Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Resolving Decomposition By Blowing Up Points And Quasiconformal Harmonic Extensions

A thesis presented in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

in

Mathematics

at Massey University, Albany, New Zealand

Samuel Adam Kuakini Dillon

Abstract

In this thesis we consider two problems regarding mappings between various twodimensional spaces with some constraint on their distortion.

The first question concerns the use of mappings of finite distortion that blow up a point where the distortion is in some L^p class; in particular, we are interested in minimal solutions to the appropriate functional. We first prove some results concerning these minimal solutions for a given radially symmetric metric (in particular the Euclidean and hyperbolic metrics) by proving a theorem which states the conditions under which a minimizer exists, as well as providing lower bounds on the L^p -norm of the function. We then apply these results to the problem of resolving decompositions that arise in the study of Kleinian groups and the iteration of rational maps. Here we prove a result concerning for which values of p we can find a mapping of a particular form which shrinks the unit interval and whose inverse has distortion in the L^p space.

The second is in regards to the Schoen conjecture, which expresses the hope that every quasisymmetric self-mapping of the unit circle extends to a homeomorphism of the disk which is both quasiconformal and harmonic with respect to the hyperbolic metric. The equation for a harmonic map between Riemann surfaces with given conformal structures is a nonlinear second order equation; one wishes to solve the associated boundary value problem. We show here that the existence question can be related to a nonlinear inhomogeneous Beltrami equation and discuss some of the consequences; this result holds in more generality for other conformal metrics as well.

Acknowledgements

First, I would like to thank my supervisor, Gaven Martin, for his guidance and support over the last four years, as well as organising funding for my research through his Marsden Fund grant.

I would also like to thank my co-supervisor, Carlo Laing, and to Boris Pavlov, my Masters' Thesis supervisor, who supported me a great deal, and provided me with the contacts to introduce me to Gaven.

I am grateful to Massey University's Institute of Information and Mathematical Sciences, who have hosted me and provided me with resources necessary to complete this research, and to the staff and student volunteers of that institute for providing support for the conferences that have been held at the Albany campus. I am also grateful to the New Zealand Institute for Advanced Study, for providing similar support. I am also grateful to the organizers of the various conferences I have attended for providing me with interesting opportunities to travel New Zealand and learn more about mathematics in general.

I am particularly grateful to the other postgraduate students I have met in the program; in particular to the other students of Gaven that I have met frequently: Maarten McKubre-Jordens whose earlier work helped establish the foundation for part of my own research, to Qingxiang Zhang for her enthusiasm and eagerness to talk and for the occasional badminton break, and to Haydn Cooper for the very helpful chats and insights into how things worked.

Finally I would like to thank my family and loved ones for their support, financial and otherwise, towards my education to get me to this point.

Contents

Li	List of Figures xi						
1	Introduction						
	1.1	Resolv	ving Decompositions By Blowing Up Points	2			
	1.2	Quasi	conformal Extensions	4			
2	Preliminary Topics						
	2.1	Möbiu	is Transformations	13			
	2.2	The H	Hyperbolic Plane	14			
		2.2.1	Poincaré Disk	14			
		2.2.2	Poincaré Half-Plane	14			
		2.2.3	Hyperbolic Punctured Disk	15			
	2.3	Harm	onic Mappings	16			
	2.4	L^p -Sp	aces And Sobolev Spaces	17			
		2.4.1	Local L^p -Spaces and Local Sobolev Spaces	17			
	2.5	Distor	rtion And Quasiconformality	17			
		2.5.1	The Beltrami Equation And Complex Dilatation	18			
		2.5.2	Quasiconformal Mappings	19			
		2.5.3	Some Established Results Of Quasiconformal Mappings	19			
		2.5.4	Quasisymmetric Mappings	20			
		2.5.5	Mappings Of Finite Distortion	21			
	2.6	Separa	able Functions	23			
		2.6.1	Radial Stretchings And Radially Symmetric Mappings	24			
		2.6.2	Radially Fixed Mappings	25			
		2.6.3	Polar Independent Mappings	25			
3	Blowing Up Points 2						
	3.1 Extremal Problems		mal Problems	27			
		3.1.1	Modulus Of Annuli	27			
		3.1.2	Nitsche-Type Extremal Problems	29			
		3.1.3	Grötzsch-Type Extremal Problems	30			

	3.2	2 The Condition And Bounding Theorems		31					
	3.3	Prelin	ninary Results	32					
		3.3.1	Reductions To A Grötzsch Problem	32					
		3.3.2	Converting \mathcal{I}_p	35					
	3.4	The I	L^1 Problem: Mean Distortion	36					
	3.5	Proof	Of The Bounding Theorem	37					
	3.6	The I	\mathcal{P} Problem	37					
		3.6.1	Determining Bounding Functions	38					
		3.6.2	Bounding Solutions And Bounding Distortion	39					
		3.6.3	Bounding c	41					
		3.6.4	Bounding \mathcal{K}_p	42					
		3.6.5	Near Extremals	43					
		3.6.6	Limit Case: The L^{∞} Problem	44					
	3.7	Proof	Of The Condition Theorem	45					
	3.8	Minin	nisers On The Euclidean Metric	46					
		3.8.1	Example Mapping	46					
		3.8.2	L^1 -minimisers In The Euclidean Metric	51					
		3.8.3	$L^p\text{-minimisers}$ In The Euclidean Metric, $1 $	52					
4	Res	Resolving A Decomposition 5							
	4.1	_	npositions	55					
		4.1.1	Separation In Modulus And Distance	56					
	4.2	Resolı	ıtion Of Decompositions	60					
		4.2.1	Proof of Separation in Modulus Decomposition Resolution						
			Theorem	67					
	4.3								
		4.3.1	L^1 Norm Of $\mathbb{K}-1$	74 78					
		4.3.2	L^p Norm Of $\mathbb{K} - 1$, $p > 1$						
		4.3.3	Generalization						
		4.3.4	Distortion Properties Of f						
5	Qua	Quasiconformal Harmonic Extensions 8							
_	5.1								
	5.2	Properties Of The Inverse							
	5.3								
	5.0	5.3.1	Ellipticity	92 94					
		5.3.2	Gradient And Laplacian Of $ \mu ^2$						
	5.4		ons For Separable Families	95					
	0.4	5.4.1	Solutions With f Separable						
		5.4.2	Solutions With μ Separable	96					

	5.5	Investigation Of The Euclidean Metric Case	. 99			
	5.6	The Hyperbolic Metric Case	. 101			
	5.7	Extending Quasisymmetric Maps	. 102			
6	Con	nclusions And Future Work	105			
	6.1	Blowing Up Points And Resolving Decompositions	. 105			
	6.2	Quasiconformal Harmonic Extensions	. 108			
\mathbf{A}	Mis	cellaneous Theorems And Results	111			
В	Alte					
Bi	bliog	graphy	115			
	Non	nenclature	. 121			
In	dex		123			

List of Figures

1.1.1 Blowing up a point: an orientation preserving mapping
1.1.2 Shrinking a curve on a surface
1.1.3 Julia set of a quadratic polynomial
1.1.4 Quotient map from left to right. Blowing up points from right to left.
2.0.1 Diagram illustrating the effect of linear distortion
3.1.1 A Nitsche-type extremal problem
3.1.2 A Grötzsch-type extremal problem
3.3.1 Diagram demonstrating the conversion of a Nitsche problem to a
Grötzsch problem; dashing and colour of the boundaries indicates
correspondence between the boundary lines and/or circles between
the mappings
3.6.1 Graphs of $P(t)$ for $p = 1, 2, 3$ and $7, \dots, 38$
3.6.2 Graph demonstrating $A(t) \leq P(t) \leq B(t)$ for $p = 3 \dots 39$
3.8.1 Illustration of the definitions of $\frac{1}{R}$ and M_1 from a given f
4.2.1 Resolving a cusp without separation
4.2.2 Resolution of a 6-lobed curve to a quasidisk
4.2.3 Resolution of a cusp
4.2.4 Illustration of Theorem 4.7
4.2.5 Illustration of mappings g_2 and g_1 shrinking a line to a point 69
4.2.6 Example of neighborhoods U_i , V_i and W_i of geodesic arc γ_i 70
4.2.7 Illustration of the construction of h_i inside U_i
4.3.1 Shrinking the line segment, showing the circles of radius 1 and 2, and
their images under a sample mapping. The grey lines represent the
preimage
6.1.1 The map $z \mapsto z - \frac{1}{z + \sqrt{z^2 - 1}}$ maps the unit circle (left) to the lemniscate
$(right) \dots \dots$