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Abstract

Currently, digital signal processing systems typically assume that the signals are bandlim-

ited. This is due to our knowledge based on the uniform sampling theorem for bandlimited

signals which was established over 50 years ago by the works of Whittaker, Kotel’nikov

and Shannon. However, in practice the digital signals are mostly of finite length. This

kind of signals are not strictly bandlimited. Furthermore, advances in electronics have

led to the use of very wide bandwidth signals and systems, such as Ultra-Wide Band

(UWB) communication systems with signal bandwidths of several giga-hertz. This kind

of signals can effectively be viewed as having infinite bandwidth. Thus there is a need

to extend existing theory and techniques for signals of finite bandwidths to that for

non-bandlimited signals.

Two recent approaches to a more general sampling theory for non-bandlimited sig-

nals have been published. One is for signals with finite rate of innovation. The other

introduced the concept of consistent sampling. It views sampling and reconstruction

as projections of signals onto subspaces spanned by the sampling (acquisition) and re-

construction (synthesis) functions. Consistent sampling is achieved if the same discrete

signal is obtained when the reconstructed continuous signal is sampled. However, it has

been shown that when this generalized theory is applied to the de-interlacing of video

signals, incorrect results are obtained. This is because de-interlacing is essentially a re-

sampling problem rather than a sampling problem because both the input and output are

discrete. While the theory for the resampling for bandlimited signals is well established,

the problem of resampling without bandlimited constraints is largely unexplored.

i



The aim of this thesis is to develop a resampling theory for non-bandlimited discrete

signals and explore some of its potential applications. The first major contribution is the

the theory and techniques for designing an optimal resampling system for signals in the

general Hilbert Space when noise is not present. The system is optimal in the sense that

the input of the system can always be obtained from the output. The theory is based on

the concept of consistent resampling which means that the same continuous signal will

be obtained when either the original or the resampled discrete signal is presented to the

reconstruction filter.

While comparing the input and output of a sampling/reconstruction system is rela-

tively simple since both are continuous signals, comparing the discrete input and output

of a resampling system is not. The second major contribution of this thesis is the pro-

posal of a metric that allows us to evaluate the performance of a resampling system. The

performance is analyzed in the Fourier domain as well. This performance metric also

provides a way by which different resampling algorithms can be compared effectively. It

therefore facilitates the process of choosing proper resampling schemes for a particular

purpose.

Unfortunately consistent resampling cannot always be achieved if noise is present in

the signal or the system. Based on the performance metric proposed, the third major

contribution of this thesis is the development of procedures for designing resampling

systems in the presence of noise which is optimal in the mean squared error (MSE)

sense. Both discrete and continuous noise are considered. The problem is formulated as

a semi-definite program which can be solved efficiently by existing techniques.

The usefulness and correctness of the consistent resampling theory is demonstrated by

its application to the video de-interlacing problem, image processing, the demodulation of

ultra-wideband communication signals and mobile channel detection. The results show

that the proposed resampling system has many advantages over existing approaches,

including lower computational and time complexities, more accurate prediction of system

performances, as well as robustness against noise.
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Chapter 1

Introduction

1.1 Background and Motivation

Most signals encountered in areas such as telecommunications, medical imaging, radar

and sonar, speech and music are analog (or continuous) in time or space. While there

are some advantages in processing these signals using analog electronics, they are now

increasingly being processed digitally to take advantage of efficient low cost digital proces-

sors and advanced digital signal processing algorithms. In order to do so, analog signals

will need to be converted to digital (discrete) form. This involves sampling and quanti-

zation. After processing the digital signal, some applications require that the resulting

signal be converted back into analog form. This involves interpolation and smoothing.

Figure 1.1 shows the general structure of a digital signal processing (DSP) system that

includes all these processes.

The digital signal that is obtained by sampling a continuous signal must preserve

all the characteristics of the latter. Whittaker, Kotel’nikov and Shannon independently

studied the conditions under which this can be done [2]. For signals that are strictly

bandlimited, it turns out that the sampling rate required to preserve the characteristics of

the continuous signal is greater or equal to twice its bandwidth. This result is summarized

by a theorem which we shall refer to as Shannon’s uniform sampling theorem. It states

that if a signal is uniformly sampled at a rate no less than twice its bandwidth, then the

1
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Figure 1.1: A general digital signal processing system.
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Figure 1.2: Sampling and reconstruction.

analog signal can be perfectly reconstructed from its samples. Thus the lower bound on

the sampling rate for a strictly bandlimited signal with a bandwidth of W Hz is 2W Hz.

However, if a signal is not strictly bandlimited, then there will be aliasing in its frequency

spectrum and we will not be able to reproduce the analog signal perfectly. Conceptually,

the performance of the sampling process is evaluated by how closely the reconstructed

signal resembles the original signal. Figure 1.2 illustrates this process.

This sampling theorem is of central importance in digital signal processing. Even

though processing may be performed entirely in the digital domain with no explicit

conversion to or from the analog, the sampling rate of the digital signal often needs to

be increased or decreased according to the requirements of a particular processing stage.

To change the sampling rate of a digital signal, a two-step process is involved [3]. First,

the original digital signal is converted, conceptually, to analog form. Then this analog

Discrete 

Signal

Reconstruction
Sampling at

different rate
(Original) (Resampled)

Analog 

Signal

Discrete 

Signal

Figure 1.3: Block diagram of a sample rate conversion system.
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signal is resampled at a different sampling rate or at different sampling locations. The

allowable resampling rates are governed by Shannon’s uniform sampling theorem. The

block diagram of a sample rate conversion (SRC) system is shown in Figure 1.3. In this

thesis, an SRC system is referred to it as a resampling system which includes cases where

the sampling rate is unchanged but the sampling locations are.

In practice, most signals are not strictly bandlimited. Typically an anti-aliasing

filter, which is an analog low-pass filter, is used to ensure that the signal to be sampled

is sufficiently bandlimited. However, there are situations where the frontend acquisition

filtering is non-ideal [4].

Furthermore, recently there have been proposals to use signals and systems with very

wide bandwidths. An example is Ultra-Wide Band (UWB) communication systems.

UWB radio is a wireless technology for transmitting digital data at high rates over a

very wide frequency spectrum using very low power. The Federal Communications Com-

mission (FCC) of the United States has mandated that UWB radio transmission can

legally operate in the frequency range from 3.1 GHz to 10.6 GHz at a transmit power

of 1 dBm/MHz [5, 6]. This kind of signal can effectively be viewed as having infinite

bandwidth. Owing to the wide bandwidth used, the issues involved in transceiver design

for wide band systems are different from those for other narrow band systems. The chal-

lenge of implementing a fully digital UWB receiver is particularly daunting. According

to Shannon’s sampling theorem, the minimum sampling rate for UWB signals would be

21.2 GHz. This sampling rate is way beyond the current analog-to-digital conversion

technologies. Therefore, there is a need to extend existing theories and techniques for

signals with finite bandwidths to that for signals with non-bandlimited responses.

Two approaches to a generalized sampling theory for non-bandlimited signals have

recently been proposed. The first one considers signals with a finite rate of innovation [7].

It is based on the fact that even though many signals are non-bandlimited, such as a

triangular or rectangular signal, nonetheless they only require a finite number of param-

eters per unit time to characterize. In other words, the degree of freedom per unit time

3
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or the rate of innovation is finite. If these parameters are available, then perfect recon-

struction from the samples is possible. It has been demonstrated through examples that

if this type of signal is uniformly sampled at a rate not less than the rate of innovation,

then perfect reconstruction is possible. For a stream of Pulse-Position Modulated (PPM)

impulses (Diracs), which is similar to those used for UWB impulse radio, it is possible to

obtain good estimates of the position of these pulses using a sampling frequency in the

range of hundreds of mega-hertz instead of over 20 GHz as mentioned earlier. We shall

refer to this approach as innovation sampling.

Mathematically, sampling can be viewed as a projection of the signal onto a subspace

spanned by the reconstruction function [4, 8]. If the sampling and reconstruction func-

tions are the classic Dirac − sinc function pair, then it is exactly Shannon’s sampling

theorem. However, this view of sampling and reconstruction admits functions other than

these two functions. If the sampled signal does not belong to the subspace spanned by

the reconstruction function, then it is not possible to perfectly reconstruct the original

analog signal. This is the case for non-bandlimited signals. The concept of consistent

sampling was introduced in [4] for these situations. A signal is consistently sampled

if the reconstructed analog signal, when re-inserted into the sampling process, produces

the same discrete sampled sequence. For arbitrary sampling and reconstruction functions

which are not duals of each other like the Dirac − sinc pair, consistent sampling can

be achieved by optimally projecting the sampled signal onto the reconstruction subspace

the sampled signal by a digital corrected filter. We shall refer to this approach to the

sampling of non-bandlimited signals as generalized sampling or consistent sampling.

These theories should in principle be applicable also to resampling of non-bandlimited

signals since resampling also involves interpolation and sampling, albeit in the reverse

order of sampling and reconstruction. However, in [9], an incorrect result is reported

when the stability theory of generalized sampling is applied to de-interlacing of video

signals. It turns out although the theory is correct, it is not directly applicable to this

application which is essentially a resampling problem. The problem is further illustrated

in Section 2.7. This is because in sampling and reconstruction, both the input and output
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are continuous as shown in Figure 1.2. But a resampling system has discrete input

and output as shown in Figure 1.3. Since many DSP applications involve resampling,

this problem motivated us to research into a generalized resampling theory for non-

bandlimited discrete signals.

1.2 Scope and Objectives

The main objective of this research is to develop a generalized resampling theory for

discrete signals without bandlimiting constraints. Our approach resembles the consistent

sampling theory. The concept of consistent resampling shall be defined and its prop-

erties and applicability to a generalized resampling theory shall be investigated. One

of the main issues that need to be tackled is a meaningful performance measure of the

resampling system. The performance of a sampling-reconstruction system can be easily

measured by comparing the original and reconstructed continuous functions. However,

since the both the input and output of a resampling system are discrete and the sam-

pling periods are most likely different, we cannot compare them sample by sample. Both

noiseless and noisy resampling shall be considered.

1.2.1 Assumptions

The continuous and discrete signals we consider in this work are assumed to be in the

Hilbert space H and have finite energy. Mathematically, continuous signals are in the

L2 space while discrete signals lie in the space `2. These are not overly restrictive as-

sumptions and includes almost all natural signals. For example, sound waves or seismic

signals are of finite duration. Even for signals with infinite spread such as sonar or radar

signal, typically only a finite period is analyzed at a time. Consequently, they can also

be considered as finite energy signals as well.

Only uniform sampling will be considered. The techniques developed could be ex-

tended to non-uniform sampled sequences. The only application to non-uniform sampling

will be the demodulation of UWB impulse radio signals presented in Section 3.4.1.
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The functions for sampling, interpolation and resampling are assumed to be in the

Hilbert space. We only consider those functions that can be implemented as a simple

filter. There are other admissibility constraints that the functions should satisfy in order

that the processes are stable. These constraints will be discussed in Section 2.2.

1.2.2 Objectives

In this thesis, a theory of consistent resampling shall be developed so that discrete signals

can be resampled in an optimal way. It is important that this resampling theory will

overcome the problem of applying sampling theory to a resampling system as pointed

out in [9]. The architecture and implementation of a consistent resampling system shall

be considered for noiseless signals and systems. Cases where either the input signal or

the resampling system is noisy shall also be studied. A performance metric for measuring

the input and output of a resampling quantitatively will need to be proposed and based

on which optimality is measured.

Further, constraints on the resampling rate should also be studied. The minimum

resampling rate above which the input sequence can be reconstructed in relation to

the reconstruction and resampling filters used will need to be established. The rate of

innovation of the signal provides us with a possible solution to this problem.

1.3 Significance

Currently, resampling systems are treated using the theory of sampling system. Referring

to Figure 1.1, however, a resampling system is generally different from a sampling system.

While a sampling system is concerned with how the analog signals can be represented

by digital sequences, a resampling system deals with how a digital sequence can be

represented by another one such that the information carried by the original sequence is

changed as little as possible.
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The work presented in this thesis consider the generalized resampling system whose

input is not necessarily ideally sampled and whose output can be used directly to re-

construct signals even of non-bandlimited response. The consistent resampling theory

presented here overcomes the limitation of applying the generalized sampling theory to

resampling such as de-interlacing as pointed out in [9]. The consistent theory considers

the unique resampling process on its own instead of approximating it by its embedded

sampling process. The theory for noiseless as well as noisy signals are developed so that

it can be applied to a variety of situations. While it is based on some of the concepts

from the generalized or consistent sampling theory, a large part of our resampling theory

is new. This is because in our case both the input and output are discrete signals while

those of a sampling-reconstruction system are continuous.

The application of our consistent resampling theory can be found in many areas such

as sample rate conversion, image resizing, rotation and denoising. Other applications

include de-interlacing, UWB impulse radio signal detection, and channel estimation using

pilot symbol assisted modulation. These examples are considered in subsequent chapters.

The theory can also be applied to spatially scalable video codecs where the upsampling

of a low resolution signal into a high resolution one as well as the reverse process of

downsampling is required [10, 11]. Another potential application is in meteorological

data processing. These data are usually collected at irregularly distributed locations.

For ease of further processing, the data are often resampled to fit a regular grid [12,13].

1.4 Original Contributions

The main original contributions of this thesis are summarized as follows.

• The development of a theory of consistent resampling for non-bandlimited discrete

signals. It is optimal in the sense that the input signals can always be reconstructed

from the output, i.e. the resampling is informationally lossless.
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• The development of techniques for designing the correction filter for consistent

resampling systems when noise is not present. The design allows the use of more

general interpolation and resampling functions. The choice of these functions are

decoupled, leading to greatly improved flexibility.

• Our theory leads to consistent results in de-interlacing which are previously not

achievable through the generalized sampling theory as pointed out in [9].

• The development of techniques to demodulate UWB impulse radio signals that is

based on consistent resampling. The Pulse Position Modulated (PPM) signals are

treated as non-uniformly sampled discrete signals. They are resampled according

to the consistent resampling theory such that the positions of the pulses can be

recovered.

• The application of the consistent resampling theory to image resizing and rotation.

It is observed that the details of the image are better preserved than other linear

approaches for the same computational complexity. It demonstrates the advantage

of not having the bandlimited restrictions in processing high frequency components

in the images.

• The proposal of a metric which evaluates the performance of resampling system.

The metric measures the distance between two discrete signals in the frame of re-

sampling and indicates the resampling performance in a Mean Square Error (MSE)

manner. It provides a way by which different resampling algorithms can be com-

pared directly and effectively.

• The design of procedures for designing resampling systems when noise is present

based on our performance metric. Both discrete and continuous noises are consid-

ered. The system is optimal in the MSE sense such that the maximum error is

minimized. This problem is formulated as a convex optimization problem, which

can be solved efficiently by using existing numerical techniques.
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• The design of the resampling system when noise is present for the channel estima-

tion problem for Pilot Symbol Assisted Modulation (PSAM) digital communication

schemes. It results in a lower Bit Error Rate (BER) for given Signal to Noise Ratio

(SNR) than the optimal Wiener Filter. It shows that the consistent resampling

theory is robust against noise.

• A bound on the rate of innovation for signals in shift invariant spaces is established.

• The minimum resampling rate above which an input sequence can be perfectly re-

constructed from its resampled output for a given pair of interpolation and resam-

pling functions is established. This completes the remaining issue in the consistent

resampling theory.

1.5 Thesis Organization

This rest of this thesis is organized as follows. In Chapter 2, the major results of the

sampling techniques for non-bandlimited signals are reviewed. In particular, the gener-

alized sampling theory proposed in [4] as well as the sampling theory for signals with

finite rate of innovation [7] and their related works are examined in detail. The use of

non-ideal samplers and their dual functions in the sampling system are discussed. The

principle of consistency which leads to optimal sampling results is introduced. Since a

large part of the research reported in this thesis relates to resampling, the conventional

theory and implementation of resampling for bandlimited signals are also reviewed.

In Chapter 3, the theory of consistent resampling for non-bandlimited signals is de-

veloped. The design formula for the correction filter to achieve consistent resampling is

derived. The problem that previously existed when the generalized sampling theory is

applied to de-interlacing discussed in [9] is overcome by the use of our resampling theory.

The effectiveness of this theory is illustrated through two applications. The first one is

the demodulation of UWB impulse radio signals. The second one is image resizing and

rotation.
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A quantitative metric is proposed in Chapter 4 to analyze the performance of the

resampling system. The analysis is carried out in the frequency domain. This metric

enables us to compare different resampling algorithms efficiently and effectively.

In Chapter 5, the metric defined in Chapter 4 is deployed to design resampling systems

when noise is present. The noise may be introduced to the discrete signal as measure-

ment error or to the interpolated continuous signal such as white noise present in the

communication channel. Optimal resampling is achieved when the maximum distance

between the input and output sequence is minimized. The effectiveness of this approach

is illustrated through the examples of image de-noising and Pilot Symbol Assisted De-

modulation (PSAM).

In Chapter 6, we return to the sampling theory for signals with finite rates of innova-

tion. A bound on the rate of innovation for signals in shift invariant spaces is established.

Based on this, the minimum sampling rate for which such signals can be perfectly recon-

structed from the output of a resampling system is established.

Finally, the conclusions are presented in Chapter 7 and a number of possible future

research directions are discussed.

10



Chapter 2

Review of Sampling and Resampling
Techniques

In this chapter, existing theories on uniform sampling and resampling for bandlimited and

non-bandlimited signals are reviewed. Sampling refers to the conversion of a continuous

signal into a discrete signal (or sequence). The discrete sequence should be a good

representation of the continuous signal in that the continuous signal can be perfectly

reconstructed from the discrete representation. Resampling refers to the process where

a discrete signal is to be converted to another discrete signal. The two signals should

possess the same characteristics. Resampling is often necessary in digital signal processing

systems where the sampling rate or the sample locations have to be changed.

The focus of this chapter is on (1) the mathematical foundation of sampling and

resampling and (2) techniques for high performance sampling and resampling systems.

The main purpose is to introduce the relevant background and put the work in this thesis

in its context.
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2.1 Bandlimited Signals

2.1.1 Shannon’s Sampling Theory

A continuous signal f(x) is integrable if
∫
x
f(x)dx < ∞. Such a signal has a Fourier

Transform defined by

F (Ω) =

∫
f(x)e−jΩxdx (2.1)

Throughout this thesis we shall use Ω to represent the frequency variable of a continuous

signal. If F (Ω) = 0 for |Ω| > Ω0, then f(x) is bandlimited with a bandwidth of Ω0.

Shannon’s uniform sampling theory states that f(x) can be reconstructed perfectly

from its samples {f [nT ]}n∈N which are spaced T seconds apart provided that the sampling

rate fs = 1/T satisfies fs ≥ Ω0/π [14, 15]. We shall denote the discrete sequence by fT

with the subscript T indicating the sampling period The samples in the sequence is

denoted by fT [n]. The lower bound Ω0/π of the sampling rate is called the Nyquist Rate.

The continuous signal can be reconstructed from fT by convolving fT , defined by

fT =
∑
n

fT [n]δ(x− nT ) n ∈ Z (2.2)

for all integer n with a properly dilated sinc function where

sinc(x) = sin(πx)/πx (2.3)

and ∫ ∞
−∞

δ(x)f(x)dx = f(0) (2.4)

is the Dirac delta function. This convolution gives us the continuous signal

f̃(x) = fT ∗ sinc
( x
T

)
=

∫ ∑
n

fT [n]δ(τ − nT )sinc
1

T
(x− τ)dx

=
∑
n

fT [n]sinc
( x
T
− n

)
(2.5)
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f̃ (x)

∑
m
δ(x−mT )

Anti-aliasing 

Filter

h1(x) h2(x)f (x)
f1(x) fT [m]

Reconstruction 

Filter

Figure 2.1: The sampling and reconstruction system.

where ∗ denotes the linear convolution operation. If the sampling rate is at least as high

as the Nyquist rate, f̃(x) = f(x) and the reconstruction is said to be perfect.

If the sampling rate is lower than the Nyquist rate, aliasing occurs and perfect re-

construction is no longer possible. In practice, the continuous signal is usually low-pass

filtered before sampling to avoid aliasing. A typical sampling system with an anti-aliasing

prefilter is shown in Figure 2.1. The reconstruction filter is also a low-pass filter with

a cutoff frequency not less than that of the anti-aliasing filter. The loss of the high

frequency components due to pre-filtering is non-recoverable.

Shannon’s sampling theorem has been extended in many different directions [16],

including non-uniform sampling [17–24] and bandpass sampling [25,26].

2.1.2 Resampling

A resampling system converts one discrete signal to another with as little change to

the information carried by the signal as possible [12]. One of the main reasons for

such conversions is to change the sampling rate of the signal. Another reason is to

obtain values at locations where the input signal does not provide. Multirate signal

processing [3] can be found in systems such as digital communication receivers, subband

audio and image coders and decoders. Common signal processing operations that require

resampling includes image resizing and image rotation. Some other applications can also

be formulated as a resampling problem as we shall see in Chapters 3 to 5.
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fT [m]
fT1 [m]

fT2 [m]

f2[m]f1[m]
h1[k] h2[k]↑ L ↓ M

Image

Filter

Anti-aliasing

Filter

Up-sampler Down-sampler

Figure 2.2: Block representation of the SRC system.

Conceptually, resampling is a two-step process. In the first step, the original discrete

signal is converted into an analog signal. Then in the second step, this analog signal

is sampled at a different rate and/or different locations to produce the output discrete

signal. The complete process is illustrated in Figure 1.3.

In practice, resampling is performed entirely in the digital domain via digital filters.

Figure 2.2 shows a sample rate conversion system that achieves a conversion ratio of

T/T2 = L/M , where T and T2 are the sampling periods of the input and output signals

respectively. L and M are integers and therefore L/M is a rational number. The first

block is the up-sampler that changes the effective sampling period to T1. The output of

the up-sampler is given by

fT1 [m] =

{
fT [m/L], m = nL, n ∈ Z
0 otherwise

(2.6)

In the frequency domain, FT1(ω) is an L-fold compressed version of FT (ω) where FT1(ω)

and FT (ω) are the Discrete Time Fourier Transforms (DTFT) of fT1 [m] and fT [m] re-

spectively [3]. In this thesis, we use ω to denote the normalized digital frequency. The

relationship with the analog frequency Ω is that ω = ΩT for a sampling period of T .

Figures 2.3.a shows the frequency spectra of the original continuous signal f (not shown

in Figure 2.2). Figure 2.3.b and 2.3.c show the spectrum of fT and fT [m] respectively.

It can be noticed that fT is the modulated signal of fT [m] and the discrete frequency ω

is defined by the normalized continuous frequency Ω, ω = ΩT . Figure 2.3.d shows the

spectra for L = 3.

The up-sampled signal fT1 is then convolved with a digital filter with impulse response

{h1[k]}k∈N called the image filter. This filter removes the duplicates of the spectrum so
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that only the spectrum in [−π, π] remains. The resulting spectrum is shown in Fig-

ure 2.3.e.

The anti-aliasing filter ensures that F1(ω) is bandlimited to |ω| < π
M

to avoid aliasing

in the down-sampled signal. Finally, the down-sampler reduces the sampling rate of f2[m]

by a factor of M so that

fT2 [m] = f2[mM ] (2.7)

Figure 2.3.f shows the spectrum of fT2 [m].

While the performance of a sampling system can be quantitatively accessed by ‖f̃(x)−
f(x)‖L2 , a direct comparison between the input and output of a resampling system is

generally not meaningful. This is because they are discrete sequence of numbers which

are, in general, of different length. However, we may compare their Fourier spectra

instead [27–29]. If the magnitude spectra of the input and output are the same, then the

information in the input is preserved by the output.

A natural extension of the single channel resampling system is the multi-channel

implementation. The spectrum of the input signal can be divided into equal or unequal

sub-bands. This allows the subband signals to be processed at a rate lower than the

Nyquist Rate of the original signal [30–34]. The multi-channel system has been further

extended to allow non-uniformly sampled inputs and outputs. In [35], the conditions and

average sampling rates for each channel is derived such that the resampling system is

invertible.

However, due to the increased hardware cost to implement multichannel systems,

researchers have been working toward a more general theory of sampling for signals with

large bandwidths or effectively non-bandlimited signals.

2.2 Sampling Non-bandlimited Signals

Many signals encountered in practice are of finite duration and therefore are not ban-

dlimited [36]. There are also signals that are designated to have very wide bandwidths,.
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Figure 2.3: Spectra of the signals for the sample rate conversion system in Figure 2.2 for
L/M = 3/2.
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An example is the signals used for Ultra-Wide Band (UWB) radio communications which

can have bandwidths up to several giga-Hertz [5, 37].

Shannon’s sampling theorem tells us that aliasing is unavoidable when we sample a

non-bandlimited signal. Thus whether such a signal can be perfectly reconstructed from

its samples depends on what a priori information is available [38]. Suppose the signal

can be represented by

f(x) =
∑
k

c[k]φ(x− k) (2.8)

where φ is a known function. φ is called the reconstruction or synthesis function since

f(x) can be synthesized using (2.8). Given φ, f(x) can be perfectly reconstructed from

c[k] if it belongs to the vector space spanned by {φ(x− k)}k∈Z, denoted by

V φ =

{
h(x) =

∑
k

c[k]φ(x− k), c ∈ `2

}
(2.9)

{φk}k∈Z is called a frame of V φ [39]. In order for every f(x) ∈ V φ to have a unique

representation, the only restriction on the choice of φ is that the set {φ(x − k)}k∈Z

satisfies the Riesz condition which states that for every finite scalar sequence {c[k]}k∈Z

the following admissibility condition must be satisfied [39]

A‖c[k]‖2
`2 ≤ ‖

∑
k

c[k]φ(x− k)‖2
L2 ≤ B‖c[k]‖2

`2 (2.10)

where A and B are the Riesz bounds and 0 < A ≤ B. If {φ(x − k)}k∈Z satisfies (2.10),

the set {φ(x− k)}k∈Z is admissible and is the Riesz Basis of the space V φ. On the other

hand, φ is referred as the generating function of V φ.

The stability of the reconstruction in (2.8) is measured by the condition number α [8].

It is derived from the Riesz constants of φ

α =

√
Bφ

Aφ
≥ 1 (2.11)

The smaller α is, the more stable the reconstruction process.

The way by which the samples {c[k]}k∈Z in (2.8) are obtained depends on the prop-

erties of φ. The reconstruction process using (2.8) therefore also depends on φ and can

be classified as [40] interpolation, quasi-interpolation or least square approximation.
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2.2.1 Interpolation

A function φ is called a Nyquist function [41–43] if it satisfies

φ(x) =

{
1, x = 0
0, x = n, n ∈ Z, n 6= 0

(2.12)

Thus Nyquist functions have zero-crossings at integer values of x except for x = 0. An

example is the sinc function used in Shannon’s sampling theory. The samples c[k] can

be obtained by ideal sampling. That is,

c[k] = f(x)|x=k (2.13)

The continuous signal can be reconstructed from such samples by

f̃(x) =
∑
k

f [k]φ(x− k) (2.14)

This operation is bounded if f(x) is sufficiently smooth [44]. It can be observed that

f̃ [k] = f [k] for all k.

2.2.2 Quasi-Interpolation

Quasi-interpolation relaxes the requirement on the integer crossing property of φ. A

quasi-interpolating function φ of order L = n+1 is able to interpolate all polynomials up

to order n [45]. A quasi-interpolant of order L must satisfy the Strang-Fix condition [46–

48]. That is, the frequency response of φ must satisfy{
Φ[2πk] = δ[k]
Φ(m)[2πk] = 0, k ∈ Z, m = 0, · · · , L− 1

(2.15)

Here, the superscript m indicates the m-th derivative with respect to Ω. δ[k] is unit

impulse sequence defined by

δ[k] =

{
1, k = 0
0, k ∈ Z, k 6= 0

(2.16)

The samples c[k] can be obtained using ideal sampling, i.e. c[k] = f(x)|x=k. The

reconstructed signal f̃(x) =
∑

k f [k]φ (x− k) satisfies f̃(x) = f(x) for all f(x) that is a

polynomial of order up to n.
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2.2.3 Convolution Based Least Square

It has been shown in [39] that if {φ(x − k)}k∈Z form Riesz basis, then there exists a

unique function φd such that for every pair of φ(x− k) and φd(x− k) for k ∈ Z,

〈φ(x− l), φd(x−m)〉 = δ[l −m] l,m ∈ Z (2.17)

(2.17) is the dual condition and the functions φ and φd are said to be dual operator of

each other. The set {φd(x−k)}k∈Z is also a Riesz basis for V φ. For a generating function

φ, let its sampled auto-correlation function be defined by

aφ[k] =

∫
φ(x)φ(x− k)dx k ∈ Z (2.18)

with Fourier transform

Aφ(ω) =
∑
k

|Φ(Ω + 2kπ)|2 (2.19)

Then the Fourier transform of φd is given by [49,50]

Φd(Ω) =
Φ(Ω)

Aφ(ω)
(2.20)

where ω = TΩ. If φd exists, then the signal has a unique representation in the space V φ.

An equivalent condition for this is that [51]

A ≤ Aφ(ω) ≤ B a.e. (2.21)

where a.e. means almost everywhere. Note that this is the same as the admissibility

condition (2.10).

Figure 2.4 shows a block diagram of the sampling and reconstruction process with a

general sampling or acquisition function ϕ and a reconstruction or synthesis function φ.

The sequence of samples c are obtained by the inner product of the signal and ϕ(x).

c[k] = 〈f(x), ϕ (x− k)〉 (2.22)
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ϕ
(
− x

T

)
φ
( x

T

) f̃ (x)f (x)

∑
k
δ(x− kT )

Acquisition 

Filter

Synthesis

Filter

fT [k]

Figure 2.4: Block diagram of a sampling and reconstruction system with general acqui-
sition and synthesis functions.

The reconstructed signal is therefore given by

f̃(x) =
∑
k

c[k]φ(x− k)

=
∑
k

〈f(x), ϕ (x− k)〉φ(x− k) (2.23)

When ϕ = φd, f̃(x) is a projection of the signal f(x) onto V φ [52–55]. If f(x) ∈ V φ, then

f̃(x) = f(x) and the reconstruction is perfect.

So far we have assumed that the sampling interval is T = 1. A general formulation can

be obtained by dilating the acquisition and synthesis function by the sampling interval.

Therefore (2.22) and (2.23) can be rewritten as

c[k] =

〈
f(x), ϕ

[
1

T
(x− kT )

]〉
=

〈
f(x), ϕ

( x
T
− k
)〉

(2.24)

f̃(x) =
∑
k

c[k]φ

[
1

T
(x− kT )

]
=

∑
k

c[k]φ
( x
T
− k
)

(2.25)

Sampling performance is measured by how closely the reconstructed signal resembles

the original signal. Quantitatively, it is given by ‖f(x)− f̃(x)‖L2 . Intuitively, one would

expect that reducing T will lead to a reduction in the reconstruction error. As T → 0, the

samples are taken almost continuously and therefore the reconstruction error vanishes.
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The approximation order of a synthesis function measures the rate of decrease of the

reconstruction error as T → 0 [56, 57]. If the approximation order is L, then an upper

bound on the reconstruction error is given by

‖f(x)− f̃(x)‖L2 ≤ C × TL (2.26)

where C is a positive constant. The approximation order of a function can be easily

characterized [58]. One possible way to verify the approximation order is through the

Strang-Fix condition defined by (2.15). Thus the condition is the same as for a quasi

interpolation function of L.

More specifically, the performance for a given T can be quantitatively predicted by a

formula in the frequency domain derived by [47,59] as follows.

ηf (T ) =

[
1

2π

∫
|F (Ω)|2Eφ(TΩ)dΩ

] 1
2

(2.27)

where the error kernel Eφ(Ω) is given by

Eφ(Ω) = 1− |Φ(Ω)|2
Aφ(ω)︸ ︷︷ ︸

Emin(Ω)

+Aφ(ω) |Ψ(Ω)− Φd(Ω)|2︸ ︷︷ ︸
Eres(Ω)

(2.28)

Aφ(ω) and Φd(Ω) are given by (2.19) and (2.20) respectively.

When ϕ = φd, the second term Eres of (2.28) is reduced to zero and the error is

minimum. In this case, optimal reconstruction is achieved for a given φ and T . The

reconstructed signal is the closest signal in V φ to f(x). It can be obtained by the solving

the following minimization problem.

arg ef(x)∈V φT
min

∥∥∥f(x)− f̃(x)
∥∥∥
L2

(2.29)

The objective function is the L2-norm which measures the reconstruction error in a mean

squared sense since the difference is integrated over the whole x axis [60,61]. Therefore it

is a Mean Square Error (MSE). Other objective functions can be used. They are typically

variations of the MSE which include Tikhonov regularization [62], normalized MSE [63],
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frequency weighted least square [64] and regularized least square [65]. A generalized LP

norm is studied in [66]. A criterion using the `2 norm of the difference between the

samples of the original signal and of the reconstructed signal has also been proposed [67].

It is obvious that the sampling performance depends crucially on the choice of the

acquisition and synthesis functions. Many functions have been studied thoroughly in re-

lation to their potential applications in sampling. They include polynomials and rational

functions [68, 69]. Spline functions which form a Riesz basis are systematically studied

in [70]. Other functions such as the Gaussian function have also been used in sampling

systems due to its efficiency in memory access and low computational complexity [71].

Besides reconstruction in the time domain, it is also possible to interpolate the fre-

quency samples of a signal in the frequency domain. The spectral samples can be inter-

polated and then inverse transformed to obtain the time domain signal [72, 73]. Gabor

representation has been used to reconstruct a signal from the samples of its windowed

Fourier transform [74–77]. Chebyshev polynomials have been used to sample signals to

their cosine transform [22, 78]. Signals can also be approached from the mixed time-

frequency domain. This has been demonstrated by recent developments using wavelet

functions [79, 80]. In this thesis, we concentrate on the use of B-splines and wavelet

functions.

2.3 Special Acquisition and Synthesis Functions

2.3.1 Splines

Spline functions were first introduced in 1946, slightly ahead of Shannon’s sampling

theorem [81, 82]. However, it has only been intensively studied when mathematicians

realized that these functions could be used to draw smooth curves. With the advent of

digital computers, the use of splines has a tremendous impact on computer-aided design

and computer graphics. It is mainly applied to the interpolation of samples of smooth

functions [63,68,83–86]. More recently, it is also applied to signal processing [87–91].
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Splines are smoothly connected piecewise continuous polynomials. For a spline of

degree n, each segment is a polynomial of degree n. At the joints between segments,

known as knots, the spline and its derivatives up to (n − 1)-th order are continuous to

ensure smoothness. Schoenberg [81] has found that splines s(x) with uniform spacing are

uniquely characterized by their B-spline expansion:

s(x) =
∑
k∈Z

c[k]βn(x− k) (2.30)

where c[k] are the B-spline coefficients and βn(x) is the n-th order B-spline. The zero-th

order B-spline is given by the rectangular function

β0(x) =

{
1, |x| < 1

2

0, 1
2
< |x| (2.31)

as shown in Figure 2.5.a. The frequency response of β0(x) is given by

B0(Ω) = sinc

(
Ω

2π

)
(2.32)

The n-th order B-spline can be obtained recursively by

βn(x) = β0 ∗ βn−1(x) n ≥ 1 (2.33)

Using the convolution property of Fourier transform, the frequency response of the n-th

order B-spline is given by

Bn(Ω) =
[
B0(Ω)

]n
=

[
sinc

(
Ω

2π

)]n
(2.34)

B-splines up to the third order are shown in Figure 2.5. It can be observed that B-splines

are symmetrical about y axis. Second and higher order B-splines have non-increasing bell

shapes. Spline functions are of finite local support. An n-th order B-spline has support

Bβn =

[
−n+ 1

2
,
n+ 1

2

]
(2.35)

B-splines of orders higher than 1 are non-Nyquist functions. Therefore if a signal

can be represented as (2.30), its ideal samples s[k] = s(x)|x=k are not the same as the
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Figure 2.5: Zero-th to third order B-spline functions.
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φ Bn(ω) Bn(z) Aβn(ω)

n = 0 β0 1 1 1

n = 1 β1 1 1 1− 2
3

sin2
(
ω
2

)
n = 2 β2 1− 1

2
sin2

(
ω
2

)
1
8
(z + 6 + z−1) 1− sin2

(
ω
2

)
+ 2

15
sin4

(
ω
2

)
n = 3 β3 1− 2

3
sin2

(
ω
2

)
1
6
(z + 4 + z−1) 1− 4

3
sin2

(
ω
2

)
+ 2

3
sin4

(
ω
2

)− 4
315

sin6
(
ω
2

)
Table 2.1: Approximation of the frequency responses of B-spline up to order 3.

B-spline coefficients c[k]. Nevertheless, c[k] can be obtained from s[k] through the Direct

Transform [92, 93]:

c[k] =
(
(bn)−1 ∗ s) [k] (2.36)

where (bn)−1 denotes the convolution inverse of the discrete B-spline sequence bn. The

discrete B-spline sequence is given by

bn[k] = βn(x)|x=k (2.37)

or in the frequency domain

Bn(ω) =
∑
k

bn[k]e−jω (2.38)

and

(bn)−1 FT−→ 1

Bn(ejω)
(2.39)

The frequency response of the discrete B-spline is also given by

Bn(ω) =
∑
k

Bn(Ω + 2πk) (2.40)

with ω = Ω. In [47], Bn(ω) can be approximated by the simple expressions listed Table 2.1

for n ≤ 3. Alternatively, the values of bn[k] can be obtained by evaluating βn(x) at x = k.

Thus the z transform of discrete B-splines can be obtained easily.

Substituting (2.36) into (2.30), s(x) can be reconstructed from its ideal samples in

the subspace V βn by

s(x) =
∑
k∈Z

(
(bn)−1 ∗ s) [k]βn(x− k) (2.41)
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f̃ (x)f (x) (bn)−1[k]

∑
k
δ(x− k)

f [k] c[k]
βn(x)

Figure 2.6: The sampling system using B-spline as synthesis filter

Thus a sampling system based on B-splines for sampling and reconstruction will have

a structure as shown in Figure 2.6. The sampling function ϕ is the sequence (bn)−1.

Therefore its frequency response is given by

Ψ(Ω) =
1

Bn(ω)
(2.42)

with Ω = ω. The synthesis function is φ = βn.

The performance of this sampling system can be derived from (2.28). It can be shown

that the autocorrelation function aβn [k] of βn is related to bn[k] by

aβn [k] = b2n[k] (2.43)

Using the approximations of Bn(ω) given in Table 2.1, Aβn(ω) can be derived accordingly.

The values of Bn(z) and Aβn(ω) for n ≤ 3 are also shown in Table 2.1.

There are several advantages in using splines for sampling systems. First, the order n

of the splines is directly related to the approximation order L by L = n+1. Furthermore,

the best kernels that are able to achieve minimum approximation error, i.e. minimum C

in (2.26), can be expressed using derivatives of B-splines of approximation order L [40].

Thus splines are very good for approximating signals.

Second, it has been shown that among all the functions with the same order of

approximation, spline functions have the minimum support [16, 94, 95]. These function

are referred as Maximum Order Minimum Support (MOMS ) functions. To compute the

value of a signal at location xk using an interpolation function of support B = [u, v],

samples within the range [xk +u, xk + v] are used. For a function of approximation order
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L, the support of φ is lower bounded by |B| = |v − u| ≥ L [48, 96]. From (2.35), we can

see that the support of B-splines of approximation order L = n+ 1 is equal to the lower

bound L. Therefore splines are efficient in sampling and reconstruction computations.

Third, sampling using B-splines in the discrete domain is easy and straightforward [97,

98]. Since B-splines are symmetric with respect to x = 0, the discrete B-splines bn

are also symmetric. The inverse filter (b)−1 can be easily implemented. Furthermore,

differentiation and integration of a signal can be performed on its B-spline coefficients

and processed in the digital domain efficiently [68,87,92,93].

Many variations of B-splines have been used in the sampling literature. Cardinal

splines is one of them [99–101]. The reconstruction process of (2.41) can be expressed as

s(x) =
∑
k∈Z

(
(bn)−1 ∗ s) [k]βn(x− k)

=
∑
m

s[m]

(∑
k

(bn)−1[k]βn(x− k)

)
=

∑
m

s[m]ηn(x−m) (2.44)

where

ηn(x) =
∑
k∈Z

(bn)−1[k]βn(x− k) (2.45)

is called the cardinal splines. Figure 2.7 shows a third order cardinal spline. All cardinal

splines are Nyquist functions. As the order n increases, the cardinal splines behave more

and more like the sinc function.

The univariate polynomial splines can be used to reconstruct signals in the weak

Chebyshev space [102]. A combination of different splines can also be employed [42, 84,

103–105]. In [106], it has been demonstrated that the use of splines to minimize MSE

when noise is present simulates the optimal Wiener filter. It can also be modified to suit

a different coordinate system when applied to multidimensional systems. For instance,

in [107] the splines are used to sample signals on a hexagonal grid instead of the rectilinear

grid. They are also used in multidimensional spaces covered by polygons [108]. Other

splines include cardinal polysplines [99].
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Figure 2.7: The sampling system using B-spline as synthesis filter

2.3.2 Wavelets

Similar to splines, wavelet functions also have local support. It has been used to perform

time-frequency analysis by separating the signal into a range of time and frequency

scales [109,110]. Based on a function φ(x) ∈ L2(R), a wavelet frame {φa,bj }j∈Z is composed

of the functions

φa,bj = (SkbDa−jφ)(x) (2.46)

=
1

aj/2
φ(ajx− kb) j, k ∈ Z (2.47)

Here, Du denotes the dilation operation defined by

Duφ(x) = φ
(x
u

)
(2.48)

and S denotes the shift operation

Svφ(x) = φ(x− v) (2.49)

The constants a and b are chosen such that the set of functions form a frame of its span.

The term mother wavelet refers to the function φ for which the set {φj,k} of functions

φj,k(x) = 2j/2φ(2jx− k) j, k ∈ Z (2.50)
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is an orthonormal basis for L2(R) [111,112].

The sampling and reconstruction of signals using wavelets is carried out in a similar

manner as the convolution least squares approach described in Section 2.2.3. The ap-

proximation power of wavelets is discussed in [113]. In [114], the conditions under which

the underlying signals can be reconstructed from the wavelet samples are studied.

The wavelet transform is a powerful tool because it manages to represent both tran-

sient and stationary behaviors of a signal with only a few transform coefficients [115,116].

A distinctive property of the wavelet transform is its ability to analyze a signal at different

resolution or scales. Let the space spanned by {Skφ}k∈Z be denoted by V0, where

V0 =

{
h(x)

∣∣∣∣∣h(x) =
∑
k

c[k]φ(x− k),
∑
k

|c[k]|2 <∞
}

(2.51)

Vj is the span of {DjSkφ}k∈Z for j ∈ Z. Multiresolution Analysis (MRA) [117] involves

a sequence of closed subspaces Vj and a scaling function ψ(x) such that

(i) · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · ·

(ii)
⋃
j∈Z Vj = L2(R)

(iii)
⋂
j∈Z Vj = 0

(iv) f(x) ∈ Vj if and only if f(2x) ∈ Vj+1

(v) ψ ∈ V0 and {ψ(x− k)}k∈Z form an orthonormal basis for V0

The mother wavelet φ is related to the scaling function ψ by

φ(x) =
∑
k

(
√

2)c[1− k](−1)kψ(2x− k) (2.52)

where c denotes the complex conjugate of c. The coefficients c[k] are obtained by the

inner product

c[k] =
〈
ψ(x),

√
2ψ(2x− k)

〉
k ∈ Z (2.53)
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Figure 2.8: The mother function for some well known wavelets

Common examples of mother wavelets include the Haar function and the Franklin

wavelets as shown in Figure 2.8. Compared with Figure 2.5, the Haar and Franklin

functions appear similar to the zero-th and first order splines respectively. This fact has

inspired the development of spline induced wavelets [118,119].

Wavelet transforms have found much application in data compression [112,120,121].

Large compression ratios can be achieved if the signal of interest contains unevenly spread

frequency components [122]. Application of wavelet to sampling has been mainly via

discrete wavelets [79, 80, 116, 121]. The nature of the wavelet transform also makes it

easy to be extended to multirate system [123,124].

2.4 Consistent Sampling

In Section 2.2.3, we said that if the acquisition function ϕ = φd is a dual function of the

synthesis function φ, then perfect reconstruction can be achieved. However, there are

cases when the acquisition function is given a priori and ϕ 6= φd. In this case, the term

Eres in (2.28) will not be zero due to reconstruction errors such as distortion and aliasing.

This may lead to significant loss in sampling performance. A generalized sampling theory

has been proposed to address this problem [4,125,126].
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Figure 2.9: Geometric interpretation of the effect of the correction filter (taken from [1]).

This generalized sampling theory is based on the concept of consistent sampling. Since

the original signal f(x) is non-bandlimited, in general, the reconstructed signal f̃(x) will

not be the same as f(x). However, if f̃(x) is sampled by the same acquisition function

ϕ as f(x) and results in the same sampled sequence as that for f(x), then we say that

the sampling is consistent. In other words, we obtain the same set of measurements in

the subspace V ϕ from both f(x) and f̃(x). Mathematically, consistent sampling requires

that

〈f(x), ϕ(x− k)〉 =
〈
f̃(x), ϕ(x− k)

〉
(2.54)

for all k ∈ Z. Without loss of generality, we assume that the sampling period T = 1.

A geometric interpretation is provided by [1] and Figure 2.9 helps us to visualize

what consistent sampling aims to achieve. Essentially, we want to obtain a f̃(x) ∈ V φ

such that f̃(x) and f(x) have the same orthogonal projection onto V ϕ. For arbitrary

acquisition and synthesis filters, a digital correction filter q[n] is required to make this

happen. A generic consistent resampling system has a structure as shown in Figure 2.10.

Using the notations in Figure 2.10, the reconstructed signal in V φ is given by

f̃(x) =
∑
k

c2T [k]φ(x− k) (2.55)
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Figure 2.10: Generalized sampling and reconstruction.

where c2T is obtained from the samples c1T of f(x) in V ϕ by

c2T [k] = (c1T ∗ q) [k] (2.56)

The correction filter transforms c1T to c2T such that the desired f̃(x) can be obtained.

Substituting (2.55) and (2.56) into (2.54), we have

c1T [k] =

〈∑
m

c2T [m]φ(x−m), ϕ(x− k)

〉
=

∑
m

(c1T ∗ q) [m] 〈φ(x−m), ϕ(x− k)〉 (2.57)

Let aφϕ[k] denote the sampled cross correlation between the synthesis filter φ(x) and

the acquisition filter ϕ(x). It is given by

aφϕ[k] = 〈φ (x− k) , ϕ (x)〉 (2.58)

and (2.57) can be expressed as

c1T [k] =
∑
m

(c1T ∗ q) [m]aφϕ[k −m]

= (c1T ∗ q ∗ aφϕ) [k] (2.59)
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which implies that

(q ∗ aφϕ) [k] = δ[k] (2.60)

In the frequency domain, (2.59) becomes

C1T (ω) = C1T (ω)Q(ω)Aφϕ(ω) (2.61)

Thus the frequency response of the correction filter is given by

Q(ω) = A−1
φϕ(ω) (2.62)

Similar to condition (2.21) for Φd in (2.20), to ensure the existence and stability of the

correction filter, the response Aφϕ(ω) is required to satisfy

0 ≤M1 ≤ |Aφϕ(ω)| ≤M2 <∞ (2.63)

almost everywhere (a.e.), where M1 and M2 are two positive constants.

It can be proved that consistent sampling is optimal for arbitrary pairs of ϕ and

φ [127,128]. From (2.56),

c2T [k] = (c1T ∗ q) [k]

=
∑
n

〈f(x), ϕ (x− n)〉 q[k − n]

=

∫
f(x)

(∑
n

ϕ (x− n) q[k − n]

)
dx

= 〈f(x), ϕe(x− k)〉 (2.64)

where

ϕe(x) =
∑
k

q[k]ϕ (x− k) (2.65)
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is the effective acquisition filter which is a combination of the acquisition filter and the

correction filter. The inner product of ϕe(x− k), φ(x−m) is given by

〈ϕe(x− k), φ(x−m)〉 =

〈∑
n

q[n]ϕ (x− n− k) , φ(x−m)

〉
=

∑
n

q[n] 〈ϕ (x− n− k) , φ(x−m)〉

=
∑
n

q[n]aφϕ[m− n− k]

= (q ∗ aφϕ) [m− k] (2.66)

Based on (2.60), (2.66) can be reduced to

〈ϕe(x− k), φ(x−m)〉 = δ[m− k] (2.67)

Therefore, ϕe and φ are dual functions and hence ϕe = φd. Thus (2.64) is equivalent to

c2T [k] = 〈f(x), φd(x− k)〉 (2.68)

Reconstructing f̃(x) ∈ V φ using c2T reduces to the convolution based least square ap-

proach in Section 2.2.3. Therefore, consistent sampling achieves optimal performance for

arbitrary ϕ and φ. When ϕ = δ(x) and φ = sinc(x), consistent sampling reduces to

Shannon’s unform sampling theory.

However, consistent sampling may no longer be optimal when noise is present. In [128–

131], the effects of noise in a generalized sampling system is studied for signals that belong

to a subspace U . It has been shown that though consistent sampling achieves unbiased

performance, i.e. the performance is independent of the input signal, the actual error

is not necessarily small. It has been suggested that algorithms could be classified as

admissible or dominating according to the performance metric used. An algorithm is

said to dominate another if its performance as measured by the metric is never worse

than the other. An algorithm that is not dominated by any other is said to be admissible.
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An important result obtained from the analysis is that for bounded signals, the solution

for the minimax problem

q = arg inf
all possible q

sup
f∈U
‖f̃ − f‖L2 (2.69)

is admissible and always achieves smaller actual error than any other approach. There-

fore, the solution to this problem gives us the optimal correction filter. When sampling

is free of noise, the solution of (2.69) is the consistent correction filter.

2.5 Sampling Signals with Finite Rates of Innovation

The sampling methods discussed in Sections 2.2 and 2.4 view Shannon’s reconstruction

formula

f(x) =
∑
n

fT [n]sinc
( x
T
− n

)
(2.70)

as a special case with sinc as the synthesis function. f(x) is projected onto the subspace

generated by the sinc function. Another possible interpretation of (2.70) for a bandlim-

ited signals is that it requires a minimum of 1/T number of samples per unit of time to

uniquely define it. The degree of freedom per unit time for such a signal is therefore 1/T .

In [7], this is called the rate of innovation (RI) and is denoted by ρ. Shannon’s sampling

theory can therefore be viewed as a sampling theory for signals with an RI of 1/T .

By allowing synthesis functions other than sinc in (2.70), signals with finite RI can

be expressed as

f̃(x) =
∑
k

c[k]φ

[
1

T
(x− kT )

]
(2.71)

as given by (2.25) in Section 2.2. Clearly the RI of this signal is ρ = 1/T if φ is known. By

allowing arbitrary delays xk rather than periodic delays kT and denoting the coefficients

by ck instead, (2.71) becomes

f(x) =
∑
k

ckφ

[
1

T
(x− xk)

]
(2.72)
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The only degrees of freedom of f(x) are the xk’s and the ck’s. Let Cf (xa, xb) be a counting

function that indicates the degree of freedom within the time period [xa, xb]. Then RI

can be formally defined as

ρ = lim
τ→∞

1

τ
Cf

(
−τ

2
,
τ

2

)
(2.73)

If ρ <∞, then the signal has a finite RI.

Recently, a new sampling technique for signals with finite RI has been proposed [7,

132–137]. In this thesis, we shall refer to this method as innovation sampling.

In [7], the sampling of periodic analog signals such as streams of Diracs and its

derivatives are considered. A periodic signal f(x) can be expressed as a Fourier series.

f(x) =
∑
m∈Z

F [m]ej(2πmx/τ) (2.74)

It was shown that these signals can be reconstructed from their projections onto lowpass

subspaces of appropriate dimensions. For example, consider a stream of Diracs:

f(x) =
∑
k

ckδ(x− xk) (2.75)

If it is a stream of K Diracs with periodicity τ , then ck+K = ck and xk+K = xk + τ . Thus

its RI is ρ = 2K/τ . The signal can be represented as

f(x) =
K−1∑
k=0

ck
∑
n∈Z

δ(x− xk − nτ) (2.76)

From Poisson’s summation formula, (2.76) can be rewritten as

f(x) =
K−1∑
k=0

1

τ

∑
m∈Z

ej(2πm(x−xk)/τ)

=
∑
m∈Z

1

τ

(
K−1∑
k=0

cke
−j(2πmxk/τ)

)
ej(2πmx/τ) (2.77)

Compare (2.77) with (2.74), we notice that

F [m] =
1

τ

(
K−1∑
k=0

cke
−j(2πmxk/τ)

)
(2.78)
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are the Fourier series coefficients of f(x).

To project f(x) onto a lowpass subspace, choose the sampling kernel to be an ideal

lowpass filter with impulse response

hB(x) = Bsinc(Bx) (2.79)

with B ≥ ρ. Take N uniform samples at x = nT where N ≥ 2 bBτ/2c+ 1, we have

yT [n] = 〈f(x), hB(x− nT )〉 (2.80)

for n = 0, · · · , N − 1. Using (2.74), (2.80) becomes

yT [n] =
∑
m

X[m]
〈
hB(x− nT ), ej(2πmx/τ)

〉
=

∑
m

X[m]

∫
hB(x− nT )ej(2πmx/τ)dx (2.81)

The Fourier transform of hB is given by

HB(Ω) =

∫
hB(x)e−j2πΩxdx (2.82)

Let Ω = −m/τ , it becomes

HB

(
−2πm

τ

)
=

∫
hB(x)ej2πmx/τdx (2.83)

Since hB(x) is a symmetric function, HB is also symmetric and so

HB(−2πm

τ
) = HB(

2πm

τ
) (2.84)

Thus,

HB

(
2πm

τ

)
=

∫
hB(x)ej2πmx/τdx (2.85)

Substituting (2.85) into (2.81), we obtain

yT [n] =
∑
m

X[m]HB

(
2πm

τ

)
ej(2πmnT/τ)

=
M∑

m=−M

X[m]ej(2πmnT/τ) (2.86)
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since HB defines a low pass filter with a bandwidth of [−B/2, B/2]. When T is a divisor

of τ and the N equations are of rank 2M + 1, this system of equations is invertible and

yT is simply the inverse Discrete Time Fourier Transform (DTFT) of F [m]. Therefore

F [m] can be obtained by taking the DTFT of the N samples of yT .

The key part of the reconstruction of f(x) using yT (or equivalently F [m]) is to

identify the innovative parts, xk and ck, of the signal from these samples. This can be

solved by an annihilation filter, which is well known in the field of spectral analysis.

Denote a finite annihilation filter by

A(z) =
K∑
m=0

a[m]z−m (2.87)

such that

A(z) =
K−1∏
k=0

(
1− e−j(2πxk/τ)z−1

)
(2.88)

A(z) has zeros at uk = e−j(2πxk/τ). Now, F [m] in (2.78) is a summation of K exponentials.

Each of these exponentials can be zeroed out by one of the roots of A(z). Hence

∑
m

a[m] ∗
∑
m

F [m] = 0 (2.89)

Consequently, a Yule-Walker system can be formulated to solve for a[m]. Using A(z) in

the form given by (2.88), the K locations {xk}K−1
k=0 can be identified from the roots uk.

The weights ck can be obtained from F [m] and uk. For m = 0, . . . , K − 1, (2.78) can

be expressed in matrix form as
F [0]
F [1]

...
F [K − 1]

 =
1

τ


1 1 · · · 1
u0 u1 · · · uK−1
...

... · · · ...
uK−1

0 uK−1
1 · · · uK−1

K−1




c0

c1
...

cK−1

 (2.90)

which is a Vandermonde system that can be solved for the ck’s. With xk and ck, f(x)

can be perfectly reconstructed from the uniform samples yT .
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This reconstruction process involves root finding and solving a Yule-walker system and

a Vandermonde system. When noise is present, one or more of these systems can become

ill-conditioned and therefore the solutions obtained may not be stable or accurate. The

effects of noise in the system is studied in [133] and a more robust method with better

numerical conditioning in the presence of noise is proposed.

In [134, 136], the use of sampling kernels with finite support is studied. The authors

argued that the sampling kernel hB in (2.79) is of infinite support and usually non-

realizable. Infinite support of the kernel also leads to high complexity and instablity of

the reconstruction scheme. The use of wavelets in innovation sampling has also been

explored in [137].

An independent approach similar to innovation sampling is presented in [138]. The

authors suggested that it is possible to sample a certain groups of the signals in the same

way as suggested by innovation sampling: the sampling kernel is hB = BsincBx and the

rate 1/T = 1/B. Instead of periodic signals, the group of perfect reconstructible signals

is defined to be to sample a certain group of signals whose frequency response is in the

form

F (Ω) = G(TΩ)S(TΩ) (2.91)

where G(Ω) is periodic and S(Ω) is a slow varying function where for all λ > 0,

lim
Ω→+∞

S(λΩ)

S(Ω)
= 1 (2.92)

The signal is first modulated by ej2πxa. If a is big enough, the samples contain necessary

information to reconstruct f(x). The reconstruction procedure varies depending on the

the property of S(Ω). Nevertheless, the principle underlying this approach is similar to

that of Innovation sampling. It has been shown that when a → ∞, the reconstruction

error approaches to 0.

However, there are two problems associated with innovation sampling that remain

unsolved. The first one is related to the RI of a signal. The RI of a signal in the form of
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(2.72) can be obtained if we have exact knowledge of φ. This is generally not true for an

arbitrary signal. The second problem is that although the lower bound on the sampling

rate is specified by the RI, it is unclear how a proper acquisition function (sampling

kernel) should be chosen. These two problems are tackled in Chapter 6.

In the discussions above, the sequence of Diracs in (2.76) is treated as a continuous

signal. The response of the signal is given by

F (Ω) =

∫
f(x)e−iΩxdx

=
K−1∑
k

ck
∑
n

e−jΩ(xk+nτ) (2.93)

Therefore, the signal is of non-bandlimited response. On the other hand, this signal

can be considered as a modulated signal of the sequence {f [xk]}k∈Z where f [xk] = ck for

all k. The sampling process described by innovation sampling can in turn be interpreted

as an interpolation of the sequence by hB(x) and then resampled uniformly to produce

the output yT . Therefore, it can be viewed as a resampling process of non-bandlimited

signals. Since f [xk] is reconstructed from yT , a general guideline to design resampling

process can be drawn from the innovation sampling: the original sequence shall be able

to be recovered from its resampled sequence.

2.6 Resampling Non-bandlimited Signals

As discussed earlier in Section 2.1.2, resampling is essentially a two-step process [139]. In

the first step, the discrete input is interpolated to a continuous signal and in the second

step, this continuous signal is resampled at the desired locations and at the desired

sampling rate to produce a discrete output. In this section, we lift the restriction of

band-limitation on the signals and functions involved.
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2.6.1 Performance of Resampling

As discussed in Section 2.2, a signal that is non-bandlimited can be sampled by an

acquisition function ϕ ∈ H. Let

c(x) = f(x) ∗ ϕ (−x) (2.94)

The samples are given by c[k] = c(x)|x=kT for all k ∈ Z assuming that T = 1. The

frequency response c(x) is therefore given by

C(Ω) = F (Ω)Ψ(Ω) (2.95)

and that of c[k] is given by

C(ω) =
∑
k

C

(
Ω +

2kπ

T

)∣∣∣∣
ω=ΩT

(2.96)

Since C(Ω) is not assumed to be bandlimited, sampling c(x) would inevitably cause

aliasing and C(ω) contains overlapped copies of C(Ω). Therefore, it is inappropriate

to compare the spectra of the input and output signals to gauge the performance of

resampling when the signals involved are non-bandlimited [140,141].

There are other ways to directly or indirectly measure the performance of a resampling

system or process. They can be classified are two main groups of performance metrics

depending on whether the entire resampling process or only the interpolation process is

to be considered. Those metrics that include the whole resampling process are usually

application dependent. For example, for most image processing application, the Peak

Signal to Noise Ratio (PSNR) is commonly used. PSNR is defined by

PSNR = 10 · log10

MAX2

MSE
(2.97)

where

MSE =
1

mn

m∑
i=0

n∑
j=0

‖I(i, j)−K(i, j)‖2
`2 (2.98)
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and MAX denotes the maximum pixel value of the (m × n) image. Here, I and K

denote the original image and processed image respectively. Instead of the `2 norm,

sometimes the `∞ norm is used [43]. Some care must be taken when using this kind of

metrics to compare different resampling algorithms for images. For instance, the size of

the processed image has to be identical to that of the original image. Thus they are not

very robust and are not applicable to a lot of cases, e.g. when the resizing factor is not

an integer.

Another example of this group of metrics is the Bit Error Rate (BER) used in digital

communication systems where the sampled signals are usually resampled [142,143]. The

better a resampling scheme, the lower its BER with the same signal-to-noise ratio (SNR).

This method can become very complicated since the relationship between BER and SNR

varies depending on the modulation scheme used. Extensive research has been done

to work out these relationships for different modulations schemes [143–147]. As far as

resampling is concerned, in order to draw valid conclusions, resampling algorithms should

be compared using the same modulation scheme.

Since the metrics in this group are very application specific, comparisons between

resampling algorithms from different fields are practically impossible. For example, it is

impossible to compare the performance of a denoising system for image processing and

one for mobile channel detection. Since resampling is widely applied in almost all fields,

it is essential that a unified metric can be used to compare the performance of different

resampling algorithms.

The second group of metrics addresses this issue by considering the performance of

the interpolation process only [38, 148, 149]. Thus it measures only the interpolation

error [150, 151]. Those metrics discussed earlier in Section 2.2 for sampling and recon-

struction are all applicable.

Many functions have been used for interpolation in resampling. The most widely

used include nearest neighbour (β0), linear (β1) [152], quadratic interpolators [153], cu-

bic B-splines (β3) [94] and cubic convolution [95, 101, 154]. Besides the B-splines and
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the polynomial families, other interpolating functions considered include the fractal in-

terpolating function [155], Gabor filters [41, 156], Taylor series interpolation [157], the

Gaussian function and its derivatives [158] and de Boor-Ron interpolation filters [12].

There is also a study on the use of rational filters which shows that the information of

the input sequence can be preserved with great fidelity at low computational cost [159].

In addition, some non-linear methods have been devised specifically for resampling.

In [160], the signal is expressed in terms of the synthesis function. The optimally recon-

structed signal is obtained by solving a set of separable partial differential equations such

that the MSE is minimized. A similar approach can be found in the research for scalable

video coding [10]. The upsampling and downsampling of the discrete signals are modeled

and solved via differential equations. In [161–164], classic interpolation techniques are

employed in conjunction with estimation of edges. If the image is locally smooth, the

edge orientation of the image can be computed from local pixels. The interpolation error

can then be reduced around the edges. Adaptive interpolating filters are used in [165,166]

to minimize the MSE for each individual estimated sample. A generalized approach is

proposed in [167] that makes use of kernel regression methods to obtain the coefficients

of the spline functions that minimize the MSE.

Other methods are based on the underlying principles used for consistent sampling.

In [168,169], the consistent sampling technique is directly applied to image resizing and

rotation. Two major techniques, oblique interpolation and quasi interpolation, have been

developed in these papers.

2.6.2 Oblique Interpolation Method

Oblique interpolation is the direct application of consistent sampling to image process-

ing [170]. The original image f is assumed to be obtained by sampling a continuous signal

on a uniform grid using the function ϕ = β0. This discrete image is interpolated by a

Nyquist function φ to obtain the continuous image f̃ . To resize an image by a factor of
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a, the continuous image is scaled to g(x) = f̃(x/a). The resized image g is obtained by

sampling g(x) using ϕ. Oblique interpolation requires that

g̃ =
∑
m

g[m]φ(x−m) (2.99)

which is the interpolated continuous image of g and g(x) are consistent with respect to

ϕ. That is,

〈
g̃, β0(x− k)

〉
=
〈
g, β0(x− k)

〉
(2.100)

In order to achieve consistency, a correction filter is incorporated into the resampling

system.

Suppose cardinal splines of order n defined in (2.45) are used for interpolation, then

φ = ηn. From (2.58), the sampled cross correlation of ϕ and φ is given by

aφϕ[k] =

〈
β0(x− k),

∑
k

(bn)−1[l]βn(x− l)
〉

=
(
(bn)−1 ∗ bn+1

)
[k] (2.101)

Hence the correction filter can be obtained from (2.62) and is given by

Q(ω) =
1

Aφϕ(ω)

=
Bn(ω)

Bn+1(ω)
(2.102)

2.6.3 Quasi Interpolation Method

If the resampling performance is measured by the performance of its embedded interpo-

lation process, the performance of the image applications can be analyzed by the formula

given by (2.27):

ηf (T ) =

[
1

2π

∫
|F (Ω)|2Eφ(TΩ)dΩ

] 1
2

(2.103)
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Assuming T = 1, the error kernel Eφ(Ω) is given by

Eφ(Ω) = 1− |Φ(Ω)|2
Aφ(ω)︸ ︷︷ ︸

Emin(Ω)

+Aφ(ω) |Ψ(Ω)− Φd(Ω)|2︸ ︷︷ ︸
Eres(Ω)

(2.104)

Emin(Ω) is the lower bound of Eφ(Ω), which is optimal but unattainable since F (Ω) is

unknown. The quasi interpolation method proposed that φ should be chosen such that

Emin(Ω) is minimized [171]. For images which are essentially lowpass, Emin(Ω) is required

to be as close to zero as possible around Ω = 0. More specifically,

Emin(Ω) = O(Ω2L) (2.105)

where the integer L should be as large as possible. This is equivalent to the Strang-Fix

condition in (2.15) for φ to have an approximation order of L [46].

On the other hand, as discussed in Section 2.3.1, the support of a function of ap-

proximation order L is B ≥ L. L has to be small so that the computational cost is kept

reasonably low. Following the discussions in Section 2.3.1, φ can be chosen among the

B-splines since for a given approximation order L, the support of B-splines attains the

lower bound L.

Once φ is chosen, a correction filter is used to ensure that Eres(Ω) is arbitrarily small

and

Eφ(Ω) ≈ Emin(Ω) (2.106)

Quasi interpolation requires that the residue error satisfies

Eres(Ω) = O(ΩN) (2.107)

where N ≥ 2L+ 1. According to (2.104), this amounts to requiring that

Ψ(Ω) = Φd(Ω) +O(ΩM) (2.108)

with M ≥ N
2
≥ L + 1. If the resampling function is ψ = δ(x), then the correction filter

for quasi interpolation is given by

Q(ω) = Φd(Ω) +O(ΩM) (2.109)
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with ω = TΩ = Ω. Note that Q(ω) is not unique. Hence the correction filter can be

designed to suit particular applications. For example, the lowest order correction filter

can be used so that the computational cost is kept to a minimum.

It has been shown that the resampling performs better using oblique and quasi in-

terpolation methods. However, when Janssen and Kalker analyzed the performance of

de-interlacing using the techniques derived for consistent sampling, results contradictory

to common sense arose [9]. Deinterlacing and their observations will be described in Sec-

tion 2.7. What this reveals is that optimal resampling cannot be obtained from optimal

sampling for non-bandlimited signals. Therefore, although consistent sampling is optimal

for sampling without noise, oblique and quasi interpolation methods are not guaranteed

to achieve optimal resampling performance.

2.7 De-interlacing

The interlaced video format is heavily used in television broadcasting. It consists of two

types of fields – one with only the odd scan lines and the other with only the even scan

lines. These two types of fields are transmitted in an interlaced fashion so that only half of

the information changes at any one time at the receiver. The received video frames need

to be de-interlaced (the opposite of interlacing) before the images can be displayed on

the video monitor. This is because the monitors typically utilize a progressive scanning

approach that displays both odd and even scan lines in order from top to bottom for a

single frame. Thus de-interlacing involves interpolation. Since the fields consist of pixels

and are discrete, de-interlacing is essentially a resampling process [172].

While it is trivial to obtain interlaced signals from non-interlaced ones, the reverse

process requires much more effort. Figure 2.11 illustrates the difference between inter-

laced and deinterlaced signals. The input of a deinterlacing system consists of interlaced

fields containing samples of either the odd or the even scan lines. Let n be the index

of the field and ~x = (x, y) denote the samples along scan line y. The interlaced field is
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Interlaced 

1−n
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1−n
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Figure 2.11: Interlaced and de-interlaced signals.

represented by F (~x, n) where only the lines (y mod 2) = (n mod 2) are defined. The

output frame can be expressed as

Fo(~x, n) =

{
F (~x, n), (y mod 2) = (n mod 2)
Fi(~x, n), Otherwise

(2.110)

where Fi(~x, n) are the interpolated fields.

The interpolated fields are obtained from the preceding and/or succeeding fields. In

terms of resampling, the problem of de-interlacing is one of up-sampling. The process

is complicated by the fact that the process of interlacing is essentially sub-sampling

without prefiltering, which is a violation of the Nyquist rate criteria. As a result, some

error will be present in the interlaced signal. This error can only be reduced by making

assumptions and prediction about the motion of the objects in the video picture. A

number of techniques are used, the suitability of each depends on the characteristics of

the images involved.

The simpler deinterlacing algorithms are linear, with the interpolated fields Fi(~x, n)

obtained by

Fi(~x, n) =
∑
k

F (~x+ k~uy, n+m)h(k,m) (2.111)
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for k,m ∈ Z and (k+m) mod 2 = 1. h(k,m) is the impulse response of the filter defined

in the vertical-temporal (VT) domain and ~uy = (0 1)T . The choice of h(k,m) determines

whether it is a spatial (intrafield), temporal (interfield), or spatial-temporal filter. For

example,

h(0,−1) =

{
1, k = −1
0, otherwise

(2.112)

is a temporal filter. In this case, every line y in field n is copied from line y of the previous

field n− 1. Consequently, there is no degradation for stationary video scenes. The linear

approach was common for televisions until the end of the 1970’s.

In 1990’s, motion compensation (MC) has been proposed and the most advanced

deinterlacing algorithms all employ MC. To detect motion, the differences between two

(or more) pictures are calculated and a motion vector for each pixel is estimated. The

motion vectors should reflect the true motion of the objects. Given the motion vectors,

MC methods try to interpolate in the direction with the highest correlation. It allows us

to virtually convert a moving a sequence into a stationary one. Therefore, methods that

perform better for stationary than moving scenes, such as linear temporal filtering, will

profit from MC. Incorporating MC, (2.111) becomes

Fi(~x, n) =
∑
k

F (~x+m~d(~x, n) + k~uy, n+m)h(k,m) (2.113)

where ~d(~x, n) is the motion vector for the pixel (~x, n).

The time-recursive (TR) de-interlacing algorithm [173] suggested that once a deinter-

laced image and the motion vectors are available, resampling can be applied to deinterlace

the current field by

Fo(~x, n) =

{
F (~x, n), (y mod 2) = (n mod 2)

Fo(~x− ~d(~x, n), n− 1), Otherwise
(2.114)

The interpolated samples depend on the previous as well as the current field samples

as illustrated in Figure 2.12. The previous original samples are shifted in the direction
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Figure 2.12: The de-interlacing process. The horizontal axis denotes the input fields
while the vertical axis denotes the scan lines. The motion vector a relates to the velocity
of the scene by a = 1− v.

of the motion vector toward the current field in order to create two independent sets of

samples valid at the same temporal instant. Let a denote the distance between the motion

compensated sample and the existing sample, as shown in Figure 2.12. De-interlacing

can be viewed as the resampling of f [2k] and f [2k + a], for 0 ≤ a < 1, to uniformly

spaced samples f̂ [k] [9]. When a = 1, f [2k + 1] can be obtained by copying the sample

from the previous field. Thus the performance of the resampling system is optimal in

this case.

Janssen and Kalker [9] analyzed the performance of de-interlacing using the stability

measure defined in (2.11). The Resampling performance is computed as a function of

a and it shows that the optimal performance is achieved when a =
√

2
3

instead of the

intuitive a = 1. The authors argued that while reconstruction is a process of `2 → L2,

the process of resampling is one of `2 → `2. Therefore the performance of interpolation is

not an appropriate measure of the performance of resampling and an optimal sampling

system does not automatically lead to an optimal resampling system. This motivated

us to develop a theory for resampling without bandlimited constraints and an associated

performance metric which can be used to measure resampling performance with fidelity.
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Noiseless Consistent Resampling

In this chapter, a new generalized theory for the resampling of discrete-time signals with

non-bandlimited frequency responses is developed. In Section 3.1, the problem of resam-

pling is formulated using the framework of generalized sampling discussed in Section 2.4.

Then a generalized theory of resampling is developed in Section 3.2 which is based on

the new concept of consistent resampling. The idea originates from consistent sampling

introduced in Section 2.4. But it is more than a simple extension since measuring the dif-

ference between the input and output is very different for a resampling system compared

to a sampling/reconstruction system. Consistent resampling is achieved by incorporating

a correction filter into the resampling system so that the choice of sampling, resampling

and interpolating functions are decoupled from each other. In Section 3.3, the problem

of de-interlacing discussed in Section 2.7 is tackled using consistent resampling to show

that our theory generates the correct results. Consistent resampling is also applied to the

demodulation of UWB signals and to image processing in Section 3.4.1 and Section 3.4.2

respectively. It is shown that a consistent resampling system results in superior perfor-

mance when high frequency components are processed compared with methods based on

bandlimited signal processing theory,
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f̃ (x)

∑
m
δ(x−mT )

fT ′ [m]fT [n] φ
( x

T

)
ψ
(

− x
T ′
)

Discrete Resampling Filter

Interpolation 

Filter

Resampling 

Filter

Figure 3.1: A resampling system with generalized interpolating and resampling functions.

3.1 Problem Formulation

3.1.1 Mathematical Model

Let the input discrete signal of a resampling system be {fT [n]}n∈Z with a sampling

period of T. Let {fT ′ [m]}m∈Z denote the output discrete signal with sampling period

T ′ which may or may not be the same as T . Suppose the synthesis function and the

resampling functions are φ( x
T

) and ψ( x
T ′

) respectively. Then the time-domain approach

to resampling discussed in Section 2.6 can be described by Figure 3.1. The signals and

functions involved are assumed to be elements of the Hilbert space. The conventional

SRC system is a specific example where φ = sinc(x/T ) and ψ = δ(x).

In general, the argument of ψ should be (x− x0)/T ′ where x0 is a constant. This is

because in some applications such as image rotation, the resampling interval is the same

as the original (i.e. T ′ = T ) but the locations at which the samples taken are different.

Taking this into account, the intermediate continuous signal is obtained from the

input signal by

f̃(x) =
∑
n

fT [n]φ
( x
T
− n

)
(3.1)
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The output of the resampling system is therefore given by

fT ′ [m] =

〈∑
n

fT [n]φ
( x
T
− n

)
, ψ

(
x− x0

T ′
−m

)〉

=
∑
n

fT [n]

〈
φ
( x
T
− n

)
, ψ

(
x− x0

T ′
−m

)〉
(3.2)

Let ψ′(x) = ψ(x− x0) and ψ
(
x−x0

T ′
−m) in (3.2) can be replaced by ψ′(x/T ′).

If {ψk = ψ(x − k)}k∈Z form a Riesz Basis of the space V ψ, then ψ satisfies the

admissibility condition of (2.10), or its equivalent form in the frequency domain (2.21).

Let ψ′(x) = ψ(x − x0) and ψ
(
x−x0

T ′
−m) in (3.2) be replaced by ψ′(x/T ′). The Fourier

transform of ψ′ is given by

Ψ′(Ω) = e−jΩx0Ψ(Ω) (3.3)

Since

‖Ψ′(Ω + 2πk)‖2 = ‖e−j[Ω+2πk]x0‖2‖Ψ(Ω + 2πk)‖2

= ‖Ψ(Ω + 2πk)‖2 (3.4)

Φ in (2.21) can be replaced by Ψ′. This implies that {ψk = ψ(x − k)}k∈Z is also a

Riesz basis for V ψ′ . Hence omitting x0 will not affect the stability and uniqueness of

the resampling operation. For the sake of conciseness, we shall do so for the rest of this

thesis.

In summary, the resampling process is characterized by the discrete and time varying

resampling filter:

h(n,m) =
〈
φ
( x
T
− n

)
, ψ
( x
T ′
−m

)〉
(3.5)

where h(n,m) specifies the relationship between the nth input to the mth output. Thus

resampling is an operation of `2 → `2.
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3.1.2 Consistent Resampling Defined

When the signal and the sequences are bandlimited and ideal sampling is used to obtain

the samples, the performance of resampling can be concluded by comparing the spectra

of the input and output of the resampling process, as discussed in Section 2.1.2. Provided

that the resampling rate 1/T ′ is higher than twice the bandwidth of the reconstructed

signal, the spectrum of the input signal is preserved. However, when non-ideal samplers

are employed to sample non-bandlimited signals, the output will be aliased.

The generalized sampling theory for non-bandlimited signals [4, 125] introduced an-

other criterion to compare the input and output of a sampling-reconstruction system.

It is called consistent resampling and has been described in Section 2.4. The basic idea

is to compare the input signal and the reconstructed signal by projecting them onto

the acquisition space. Sampling is said to be consistent if they produce the same set of

measurements. A similar idea can be used for resampling.

We shall say that resampling is consistent if the output discrete signal appears to be

the same as the input discrete signal as far as the synthesis function is concerned. In

other words, to the synthesis function, both input and output signals describe the same

analog signal. This concept can be defined formally using frame theory.

Definition 3.1.1. (Consistent Resampling) Consider a resampling system as shown in

Figure 3.1. Let the set of vectors
{
φ
(
x
T
− n)}

n∈Z form a Riesz basis, i.e.

0 < A ≤
∑
n∈Z

∣∣∣φ( x
T
− n

)∣∣∣2 ≤ B <∞ (3.6)

where A and B are the Riesz bounds. The resampling system is said to be consistent if

and only if f̃(x) = f̂(x) where

f̃(x) =
∑
n

fT [n]φ
( x
T
− n

)
(3.7)

f̂(x) =
∑
m

fT ′ [m]φ
( x
T ′
−m

)
(3.8)

are the continuous functions reconstructed from {fT [n]}n∈Z and {fT ′ [m]}m∈Z respectively

using φ.
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3.1.3 Physical Justification

To view the signals f̃(x) and f̂(x) in frequency domain, we first decompose the signals

into forms of convolution:

f̃(x) = fT (x) ∗ φ
( x
T

)
(3.9)

f̂(x) = fT ′(x) ∗ φ
( x
T ′

)
(3.10)

where fT (x) and fT ′(x) are the modulated signals of fT and fT ′ respectively, defined by

fT (x) =
∑
n

fT [n]δ(x− nT )

fT ′(x) =
∑
m

fT ′ [n]δ(x−mT ′)

It is worth pointing out that fT (x) is a continuous signal while fT is discrete. The response

of fT (x) can be directly evaluated from FT:

FT (Ω) =

∫
x

fT (x)e−jΩxdx

=

∫
x

∑
n

fT [n]δ(x− nT )e−jΩxdx

=
∑
n

fT [n]e−jΩnT (3.11)

Since

FT (Ω + 2π/T ) =
∑
n

fT [n]e−j(Ω+2π/T )nT

=
∑
n

fT [n]e−jΩnT

= FT (Ω) (3.12)

FT is of period 2π/T . Similarly, the response of fT ′ is given by

FT ′(Ω) =
∑
m

fT ′ [m]e−jΩmT
′

(3.13)
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and its period is 2π/T ′.

On the other hand, from the scaling property of FT, the response of φ
(
x
T

)
and φ

(
x
T ′

)
as in (3.9) and (3.10) are given by TΦ(TΩ) and T ′Φ(T ′Ω) respectively.

Following the convolution property of FT, the response of f̃ and f̂(x) is given by

F̃ (Ω) = FT (Ω)TΦ(TΩ) (3.14)

F̂ (Ω) = FT ′(Ω)T ′Φ(T ′Ω) (3.15)

To view consistent resampling in frequency domain, we have

F̃ (Ω) = F̂ (Ω) (3.16)

Substitute (3.14) and (3.15) into (3.16),

FT (Ω)TΦ(TΩ) = FT ′(Ω)T ′Φ(T ′Ω) (3.17)

By rearrangement, the response of the output signal is given by

FT ′(Ω) = FT (Ω)
Tφ(TΩ)

T ′φ(T ′Ω)
(3.18)

An analysis of (3.18) provides an insightful view of consistent resampling theory in

frequency domain. On one hand, to evaluate FT (Ω)φ(TΩ), since FT (Ω) is of period 2π/T ,

we only need to concern one period defined in the range Ω ∈ [2(k−1)π/T, 2kπ/T ). During

this period, Φ(TΩ) is evaluated in the range TΩ ∈ [2(k − 1)π, 2kπ). It is equivalent to

evaluate Φ(Ω) in the range of Ω ∈ [2(k − 1)π, 2kπ). Define

FTc(Ω) =

{
FT (Ω/T ) Ω ∈ [−π, π)
0 otherwise

(3.19)

For consecutive intervals of 2π, F̃ (Ω) is obtained by evaluating Φ(Ω) manipulated by the

signal FTc(Ω− 2kπ).
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On the other hand, to consider φ(T ′Ω) in the intervals [2(k−1)π, 2kπ), the value of Ω

is taken in the range of Ω ∈ 2((k − 1)π/T ′, 2kπ/T ′]. Since FT ′ is of period 2π/T ′, define

FT ′c(Ω) =

{
FT ′(Ω/T

′) Ω ∈ [−π, π)
0 otherwise

(3.20)

It can be similarly argued that for consecutive intervals of 2π, F̂ (Ω) is obtained by

evaluating Φ(Ω) manipulated by the signal FT ′c(Ω− 2kπ).

Hence, the consistent resampling theory requires FT ′c(Ω) = FTc(Ω). From (3.19) and

(3.20), we can observe that it is equivalent to state that FT ′(Ω) resembles a dilated version

of FT (Ω), just as Φ(T ′Ω) is a dilated version of Φ(TΩ).

3.2 Consistent Resampling Systems

3.2.1 Correction Filter

In general, for any arbitrary φ and ψ, a resampling system will not be consistent, i.e.

it does not conform to Definition 3.1.1. However, a digital correction filter q[n] can

be incorporated into the system in the way shown in Figure 3.2 to achieve consistent

resampling. The following proposition provides a formula for the design of this correction

filter.

Before we proceed, we consider the frequency response of a time-variant sequence.

From its definition, the response of a discrete sequence, or the Discrete Time Fourier

Transform (DTFT) is derived from the FT for continuous signal. Conventionally, the

sampling is defined by convolve the signal with the ideal impulse train,

∆T (x) = T
∑
n

δ(x− nT ) (3.21)

and the samples of a signal f(x) is defined by f [n] = f(x)|xT . To work out its frequency

response, we first modulate the sequence by the Diracs function

fT (x) = T
∑
n

f(nT )δ(x− nT ) (3.22)
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which is a continuous function and its response is given by FT:

FT (Ω) =

∫
fT (x)e−jΩxdx

=
∑
n

Tf(nT )

∫
δ(x− nT )e−jΩxdx

=
∑
n

Tf(xT )e−jΩnT (3.23)

With the association ω = ΩT , the DTFT is hence defined by

F (ω) =
∑
n

fT (n)e−jωn (3.24)

Let the cross correlation of φ
(
x
T
− n) and ψ

(
x
T ′
−m) be defined by

cφψ[n,m] =

∫
x

φ
( x
T
− n

)
ψ
( x
T ′
−m

)
dx (3.25)

The sequence can be obtained by sampling the signal

cnφψ(x) = φ
( x
T
− n

)
∗ ψ
(
− x

T ′

)
(3.26)

at period T ′. For one particular n, the response of the sequence cnφψ(x)|x=mT ′ is given by

Cn
φψ(ω) =

∑
m

cnφψ(x)

∫
δ(x−mT ′)ejΩxdx

= cφψ[n,m]ejΩmT
′

(3.27)

With the association of ω = ΩT ′, the DTFT of cnφϕ[m] is given by

Cn
φψ(ω) =

∑
m

cφψ[n,m]ejωm (3.28)

On the other hand, the function φ
(
x
T
− n) can be rewritten as

φ
( x
T
− n

)
= φ

(
x− nT
T

)
(3.29)

The shifting property of Fourier transform states that

f(x)
FT→ F (Ω)⇒ f(x− n)

FT→ e−jΩn (3.30)
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To take into consideration of the shift n, for a given n the shifting factor is e−jΩnT .

Therefore, the response of the sequence cφψ[n,m] is given by

Cφψ(ω) =
∑
n,m

cφψ[n,m]ejωme−jΩnT (3.31)

Since ω = ΩT ′ and Ω = ω/T ′, the above equation can be reformed into

Cφψ(ω) =
∑
n,m

cφψ[n,m]ejω(m−nTr) (3.32)

where Tr = T/T ′.

We can see that this definition is of the same form of the response of a filter bank, as

seen in [8].

We proceed to the next proposition on the design of the digital correction filter:

Proposition 3.2.1. Let

Cφψ(ω) =
∑
m,n

cφψ[n,m]ejω(m−nTr) (3.33)

be the frequency response of the sampled cross correlation {cφψ[n,m]}m,n∈Z of φ( x
T

) and

ψ( x
T ′

) where

cφψ[n,m] =

∫
x

φ
( x
T
− n

)
ψ
( x
T ′
−m

)
dx (3.34)

with Tr = T/T ′. Similarly, let Cφφd (ω) be the frequency response of {cφφd [n,m]}m,n∈Z,

the sampled cross correlation of φ( x
T

) and φd(
x
T ′

), the dual operator of φ( x
T ′

), given by

cφφd [n,m] =

∫
x

φ
( x
T
− n

)
φd

( x
T ′
−m

)
dx (3.35)

Then the resampling system in Figure 3.2 is consistent if the frequency response of the

digital correction filter is

Q(ω) =
Cφφd(ω)

Cφψ(ω)
(3.36)
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Proof. The output of the system in Figure 3.2 is given by

fT ′ [m] =
∑
s

∑
n

fT [n]
〈
φ
( x
T
− n

)
, ψ(

x

T ′
− s)

〉
q[m− s] (3.37)

Substituting (3.37) into (3.8), we have

f̂(x) =
∑
m

(∑
s

∑
n

fT [n]
〈
φ
( x
T
− n

)
, ψ(

x

T ′
− s)

〉
q[m− s]

)
φ
( x
T ′
−m

)
=

∑
m,n

fT [n]
∑
s

∫
x

φ
( x
T
− n

)
ψ(

x

T ′
− s)dxq[m− s] · φ

( x
T ′
−m

)
(3.38)

With the cross correlaiton cφψ[n,m] as defined by (3.34), (3.38) can be expressed as

f̂(x) =
∑
n

fT [n]
∑
s

cφψ[n, s]
∑
m

q[m− s]φ
( x
T ′
−m

)
(3.39)

Since φd(
x
T ′

) and φ( x
T ′

) are duals of each other, we have〈
φd(

x

T ′
), φ(

x

T ′
− n)

〉
= δ[n] (3.40)

Using this condition, if we sample f̂(x) using φd(
x
T ′

), we obtain

f̂T ′ [k] =
∑
n

fT [n]
∑
s

cφψ[n, s]
∑
m

q[k − s]

= fT ∗ cφψ ∗ q (3.41)

Since

cφψ[n, s] =

∫
x

φ
( x
T
− n

)
ψ
( x
T ′
− s
)
dx

=

∫
x

φ
( x
T

)
ψ
( x
T ′
− s+ nTr

)
dx = cφψ[0, s− nTr] (3.42)

f̃ (x)

q[n]

∑
m
δ(x−mT )

fT ′ [m]fT [n]

Discrete Resampling Filter

φ
( x

T

)
Interpolation 

Filter

ψ
(

− x
T ′
)

Resampling 

Filter

Figure 3.2: The consistent resampling system with the correction filter.
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with Tr = T/T ′. The response of the 2D sequence cφψ can be calculated as

Cφψ(ω) =
∑
n,s

cφψ[n, s]e−jω(s−nTr) (3.43)

Taking the Fourier transform of (3.41), we have

F̂T ′(ω) = FT (ω)Cφψ(ω)Q(ω) (3.44)

On the other hand, sampling f̃(x) as expressed in (3.7) using φT ′d we have

f̃T ′ [v] =
∑
n

fT [n]cφφd [n, v]

= fT ∗ cφφd (3.45)

where cφφd is given by (3.35). It can be expressed in the Fourier domain as

F̃T ′(ω) = FT (ω)Cφφd(ω) (3.46)

In order that the resampling system is consistent as defined by Definition 3.1.1, we need

to have f̃(x) = f̂(x), or alternatively F̂T ′(ω) = F̃T ′(ω). Thus, using (3.44) and (3.46), we

require

FT (ω)Cφψ(ω)Q(ω) = FT (ω)Cφφd(ω) (3.47)

This condition will hold if the frequency response of the discrete correction filter is given

by

Q(ω) =
Cφφd(ω)

Cφψ(ω)
(3.48)

Given (3.36), we assume that the sequence {cφψ[n,m]}n,m∈Z is invertible, from (2.63),

it is stable and reversible if

M1 ≤ |Cφψ(ω)| ≤M2 (3.49)

almost everywhere (a.e.) where M1 and M2 are two positive constants. This condition

also ensures the existence and stability of the inverse filter, which is defined by c−1
φψ and

1

Cφψ(ω)

IFT−→ c−1
φψ (3.50)
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3.2.2 Optimality

It turns out that consistent resampling has a very desirable property that is described

by the following proposition.

Proposition 3.2.2. Consider a consistent resampling system as shown in Figure 3.2

with the correction filter Q(ω) given by (3.36). Let aφ denote the sampled autocorrelation

function of φ such that aφ[k] = 〈φ(x), φ(x− k)〉. If aφ is invertible, then the input signal

fT [n] can be reconstructed from the output by

fT [n] =

〈∑
m

fT ′ [m]φ
( x
T ′
−m

)
, φd

( x
T
− n

)〉
(3.51)

where φd is the dual operator of φ satisfying condition (2.17).

Proof. If the resampling is consistent, then

f̃(x) =
∑
n

fT [n]φ
( x
T
− n

)
=

∑
m

fT ′ [m]φ
( x
T ′
−m

)
(3.52)

Sampling f̃(x) using φd, we get

cT [n] =
〈
f̃(x), φd(

x

T
− n)

〉
(3.53)

Interpolating cT [n] with φ( x
T ′

), we obtain the continuous signal

f̃c =
∑
n

cT [n]φ
( x
T
− n

)
(3.54)

Substituting (3.53) into (3.54), we have

f̃c = f̃
∑
n

〈
φ
( x
T
− n

)
, φd(

x

T
− n)

〉
(3.55)

Since φd and φ are a dual pair, this simplifies to f̃c = f̃ .
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The frequency response of aφ is given by

Aφ(ω) =
∑
k

|Φ(Ω + 2πk)|2 (3.56)

with ω = Ω. If aφ is invertible, then the condition (2.63) gives us

M1 ≤
∑
k

|Φ(Ω + 2πk)|2 ≤M2 (3.57)

Hence φ satisfies the Riesz Condition. This implies that for any signal f̃ ∈ V φ
T , there

exists a unique sequence fT [n] representing it in V φ
T . Therefore fT [n] = cT [n] and it can

be reconstructed from fT ′ [m] using (3.53).

Since it is possible to reverse the resampling process if it is consistent, the information

contained in the input sequence is preserved in the output through the synthesis function.

Thus consistent resampling is informationally lossless and hence optimal. Furthermore,

this proposition shows that optimal resampling can be achieved regardless of the choice

of the resampling function.

Note that a similar strategy has been proposed in [164]. The authors suggest that

upsampling can be viewed as the inverse of downsampling. So when the upsampled

sequence is downsampled, the original sequence should be recovered. The theory of

consistent resampling generalizes the situation to any sample rate conversion and is not

restricted to upsampling. Furthermore, the sampling and resampling functions are not

limited to the ideal sampler and the sampling interval ratio T/T ′ need not be rational as

required in other literature [164,174,175].

3.2.3 Correction Filter Implementation

The frequency response of the correction filter is given by (3.36) which is

Q(ω) =
Cφφd(ω)

Cφψ(ω)
(3.58)
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f̃ (x)
ψ
(

− x
T ′
)

∑
k
δ(x − kT ′)

fT ′ [k]
q(x)

f ′
T ′(x)

φ
( x

T

)fT [k]

Figure 3.3: The resampling system with continuous correction filter.

with

Cφψ(ω) =
∑
n,m

cφψ[n,m]ejω(m−nTr) (3.59)

Cφφd(ω) =
∑
n,m

cφφd [n,m]ejω(m−nTr) (3.60)

Since Tr = T/T ′ is generally not an integer, (m − nTr) is also typically a non-integer.

Therefore, the conventional impulse invariant approach cannot be used to obtain the

impulse response q of the correction filter.

We approach this problem by deriving the impulse response of a continuous correction

filter q(x) which achieves consistent resampling. The resampling system becomes the

one in Figure 3.3 with the discrete correction filter replaced by a continuous one. The

frequency response Q(Ω) of this filter should approximate Q(ω) in (3.58). Then the

digital correction filter can be derived from q(x).

From Figure 3.3, the resampling output is given by

f ′T ′(x) =
∑
k

fT ′ [k]q(x− kT ′) (3.61)

Now if f ′T ′(x) is filtered by φ( x
T ′

), we obtain

f̂ ′(x) =
[
f ′T ′ ∗ φ

( x
T ′

)]
(x) (3.62)

Since the continuous signal reconstructed from the discrete input signal is given by f̃(x) =∑
n fT [n]φ

(
x
T
− n), by definition, consistent resampling is achieved when f̂ ′(x) = f̃(x).
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Proposition 3.2.3. The system in Figure 3.3 is consistent if the frequency response of

correction filter q(x) satisfies:

Q(Ω) =
Φd(Ω)

Ψ(Ω)
(3.63)

where φd(x) is the dual operator of φ as defined in (2.20).

Proof. From Figure 3.3,

fT ′ [k] =
〈
f̃(x), ψ

( x
T ′
− k
)〉

(3.64)

Substituting (3.64) into (3.61), the output of the system can be expressed as

f ′T ′(x) =
∑
m

〈
f̃(x), ψ

( x
T ′
−m

)〉
q(x−mT ′) (3.65)

Filtering this signal by φ( x
T ′

) as in (3.62), we have

f̂ ′(x) =
∑
m

〈
f̃(x), ψ

( x
T ′
−m

)〉
q(x−mT ′) ∗ φ

( x
T ′

)
(3.66)

If the resampling is consistent, then f̂ ′(x) = f̃(x).

Sample f̂ ′(x) by φd
(
x
T ′

)
, the dual function of φ

(
x
T ′

)
, at rate T ′. The sampled values

are given by

f̂ ′T ′ [n] =
〈
f̂ ′(x), φd

( x
T ′
− n

)〉
=

∑
m

〈
f̃(x), ψ

( x
T ′
−m

)〉
q(x−mT ′) ∗ φ

( x
T ′

)
∗ φd

(
− x

T ′

)
|x=nT ′

=
∑
m

〈
f̃(x), ψ

( x
T ′
−m

)〉
q(x−mT ′)|x=nT ′

=

〈
f̃(x),

[∑
m

q([n−m]T ′)ψ
( x
T ′
−m

)]〉
(3.67)

due to the duality property〈
φ
( x
T ′
−m

)
, φd

( x
T ′
− v
)〉

= δ[m− v] (3.68)
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On the other hand, the sample values of f̃(x) are given by

f̂ ′T ′ [k] =
〈
f̃(x), φd

( x
T ′
− k
)〉

(3.69)

If f̃(x) = f̂ ′(x), the two sequences in (3.67) and (3.69) are the same. This amounts to

requiring

φd

( x
T ′

)
=
∑
m

q(mT ′)ψ
( x
T ′
−m

)
(3.70)

Let

qT ′(x) =
∑
m

qT ′ [m]δ(x−mT ′) (3.71)

where qT ′ [m] = q(mT ′). Then (3.70) can be expressed as

φd

( x
T ′

)
= qT ′(x) ∗ ψ

( x
T ′

)
(3.72)

In the Fourier domain, this equation becomes

Φd(T
′Ω) = QT ′(Ω)Ψ(T ′Ω)

⇒ QT ′(Ω) =
Φd(T

′Ω)

Ψ(T ′Ω)
(3.73)

where QT ′(Ω) is the Fourier transform of qT ′(x). The frequency response of q(x) is

therefore given by

Q(Ω) = QT ′

(
Ω

T ′

)
(3.74)

=
Φd(Ω)

Ψ(Ω)
(3.75)

Proposition 3.2.3 derives the continuous correction filter according to the consistent

resampling principle. The impulse response of the digital correction filter can now be

obtained by the impulse invariant method. By sampling q(x) at rate T ′, we have q′T [m] =

q(x)|x=T ′ . The frequency response Q(ω) of the digital correction filter is identical to

QT ′(Ω) given by (3.73). Therefore, according to Proposition 3.2.3, this digital filter

enforces consistent resampling.
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3.3 De-interlacing Revisited

We follow the model discussed in Section 2.7 to analyze the de-interlacing system using

consistent resampling. Suppose the first order B-spline which is defined by

β1(x) =

{
1− |x|, 0 ≤ |x| < 1

0, otherwise
(3.76)

is chosen to be the interpolation function of the de-interlacing system. Then the existing

samples f [2k], the resampled samples f [2n+ 1] and the motion compensated f [2m+ a]

in Figure 2.12 are related by

f [2m+ a] =

(∑
k

f [2k]β1(x− 2k) +
∑
n

f [2n+ 1]β1(x− 2n− 1)

)∣∣∣∣∣
x=2m+a

(3.77)

for k, n,m ∈ N. Since β1(x) is non-zero only in interval x ∈ [−1, 1] and 0 < a ≤ 1,

β1(a+2(m−k)) and β1(a+2(n−k)−1) are zero for all k and n, except when k = n = m.

Hence (3.77) can be reduced to

f [2k + a] = (1− a)f [2k] + af [2k + 1] (3.78)

Rearranging, we have

f [2k + 1] =
1

a
f [2k + a]− 1

a
(1− a)f [2k] (3.79)

Expressing (3.79) in the matrix form, the input and output sequences of the de-interlacing

system are related by

[
f [2k]

f [2k + 1]

]
=

1

a

[
a 0

a− 1 1

]
︸ ︷︷ ︸

D

[
f [2k]

f [2k + a]

]
(3.80)

where the transfer matrix of the system is denoted by D. The stability of the resampling

system is measured by the condition number as discussed in Section 2.4.

α = DTD =
1

a2

[
a2 + (a− 1)2 a− 1

a− 1 1

]
(3.81)
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In this case, it can be equivalently measured as the square root of the ratio of the

maximum and minimum eigenvalues of the system matrix [8]. Thus

α =

√
λmax

λmin

=

√
1 + a2 − a+ (1− a)

√
1 + a2

1 + a2 − a− (1− a)
√

1 + a2
(3.82)

It can be easily verified that α is minimum when (1− a) = 0 or when a = 1.

We proceed to analyze the effect of the consistent resampling in de-interlacing system.

Denote the existing samples by f0,i = {f [2k]}k∈Z and the motion compensated samples

by f1,i = {f [2m + a]}m∈Z which are the inputs to the de-interlacing system. Let the

resampled output be f1,o = {f [2n+ 1]}n∈Z. The complete output consists of the samples

f0,o = f0,i = {f [2k]}k∈Z and the resampled sequence f1,o.

If the system is consistently resampling, then according to Definition 3.1.1 the output

and input must both approximate the same analog signal in the space of V β1
. That is,

∑
k

f [2k]β1(x− 2k) +
∑
m

f [2m+ a]β1(x− 2k − a)

=
∑
k

f [2k]β1(x− 2k) +
∑
n

f [2n+ 1]β1(x− 2n− 1) (3.83)

Taking samples of the signals on the left and right hand sides of (3.83) at x = 2l (even

positions) where k, l,m, n ∈ Z, we have

∑
k

f [2k]β1(2(l − k)) +
∑
m

f [2m+ a]β1(2(l −m)− a)

=
∑
k

f [2k]β1(2(l − k)) +
∑
n

f [2n+ 1]β1(2(l − n)− 1) (3.84)

This simplifies to

f [2l] + (1− a)f [2l + a] = f [2l] (3.85)

Similarly, sampling (3.83) at the odd positions where x = 2l + 1, we have

∑
k

f [2k]β1(2(l − k) + 1) +
∑
m

f [2m+ a]β1(2(l −m) + 1− a)

=
∑
k

f [2k]β1(2(l − k) + 1) +
∑
n

f [2n+ 1]β1(2(l − n)) (3.86)
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β1(x)
f0,i[m]

f1,i[m]
β1(x−a)

∑
k
δ(x−m)

q0[n]
f1,o[m]

q1[n]
f0,o[m]

∑
k
δ(x−m)

Correction Filter QInterpolation Filter H

Figure 3.4: De-interlacing system modeled as a multichannel system.

which simplifies to

af [2l + a] = f [2l + 1] (3.87)

Using (3.85) and (3.87), the de-interlacing system can be represented by the matrix

equation[
1 1− a
0 a

] [
f [2l]

f [2l + a]

]
=

[
1 0
0 1

] [
f [2l]

f [2l + 1]

]
(3.88)

The de-interlacing system can be modelled as a multichannel system. The number

of channels is two since there are two sets of input – existing samples f0,i and motion

compensated samples f1,i. This two-channel system is shown in Figure 3.4. The displace-

ment between the two channels are modelled by a corresponding displacement between

the interpolation functions φ1 = β(x) and φ2 = β(x− a). The first subscript denotes the

channel number, and the second subscript indicates the input and output.

Denote the multichannel interpolation filter and the multichannel correction filter

by H and Q respectively. The input-output relationship of this multichannel system is

therefore given by

Fo = QHFi (3.89)
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where

Fo =

[
f0,o

f1,o

]
Fi =

[
f0,i

f1,i

]
(3.90)

Using (3.89) and (3.90), (3.88) can be expressed as

[
1 1− a
0 a

]
Fi =

[
1 0
0 1

]
Fo

=

[
1 0
0 1

]
QHFi (3.91)

The resampling process can be described by the matrix

QH =

[
1 1− a
0 a

]
(3.92)

The stability of the resampling process is evaluated by the condition number α =√
λmax(A)
λmin(A)

where A is the matrix

A = (QH)TQH (3.93)

=

[
1 (1− a)

(1− a) a2 + (1− a)2

]
(3.94)

It can be verified that

α =

√
λmax(A)

λmin(A)
=

√
a2 − a+ 1 + |a− 1|√a2 + 1

a2 − a+ 1− |a− 1|√a2 + 1
(3.95)

α has the minimum value of 1 when λmax = λmin. This is achieved if a = 1. Therefore,

using consistent resampling, results consistent with intuition is obtained. This is not

achievable by applying the generalized sampling theory to de-interlacing as discussed

previously in Section 2.7.
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b a d

d j = c jTc +a jε

s(t) =∑
j

p(t− jTs− c jTc +a jε)

jTs +d j

s
PPM

Modulator

Pulse 

Shaper

Transmission

 Coder

Code 

Repetition 

Coder 

(Ns,1)

Figure 3.5: Transmission scheme for a PPM-UWB signal.

3.4 Applications

3.4.1 Demodulation of UWB Signals

We demonstrate the lossless property of consistent resampling by considering the problem

of demodulation of Impulse Radio UWB signals.

Time-hopping impulse radio has been proposed as a simple UWB wireless commu-

nication technique. It transmits a stream of pulse-position modulated (PPM) impulses

that are of very short (sub-nanosecond) duration [5,176]. A typical impulse radio trans-

mitter consists of (1) a channel coder to introduce redundancy, (2) a transmission coder

to scramble and code the sequence, (3) a PPM modulator to produce modulated pulses

and (4) a pulse shaper [177]. It is illustrated in Figure 3.5.

Given a binary sequence b = {. . . , b0, b1, . . . , bk, . . .} to be transmitted, the code rep-

etition coder produces a sequence a = {. . . , a0, a1, . . . , ak, . . .} where aj = {bj, bj, . . . , bj}
which is a repetition of the symbol bj Ns times. The transmission coder then adds an

integer valued code c = {. . . , c0, c1, . . . , ck, . . .} to the binary sequence a and generates

a new sequence d. Each pulse in d is modulated by the pulse-position modulator and

shaped by a pulse shaping function p(t). The signal s(t) that is transmitted is given by

s(t) =
∑
j

p(t− jTs − cjTc − ajε) (3.96)

where Ts is the symbol rate, Tc is the chip rate and cjTc + ε < Ts for all cj.
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Demodulating such signals involves an estimation of the position of each pulse [178–

180]. For our purposes, it suffices to combine the various time shifts into a single variable

tj. Thus

s(t) =
∑
j

p(t− tjε) (3.97)

Since the duration of the pulses are short and strictly non-overlapping [181,182], we can

assume that s(t) is a sequence of Diracs:

x(t) =
∑

k∈[1,2,··· ]

ckδ (t− tk) ∀tk ≥ 0 (3.98)

The pulses can be viewed as nonuniform samples of an underlying continuous signal.

Consistent resampling can be applied to convert this non-uniformly sampled sequence to

a uniformly resampled one. The original pulse positions can then be deduced from the

uniformly sampled sequence.

If we interpolate the stream of pulses in (3.98) using βnm(t), we have

f̂(t) =
∑
k

ckβ
n
m(t− tk) (3.99)

where βnm(t) is the dilated B-spline of order n, t ∈ R which is defined by

βnm(t) =
n+1∑
j=0

(−1)j

n!

(
n+ 1
j

)
·
(
t

m
+
n+ 1

2
− j
)n

µ

(
t

m
+
n+ 1

2
− j
)

(3.100)

and µ(x) is the step function where µ = 1 for x ≥ 0 and zero otherwise. It can be

observed from (3.100) that

βnm(t) = 0 when |t| ≥ (n+1)m
2

(3.101)

The dilation levelm is chosen such that the width of the support of βnm, B = [− (n+1)m
2

, (n+1)m
2

]

is smaller than the minimum distance between the pulses,

(n+ 1)m < min
k

(tk+1 − tk) (3.102)
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Therefore f̂ contains non-overlapping weighted shifts of βnm. Without loss of generality,

assume that m = 1.

The first derivative of the B-spline is given by [92]

dβn(t)

dt
= βn−1

(
t+

1

2

)
− βn−1

(
t− 1

2

)
(3.103)

Therefore the derivative of (3.99) is

df̂(t)

dt
=
∑
k

ck

[
βn−1

(
t+

1

2
− tk

)
−βn−1

(
t− 1

2
− tk

)]
(3.104)

We shall assume that n > 1.

Note that ck and tk are independent parameters of the signal. We shall show that

f̂(t) contains all the information we need to estimate ck and tk.

Proposition 3.4.1. Let the set Γ = {tc} contains all the roots of (3.104) such that

df̂(t)

dt

∣∣∣∣∣
tc

= 0 (3.105)

Then all the values of tk in (3.99) can be found in Γ.

Proof. When t = tk, (3.104) becomes

df̂(t)

dt
=
∑
k

ck

[
βn−1

(
1

2

)
− βn−1

(
−1

2

)]
(3.106)

Since B-splines are symmetric and βn−1(t) = βn−1(−t), we have df̂(t)/dt = 0 and there-

fore tk ∈ Γ.

Proposition 3.4.2. All tk in (3.99) can be identified from the set Γ as defined in Propo-

sition 3.4.1.

Proof. Let t = tc in (3.104). Since tk is unique and the pulses are strictly non-overlapping,

(3.105) implies that ∀k

βn−1

(
tc − tk +

1

2

)
= βn−1

(
tc − tk − 1

2

)
(3.107)

There are two possibilities to consider in solving this equation:
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(i) βn−1
(
tc − tk + 1

2

)
= βn−1

(
tc − tk − 1

2

) 6= 0;

(ii) βn−1
(
tc − tk + 1

2

)
= βn−1

(
tc − tk − 1

2

)
= 0

We consider the two cases inidvidually. In the first case, since βn−1 is symmetric,

(3.107) requires that

tc − tk +
1

2
= tc − tk − 1

2
or −

(
tc − tk − 1

2

)
(3.108)

This gives us

tc = tk (3.109)

In the second case, since βn−1
(
tc − tk + 1

2

)
= 0 and βn−1

(
tc − tk − 1

2

)
= 0, from

(3.101) we have∣∣∣∣tc − tk +
1

2

∣∣∣∣ ≥ n

2
(3.110)∣∣∣∣tc − tk − 1

2

∣∣∣∣ ≥ n

2
(3.111)

The inequality (3.110) is reduced to

tc − tk ≥ n

2
− 1

2
or tc − tk ≤ −n

2
− 1

2
(3.112)

Similary, (3.111) is equivalent to

tc − tk ≥ n

2
+

1

2
or tc − tk ≤ −n

2
+

1

2
(3.113)

Since n > 0, combining (3.112) and (3.113), we have

tc − tk ≥ n

2
+

1

2
(3.114)

or

tc − tk ≤ −n
2
− 1

2
(3.115)
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Therefore,

|tc − tk| ≥ n+ 1

2
(3.116)

Thus the set Γ contains tc = tk (from the first case) and |tc − tk| ≥ n+1
2

(from the

second case). To identify tk, notice that when t = tc and |tc − tk| ≥ n+1
2

, then f̂ = 0.

This is because in (3.99), if t = tc, then |tc − tk| ≥ n+1
2

and βn(tc − tk) = 0 for all k,

giving f̂ = 0. It is therefore possible to identify tk from the set Γ by checking the value

of f̂(tc). When f̂(tc) 6= 0, we have tk = tc.

The proof given above provides us with a method to determine tk. Once the values

of tk are available, the coefficients can be obtained by ck = f̂(t)|t=tk . All information of

x(t) are preserved and stored in the continuous signal f̂(t). x(t) can be reconstructed

from f̂(t).

Based on Proposition 3.4.2, we apply consistent resampling to the demodulation of

impulse radio signals. Consider x(t) to be a modulated discrete sequence c at positions

t, it approximates f̂(x) in the space generated by βn. Let a sequence gT satisfy∑
m

gT [m]βn
( x
T
−m

)
=
∑
k

ckβ
n(t− tk) (3.117)

i.e. gT is the consistently resampled sequence of x(t) in V βn . From Proposition 3.4.2,

f̂(t) contains all information required to reconstruct x(t). Since gT approximates f̂ , x(t)

can be obtained from gT as well.

Note that we have not yet discussed the conditions on the resampling interval T such

that consistent resampling can be achieved. We shall do so in Section 6.2.2. In the

mean time, we shall assume that the resampling rate is sufficient to achieve consistent

resampling.

We shall now use β2 as an example. Since the main purpose is to localize the pulses, we

shall assume that ck = 1 for all k. Let a sequence of pulses consists of eight distinct pulses

in a time segment of length 128. The pulses are generated randomly and their positions
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t1 t2 t3 t4 t5 t6 t7 t8

original 9 15 19 32 57 62 82 105

estimated 9 15 19 32 57 62 82 105

Table 3.1: The desired and the estimated values of tk.

t
1
t
2
t
3

t
4

t
5
t
6

t
7

t
8

Figure 3.6: The modulated signal f̂(t).

are shown in the first row of Table 3.1. The minimum distance between neighboring

pulses is D = t3− t2 = 4. Since the width of the support of β2 is 2
(

2+1
2

)
< 4, f̂ contains

non-overlapping modulated pulses, as shown in Figure 3.6.

The first order derivative of f̂(t) is shown in Figure 3.7. Note that the pulse locations

tk are at the zero-crossings of df̂/dt with the t axis. Using Proposition 3.4.2, tk can be

identified as those points where df̂/dt = 0 and f̂ 6= 0.

This process can also be performed in the discrete domain. The B-spline coefficients

g[k] of a signal can be obtained through a direct transform [87, 92, 93]. The process is

shown in Figure 3.8. Sampling f̂(t) at t = mk gives us ym[k] and the B-spline coefficients

are given by

g[k] = (bnm)−1 ∗ ym[k] (3.118)
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Figure 3.7: First order differentiation of f̂(t).

The filter (bnm)−1 is the inverse of the discrete B-spline filter with coefficients

bnm[k] = βn
(
k

m

)
(3.119)

The derivative is obtained by applying the difference operator d = δ(k) − δ(k − 1) to

{g[k]} followed by a shifted discrete B-spline filter cn−1
m , as shown in Figure 3.9, where

cn−1
m [k] = βn−1

(
k

m
+

1

2

)
(3.120)

Here, m is the sampling interval used in the system. The output h is the ideally sampled

sequence of df(t)
dt

at rate m. Thus,

h[k] =
df(t)

dt

∣∣∣∣
t=km

(3.121)

In this example, b2
m[k] = β2

(
k
m

)
and c1

m[k] = β1
(
k
m

+ 1
2

)
. Since c1

m is shifted from the

B-spline by 1
2
, choose m = 1

2
. The ideal samples y and the output sequence h obtained

are shown in Table 3.2 and Table 3.2 respectively. Based on Proposition 3.4.2, we choose

k such that y[k] 6= 0 and h[k] = 0. Since the sequence is sampled at m = 1
2
, the exact

locations are given by k/2. The results are shown in the second row of Table 3.1. It

shows that our method demodulates x(t) accurately.

To summarize, the steps to demodulate UWB signal in the digital domain is to
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x(t)
βn(t)

f̂ (t)

(bn
m)−1 [k]

ym[k]

∑
k
δ(t−mk)

g[k]

Figure 3.8: Direct Transform to obtain the B-spline coefficients of signal x(t).

g[k] h[k](
cn−1

m
)
[k]δ(k)−δ(k−1)

Figure 3.9: Differentiate a discrete sequence using B-spline..

k y[k]

16− 23 0.1239 0.4545 0.7438 0.6198 0.2314 0 0 0

24− 31 0 0 0 0 0.1239 0.4545 0.7438 0.6198

32− 39 0.2314 0 0 0 0.1239 0.4545 0.7438 0.6198

40− 47 0.2314 0 0 0 0 0 0 0

60− 67 0 0 0.1239 0.4545 0.7438 0.6198 0.2314 0

68− 75 0 0 0 0 0 0 0 0

112− 119 0.1239 0.4545 0.7438 0.6198 0.2314 0 0 0

120− 127 0 0 0.1239 0.4545 0.7438 0.6198 0.2314 0

156− 163 0 0 0 0 0 0 0.1239 0.4545

164− 171 0.7438 0.6198 0.2314 0 0 0 0 0

208− 215 0.1239 0.4545 0.7438 0.6198 0.2314 0 0 0

216− 223 0 0 0 0 0 0 0 0

Table 3.2: Value of y[k]. All other elements of y[k] are zero.
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k h[k]

16− 31 0 1 0 -1 0 0 0 0 0 0 0 0 0 1 0 -1

32− 47 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0

60− 75 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0

112− 127 0 1 0 -1 0 0 0 0 0 0 0 1 0 -1 0 0

156− 171 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 0

208− 223 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.3: Value of h[k]. All other elements of h[k] are zero.

(i) Find the B-spline coefficient of the sequences;

(ii) differentiate the B-spline coefficients;

(iii) Compare two discrete sequences

Assume that the number of pulses of the UWB signal is N. The first step is to linear pro-

cess the sequence. The filter length depends on the choice of B-spline function. However

the complexity of this step is O(N) since only linear processing is involved. Similarly, to

differentiate the sequence is of complexity O(N).

The major part is the third step which performs a comparison between 2 discrete

sequence. The size of the sequence depends on the sparsity of the original UWB sequence.

In our case, there are 8 pulses in the period of 124. The minimum distance between

the neighboring pulses is 4 and the resampling rate is 2Hz. Therefore the size of the

sequence is N = 2 × 128 = 256. To compare two sequence of size N , the complexity

is at most O(N2). An in-depth analysis shows that the comparison is carried out to

locate the positions in the sequence such that one is zero (h[k] = 0) and the other is not

(y[k] 6= 0), it would simply result in worst case scenario of linear complexity. Therefore,

the complexity of the demodulation algorithm is O(N), although the factor depends on

the order of the B-spline and the sparsity of the sequence and can be large.

There is one limitation of our algorithm that it is sensitive to noise. In real life, the

UWB signals are inevitably corrupted by noise and our method will result in false positive

78



Chapter 3. Noiseless Consistent Resampling

pulses. A possible solution is that the UWB signal is first to go through a de-noising

process. An effective way to do so is to correlate the UWB signal with its pulse function.

The output signal is free of Gaussian-like white noise and our algorithm can be used to

demodulate the sequence.

3.4.2 Image Resizing

Now we consider the application of consistent resampling to image resizing. Usually, the

quality of an image will degrade when it is zoomed in and out several times. In our

experiments, an image is either enlarged by a factor of 1.25 or reduced to 0.8 of its size.

These factors are chosen arbitrarily and other factors could have been chosen instead.

Four different resampling techniques are considered. They are

(i) classic interpolation

(ii) oblique interpolation [170]

(iii) quasi interpolation [171]

(iv) consistent resampling

In order to obtain a fair comparison, the interpolating function used by all four techniques

is the first order B-spline β1. Recall that

β1(x) =

{
1− |x|, |x| ≤ 1

0, otherwise
(3.122)

Since β1 is a Nyquist function, the B-spline coefficients are the same as the samples

obtained by ideal sampling.

The function ‘imresize’ from the image processing toolbox of MATLAB is used to

obtain the results of classic resampling. This function treats the 2D image as separable

and operations are carried out along each axis. The ‘METHOD’ is set to be ‘bilinear’ for
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interpolation using β1. For a resizing factor of 1.25, the resampling interval is T ′ = 0.8.

Let I denote the input image. Then the output image, denoted as K, is given by

K[m] =
∑
i

I[i]β1(x− i)|x−mT ′

=
∑
i

I[i]β1(0.8m− i) (3.123)

where i,m ∈ Z. Since β1(x) is zero for |x| ≥ 1, only the samples I[i] whose indices fall

in the range |0.8m− i| < 1 are used to obtain K[m]. Thus the possible values of i are

0.8m− 1 < i < 0.8m+ 1

⇒ i = b0.8mc or i = d0.8me (3.124)

where bxc represents the largest integer not greater than x and dxe is the smallest integer

not less than x. So for x /∈ Z, bxc+ 1 = dxe. Thus when 0.8m is not an integer, (3.123)

becomes

K[m] = I [b0.8mc] β1(b0.8mc − 0.8m) + I [d0.8me] β1 (d0.8me − 0.8m)

= I [b0.8mc] (d0.8me − 0.8m) + I [d0.8me] (0.8m− b0.8mc) (3.125)

When 0.8m is an integer, we only need to consider i = 0.8m and (3.123) is reduced to

K[m] = I[0.8m] (3.126)

Since the classic interpolation method does not require any correction filter, Q(z) = 1.

Oblique interpolation has been described in Section 2.4. The correction filter required

is specified in (2.102). Since we are now using β1 as the interpolating function, n = 1.

From Table 2.1 we have

B1(z) = 1 (3.127)

B2(z) =
1

8

(
z + 6 + z−1

)
(3.128)
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Substituting (3.127) into (2.102), we have the transfer function of the correction filter

which is given by

Q(z) =
8

z + 6 + z−1
(3.129)

For quasi interpolation, as discussed in Section 2.6.3, the correction filter Q(z) is

designed such that the effective sampling filter approximates the dual function of the

interpolation filter. In this case, the sampling function is the Dirac impulse δ(x) and the

sampling interval T = 1. From (2.65) the effective sampling function is given by

ψe(x) =
∑
k

q[k]δ (x− k) (3.130)

with the Fourier transform

Ψe(Ω) = Q(ω) (3.131)

where ω = ΩT = Ω. When the interpolation function is β1(x), the order of approximation

is L = 2 and N = L+ 1 = 3, (2.108) amounts to requiring

Q(ω)−B1
d(Ω) = O(Ω3)

⇒ Q(ω) = B1
d(Ω) +O(Ω3) (3.132)

where B1
d(Ω) is the frequency response of the dual function of β1(x). From (2.20), the

dual function β1
d is approximated by

B1
d(Ω) =

B1(Ω)

A1
β(ω)

=
1

1− 2
3
sin2

(
Ω
2

) (3.133)

Using Taylor’s expansion on A1
β(ω), we have

B1
d(Ω) =

1

1− 1
12

Ω2 +O(Ω4)
(3.134)
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Let P (ω) = Q−1(ω). From (3.132),

P (ω) =
1

B1
d(Ω) +O(Ω3)

=
1

B1
d(Ω)

+

(
1

B1
d(Ω) +O(Ω3)

− 1

B1
d(Ω)

)
=

1

B1
d(Ω)

+
O(Ω3)

B1
d(Ω)[B1

d(Ω) +O(Ω3)]
(3.135)

When Ω→ 0, B1
d(Ω)→ 1 and B1

d(Ω) +O(Ω3)→ 1. Therefore

P (ω) =
1

B1
d(Ω)

+O(Ω3) (3.136)

Substituting (3.134) into this equation, we have

P (ω) = 1− 1

12
Ω2 +O(Ω3) +O(Ω4) (3.137)

When Ω→ 0, O(Ω4) = O(Ω3). Thus the equation is reduced to

P (ω) = 1− 1

12
Ω2 +O(Ω3)

= 1− 1

12
ω2 +O(ω3) (3.138)

since ω = Ω when T = 1. Ignoring the higher order terms and assuming that P is

symmetrical up to order 1, let

P (ω) = a+ b(ejω + e−jω) = a+ 2b cos(ω) (3.139)

Using Taylor’s expansion for the cosine function, we have

P (ω) = a+ 2b(1− ω2

2
+O(ω4))

= (a+ 2b)− bω2 +O(ω4) (3.140)

Compare with (3.138), we obtain b = 1
12

and a = 5
6
. Therefore,

Q(ω) =
1

P (ω)
=

12

ejω + 10 + e−jω
(3.141)
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with the corresponding transfer function in z domain given by

Q(z) =
12

z + 10 + z−1
(3.142)

The correction filter for consistent resampling is obtained by (3.36) in Proposition

(3.2.1). It is implemented by sampling the continuous correction filter q(x) defined by

Proposition 3.2.3 at rate T ′. Since ψ(x) = δ(x) and Ψ(Ω) = 1, from (3.58), Q(Ω) =

Φd(Ω). The frequency response of the dual function is specified in (2.20),

B1
d(Ω) =

B1(Ω)

Aβ1(ω)
(3.143)

From (2.34),

B1(Ω) = sinc2

(
Ω

2

)
(3.144)

A1
β(ω) can be looked up in Table 2.1. With ω = Ω,

Q(Ω) = B1
d(Ω) =

sinc2
(

Ω
2

)
1− 2

3
sin2

(
Ω
2

) (3.145)

To sample q(x) at T ′, the frequency response of the sequence qT ′ , Q(ω) is related to Q(Ω)

by setting Ω = ω
T ′

, therefore

Q(ω) = Q(Ω)|Ω=ω/T ′

=
sinc2

(
ω

2T ′

)
1− 2

3
sin2

(
ω

2T ′

) (3.146)

To find the impulse response q[n] of the digital correction filter whose response satisfies

(3.146), we adopt the same approach used in quasi interpolation. Note that the length

of the correction filters in both oblique and quasi interpolation are IIR filters of length 3.

In order to compare the performance at the same computational cost, we set the length

of q[n] to be 3 such that Q(ω) = [a+ b(ejω + e−jω)−1] for some constants a and b. From

Taylor’s expression,

sinc(x) =
sinc(x)

x
=
x− x3

3!
+ x5

5!
− · · ·

x

= 1− x2

3!
+
x4

5!
− · · · (3.147)
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Table 3.4: The correction filters and their frequency responses.

Resampling Technique Q(z) Q(ω)

Classic Resampling 1 1

Oblique Resampling
[

1
4
z−1 + 3

4
+ 1

4
z
]−1 [

3
4

+ 1
2

cos(ω)
]−1

Quasi Resampling
[

1
12
z−1 + 5

6
+ 1

12
z1
]−1 [

10
12

+ 1
12

cos(ω)
]−1

Consistent Resampling (Zoom in)
[

4
75
z + 67

75
+ 4

75
z−1
]−1 [

67
75

+ 8
75

cos(ω)
]−1

Consistent Resampling (Zoom out)
[

25
592
z + 542

592
+ 25

592
z−1
]−1 [

542
592

+ 25
296

cos(ω)
]−1

When T ′ = 0.8, Q(ω) can be approximated by

Q(ω) =
1− (ω/2T ′)2

3!
+ (ω/2T ′)4

5!
− · · ·

1− 2
3

[
ω/2T ′ − (ω/2T ′)3

3!
+ · · ·

]2

=
1

1− 4
75
ω2 +O(ω4)

(3.148)

This yields b = 4
75

and a = 67
75

. Q(ω) is given by

Q(ω) =
75/4

ejω + 67/4 + e−jω
(3.149)

with a corresponding z domain transfer function

Q(z) =
75/4

z + 67/4 + z−1
(3.150)

For zooming out, T = 1 and T ′ = 1.25. The correction filter has a frequency response

given by

Q(ω) =
592/25

ejω + 542/25 + e−jω
(3.151)

and a corresponding transfer function

Q(z) =
592/25

z + 542/25 + z−1
(3.152)

The digital correction filters used in each resampling method and the corresponding

frequency responses are listed in Table 3.4. Note that apart from classic interpolation
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methods, all other techniques involve IIR filters with symmetric structures. In [87], a

fast implementation is developed for such filters. A filter with symmetric IIR form can

be decomposed as

Q(z) =
A

z +B + z−1
(3.153)

= A

(
1

1− z1z−1

)( −z1

1− z1z

)
(3.154)

where z1 is the root of z2 +B+1 = 0 with the constraint |z1| < 1. The filtering processing

is shown in Figure 3.10, where the input and output are related by

c+[k] = s[k] + z1c
+[k − 1] k = 1, · · · , N − 1

c−[k] = z1 (c−[k + 1]− c+[k]]) k = N − 2, · · · , 0

For an image of size M ×N , the additional computational requirement due to the extra

correction filtering stage is 4MN compared with classic techniques.

The four test images used in our experiment are shown in Figure 3.11. They are:

(i) the ”Rays” image which is an artificial image with high frequency components;

(ii) the ”Lena” image which is a portrait;

(iii) the ”Peppers” image which consists of natural objects; and

(iv) the ”CT-scanned Head” image which is a medical image where the details are of

great importance.

The images are each enlarged by a factor of 1.25 eight consecutive times. Subsequently,

the enlarged image is reduced to 0.8 of its size eight consecutive times so the resulting

image has the same size as the original. The pixel signal-to-noise ratio (PSNR) of the

resulting images defined by (2.97) are shown in Table 3.5. Figures 3.12 to 3.15 show the

resulting images. Overall, consistent resampling produces the best visual results and the

highest PSNR among the four techniques considered.
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1
1− z1z−1

−z1

1− z1z
S(z)

C+(z)
C−(z)

Figure 3.10: Causal and anti-causal implementation of IIR filter.

Table 3.5: PSNR for image zoomed out by 1.25 for 8 consecutive times, followed by
zoomed in by 0.8 for 8 consecutive times.

PSNR Rays Lena Pepper Head

Classic 17.24 59.20 54.17 42.59

Oblique 24.71 61.21 54.62 50.58

Quasi 23.87 65.93 55.25 53.20

Consistent 29.96 66.01 56.17 55.64

When an image is zoomed in and out several times, artifacts are created due to

aliasing and blurring, especially for the high frequency components. The Rays image in

Figure 3.11.a contains mainly high frequency components. Using classic interpolation,

the details are completely missing near the lower left corner (see Figure 3.12.a). This

is because, according to (3.125), the value of each pixel in the resultant image K[m]

is obtained by the weighted average of its two neighboring pixels in the original image.

Since the sum of these weights is 1, the intensity (sum of all pixel values) of the image

does not change. Constant intensity plus the averaging effect ultimately leads to the

disappearance of the details after a few resizing operations.

The details better preserved by oblique interpolation can be observed from Fig-

ure 3.12.b. However, the effect of overshoot, i.e. increased contrast, is particularly

evident near the borders of the image. At ω = 0, the sum of the coefficients of the

correction filter given by (3.129) is

|Q| = 3

4
+

1

2
> 1 (3.155)

Thus the pixel values in I are magnified. The dark gray pixels with values near the
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3.11.a: Rays 3.11.b: Lena

3.11.c: Peppers 3.11.d: Head

Figure 3.11: The original test images.
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maximum in I are turned into black pixels in K. Similarly, the light pixels with values

near zero in I are turned into white pixels in K. This leads to the disappearance of the

check pattern in the image.

The quasi interpolation method does not preserve the high frequency components

as well as oblique interpolation. As shown in Figure 3.12.c, on one hand, details at

the left lower corner has partly disappeared and the check pattern is invisible. On the

other hand, the right upper corner which consists of lower high frequency components

are better preserved. The blurred area is significant less than that obtained by classic

interpolation.

Consistent resampling outperforms the other three techniques in preserving high fre-

quency components. As shown in Figure 3.12.d, the check pattern is well recognizable.

The contrast and intensity of the image is unchanged as well. Similar conclusion can

be drawn by comparing the high frequency components in the other test images. For

example, in Lena, the high frequency components are present in the hair and the edge

of the hat, as shown in Figure 3.13. In Figure 3.14, the lower middle part of the image

and the nose have particularly high frequency components.

For images like Peppers which consist mainly of low frequency components, the dif-

ferences between the four methods are small as shown in Figure 3.15.

Note that a 3-tap correction filter is used for consistent resampling in order to make

the comparisons fair. If a higher order filter is used, then the high frequency components

of the images will be even better preserved by consistent resampling. Figure 3.16 shows

the result obtained by using a 5-tap correction filter on the Rays image. The resultant

PSNR is 43.22dB which more than doubled the improvement made by a 3-tap filter over

the classic technique.

88



Chapter 3. Noiseless Consistent Resampling

3.12.a: Classic Interpolation 3.12.b: Oblique Interpolation

3.12.c: Quasi Interpolation 3.12.d: Consistent Resampling

Figure 3.12: The Rays image after eight consecutive enlargements followed by eight
consecutive reductions.

89



Chapter 3. Noiseless Consistent Resampling

3.13.a: Classic Interpolation 3.13.b: Oblique Interpolation

3.13.c: Quasi Interpolation 3.13.d: Consistent Resampling

Figure 3.13: The Lena image after eight consecutive enlargements followed by eight
consecutive reductions.
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3.14.a: Classic Interpolation 3.14.b: Oblique Interpolation

3.14.c: Quasi Interpolation 3.14.d: Consistent Resampling

Figure 3.14: The Head image after eight consecutive enlargements followed by eight
consecutive reductions.

91



Chapter 3. Noiseless Consistent Resampling

3.15.a: Classic Interpolation 3.15.b: Oblique Interpolation

3.15.c: Quasi Interpolation 3.15.d: Consistent Resampling

Figure 3.15: The Peppers image after eight consecutive enlargements followed by eight
consecutive reductions.
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Figure 3.16: Using a 5th order correction filter on the Rays image.

3.4.3 Image Rotation

Image rotation by an angle θ anti-clockwise is usually performed by multiplying the image

with the rotation matrix

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
(3.156)

and then resampled. A typical implementation of the procedure is found in the function

“imrotate” in MATLAB. Our experiments here involve comparing the outputs after ro-

tating an image several times using this function and those produced using consistent

resampling.

The conventional approach to image rotation is non-separable and therefore is a 2-D

process. Hence the correction filter should also be a 2-D filter. Unfortunately the filter

implementation becomes more complex as the filter order becomes higher. Fortunately,

(3.156) can be factorized as

R(θ) = ABA =

[
1 − tan θ

2

0 1

] [
1 0

sin θ 1

] [
1 − tan θ

2

0 1

]
(3.157)
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Thus the multiplication with the rotation matrix R(θ) can be separated into three se-

quential steps – multiplication by matrices A, B and A. For a pixel at coordinates (m,n)

in the original image, after the first step its new coordinates (m′, n′) are given by[
m′

n′

]
= A

[
m
n

]
=

[
1 − tan θ

2

0 1

] [
m
n

]
=

[
m− n tan θ

2

n

]
(3.158)

That is, the row index m is translated by −n tan θ/2 while the column index n is un-

changed. This is a 1-D process. Similarly, in the second step, multiplication by matrix

B leaves the row index unchanged while the column index is translated by m sin θ. Fi-

nally the last step is similar to the first. Thus the whole transformation process can be

decomposed into a sequence of 1-D translations, as shown in Figure 3.17.

Existing methods for rotation based on this three-step process are focussed on the

design appropriate translation algorithms [90, 169, 183]. We interpret the decomposed

rotation process from a new angle. Assume that the size of the image is R × C pixels

as shown in Figure 3.17.a. After the first step, each column is translated and so the

image becomes what is shown in Figure 3.17.b. Therefore, each row in the original

image is effectively resized by a the factor of L1 = C ′/C =
√

1 + tan2 θ/2. Assuming

that the sampling period of the original signal is T = 1, the resampling period is given

by T ′ = 1/L1. Similarly, in the second step each column is resized from R1 to R′1

as shown in Figure 3.17.c. The resizing factor is L2 = R′1/R1 =
√

1 + sin2 θ and the

corresponding resampling period is T ′ = 1/L2. In the third step, the columns of the

image in Figure 3.17.c is translated in the same way as in the first step. The resizing

factor is L1 = C ′2/C2.

Since the rotation process has now been formulated as a sequence of resizing opera-

tions, we can make use of our consistent resampling system to perform the rotation. For

a given interpolation function φ and the parameters T and T ′, a consistent correction
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(1, 1)

(R, C)

R

C

3.17.a: Original Figure

R
1

Ctanθ/2
C’

C

3.17.b: Step 1: Column-wise Trans-
lation

R
1
sinθ

R
1

R
1
’

C
2

3.17.c: Step 2: Row-wise Transla-
tion

C
2

C
2
tanθ/2C

2
’

R
3

3.17.d: Step 3: Column-wise Trans-
lation

Figure 3.17: Illustration of decomposed rotation process.
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filter can be designed in a similar way to what we have done in Section 3.4.2. Note that

resizing factors L1 and L2 are functions of θ only and does not depend on the size of

the image, the correction filters are applicable to images of any size. The procedure for

rotating an image I of size R× C anti-clockwise by θ are as follows.

(i) Create a matrix K1 of size R1× C where R1 = R + C tan θ/2 since the size of the

image is changed to R1 × C after the first step (see Figure 3.17.b).

(ii) A pixel I(m,n) in the original image is mapped to K1(m′, n′) by[
m′

n′

]
=

[
m− n tan θ

2

n

]
(3.159)

⇒
[
m
n

]
=

[
m′ + n′ tan θ

2

n′

]
(3.160)

for m′ ∈ [1, R1], n′ ∈ [1, C]. For out of bound indices where

m = m′ + n′ tan θ/2− C tan θ/2 < 1

let K1(m′, n′) = 0. Note that m can be non-integer valued and I[m−C tan θ/2, n]

is obtained through interpolation.

(iii) Design a consistent correction filter q1 for interpolation function φ, sampling pe-

riod T = 1 and resampling period T ′ = 1/L1 using the procedure described in

Section 3.4.2. Apply q1 to each row of K1.

(iv) Create a matrix K2 of size R1 × C2 for the resulting image after step 2 shown in

Figure 3.17.c with C2 = C1 +R1 sin θ.

(v) Each pixel K1(m′, n′) is mapped to K2[m′′, n′′] by[
m′′

n′′

]
= B

[
m′

n′

]
=

[
m′

m′ sin θ + n′

]
⇒

[
m′

n′

]
=

[
m′′

n′′ −m′′ sin θ
]

(3.161)

for m′′ ∈ [1, R1] and n′′ ∈ [1, C2]. Similarly, for non-integer values of n′, K1(m′, n′)

is obtained through interpolation.
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Table 3.6: PSNR (dB) after 12 rotations of 30◦.

Lenna Barbara Baboon Boat Camera

Classic Resampling 57.9 45.97 39.55 49.83 46.82

Consistent Resampling 64.53 54.16 49.07 60.08 51.26

(vi) Design the consistent correction filter q2 with parameters φ, T = 1 and T ′ = 1/L2.

Apply q2 to each column of K2.

(vii) Repeat (i) to (iii) on K2 for the third rotation step to obtain an image as shown in

Figure 3.17.d. The final image is of size R3 × C2, where R3 = R1 + C2 tan θ/2.

Five different images – Lena, Barbara, Baboon, Boat and Camera, are each rotated

30◦ anti-clockwise twelve times. Figure 3.18 shows the results obtained using the con-

ventional method for rotation as implemented by the “imrotate” function in MATLAB.

The interpolation method chosen is ‘bilinear’. For a fair comparison, we use β1 as the

interpolation function for consistent resampling. Figure 3.19 shows the results obtained

using correction filtering. It is obvious that the fine details of the image are highly pre-

served since consistent resampling does not assume a bandlimited signal. PSNR values

are shown in Table 3.6. In each case, consistent resampling produces better results.

The consistent resampling approach to image resizing and rotation is simple and

flexible. It simply involves computing the resampling factor and then obtaining the

correction filter based on the interpolator chosen. The computational complexity grows

linearly with the size of the image and the order of the correction filter.

3.4.4 On comparison of Consistent Resampling Theory and Other
Techniques

In Section 3.4.2 and Section 3.4.3 we compared Quasi Interpolation, Oblique Interpo-

lation and our Consistent resampling methods experimentally. The Quasi interpolation

method, as discussed in Section 2.6.3, considers how a continuous signal is sampled and
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3.18.a: Baboon 3.18.b: Barabra

3.18.c: Boat 3.18.d: Lena

Figure 3.18: After twelve rotations of 30◦ by classic resampling.
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3.19.a: Baboon 3.19.b: Barbara

3.19.c: Boad 3.19.d: Lena

Figure 3.19: After twelve rotations of 30◦ by consistent resampling.
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reconstructed. In case of image resizing, it ensures an arbitrary signal f(x) can be op-

timally reconstructed using the interpolation function. In other words, it considers only

the first step of the resampling process.

The Oblique method as presented in Section2.6.2 approaches image resizing by op-

timizing the sampling of f̃(x), which is reconstructed from the input sequence. It is

equivalent to consider only the second step of the resampling process. Both of the meth-

ods are constrained by the fact that they are derivations of the consistent sampling theory

and only one sample rate can exist in the system.

The consistent resampling theory, on the other hand, is designed for resampling sys-

tem and inherently allows different sampling rates residing in the system. It considers

both steps of a resampling process and targets to optimize the whole resampling per-

formance. This explains the improvement of performance achieved by our consistent

resampling theory.

It is noteworthy that in most image and video signals, low frequency components

play a dominant part. Still consistent resampling theory outperform current resampling

technologies as observed from Table 3.5 and Table 3.6. It can be concluded that the

consistent resampling theory is ideal to process signals of low frequency response as

well. It is because the ideal interpolation for low bandwidth signals, sinc is never used

in practical applications due to its slow convergent property. Instead, other function

of local support are used. The consistent resampling theory tackle the non-idealness

of the interpolation function by deploying the principle of consistency. Therefore, the

consistent resampling theory provides an optimal solution to resample signals of low or

high frequency component.

3.5 Summary

In this chapter, the theory of consistent resampling is developed for any pair of synthesis

and resampling filters. There is no restriction that the signals be bandlimited. Consistent
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resampling is achieved by a digital correction filter. Consistent resampling is shown to

be optimal in the sense that the input sequence can be obtained from the output. We

showed that when it is applied to the video de-interlacing problem, results consistent with

intuition is obtained. This is not achievable through the generalized sampling theory

proposed earlier. The practical usefulness of this theory is demonstrated by applying it

to UWB impulse radio demodulation, image resizing and image rotation.
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Performance Metric for Sequences
in `2

As discussed in Chapter 3, consistent resampling is optimal in the sense that the input

sequence can be reconstructed from the output, i.e. the process is lossless. Unfortunately,

the consistent resampling is not achievable when, for instance, noise is present in the

resampling systems. This motivated us to look for a metric to quantitatively assess the

performance of resampling systems. Furthermore, a suitable metric can be used to guide

the design of resampling system for specific purposes. Given the diversity of applications

of resampling, it is crucial to properly measure the performance of resampling system

effectively so that the correction filters can be designed accordingly. It is also desirable

to have a unified performance metric so that different resampling algorithms can be

compared.

While the closeness of two continuous signals can be easily evaluated by the L2 norm,

it is not as simple when two discrete signals are involved. One may be tempted to use the

`2 norm as a distance measure. There are two main reasons why this is not an appropriate

measure. First, we require that the sampling intervals of the two signals be the same.

In other words, they must belong to the same space [V ]T . Second, the samples may be

obtained by using different sampling functions or sampled at different sets of points in

the domain. A direct comparison between the sample values is therefore not a proper

measure of the closeness of two sequences in general.
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Various indirect measures have been used which are specific to the particular applica-

tion to which the resampling system is applied. For example, in image processing, PSNR

is commonly used. Thus it is difficult to compare resampling algorithms developed for

different applications.

In this chapter we propose a new distance metric to compare discrete signals in `2 in

a Mean Square Error (MSE) sense within the framework of resampling. The metric is

based on the theory for consistent resampling developed in Chapter 3. The properties of

the distance metric will be established.

4.1 The Distance Metric and Its Properties

Let fT and f ′T ′ be the input and output sequences of a resampling system and φ be the

synthesis (interpolating) function. Then consistent resampling requires that

f̃(x) =
∑
n

fT [n]φ
( x
T
− n

)
(4.1)

and

f̂(x) =
∑
m

f̃T ′ [m]φ
( x
T ′
−m

)
(4.2)

be the same. When resampling is not completely consistent, the output f ′T ′ will be

different from the consistently resampled output fT ′ . The distance between these two

discrete signals can be obtained by the `2 norm

d1 = ‖f ′T ′ − fT ′‖`2 (4.3)

Since φ is a generating function for the space V φ, fT ′ uniquely approximate f̂(x) in V φ
T ′ .

The signal reconstructed from the non-consistently resampled output f ′T ′ is given by

f̂ ′(x) =
∑
m

f ′T ′ [m]φ
( x
T ′
−m

)
(4.4)
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and f̂ ′(x) 6= f̂(x). The distance between these two signals is measured by the L2 norm

d2, from Schwartz Inequality,

d2 = ‖f̂ ′(x)− f̂(x)‖L2 (4.5)

=

∥∥∥∥∥∑
m

f ′T ′ [m]φ
( x
T ′
−m

)
−
∑
m

f̃T ′ [m]φ
( x
T ′
−m

)∥∥∥∥∥
L2

≤ d1

∥∥∥φ( x
T ′

)∥∥∥
L2

(4.6)

Since
∥∥φ ( x

T ′

)∥∥
L2 is non-negative, d2 is a monotonically increasing function of d1. Thus

the smaller d1 is, the smaller its corresponding d2. Replace f̂(x) by f̃(x) in (4.5), we have

d3 =
∥∥∥f̂ ′(x)− f̃(x)

∥∥∥
L2

=

∥∥∥∥∥∑
m

f ′T ′ [m]φ
( x
T ′
−m

)
−
∑
n

fT [n]φ
( x
T
− n

)∥∥∥∥∥
L2

(4.7)

It measures the distance between the reconstructed signals using the input and output

of resampling.

Definition 4.1.1. For a resampling system shown in Figure 3.1 with finite energy input

and output signals fT [n], f̃T ′ [m] ∈ l2. The distance between the input and output with

respect to the synthesis function φ(x) ∈ L2(R) is defined by

dφ

(
fT , f̃T ′

)
=

∥∥∥∥∥∑
n

fT [n]φ
( x
T
− n

)
−
∑
m

f̃T ′ [m]φ
( x
T ′
−m

)∥∥∥∥∥
L2

(4.8)

We shall show that this distance measure satisfies the basic requirements of a distance

metric. It also possesses other appealing properties.

4.1.1 Positiveness

Since fT , f̃T ′ ∈ l2 and φ(x) ∈ L2, by the Schwarz inequality, the signals f̃(x) and f̂(x)

are also continuous and belong to L2. From (4.8), dφ(fT , f̃T ′) = ‖f̃ − f̂‖L2 . Since the L2

norm is always non-negative, so is dφ.
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However, note that although the L2 norm defines a metric space, dφ(fT , f̃T ′) is a

pseudo metric. By that we mean that even when dφ(fT , f̃T ′) = 0, the discrete sequences

fT and f̃T ′ are not necessarily element-by-element equal. A zero distance only implies

that fT and f̃T ′ appear the same to the properly dilated interpolating function. From the

definition of consistent resampling, zero distance means that one sequence is a consistently

resampled version of the other. The uniqueness of such sequence in VT ′ is guaranteed by

the assumption that φ satisfies the Riesz condition. For every fT there exists one and

only one f̃T ′ such that dφ(fT , f̃T ′) = 0 for given interpolation function φ.

4.1.2 Symmetry

It is obvious that dφ(fT , f̃T ′) = dφ(f̃T ′ , fT ) and the metric is symmetrical with respect to its

arguments. When we have consistent resampling, dφ(fT , f̃T ′) = 0 and so dφ(f̃T ′ , fT ) = 0.

Thus f̃T ′ is a consistently resampled version of fT and vice versa. That is, we can obtain

one sequence from the other.

When consistent resampling is not achieved, dϕ(fT , f̃T ′) 6= 0. A quantitative bound

can be derived for the distance between f̃T ′ and its resampled sequence at rate T .

Proposition 4.1.2. Let

f̃T ′ [m] = f̃(x)|x=mT ′ (4.9)

where

f̃(x) =
∑
n

fT [n]φ
( x
T
− n

)
(4.10)

for some discrete signal fT ∈ `2 and φ ∈ L2. Also, let

f ′T [k] = f̂(x)|x=kT (4.11)

where

f̂(x) =
∑
m

f̃T ′ [m]φ
( x
T ′
−m

)
(4.12)
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Then ∣∣∣dφ(̃fT ′ , f
′
T )− dφ(fT , f̃T ′)

∣∣∣ ≤ D

∣∣∣∣∣
∑

m,s

[
δ[m− k]− φ ( sT

T ′
−m)]∑

n,m

[
δ[n−m]− φ (mT ′

T
− n)]

∣∣∣∣∣ (4.13)

for dφ(fT , f̃T ′) = D.

Proof. From (4.8),

dφ(f̃T ′ , f
′
T ) =

∥∥∥∥∥∑
n

f̃T ′ [m]φ
( x
T ′
−m

)
−
∑
k

f ′T [k]φ
( x
T
− k
)∥∥∥∥∥

L2

(4.14)

Substitute (4.11) and (4.12) into (4.14), we have

dφ(f̃T ′ , f
′
T ) =

∥∥∥∥∥f̂(x)−
∑
k

f̂(kT )φ
( x
T
− k
)∥∥∥∥∥

L2

(4.15)

Using the Schwarz inequality,

dφ(f̃T ′ , f
′
T ) ≤ ‖f̂(x)‖L2

∣∣∣∣∣∑
m,s

[
δ[m− k]− φ

(
kT

T ′
−m

)]∣∣∣∣∣ (4.16)

Similarly,

dφ(fT , f̃T ′) = D (4.17)

≤
∥∥∥f̃(x)

∥∥∥
L2

∣∣∣∣∣∑
n,m

[
δ[n−m]− φ

(
mT ′

T
− n

)]∣∣∣∣∣ (4.18)

Thus ∥∥∥f̃(x)
∥∥∥
L2
≥ D∣∣∣∑n,m

[
δ[n−m]− φ (mT ′

T
− n)]∣∣∣ (4.19)

Since
∥∥∥f̃(x)− f̂(x)

∥∥∥
L2

= D,
∥∥∥f̂(x)

∥∥∥
L2

is bounded by∣∣∣D − ∥∥∥f̃(x)
∥∥∥
L2

∣∣∣ ≤ ∥∥∥f̂(x)
∥∥∥
L2
≤ D +

∥∥∥f̃(x)
∥∥∥
L2

(4.20)

Combining (4.19) and (4.20), we have

∥∥∥f̂(x)
∥∥∥
L2
≤ D

1 +
1∣∣∣∑n,m

[
δ[n−m]− φ (mT ′

T
− n)]∣∣∣

 (4.21)

Substituting (4.21) into (4.16) and we obtain (4.13).
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Note that the bound in (4.13) is tight. We shall explore this further in Section 4.2.

4.1.3 Triangle Inequality

Proposition 4.1.3. dφ(fT , fT ′′) + dϕ(fT ′′ , f̃T ′) ≥ dφ(fT , f̃T ′) for fT , fT ′ , fT ′′ ∈ l2.

Proof. From the definition (4.8),

dφ(fT , fT ′′) + dφ(fT ′′ , f̃T ′)

=

∥∥∥∥∥∑
n

fT [n]φ
( x
T
− n

)
−
∑
k

fT ′′ [k]φ
( x
T ′′
− k
)∥∥∥∥∥

L2

+

∥∥∥∥∥∑
n

fT ′′ [s]φ
( x
T ′′
− k
)
−
∑
m

fT ′ [m]φ
( x
T ′
−m

)∥∥∥∥∥
L2

From the Schwarz inequality,

dφ(fT , fT ′′) + dφ(fT ′′ , f̃T ′)

≤
∥∥∥∥∥∑

n

fT [n]φ
( x
T
− n

)
−
∑
n

fT ′′ [s]φ
( x
T ′′
− k
)

+
∑
n

fT ′′ [k]φ
( x
T ′′
− k
)
−
∑
m

fT ′ [m]φ
( x
T ′
−m

)∥∥∥∥∥
L2

=

∥∥∥∥∥∑
n

fT [n]φ
( x
T
− n

)
−
∑
m

fT ′ [m]φ
( x
T ′
−m

)∥∥∥∥∥
L2

= dφ(fT , f̃T ′) (4.22)

Equality holds when fT , f̃T ′ and f̃T ′ , fT ′′ are consistently resampled pairs. Under these

circumstances, the pair of sequences fT and fT ′′ are also consistent.
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4.1.4 Completeness

Proposition 4.1.4. If the input sequence fT is chosen from a complete subspace VT ⊂ `2,

then the solution space VT ′ of its consistently resampled sequence f̃T ′ is also complete.

Proof. Assume fT , f ′T ∈ VT and ‖fT − f ′T‖`2 < α. Let their consistently resampled

sequences be fT ′ and f ′T ′ respectively. From Proposition 3.2.2,

fT ′ =
∑
m

〈∑
n

fT [n]φ
( x
T
− n

)
, φd(

x

T ′
−m)

〉
(4.23)

Thus, the distance between f̃T ′ and f′T ′ in `2 can be computed by

‖fT ′ − f ′T ′‖`2 ≤
∥∥∥∥∥∑

n

fT [n]φ
( x
T
− n

)∥∥∥∥∥
L2

∥∥∥φd ( x
T ′

)∥∥∥
L2

≤ ‖fT − f ′T‖`2
∥∥∥φ( x

T

)∥∥∥
L2

∥∥∥φd ( x
T ′

)∥∥∥
L2

(4.24)

≤ Cα (4.25)

where C is a constant which relates to ‖φ‖L2 and is independent of α. When fT approaches

f ′T , α approaches zero and so does ‖fT ′ − f ′T ′‖`2 . Therefore the space of consistently

resampled sequences form a complete subspace VT ′ .

4.1.5 Bandlimited Resampling

We shall show that our metric is consistent with the Shannon uniform sampling theorem

for bandlimited signals. Assume that the discrete input signal fa of the resampling

system be obtained by sampling a continuous signal f(x) which has a bandwidth of B,

i.e. F (Ω) = 0 for |Ω| ≥ B. Let the sampling rate be 1
a
≥ 2B. Using the interpolation

function φ(x) = sinc(x/a) in the resampling system in Figure 3.1, the reconstructed

continuous signal is given by

f̃ =
∑
n

fa[n]sinc
(x
a
− n

)
(4.26)
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Since the sampling rate higher larger than the Nyquist rate, we have f̃(x) = f(x).

The discrete output fb of the resampling system is obtained by ideally sampling f̃ at

interval b, i.e. fb[m] = f̃(x)|x=mb. If the resampling rate is higher than the Nyquist rate,

i.e. 1
b
≥ 2B, then from Definition 4.1.1, the distance between fa and fb is calculated by

dφ(fa, fb) =

∥∥∥∥∥∑
n

fa[n]sinc
(x
a
− n

)
−
∑
m

fb[m]sinc
(x
b
−m

)∥∥∥∥∥
L2

(4.27)

Since the resampling rate is high enough, interpolating fb using sinc(x/b) results in the

perfect reconstruction of f̃(x). Therefore,

∑
m

fb[m]sinc
(x
b
−m

)
= f̃ (4.28)

and so dφ(fa, fb) = 0.

However, if 1
b
< 2B, then

dφ(fT , f̃T ′) =

∥∥∥∥∥f̃(x)−
∑
m

f̃(mb)sinc(
x

b
−m)

∥∥∥∥∥
L2

(4.29)

Since f̃ is sampled at a rate lower than the Nyquist rate, the signal can never be perfectly

reconstructed from the under-sampled sequence fb. Therefore, dφ(fT , f̃T ′) 6= 0.

A particular example is shown in Figure 4.1. Here, f(x) = sinc(x), and B = 1
2
Hz.

The input signal is obtained by sampling f(x) at a = 1. Since 1
a

= 1 = 2B, fa can be

used to reconstruct f(x) perfectly. We shall denote this reconstructed signal by f1(x).

Then f1 is resampled at the rate 1
b
. Let the continuous signal reconstructed using fb be

denoted by f2. If b = 0.8, then the resampling rate is higher than the Nyquist rate and

f2 = f1 exactly. However, if b = 1.1, then f2 will be different from f1 as shown in the

figure. The distance dφ(fT , f̃T ′) is measured by the square root of the area under the curve

of (f1 − f2)2. We shall examine dφ(fT , f̃T ′) using more general cases in Section 4.4.1.

Thus our metric is applicable to conventional resampling of bandlimited signals.

109



Chapter 4. Performance Metric for Sequences in `2

-5 -4 -3 -2 -1 0 1 2 3 4 5

-0.2

0

0.2

0.4

0.6

0.8

1

 

 

Samples taken at a = 1

Samples taken at b = 1.1

f
1
, Reconstructed from f

a

f
2
, Reconstructed from f

b

(f
1
-f

2
)
2

Figure 4.1: Resampling performance when the signal is bandlimited.

4.2 Fourier Analysis of Resampling Performance

Definition 4.1.1 mapped the performance of resampling to the distance between f̃ and f̂ .

It in turn can be viewed as a measure of how closely f̂ approximates f̃ . Using f̃ as the

input and f̂ as the output, the resampling system of Figure 3.1 can be re-arranged as an

approximation system as shown in Figure 4.2 to facilitate performance analysis.

The structure in Figure 4.2 is essentially the same as the generalized sampling and

reconstruction system in Figure 2.10. As we discussed in Section 2.4, the performance

of such a system can be evaluated easily in the Fourier domain [47]. Applying (2.27) to

the present system, the resampling performance can be expressed as

η ef (T ′) =

[
1

2π

∫
|F̃ (Ω)|2Er(T ′Ω)dΩ

] 1
2

(4.30)

where the resampling error kernel Er(Ω) is given by

Er(Ω) = 1− |Φ(Ω)|2
Aφ(ω)︸ ︷︷ ︸

Emin(Ω)

+Aφ(ω)‖Ψ2(Ω)− Φd(Ω)‖2︸ ︷︷ ︸
Eres(Ω)

(4.31)
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f̃ (x) q[n]

∑
m
δ(x − mT ′)

f̂ (x)ψ
(

− x
T ′
)

φ
( x

T ′
)f̃T ′ [m]

Resampling 
Filter

Correction 
Filter

Interpolation 
Filter

Figure 4.2: The reformed resampling system for performance analysis.

where Ψ(Ω) is the frequency response of the resampling function ψ. Here, Aφ(Ω) and

Φd(Ω) are the Fourier transforms of the sampled autocorrelation and dual functions of φ

respectively, as defined in (2.19) and (2.20). Emin measures the approximation power of

the interpolation function while Eres depends on the idealness of the resampling function.

Suppose f̃(x) is an approximation of some continuous signal f(x), obtained by sam-

pling f(x) using ϕ and reconstructing using φ at rate T . Then the error of this approxi-

mation can be expressed by

ηf (T ) =

[
1

2π

∫
|F (Ω)|2Ea(TΩ)dΩ

] 1
2

(4.32)

where the approximation error kernel Ea(Ω) is

Ea(Ω) = 1− |Φ(Ω)|2
Aφ(Ω)︸ ︷︷ ︸

Emin(Ω)

+Aφ(Ω)‖Υ2(Ω)− Φd(Ω)‖2︸ ︷︷ ︸
Eres(Ω)

(4.33)

where Υ(Ω) is the frequency response of the sampling function ϕ used to obtain the input

sequence. Since∥∥∥f̃(x)− f(x)
∥∥∥2

= η2
f (T ) (4.34)

and f̃(x)⊥ηf (T ) in the space V T
φ , we have∥∥∥f̃(x)

∥∥∥2

= ‖f(x)‖2 − |η|2f (T ) (4.35)

Using Parseval’s theorem, this becomes∣∣∣F̃ (Ω)
∣∣∣2 = |F (Ω)|2 − 2π

∣∣η2
f

∣∣ (T ) (4.36)
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Substitute (4.36) into (4.30), we obtain

η ef (T ′) =

[
1

2π

∫ [|F (Ω)|2 − 2πη2
f (T )

]
Er(T

′Ω)dΩ

] 1
2

=

[
1

2π

{∫
|F (Ω)|2Er(T ′Ω)dΩ−

∫
|ηT (Ω)|2Er(T ′Ω)dΩ

}] 1
2

(4.37)

Comparing the second term with the resampling error in (4.30), it can be observed that

it is equal to evaluate the resampling error of ηT while the resampling error kernel is

defined by Er(T
′Ω). Therefore, (4.37) can be reduced to

η ef (T ′) = ηf (T
′)− ηηf (T ′) (4.38)

The overall resampling performance is composed of two terms. The first one, ηf (T
′),

measures how well f(x) can be reconstructed in V φ
T ′ . The second one, ηηf (T

′), measures

how much the interpolation error ηf = (f̃ − f) would be preserved in the resampling

system. It is noteworthy that this amount is deducted from the first term.

Although here we based the performance of resampling on that of sampling, there are

two main differences. First, sampling is concerned about preserving the characteristics

of the original continuous signal f(x) by its samples. But basic concern in resampling

is the preservation of the information carried by the input discrete signal fT by the

resampled discrete signal. If fT is obtained by sampling a certain continuous signal

f(x), the interpolated signal f̃ within the resampling system may not be the same as

f(x). Thus how well f̃ is preserved by the resampled signal is a more suitable choice for

resampling performance, especially when fT is fundamentally discrete and is not obtained

by sampling. Second, in sampling the reconstruction space is defined by φ
(
x
T

)
whereas

in resampling it is defined by φ
(
x
T ′

)
. This is because the resampled signal has, in general,

a different sampling interval.
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f̃ (x)
ψ
(

− x
T ′
)

∑
k
δ(x − kT ′)

fT ′ [k]
q[n]

cT ′ [k]

Figure 4.3: The resampling and post filtering part of resampling process.

4.3 Correction Filter in Consistent Resampling

4.3.1 Effect of Correction Filtering

A resampling system can be designed such that the error measured by the metric defined

by (4.31) is minimized. The resampling performance depends on the approximation

power of the interpolation function (Emin) and the idealness of the resampling function

(Eres). When φ and T ′ are fixed, performance can be improved by eliminating Eres. This

in turn requires that the resampling function satisfy ψ(x) = φd, where φd is the dual

function of φ.

This requirement is in general very restrictive. Sometimes the resampling function is

given a priori for the specific application. In Chapter 3, we used a correction filter given

by (3.36) to achieve consistent resampling in such circumstances. We shall now show

that with the insertion of the correction filter, the effective resampling function and the

interpolation function are duals of each other.

The resampling portion of Figure 3.2 is shown again in Figure 4.3. Let the resampling

function be ψ and the resampling interval be T ′, the output fT ′ is given by

fT ′ [k] =
〈
f̃(x), ψ

( x
T ′
− k
)〉

=
∑
n

fT [n]
〈
φ
( x
T
− n

)
, ψ
( x
T ′
− k
)〉

(4.39)

From (3.34), the cross-correlation of φ and ψ is defined to be:

cφψ[n, k] =

∫
x

φ
( x
T
− n

)
ψ
( x
T ′
− k
)
dx (4.40)
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Therefore, (4.39) can be expressed as

fT ′ [k] = (fT ∗ cφψ) [k] (4.41)

The output of the correction filter in Figure 4.3 is given by

cT ′ [k] = (fT ′ ∗ q) [k]

= (fT ∗ cφψ ∗ q) [k] (4.42)

Taking the Fourier transform,

CT ′(ω) = FT (ω)Cφψ(ω)Q(ω) (4.43)

The frequency response Q(ω) of the correction filter is given by (3.36). Substituting this

into (4.43), we have

CT ′(ω) = FT (ω)Cφψ(ω)
Cφφd(ω)

Cφψ(ω)

= FT (ω)Cφφd(ω) (4.44)

The inverse Fourier transform of this equation gives us

cT ′ [k] = (fT ∗ cφφd) [k]

=
∑
m

fT [m]cφφd [m, k] (4.45)

Substitute the definition of cφφd in (3.35) into (4.45), we obtain

cT ′ [k] =
∑
m

fT [m]

∫
x

φ
( x
T
−m

)
φd

( x
T ′
− k
)
dx (4.46)

Exchanging the order of summation and integration,

cT ′ [k] =

∫
x

∑
m

fT [m]φ
( x
T
−m

)
φd

( x
T ′
− k
)
dx

=
〈
f̃(x), φd

( x
T ′
− k
)〉

(4.47)

Therefore, with the correction filter, the effective resampling function is φd, the dual func-

tion of φ. In this case, Eres in (4.31) becomes zero and thus we have optimal resampling

performance.

114



Chapter 4. Performance Metric for Sequences in `2

f
f
~

ψ

'TV

ϕ

TV

f̂

o
rd

φ

TV

φ

'TV

of
~

sd
a
rd

of̂

                                                                                                

Figure 4.4: The geometric interpretation of the resampling metric.

4.3.2 Geometric Interpretation

The effect of the correction filter can be better understood by taking the geometric view.

Suppose fT is obtained by sampling f(x) using ϕ at rate T . Geometrically, this is

equivalent to projecting f(x) onto V ϕ
T . Similarly, the interpolation of fT to f̃(x) using

φ can be viewed as a projection onto V φ
T , the space spanned by

{
φ
(
x
T
− n)}

n∈Z. With

consistent resampling, the effective resampling function, which is the resampling function

followed by correction filtering, has to be a dual of the interpolation function. Therefore

f̂(x) is obtained by projecting f̃(x) onto V φ
T ′ ⊥ V ψ

T ′ , where V ψ
T ′ = span

{
ψ
(
x
T ′
− n)}

n∈Z.

These geometric relationships are shown in Figure 4.4. Since f̃(x) is obtained by directly

interpolating fT using φ, we assume no a priori knowledge of the sampling function ϕ.

The metric defined by (4.8) measures the distance between f̃(x) and f̂(x), represented

by dar . Assume that the knowledge of the sampling function ϕ is available. For given

interpolation function φ, the optimal approximation f̃o(x) of f(x) in the MSE sense

can be obtained through the generalized sampling theory as described in Section 2.4.

f̃o(x) is the projection of f(x) onto V φ
T ⊥ V ϕ

T , as shown in Figure 4.4. For an input

f̃o(x), the output f̂o(x) of the consistent sampling system in Figure 4.2 is obtained by
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projecting f̃o(x) onto V φ
T ′ ⊥ V ψ

T ′ . The difference between f̃o(x) and f̂o(x) is measured by

the distance dor. It can be observed that dor = (f − f̃o)− (f − f̂o). Since f̃o is the optimal

approximation of f(x) from the sequence fT , (f − f̃o) measures how well the information

of f(x) is preserved in fT . Similarly, (f − f̂o) measures that of f̃T ′ . Since fT and f̃T ′

are the input and output of the resampling system, the distance dor indicates the loss of

information of f(x) during the resampling process.

Similar to dor, d
a
r measures the difference between the capabilities of fT and fT ′ to

approximate f(x). This is consistent with the interpretation of (4.38) that the resampling

performance is the interpolation error which is inherited from the sampling process, ηηf ,

deducted from the total interpolation error ηf .

Comparing dor and dar , it can be observed they are in the same direction but with

different magnitudes. While dar is scaled by ‖f̃‖, dor is scaled by ‖f̃o‖.

Further, the difference between resampling and sampling performance is illustrated in

Figure 4.4. The sampling error is given by ds, which depends on the difference between

f and V φ
T . On the other hand, dar depends on the difference between V φ

T and V φ
T ′ , the

space spanned by a different dilation factor of the interpolation function φ.

4.4 Performance Analysis

4.4.1 Resampling of Bandlimited Signal

The resampling of bandlimited signal is a special case of generalized resampling for non-

bandlimited signals. In this case, the resampling function is ψ = δ and the interpolation

function is φ = sinc( x
T

). In Section 4.1.5, a specific example has been used to show the

performance of resampling when the resampling rate does not meet the Nyquist rate. In

this section, we shall use (4.31) to analyze the relationship between the resampling error

kernel and the resampling rate for bandlimited signals.

Let the sample period of the discrete input fT to the resampling system be T and

the resampling period be T ′. Assume that the bandwidth of this signal is Ω0/2 and
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1
T
≥ πΩ0. Let aφ(x) = φ(x) ∗ φ(−x). Then its Fourier transform is given by Φ(Ω)Φ(Ω).

Since φ = sinc(x), Φ(Ω) = 1 for Ω ≤ π and zero otherwise. Thus Aφ(Ω) = Φ(Ω). Also,

in this case, Φd(Ω) = Φ(Ω).

Now the sampled autocorrelation of the interpolation function is given by

aφ[k] = 〈φ(x), φ(x− k)〉 (4.48)

= φ(x) ∗ φ(−x)|x=k (4.49)

Therefore,

Aφ(ω) =
∑
m

Aφ(Ω + 2πm) (4.50)

= 1 (4.51)

Further, since ψ = δ(x), Ψ(Ω) = 1.

Substituting the above into (4.31), the error kernel is given by

Er(Ω) = 1− |Φ(Ω)|2 + ‖1− Φ(Ω)‖2

=

{
2, Ω > π
0, Ω ≤ π

(4.52)

For a resampling interval T ′, the dilated error kernel Er(T
′Ω) is

Er(T
′Ω) =

{
2, Ω > πT ′

0, Ω ≤ πT ′
(4.53)

Resampling performance η ef (T ′) is given by (4.30). When the resampling rate is at

least as high as the Nyquist rate, i.e. 1
T ′
≥ πΩ0, we have Er(T

′Ω) = 0 and therefore

η ef (T ′) = 0. When the resampling rate is below the Nyquist rate, i.e. 1
T ′
< πΩ0, then

η ef (T ′) =

[
2

2π

∫ Ω0

Ω1

|F̃ (Ω)|2dΩ

] 1
2

(4.54)

where Ω1 = 1
T ′π

< Ω0. This is a measure of the aliased part of the signal.
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4.4.2 Image Resizing

We continue with the image resizing example in Section 3.4.2. The four resampling

techniques used in Section 3.4.2 are compared using (4.30) in the frequency domain. The

interpolation function is φ = β1 and the resampling function is ψ = δ(x). Since the

interpolating function is the same for all methods, for the same image the interpolated

signal f̃(x) and its frequency response F̃ (Ω) are the same. Consequently, we only need

to compare their corresponding error kernels Er(T
′Ω). Since the error kernel depends on

the resampling interval, we shall treat image enlargement and reduction separately.

For image enlargement, T = 1 and T ′ = 0.8. From Table 2.1,

Aφ(ω) = Aβ1(ω)|ω=ΩT (4.55)

= 1− 2

3
sin

(
Ω

2

)2

(4.56)

From (2.34), the frequency response of β1 is given by

B1(Ω) =
[
B0(Ω)

]2
=

[
sinc

(
Ω

2π

)]2

(4.57)

The response of the dual function φd = β1
d is obtained by substituting (4.56) and (4.57)

into (2.20). Thus,

Φd = B1
d(Ω) =

[
sinc

(
Ω
2π

)]2
1− 2

3
sin
(

Ω
2

)2 (4.58)

On the other hand, according to Figure 4.3, the output is given by

cT ′ [k] =
∑
n

〈
f̃(x), ψ

( x
T ′
− n

)〉
q[k − n]

=

〈
f̃(x),

∑
n

q[k − n]ψ
( x
T ′
− n

)〉
(4.59)

giving us the effective resampling filter

ψe(x) =
∑
n

q[n]ψ
( x
T ′
− n

)
(4.60)
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Figure 4.5: Square root of the error kernels for four resampling schemes when an image
is enlarged by 25%.

Since ψ = δ(x), we have

Ψe(Ω) = Q(ω) (4.61)

with ω = ΩT ′. The frequency responses Q(ω) of the correction filter for each interpolation

method have been derived in Section 3.4.2 and can be found in Table 3.4. Substituting

(4.56), (4.58) and (4.61) into (4.31), the error kernel Er(T
′Ω) can be evaluated corre-

spondingly. In Figure 4.5, the squared root of Er(T
′Ω) for each of the four methods for

the image enlargement are plotted against each other.

For image reduction, T = 1 and T ′ = 1.25. The squared root of Er(T
′Ω) for each

method is plotted against each other in Figure 4.6.

There are a few points we wish to highlight. From the discussion in Section 3.4.2 we

noted that for classic, oblique and quasi interpolation, the design of the correction filter

does not depend on the resampling interval. Therefore, the same correction filter can

be used for both enlargement and reduction. As a result, Er(Ω) defined in (4.33) is the

same in these two cases. Therefore, the curves for these three methods in Figures 4.5

and 4.6 are the same except for a scaling factor.
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Figure 4.6: Square root of the error kernels for four resampling schemes when the image
is reduced to 80% of its original size.

Since the classic, oblique and quasi interpolation methods are designed to minimize

the sampling error ‖f(x) − f̃(x)‖, their performances are lower bounded by Emin, the

minimum sampling error. For φ = β1 and T = 1, Emin is obtained by substituting

(4.57) and (4.56) into (4.33). Emin (interpolation) for image enlargement and reduction

are shown in Figures 4.5 and 4.6 respectively. It can be observed that at higher Ω, the

rate of increase of Emin (interpolation) becomes higher. Among the classic, oblique and

quasi interpolation techniques, the performance of oblique resampling is worst because

of the overshooting problem in the low frequency range as we discussed in Section 3.4.2.

Since Emin (interpolation) depends only on T and φ, it is the same for both enlargement

and reduction. This contradicts with the intuition that for image reduction, details of

the image are lost and the resampling performance should not be identical to that for

enlargement.

The minimum resampling errors denoted by Emin (resampling) in Figures 4.5 and 4.6

are obtained by rescaling Emin (interpolation) by T ′ = 0.8 for enlargement and T ′ = 1.25

for reduction respectively. For both enlargement and reduction, consistent resampling

achieves the best performance among the four techniques. The advantage of consistent
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Figure 4.7: Comparison of the resampling performance when the image is enlarged by
25% and reduced by 20%.

resampling can be clearly observed in case of image enlargement. For image reduction,

the performance of quasi resampling approaches that of consistent resampling. Both

these methods outperform oblique resampling.

Figure 4.7 shows the relationship between the minimum interpolation error Emin (in-

terpolation), the minimum resampling error for enlargement Emin (zoom in) and reduc-

tion Emin (zoom out). It can be observed that Emin (zoom out) is always larger than

Emin (zoom in), which is consistent with the intuition. The interpolation performance

resides between Emin (zoom out) and Emin (zoom in). The performance of consistent

resampling for both enlargement E (zoom in) and reduction E (zoom out) are also in-

cluded in Figure 4.7. It can be observed that the actual resampling performance may be

better than the ideal interpolation performance at high frequencies. For example, in this

case, when Ω ≥ 2.2 or 0.701 radians, E (zoom in) is smaller than Emin (interpolation).

This is because from (4.38), the resampling performance is obtained by deducting the

interpolation error of ηf from the interpolation error of f at rate T ′. In Figure 4.7, ηf is

represented by Emin (interpolation). Since the rate of increase of ηf becomes higher for
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larger Ω, there exist an Ω0 above which the rate of increase of ηηf is higher than that of

ηf . In our case, Ω0 = 2.2.

4.4.3 De-interlacing

Let f(x) denote the underlying scene which is sampled with a period T1 = 2 at the odd

(even) line positions to obtain the interlaced samples. The motion compensated samples

are obtained from the corresponding interlaced samples in the preceding field. Therefore

they have the same sampling period T1. The continuous signal obtained by interpolation

of the input using β1(x) is given by

f̃(x) =
∑
n

f(2n)β1(x− 2n) +
∑
m

f(2m+ a)β1(x− 2m− a) (4.62)

This signal is resampled at both the odd and even line positions. Thus the resampling

period T2 is 1. Denote the de-interlaced output sequence by fo. Interpolating this output

by β1(x), we have

f̂(x) =
∑
k

fo[k]β1(x− k) (4.63)

where fo[k] = f̃(x)δ(x− k). The distance between the input fi and the output fo of the

de-interlacing system is

dβ(fi[n], fo[s]) =

∥∥∥∥∥∑
n

f(2n)

[
β1(x− 2n)−

∑
s

β1(s− 2n)β1(x− k)

]

+
∑
m

f(2m+ a)

[
β1(x− 2m− a)−

∑
k

β1(k − 2m− a)β1(x− k)

]∥∥∥∥∥ (4.64)

obtained by substituting (4.62) and (4.63) into (4.8).

Consider the optimal consistent resampling case where dβ(fi, fo) = 0. The interpo-

lating function β1(x) satisfies the Nyquist property, i.e. β1[k] = δ[k] ∀k ∈ Z. Since

β1[k − 2n] = δ[k − 2n],∑
k

β1(k − 2n)β1(x− k) = β1(x− 2n) (4.65)
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for k, n ∈ Z. Thus the first term on the right-hand-side of (4.64) is zero. For the second

term of this equation to be zero, we require

β(x− 2m− a) =
∑
k

β[k − 2m− a]β(x− k) (4.66)

⇒ β[k − 2m− a] = δ[k − 2m− a] (4.67)

for all m. The equation only holds when a is an integer. Since 0 < a ≤ 1, we conclude

that the resampling error is minimal when a = 1. This is consistent with intuition. In

general, when the interpolating function satisfies the Nyquist property, optimal resam-

pling performance can be achieved when a = 1.

4.5 Summary

In this chapter we proposed a metric to calculate the distance between discrete sequences

within the framework of consistent resampling. We showed that it satisfies the basic re-

quirements of a distance metric. A formula is then derived for evaluating the performance

of a resampling system in the frequency domain using the proposed metric. We showed

that the correction filter used to achieve consistent resampling is indeed optimal under

the derived performance measure. It produces results that are consistent with conven-

tional theory when applied to the resampling of bandlimited signals and to the example

of de-interlacing. It has also been used to compare the four resampling methods used in

the image resizing experiments discussed previously in Section 3.4.2.

123



Chapter 5

Consistent Resampling in the
Presence of Noise

In Chapter 3, the idea of consistent resampling is developed for signals that are not

necessarily bandlimited. However, consistent resampling is only attainable when the

system and the input sequence are both free from noise. In practice, the input sequence

may be contaminated by discrete noise such as quantization error. For some applications,

it may be more convenient to model it as noise that is added to the interpolated signal.

In this chapter we shall study the effect of noise on consistent resampling. We shall

consider noise that is added to the discrete input signal as well as noise which is introduced

to the reconstructed continuous signal after the interpolation filter. In Section 5.2, the

performance of resampling with noise is analyzed using the distance metric proposed in

Chapter 4. It is shown that the correction filter for consistent resampling developed in

Chapter 3 is unbiased, but it is not necessarily optimal when noise is present. The task is

then to solve the correction filter which minimizes the resampling error. In Section 5.3,

the optimal filtering problem is formulated as a convex optimization problem and solved

using existing numerical methods. The results are applied to image de-noising and mobile

channel detection using Pilot Symbol Assisted Modulation (PSAM) in Section 5.4.1 and

Section 5.4.2 respectively.
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m
δ(x−mb)

fb[m]cb[m]

Figure 5.1: A consistent resampling system with correction filter.

5.1 Notations

With a little abuse of notation, the capital letters in this chapter stand for set transfor-

mations instead of Fourier transforms. The synthesis process is described by Φ : Ru → H.

The superscript u is the length of the input sequence. When the input is infinitely long,

u is ∞. For a uniformly sampled sequence fa ∈ Ru, this implies

Φafa =
u∑
j=1

fa[j]φ
(x
a
− j
)

(5.1)

where the subscript a is used to denote the dilation factor of the interpolation function.

The synthesis space is denoted by <(Φ), which is the range of the transformation. It

is equivalent to the space V φ
a spanned by {φ (x

a
− j)}j∈[1,u]. Similarly, the null space is

denoted by ℵ(Φ). Let Φ† and Φ∗ denote the Moore-Penrose pseudoinverse and its adjoint

respectively. Then Φ† and Φ∗ are related by

Φ† = (Φ∗Φ)−1Φ∗ (5.2)

The adjoint Φ∗ describes a set transformation Φ∗ : H → Ru. It can be used to represent

the acquisition process. It follows that if fa = Φ∗f then the sequence fa ∈ Ru can be

obtained by fa[i] =
〈
φ
(
x
a
− i) , f〉 for i ∈ [1, u].

For the sake of convenience, the resampling system with correction filter is shown

again in Figure 5.1. This resampling process can be expressed compactly using the

above notation. The output of the system is given by

fb = QΨ∗bΦafa (5.3)
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where Ψ∗b describes the acquisition process Ψ∗b : H → Rv and v is the length of the output

sequence. For consistent resampling, we require

Φafa = Φbfb (5.4)

= ΦbQΨ∗bΦafa (5.5)

Multipling both side by Φ†b, we have

Φ†bΦafa = Φ†bΦbQΨ∗bΦafa

= Q (Ψ∗bΦa) fa (5.6)

Therefore, the consistent resampling correction filter is given by

Q = (Ψ∗bΦa)
−1 Φ†bΦa (5.7)

Q defines a process which is Rv → Rv.

Expressed in the matrix form, the input and output sequences are given by

fa = [fa[1] fa[2] · · · fa[u]]T (5.8)

fb = [fb[1] fb[2] · · · fb[v]]T (5.9)

Ψ∗bΦa is a v × u matrix whose elements are defined by: for i ∈ [1, v], j ∈ [1, u],

Ψ∗bΦa[i, j] =
〈
ψ
(x
b
− i
)
, φ
(x
a
− j
)〉

(5.10)

It describes how the i-th element in fa is related to the j-th element of cb. Similarly, the

elements of the matrix Φ†bΦa are given by

Φ†bΦa[i, j] =
〈
φd

(x
b
− i
)
, φ
(x
a
− j
)〉

i ∈ [1, v], j ∈ [1, u] (5.11)

The Moore-Penrose Pseudoinverse Φ† describes a set transformation Φ† : H → Ru. If

f ′a = Φ†af (5.12)
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then

f ′a[i] =
〈
f, φd

(x
a
− i
)〉

(5.13)

Using (5.10) and (5.11) in (5.7), Q can thus be represented by a v × v matrix which

maps cb to fb. According to Figure 5.1, cb and fb are related by

fb[k] =
∑
n

q[n]cb[k − n] (5.14)

where {q[n]}n∈Z is the impulse response of the digital correction filter q. Therefore, the

matrix Q is given by

Q =


Q1,1 Q1,2 · · · Q1,v

Q2,1
. . . Q2,v

...
. . .

Qv,1 · · · Qv,v−1 Qv,v

 (5.15)

=


q[0] q[−1] · · · q[−v + 1]

q[1]
. . . q[−v + 2]

...
. . .

q[v − 1] · · · q[1] q[0]

 (5.16)

Note that it is a Toeplitz matrix. Furthermore, if q is symmetric, then Q is Hermitian

circulant.

5.2 Performance of Resampling System with Noise

5.2.1 Discrete Noise

We shall first consider the case where the discrete input is contaminated by additive noise.

The task is to design the correction filter such that the resampling performs optimally

when measured using the metric proposed in Chapter 4.

Figure 5.2 illustrates the resampling system with noisy discrete input. The noisy

input to the system is fa + na. Therefore the reconstructed continuous signal f̃ is given
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Figure 5.2: A consistent resampling system with discrete noisy input.

by

f̃(x) = Φafa + Φana (5.17)

The output of the system is

fb = QΨ∗f̃ (5.18)

= QΨ∗ (Φafa + Φana) (5.19)

where Ψ∗ : H → Rv represents the resampling process. Based on the performance metric

defined by (4.8), the distance between fa and fb is given by

dφ(fa, fb) = ‖Φafa − Φbfb‖
= ‖Φafa − ΦbQΨ∗bΦafa − ΦbQΨ∗bΦana‖
= ‖(I −QΦbΨ

∗
b) Φafa −QΦbΨ

∗
bΦana‖ (5.20)

Assume that the noise is zero-mean with a positive-definite covariance matrix Wn.

The average performance of the resampling system can be measured by the expected

value of squared distance.

E
[
d2
φ (fa, fb)

]
= E

[‖(I − ΦbQΨ∗b) Φafa − ΦbQΨ∗bΦana‖2]
= E

[‖(I − ΦbQΨ∗b) Φafa‖2]+ E
[‖ΦbQΨ∗bΦana‖2]

= ‖(I − ΦbQΨ∗b) Φafa‖2︸ ︷︷ ︸
Efa,Q

+E [(ΦbQΨ∗bΦana)
∗ (ΦbQΨ∗bΦana)]︸ ︷︷ ︸

Ena,Q

(5.21)
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The expression for the average performance in (5.21) can be decomposed into two

parts. The first part, Efa,Q, is dependent on the input signal and the second part,

Ena,Q, is dependent on the discrete noise. Therefore (5.21) cannot be minimized if fa

is unbounded. However, an unbiased resampling system can be obtained if Q is chosen

such that Efa,Q = 0, i.e.

Φafa = ΦbQΨ∗bΦafa (5.22)

In this case, the average performance is independent of the input. Note that this re-

quirement is the same as the consistent resampling condition given by (5.5). Therefore,

the consistent correction filter given by (5.7) is an unbiased filter when discrete noise is

present. The residue error is given by

Eres = E [(ΦbQΨ∗bΦana)
∗ (ΦbQΨ∗bΦana)] (5.23)

5.2.2 Continuous Noise

Now we consider the cases where the interpolated signal is corrupted by noise. The

system is shown in Figure 5.3. Under these circumstances, the output of the resampling

system is given by

fb = QΨ∗b (Φafa + n) (5.24)

We shall assume that the noise n(x) is a stationary zero-mean process with variance σ.

Following the approach in Section 5.2.1, the distance between the input fa and the

output fb is

dφ(fa, fb) = ‖Φafa − Φbfb‖
= ‖Φafa − ΦbQΨ∗b (Φafa + n)‖
= ‖(I − ΦbQΨ∗b) Φafa −QΦbΨ

∗
bn‖ (5.25)
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Figure 5.3: Resampling system with noise added to the interpolated signal.

The average performance is therefore given by

E
[
d2
φ (fa, fb)

]
= E

[‖(I − ΦbQΨ∗b) Φafa − ΦbQΨ∗bn‖2]
= ‖(I − ΦbQΨ∗b) Φafa‖2︸ ︷︷ ︸

Efa,Q

+σTr [(ΦbQΨ∗b)
∗ (ΦbQΨ∗b)]︸ ︷︷ ︸

En,Q

(5.26)

Comparing (5.26) with (5.21), the parts that are dependent on the input signal are iden-

tical. Thus the same conclusion can be drawn for the system with continuous noise.

That is, (5.26) cannot be minimized when fa is unbounded. But the consistent resam-

pling correction filter in (5.7) guarantees that the average performance of the system is

independent of the input. In this case, the residue error is given by

Eres = σTr [(ΦbQΨ∗b)
∗ (ΦbQΨ∗b)] (5.27)

5.3 Design of Correction Filter for Minimax Mean

Square Error

Unfortunately, the unbiased correction filter derived in Sections 5.2.1 and 5.2.2 do not

necessarily produce a small error. This is because the residue errors in (5.23) and (5.27)

are functions of the filter Q as well. The same problem has been encountered in general-

ized sampling systems as discussed in Section 2.4. When a generalized sampling process

is corrupted by noise, the residue error of unbiased consistent sampling may not be small

at all.

In [128–131], the effects of noise in generalized sampling systems are explored. The

author introduced the concept of admissible and dominating estimations f̃ of a signal
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f from its noisy samples. For a signal f(x) ∈ S, an estimator f̃1 dominates another

estimator f̃2 if

E

{∥∥∥f − f̃1

∥∥∥2
}
≤ E

{∥∥∥f − f̃2

∥∥∥2
}
, for all f ∈ S (5.28)

E

{∥∥∥f − f̃1

∥∥∥2
}

< E

{∥∥∥f − f̃2

∥∥∥2
}
, for some f ∈ S (5.29)

An estimator f̃ is admissible if it is not dominated by any other linear estimator. It was

shown that an admissible estimation can be obtained from the solution of the minimax

optimization problem

f̃ ′ = arg min

{
sup
f∈S

[
E

(∥∥∥f − f̃∥∥∥2
)
− E

(∥∥∥f − f̃0

∥∥∥2
)]}

(5.30)

where f̃0 is any other linear estimation.

The same concept can be used to obtain the optimal output sequence when noise is

present in the resampling process. From (5.3), the output is obtained from input by a

linear transformation. Further, the performance of resampling is defined by the MSE

error d(fa, fb) = ‖Φafa − Φbfb‖. When noise is present, an admissible fb can be obtained

by the solution of the optimization problem

f ′b = arg min

{
sup
fa∈S

[
E
[
d2
φ (fa, fb)

]− E [d2
φ (fa, f0b)

]]}
(5.31)

where f0b is any other sequence of sampling interval b.

5.3.1 Minimax MSE Solution for Discrete Noise

Denote the space of all discrete signal sequences with bounded `2 norm, i.e. finite energy

signals, by U . Mathematically, U = {u : ‖u‖`2 ≤ A, 0 < A <∞}. The specific problem

here is to find a solution for Q among all possible v × v Toeplitz matrices Sv such that

the maximum average distance between the input and output of the resampling system

for all possible input u ∈ U is minimized.
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From (5.21), the average distance depends on the input sequence fa and the correction

filter Q. Hence we shall use the notation D(fa,Q) = E
[
d2
φ (fa, fb)

]
. From (5.21),

D(fa,Q) = Efa,Q + Ena,Q (5.32)

Our aim is to obtain a unique solution to the following minimax problem:

min
Q∈Sv

max
u∈U

{
D(u,Q)−D(u,Q0)

}
(5.33)

where Q0 is any other filter in Sv. Substituting (5.32) into (5.33), the problem becomes

min
Q∈Sv

max
u∈U
{Eu,Q + Ena,Q − Eu,Q0 − Ena,Q0} (5.34)

Since the last term Ena,Q0 does not depend on u or Q, it can be removed from (5.34).

Grouping the terms that depend on u, we have

Ξ(u) = Eu,Q − Eu,Q0

= [(I − ΦbQΨ∗bΦa)
∗ (I − ΦbQΨ∗bΦa) − (I − ΦbQ0Ψ∗bΦa)

∗ (I − ΦbQ0Ψ∗bΦa)] ‖u‖2

(5.35)

Thus (5.34) becomes

min
Q∈Sv

max
u∈U
{Ξ(u) + Ena,Q} (5.36)

and we are looking for Qopt such that

Qopt = arg min
Q∈Sv

{
Ena,Q + max

u∈U
Ξ(u)

}
(5.37)

In general, the optimal solution can be found numerically using the Semi-Definite

Programming (SDP). A brief review of SDP is provided in Appendix A.3.

To formulate (5.37) as an SDP problem, let

M = ΦbQ (5.38)
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and

P = Ψ∗bΦa (5.39)

Then (5.35) becomes

Ξ(u) = max
‖u‖≤A

u∗ [(I −MP)∗ (I −MP)− Y ] u (5.40)

where

Y = (I − ΦbQ0P)∗ (I − ΦbQ0P) (5.41)

Let Z = (I −MP)∗ (I −MP) − Y . Then (5.40) is of the form max‖u‖≤A u∗Zu. Since

Z is a symmetric matrix, from (A.14) the order of production can be rearranged as

max
‖u‖≤A

u∗Zu = max
‖u‖≤A

Zuu∗

= max
‖u‖≤A

Z‖u‖2 (5.42)

Solving the term maxu∈U Ξ(u) in (5.37) is equivalent to finding the largest eigenvalue of

the matrix Z, or the minimum λ ≥ 0 such that

Z � λI

Z � 0 (5.43)

We have maxu∈U Ξ(u) = maxu∈U λ‖u‖2 = A2λ.

At the same time, the term Ena,Q in (5.34) can be simplified as well. Substituting

(5.38) and (5.39) into (5.21), we have

Ena,Q = E [(MPna)
∗ (MPna)]

= E [n∗a (MP)∗ (MP) na]

= Tr [Wn (MP)∗ (MP)] (5.44)
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where Tr(X) =
∑i=v

i X[i, i] denotes the trace of a square matrix X. Since the noise na

is assumed to be Gaussian with zero mean, its covariance matrix Wn is diagonal. Using

(5.43) and (5.44), the optimization problem (5.37) becomes

min
M,λ≥0

{
Tr [Wn (MP)∗ (MP)] + A2λ

}
(5.45)

subject to

[(I −MP)∗ (I −MP)− Y ] � λI (5.46)

By introducing a slack variable τ , as in (A.7) and (A.8), (5.45) is equivalent to

minimize τ

subject to τ − A2λ− Tr [Wn (MP)∗ (MP)] � 0 (5.47)

Consider the Schur complement defined in (A.16). LetA = I, B = m = vec(W
1/2
n MP),

the vector obtained by stacking the columns of the matrix W
1/2
n MP , and C = τ −A2λ,

(5.47) can be represented in the matrix form as in (A.15). Thus,

[
I m∗

m τ − A2λ

]
� 0 (5.48)

At the same time, (5.46) can be rewritten as

λI + Y − (I −MP)∗ (I −MP) � 0 (5.49)

It can also be represented in matrix form by

[
I (I −MP)∗

(I −MP) λI + Y

]
� 0 (5.50)
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Substituting (5.48) and (5.50) into (5.45) and (5.46), we have the SDP problem:

minimise τ

subject to

[
I m∗

m τ − A2λ

]
� 0[

I (I −MP)∗

(I −MP) λI + Y

]
� 0

τ ≥ 0

M≥ 0

λ ≥ 0 (5.51)

From (5.38), given the solution Mopt of this SDP, the optimal correction filter is

Qopt = Φ†bMopt (5.52)

5.3.2 Minimax MSE Solution for Continuous Noise

The correction filter for resampling system with continuous noise can be derived in a

similar manner. The only difference between the system with discrete noise and the

system with continuous noise resides in the terms relating to the noise, Ena,Q and En,Q

respectively. The other terms remain unchanged. Therefore, the correction filter can be

obtained by solving the following minimax problem.

Qopt = arg min
Q∈Sv

{
En,Q + max

u∈U
Ξ(u)

}
(5.53)

with En,Q and Ξ(u) given by (5.26) and (5.35) respectively. Use the expression for M
defined in (5.38) and let

R = Ψ∗b (5.54)

En,Q can be simplified as

En,Q = σTr [(ΦbQΨ∗b)
∗ (ΦbQΨ∗b)] (5.55)

= σTr [(MR)∗ (MR)] (5.56)
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The SDP formulation of this problem easily follows.

min
M,λ≥0

{
σTr [(MR)∗ (MR)] + A2λ

}
(5.57)

subject to

[(I −MP)∗ (I −MP)− A] ≤ λI (5.58)

Using the Schur complements, we have

min
τ,M,λ≥0

τ

subject to

[
I m∗

m τ − A2λ

]
� 0 (5.59)[

I (I −MP)∗

(I −MP) λI + Y

]
� 0 (5.60)

where m = σ1/2vec(MR) is the vector obtained by stacking the columns of the matrix

MR. The optimal correction filter is given by

Qopt = Φ†bMopt (5.61)

where Mopt is the solution to the SDP.

The mean square distances in (5.21) and (5.26) are convex functions. (5.33) and (5.53)

are convex minimizations. This ensures the unique existence of the optimal correction

filter Qopt. For any other filter Q0, it is always true that

D(u,Qopt)−D(u,Q0) < 0 (5.62)

That is, the resampling error using the optimal correction filter Qopt is always smaller

than that of any other correction filter Q0.
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5.4 Applications

5.4.1 Image De-noising

Image de-noising is an application where the input to the resampling system is corrupted

by discrete noise. In this case, the sampling interval of the input and output are the

same. The role of the correction filter is to remove as much noise as possible from the

input.

As an example we use the image of Lena. The pixel values are in the range [0, 1].

Noise is assumed to be Gaussian with zero mean and variance 0.005. The covariance

matrix Wn is therefore given by Wn = 0.005I. The original and noise-added images are

shown in Figure 5.4. The performance of the correction filter and the Wiener filter are

compared.

The optimal way to remove noise from a signal is to use a Wiener filter. It is based

on a statistical approach and assumes we have full knowledge of the signal and the noise.

The Wiener filter is designed such that the MSE between the estimated signal and the

original signal is minimized [184]. The filter is implemented in MATLAB through the

function “wiener2”. It filters the image using pixel-wise adaptive Wiener filtering. The

user may specify the neighborhood size of m× n pixels for the estimation of local mean

and standard deviation. We set m = n = 2 in our example. The restored image is shown

in Figure 5.5.

To design the correction filter to remove the discrete noise from the image, we follow

the steps in Section 5.3.1. Correction filtering is applied to each row of the image and

then followed by the columns separately. The problem can be modeled as a system shown

in Figure 5.2 where the sampling and resampling intervals are a = b = 1. Furthermore,

since the input and output are of the same size, u = v. For a fair comparison, we use

φ(x) = β1(x) as the interpolation function since the support of β1 is 2 which is identical to

the neighborhood size used for Wiener filtering. The sampling and resampling functions

are ϕ = ψ = δ.
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5.4.a: Noiseless image

5.4.b: Noisy image

Figure 5.4: The image of Lena.
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Figure 5.5: The restored image by Wiener Filter

The SDP formulation is given in (5.50). Since the pixel values are in the range [0, 1]

and the size of the image is 256 × 256, a suitable `2 norm bound is A = 256. We first

look for the expression of P . For a = b = 1, from (5.39) and (5.10) we have

P [i, j] = Ψ∗bΦa[i, j] =
〈
ψ
(x
b
− i
)
, φ
(x
a
− j
)〉

=
〈
δ (x− i) , β1 (x− j)〉

= δ(i− j) (5.63)

The matrix Ψ∗bΦa is a diagonal matrix. Since u = v, Ψ∗bΦa and hence P are identity

matrices. Consequently,MP =M, Y = (I−ΦbQ0)∗(I−ΦbQ0) and m = vec(W
1/2
n M).

Using these in (5.50), we have the problem to be solved which is

min
τ,M,λ≥0

τ (5.64)
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Figure 5.6: The restored image by the correction filter

subject to

[
τ − 2562 m∗

m I

]
� 0 (5.65)[

λI + Y (I −M)∗

(I −M) I

]
� 0 (5.66)

This SDP problem can be solved efficiently using computational methods, such as those

provided by the MATLAB toolbox ’YALMIP’ [185].

Figure 5.6 shows the result of our approach. This can be compared with the Wiener

filtering result in Figure 5.5. It is obvious that the correction filter performs better than

the Wiener filter. This is because the Wiener filter is only locally optimal since the

means and standard deviations are estimated using a local neighborhood of pixels. On

the other hand, although the interpolation function in our resampling system is chosen to

be the locally supported β1, from (5.37) the entire input sequence is taken into account

nevertheless. Thus the correction filter is able to minimize the error globally.
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Besides, the correction filter is more flexible than the Wiener filter. The Wiener filter

requires that the input and output are of the same size. On the contrary, a correction

filter can be designed for a different resampling interval so that the output can be of a

different size. Furthermore, the Wiener filter is image-specific because it depends on the

spectral properties of the input. The correction filter, on the other hand, is designed

for all possible input sequences that belong to the bounded subspace and therefore is

independent of the input. In our case, the correction filter can be applied to all images

of size 256× 256.

5.4.2 Mobile Channel Detection Using PSAM

Multipath fading distortion is a major problem in wireless communication systems. Pilot

Symbol Assisted Modulation (PSAM) has been used effectively to combat multipath

fading. A major advantage is that it does not effect the transmitted pulse shape or the

peak to average power ratio. The loss of bandwidth to transmit the pilot symbols is well

justifiable comparing to other techniques [186, 187]. The idea is simple. Pilot symbols

are serially multiplexed onto the information symbols at the transmitter. The receiver

has prior knowledge of the pilot symbol sequences and so it can extract the pilot symbols

from the received data stream and subsequently estimate the required compensation for

the fading effects on the data symbols.

In order for the PSAM technique to be effective, the pilot symbol rate must be at least

two times higher than the fading rate. If not, estimation would be less accurate and a

high error floor would be incurred. Assume perfect synchronization so that inter-symbol

interference can be neglected. Based on Shannon’s sampling theorem, a fading process

with a maximum Doppler spread of fD could be sampled without distortion using the

Nyquist rate of 2fD. The channel response can be estimated by resampling the channel

response obtained at the positions of the pilot symbols to those of the data symbols.

Therefore the choice of interpolation method will have an affect on the performance of

channel estimation and consequently on the error performance. High-order synthesis
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functions generally provide superior performances. However, it requires more pilot sym-

bols to be buffered and the delay is certainly undesirable in some applications such as

speech communications. It also greatly increases the complexity of the receiver.

For data frame k, let dk,l denote the (L − 1) data symbols so that l = 1, · · · , L − 1.

Let pk denote the pilot signals which are multiplexed onto the data symbols at a rate

higher than 2fD. At the receiver end, the received pilot signal is detected and the noise

contaminated mobile channel response hk at the pilot symbol is computed. To detect the

transmitted data symbols, we need to know the channel response at the time instants

of data symbols hk,l [187, 188]. Then hk is interpolated to approximate the continuous

channel response which is resampled at the time instants of the data symbols. Thus it is

essentially a resampling problem in presence of noise.

Theoretically, the ideal synthesis function is sinc since the ideal sampler is used at the

receiver. However, other non-ideal interpolating functions are used in practice because

of the slow decay of the sinc function. This leads to interpolation errors which affects

channel estimation accuracy. Previous studies suggest that interpolation error results in

an irreducible bit error rate (BER) floor [36,188].

The minimax filter we derived in this chapter is clearly applicable to this situation.

First, the non-ideal synthesis filter is taken care of by ensuring consistency resampling.

Second, by deriving a minimax solution for MSE performance, the effects of the noise is

reduced as well.

Without loss of generality, assume that the pilot symbol is inserted at zeroth (l = 0)

position in each frame. The received symbol at l-th position in the k-th frame is given

by

rk,l =

{
hk,ldk,l + nk,l, l = 1, · · · , L− 1
hk,lpk + nk,l, l = 0

(5.67)

where nk,l is white Gaussian noise with variance 2N0. The pilot symbol pk has a constant

amplitude |p|. The channel response hk,l and hk,0 are complex variables that model the
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multi-path fading with variance 2Es. When the modulation is binary phase-shift keying

(BPSK), the data is [−1, 1]. If the channel response is estimated correctly, the SNR of

the pilot symbol is given by

SNRp = Es|p|2/N0 (5.68)

The SNR for the data symboles is

SNRd = Es/N0 (5.69)

The average BER is related to the SNR by

BER = Q(
√
SNR) (5.70)

where

Q(x) =
1√
2π

∫ ∞
x

exp−t
2/2 dt (5.71)

is the error function.

The channel estimate at the pilot symbol position is given by

h̃k,0 =
rk,0
pk

(5.72)

= hk,0 +
nk,0
pk

(5.73)

These estimates are interpolated and resampled to obtain hk,l. Due to the slow decaying

property of the sinc function, only its truncated version is used in practice. Thus inter-

polation is performed using the nearest K data frames. Assume that the bit duration is

T = 1 and therefore fD = 1/2L. Take the 0-th frame for example, the channel response

at the l-th bit is given by

h̃l =

K2∑
k=−K1

h̃k,0 sinc

(
l

L
− k
)

(5.74)

where K1 = b(K − 1)/2c and K2 = bK/2c.
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Figure 5.7: Performances of PSAM where channel interpolation is by consistent correction
filtering and by a Hamming windowed sinc function.
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Putting it into the context of our resampling system, the sampling and resampling

intervals are a = L and b = 1 respectively. Here Φa : CK → H and Ψb : H → CL where

Φa =

 sinc (x/L+K1)
...

sinc (x/L−K2)

 (5.75)

Ψb =

 δ(x− 0)
...

δ(x− L+ 1)

 (5.76)

The input signal is

h0 =
[
h̃−K1,0, · · · , h̃K2,0

]
(5.77)

and the noise is

n = [n−K1,0/p−K1 , · · · , nK2,0/pK2 ] (5.78)

The resampled output is for the 0-th frame is

hl = [h0,0, · · · , h0,L−1] (5.79)

Note that the output samples reside in a single frame while the input samples are spread

over K frames. Therefore the distance ‖ΦLh0 − Φ1hl‖ is evaluated for one frame only.

For L = 15, K = 20 and |p|2 = 1, we have MB = 20 since ‖sinc(x)‖2
L2 = 1 and the

functions {sinc(x− k)}k∈Z are orthogonal to each other. Therefore, M = q and H = I.

Figure 5.7 plots the Symbol Error Probability (SEP) versus SNR for consistent re-

sampling and one that uses truncated sinc function for interpolation. We also plot the

SEP versus SNR for situations where the perfect information of the channel is known

while noise is present. Our consistent correction filter approach results in lower SER for

the other two cases. It implies that the consistent resampling approach does not only

compensate for the non-idealness of the interpolation function, but also the effect of the

noise.
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5.4.3 Comment on the Complexity

It can be observed that to derive the minimax filter is generally quite complex. Assuming

that the length of the filter is N , the filter defined by (5.52) is of complexity O(N2),

excluding the complexity of the SDP problem (5.51) to derive M. On the other hand,

for a Wiener filter of length N , it is obtained by solving the equation
Rf [0] Rf [1] · · · Rf [N ]
Rf [1] Rf [0] · · · Rf [N − 1]

...
...

. . .
...

Rf [N ] Rf [N − 1] · · · Rf [0]




a[0]
a[1]

...
a[N ]

 =


Rfn[0]
Rfn[1]

...
Rfn[N ]

 (5.80)

where Rf [m] is the autocorrelation of the input sequence and Rfn is the cross correlation

sequence of input and noise. The matrix appearing in the equation is a symmetric

Toeplitz matrix. To solve the euqation, an efficient algorithm called Levinson-Durbin

can be used and the complexity is O(N2).

It is arguable whether the improvement in performance is justifiable by the additional

complexity required to obtain the minimax filter. We want to highlight that despite the

performance improvement, the minimax filter also offers flexibility that Wiener filter

does not. Wiener filter is only applicable to noise filtering. From the point of view of

a resampling system, the input and output sequence are required to be obtained by the

sampling function and the same sampling period. On the other hand, the minimax filter

is designed to minimize the distance between the input and output. As we mentioned in

Chapter 4, there is no restriction on the sampling function or the period of the input and

output to use our proposed metric to evaluate the distance between them. Therefore,

the minimax filter is more flexible than the Wiener filter.

This drawback of Wiener filter can be noticed from Section 5.4.2. When the sampling

period and resampling rate are different, Wiener filter is no longer applicable. To justify

the addition complexity incurred to derive the minimax filter, we suggest it shall be used

under conditions when (1) high quality performance is preferred; and (2) great flexibility

is demanded.
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5.5 Summary

In this chapter, we use the distance metric proposed in Chapter 4 to derive the perfor-

mance of resampling in the MSE sense when noise is present. Two different types of

noise are considered. One is the discrete noise that is added to the input signal and the

other is continuous noise which is added to the interpolated signal. A correction filter

is designed to minimize the maximum possible error, assuming that the input sequences

are `2-norm bounded. The optimal filter can be obtained by numerically solving an SDP

problem. The proposed design is applied to images de-noising which shows that it per-

forms better than the Wiener filter. The advantage of our approach is derived from the

fact that besides considering the effects of noise, the correction filter takes care of the

non-idealness of the interpolating function as well. For PSAM, it has been shown that

the correction filter produces lower BER using BPSK for the same SNR compared with

using a Hamming-windowed sinc function for interpolation.
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Chapter 6

Innovation Sampling and
Resampling Rate

In this chapter, we consider the minimum resampling rate required for consistent resam-

pling. We approach it through the rate of innovation introduced by innovation sampling

discussed in Section 2.5. First, computation of the RI for signals in shift invariant spaces

is studied in Section 6.1. Then acquisition filters that are more general that those are

considered in Section 6.2. The results obtained herein are used to obtain the mini-

mum resampling rate for consistent resampling. Thus the main result is presented in

Section 6.2.2.

6.1 RI of Signals in Shift Invariant Spaces

The rate of innovation ρ of a signal measures the degree of freedom of a signal per unit

time. The degree of freedom is the number of parameters required to uniquely specify

the signal. For example, an N -th order polynomial defined by

f(x) =
N∑
i=0

c[i]xi (6.1)

is uniquely determined by the N + 1 coefficients c[i] and therefore the degree of freedom

is N + 1. If this signal crosses the axis at x = a, then (x− a) is a factor of f(x) and so
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it can be expressed as

f(x) = (x− a)
N−1∑
i=0

c′[i]xi (6.2)

In this case, the degree of freedom of f(x) is N .

The RI may be intuitive for some signals, e.g. the periodic pulse train (2.76) we

discussed in Section 2.5. However, it is not so easy for other non-trivial signals.

Proposition 6.1.1. Consider a signal f(x) of the form

f(x) =
∑
k

c[k]φ
( x
T
− k
)

(6.3)

where φ ∈ H and T is a constant. The rate of innovation ρf of f(x) satisfies

ρf ≤ 1

T
(6.4)

Equality holds only when φ is a generating function and {φ ( x
T
− k)}k∈Z forms a Riesz

basis.

Proof. For a signals given by (6.3), in every time interval [kT, (k + 1)T ), there is one

coefficient c[k] to specify. This means that there is at most one degree of freedom every

T seconds. If the coefficients are independent of each other, then ρf = 1/T . If the

coefficients are not independent, then ρf <
1
T

.

To prove the condition for equality, we shall show that the coefficients c[k] are inde-

pendent if {φ ( x
T
− k)}k∈Z is a Riesz basis. Assume that the value of the coefficient c[k1]

for a certain constant k1 has been changed to ∆c[k1]. Using the set of sample values

{· · · , c[k1 − 1],∆c[k1], c[k1 + 1], · · · } in V φ
T we can reconstruct a signal f̃(x) by

f̃(x) =
∑
k 6=k1

c[k]φ
( x
T
− k
)

+ ∆c[k1]φ
( x
T
− k1

)
(6.5)
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Sampling f̃(x) by the dual function φd of φ with a sampling period of T is equivalent to

projecting f̃(x) onto V φ
T again. This results in

f̃ [m]T =
〈
f̃(x), φd

( x
T
−m

)〉
=

∑
k 6=k1

c[k]
〈
φ
(x
a
− k
)
, φd

(x
a
−m

)〉
+ ∆c[k1]

〈
φ
(x
a
− k1

)
, φ
(x
a
−m

)〉
(6.6)

Since φ and φd are dual functions,〈
φ
( x
T
− k
)
, φd

( x
T
−m

)〉
= δ[m− k] (6.7)

Therefore, (6.6) is reduced to

f̃T [m] =

{
c[k], m = k 6= k1

∆c[k1], m = k1
(6.8)

Thus a change in the value of c[k1] has no effect on the other samples. Hence we can

conclude that the coefficients c[k] are independent of each other. Since the dual func-

tion in (6.6) only exists when {φ ( x
T
− k)}k∈Z is a Riesz basis, the equality part of the

Proposition 6.1.1 is proved.

Let φ
(
x
T
− k) be denoted by φT k(x) for any k ∈ Z . It can be expressed in the form

of (6.3) as

φT k(x) = φ
( x
T
− k
)

(6.9)

=
∑
m

δ[m− k]φ
( x
T
−m

)
(6.10)

The unit impulse sequences {δ[m − k]}m∈Z are independent of each other regardless of

whether {φ ( x
T
− k)}k∈Z forms a Riesz basis. The RI of φTk is 1

T
. If a signal f(x) can

be expressed as (6.3), then it is made up of functions φT k. Based on Proposition 6.1.1,

we can say that the RI of such a signal cannot be greater than the RI of its component

functions. Thus,

ρf ≤ ρφT =
1

T
(6.11)
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6.2 Acquisition Functions for Innovation Sampling

The principle behind having ρf as the minimum sampling rate is that N independent

equations are required to solve for N unknowns uniquely. Hence, if f(x) has an RI of ρf ,

then we need to solve for ρf unknowns per unit time in order to reconstruct f(x). Each

sample obtained in the interval 1/ρf is able to provide us with one equation. So we need

a total of ρf equations per unit time.

The RI of a signal is the minimum sampling rate at which the signal should be

sampled. However, sampling at this minimum rate is possible only if a proper acquisition

function is used. For example, consider a bandlimited signal f(x) with a bandwidth of

Ω0. It can be expressed in the form of (6.3) with φ(x) = Bsinc(Bx) where B = 1/T .

Thus

f(x) =
∑
k

fT [k]Bsinc (B (x− kT )) (6.12)

for all B ≥ ρf = Ω0/2π. Although the bandwidth, or equivalently ρf and hence the

minimum sampling rate, is a constant, the actual sampling rate fs = 1/T used to obtain

the samples fT [k] = f(x)|x=kT can be any value higher than the minimum. Thus the same

f(x) can be expressed as (6.12) using φ with different dilations. A possible interpretation

is that when φ is dilated by 1/T and f(x) for a sampling rate fs = 1/T , each sample

c[k] obtained within an interval of T second gives us a unique φTk . From the various φTk

obtained, φ can be derived and thus f(x) can be reconstructed.

In general, if a signal f(x) can be expressed as (6.3), then a suitable acquisition

function is the dual function of φ. If the dual φd exists, then the samples can be obtained

by

c[k] =
〈
f(x), φd

( x
T
− k
)〉

(6.13)

at sampling rate of fs = 1/T . Proposition 6.1.1 tells us that ρf ≤ 1/T and the equality

holds only when {φT k}k∈Z is a Riesz basis. Therefore, the minimum sampling rate is

attainable only when φ(x) is a generating function.
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More generally, the acquisition function ϕ is not a dual function of φ, similar to the

scenario for consistent sampling. It is therefore desirable to derive the conditions on the

acquisition function such that a signal with finite rate of innovation of the form (6.3) can

be sampled at the minimum rate.

6.2.1 Sampling with General Acquisition Functions

Here we restrict ϕ ∈ H to generating functions only such that {ϕ( x
T
− k)}k∈Z is a Riesz

basis and its dual function ϕd exists. When f(x) is sampled using ϕ at ρf , the samples

are given by

f [k] =

〈
f(x), ϕ

[
1

ρf

(
x− k

ρf

)]〉
(6.14)

When ϕ is known and ϕd exists, f(x) can be reconstructed from the samples f [k] by

f̃(x) =
∑
k

f [k]ϕd

[
ρf

(
x− k

ρf

)]
(6.15)

Therefore, to derive the conditions on ϕ is equivalent to examining the conditions on ϕd

such that a signal given by (6.3) can be represented by (6.15).

Our approach is to express both φ and ϕd as polynomials. The Weierstrass’s Ap-

proximation Theorem [39] states that every finite signal φ ∈ [a, b] where a, b ∈ R can be

approximated arbitrarily well by a polynomial

P (x) =
n∑
k=0

c1[k]xk (6.16)

such that

‖φ− P‖∞ ≤ ε (6.17)

The order of P depends on ε, φ and the interval [a, b]. Assume that φ is approximated

by a polynomial of order n = Lφ − 1. Then the parameters associated with φ are the

weights {c1[k]}k∈Z and hence the total degree of freedom is Nφ = Lφ.
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More specifically, as discussed in Section 2.3.1, if φ is a Maximum approximation

Order with Minimum Support (MOMS) function of order Lφ, it can be expressed by

weighted sum of derivatives of B-splines [48,96]. Thus,

φ(x) =

Lφ−1∑
k=0

pk
dk

dxk
βLφ−1(x) (6.18)

Since βk is indeed a k-th order polynomial, (6.18) can be rewritten as

φ(x) =

Lφ−1∑
k=0

c1[k]xk (6.19)

We shall assume that φ(x) are MOMS functions such that the order of the polynomials

that approximate the functions with negligible error is equal to the approximation order

Lφ. Therefore, if ϕd is of approximation order Lϕd , it can be expressed in polynomial

form as

ϕd(x) =

Lϕd−1∑
k=0

c2[k]xk (6.20)

The number of coefficients associated with ϕd is given by Lϕd .

The function φT k as defined in (6.10) can also be represented in the polynomial form

by

φT k =

Lφ−1∑
m=0

c1[m]

(
x− kT
T

)m
(6.21)

When φ is known, for every k, i.e. an interval of T seconds, there is one φT k and the

degree of freedom is Lφ. By substituting (6.21) into (6.3), we have

f(x) =
∑
k

c[k]φ
( x
T
− k
)

=
∑
k

Lφ−1∑
m=0

(c[k]c1[m])

(
x− kT
T

)m
(6.22)
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Therefore, if f(x) is represented in the polynomial form, the number of coefficients per

unit time is at most Lφ/T . Similarly, substituting (6.20) into (6.15), we have

f̃(x) =
∑
k

f [k]ϕd

[
ρf

(
x− k

ρf

)]

=
∑
k

Lϕd−1∑
m=0

(f [k]c2[m]) (ρfx− k)m (6.23)

For every sample f [k] in an interval of 1/ρf , there are at most Lϕd coefficients. Comparing

(6.22) and (6.23), the conditions on ϕd such that f(x) can be represented by f̃(x) can

be obtained.

Proposition 6.2.1. Let f(x) be a signal given by (6.3) with an RI of ρf . Assume that

φ is a MOMS function with an approximation order of Lφ. f(x) can be represented by

a MOMS function ϕd 6= φ with approximation order Lϕd at dilation level ρf as given by

(6.15) if

(i) Lϕd ≥ Lφ; and

(ii) the set {ϕd(x− k
ρf

)}k∈Z is Riesz basis of its span.

Proof. From (6.22), f(x) is a polynomial of order Lφ−1. On the other hand, from (6.23),

the order of polynomials that can be represented by ϕd is Lϕd − 1. Therefore, if f(x) can

be represented by ϕd as in (6.15), then

Lϕd ≥ Lφ (6.24)

When f(x) is represented by ϕd at dilation level ρf as in (6.15), the RI of f(x) is

equal to the inverse of the dilation level. Following Proposition 6.1.1, equality holds only

when {ϕd(x− k
ρf

)}k∈Z is Riesz basis of its span. Hence this proposition is proved.
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Another possible interpretation of Proposition 6.2.1 is as follows. When f(x) is

expressed in the form of (6.22), within each interval [kT, (k + 1)T ), the coefficients

{c1[m]}m∈[0,Lφ−1] are known. For each sample c[k] obtained, the total number of coeffi-

cients that can be solved is given by N1 = Lφ. Therefore, it has N1 degrees of freedom per

unit time. Similarly, for a signal given by (6.23), within each interval [k/ρf , (k + 1)/ρf ),

for each ϕdTk the number of parameters is N2 = Lϕd . In order to represent f(x) using

ϕd, we require

N2

1/ρf
≥ N1

T

⇒ Lϕd ≥
Lφ
Tρf

(6.25)

From Proposition 6.1.1, ρf ≤ 1
T

and therefore Lϕd ≥ Lφ.

This interpretation can lead to a more general condition on the dilation level D for a

given ϕd such that f(x) can be represented by

f(x) =
∑
k

fD[k]ϕd

[
1

D
(x− kD)

]
(6.26)

First, we shall show that the approximation order of ϕ is identical to the approximation

order of its dual ϕd.

Proposition 6.2.2. The approximation orders of a function ϕ and its dual ϕd are the

same.

Proof. As discussed in Section 2.2, if the approximation order of ϕ is Lϕ, its frequency

response Ψ(Ω) satisfies the Strang-Fix condition given by (2.15), i.e.{
Ψ[2πk] = δ[k]
Ψ(m)[2kπ] = 0, k ∈ Z, m = 0, · · · , Lϕ − 1

(6.27)

We shall use mathematical induction to prove that the frequency response of ϕd satisfies

the Strang-Fix condition also.

The frequency response of ϕd is given by (2.20) as

Ψd(Ω) =
Ψ(Ω)

Aϕ(ω)
(6.28)
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where

Aϕ(ω) =
∑
k

|Ψ(Ω + 2kπ)|2 (6.29)

with ω = Ω. The first order derivative of Ψd(Ω) with respect to Ω is given by

Ψ
(1)
d (Ω) =

d

dΩ
Ψd(Ω)

=
d

dΩ

Ψ(Ω)

Aϕ(Ω)

=
Ψ(1)(Ω)Aϕ(Ω)−Ψ(Ω)A

(1)
ϕ (Ω)

A2
ϕ(Ω)

(6.30)

where

A(1)
ϕ (Ω) =

d

dΩ
Aϕ(Ω)

= 2
∑
k

|Ψ(Ω + 2kπ)| |Ψ(1)(Ω + 2kπ)| (6.31)

For Ω = 2nπ, n ∈ Z,

A(1)
ϕ (Ω)|Ω=2nπ = 2

∑
k

|Ψ [2(k + n)π] | |Ψ(1) [2(k + n)π] |

= 0 (6.32)

since Ψ(1) [2(k + n)] π = 0 for all k, n ∈ Z. Substituting (6.32) into (6.30), we have

Ψ
(1)
d (Ω)|Ω=2nπ =

Ψ(1)(Ω)Aϕ(Ω)−Ψ(Ω)A
(1)
ϕ (Ω)

A2
ϕ(Ω)

=
0− 0

A2
ϕ(Ω)

= 0 (6.33)

Assume that Ψ
(m−1)
d (Ω) satisfies the Strang-Fix condition. Then for n ∈ Z and m =

0, · · · , Lϕ − 1, we have

Ψ
(m−1)
d (2nπ) = 0 (6.34)
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From the chain rule of differentiation,

Ψ
(m)
d (Ω) =

dm

dΩm
Ψd(Ω)

=
d

dΩ
Ψ

(m−1)
d (Ω)

= Ψ
(m)
d (Ω)Ψ

(1)
d (Ω) (6.35)

Hence,

Ψ
(m)
d (Ω)|Ω=2nπ = Ψ

(m)
d (2nπ)Ψ

(1)
d (2nπ) (6.36)

Since Ψ
(1)
d (2nπ) = 0, we have Ψ

(m)
d (2nπ) = 0 for n ∈ Z and the Strang-Fix condition is

satisfied for Ψ
(m)
d (Ω). By mathematical induction, we have Ψ

(m)
d (2nπ) = 0 for n ∈ Z,

m = 0, · · · , Lϕ−1. Therefore, Ψd(Ω) satisfies the Strang-Fix condition up to order Lϕ−1

and the approximation order of ϕd is Lϕ as well.

Now we shall return to the conditions on D for (6.26).

Proposition 6.2.3. Let φ be a known function and f(x) be a signal given by (6.3) with

a finite RI of ρf . If f(x) is to be expressed using a function ϕd as in (6.26), then the

dilation level D should satisfy

D ≤
{
T
Lϕd
Lφ
, Lφ ≥ Lϕd

T, Lφ ≤ Lϕd
(6.37)

where both φ and ϕd are assumed to be MOMS functions with approximation orders Lφ

and Lϕd respectively.

Proof. Given f(x) as in (6.26), it can be sampled by using the acquisition function ϕ

which is the dual function of ϕd at the rate 1/D. The sample values are

f [k] =

〈
f(x), ϕ

[
1

D
(x− kD)

]〉
(6.38)

=
〈
f(x− kD), ϕ

( x
D

)〉
(6.39)
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For every k, we have a ϕDk = ϕ( x
D
− k) similar to (6.9). If the approximation order of ϕ

is Lϕ, then the degree of freedom is Lϕ.

On the other hand, if f(x) is expressed as a polynomial of order Lφ − 1 as in (6.22),

then the degree of freedom is Lφ. Thus for each k, the degree of freedom must be given

by

N1 = min(Lφ, Lϕ) (6.40)

From Proposition 6.2.2, Lϕ = Lϕd . Therefore

N1 = min(Lφ, Lϕd) (6.41)

Following Proposition 6.2.1, the degree of freedom per unit time is Lφ/T . To express

f(x) using ϕd of dilation level 1/D, it requires

N1

D
≥ T

Lφ
T

(6.42)

If Lφ ≥ Lϕ, then N1 = Lϕd and hence

D ≤ T
Lϕd
Lφ

(6.43)

If Lφ ≤ Lϕd , then N1 = Lφ and

D ≤ T (6.44)

Given an acquisition function ϕ of approximation order Lϕ, the dilation level and

hence the corresponding sampling rate can be chosen directly by using (6.37).

6.2.2 Application to Consistent Resampling Theory

In a resampling system, the input sequence fT is interpolated by the interpolation function

φ to produce

f̃(x) =
∑
k

fT [k]φ
( x
T
− k
)

(6.45)
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The output fT ′ is obtained by resampling f̃(x) at the rate 1/T ′.

fT ′ [k] =
〈
f̃(x), ψ

( x
T ′
− k
)〉

(6.46)

Assume that φ and ψ are MOMS functions with approximation orders Lφ and Lψ re-

spectively. From Proposition 6.2.3, the resampling interval T ′ is required to satisfy

T ′ ≤
{
T
Lϕd
Lφ
, Lφ ≥ Lϕd

T, Lφ ≤ Lϕd
(6.47)

Consider the image resizing example discussed in Section 3.4.2. The input is sampled

with sampling period T = 1. The interpolation function and the resampling function

used are φ = β1 and ψ = δ respectively. B-spline functions are MOMS functions. The

approximation order of a B-spline of order n− 1 is L = n. Thus in this case, we have

Lφ = 2 (6.48)

For the resampling function, since the dual of ψ = δ is ψd = sincx, from Proposition 6.2.2,

the approximation order of ψ is given by

Lψ = Lψd = 1 (6.49)

Since Lψ < Lφ, according to (6.47), the resampling period should satisfy

T ′ ≤ T
Lψ
Lφ

⇒ T ′ ≤ 1

2
(6.50)

in order to to resample f̃ perfectly.

However, as we have discussed in Section 3.4.2, when the image is enlarged (zoomed

in) by a factor of 1.25, the actual resampling interval is T ′ = 0.8. Also, when the image

is reduced (zoomed out) by a factor of 0.8, T ′ = 1.25. The T ′ in both these cases are

greater than the desired resampling period given by (6.50). That is, the resampling rates

1/T ′ is lower than the desired rates. Therefore, f̃ is not perfectly resampled and some

information in f̃ is lost through each resizing process. This explains why after a series of

zooming in and out, although the size of the original image is retained, the post-processed

image is not identical to the original one.
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6.3 Summary

In this chapter we provided an upper bound on the RI for signals in shift invariant spaces.

We also specified the criteria for choosing a proper acquisition function for innovation

sampling. Based on these results, a lower bound on the resampling rate used in consistent

resampling is developed.

160



Chapter 7

Conclusions and Future Works

7.1 Conclusions

In this thesis, we have presented a new resampling theory for discrete signals with non-

bandlimited frequency responses. We call it consistent resampling. When the resampling

process is free of noise, it is possible to consistently resample a discrete signal using

arbitrary acquisition and synthesis functions by introducing a suitable correction filter

into the system. A new distance metric has been proposed to measure the closeness

of the input and output discrete signals in a resampling system in both the time and

frequency domains. The design of resampling systems when noise is present is guided

by this metric. Finally, the conditions on the resampling rate under which consistent

resampling is attainable have been explored.

The following conclusions can be drawn from the work presented in this thesis.

(i) Consistent resampling is an optimal way to resample a non-bandlimited discrete

signal in the absence of noise. It is optimal in the sense that the original signal

can be perfectly recovered from its consistently resampled output. Therefore, the

consistent resampling process is lossless. The application of consistent resampling

to demodulation of UWB signals demonstrates this lossless property.

(ii) For arbitrary acquisition function ψ and interpolation function φ, a correction filter

can be designed and incorporated into the resampling system such that consistent
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resampling is achieved. ψ and φ are not restricted to the sinc-Dirac pair but can be

any function from the Hilbert space. Applications to image resizing and rotation

have been used to demonstrate the effectiveness of the consistent resampling sys-

tem. Results obtained using consistent resampling are generally better than other

techniques because the signals are not assumed to be bandlimited.

(iii) If a signal is the consistently resampled version of another, then the projections of

these signals onto the subspace generated by the interpolation function dilated by

the corresponding sampling intervals are equal. Hence, the distance between two

discrete signals can be measured by the distance between the respective projections

onto a subspace generated by a common function. The distance metric defined in

this manner is applicable to any resampling system. It produces results that are

consistent with intuition for well established problems such as de-interlacing.

(iv) The performance of a resampling system depends on the resampling rate as well as

the interpolation function used. Additional error is caused by the non-idealness of

the resampling function. It has been shown that for arbitrary pairs of interpolation

and resampling functions, the correction filter is able to compensate for the non-

idealness and optimal performance can be achieved. A simple formula has been

derived so that the resampling performance can be easily evaluated.

(v) When noise is present in the resampling process, consistent resampling is no longer

achievable. If the input signal belongs to a bounded subspace, then the correction

filter from the solution to a minimax problem such that the maximum possible

error for all signals in that subspace is minimized. The resampled output obtained

in this manner always has smallest distance to the input signal and therefore is

optimal. Applications have been found in mobile channel estimation and image

noise removal. These application examples show that our approach out-performs

existing techniques with no additional computational cost.

(vi) There are conditions on the resampling rate such that consistent resampling is

attainable. These conditions are derived through the innovation sampling theory.
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It has been shown that the minimum resampling rate depends on the approximation

order of the interpolation function as well as the resampling function.

It has been shown that consistent resampling theory outperforms current techniques

in terms of accurate modeling of resampling process, great extent of admissible signals,

flexible to be adapted to any resampling case, robust against non-ideal filters and noise

corruption. Nevertheless, there is also some limitations on the use of consistent resam-

pling theory. First, to implement a system that enforces consistent resampling theory can

be complicated. It is noticed from the example of image applications that the correction

filters used for upsampling and downsampling are different. Second, in case of resampling

with noise, to derive the correction filter requires the knowledge of the signal as well as

the noise, which may not be available at the time of processing.

7.2 Further Research

Consistent resampling that has been developed in this thesis can be applied to many

other areas of application. We shall give an overview of some future possibilities here.

7.2.1 Multidimensional and Multirate Systems

The most obvious avenue of further research is the extension of the present methods

to multiple dimensions. In image processing applications considered in this thesis, all

2D processing are performed as separable 1D processes. However, there are cases where

the dimensions are not separable, such as resampling a hexagonally sampled 2D se-

quences [107]. A proper multi-dimensional system should be developed. Tensor product

construction can be used, but care must be taken to analyze the dependencies between

dimensions.

Another possible extension is to multi-channel multirate systems which could result

in shorter processing times. The de-interlacing example we used in this thesis could
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provide a glimpse of how the system could be designed. It is observed that the perfect

reconstruct filter bank in conventional bandlimited scenario is analyzed in the frequency

domain. In cases where the sampling functions are not necessarily ideal, the response of

the digital filters can be analyzed by the algorithms proposed in the thesis.

7.2.2 Communication Systems

Since we concentrate on the theoretical analysis of the resampling system and the prop-

erties of its error function, for illustrative purposes the communication system examples

used in this thesis are somewhat limited in scope. Further research is needed to study its

applications in a wider context. For example, in the PSAM system discussed in Chap-

ter 5, we only considered BPSK as the modulation scheme. Future works should include

other more complex modulation schemes such as Quadrature Amplitude Modulation

(QAM) [144,189]. In applying the resampling system to multi-dimensional constellations

and noisy signals, the SDP formulation may need to be modified.

7.2.3 Sensor Networks

In this thesis, uniform sampling and constant dilation factors are assumed. A very

interesting research direction would be to lift these restrictions. We can also study the

use of multiple acquisition and synthesis functions in parallel. If the dilation factor for

each acquisition function is different, then different degrees of detail can be analyzed at

different resolution level, similar to the wavelet approach. An application of such a system

is in sensor networks where spatially distributed sensors cooperate to monitor physical

or environmental conditions [13, 190]. Success of a sensor network depends crucially on

the sampling and communication processes. Systems with minimum sampling rates can

be applied. However, new methods will need to be developed for computing the RI of

the sampling functions.
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7.2.4 Compressive Sensing

The concept of information preservation that has been used to develop the consistent

resampling scheme opens up even more research directions. The minimum sampling rate

is associated with the sampling function. In the extreme, if the signal itself is used

as the sampling function, one sample is enough to reconstruct the signal completely.

Very recently, an alternative sampling or sensing theory called Compressive Sampling

or Compressed Sensing has emerged [191]. It allows the faithful recovery of signals

and images from what appears to be highly incomplete sets of data. Underlying this

methodology is a concrete protocol for sensing and compressing data simultaneously.

There seems to be a link between consistent resampling and compressive sampling in

the sense that they are both concerned with preserving the information contained in the

signals rather than their structural properties. Both aim to preserve the information

using less samples, therefore the problem is reduced to choosing an appropriate set of

sampling functions. Further work to explore the similarities and differences in these two

areas may result in new insights.
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Appendices

A.1 List of Notations

Notations

Z Integer Space
N Space of Natural Numbers
f(x) Time domain signal
H Hilbert Space
Ω Continuous frequency variable
fT (x) Sampled signal (continuous)
fT Sampled sequence
F (z) z-transform of a sequence
φ Synthesis / Reconstruction function
ϕ Sampling / Acquisition function
ψ Resampling function

V φ
T The space spanned by {φ ( x

T
− k)}k∈Z

O(f(x)) Big O Notation.

If g(x) = O(f(x)) as x→∞, lim supx→∞

∣∣∣ g(x)
f(x)

∣∣∣ <∞
Bφ the support of function φ
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A.2 List of Abbreviations

Abbreviations

FT Fourier Transform
IFT Inverse Fourier Transform
DTFT Discrete Time Fourier Transform
IR Impulse Response
FR Frequency Response
SRC Sample Rate Conversion
GST Generalized Sampling Theory
RI Rate of Innovation
GR Generalized Resampling
CR Consistent Resampling
CRS Consistent Resampling System
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A.3 Semidefinite Programming

The Semi-Definite Programming (SDP) is an efficient tool to solve convex optimization

problem [192,193]. In general, a convex optimization problem can be represented as

minimize f0(x)

subject to f1(x) ≤ bi, i = 1, · · · ,m (A.1)

where the objective function f0 and the constraint functions fi are convex:

fi(αx+ βy) ≤ αfi(x) + βfi(y) (A.2)

if α + β = 1, α ≥ 0, β > 0. For example, the least square problem is a special case of

convex problem. The variable can be extended to multi-dimensional as well. For two

points x1 and x2 in Rn, the line segment is defined by all the points

x = θx1 + (1− θ)x2 (A.3)

with 0 ≤ θ ≤ 1. A convex set contains all the line segments between any two points in

the set

x1, x2 ∈ C, 0 ≤ θ ≤ 1 =⇒ θx1 + (1− θ)x2 ∈ C (A.4)

For a function f : Rn → R, it is convex if it satisfies (A.2) and its domain is a convex

set. The same argument holds for variables of matrix type, Rn×m. Examples of convex

functions over matrices include the linear transformation function

f(X) = Tr(ATX) + b =
m∑
i=1

n∑
j=1

AijXij + b (A.5)

and the norm of a matrix

‖X‖2 = (λmax(XTX))1/2 (A.6)

where λmax(XTX) is the maximum eigenvalue of the matrix XTX. There are many

operation that preserve convexity, such as point-wise maximum and supremum as well

as minimization.
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In general, there are many representations of a convex optimization problem. One

way is to introduce slack variables. For example,

maximize f0(x)

subject to fi(x) ≤ bi, i = 1, · · · ,m (A.7)

is equivalent to

minimize τ

subject to τ − f0(x) ≥ 0

fi(x) ≤ bi, i = 1, · · · ,m (A.8)

Many convex optimization problems, such as linear programming and (convex) quadrat-

ically constrained quadratic programming can be cast as SDP. The generalized SDP

problem is given by

minimize cTx

subject to
n∑
i

xiFi +G � 0

Ax = b (A.9)

where the variable x ∈ Rn, and Fi and G are symmetric k× k matrix, denoted by Sk. �
is the component wise inequality. The linear program

(LP) minimize cTx

subject to Ax � b (A.10)

is equivalent to

(SDP) minimize cTx

subject to diag(Ax− b) � 0 (A.11)
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diag(k) creates a square matrix whose diagonal is the vector k. The quadratic problem

(QP) minimize ‖x‖2 (A.12)

can also be represented as an SDP by

(SDP) minimize t

subject to

[
tI x
xT tI

]
� 0 (A.13)

where t ∈ R and x ∈ Rn.

There are a collection of appealing properties for the symmetric matrices as required

by the SDP configuration. For a U ∈ S, the order of matrix production can be rearranged

as

xTUx = UxxT (A.14)

From (A.13), the matrix is of the form

U =

[
A B
BT C

]
(A.15)

with A,C ∈ S and A � 0, then U � 0 if and only if

C −BTA−1B � 0 (A.16)

The matrix C −BTA−1B is called the Schur Complement of A. Similarly, the inequality

C −BTA−1B � 0 is equivalent to (A.15).
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A.4 List of Publications

(i) Beilei Huang and Edmund M-K Lai, “Non-bandlimited Resampling of Images”, in

Proceedings of IEEE International Conference on Multimedia and Expo, Toronto,

Canada, July 9 -12, 2006, pp. 149-152.

(ii) Beilei Huang, Edmund M-K Lai and A.P Vinod, “Sampling with Minimum Sam-

pling Rates for Signals in Shift Invariant”, in Proceedings of IEEE International

Symposium on Circuits and Systems, New Orleans, LA, USA, May 27-30, 2007,

pp. 4004-4007.

(iii) Beilei Huang and Edmund M-K Lai and A.P Vinod, “Demodulation of UWB Im-

pulse Radio Signals Using B-spline”, in Proceedings of IEEE International Confer-

ence on Communication Systems, Singapore, Oct. 30 - Dec. 1, 2006, pp.WP-6-5.

(iv) Beilei Huang and Edmund M-K Lai and A.P Vinod, ”Implementation and Applica-

tions of Consistent Resampling”, in Proceedings of IEEE International Conference

on Information, Communications and Signal Processing, Singapore, Dec. 10-13,

2007, pp.

(v) Beilei Huang and Edmund M-K Lai, “Optimal Resampling of Finite Enerty Sig-

nals”, in Proceedings of the Fourteenth Electronics New Zealand Conference, Welling-

ton, New Zealand, Nov. 12-13, 2007, pp. 291-296.
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