE

MultiMedia, vol. 14, no. 4, pp. 8-13, 2007.

[16] “Feel, Act, Make sense • Sen.se,” [Online]. Available: http://open.sen.se/. [Accessed 17 11

2012].

[17] Etherios Inc., “Device Cloud: Driving the Internet of ANYthing,” [Online]. Available:

http://www.etherios.com/products/devicecloud/. [Accessed 5 June 2013].

[18] J. Beutel, “Metrics for Sensor Network Platforms,” in ACM Workshop on Real-World Wireless

Sensor Networks (REALWSN'06), ACM Press, New York, 2006.

[19] D. Bri, H. Coll, M. Garcia and J. Lloret, “A Wireless IP Multisensor Deployment,” Journal On

Advances in Networks and Services, vol. 3, no. 1,2, p. 14, 2010.

[20] C. Lynch and F. O'Reilly, “PIC-based TinyOS Implementation,” in Wireless Sensor Networks,

2005. Proceeedings of the Second European Workshop on, 2005.

[21] M. Eisenhauer, P. Rosengren and P. Antolin, “A Development Platform for Integrating Wireless

Devices and Sensors into Ambient Intelligence Systems,” in 6th Annual IEEE Communications

Society Sensor, Mesh and Ad Hoc Communications and Networks Workshops, SECON, Rome,

2009.

[22] S. Hong, D. Kim, M. Ha, S. Bae, S. Park, W. Jung and J. Kim, “SNAIL: an IP-based wireless sensor

network approach to the internet of things,” IEEE Wireless Communications, vol. 17, no. 6, pp.

34-42, 2010.

[23] N. Bui, A. Castellani, P. Casari and M. Zorzi, “The internet of energy: a web-enabled smart grid

system,” IEEE Network, vol. 26, no. 4, pp. 39-45, 2012.

pg. 155

[24] A. Iera, C. Floerkemeier, J. Mitsugi and G. Morabito, “The Internet of things,” IEEE Wireless

Communications, vol. 17, no. 6, pp. 8-9, 2010.

[25] A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton and T. Razafindr alambo, “A survey on

facilities for experimental internet of things research,” IEEE Communications Magazine, vol. 49,

no. 11, pp. 58-67, 2011.

[26] M. Zorzi, A. Gluhak, S. Lange and A. Bassi, “From today's INTRAnet of things to a future

INTERnet of things: a wireless- and mobility-related view,” IEEE Wireless Communications, vol.

17, no. 6, pp. 44-51, 2010.

[27] A. Sehgal, V. Perelman, S. Kuryla and J. Schonwalder, “Management of resource constrained

devices in the internet of things,” IEEE Communications Magazine, vol. 50, no. 12, pp. 144-149,

2012.

[28] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura and E. Jansen, “he gator tech smart

house: A programmable pervasive space,” IEEE Computer, vol. 38, no. 3, pp. 50-60, 2005.

[29] D. Cook, “Learning Setting-Generalized Activity Models for Smart Spaces,” IEEE Intelligent

Systems, vol. 27, no. 1, pp. 32-38, 2012.

[30] F. Doctor, H. Hagras and V. Callaghan, “A fuzzy embedded agent-based approach for realizing

ambient intelligence in intelligent inhabited environments,” IEEE Transactions on Systems, Man

and Cybernetics, Part A: Systems and Humans, vol. 35, no. 1, pp. 55-65, 2005.

[31] J. Kientz, S. Patel, B. Jones, E. Price, E. Myantt and G. Abowd, “The Georgia Tech aware home,”

in Proceedings of the Extended Abstracts on Human Factors in Computing Systems, 2008.

[32] I. S. Larson, K. Tapia, E. Beaudin, J. Kaushik, P. Nawyn and J. R. Rockinson, “Using a Live- In

Laboratory for Ubiquitous Computing Research,” in Pervasive Computing, Lecture Notes in

Computer Science, Berlin, Springer Berlin Heidelberg, 2006, p. 349–365.

[33] N. K. Suryadevara and S. C. Mukhopadhyay, “Wireless Sensor Network based Home Monitoring

System for Wellness Determination of Elderly,” IEEE Sensors Journal, vol. 12, no. 6, pp. 1965-

1972, 2012.

[34] L. C. DeSilva, M. Chamin and M. P. Iskandar, “State of the art of Smart Homes,” Engineering

Applications of Artificial Intelligence, vol. 25, no. 7, pp. 1313-1321, 2012.

pg. 156

[35] I. Howitt and J. A. Gutierrez, “IEEE 802.15.4 low rate - wireless personal area network

coexistence issuues,” in Proceedings of the IEEE-Wireless Communications and Networking,

New Orleans, 2003.

[36] L. Angrisani, M. Bertocco, D. Foortin and A. Sona, “Assessing coexistence problems of IEEE

802.11b and IEEE 802.15.4 wireless networks through cross-layer measuremennts,” in

Instrumentation and Measurement Technology Conference Proceedings, Warsaw, 2007.

[37] H. Khaleel, C. Pastrone, F. Penn a, M. A. Spirito and R. Garello, “mpact of Wi-Fi traffic on the

IEEE 8022.15.4 channels occupation in indoor environments,” in International Conferrence on

Electromagneticcs in Advanced Applications, 2009.

[38] N. Kushalnagar, G. Montenegro, J. Hui and D. Culler, “Transmission of IPv6 Packets over IEEE

802.15.4 Networks, IETF RFC 4944,” September 2007. [Online]. Available:

http://tools.ietf.org/rfc/rfc4944.txt.

[39] K. Lee, J. Won and C. Bae, “IGN2IP: Internetworking Intelligent Gadget Network based on

802.15.4 with IP Network,” in Proceedings of the International Conference on Consumer

Electronics, ICCE 2008, Digest of Technical Papers, Las Vegas, 2008.

[40] F. Mesrinejad, F. Hashim F, N. K. Noordin, M. F. A. Rasid and R. S. A. R. Abdullah, “The Effect of

Fragmentation and Header Compression on IP-Based Sensor Networks (6LoWPAN),” in

Proceedings of the 17th Asia-Pacific Conference on Communications (APCC), Sabah, 2011.

[41] R. Roman and J. Lopez, “Integrating Wireless Sensor Networks and the Internet: a Security

Analysis,” Internet Research, vol. 19, no. 2, pp. 246-259, 2009.

[42] D. Christin, A. Reinhardt, P. S. Mogre and R. Steinmetz, “Wireless Sensor Networks and the

Internet of Things: Selected Challenges,” in Proceedings of the 8th GI/ITG KuVS Fachgespräch

Drahtlose Sensornetze (FGSN), 2009.

[43] HART Communication Foundation, “HART Communication Protocol and Foundation - Home

Page,” [Online]. Available: http://www.hartcomm.org/. [Accessed 9 June 2013].

[44] ZigBee Alliance, Inc., “ZigBee Home Automation Public Application Profile, revision 26,” 8

February 2010. [Online]. Available: https://docs.zigbee.org/zigbee-docs/dcn/07/docs-07-5367-

02-0afg-home-automation-profile-for-public-download.pdf. [Accessed 9 June 2013].

pg. 157

[45] Z-Wave Alliance, “Welcome To The Z-Wave Alliance,” [Online]. Available: http://www.z-

wavealliance.org/. [Accessed 9 June 2013].

[46] INSTEON, “INSTEON - Wireless Home Control Solutions for Lighting, Security, HVAC, and A/V

Systems,” [Online]. Available: http://www.insteon.com/. [Accessed 9 June 2013].

[47] Coronis, “wavenis-wireless-technology-presentation,” [Online]. Available:

http://www.coronis.com/en/wavenis_technology.html. [Accessed 9 June 2013].

[48] C. Gomez and J. Paradells, “Wireless home automation networks: A survey of architectures and

technologies,” Communications Magazine, IEEE , vol. 48, no. 6, pp. 92-101, 2010.

[49] Etherios, Inc., “Device Cloud Services - Device Cloud by Etherios,” [Online]. Available:

https://myaccount.etherios.com/Profile/Service.aspx. [Accessed 10 June 2013].

[50] element 14 Ltd, “XB24-BWIT-004 - DIGI INTERNATIONAL - ZIGBEE MODULE, XBEE ZNET, WIRE |

element14 New Zealand,” [Online]. Available: 8. http://nz.element14.com/digi-

international/xb24-bwit-004/module-zigbee-xbee-znet-2-5/dp/1546390 (02/03/2013).

[Accessed 2 March 2013].

[51] RS Components Ltd , “Buy Wireless Routers ConnectPort X2 Smart Energy Starter Kit Digi

International XK-SE1-EC-W online from RS for next day delivery.,” [Online]. Available:

http://newzealand.rs-online.com/web/p/wireless-routers/7043629/. [Accessed 10 June 2013].

[52] N. K. Suryadevara, A. Gaddam, R. K. Rayudu and S. C. Mukhopadhyay, “Wireless Sensors

Network Based Safe Home to Care Elderly People: Behaviour Detection,” Procedia Engineering,

vol. 25, pp. 96-99, 2011.

[53] C. Ranhotigamage and S. C. Mukhopadhyay, “Field Trials and Performance Monitoring of

Distributed Solar Panels Using a Low Cost Wireless Sensors Network for Domestic

Applications,” IEEE Sensors Journal, vol. 11, no. 10, pp. 2583-2590, 2011.

[54] K. Kaur, S. C. Mukhopadhyay, J. Schnepper, M. Haefke and H. and Ewald, “ ZigBee Based

Wearable Physiological Parameters Monitoring System,” IEEE Sensors Journal, vol. 12, no. 3, pp.

423-430, 2012.

[55] H. Alabri, S. C. Mukhopadhyay, G. A. Punchihewa, N. K. Suryadev ara and Y. M. Huang,

“Comparison of applying Sleep Mode function to the Smart Wireless Environmental Sensing

Stations for Extending the Life time,” in Proceedings of the IEEE International Instrumentation

pg. 158

and Measurement Technology Conference (I2MTC), Graz, 2012.

[56] G. M. Mendez, M. A. M. Yunus and S. C. Mukhopadhyay, “A WiFi based Smart Wireless Sensor

Network for Monitoring an Agricultural Environment,” in Proceedings of the IEEE International

Instrumentation and Measurement Technology Conference (I2MTC), Graz, 2012.

[57] “IEEE Standard 802.15.4-2006,” 8 September 2006. [Online]. Available:

http://standards.ieee.org/getieee802/download/802.15.4-2006.pdf.

[58] element 14 Ltd., “ATAVRZRAVEN - ATMEL - ATMEGA1284PV, RADIO TXRX, EVAL | element14

New Zealand,” [Online]. Available:

http://nz.element14.com/atmel/atavrzraven/atmega1284pv-radio-txrx-eval-kit/dp/1562233.

[Accessed 28 February 2013].

[59] element 14 Ltd., “ATAVRDRAGON - ATMEL - IN SYSTEM DEBUGGER / PROGRAMMER |

element14 New Zealand,” [Online]. Available: http://nz.element14.com/atmel/atavrdragon/in-

system-debugger-programmer-avr/dp/1455088. [Accessed 02 February 2013].

[60] Atmel Corporation, “ATmega1284P,” [Online]. Available:

http://www.atmel.com/devices/atmega1284p.aspx?tab=parameters. [Accessed 28 February

2013].

[61] Atmel Corporation, “AT86RF230,” [Online]. Available:

http://www.atmel.com/devices/at86rf230.aspx?tab=parameters. [Accessed 28 February 2013].

[62] element 14 Ltd., “STM32WC-RFCKIT - STMICROELECTRONICS - KIT, RF CONTROL, STM32W |

element14 New Zealand,” [Online]. Available:

http://nz.element14.com/stmicroelectronics/stm32wc-rfckit/kit-rf-control-

stm32w/dp/2215468. [Accessed 28 February 2013].

[63] element 14 Ltd., “ST-LINK/V2 - STMICROELECTRONICS - ICD/PROGRAMMER, USB 2.0, JTAG |

element14 New Zealand,” [Online]. Available: http://nz.element14.com/stmicroelectronics/st-

link-v2/icd-programmer-usb-2-0-jtag-for/dp/2119510. [Accessed 28 February 2013].

[64] STMicroelectronics, “STM32W108CC - STMicroelectronics,” [Online]. Available:

http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1581/PF251886. [Accessed 28

February 2013].

pg. 159

[65] Mouser Electronics, “EM250-JMP-R Silicon Labs | Mouser,” [Online]. Available:

http://nz.mouser.com/ProductDetail/Silicon-Labs/EM250-JMP-

R/?qs=sGAEpiMZZMv6Wlt51A2SLc49eozxKRPa. [Accessed 2 March 2013].

[66] Silicon Laboratories Inc., “EM250 Data Sheet,” [Online]. Available:

http://www.silabs.com/Support%20Documents/TechnicalDocs/EM250.pdf . [Accessed 15

March 2013].

[67] element 14 Ltd, “MSP430-CCRF - OLIMEX - CC430F5137, TRANSCEIVER, DEV BOARD |

element14 New Zealand,” [Online]. Available: http://nz.element14.com/olimex/msp430-

ccrf/board-dev-ti-cc430f5137/dp/2061336. [Accessed 13 March 2013].

[68] element 14 Ltd., “MSP-EXP430G2 - TEXAS INSTRUMENTS - MSP430G2XX, LAUNCHPAD, DEV KIT

| element14 New Zealand,” [Online]. Available: http://nz.element14.com/texas-

instruments/msp-exp430g2/msp430g2xx-launchpad-dev-kit/dp/185379301. [Accessed 15

March 2013].

[69] Texas Instruments Inc., “CC430F613x, CC430F612x, CC430F513x MSP430 SoC With RF Core

(Rev. G),” [Online]. Available: http://www.ti.com/lit/ds/symlink/cc430f5137.pdf. [Accessed 9

August 2012].

[70] Texas Instruments Inc., “Download CCS,” 16 05 2013. [Online]. Available:

http://processors.wiki.ti.com/index.php/Download_CCS.

[71] Red Hat Inc., “Cygwin Download,” [Online]. Available: http://cygwin.com/setup.exe. [Accessed

27 11 2011].

[72] “CMake for cygwin download,” [Online]. Available:

http://www.cmake.org/files/cygwin/make.exe. [Accessed 30 09 2011].

[73] OpenWRT Project, “OpenWRT Feeds,” [Online]. Available:

http://wiki.openwrt.org/doc/devel/feeds. [Accessed 1 9 2012].

[74] OpenWRT Project, “Linksys WRT54G, WRT54GL and WRT54GS - OpenWrt Wiki,” [Online].

Available: http://wiki.openwrt.org/toh/linksys/wrt54g. [Accessed 13 03 2013].

[75] The Eclipse Foundation, “Eclipse Download Page,” [Online]. Available:

http://www.eclipse.org/downloads/. [Accessed 8 10 2011].

pg. 160

[76] Oracle, “Java SE downloads,” [Online]. Available:

http://www.oracle.com/technetwork/java/javase/downloads/index.html. [Accessed 08 10

2011].

[77] Microsoft, “Download | Microsoft Visual Studio 2012,” [Online]. Available:

http://www.microsoft.com/visualstudio/eng/downloads#d-express-windows-8. [Accessed 3

June 2013].

[78] Oracle Corporation, “MySQL :: Download Connector/Net,” [Online]. Available:

http://dev.mysql.com/downloads/connector/net/. [Accessed 4 June 2013].

[79] “Download WampServer from SourceForge.net,” [Online]. Available:

http://sourceforge.net/projects/wampserver/files/WampServer%202/WampServer%202.2/wa

mpserver2.2e/wampserver2.2e-php5.3.13-httpd2.2.22-mysql5.5.24-32b.exe/download.

[Accessed 3 June 2013].

[80] Microsoft, “Download Microsoft Visual C++ 2010 SP1 Redistributable Package (x86) from

Official Microsoft Download Center,” [Online]. Available: http://www.microsoft.com/en-

us/download/details.aspx?id=8328. [Accessed 1 June 2013].

[81] OpenWRT Project, “OpenWRT Buildroot - Usage,” [Online]. Available:

http://wiki.openwrt.org/doc/howto/build. [Accessed 7 3 2012].

[82] OpenWRT Project, “OpenWRT Buildroot - Installation,” [Online]. Available:

http://wiki.openwrt.org/doc/howto/buildroot.exigence. [Accessed 9 03 2012].

[83] S. Kelly, “Custom openwrt firmware for WRT54GL,” [Online]. Available:

http://228899seankelly.googlecode.com/svn/trunk/WRT54GL/firmware/openwrt-brcm47xx-

squashfs.trx. [Accessed 1 June 2013].

[84] “How to Change your IP Address (Windows),” [Online]. Available:

http://www.wikihow.com/Change-your-IP-Address-(Windows). [Accessed 1 June 2013].

[85] Colorado State University, “Basic vi commands,” [Online]. Available:

http://www.cs.colostate.edu/helpdocs/vi.html. [Accessed 14 09 2011].

[86] OpenVPN Technologies, Inc, “Community Downloads,” [Online]. Available:

http://openvpn.net/index.php/download/community-downloads.html. [Accessed 4 June

pg. 161

2013].

[87] OpenVPN Technologies, Inc, “HOWTO,” [Online]. Available:

http://openvpn.net/index.php/open-source/documentation/howto.html. [Accessed 2 June

2013].

[88] OpenWRT Project, “The UCI System,” [Online]. Available: http://wiki.openwrt.org/doc/uci.

[Accessed 24 02 2012].

[89] Digi International, “XBee/XBee-Pro ZB RF Modules - Product Manual,” [Online]. Available:

http://ftp1.digi.com/support/documentation/90000976_P.pdf. [Accessed 20 04 2013].

[90] J. Reynolds and J. Postel, “Assigned Numbers, IETF RFC 1700,” 10 1994. [Online]. Available:

http://www.ietf.org/rfc/rfc1700.txt. [Accessed 25 02 2013].

[91] R. Meyers, “The New C: X Macros,” 05 2001. [Online]. Available: http://www.drdobbs.com/the-

new-c-x-macros/184401387. [Accessed 17 02 2013].

[92] OpenWRT Project, “OpenWrt,” [Online]. Available: https://openwrt.org/. [Accessed 16 11

2012].

[93] NewMedia-NET GmbH, “www.dd-wrt.com | Unleash Your Router,” [Online]. Available:

http://www.dd-wrt.com. [Accessed 21 04 2013].

[94] J. Zarate, “Tomato Firmware | polarcloud.com,” [Online]. Available:

http://www.polarcloud.com/tomato. [Accessed 21 04 2013].

[95] “RPi Low-level peripherals - eLinux.org,” [Online]. Available: http://elinux.org/RPi_Low-

level_peripherals. [Accessed 3 09 2012].

[96] STMicroelectronics, “LExxAB, LExxC Datasheet,” [Online]. Available: http://www.st.com/st-web-

ui/static/active/en/resource/technical/document/datasheet/CD00000545.pdf. [Accessed 15 05

2013].

[97] Analog Devices, “TMP35/TMP36/TMP37 Datasheet,” [Online]. Available:

http://www.analog.com/static/imported-files/data_sheets/TMP35_36_37.pdf. [Accessed 13 06

2012].

[98] B. Carter and R. Mancini, Op Amps for Everyone, Third Edition, Newnes, 2009.

pg. 162

[99] Talema, “ASM Series Datasheet,” [Online]. Available:

http://www.tme.eu/en/Document/4bf379646b30b1f30becba759f9411ed/asm_series.pdf.

[Accessed 16 04 2012].

[100] Texas Instruments Inc., “CC430 Product Bulletin,” [Online]. Available:

http://www.ti.com/lit/ml/slat124a/slat124a.pdf. [Accessed 29 03 2012].

[101] Texas Instruments Inc., “CC430 Wireless Development Tool - EM430F6137RF900 - TI Tool

Folder,” [Online]. Available: http://www.ti.com/tool/em430f6137rf900. [Accessed 19 January

2012].

[102] Olimex, “MSP430-CCRF User Manual,” [Online]. Available:

https://www.olimex.com/Products/MSP430/Starter/MSP430-CCRF/resources/MSP430-

CCRF.pdf. [Accessed 19 September 2012].

[103] Texas Instruments Inc., “MSP430 LaunchPad (MSP-EXP430G2) - Texas Instruments Wiki,”

[Online]. Available: http://processors.wiki.ti.com/index.php/MSP430_LaunchPad_(MSP-

EXP430G2). [Accessed 1 June 2013].

[104] Texas Instruments Inc., “MSP430™ Programming Via the JTAG Interface,” [Online]. Available:

http://www.ti.com/lit/ug/slau320i/slau320i.pdf. [Accessed 2 June 2013].

[105] J. Hui and P. Thubert, “Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based

Networks, IETF RFC 6282,” September 2011. [Online]. Available:

http://tools.ietf.org/rfc/rfc6282.txt.

[106] Z. Shelby, S. Chakrabarti, E. Nordmark and C. Bormann, “Neighbor Discovery Optimization for

IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs), IETF RFC 6775,”

November 2012. [Online]. Available: http://tools.ietf.org/rfc/rfc6775.txt.

[107] Texas Instruments Inc., “CC430 Family User's Guide,” [Online]. Available:

http://www.ti.com/lit/ug/slau259e/slau259e.pdf. [Accessed 15 February 2013].

[108] Texas Instruments Inc., “SmartRF Studio - SMARTRFTM-STUDIO - TI Software Folder,” [Online].

Available: http://www.ti.com/tool/smartrftm-studio. [Accessed 19 January 2013].

[109] Highsoft Solutions AS, “Highcharts - Interactive JavaScript charts for your webpage,” [Online].

Available: http://www.highcharts.com/. [Accessed 5 July 2012].

pg. 163

[110] A. Zakaria, “Quality of service in Wireless Sensor networks,” [Online]. Available:

http://cs.uwindsor.ca/richard/cs510/survey_zakaria.pdf. [Accessed 6 October 2012].

[111] Z. Shelby, K. Hartke and C. Bormann, Constrained Application Protocol (CoAP), IETF Internet

draft, work in progress, 2013.

[112] R. Khoshdelniat, G. R. Sinniah, K. A. Bakar, M. H. M. Shaharil, Z. Suryady and U. Sarwar,

“Performance Evaluation of IEEE802.15.4 6LoWPAN Gateway,” in Proceedings of the 17th Asia-

Pacific Conference on Communications, Sabah, Malaysia, 2011.

[113] Digi International Inc, “X-CTU Software - Diagnostics, Utilities & MIBs - Digi International,”

[Online]. Available:

http://www.digi.com/support/productdetail?pid=3352&osvid=57&type=utilities. [Accessed 5

June 2013].

pg. 164

10 Publications
 S.D.T.Kelly, N.K.Suryadevara and S.C.Mukhopadhyay, Integration of Zigbee-IPv6 Networks for

Smart Home Sensor Data Transmission to Augment Internet of Things, Proceedings of the 7th

IB2COM, November 5-8, 2012, Sydney, Australia, pp. 44-49.

 Kelly, S.D.T.; Suryadevara, N.; Mukhopadhyay, S.C., "Towards the Implementation of IoT for

Environmental Condition Monitoring in Homes," Sensors Journal, IEEE (early access article),

vol.PP, no.99, pp.1,1, 0, doi: 10.1109/JSEN.2013.2263379

