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Abstract

Fouling deposits were suspected of playing a pivotal role in the thermophile
contamination problem experienced in the dairy industry during milk powder
manufacture. The objective of this work was to investigate thermophile growth
and develop an understanding of how fouling deposits affect thermophile

contamination in milk powder plants.

Pilot plant and laboratory scale studies were carried out investigating:
e The release of thermophiles from fouled and un-fouled surfaces;
e The survival of thermophiles in fouling during cleaning;
e The rate of re-contamination of thermal equipment after incomplete
cleaning;
e and the adhesion of thermophiles to fouled and clean stainless steel.
Thermophile contamination from the pilot plant equipment was also modelled

mathematically.

The bulk milk thermophile contamination from sanitised fouled and un-fouled
surfaces was found to be not significantly different, showing that fouling
deposits by themselves do not increase the steady state amount of bulk
contamination and that the more important factor is the amount of surface area
available for colonisation within the temperature growth range of the

thermophiles.

Milk fouling layers provided much greater protection against cleaning than that
of biofilms alone. Thermophiles that survive cleaning or greater initial
thermophile concentrations in the raw milk were shown to reduce the plant
production time available before concentrations of thermophiles in the bulk milk

became excessive (>1x10° cfu.ml'l).

Theretore, cleaning procedures in milk powder plants need to remove or destroy
all traces of thermophiles to allow the maximum possible run length. It is
similarly important to obtain raw milk with the lowest possible thermophile load

before processing.
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During adhesion studies, the number of thermophilic bacteria adhering to
stainless steel surfaces increased with bulk cell concentration and increasing
contact time for adhesion. The adhesion rate of thermophiles to whole milk
fouling layers was found to be around ten times higher than the adhesion rate to

stainless steel.

Steady state modelling provided a quick estimate of the level of bulk milk
contamination that can be expected, however it was dependent on obtaining
accurate measurements of the surface numbers. Since surface numbers were
underestimated by approximately a decade using techniques that dislodged but
did not enumerate loosely adhered cells, the model under predicted the bulk milk

contamination.

Unsteady state modelling predicted the trends observed in the experimental data
and provided reasonable estimates of the bulk contamination that can be
expected over time from the pilot plant. Predictions from the model after
changes in key parameters provide an insight to the magnitude of any reduction

in contamination that can be made.

The results of this work have demonstrated that thermopile contamination during
dairy processing can be minimised through:

e Re/design operating equipment to minimise the residence time of the
product in the range of 40-70°C.

e Minimising the contact surface area of thermal equipment by use of
alternative direct heating technologies.

e Minimising fouling by management of milk quality, optimising
processing conditions, hygienic design of the plant equipment and
ensuring the product mix is suited to the plant.

e Ensuring that the plant is thoroughly clean at the commencement of each
run through attention to equipment design and optimisation of cleaning

procedures.
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