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Abstract. The regular nutritional intake of an expectant mother clearly af-

fects the weight development of the fetus. Assuming the growth of the fetus

follows a deterministic growth law, like a logistic equation, albeit dependent
on the nutritional intake, the ideal solution is usually determined by the birth-

weight being pre-assigned, for example, as a percentage of the mother’s average

weight. This problem can then be specified as an optimal control problem with
the daily intake as the control, which appears in a Michaelis-Menten relation-

ship, for which there are well-developed procedures to follow. The best solution

is determined by requiring minimum total intake under which the preassigned
birth weight is reached. The algorithm has been generalized to the case where

the fetal weight depends in a detailed way on the cumulative intake, suitably
discounted according to the history. The optimality system is derived and then

solved numerically using an iterative method for the specific v alues of param-

eter. The procedure is generic and can be adapted to any growth law and any
parameterisation obtained by the detailed physiology.

1. Introduction. Pregnancy is an important event in the life of a female mammal,
needed for reproduction of its progeny and maintaining the integrity of the species.
Following fertilization, the embryo implants in the uterine cavity of the female
mammal and develops into a fetus. It receives nutrition from the mother through
the placenta and umbilical cord. Then, the fetus will develop further until the time
of birth. The conceptus, the product of fertilization such as the fetus, placenta,
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etc., will develop intrauterine in three stages. The first stage called cleavage is the
process of cell division without growth or differentiation from zygote. The second
stage, differentiation, is the process of forming specific organs. The third stage,
fetal growth, occurs once the differentiation stage has been completed.

It has been suggested that growth and development of the fetus are influenced
by the maternal nutrient intake which affects the size and weight of the fetus (Red-
mer et al., 2004 [8]). Animal studies show that both maternal undernutrition and
overnutrition during pregnancy reduce placental-fetal blood flows and stunt fetal
growth (Wu et al., 2004 [9]). Wu et al. (2006) [10] suggested that the fetal growth
is influenced by complex interactions between genetic, epigenetic and environmental
factors and that the placental and fetal growth is vulnerable to maternal undernu-
trition or overnutrition throughout gestation. This suggests that the history of
nutrient intake plays an important role in fetal growth.

In this paper, we consider the fetal growth in a singleton pregnancy of a specific
mammal such as sheep in the second half of pregnancy after the differentiated fetus
is formed. We use the birth weight as an indicator of the health of both the fetus and
the mother assuming that if the birth weight is greater than a set value (for example,
a certain percentage of the mother’s average weight), an injury could be caused to
both the mother and the fetus during labour, while if the birth weight is less than
the set value, the mortality and morbidity rate of the newborn will increase. Our
goal is to find the daily nutrient intake that will achieve a desirable birth-weight
while minimizing the total nutrient intake in the second half of the pregnancy. Such
strategy could potentially increase the quality of post-natal life-history, and, in the
case of farmed mammals, give a better economic output.

Optimal control strategies have been used before to study biological systems.
For example, the optimal treatment of various infectious diseases such as HIV and
TB was calculated in the papers (Joshi, 2002 [2]; Jung et al., 2002 [3]; Kirschner
et al., 1997 [5]; Zaman et al., 2007 [11]). Optimal control theory was also used
in the harvesting, glucose uptake and predator-prey models (Lenhart et al., 2007
[6]) where some objective functional was minimized. We implement this body of
knowledge in control theory in our problem, where the end point is set, and we
show under what conditions the optimal nutrient intake is constant.

First, we justify the use of the logistic equation as a model for fetal growth. We
then describe the optimal control problem and show some numerical results.

2. Optimal control problem. Our goal is to find the daily nutrient intake that
will achieve a desirable birth-weight while minimizing the total nutrient intake in

the second half of the pregnancy. We therefore wish to minimize J {u} =
∫ tb
t0
u dt,

where u is the daily nutrient intake, subject to an ordinary differential equation
ẋ = f(x, u) that describes fetal growth where x is the fetal weight as a function of
time t, with growth function f .

2.1. Modeling of fetal growth. Our model of fetal growth is based on experi-
mental data of sheep singleton pregnancies in Australia during the second half of the
pregnancy (Gatford et al.,2008 [4]). Experimental data is not available for the first
half of the pregnancy when the fetus is very small. Hence the data in Table 1 is for
the second half of the pregnancy (about 72 days) only. Figure 1 shows the experi-
mental data (marked with *) and the best fit of several functions. The solid line de-
scribes the logistic equation, ẋ(t) = rx

(
1− x

K

)
which implies x (t) = x0K

x0+(K−x0)e−rt .

The dashed line describes the straight line function, x(t) = x0 + rt. The dash-dot
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line describes the Gompertz function, x (t) = x0e

{
ln
(

K
x0

)
(1−e−rt)

}
. The dotted line

describes the exponential function, x (t) = x0e
rt. As shown in Figure 1 the logistic

equation gives the best fit for data with the coefficient of determination R2 = 0.983.
The Gompertz, exponential and straight line functions give R2 of 0.98, 0.59 and
0.892, respectively (R2 = 1 indicates a perfect fit).

Time since conception Fetal weight
(days) (kgms)

75 0.202
84 0.360
101 0.844
109 1.434
116 2.128
121 2.825
122 2.675
132 4.200
133 4.083
145 5.433
147 4.900

Birth

Table 1. Experimental data from sheep, from Gatford et al., 2008 [4].
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Figure 1. the sheep fetal weight in kg from day 75 to day 147
(the second half of the pregnancy) in various functional forms for
growth, plotted together with the experimental data.

To include the nutritional intake as a control in the logistic equation, we multiply
r by the Michaelis-Menten relationship u

u+L . This ensures that when there is no

nutrient intake (u = 0) there is no growth, while for high intake (u >> L) Michaelis-
Menten relationship is 1 and the growth function behaves like the logistic equation.
For low intake 0 < u << L, we get a linear response with u.
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Firstly, we consider the carrying capacity (K) as a constant K = 7 kg. This is of
course a “mythical limit to growth” as birth occurs at a weight level before K occurs.
Secondly, after modifying the model to make it more realistic (taking into account
the fact that the history of nutrient intake plays an important role in fetal growth),
the carrying capacity (K) is represented as a prescribed function of the cumulative
intake using empirical relationships suggested by data analysis. Here the carrying
capacity K > 0 is presumed to depend on y according to K = K0 + ay

y+L0
where

y (t) =
∫ t
0
e−β(t−s)u (s) ds is a function of a cumulative intake (suitably discounted

according to the history), β > 0 is the discount factor which indicates the extent
to which the cumulative intake is influenced by the past, a > 0 is the factor which
indicates the degree to which the ultimate weight is de termined by the input and
K0 and L0 are positive constants.

In the case of sheep fetal growth, with 72 days for the second half of the preg-
nancy, our optimal control problem then becomes:

minimize J {u} =
∫ 72

0
u dt

subject to the ordinary differential equations:

dx

dt
=

rux

u+ L

(
1− x

K0 + ay
y+L0

)
dy

dt
= u− βy

with boundary conditions: x (0) = 0.2, x (72) = 5.5 and y (0) = 0, where x(t) is the
fetal weight in kg at time t, u(t) is the daily nutrient intake in kg · days−1 at time
t, r > 0 is the specific growth rate and L is a positive constant.

2.2. Solution of the optimal control problem. Solving the optimal control
problem using Pontryagin’s Maximum Principle (See Appendix in which it is ex-
plicitly given for general growth functions) leads to the following system of ordinary
differential equations:

ẋ =
rux

u+ L

(
1− x

K0 + ay
y+L0

)
(1)

ẏ = u− βy (2)

u̇ =

− (u+ L)

 axL0 (λ2 + 1)
(
αyL+ u2

)
+λ2αL (K0y +K0L0 + ay)
(K0y +K0L0 + ay − xy − xL0)


2 (λ2 + 1) (y + L0) (K0y +K0L0 + ay)

(3)

λ̇2 =
aL0ux (λ2 + 1) (u+ L)

L (K0y +K0L0 + ay) (K0y +K0L0 + ay − xy − xL0)
(4)

with the boundary conditions: x (0) = 0.2, x (72) = 5.5, y (0) = 0 and λ2 (72) = 0.
In the special case a = 0, the carrying capacity K is a constant and

dx

dt
=

rux

u+ L

(
1− x

K

)
= f1 (x) · f2 (u) .

In this case u = constant as can be seen from the following theorem.
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Theorem 2.1. If ẋ = f (t, x, u) = f1 (x) ·f2 (u) is separable and g is not a function

of x, g = g(t, u) where g comes from J {u} =
∫ tb
t0
g [t, u (t)] dt then u̇ = G (t, x, u) ≡

0, and so u is a constant.

Proof. Assume that ẋ = f (t, x, u) = f1 (x) f2 (u).

It has been shown in the Appendix that u̇ =
gxf

2
u−guxffu−gufxfu+gufuxf

guufu−gufuu
.

Since g = g (t, u), then gx = gux = 0, so

u̇ =
−guf ′1 (x) f2 (u) f1 (x) f ′2 (u) + guf

′
1 (x) f ′2 (u) f1 (x) f2 (u)

guuf1 (x) f ′2 (u)− guf1 (x) f ′′2 (u)
= 0.

Here f ′ is the derivative with respect to the nominated function variable. Hence,
u̇ = 0 which means that u is a constant.

Note that by substituting a = 0 in equation(4) one gets λ̇2 = 0 and therefore λ2
= constant = 0 (due to the boundary condition). By substituting a = 0 and λ2 = 0
into equation(3),the numerator in equation (3) becomes zero and one gets the same
result.

3. Numerical results. In this section, we show a specific example of optimal
nutrient intake that achieves a desired fetal weight. The optimal control problem
described by equations(1)-(4) was solved by the bvp4c command in MATLAB (this
is a finite difference code that implements the three-stage Lobatto IIIA formula).

Figure 2 shows the sheep fetal weight in kg over the 72 days of the second half
of the pregnancy, plotted together with the experimental data, with the following
parameters and boundary conditions: t0 = 0 days, tb = 72 days, x(0) = 0.2 kg,
x(72) = 5.5 kg, y(0) = 0, r = 0.07 days−1, L = 0.09 kg · days−1, a = 0.1 kg, L0 =
10 kg, β = 0.12 days−1 and K0 = 7 kg. Note that this is a solution of the optimal
control. We did not attempt to fit parameters to the experimental data here (but
used the same K0 and r used in Figure 1). Nevertheless, as seen in Figure 2, the
calculated fetal weight still fits the data very well. There is a slight improvement of
R2, (R2 = 0.985) compared to Figure 1 which suggests that the modified model with
the carrying capacity K a function of the cumulative intake, is more appropriate
with respect to the experimental data than the old one with K a constant.

Figure 3 illustrates the true minimum daily nutrient intake in kg per day over
the same period to achieve the pre-set birth-weight. This graph shows that the food
intake is increasing in the first and middle third of the second half of pregnancy and
largest in the last third of the second half of pregnancy. Note that although the
daily nutrient is decreasing fast before birth, the animal is still feeding at the birth-
time and the value of the food intake is not, of course, going to zero. The variation
in the food intake is not very large, but this depends on the model parameters.

The total nutrient intake is calculated by
∫ 72

0
udt = 127.1 kg.

For the case a = 0, where K = 7 is a constant, we obtain that u is a constant
equals 2.0 kg.days−1 and the total intake for the mother in the second half of the

pregnancy is
∫ 72

0
udt = 145.9 kg.

4. Discussion and conclusion. In this paper we have developed a generic ap-
proach for calculating the daily nutrient intake that achieves a desirable birth-weight
while minimizing the total nutrient intake. The algorithm we derived allows for a
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Figure 2. the sheep fetal weight in kg over the 72 days of the sec-
ond half of the pregnancy, plotted together with the experimental
data.
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Figure 3. The true minimum daily nutrient intake in kg per day
over the same period as in Figure 2 to achieve the pre-set birth-
weight.

direct calculation of the control variable u, which now appears explicitly as a com-
ponent function in the dynamical system, without calculating all the solutions of
the adjoint equation(s).

This allowed us to prove that in the case of constant carrying capacity where the
equation for the control is separable in terms of the state and control variables and
the objective functional depends only on the control, the optimal nutrient intake is
a constant.

We applied the algorithm to the more generalized case where the fetal weight
depends on the cumulative intake, suitably discounted according to the history. The
procedure could also be applied to other functions of fetal growth.
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Finding the optimal nutrient intake that achieves a desirable birth-weight in-
creases the quality of post-natal life-history, and, in the case of farmed mammals,
gives a better economic output.
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Appendix.

One-dimensional optimal control problem. Suppose we want to

maximize (or minimize)

J {u} =

∫ tb

t0

g [t, x (t) , u (t)] dt

subject to

d

dt
x (t) = f (t, x (t) , u (t)) , x(t0) = x0 and x(tb) = xb. (5)

where u(t) and x(t) are the control and state variables, respectively.
The principle technique for such an optimal control problem is to solve a set of

necessary conditions that an optimal control and corresponding state must satisfy
(Clark, 1976 [1]).

The Pontryagin’s Maximum Principle (Pontryagin et al., 1962 [7]) gives a Hamil-
tonian expression, H, which is defined as follows:

H (t, x, u, λ) = g (t, x, u) + λf (t, x, u) .

It has been shown (see for example, Lenhart et al., 2007 [6]) that by maximiz-
ing (or minimizing) H we also maximize (or minimize) the objective functional, J .
Assuming that a piecewise continuous optimal control exists and let u∗(t) be an op-
timal control and x∗(t) be an optimal corresponding state, the necessary conditions
can be written in terms of the Hamiltonian:

∂H

∂u
= 0 atu∗ ⇒ gu + λfu = 0, (optimality condition),

λ̇ = −∂H
∂x

=> λ̇ = − (gx + λfx) , (adjoint equation),

ẋ = f (t, x, u) =
∂H

∂λ
, x (t0) = x0, x (tb) = xb, (state equation).

After generating the state and the adjoint equation, we then obtain the dynamical
system:

ẋ = f (t, x (t) , u (t)) (6)

λ̇ = p (t, x (t) , u (t) , λ (t)) (7)

with the boundary conditions: x (t0) = x0 and x (tb) = xb.
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Next, we will solve the above system for x∗(t) and λ(t). By solving the optimality
condition, ∂H∂u = 0, we obtain the required function of u∗(t), then substituting x∗(t)
and λ(t) we obtain u∗(t).

We represent the general formulae of u̇ suitable for the optimal control problem
which has only one state equation, ẋ = f (t, x (t) , u (t)).

From the optimality condition, Hu = gu + λfu = 0, we differentiate Hu with
respect to t and use the chain rule:

∂gu
∂x

ẋ+
∂gu
∂λ

λ̇+
∂gu
∂u

u̇+ λ̇fu + λ

(
∂fu
∂x

ẋ+
∂fu
∂λ

λ̇+
∂fu
∂u

u̇

)
= 0.

Since ∂gu
∂λ = 0 and ∂fu

∂λ = 0, we obtain

∂gu
∂x

ẋ+
∂gu
∂u

u̇+ λ̇fu + λ
∂fu
∂x

ẋ+ λ
∂fu
∂u

u̇ = 0.

Substituting λ̇ = − (gx + λfx) and ẋ = f (t, x, u), we get

guxf + guuu̇+ (−gx − λfx) fu + λfuxf + λfuuu̇ = 0

(guu + λfuu) u̇ = −guxf + gxfu + λfxfu − λfuxf

u̇ =
−guxf + gxfu + λfxfu − λfuxf

guu + λfuu
.

Since gu + λfu = 0,we have λ = −gu
fu

, so that

u̇ =
gxf

2
u − guxffu − gufxfu + gufuxf

guufu − gufuu
. (8)

We have thus simplified the original algorithm by formulating the alternative
system including an equation for u̇(t) with λ̇(t) and λ(t) eliminated from the system.

Two-dimensional optimal control problem. For the optimal control problem
in this paper, we generate two state equations as in equations(1)-(2) so that the
Pontryagin’s Maximum Principle (Pontryagin et al., 1962 [7]) gives a Hamiltonian,
H, which enables us to determine the control u as a piecewise continuous control
function u : [t0, tb]→ [0,∞), as follows:

H = u+ λ1
rux

u+ L

(
1− x

K0 + ay
y+L0

)
+ λ2 (u− βy) .

with the adjoint equations:

λ̇1 = −∂H
∂x

=
−λ1ru
u+ L

(
1− 2x

K0 + ay
y+L0

)
(9)

and

λ̇2 = −∂H
∂y

=
−λ1arL0ux

2(
K0 + ay

y+L0

)2
(u+ L) (y + L0)

2
+ βλ2 (10)

for which λ2 (tb) = 0. This last boundary condition follows from the fact that we
have no value for y at t = tb.

By considering the optimality condition, ∂H
∂u = 0 and solving for u∗, subject

to the constraints, the characterizations of u∗ can be derived. To illustrate the
characterizations of u∗, we have
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∂H

∂u
= 1 + λ1

rLx

(u+ L)
2

(
1− x

K0 + ay
y+L0

)
+ λ2 = 0. (11)

This formally determines the control as the function

u∗ (t) =

√√√√− λ1rLx

(1 + λ2)

(
1− x

K0 + ay
y+L0

)
− L. (12)

Furthermore, we obtain the second derivative

∂2H

∂u2
= −λ1

2rLx

(u+ L)
3

(
1− x

K0 + ay
y+L0

)
. (13)

Hence, the strict Legendre condition ∂2H
∂u2 > 0 is satisfied on [t0, tb], if λ1(t) < 0

for t ∈ [t0, tb] holds and since in our case x, u > 0 and x < K0 + ay
y+L0

.

Following the usual procedure for solving optimal control problems, we obtain
the system in the form of λ̇1 = −∂H∂x , λ̇2 = −∂H∂y , ẋ = f1 (t, x, y, u) and ẏ =

f2 (t, x, y, u) which can be solved to obtain λ1(t), λ2(t), x(t) and y(t) which could
then be substituted into Eq. (12) to obtain the optimal control u.

By differentiating ∂H
∂u with respect to time, the above algorithm could be simpli-

fied in a similar way to the one described in the previous section by formulating the
alternative system including an equation for u̇ as shown for the system in Section
2.2, equation(3), where λ̇1(t) and λ1(t) are eliminated from the system. This is

achieved since equation (10) determines λ1 and then we obtain λ̇1 from equation
(9). Thus we obtain the alternative system in equations (1)–(4), in which the control
function appears explicitly.
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