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ABSTRACT 
 

The dimeric F-actin cross-linking protein human filamin a (hsFLNa) is an actin binding 

protein, which modulates the properties of the actin cytoskeleton and plays a major role 

in maintaining the integrity of plasma membrane associated actin, the viscoelastic 

properties of the cytoplasm, endocytosis, cytoplasmic streaming, cell division and cell 

motility [McGough et al, 1998; Small et al, 2002; Popowicz et al, 2006]. Dimerization is 

crucial for actin cross-linking functions of filamins [Davies et al, 1980] and the most C-

terminal repeat of hsFLNa (hsFLNa24) is sufficient for hsFLNa dimerization [Himmel et 

al, 2003].  

Several mutations in hsflnA are associated with pathologies such as periventricular 

nodular heterotopia (PVNH) [Robertson, 2005]. In this study we examined the possible 

cause and effect of a G2593E mutation in hsFLNa24 in a male patient diagnosed with 

PVNH on protein functionality. This was done by comparing relevant biochemical 

properties of wildtype and mutant hsFLNa24 proteins. For this purpose, recombinant 

proteins were expressed from cloned hsflnA24 coding sequence. 

Full length wildtype hsflnA24 (wt hsflnA24) was amplified from a cDNA library prepared 

from the PVNH patient. wt hsflnA24  was used as the template to generate mutant 

hsflnA24 (mt hsflna24) by site directed mutagenesis. The amplified wildtype and mutant 

sequences were cloned and over-expressed in an Eschericia coli system. hsFLNa24 

proteins were isolated from crude protein extracts by immobilized metal affinity 

chromatography, purified by gel filtration and concentrated.  

Several features of the mutant protein indicate that it has a high-entropy, disordered 

structure. Thermal stability of the two proteins determined by melt curve analyses 

showed that mt hsFLNa24 is less stable than wt hsFLNa24, their respective melting 

temperatures being < 303 K and 317 K, respectively. The mutant protein also tended to 

aggregate during concentration and was prone to precipitation during low speed 

centrifugation. 

The two proteins displayed different elution volumes in size exclusion chromatography; 

wt hsFLNa24 eluted at a volume characteristic of a dimer indicating that in its native 
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form wt hsFLNa24 exists as a dimer, while the mutant’s elution volume suggests that in 

most probabilities it exists as a monomer with a slightly larger molecular size. The 

oligomerisation status of the proteins in solution was further confirmed in crosslinking 

assays using the chemical crosslinker ethylene glycol succinimido succinate ester 

(EGS). In assays where the proteins at a final concentration of 4 µM were reacted with 

1.3 mM EGS, the major form of wt FLNa24 was shown to be a high molecular weight 

dimeric species,  while dimerisation was inhibited in mt hsFLNa24 and the protein exists 

predominantly in a monomeric state.    

Both proteins were subject to various crystallizing conditions. Only wt hsFLNa24 

produced diffracting crystals which have immunoglobulin (Ig)-like folds of the E-set 

superfamily [Murzin et al, 1995] with a predominantly β–sheet structure, where seven β-

strands organized as two anti-parallel β–sheets of four (ABED) and three (CFG) 

strands, respectively, are arranged as a β-sandwich. The asymmetric unit consists of a 

dimer.  

The dimer interface is formed by β-strands C and D of the monomers and the G2593 

residue occurs in β-strand-C; it resides within the hydrophobic core of the dimer 

interface, where it is involved in a putative hydrophobic stacking.  This glycine residue is 

highly conserved in most vertebrate filamins. Ablation of the G residue in conjunction 

with substitution by a polar residue is predicted to play a major role in disrupting the 

hydrophobic nature of the interface thereby inhibiting dimerisation. The inhibition effect 

arose probably more through unfavourable entropy change induced by substitution of 

the native G by an E residue than a reorganization of the dimer interface. 

The actin cross-linking ability of filamins is ascribed to its dimerization mediated by the 

C-terminal repeats and the loss of the latter function may have serious implications to 

the patient harbouring the G2593E mutation. The relatively mild symptoms exhibited by 

the patient leads one to believe that there may be compensatory mechanisms in 

operation or that the basic premise that the most C-terminal repeat is important for 

filamin dimerisation is questionable. 
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