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1. Main Abstract 

The purpose of this research was to establish the utility of adolescent live 

weight data measured across cohorts of growing animals for predicting live 

weight in first lactation. Live weight is associated with the growth and 

maintenance feed requirements of a cow. Selection that simultaneously takes 

account of milk income and feed requirements of dairy cattle can increase 

future farm profitability. Estimated breeding values (EBVs) for mature cow live 

weight are currently predicted using Live weight phenotypes measured during 

lactation. Breeding companies in NZ actively measure the first lactation live 

weight of a small proportion of the nation’s dairy cows—the daughters of their 

bulls—to improve their ability to identify superior bulls. Accurate EBVs obtained 

at an earlier age can allow reliable selection of superior young bulls which 

would shorten the generation interval, increasing the rate of genetic progress. 

The purpose of this research was to determine the utility of adolescent live 

weight (i.e. live weight prior to first lactation) for predicting variation in live 

weight measured in first lactation. We completed two studies. In the first study 

(Section 4), we produced the (co)variance parameters for live weights 

measured at four ages, from six months old through to first lactation. Our 

hypothesis for this study was that live weight measured through adolescence 

would share a strong positive genetic relationship with live weight measured 

during lactation. Our results support this hypothesis, as estimates of genetic 

correlations between weights at different ages ranged from 0.79 to 0.97. In the 

second study (Section 5), we produced live weight EBVs using live weight 

measured though adolescence. For comparison, we produced EBVs using just 

live weight measured during first lactation. Our hypothesis was that the 

accuracy of the live weight EBVs would be improved by including adolescent 

live weight. Our results showed that including adolescent live weight 

phenotypes improved the accuracy of the live weight EBVs for animals with 

adolescent live weights, and their progeny. We concluded that adolescent live 

weights are a useful predictor of live weight later in life, and should be 

incorporated as a predictor trait for the national live weight EBV in NZ.  
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3. Main Introduction 

 

3.1. The New Zealand Dairy Industry 

The New Zealand (NZ) dairy industry is predominantly pasture based, and 

therefore farm management practices are largely dictated by pasture 

availability. Approximately 30% of operating expenditure on dairy farms is 

comprised of feed costs (DairyNZ, 2018b), and so maximising feed efficiency is 

a priority for most farmers. Feed efficiency can be improved through genetic 

selection and careful management of pastures and animals. Most herds calve 

annually in spring, to align peak feed requirements with pasture growth. 

Females are often reared and managed in the same cohort from birth to death. 

Artificial insemination (AI) is widely used, such that sires are usually 

represented across many contemporary groups. These large contemporary 

groups that can persists for many years, coupled with the widespread use of AI, 

provide an excellent data structure for reliable genetic evaluation. The 

performance of a bull’s daughters can be compared to that of other bulls’ 

daughters across many environments.  

 

Most dairy cows calve for the first time when they are two years old, and remain 

in the herd for an average of 4.5 lactations (DairyNZ, 2018a). The national herd 

contains approximately five million recorded milking cows, distributed over 

about 11,500 herds. Some 48% of the cow population is comprised of admixed 

cross-breeds among Holstein-Friesian and Jersey breeds. The predominantly 

straight-bred animals include 33.5% Holstein-Friesian, 9% Jersey, and 0.5% 

Ayrshire. The remaining 9% of the national dairy herd are other breeds and 

their crosses.  

 

Given the large proportion of admixed cross-breeds, it is essential that genetic 

evaluations for NZ dairy cattle are produced using an across-breed evaluation. 

In addition to producing genetic evaluations (estimated breeding values [EBVs]) 

for cross breed cows and bulls, an across-breed genetic evaluation system also 

enables direct comparison of predominantly straight-bred Jerseys and Holstein-

Friesians. The purpose of the national genetic evaluation system is to rank 

animals by their ability to produce profitable progeny, under pasture-based 
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management conditions.  Farmers depend on the accuracy of across breed 

comparisons to generate and select the most profitable replacements for their 

farm system, irrespective of breed.   

Animal rankings consider a number of a number of profit drivers, including milk 

production, beef production, feed intake, health, longevity and reproduction 

(Holmes et al., 2003). Holstein-Friesians and Jerseys are divergent for several 

of these traits, and it is critical that these differences are well characterised by 

the genetic evaluation system. Perhaps the most notable divergent traits are 

milk production and live weight. In the 2017/18 season the phenotypic 

difference between six-year-old Holstein-Friesians and six-year-old Jerseys 

was 110kg for live weight and 65kg for milk solids (DairyNZ, 2018a). 

 

All other attributes held constant, increased milk production has a positive effect 

on farm profit, while increased live weight has a negative effect. Live weight is 

associated with beef revenue (income from culled cows and surplus calves) 

and feed costs. However, beef revenue from a heavier animal is small relative 

to the associated increase in feed costs. Accordingly, live weight has a negative 

economic value under the management conditions applicable to NZ dairy 

farmers (DairyNZ, 2013). Trade-offs between these and other traits are 

quantified using a selection index (Hazel, 1943). A lack of accuracy in the EBVs 

for divergent traits compromises the utility of this index for across breed 

comparison.  

 

3.2. Selection Index  

An animals influence on multiple profit drivers can be quantified using a 

selection index (Hazel, 1943). A selection index applies specific weighting to 

predictions of genetic merit for each of a number of traits, defining an objective 

system for ranking animals.  

 

The selection index for the NZ dairy industry is called ‘Breeding Worth’ (BW). 

BW incorporates EBVs for milk production (milk fat, milk protein, milk volume), 

live weight, and five other economically important traits, namely: milk somatic 

cell score, live weight, body condition score, cow fertility, and cow survival 
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(DairyNZ, 2019a). These eight traits are key profit drivers of NZ dairy farm 

businesses.  

 

3.2.1. Trait Weightings in Breeding Worth (BW) 

The weighting factor on each of these eight traits is quantified in dollar units. 

The dollar weightings are determined based on the influence that each of these 

traits has on key profit drivers. These weightings, current for September 2019, 

are shown in Table 1 (DairyNZ, 2019c).  

 

Table 1 Weighting factor applied to each trait in Breeding Worth. 

Trait September 2019 economic weight 

Milk Fat $3.49/kg 

Milk Protein $4.38/kg 

Milk Volume -$0.092/L 

Mature Live weight -$1.3kg 

Residual Survival $0.112/day 

Somatic Cell Score -$37.3/SCS* 

Fertility $5.88/CR42** 

Body Condition Score $96.3/Score*** 

Note. * = SCS: Herd testing measures Somatic Cell Count (SCC) which is log-
transformed to produce the SCS phenotype. ** = CR42: Percent of progeny 
calving within the first 42 days of the calving period. *** = Score: Body condition 
score is subjectively assessed by trained inspectors on a scale of 1 to 10.  
 

3.3. Genetic Improvement  

Genetic improvement within any given population is collectively determined by 

the accuracy of selection, intensity of selection and generation interval, as in 

Equation 1, where Δ𝐺 is the rate of genetic improvement (Rendel & Robertson, 

1950).  

 

Δ𝐺 =  
𝑎𝑐𝑐𝑢𝑟𝑎𝑟𝑦 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ∗ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
 Equation 1 

 

3.3.1. Selection Intensity 

The intensity of selection is dictated by the proportion of available animals that 

are selected for breeding. Selection intensity is highest where the number of 
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animals selected is small relative to the total number of candidates. Selection 

intensity is typically much higher for bulls compared to cows. Therefore, bulls 

are the major avenue for genetic improvement despite the fact that both sexes 

contribute equally to the next generation of replacements.  

 

Selection intensity for the dams of replacement cows (e.g. young cows whose 

role is to maintain herd size by replacing culled animals) is limited. Only healthy 

females born early in the calving season are reared as replacements, often 

irrespective of the merit of their dam. In addition, there is a high incidence of 

involuntary culling (i.e. culls that could not be avoided) on most NZ dairy farms. 

Involuntary culling leaves little room for ‘voluntary’ culling of inferior animals, as 

farmers look to minimise the proportion of the herd that is culled each year. 

Selection intensity is much higher for the dams of replacement bulls, as only 

around 400 bull calves are purchased by breeding companies each year 

(DairyNZ, 2019b).   

 

In contrast, selection intensity for bulls is very high. Widespread use of Artificial 

Insemination (AI) technology can allow 100,000 or more inseminations from 

one bull in one year, such that relatively few sires are required to produce each 

new generation of dairy cattle. Breeding companies have the opportunity to 

select a proportionately small number of top-ranking candidate bulls.  

 

3.4. Accuracy of Selection  

Accuracy of selection describes the strength of the relationship between the 

EBVs the true breeding values (TBVs). The TBV of an animal can be viewed as 

the sum of three components. First, half the genetic merit of the animal’s sire. 

Second, half the genetic merit of the animal’s dam. Third, the effect of 

Mendelian sampling on the individual animal.  

 

Mendelian sampling describes the random aspects of inheritance, whereby an 

animal can inherit more or less than half of the superior genome fragments from 

either parent. The effect of Mendelian sampling is to produce offspring that 

exhibit a deviation from their parent average. In a pedigree-based genetic 

evaluation system, information on the effect of Mendelian sampling on an 
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individual can be obtained via phenotype measurements on the animal itself, or 

the animal’s progeny.  

 

It is important to note that the apparent average genetic merit of an animal’s 

progeny will be influenced by Mendelian sampling, especially if only few 

progeny contribute to that average. Sufficient progeny must be considered to 

ensure that the observed average effect of Mendelian sampling represents the 

expected value of zero. Otherwise the progeny mean will be biased relative to 

the true parent average. 

 

The formula for computing the accuracy of EBVs for progeny tested bulls is 
shown in Equation 2 (Robertson, 1957), where n is the count of daughters and 
h2 is the trait heritability.  
 

Accuracy of selection (progeny test)

=  √

1
2 nh2

1 + 
1
4 (n − 1)h2

 
Equation 2 

 

Delaying selection of animals in order to base the selection on progeny 

information will increase the interval between generations. The extent of this 

time delay will depend on the age of the animal when it reaches sexual 

maturity, and the age the progeny must be to express the phenotype. For 

example, where phenotypes are collected over the course of a daughter’s first 

lactation, bulls will be four years old when their progeny tested EBVs based on 

those data are available.  

 

3.5. Generation Interval 

In well managed selection programs, each new generation should be superior 

to the previous one. An optimal rate of genetic improvement will occur where 

the interval between generations is minimised, whilst accuracy of selection is 

maintained. 

 

Phenotypes measured earlier in an animal’s life, and/or technologies, such as 

genomic selection, facilitate a shorter generation interval for bulls. Shortening 

the generation interval will have a significant effect on the rate of genetic 
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improvement. Adolescent live weight is available earlier in an animal’s life 

(relative to the current predictor phenotype, live weight during lactation). If 

adolescent live weight is an accurate predictor of live weight during lactation, 

including this phenotype as a predictor for the live weight EBV could increase 

the accuracy of BW. This increase in BW accuracy will translate into an 

increased rate of genetic progress.  

 

3.6. Data to Predict Estimated Breeding Values  

Farmers are responsible for generating the majority of phenotype data used for 

genetic evaluation. Herd test records, and all other phenotypes required for 

genetic evaluation are stored in the Dairy Industry Good Animal Database 

(DIGAD). The data repository (and genetic evaluation system) are the 

responsibility of New Zealand Animal Evaluation Limited (NZAEL) a wholly 

owned subsidiary of the farmer funded, industry-good body known as DairyNZ. 

In addition to phenotype data recorded in NZ, international collaboration for 

some selection traits allows the EBVs produced overseas to inform NZ EBVs. 

This international collaboration is facilitated by an organisation called ‘Interbull’ 

(See section 3.6.2).  

 

Phenotypes can be characterised as ‘routine’ or ‘non-routine’ (Table 2). 

‘Routine’ describes information that farmers collect as part of normal farm 

practice, for example herd test data. These data usually have application 

outside of genetic evaluation. ‘Non-routine’ describes information that is 

generated specifically for the purpose of genetic evaluation. Farmers do not 

have an immediate need for non-routine data for day-to-day farm management. 

Table 2 shows the information currently used to predict each of the EBVs that 

contribute to the national selection index, Breeding Worth.     

 

3.6.1. Phenotype Data Coordination 

It is important that each bull in a breeding programme has sufficient phenotyped 

daughters to enable robust evaluation of his genetic merit. Consistent volumes 

of phenotype data for young bulls are achieved though coordinated progeny 

testing schemes. These schemes involve a network of farmers who are 

incentivised to use young bulls with predicted EBVs (and thus BWs) of low 
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reliability. Farmers are incentivised to record key phenotype data, and these 

data are used to improve the reliability of the EBVs for the sires of their cattle. 

Well-designed progeny testing schemes strengthen the accuracy of prediction 

in a coherent manner, taking due account of the cost-effectiveness of 

measuring phenotypes to increase the accuracy of all EBVs that comprise the 

selection index.  

 

Table 2 Type of phenotypes to predict Breeding Worth (BW) estimated 
breeding values (EBVs). 

EBV Phenotype 
Phenotype 
type  

Age of 
cow 
(years) 

International 
collaboration* 

Milk 
production 
- Fat 
- Protein 
- Volume 

Milk testing Routine 2-3 yes 

Somatic cell 
score 

Milk testing Routine 2-3 yes 

Fertility 

- Calving 
dates  

- Mating 
dates 

Routine 2-3 yes 

Survival 
Herd exit 
dates 

Routine 2-3 yes 

Mature Live 
weight 

- Scale 
weight  

- Inspector*** 
weight 
scores 

Non-routine  2-3 no 

Body 
condition 
score 

Inspector*** 
condition 
scores 

Non-routine 2-3 no 

Note. * = Where international collaboration is in place, estimated breeding 
values (EBVs) produced overseas can be used to inform NZ EBVs. *** = 
Inspectors are trained to assign visual scores as a measure of weight and body 
condition.   
 

Although highly effective, progeny testing schemes are expensive and 

logistically challenging to coordinate. Larger AI companies can justify operating 

progeny testing schemes more frequently than their smaller competitors, as the 

cost of generating daughters and phenotypes can be recuperated through vast 
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semen sales for successful bulls. In a progeny-based genetic evaluation 

system, higher accuracy, ‘daughter proven’ EBVs provide farmers with 

confidence to invest in the generation of offspring from individual bulls. Bulls 

that rank highly based on these initial progeny test EBVs are generally used 

extensively, and it is not uncommon for an individual bull to have over 100,000 

inseminations. This widespread use based on progeny test EBVs occurs when 

a bull is five years old, and leads to an influx of routine phenotype data three 

years later, when he is eight. The accumulation of these routine data are 

accompanied by an increase in EBV accuracy for the corresponding BW traits. 

 

Smaller AI companies that do not coordinate progeny testing schemes tend to 

rely on routinely collected data to strengthen the accuracy of the EBVs for their 

bulls. For EBVs with routinely collected predictor phenotypes, this ad-hoc 

approach can achieve a similar outcome to coordinated progeny testing, but the 

number of daughter phenotypes recorded may be delayed and/or inconsistent. 

Non-routine phenotypes present a bigger problem, however, as there is no 

mechanism for generating daughter phenotype data. Therefore, EBVs predicted 

by non-routine phenotypes, such as mature live weight and body condition 

score (BCS), often have low accuracy for the entire life of the bull when formal 

progeny testing is not in place. 

 

International bulls that are used locally present a good example of this problem, 

as breeding companies responsible for importing sperm do not tend to 

coordinate progeny testing schemes in New Zealand. This lack of data is 

illustrated by Figure 1, which shows the distribution of live weight daughter 

numbers, by the sire’s country of origin.  

 

3.6.2. International Collaborations: Accuracy of Selection for Imported 

Bulls 

International collaboration can improve the accuracy of EBV for bulls with 

daughters overseas. The NZ dairy industry is a member of an international 

genetic evaluation organisation called Interbull. The purpose of Interbull is to 

facilitate the exchange of genetic predictions across counties. Foreign bulls 

often have daughter phenotypes measured overseas prior to their semen being 
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imported to NZ. This collaboration allows imported bulls to be ranked more 

accurately in NZ based on their relative rankings from daughters off-shore. In 

practice, the value of international EBV data can be limited in NZ, as the 

seasonal and pastoral characteristics of the NZ dairy industry generally lead to 

poor correlations in EBV rankings between NZ and most other countries. In 

addition to these poor correlations with other countries, Interbull does not 

process all of the EBVs that are included in BW. The BW traits processed by 

Interbull are indicated in Table 2.  The most notable omitted trait is mature live 

weight, which is an important component of selection decisions in NZ.   

 

 

Figure 1 Number of NZ born daughters per sire with lactation live weight 
phenotypes.  
Sires are grouped by their country of birth (DairyNZ, 2019b). Note. Includes 
sires with at least one herd tested daughter, from countries with at least 100 
bulls enrolled with NZAEL. AUS: Australia (409 bulls), CAN: Canada (658 
bulls), GBR: Great Britain (242 bulls), NLD: The Netherlands (363 bulls), NZL: 
New Zealand (15,577 bulls), USA: United States of America (1,448 bulls). 
 

3.6.3. Mature Live Weight – Predictor Phenotype Opportunity 

Mature live weight is one of the two BW EBVs to have a non-routine predictor 

phenotype (i.e. live weight during lactation). In addition to having a predictor 

phenotype that is difficult to obtain, this trait is not included in international data 
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sharing collaborations. These two factors lead to inaccurate mature live weight 

EBVs for many international sires.  

 

In recent years, farmers have been encouraged to more carefully manage the 

rearing of young stock. It is now common for farmers to pay close attention to 

the live weight of their young animals, as a means of monitoring growth. This 

behaviour change may have been encouraged by NZ-based research that 

demonstrated the improved lifetime productivity of young stock that consistently 

meet growth targets in early life (Van Der Waaij, Galesloot, & Garrick, 1997). 

This increased vigilance in achieving growth targets may present an opportunity 

for improving the genetic evaluation of mature live weight, as a data set 

including hundreds of thousands of adolescent live weight phenotypes is 

accumulating. Figure 2 shows the trend of increased availability of live weight 

phenotype measures from adolescent animals. Around 30% of replacement 

heifers are now weighed at least once during their adolescence. We 

hypothesise that these adolescent live weight phenotypes could provide an 

accurate predictor phenotype for the mature live weight EBV.  

 

 

Figure 2 Number of animals weighed by birth year, and age when weighed.  
Data source: DairyNZ, June 2018. Note: animals weighed in multiple age 
categories were included in the count for each relevant age category. 
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3.6.3.1. Multi-use Phenotype  

Farmers are able to gain value from the adolescent live weight phenotype in 

multiple ways, which improves the likelihood that they will invest in measuring it. 

An improved business case for measuring live weight data could significantly 

increase the number of animal’s contributing live weight phenotypes for genetic 

evaluation. Appropriate phenotype measures on individual cows provide an 

indication of the effect of Mendelian sampling for that animal. If a greater 

proportion of the national herd were contributing phenotypes, the accuracy of 

forward predicted (parent average) EBVs would increase, because dam EBVs 

would be more accurate. In addition to this benefit, the investment from 

breeding companies for targeted phenotype generation may no longer be 

required. Similarly, small breeding companies would gain more accurate EBVs 

for their bulls, despite not actively collecting live weight data.   

 

3.6.3.2. Earlier Phenotype  

The improved timing of adolescent live weights can be seen in Figure 2. On the 

data of this data extract (June 2018), 2016 and 2017 born animals were too 

young to have first lactation live weights, but over 200,000 animals in each of 

these birth years had adolescent live weights measured. Live weight 

phenotypes that can be obtained before first lactation can provide an earlier 

indication of the Mendelian sampling effect for that animal. Farmers may 

choose to use this information when selecting herd replacements. In addition, 

earlier daughter phenotypes will strengthen the accuracy of EBVs for bulls at a 

younger age. Improved EBV accuracy for younger bulls will shorten the interval 

between generations, as breeding companies can eliminate candidate bulls 

from their breeding programmes earlier. Where the generation interval can be 

shortened without compromising selection accuracy, the rate of genetic gain for 

a trait—in this case, mature live weight—will increase (Rendel & Robertson, 

1950).  

 

3.7. Present Research  

The aim of our research was to determine the utility of adolescent live weight 

for predicting live weight during first lactation. We addressed this research aim 

using two approaches. The first study characterised the (co)variation of live 
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weight in NZ Holstein-Friesians classified into four age categories (181 to 940 

days of age). We predicted that the genetic correlations between live weight at 

these four ages would be strong and positive. The second study aimed to 

demonstrate the value of a prototype live weight EBV, where adolescent live 

weights are included. We compared the accuracy of first lactation EBVs 

produced with versus without adolescent live weight phenotypes. We predicted 

that the use of adolescent live weights would improve the accuracy of the live 

weight EBV.  

 

The current national mature live weight EBV is obtained from a repeated 

measures analysis. Live weights from first lactation and beyond are treated as 

repetitions of the same trait (Holmes et al., 2003). Live weight phenotypes 

obtained during first lactation are the most prominent, because coordinated 

progeny testing schemes prioritise collecting phenotypes during this lactation. 

In this thesis, we focus on associations between adolescent weights and 

weights during first lactation for which large datasets are available. We assume 

that a strong relationship with live weight in first lactation is indicative of a 

strong relationship with live weight in subsequent lactations.  
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4. Study One: (Co)Variance Parameters for Live Weight at Different Ages 

in New Zealand Holstein-Friesian Cattle.  

 

4.1. Abstract 

The purpose of this study was to determine the extent to which cattle live 

weights across ages (co)vary. We classified live weight phenotypes into four 

categories based on the age of the animal when it was weighed. The age 

categories were as follows: 181 days to 280 days (weaning weight, WW), 281 

days to 380 days (puberty weight, PW), 381 days to 480 days (yearling weight, 

YW), 791 days to 940 days (first lactation weight, FLW). We completed a series 

of pair-wise bivariate analyses to estimate the residual and genetic covariances 

between each age category. Our analyses considered only Holstein-Friesian 

animals. We hypothesised that genetic (co)variances between live weight at 

different ages in the NZ Holstein-Friesian population would be strong and 

positive. We observed large genetic correlations ranging from 0.79 to 0.97 

between each age category. These genetic correlations support the inclusion of 

adolescent live weight as a predictor of live weight in first lactation.  

 

4.2. Introduction  

New Zealand Animal Evaluation Limited (NZAEL) is responsible for producing a 

selection index for recorded cows and bulls in New Zealand (NZ). Producing 

this selection index involves estimating breeding values (EBVs) for all of the 

eight selection index traits, one of which is mature live weight. The mature live 

weight EBV is currently predicted using live weights collected during lactation 

(Holmes et al., 2003). Adolescent live weights could provide an earlier and 

more frequently measured predictor phenotype for the live weight EBV.  

 

Previous research in NZ dairy cattle has found that live weights measured at 

different ages through adolescence are moderately heritable, and exhibit 

genetic correlations close to 1. Pryce, et. al. (2011) obtained heritabilities 

of 0.44 (+/-0.10) for live weight at 250 days (8.2 months) of age in a population 

of 1000 well recorded Holstein-Friesian heifers in New Zealand. Weights at 

other ages were not investigated, and so the study did not report covariances. 

A more comprehensive study completed by Van der Waaij et. al. (1997) 
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estimated heritabilities, phenotypic correlations and genetic correlations for live 

weight at three pre-lactation ages (shown in Table 3). Live weight during first 

lactation was not investigated.  

 

Table 3 Heritabilities (diagonal), phenotypic (above the diagonal) and genetic 
(below the diagonal) correlations with accompanying standard errors 
(presented in brackets) observed in 2365 NZ born animals.   

Age (Months) 9 15 21 

9 
0.39  
(0.12) 

0.83  
(0.01) 

0.72  
(0.02) 

15 
0.98  
(0.03) 

 0.52  
(0.14) 

0.81  
(0.01) 

21 
0.93  
(0.05) 

0.93  
(0.04) 

0.62  
(0.15) 

Note. Analysis included multiple breeds (36% Holstein-Friesian, 34% Jersey, 
15% Reds, and 15% Cross-breeds; table adapted from Van Der Waaij et al., 
1997).  
 

International research has shown similar results, although reported correlations 

between live weights at different ages tend to be lower (Table 4). The majority 

of this international research has been completed in beef cattle.  

 

(Co)Variance parameters can vary between populations. International research 

provides an indication of what we would expect to see in NZ dairy animals, but 

it is important that these values are obtained specifically in the NZ dairy context. 

Thus, we used live weight data from NZ Holstein-Friesians to quantify the 

(co)variance parameters of live weight at four age classifications. We 

hypothesised that the relationship between live weight across ages in NZ dairy 

cattle would be strong and positive.  
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Table 4 Heritabilities, phenotypic (above the diagonal) and genetic (below the 
diagonal) correlations between live weight at various ages, as reported in 
international research. 

 Age Category (Months) 
A

g
e

 C
a

te
g

o
ry

 

 0 (Birth) 1 to 5 6 to 10 10 to 17 18 to 22 23 + 

0 
(Birth) 

0.49(3) 

0.53(4) 

0.25(5) 

0.46(6) 

0.41(7) 

0.48(8) 

0.79(6) 

0.41(2) 

0.73(4) 

0.29(5) 

0.30(7) 

0.40(2) 

0.27(5) 

0.33(6) 

0.29(7) 

0.31(7) 

0.33(3) 
0.30(7)  
0.30(4) 

 

1-5 
0.79(6) 

0.63(8) 
0.49(6) 

0.30(8) 
 0.62(6) 0.62(6)  

6-10 

0.60(2) 

0.79(4) 

0.36(5) 
0.66(7) 

0.52(8) 

0.69(8) 

0.33(1) 

0.24(3) 

0.45(4) 

0.34(5) 

0.51(6) 

0.12(7) 

0.36(8) 

 

0.40(5) 

0.73(7) 

0.76(2) 

0.63(7) 

0.81(1) 

0.32(3) 

0.29(7)  
0.43(4) 

10-17 

0.55(2) 

0.44(5) 
0.53(6) 

0.54(7) 

0.39(8) 

0.84(6) 

0.59(8) 

0.90(2) 
0.59(5) 
0.92(7) 

0.66(8) 

0.37(1) 

0.30(3) 

0.28(5) 

0.51(6) 

0.23(7) 

0.49(8) 

0.79(7) 

 
0.46(3) 

0.45(7) 

18-22 
0.61(7) 

0.32(8) 
0.45(8) 

0.9(7) 

0.80(1) 

0.56(8) 

0.97(7) 

0.70(8) 
0.28(7) 

0.36(8) 
0.54(7) 

23+ 

0.64(3) 
0.62(7)  
0.50(4) 

0.11(8) 

0.12(8) 

0.8(3) 

0.49(7)  
0.59(4) 

0.18(8) 

 

0.76(3) 
0.68(7) 

0.30(8) 

0.77(7) 

0.40(8) 

0.39(7)  
0.75(4) 

0.32(8) 

Note. 1 (Boligon et al., 2010), 2 (Bourdon & Brinks, 1982), 3 (Bullock, Bertrand, 
& Benyshek, 1993), 4 (Coffey, Hickey, & Brotherstone, 2006), 5 (Gregory, 
Cundiff, & Koch, 1995), 6 (Groen & Vos, 1995), 7 (Meyer, Johnston, & Graser, 
2004), 8 (Evans, Kearney, McCarthy, Cromie, & Pabiou, 2014).  
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4.3. Materials and Methods 

 

4.3.1. Overview 

We classified the live weight data into four categories based on the age of the 

animal when it was weighed. The categories were as follows: 181 days to 280 

days (weaning weight, WW), 281 days to 380 days (puberty weight, PW), 381 

days to 480 days (yearling weight, YW), 791 days to 940 days (first lactation 

weight, FLW). We produced the covariance parameters between each of these 

age categories using bi-variate linear mixed models. Six bivariate analyses 

were completed, with each age category included in three analyses.  

 

4.3.2. Data 

Pedigree and phenotype data were provided by DairyNZ in June 2018. Access 

to these data was approved by the New Zealand Dairy Industry Data Access 

Panel, an independent panel that presides over access to core fields stored in 

the Dairy Industry Good Animal Database (DIGAD). Animal ethics approval was 

not required as these analyses made use of existing data.  

 

We applied a number of data filters to confine the scope of the study, and 

improve data quality. A summary of the inclusion criteria is as follows.  

 

- Animal was predominantly Friesian or Holstein.   

- Animal was Female. 

- Animal was born after 1995. 

- Animals age in days at the time the weight was measured was within one of 

the defined age categories (181 days to 280 days (weaning weight, WW), 

281 days to 380 days (puberty weight, PW), 381 days to 480 days (yearling 

weight, YW), 791 days to 940 days (first lactation weight, FLW). 

- One live weight record per animal per age category.  

- Live weight observations were within three standard deviations of the 

contemporary group mean.  

 

For full details on data filtering, see Section 9.1.1.  
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4.3.3. Age Categories  

We created four age categories according to the age of the animal when it was 

weighed. We defined these age categories based on the growth curve we 

observed in the data. The objective was to categorise the traits in such a way 

that weight change was approximately linear across ages within each category 

(Figure 3).   

 

 

Figure 3 Mean weights for Holstein-Friesian females born after 1995.  
Boxplot outlines show whether data were included (black) or excluded (grey) in 
subsequent analysis. The vertical gridlines and annotations show approximately 
how these data were categorised into traits. 181 days to 280 days (weaning 
weight, WW), 281 days to 380 days (puberty weight, PW), 381 days to 480 
days (yearling weight, YW), 791 days to 940 days (first lactation weight, FLW). 
 

4.3.4. Model Equation 

We fitted a linear mixed model to complete each of the six bivariate analyses. 

The matrix representation of the linear mixed model equation is: 

 

𝐲𝐢 = 𝐗𝐢𝐛𝐢 + 𝐙𝐢𝐮𝐢 + 𝐞𝐢   Equation 3 

 

where yi is a vector of phenotypes for the ith age category (WW, PW, YW, 

FLW), bi is a vector of fixed effects for the ith age category, ui is a vector of 

breeding values (random effects) for the ith age category. The vector ei is a 



 18 

vector of residuals corresponding to each of the observations in the ith age 

category. Xi is an incidence matrix relating each phenotype record in the ith age 

category to the relevant fixed effects. Zi is an incidence matrix relating 

phenotypes to their corresponding breeding value, with a row for each 

phenotype in the ith age category and a column for each animal represented in 

ui. For a full description of this model, including location and dispersion 

parameters, see Section 9.2. 

 

4.3.5. Missing Values  

Animals were included in the analysis if they, or a member of their 

contemporary group had a live weight phenotype in both age categories. 

Including these animals with missing data allowed the analysis to account for 

non-random missing data (Apiolaza, Gilmour, & Garrick, 2000). 

 

4.3.6. Fixed Effects/Covariates 

All analyses included contemporary group as a fixed effect and age in days as 

a fixed covariate. Lactation day was included as an additional fixed covariate 

where the phenotype belongs to the first lactation weight (FLW) category. This 

age category includes weights obtained following an animal’s first calving.   

 

4.3.6.1. Contemporary Groups  

A contemporary group was defined as a group of animals weighed on the same 

day, at the same location, from the same herd. Data used were herd number (a 

sequential number assigned to each distinct herd that is present at a location), 

latitude and longitude coordinates of farm location, and weigh date. The 

contemporary group identifier was included in all model equations as a fixed 

class effect. See appendix 9.1.2 for the count of contemporary groups in each 

univariate analysis. 

 

4.3.6.2. Age in Days as a Fixed Covariate  

The age of an animal was expressed as the deviation from the mid-point age of 

the relevant category (the age in days halfway between the lower and upper 

age cut off). Following this pre-processing step, estimates of the contemporary 

group effects represent the least squares means. In addition, expressing the 
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age of an animal as a deviation from the mid-point reduces the covariance 

between estimates of the contemporary group effects and the effect of age in 

days, thus improving the numerical conditioning of the model equations. 

 

4.3.6.3. Lactation Day as a Fixed Covariate  

Lactation day is defined as the days between an animal’s calving date and the 

date the weight record was obtained. The lactation day fixed effect was only 

applied to the FLW category.  

 

4.3.7. Software  

Command line bash scripts were generated to pre-process phenotypic and 

pedigree data. Genetic analysis and post-processing were performed using the 

statistical software Julia (The Julia Language, 2019) The package add-on 

JWAS (Cheng, 2019) was used for genetic analysis. The post-processing of 

results was carried out using the packages CSV, Statistics, LinearAlgebra, 

StatsPlots, DataFrames, DelimitedFiles, Distributions, Measures. See Section 

11 for scripts.  

 

4.3.8. Solver 

A single site Gibbs sampler, using a Markov-chain Monte Carlo (MCMC) 

technique was used to obtain samples of the posterior distributions for effects in 

the mixed model equations, and the variance components used to build the 

mixed model equations. Each MCMC iteration directly sampled plausible values 

for the fixed effects, then random effects other than the residuals, then the 

polygenic variance and residual variance, and in the case of the bivariate 

models, polygenic co-variance and residual co-variance. That sampling was 

then continued for up to 90,000 iterations to make inference using the posterior 

means and posterior variances of these samples. 

 

4.3.9. Prior and Starting Values  

Prior values for variance parameters were estimated based on previous 

literature, phenotypic variances observed in the current dataset and preliminary 

analysis completed as part of this study (Figure 4).  
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Figure 4 Work flow of analyses to obtain suitable prior and starting values, and 
complete six bivariate analyses.  
*The model used to complete these univariate analyses is described in Section 

9.2. 

 

4.3.10. Burn-in Period  

A fixed number of iterations per analysis were disregarded from the results as a 

burn-in period. The purpose of a burn-in period is to ensure that the MCMC 

inferences included in the results of the analysis come from a stable 

distribution. The length of the burn-in periods for the bivariate analyses was 

30,000 iterations. Each burn-in period was established by grouping the MCMC 

inferences consecutively, and then observing the change in distribution over 

time. For example, the first grouping was iteration 1 to iteration 10,000, the 

second grouping was iteration 10,001 to iteration 20,000, and so on. The 

distribution of MCMC inferences from one age category to the next consistently 

overlapped once the models were stable. This method is based on the 

convergence criteria described by Geweke (1992), which suggest that a model 

is stable if the posterior mean of early results is not different to the posterior 

mean of later results. 
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4.3.11. Credibility Intervals 

We calculated credibility intervals for the posterior means of MCMC samples 

that were symmetric around the mean. The upper bound was the 97.5th 

percentile of the MCMC sample solutions and the lower bound was the 2.5nd 

percentile of MCMC sample solutions. These intervals contain 95% of the 

probability for the inference presented (Blasco, 2017). The credibility intervals 

excluded MCMC sample solutions produced during the burn-in period for each 

model.  

 

4.4. Results 

 

4.4.1. Covariances Between Live Weight at Different Ages 

Covariances were estimated using a series of six bivariate analyses (Table 5). 

Where both age categories were adolescent weights (WW with PW, WW with 

YW, PW with YW), approximately 100,000 animals were contributing 

phenotypes to both age categories. These 100,000 animals represented around 

600 sires. For each of the bivariate analyses including the FLW category (WW 

with FLW, PW with FLW, YW with FLW), approximately 4,000 animals were 

contributing phenotypes to both age categories. These 4,000 animals 

represented between 50 and 90 sires. See Section 9.1.3 for more detail.  

 

The estimated genetic correlations between live weight at different ages ranged 

from 0.79 to 0.97 (Table 5).  

 

Table 5 Phenotypic (above the diagonal) and genetic (below the diagonal) 
correlations with accompanying upper and lower credibility intervals (presented 
in brackets). 

Category  WW PW YW FLW 

WW  0.80  
(0.79, 0.80) 

0.72  
(0.72,0.73) 

0.58  
(0.56,0.60) 

PW 0.96  
(0.96, 0.97) 

 0.83  
(0.82,0.83) 

0.56  
(0.54,0.58) 

YW 0.93  
(0.91,0.94) 

0.97  
(0.97,0.98) 

 0.67  
(0.65,0.69) 

FLW 0.80  
(0.70,0.86) 

0.79  
(0.67,0.90) 

0.85  
(0.79,0.91) 

 

Note. WW = 181 days to 280 days, PW = 281 days to 380 days, YW = 381 
days to 480 days, FLW = 791 days to 940 days. 
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4.4.2. Heritabilities  

Each trait was involved in three bivariate analyses, and so heritabilities were 

produced three times for every trait (Table 6). Animals were included in each 

bivariate analysis if they, or a member of their contemporary group, had 

phenotypes in both categories. Not all contemporary groups were weighed in all 

categories. Therefore, the population of animals included in each bivariate 

analysis was slightly different and there was variation in the heritabilities 

observed. The bivariate models involving FLW had substantially fewer animals 

included than those involving two adolescent live weights, which resulted in 

much wider creditability intervals for these heritability estimates. The credibility 

intervals of all heritability estimates overlapped.  

 

Table 6 Heritability estimates with accompanying upper and lower credibility 
intervals (presented in brackets) of live weight for four age categories.  

Category WW PW YW FLW 

WW  0.33  
(0.29, 0.34) 

0.37  
(0.35,0.40) 

0.48  
(0.39,0.59) 

PW 0.32  
(0.3,0.34) 

 0.35  
(0.31,0.39) 

0.45 
(0.36,0.54) 

YW 0.32  
(0.30, 0.34) 

0.30  
(0.27,0.33) 

 0.46 
(0.36,0.55) 

FLW 0.33  
(0.26,0.40) 

0.31  
(0.22,0.38) 

0.37  
(0.30,0.45) 

 

Note. WW = 181 days to 280 days, PW = 281 days to 380 days, YW = 381 
days to 480 days, FLW = 791 days to 940 days. The heritability presented 
corresponds to the column header. The row header shows the second trait in 
the bivariate analysis that estimated the presented heritability.  
 

4.5. Discussion  

 

4.5.1. Research Summary  

The purpose of this study was to quantify the genetic (co)variances of live 

weight in different age classes of NZ Holstein-Friesian cattle. We hypothesised 

that genetic covariances would be strong and positive. The results of our 

analysis indicate that genetic correlations between live weight at different ages 

range from 0.79 to 0.97. The heritability of live weight across the four age 

categories ranged from 0.30 to 0.48. The trend was for the heritability of live 

weight to increase with age.  
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The results presented in this study align with previous literature, which indicated 

that genetic correlations between adolescent live weights in NZ cattle range 

from 0.93 to 0.98 (Van Der Waaij et al., 1997) and heritabilities range from 0.39 

to 0.62 (Pryce et al., 2012; Van Der Waaij et al., 1997). Van der Waaij et al. 

(1997) observed that heritabilities increase with age, which is consistent with 

our findings. Our research reports the first covariances between adolescent live 

weights and live weight during first lactation for NZ dairy cattle.   

 

Internationally, live weight variance parameters are more readily available, 

especially in beef cattle. Various studies report heritability estimates ranging 

from 0.10 to 0.75 (Boligon et al., 2010; Bourdon & Brinks, 1982; Bullock et al., 

1993; Coffey et al., 2006; Evans et al., 2014; Gregory et al., 1995; Groen & 

Vos, 1995; Meyer et al., 2004). Overall, covariances between live weights at 

different ages were weaker in international populations, relative to covariances 

we observed in our data. The reasons for this difference between NZ and 

international populations are not clear. One explanation is that the farming 

structure in NZ is more ideal for measuring genetic variance. The majority of 

animals are born within a short time frame (approximately three months), and 

reared in large, stable contemporary groups (Section 3.1). Therefore, the 

environmental variance is both decreased, and more easily recognised. This 

data structure may not be as prevalent in international data-sets.  

 

4.5.2. Limitations  

This study was limited to Holstein-Friesian animals. The majority of pure-bred 

dairy cattle in NZ are Holstein-Friesian. However, a greater proportion of 

animals are admixed Holstein-Friesian and Jersey (Section 3.1). The 

(co)variances of live weight across ages within the Jersey breed were not 

examined in the current research. Previous research has shown strong positive 

genetic covariances between live weight across age classes, in a multi-breed 

context (Van Der Waaij et al., 1997). It is likely that the findings of the current 

research will extend to other breeds in NZ. This could be confirmed by 

repeating this study with Jersey and Cross-breed animals.   
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The covariances produced in this study quantify the accuracy of adolescent live 

weight phenotypes as a useful predictor trait for a ‘first lactation live weight’ 

EBV. In practice, the covariances between adolescent live weight and mature 

live weight are of more relevance, as the current live weight EBV in NZ is 

designed to represent mature live weight. Unfortunately, very few animals have 

both mature and adolescent weights and so a robust analysis of these genetic 

(co)variances was not possible. Our assumption is that given FLW data is 

adding value to the current mature live weight EBV, a trait with a strong genetic 

association with FLW can also add value. If obtaining the variance parameters 

between adolescent and mature live weights is a priority, a data collection 

initiative will be required. Animals that were weighed during adolescence would 

need to be weighed again as mature cows.  

 

The numeric condition of the mixed model equation could be improved by 

converting the lactation day (Section 4.3.6.3) fixed covariate to a deviation from 

a mid-point day of lactation. This has not been done in the current analysis.  

 

4.5.3. Practical Implications and Future Directions  

Adolescent live weight is a likely predictor of live weight in first lactation. These 

phenotypes are available earlier in an animal’s life, and so including them as a 

predictor trait may result in accurate earlier genetic selection for the live weight 

trait. Selection earlier in life will shorten the generation interval. The rate of 

genetic gain will increase where the generation interval can be shortened 

without compromising accuracy of selection.  

 

In addition to providing a useful predictor trait for pedigree based EBVs, 

adolescent live weights may also improve the accuracy of genomic EBVs. The 

high genetic correlations between adolescent live weights and first lactation live 

weight indicate that animals with adolescent live weight phenotypes could 

contribute meaningful information to a genomic reference population. Including 

these adolescent live weights in a genomic reference population would increase 

the statistical power of genomic predictions, and potentially allow less common 

genotypes (i.e. those of international sires) to become represented.  
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The next step for this research was to quantify the value of including adolescent 

live weight as a predictor phenotype for pedigree based live weight EBVs. This 

analysis is summarised in Section 5 of this thesis.  
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5. Study Two: Estimating Live Weight Breeding Values Using Adolescent 

Live Weight Phenotypes  

 

5.1. Abstract 

Adolescent live weight observations are not currently used to predict estimated 

breeding values (EBVs) for mature live weight in the New Zealand (NZ) dairy 

industry. The results of our earlier study (discussed in Section 4), indicated that 

genetic correlations between live weight across age classes are strong and 

positive. Therefore, adolescent live weight phenotypes are likely to add value 

as a predictor trait for a mature live weight EBV. The objective of this study was 

to demonstrate the utility of adolescent live weight in predicting first lactation 

live weight (FLW) EBVs. We hypothesised that the inclusion of adolescent live 

weight phenotypes as predictors of a FLW EBV would improve the accuracy of 

the EBV, compared to using FLW phenotypes alone. We tested this hypothesis 

by producing EBVs from two analyses. The first was a univariate analysis, 

including only FLW phenotypes as predictor traits. The second was a univariate 

repeated measures model, including both adolescent and FLW phenotypes. In 

each analysis, the FLW phenotypes were excluded for animals born in 2015. 

The correlations between EBVs and omitted FLW phenotypes were used to 

quantify the accuracy of EBVs produced by each analysis. The correlations 

between parent average EBVs and omitted FLW phenotypes were similar 

across both analyses (0.27 and 0.28). A subset of the 2015 born animals in the 

repeated measures analysis had a dam contributing an adolescent live weight. 

The correlation between parent average EBVs for this subset and omitted FLW 

phenotypes was 0.34. A further subset of 2015 born animals had an adolescent 

live weight phenotype that could contribute to their EBV. Where these 

adolescent live weights were included, the correlation between EBVs and FLW 

phenotypes lifted to 0.59. These results indicate that inclusion of adolescent live 

weight will improve the accuracy of the live weight EBV for Holstein-Friesian 

cattle in NZ.  

 

5.2. Introduction  

In New Zealand (NZ), breeding values for live weight are estimated using 

weight phenotypes collected during lactation. It is uncommon for farmers to 
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weigh cows during lactation and so relatively few cows have lactation live 

weight phenotypes recorded. Approximately one million replacement dairy 

heifers are recorded each year, and fewer than 40,000 of them go on to be 

weighed during lactation. Most of these lactation live weights result from data 

collection programs operated by the two major breeding companies in NZ (LIC 

and CRV). Live weight measured during lactation provides a predictor trait for 

the mature live weight EBV (Holmes et al., 2003) but these data have limited 

value outside of genetic evaluation and are expensive to obtain. In addition, any 

time delay in waiting for offspring to reach first lactation extends the generation 

interval for this trait.  

 

A new opportunity for improving the prediction of mature live weight EBVs is 

emerging, as farmers are increasingly weighing adolescent animals (24 months 

old and younger). The growth rate of young cattle has been shown to have a 

lasting effect on cow productivity (Van Der Waaij et al., 1997). Therefore, 

farmers are motivated to measure adolescent live weight as a means of 

monitoring growth. Over the last ten years the number of animals with 

adolescent live weight measures has greatly increased, and over 200,000 

animals born in 2017 were weighed as adolescents (Figure 2). Adolescent live 

weights share a strong positive genetic correlation with live weight during first 

lactation (Section 4), suggesting that adolescent live weight phenotypes are an 

accurate predictor trait for live weight EBVs.  

 

In Ireland, adolescent live weight data are included as predictor phenotypes for 

the live weight EBV using a nine trait, multi-variate analysis (Evans et al., 

2014). Adolescent live weights at different ages are considered genetically 

correlated but distinct traits. In the Irish cattle population, genetic correlations 

between live weights measured across ages range from 0.29 to 0.70. The Irish 

analysis also makes use of live weight phenotypes collected during lactation. 

These lactation live weights are considered to be repeated measures of a ‘cow 

live weight’ trait. Accordingly, live weight during lactation is one of the nine traits 

considered in the multivariate analysis. The national genetic evaluation system 

in NZ produces EBVs for mature live weight using a univariate repeated 

measures analysis. Lactation phenotypes are the single predictor phenotype, 
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and live weight phenotypes obtained across multiple lactations are treated as 

repeated measures of the same trait (Holmes et al., 2003). The treatment of live 

weight phenotypes measured across lactations is similar in Irish and NZ live 

weight genetic evaluations, as both countries consider live weight measures 

from any lactation to be the same trait. The two countries differ in their 

treatment of adolescent live weights, as these phenotypes are not currently 

used as a predictor for the mature live weight EBV in NZ. The genetic 

covariances between adolescent live weights and live weight during lactation in 

the NZ Holstein-Friesian population (Section 4) are higher than those observed 

in Irish cattle (Evans et al., 2014). The higher genetic covariances observed in 

NZ cattle may mean the multi-variate approach taken in Ireland is not optimal 

for NZ.  

 

A univariate, repeated measures model is appropriate where longitudinal 

observations have heterogeneity of variance, and genetic correlations are 1. 

Our previous analysis indicated that the genetic correlations between live 

weights across ages are close to 1 (0.79-0.97; Section 4), however, the 

variance of live weight increases as animals grow. Taken together, these two 

characteristics indicate that phenotypes obtained across multiple age classes 

can be combined into a univariate repeated measures analysis, but that they 

must be standardised for variance. We hypothesised that the inclusion of 

adolescent live weight phenotypes as predictors of a FLW EBV would improve 

the accuracy of the EBV, compared to using FLW phenotypes alone.  

 

5.3. Materials and Methods  

This study involved a comparison of the accuracy of EBVs generated by two 

analyses. In the first analysis, we produced EBVs using only phenotypes 

measured during first lactation. In the second analysis, we produced EBVs 

using live weight phenotypes measured from adolescence through to first 

lactation. We established two forms of the generalised linear mixed model to 

produce these EBVs. The first was a univariate mixed model, where animals 

had a maximum of one phenotype, measured during first lactation. The second 

was a repeated measure mixed model, where animals could have multiple 

phenotypes, measured at varying ages. We determined the validity of these 
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models using a number of standard validation techniques. We defined the 

accuracy of the EBVs as the correlation between EBVs produced, and live 

weight phenotypes from first lactation that were specifically omitted from the 

analysis. By omitting certain phenotypes, we were able to produce parent 

average EBVs for animals whose FLW phenotype was known. The accuracy of 

these parent average EBVs could then be established as the correlation 

between the EBVs and the omitted phenotype. In the case of the second 

analysis (repeated measure), EBVs were produced and tested under two 

further scenarios. Scenario two showed the accuracy of EBVs where the 

animal’s dam had an adolescent phenotype (while the animal itself had no 

phenotypes measured in its own right, or for its progeny) Scenario three 

showed the accuracy of EBVs where the animal had an adolescent live weight 

included in the analysis.  

 

5.3.1. Analysis 1: Univariate Mixed Model  

 

5.3.1.1. Univariate Mixed Model 

A linear mixed model was established to complete a univariate analysis. The 

matrix representation of the linear mixed model equation is: 

 

𝐲 = 𝐗𝐛 + 𝐙𝐮 + 𝐞   Equation 41 

 

where y is a vector of phenotypes for the FLW category, b is a vector of fixed 

effects for the FLW category, u is a vector of breeding values (random effects) 

for the FLW category. The vector e is a vector of residuals corresponding to 

each of the observations in the FLW category. X is an incidence matrix relating 

each phenotype record in the FLW category to the relevant fixed effects. Z is an 

incidence matrix relating phenotypes to their corresponding breeding value, 

with a row for each phenotype and a column for each animal represented in u. 

For a full description of this model, including location and dispersion 

parameters, see Section 9.2. 

 

1 Equation 4 is similar to Equation 3. The difference being that this analysis included live 

weights from the first lactation weight age category only.  
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5.3.1.2. Fixed Effects 

Fixed effects were as described in Section 4.3.6.  

 

5.3.2. Analysis 2: Repeated Measure Mixed Model 

 

5.3.2.1. Homogeneity of Variance Adjustment  

A condition of a simple repeated measures analysis is homogeneity of variance 

across phenotypes. Previously we showed that the variance of live weight data 

increases with the mean (Figure 3), and so as animals grow, variance 

increases. To satisfy the condition of homogeneity of variance we standardised 

the live weight phenotypes for variance. First, we categorised the phenotypes 

based on the animal’s age when it was weighed and then we adjusted each 

phenotype for relevant fixed effects. For the age categories WW, PW and YW, 

these fixed effects were ‘age in days’ (see Section 4.3.6.2) and contemporary 

group (see Section 4.3.6.1). For the FLW age category, lactation day (see 

Section 4.3.6.3) was included as a third fixed effect. As a final step, we divided 

each adjusted phenotype by the mean variance of the phenotypes in the 

relevant age category. This process is further detailed in Section 9.4. 

 

5.3.2.2. Repeated Measure Mixed Model 

The model equation for the repeated measures model was as follows:  

 

𝒚𝐚𝐝𝐣_𝐝𝐞𝐯 = 𝐗𝐛 + 𝐙𝐮 +  𝐖𝐡 +  𝐞 Equation 5 

 

Where 𝒚𝐚𝐝𝐣_𝐝𝐞𝐯 is a vector of variance adjusted live weight deviations (see 

Section 9.4). 𝐛 is a vector of fixed effects, 𝐮 is a vector of breeding values 

(random effects) and 𝐞 is a vector of residuals corresponding to each row of 

𝒚𝐚𝐝𝐣_𝐝𝐞𝐯. 𝐡 is a vector of permanent environment effects, accounting for residual 

covariance between repeated observations for the same animal. 𝐗 is an 

incidence matrix relating each row of 𝒚𝐚𝐝𝐣_𝐝𝐞𝐯 to the relevant fixed effects. 𝐙 is 

an incidence matrix relating each row of 𝒚𝐚𝐝𝐣_𝐝𝐞𝐯 to the corresponding breeding 

value, with a column for each animal represented in 𝐮. 𝐖 is an incidence matrix 

relating each row of 𝒚𝐚𝐝𝐣_𝐝𝐞𝐯 to each unique animal with an observation.  
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Linear equations were solved using the Gauss-Seidel method. The Gauss-

Seidel method requires knowledge of the variance parameters. A single site 

Gibbs sampler, using a Markov-chain Monte Carlo (MCMC) technique was 

used to obtain samples of the variance components required to build the 

repeated measures mixed model equations. The posterior means of samples of 

the genetic (g
2), permanent environment (h

2) and residual (r
2) variances were 

0.42, 0.42 and 0.25, respectively. These posterior means were used as the 

assumed variance components. For a full model description, including location 

and dispersion parameters see Section 9.3. To view the MCMC samples results 

see Section 9.7. 

 

5.3.2.3. Fixed Effects 

Phenotypes were preadjusted for a number of fixed effects as a part of the 

variance adjustment process (see Section 5.3.2.1). Contemporary group (see 

Section 4.3.6.1) was included again as a fixed effect in the repeated measures 

analysis. The inclusion for contemporary group as a fixed effect in both 

analyses allowed degrees of freedom across observations to be defined 

appropriately.  

 

5.3.3. Software  

Command line bash scripts were generated to pre-process phenotypic and 

pedigree data. Genetic analysis and post-processing were performed using the 

statistical software Julia (The Julia Language, 2019) The package add-on 

JWAS (Cheng, 2019) was used for genetic analysis. The post-processing of 

results was carried out using the packages CSV, Statistics, LinearAlgebra, 

StatsPlots, DataFrames, DelimitedFiles, Distributions, Measures. See Section 

11 for scripts.  

 

5.3.4. Solver 

Linear equations were solved using the Gauss-Seidel method. A single site 

Gibbs sampler, using a MCMC technique was used to obtain samples of the 

variance components required to build the repeated measures mixed model 

equations (see Section 5.3.2.2). 
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5.3.5. Data 

Pedigree and phenotype data for approximately 1.3 million animals were 

provided by DairyNZ in June 2018. Various filtering steps were applied (Section 

9.1.1), resulting in a final count of approximately 515,000 animals across all age 

categories.  

 

5.3.6. Model Validation  

A forward cross validation (Legarra & Reverter, 2017) was undertaken for both 

analyses using a subset of females born in 2015. The phenotypes of these 

animals were omitted and each analysis was re-run using partial data. The 

EBVs(partial) were then compared to EBV(whole) to produce general validation 

statistics for each model.  These general validation statistics were obtained for 

each of the five analysis described in this chapter (appendix 10). Following 

general validation, the predictive ability of the univariate (FLW) and the 

repeated measures analyses were established under a number of test 

scenarios (Section 5.3.7). 

 

5.3.6.1. Selecting Validation Animals  

Females born in 2015 were used for validation because this age group was old 

enough to have phenotypes for all age categories (WW, PW, YW, FLW). 

Adolescent phenotypes (weights obtained between 181 and 480 days old) were 

collected in 2015 and 2016. First lactation phenotypes (weights obtained when 

animals were 791 to 940 days old) were collected in 2017. There were between 

30,000 and 45,000 validation animals for each adolescent age category, 

representing around 250 sires. There were fewer validation animals in the FLW 

age category, but sire representation remained high, with 147 sires represented 

across 5,126 daughters (Table 7).  

 

5.3.6.2. Validation Statistics  

A number of validation statistics were produced to assess the bias, dispersion 

and accuracy of each model. The following equations describe the validation 

statistics, where 𝐮̂whole is a vector of EBVs produced by the main evaluation, 

where all eligible phenotypes are included. 𝐮̂(partial) is a vector of EBVs 
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produced by the validation evaluation where the phenotypes of 2015 born 

animals were excluded. All validation statistics include 2015 born animals only.   

 

Table 7 Count of validation animals and the number of sires represented for 
each analysis. 

Analysis  Count of 
validation 
animals  

Count of 
sires* 

Univariate: WW 45,114 286 

Univariate: PW 30,900 225 

Univariate: YW 36,839 243 

Univariate: FLW 5,126 147 

Repeated Measures: WW, PW, YW, FLW 67,328 448 

* = Count of sires included those with at least 10 daughters with live weight 
observations within the relevant age category. 
 

5.3.6.2.1. Mean Bias  

In an unbiased evaluation, the estimate of the intercept b0 should equal 0 

(Equation 6; Legarra & Reverter, 2018).  

 

b0 = E(𝐮̂whole − 𝐮̂partial) Equation 6 

 

5.3.6.2.2. Change in Dispersion  

It is a property of best linear unbiased prediction (BLUP) that the 

Cov(𝐮̂𝐰𝐡𝐨𝐥𝐞, 𝐮̂𝐩𝐚𝐫𝐭𝐢𝐚𝐥) is equal to the Var(𝐮̂𝐰𝐡𝐨𝐥𝐞) (Equation 7). It follows that b1 

should be 1 (Legarra & Reverter, 2018). An estimate of b1 of greater than or 

less than 1 indicates that the EBVs(partial) were either under or over dispersed, 

respectively.  

 

b1 =  
Cov(𝐮̂whole, 𝐮̂𝐩𝐚𝐫𝐭𝐢𝐚𝐥)

Var(𝐮̂𝐰𝐡𝐨𝐥𝐞)
 Equation 7 

 

5.3.6.2.3. Population Accuracy 

The r value indicates the degree of re-ranking between the EBVs(partial) and 

EBVs(whole) (Equation 8). As more data are added, EBVs become closer to the 

true breeding values. A higher correlation is optimal, as this shows that the 

accuracy of 𝐮̂𝐩𝐚𝐫𝐭𝐢𝐚𝐥 is similar to 𝐮̂𝐰𝐡𝐨𝐥𝐞.  
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r𝐮̂𝐰𝐡𝐨𝐥𝐞,𝐮̂𝐩𝐚𝐫𝐭𝐢𝐚𝐥
=  

Cov(𝐮̂𝐰𝐡𝐨𝐥𝐞, 𝐮̂𝐩𝐚𝐫𝐭𝐢𝐚𝐥)

√Var(𝐮̂𝐰𝐡𝐨𝐥𝐞)Var(𝐮̂𝐩𝐚𝐫𝐭𝐢𝐚𝐥)
 Equation 8 

 

5.3.7. Predictive Ability  

Various phenotype data were excluded from both the FLW analysis and the 

repeated measures analysis (Table 8). These data exclusions test each 

analysis by simulating situations where forward prediction of EBVs are required. 

The FLW phenotypes of animals were omitted in every test. The correlation 

between the omitted FLW phenotypes, and the EBVs produced was used as a 

metric to assess the predictive ability of a model within each test scenario.  

 

Table 8 Parameters for each test scenario.  
Live weight 
phenotypes 
included 

Criteria for 
animals 
included in 
the 
correlation  

Count of 
validation 
animals 

Count of 
validation 
sires* 

2015 
born 

Other 

Analysis 1 
Scenario 1 

none FLW - 2015 born 
- Have FLW 

phenotype  

5,955 198 

Analysis 2 
Scenario 1  

none WW 
PW 
YW 
FLW 

- 2015 born 
- Have FLW 

phenotype 

5,955 198 

Analysis 2 
Scenario 2 

none WW 
PW 
YW 
FLW 

- 2015 born 
- Have FLW 

phenotype 

- Dams have 
at least one 
live weight 
phenotype  

1,297 23 

Analysis 2 
Scenario 3 

WW 
PW 
YW 

WW 
PW 
YW 
FLW 

- 2015 born 
- Have FLW 

phenotype 
- Have at least 

one 
adolescent 
live weight 
phenotype 

1,764 52 

Note. * = Count of sires included those with at least 10 daughters with live 
weight observations within the relevant age category. Analysis 1 = FLW 
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Univariate analysis. Analysis 2 = Repeated measures univariate analysis 
including adolescent live weight phenotypes. 
 
5.4. Results  

 

5.4.1. Analysis 1: First Lactation Weight (FLW) Univariate Analysis   

The FLW univariate analysis included 147,000 animals, representing around 

3,400 sires. The integrity of the model was validated using standard validation 

procedures (see Section 10 for validation results).  

 

5.4.1.1. Scenario One 

The phenotypes of all 2015 born animals were excluded from the analysis. 

These animals remained in the pedigree, so their EBVs were produced. These 

EBVs were forward predictions, based on the average of the animal’s parents. 

The correlation between these parent average EBVs, and the omitted FLW 

phenotypes of these animals was 0.27. This result indicates that the live weight 

EBVs for these animals are able to explain 7% of the variance in their FLW live 

weight phenotypes.  

 

5.4.2. Analysis 2: Repeated Measures Analysis  

The repeated measures analysis included phenotypes for 515,500 animals, 

representing 4,500 sires. As with the FLW univariate model, standard validation 

procedures were followed (see Section 10 for validation results).  

 

5.4.2.1. Scenario One 

The WW, PW, YW and FLW phenotypes of all 2015 born animals were 

excluded from the analysis. These animals remained in the pedigree file, and 

so their EBVs were obtained for these animals. The correlation between the 

parent average EBVs and the FLW phenotype for these 5,955 animals was 

0.28. This result indicates that the live weight EBVs for these animals are able 

to explain 8% of the variance in their FLW live weight phenotypes. 

 

5.4.2.2. Scenario Two 

The WW, PW, YW and FLW phenotypes of all 2015 born animals were 

excluded from the analysis. These animals remained in the pedigree file, and 
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so their EBVs were obtained. There were 5,955 animals with omitted FLW data. 

This group was further reduced, based on whether the dam of an animal had a 

phenotype record. Around 1,700 animals had an FLW phenotype (omitted) and 

a dam with a phenotype included in the analysis. The correlation between the 

parent average EBVs for these animals and their FLW phenotypes was 0.34. 

This result indicates that when a dam has a phenotype record, the EBVs for her 

progeny will explain around 11.5% of the variation in the progeny’s subsequent 

FLW phenotypes.  

 

5.4.2.3. Scenario Three 

The FLW phenotypes of the 2015 born animals were excluded. Of the 2015 

born animals with a FLW weight phenotypes, around 1,200 animals also had 

WW, PW or YW phenotypes. These WW, PW and YW phenotypes were 

included in the analysis. The correlation between EBVs and the omitted FLW 

phenotypes was 0.59. The EBVs produced in this analysis were able to explain 

around 30% of the variance in the subsequent FLW phenotype for these 

validation animals.   

 

The results of these three repeated measures scenarios indicate that including 

adolescent live weight as a predictor phenotype will improve the accuracy of 

EBVs for animals with adolescent weights recorded, and their progeny.  

 

5.5. Discussion  

5.5.1. Research Summary 

The aim of this study was to demonstrate the utility of adolescent live weight in 

predicting first lactation live weight (FLW) EBVs. To address this objective, we 

established the predictive ability of EBVs produced both with and without 

adolescent live weights.  

 

We omitted the FLW phenotypes for a subset of animals (those born in 2015) 

from each analysis. This omission allowed for the calculation of the correlation 

between the EBVs generated for these animals using only their ancestral 

information and individual adolescent weights, with their subsequently observed 

FLW phenotype deviations. Our results suggest that when a cow has an 
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adolescent live weight phenotype, this observation greatly improves the 

predictive ability of her live weight EBV. EBVs produced using at least one 

adolescent live weight observation explained around 30% of the variation in live 

weight during first lactation. By contrast, when all adolescent live weights were 

excluded from the analysis (i.e. the FLW univariate analysis), the proportion of 

variance in FLW explained by the EBV dropped to 7%. Including adolescent live 

weight phenotypes did not generally improve the predictive ability of EBVs for 

an animal when her own adolescent observation was still excluded from the 

analysis. The exceptions were animals whose dam had an adolescent live 

weight included in the analysis. If an animal’s dam had an adolescent 

phenotype the proportion of variation in FLW explained by the parent average 

EBV increased from 8% to 11.5%. Taken together, these findings suggest that 

adolescent live weights are a useful predictor phenotype for live weight EBVs, 

when sufficient adolescent data exist. 

 

5.5.2. Research Limitations  

A univariate analysis, including only FLW phenotypes was used to represent 

the current national genetic evaluation system for live weight. A FLW univariate 

analysis will not be entirely representative of the current national system, as live 

weight EBVs published for dairy cattle in NZ incorporate phenotypes from all 

lactations. That said, EBVs produced using a univariate FLW analysis should 

provide a close approximation as relatively few animals have live weight 

records in subsequent lactations (Section 3). This is especially relevant 

regarding EBVs for bulls, as most daughter phenotypes are measured when 

daughters are in their first lactation.   

 

The data filtering process involved removing repeated live weight measures for 

an same animal within an age category. For example, if an animal was weighed 

twice within the weaning weight category, only one of these weights was 

included in our analysis. If an animal had a live weight measure in two 

categories, both of these phenotypes were included in the repeated measures 

analysis. This filtering approach is inconsistent, and including these repeated 

measures within categories may improve the accuracy of EBVs.   
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The process we used to standardise the live weight phenotypes for variance 

required multiple analyses and was logistically complex. Live weight 

phenotypes were categorised based on the age of the animals when they were 

weighed, adjusted for fixed effects, and then standardised for variance. These 

adjusted, standardised phenotypes were then combined into a repeated 

measures analysis. While this process was satisfactory for addressing our 

research question, there are several alternatives that would be simple. One 

example of a simpler approach would be to scale the phenotypes to a common 

variance by adjusting the values in the Z matrix (Equation 5). Z is a matrix of 

zeros and ones, and it relates each phenotype to relevant breeding values. The 

values in the Z matrix can be replaced with values that are greater than or less 

than one, in order to scale the associated phenotype up or down. A second 

example would be to use a multi-variate approach. Our ability to undertake a 

multi-variate analysis was limited by the number of animals represented across 

all age categories, and possibly the structure of the genetic (co)variance matrix 

between age categories. This study included a total of 515,475 animals across 

the four age categories (WW, PW, YW, FLW). These data were extremely 

unbalanced. There were around 80,000 animals weighed within all WW, PW 

and YW categories, but only 1,700 of these animals were also weighed during 

first lactation. In addition to the lack of representation across age categories, 

the genetic correlations between traits were approaching unity. If the genetic 

correlations between traits are 1, then the genetic (co)variance matrix required 

for the multi-variate analysis will not be positive definite. Non positive definite 

(co)variance matrices will render the equations un-solvable. As the genetic 

variances approach this boundary, the analysis will experience convergence 

problems, or in a Bayesian context there will be mixing problems that manifest 

as a lack of convergence of functions of the samples from the Markov chain. A 

robust multi-trait analysis, across all four age categories was not achievable 

with the current data. Going forward, a multi-variate approach may become 

viable if representation of animals across all age categories improves. 

 

This study did not use live weight records obtained during lactation from 

automated measuring devices (known as ‘walk over weigh’ [WOW]). WOW 

systems typically weigh animals as they leave milking. High frequency live 
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weight information offers a management benefit that is not obtained from one-

off weighing, as week to week variation in live weight can be used to monitor 

animal health. WOW phenotypes have the potential to strengthen this research, 

as these weighing systems make it relatively trivial to gain live weight data on 

cows during lactation. Incorporating WOW data could provide a long-term 

solution for increasing the representation of animals across lactation live weight 

categories because farmers may decide that the management benefits justify 

the initial installation investment. It is worth noting that even if WOW facilities 

become commonplace, adolescent live weight data will still be high value 

predictor trait as it can be measured early in an animal’s life thus reducing the 

generation interval.  

 

An EBV is an estimation of how the animal’s genetic merit will manifest as a 

phenotype across a range of environments. Phenotypes are used to predict 

EBVs, but a phenotype is the product of both the animal’s genetic merit, and 

the specific environment to which the animal is exposed. The effect of the 

environment will not be repeatable if the environment is changed. Therefore, 

when predicting an EBV it is important to separate the effect of the animal’s 

genetic merit from the effect of environment. The process of separating 

genetics from environment is relatively trivial for bulls, as they often have 

hundreds of daughters across many herds. By contrast, cows rarely have 

multiple offspring and they themselves do not usually change environment (i.e. 

location). The lack of representation across environments is somewhat 

mitigated by the use of the animal model, as the phenotypes from related cows 

are observed in different environments. A key finding of this research is that 

incorporating adolescent live weights into the genetic evaluation of live weight 

improved the proportion of FLW variance explained by the live weight EBV. It is 

possible that the improved correlations that we see between FLW EBVs 

predicted from adolescent weights and subsequent FLW phenotypes could be 

inflated because the environmental effects that cause adolescent weights to 

deviate from parent average may also cause FLW weights to deviate from 

parent average.  
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5.5.3. Practical Implications  

The true breeding value (TBV) of an animal is not known, but it can be 

estimated. The accuracy of an individual animal’s EBV will be determined by 

the accuracy of its parent’s EBVs and information that can be inferred about the 

Mendelian sampling of the animal itself. Mendelian sampling occurs at random, 

and the effect on an animal’s performance can be either positive or negative. 

The genetic merit of an animal can be estimated with high accuracy using 

progeny information, provided there are a reasonable number of progeny 

across multiple environments. In the absence of offspring information, we can 

only estimate the effect of Mendelian sampling by measuring an appropriate 

predictor phenotype on the animal itself.  

 

In the NZ dairy industry, EBVs for bulls are often estimated using phenotype 

measures on female progeny. The genetic control and thus expression of a trait 

can be sexually dimorphic, but it is the female expression of the trait that is of 

primary interest in the dairy industry. The EBVs for cows are predicted using 

their parent average, their own phenotypic measures, and those from their 

female progeny. As a bull or cow gains phenotype data—either directly or 

through daughters—this information will gradually increase the accuracy of their 

EBV. 

 

The value of phenotype information depends on the number of animals 

contributing data. All relevant phenotype data will increase EBV accuracy, 

however, data from multiple animals is optimal for two reasons. First, 

separating the effect of the environment and genetic merit is more accurate if 

the genetic merit can be observed across multiple environments. Second, the 

genetic merit of an animal’s progeny will also be influenced by Mendelian 

sampling. If there are too few progeny, the average effect of Mendelian 

sampling may deviate from zero.  

 

Including adolescent live weight data will greatly increase the phenotype data 

available to predict live weight EBVs. Of the animals born each year, around 

30,000 (or 3%) will go on to have a live weight phenotype recorded during 

lactation. If adolescent live weights are included, the number of phenotyped 
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animals will lift to around 300,000, or 30%. The accuracy of live weight EBVs 

will immediately increase for animals with adolescent live weight phenotypes. 

This lift in EBV accuracy likely reflects the value of these adolescent data as an 

indicator of the Mendelian sampling effect on an animal’s genetic merit.  

 

The increase in accuracy will also be realised through more accurate live 

weight EBVs for the parents of females with adolescent phenotypes. These 

adolescent data will be especially valuable for sires. Sires involved in formal 

progeny testing would eventually gain sufficient daughter FLW phenotypes, but 

adolescent live weight phenotypes will be obtained earlier in life. EBV accuracy 

earlier in life will allow earlier genetic selection for the live weight trait. Earlier 

selection can shorten the generation interval, and thus increase the rate of 

genetic gain. Sires that are not involved in formal progeny testing will perhaps 

gain the most benefit from the inclusion of adolescent data. These bulls will 

have a greater opportunity to obtain daughter live weight phenotypes. 

Therefore, the accuracy of selection among these bulls will improve.  
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6. Main Summary 

The hypotheses of our research were two-fold. The first was that the genetic 

correlations between live weight across ages would be strong and positive in a 

population of New Zealand Holstein-Friesian Cattle. The results of study one 

(Section 4) support this hypothesis, in that we observed genetic correlations 

ranging for 0.79 to 0.96. Our second hypothesis was that adolescent live weight 

would add value as a predictor phenotype for the live weight EBV. The results 

of study two (Section 5) support this hypothesis in that when animals had an 

adolescent live weight included in the analysis, EBVs were able to explain 

around 30% of the variance in subsequent live weight during first lactation.   

 

The value of including adolescent live weight phenotypes is likely to become 

more pronounced as a greater proportion of females are weighed through 

adolescence. Going forward, we expect that greater attention to young stock 

growth will lead to greater volumes of adolescent live weight data being 

available for national genetic evaluation.  
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8. Index 

Adolescent Live Weight: Live weight phenotypes obtained prior to an animals 

first lactation (when an animal is less than two years old).  

Breeding Worth (BW): The national selection index for New Zealand dairy 

cattle. Breeding Worth provides an estimation of the value of an animal’s 

genetic merit, based on estimated breeding values for eight traits (Milk Fat, Milk 

Protein, Milk Litres, Somatic Cell Score, Live Weight, Fertility, Residual 

Survival, Body Condition Score).  

Estimated Breeding Value (EBV): An estimation of an animal’s genetic merit 

for a given trait.  

First Lactation Weight (FLW): Live weights obtained when an animal is 

between 791 days and 940 days. 

Mature Live Weight: Live weight phenotypes obtained when an animal is at 

least six years old.  

Milk Solids: Milk Fat (kgs) and Milk Protein (kgs). 

Progeny Testing Scheme: A co-ordinated phenotype collection initiative, 

designed to generate daughter phenotypes for targeted sires. These schemes 

ensure that the sires involved have sufficient daughter phenotype information 

across a range of relevant traits to enable robust genetic evaluation.  

Puberty Weight (PW): Live weights obtained when an animal is between 281 

and 380 day old. 

Weaning Weight (WW): Live weights obtained when an animal is between 181 

and 280 day old. 

Yearling Weight (YW): Live weights obtained when an animal is between 381 

and 480 day old. 
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9. Appendices  

 

9.1. Data Filtering  

 

9.1.1. Data Exclusions 

A total of 12,986,697 live weight records were received representing 1,385,320 

animals. A number of exclusions were carried out before further analyses were 

performed.  

 

9.1.1.1. Sex  

Analysis include phenotype data from females only 

 

9.1.1.2. Breed Proportions  

The analysis was restricted to animals that were predominantly Friesian and/or 

Holstein. In DIGAD, the breed of an animal is described in breed proportions, 

expressed in sixteen parts. No distinction was made in these analyses between 

Holstein and Friesian animals. That is, animals were classified as Holstein-

Friesian when at least fourteen of sixteen breed parts were Holstein or Friesian. 

This edit resulted in a total of 3,283,040 weight records available for Holstein-

Friesian females, these records originating from 1,006,099 individuals.    

 

9.1.1.3. Categorising Weight Phenotypes Based on Animal Age  

Four age categories were created based on the age of the animal when it was 

weighed (Table 9). Weights that fell outside of these age ranges were 

disregarded.  

 

Table 9 Count of Holstein-Friesian females with a live weight phenotype within 
each age category. 

Trait  Age range (days) Count of females with 
weight record  

Weaning Weight (WW) 181 - 280 309,044 

Puberty Weight (PW) 281 - 380 220,743 

Yearling Weight (YW) 381 - 480 220,479 

Post-Calving Weight 
(FLW) 

791 - 940 220,874 
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9.1.1.4. Outlier Observations  

Phenotypes that were greater than three standard deviations from the mean of 

the relevant contemporary group were excluded (Table 10).   

 

Table 10 Count of Holstein-Friesian females within each age category, after 
outlier phenotypes are excluded  

Age category  Animal count before 
exclusion 

Animal count after 
exclusion 

WW 309,044 289,551 

PW 220,743 202,533 

YW 220,479 203,374 

FLW 220,874 213,330 

 

9.1.1.5. Small Contemporary Groups  

Phenotypes for animals from contemporary groups with fewer than 10 animals 

were excluded (Table 11). 

 

Table 11 Count of Holstein-Friesian females within each age category, after 
small contemporary groups have been removed. 

Age category  Animal count before 
exclusion 

Animal count after 
exclusion 

WW 289,551 272,178 

PW 202,533 185,198 

YW 203,374 191,346 

FLW 213,330 197,045 

 

9.1.1.6. Historic Data 

Phenotypes from animals born prior to 1995 were excluded (Table 12). 

 

Table 12 Count of Holstein-Friesian females within each age category, after 
animals born prior to 1995 have been removed. 

Age category  Animal count before 
exclusion 

Animal count after 
exclusion 

WW 272,178 271,794 

PW 185,198 185,101 

YW 191,346 191,109 

FLW 197,045 147,450 
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9.1.1.7. Animals Without a Two-Year-Old Calving (FLW category only)  

Phenotypes for animals who did not calve when they were two-years-old were 

excluded from the FLW category (Table 13). 

 

Table 13 Count of Holstein-Friesian females within the ‘first lactation weight’ 
(FLW) age category, after animals without a two-year-old calving have been 
removed. 

Age category  Animal count before 
exclusion 

Animal count after 
exclusion 

FLW 147,450 146,444 

 

9.1.2. Animal Numbers in Univariate Analysis   

There were between 140,000 and 270,000 animals included in each analysis. 

There were approximately 1000 sires represented in each of the adolescent 

age categories (WW, PW and YW). Around 3400 sires were represented in the 

FLW category (Table 14). 

 

Table 14 Number of animals represented in each univariate analysis following 
data edits 

 
 
 
 
 
 
 
 

Note. * = Number of sires represented by at least 10 daughters. A 
disproportionately large number of sires are represented in the FLW category, 
as the majority of these live weight phenotypes are generated within progeny 
testing schemes. Progeny testing schemes are designed to generate 
phenotypes for a large number of candidate sires.  
 

9.1.3. Animal Numbers in Bivariate Analysis  

To be eligible for a bivariate analysis, either the animal, or at least one member 

of the animal’s contemporary group must have phenotypes in both age 

categories (Table 15).  

 

 

 

Age 
category 

Count of 
animals 

Number of 
sires* 

Number of 
contemporary 
groups  

WW 271,794 1,381 9,164 

PW 185,101 992 6,270 

YW 191,109 993 6,018 

FLW 146,444 3,416 4,204 
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Table 15 Number of animals represented in each bivariate analysis following 
data edits. 

Model Count of animals 
with weights in both 
age categories* 

Number of 
sires** 

Number of 
contemporary 
groups 

WW with PW 109,237 (165,784) 689 WW: 5,100  
PW: 4,539 

WW with YW 103,530 (160,847) 640 WW: 4,782  
YW: 4,213 

WW with FLW 4,688 (9,933) 89 WW: 235  
FLW: 195 

PW with YW 96,769 (141,654) 633 PW: 4,158 
YW: 3,983 

PW with FLW 3,034 (7,212) 51 PW: 185  
FLW: 158 

YW with FLW 3,978 (7,452) 74 YW: 203  
FLW: 166 

Note. * = Brackets show the total number of animals included in each bivariate 
analysis. Animals weighed in only one of the two age categories were included 
if at least one other animal in their contemporary group had a phenotype in both 
age categories.  ** = Number of sires included those represented by at least 10 
daughters. 
 

9.1.4. Animal Numbers in Repeated Measure Analysis 

Animals were included in the repeated measures analysis if they had a weight 

in at least one age category.  

 

Table 16 Number of animals represented in each repeated measures analysis 
following data edits. 

Model Count of animals with a 
live weight in at least 1 
age category 

Number of 
sires* 

Number of 
contemporary 
groups 

Repeated 
Measures 

515,476 4,539 24,278 

* = Number of sires included those represented by at least 10 daughters. 
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9.2. Univariate and Bivariate Mixed Model Description  

 

9.2.1. Model Equation  

A general linear mixed model was established to complete univariate and 

bivariate analyses. The matrix representation of the general linear mixed model 

is: 

 

𝐲𝐢 = 𝐗𝐢𝐛𝐢 + 𝐙𝐢𝐮𝐢 + 𝐞𝐢   Equation 3 

 

where yi is a vector of phenotypes for the ith age category (WW, PW, YW, 

FLW), bi is a vector of fixed effects for the ith age category, ui is a vector of 

breeding values (random effects) for the ith age category. The vector ei is a 

vector of residuals corresponding to each of the observations in the ith age 

category. Xi is an incidence matrix relating each phenotype record in the ith age 

category to the relevant fixed effects. Zi is an incidence matrix relating 

phenotypes to their corresponding breeding value, with a row for each 

phenotype in the ith age category and a column for each animal represented in 

ui. 

 

9.2.2.  Location Parameter Assumptions  

The expected ith age category phenotype for an animal chosen at random is the 

mean of its contemporary group, adjusted for the applicable fixed covariates.  

 

E[𝐲𝐢] = 𝐗𝐢𝐛𝐢   

 

The expected values of ui and ei for an animal chosen at random are 0.  

 

E[𝐮𝐢] = 𝟎  

 

E[𝐞𝐢] = 𝟎  
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9.2.3. Dispersion Parameter Assumptions  

 

9.2.3.1. Genetic Variance/Covariance  

The variance of 𝐮𝐢 is equal to the numerator relationship matrix multiplied by the 

genetic variance.  

 

Var[𝐮𝐢] = G = 𝐀g(i)
2   

 

where A is the numerator relationship matrix and g(i)2 is the additive genetic 

variance for the ith age category. The diagonals of A are 1 plus the inbreeding 

coefficients of each animal, and the off diagonals of A represent the pairwise 

pedigree relationships between corresponding animals. The breeding values of 

animals are correlated according to their pedigree relationships. The off-

diagonals of Ag(i)2 are the pairwise covariances between the breeding values 

of corresponding animals for the ith age category.  

 

This variance structure assumes the following: 

- Genotype by environment interactions are not present.  

- Non-additive genetic effects are not relevant.  

 

9.2.3.2. Residual Variance/Covariance 

The variance of 𝐞𝐢 is the residual variance.  

 

Var[𝐞𝐢] = R = 𝐈e(i)
2   

 

where I is an identity matrix with one column and one row for every animal with 

a phenotypic record, and e(i)2 is the residual variance for the ith age category.  

 

This variance structure assumes the following: 

- (Co)variances between residuals are zero. 

- Homogeneity of residual variance exists.  

- The vector of residuals (e) has a normal distribution. 
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9.2.3.3. Covariance Between Genetic Effects and Residuals 

Breeding values and residuals for the ith age category are assumed to be 

uncorrelated.  

 

Cov[𝐮𝐢, 𝐞𝐢] = 𝟎  

 

9.2.3.4. Phenotypic Variance  

The phenotypic variance of the ith age category is the sum of the genetic and 

residual variance for the ith age category.  

 

Var[𝐲𝐢] =  𝐙𝐢Gi𝐙𝐢
′ + 𝐑𝐢  

 

9.3. Repeated Measures Model Description  

 

9.3.1. Model Equation 

A general linear mixed model was established to complete a repeated measure 

analyses. The matrix representation of the general linear mixed model is: 

 

𝒚𝐚𝐝𝐣_𝐝𝐞𝐯 = 𝐗𝐛 + 𝐙𝐮 +  𝐖𝐡 +  𝐞 Equation 5 

 

Where 𝒚𝐚𝐝𝐣_𝐝𝐞𝐯 is a vector of variance adjusted live weight deviations (see 

Section 9.4). 𝐛 is a vector of fixed effects, 𝐮 is a vector of breeding values 

(random effects) and 𝐞 is a vector of residuals corresponding to each row of 

𝒚𝐚𝐝𝐣_𝐝𝐞𝐯. 𝐡 is a vector of permanent environment effects, accounting for residual 

covariance between repeated observations for the same animal. 𝐗 is an 

incidence matrix relating each row of 𝒚𝐚𝐝𝐣_𝐝𝐞𝐯 to the relevant fixed effects. 𝐙 is 

an incidence matrix relating each row of 𝒚𝐚𝐝𝐣_𝐝𝐞𝐯 to the corresponding breeding 

value, with a column for each animal represented in 𝐮. 𝐖 is an incidence matrix 

relating each row of 𝒚𝐚𝐝𝐣_𝐝𝐞𝐯 to each unique animal with an observation. 

 

9.3.2. Location Parameter Assumptions  

The expected phenotype for an animal chosen at random is the mean of its 

contemporary group, adjusted for the applicable fixed covariates.  
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E[𝐲] = 𝐗𝐛   

 

The expected values of u and e for an animal chosen at random are 0.  

 

E[𝐮] = 𝟎  

 

E[𝐞] = 𝟎  

 

9.3.3. Dispersion Parameters  

 

9.3.3.1. Genetic Variance  

The variance of u is equal to the numerator relationship matrix multiplied by the 

genetic variance.  

 

Var[𝐮] = G = 𝐀g
2  

 

where A is the numerator relationship matrix and g2 is the additive genetic 

variance. The diagonals of A are 1 plus the inbreeding coefficients of each 

animal, and the off diagonals of A represent the pairwise pedigree relationships 

between corresponding animals. The breeding values of animals are correlated 

according to their pedigree relationships. The off-diagonals of Ag2 are the 

pairwise covariances between the breeding values of corresponding animals.  

 

This variance structure assumes the following: 

- Genotype by environment interactions are not present.  

- Non-additive genetic effects are not relevant.  

 

9.3.3.2. Permanent Environmental Variance  

The variance of 𝐡 is the permanent environmental variance.  

 

Var[𝐡] =  𝐇 = 𝐈h
2   
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where I is an identity matrix with one column and one row for every animal with 

a phenotypic record, and h2 is the permanent environmental variance.   

 

This variance structure assumes the following: 

- Co-variances between residuals are zero. 

- Homogeneity of residual variance exists.  

- The vector of residuals [h] has a normal distribution. 

 

9.3.3.3. Residual Variance  

The variance of e is the residual variance. 

 

Var[𝐞] = 𝐑 = 𝐈e(i)
2   

 

where I is an identity matrix with one column and one row for every animal with 

a phenotypic record, and e(i)2 is the residual variance for the ith age category.  

 

This variance structure assumes the following: 

- Co-variances between residuals are zero. 

- Homogeneity of residual variance exists.  

- The vector of residuals (e) has a normal distribution. 

 

9.3.3.4. Phenotypic Variance  

The phenotypic variance is the sum of the genetic, permanent environment and 

residual variance.  

 

Var[𝐲] =  𝐙𝐆𝐙′ + 𝐖𝐇𝐖′ + 𝐑  

 

Where Z is an incidence matrix relating each phenotype to an EBV. 

 

9.4. Standardising Variance 

Phenotypes were categorised into four groups, based on the age of the animal 

when it was weighed. These groups were as follows: 181 days to 280 days 

(weaning weight, WW), 281 days to 380 days (puberty weight, PW), 381 days 
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to 480 days (yearling weight, YW), 791 days to 940 days (first lactation weight, 

FLW). Four univariate analyses were then carried out (see Section 9.2 for 

model description), and the phenotypes contributing to each age category were 

adjusted for relevant fixed effects (Equation 9). 

 

𝐲𝐝𝐞𝐯(𝐢) =  𝐲𝐢 − 𝐗𝐢𝐛𝐢 Equation 9 

 

where 𝐲𝐢 is a vector of observations for the ith age category, 𝐛𝐢 is a vector of 

fixed effects for the ith age category and 𝐗𝐢 is an incidence matrix relating each 

phenotype record in the ith age category to the fixed effects. 

 

These adjusted phenotypes (𝐲𝐝𝐞𝐯(𝐢)) were then standardised for variance 

(Equation 10)  

 

𝐲𝐬𝐭𝐝_𝐝𝐞𝐯(𝐢) =  
𝐲𝐝𝐞𝐯(𝐢)

σ𝐲𝐝𝐞𝐯(𝐢)
⁄     Equation 10 

 

Table 17 shows the variance of 𝐲𝐝𝐞𝐯(𝐢) (Equation 9) and the variance of 

𝐲𝐬𝐭𝐝_𝐝𝐞𝐯(𝐢) (Equation 10) for each age category (WW, PW, YW, FLW). The 

variance of σystd_dev 
is exactly 1 across all age categories (Table 17).  

 

Table 17 Standard deviation of each age category before and after adjusting for 
variance 

Age category 𝛔𝐲𝐝𝐞𝐯 
 𝛔𝐲𝐬𝐭𝐝_𝐝𝐞𝐯 

 

WW 14.43 1 

PW 17.47 1 

YW 20.58 1 

FLW 31.33 1 

Note. Live weight data were divided into four age categories based on the age 
of the animal when it was weighed. The age categories were as follows: 181 
days to 280 days (weaning weight, WW), 281 days to 380 days (puberty weight, 
PW), 381 days to 480 days (yearling weight, YW), 791 days to 940 days (first 
lactation weight, FLW). 
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9.5. Markov-chain Monte Carlo (MCMC) samples for each of the four 

univariate analyses  

  

9.5.1. Weaning Weight (WW) 

 

Figure 5 Posterior means of the Markov chain (bins of 10,000) for univariate 
analysis of weaning weight (age category: 181 days to 280 days).  
Weaning weight heritability (A), weaning weight genetic variance (B), weaning 
weight phenotypic variance (C). MCMC = Markov-chain Monte Carlo.  
 

9.5.2. Puberty Weight (PW) 

 

Figure 6 Posterior means of the Markov chain (bins of 10,000) for univariate 
analysis of puberty weight (age category: 281 days to 380 days).  
Puberty weight heritability (A), puberty weight genetic variance (B), puberty 
weight phenotypic variance (C). MCMC = Markov-chain Monte Carlo.  
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9.5.3. Yearling Weight (YW) 

 

Figure 7 Posterior means of the Markov chain (bins of 10,000) for univariate 
analysis of yearling weight (age category: 381 days to 480 days).  
Yearling weight heritability (A), yearling weight genetic variance (B), yearling 
weight phenotypic variance (C). MCMC = Markov-chain Monte Carlo.  
 
9.5.4. First Lactation Weight (FLW) 

 

Figure 8 Posterior means of the Markov chain (bins of 10,000) for univariate 
analysis of first lactation weight (age category: 791 days to 940 days).  
First lactation weight heritability (A), first lactation weight genetic variance (B), 
first lactation weight phenotypic variance (C). MCMC = Markov-chain Monte 
Carlo.  
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9.6. Markov-chain Monte Carlo (MCMC) samples for each of the six 

bivariate analyses  

 

9.6.1. Weaning Weight (WW) with Puberty Weight (PW) 

 

Figure 9 Posterior means of the Markov chain (bins of 10,000) for bivariate 
analysis of weaning weight and puberty weight.  
Weaning weight heritability (A), phenotypic correlation (B), genetic correlation 
(C), puberty weight heritability (D). MCMC = Markov-chain Monte Carlo.  
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9.6.2. Weaning Weight (WW) with Yearling Weight (YW) 

 

Figure 10 Posterior means of the Markov chain (bins of 10,000) for bivariate 
analysis of weaning weight and yearling weight.  
Weaning weight heritability (A), phenotypic correlation (B), genetic correlation 
(C), yearling weight heritability (D). 
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9.6.3. Weaning Weight (WW) with First Lactation Weight (FLW) 

 

Figure 11 Posterior means of the Markov chain (bins of 10,000) for bivariate 
analysis of weaning weight and first lactation weight.  
Weaning weight heritability (A), phenotypic correlation (B), genetic correlation 
(C), first lactation weight heritability (D).  
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9.6.4. Puberty Weight (PW) with Yearling Weight (YW) 

 

Figure 12 Posterior means of the Markov chain (bins of 10,000) for bivariate 
analysis of puberty weight and yearling weight.  
Puberty weight heritability (A), phenotypic correlation (B), genetic correlation 
(C), yearling weight heritability (D).  
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9.6.5. Puberty Weight (PW) with First Lactation Weight (FLW) 

 
Figure 13 Posterior means of the Markov chain (bins of 10,000) for bivariate 
analysis of puberty weight and first lactation weight.  
Puberty weight heritability (A), phenotypic correlation (B), genetic correlation 
(C), first lactation weight heritability (D).  
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9.6.6. Yearling Weight (YW) with First Lactation Weight (FLW) 

 

 

Figure 14 Posterior means of the Markov chain (bins of 10,000) for bivariate 
analysis of yearling weight and first lactation weight.  
Yearling weight heritability (A), phenotypic correlation (B), genetic correlation 
(C), first lactation weight heritability (D).  
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9.7. Markov-chain Monte Carlo (MCMC) samples for Repeated Measures  

 

Figure 15 Posterior means of the Markov chain (bins of 10,000) for repeated 
measures analysis of live weights from four age categories.  
Heritability (A), genetic variance (B), residual variance (C), Permanent 
environmental variance (D). Age categories included were weaning weight: 181 
days to 280 days, puberty weight: 281 days to 380 days, yearling weight: 381 
days to 480 days, first lactation weight: 791 days to 940 days. *Phenotypes 
included in this analysis were pre-adjusted for fixed effects and standardised for 
variance. Units were kg/mean variance of the relevant age category. 
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10. Model Validation Statistics  

Four univariate analyses, and one repeated measures analysis were validated 

using standard validation techniques (Table 18).  

 

Table 18 Model validation results for each of the four univariate analyses (WW, 
PW, YW and FLW) and the repeated measures analysis (All).  

Statistic WW PW YW FLW All 

Number of animals  271,794 185,101 191,109 146,444 515,476 

Number of validation 
animals 

47,122 34,446 37,104 5,955 67,328 

Mean Bias 0.09 -0.01 -0.10 0.21 -0.004 

Change in dispersion 1.00 0.98 0.97 0.99 0.98 

Population accuracy  0.70 0.74 0.74 0.53 0.65 

WW (weaning weight): univariate analysis including live weights obtained when 
animals were 181 days to 280 days old. PW (puberty weight): univariate 
analysis including live weights obtained when animals were 281 days to 380 
days old. YW (yearling weight): univariate analysis including live weights 
obtained when animals were 381 days to 480 days old. FLW (first lactation 
weight): univariate analysis including live weights obtained when animals were 
791 days to 940 days old. All: repeated measures analysis included live weight 
phenotypes from WW, PW, YW and FLW age categories. For a full description 
of each validation technique see Section 5.3.6. 
 

11. Bash Scripts 

See below link for bash scripts 

 

https://github.com/melissa-stephen/masters_thesis 
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