Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Static Electric Dipole Polarizabilities of Atoms and Molecules

A thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry

> at Massey University, Albany New Zealand.

Ivan S. Lim

2004

Candidate's Declaration

This is to certify that research carried out for my Doctoral thesis entitled "*Static Electric Dipole Polarizabilities of Atoms and Molecules*" in the Institute of Fundamental Sciences, Massey University at Albany, New Zealand is my work and that the thesis material has not been used in part or in whole for any other qualification.

Candidate's Name: Ivan S. Lim Signature:

Date: July 20, 2004

Supervisor's Declaration

This is to certify that research carried out for the Doctoral thesis entitled "*Static Electric Dipole Polarizabilities of Atoms and Molecule*" was done by Mr. Ivan S. Lim in the Institute of Fundamental Sciences, Massey University at Albany, New Zealand. The thesis material has not been used in part or in whole for any other qualification, and I confirm that that the candidate has pursued the course of study in accordance with the requirements of the Massey University regulations.

Supervisor's Name: Prof. Peter Schwerdtfeger

Signature: Det Muther

Date: July 20, 2004

Abstract

The static dipole polarizabilities and ionization potentials of the first and second main group elements, including the charged ions, are obtained from all-electron relativistic coupled-cluster theory using a scalar relativistic Douglas-Kroll Hamiltonian. Spin-orbit coupling effects are investigated using a fully relativistic four-component Dirac-Coulomb-Hartree-Fock scheme followed by a secondorder many-body perturbation treatment to account for electron correlation. Periodic trends in the dipole polarizabilities and the ionization potentials are In each case, a detailed discussion on electron correlation and discussed. relativistic effects are given. A relationship for relativistic and electron correlation effects between the dipole polarizability and the ionization potential is established. Particular attention is paid to the evaluation of a near basis set limit quality of the dipole polarizabilities. This is accomplished by the evaluation of all-electron basis sets used, followed by an extensive study on the convergence behavior of the dipole polarizabilities with respect to a finite basis set expansion. The present all-electron dipole polarizabilities are believed to be very precise, especially for charged ions where the availability of experimental values are Scalar relativistic small-core pseudopotentials are fitted and their limited. performance is tested in terms of static dipole polarizabilities and ionization potentials. It is demonstrated that the small-core definition of the pseudopotential (nine-valence electron for the main group 1 and ten-valence electron for the main group 2 elements) enables us to safely omit core-valence correlation without scarifying accuracy. Following atomic dipole polarizabilities, applications are made to molecules starting with alkali dimers and their singly charged ions. The scalar relativistic pseudopotentials of this study are used to calculate equilibrium bond lengths, dissociation energies, vibrational frequencies and the dipole polarizabilities of these dimers. The change in the molecular dipole polarizabilities from the corresponding atomic dipole polarizabilities are discussed in terms of molecular bonding models. Simple ammonia complexes of the alkali-metals and their singly charged ions are studied. The equilibrium geometries, dissociation energies, harmonic vibrational frequencies as well as the dipole polarizabilities of these complexes are given.

Acknowledgments

The biggest thanks goes to Prof. Peter A. Schwerdtfeger for his encouragement and patience. Also, big thanks to Prof. Hermann Stoll and Prof. Peter Botschwina for inviting me to work in their research group and to a lot of people including Dr. Markus Pernpointner, Dr. Jon K. Laerdahl, Dr. Ralf Wesendrup, Dr. Holger Hermann, Dr. Robert Krawczyk, Nicola Gaston, and Behnam Assadollahzadeh. And of course to my parents for their continuing support and love and for never giving up on me. I also like to thank my partners in crime, Richard Selby Inkster and Mason Kailahi for being my only brothers. Last but not least I thank my other half, Carey F. Garland for being the true inspiration of my life.

Contents

1	Introduction	1
	1.1 Thesis Overview	4
2	Dipole Polarizabilities	9
	2.1 The Electric Dipole Polarizability	10
	2.1.1 The Static Dipole Polarizability	10
	2.1.2 The Dynamic Dipole Polarizability	12
	2.2 Theory	14
	2.2.1 The Oscillator Strengths and Sum Rules	14
	2.2.2 The Finite Field Method	16
	2.3 Experimental Method	18
	2.3.1 Dielectric Constant Measurement	19
	2.3.2 Refractive Index	19
	2.3.3 Beam Deflection	20
	2.4 Relationship with Ionization Potential	21
3	Relativistic Effects	25
	3.1 The Dirac Equation	26
	3.2 The Douglas-Kroll Transformation	27
	3.3 Relativistic Effects in Chemistry	31
4	Pseudopotential Approximation	35
	4.1 The Pseudopotential Approximation	36
	4.1.1 Selecting the Core	38
	4.1.2 The Model Potential (MP)	38
	4.1.3 The Effective Core Potential (ECP)	38
	4.2 The Details of the Pseudopotential Adjustment	41
	4.3 The Accuracy of Pseudopotentials	44
5	The Neutral Group 1 Elements	55
-	5.1 Basis Sets	56
	5.1.1 Basis Set Modification	56
	5.2 Static Dipole Polarizabilities of the Neutral Group 1 Elements	58

	50
lity .	61
zabilit	y
	62
	63
	65
tion	
	66
	67
	67
	68
	69
	75
	76
	77
Rb⁺.	77
tio	
	78
	80
	81
	83
i Ions	
	84
	86
Eleme	nts
	86
	86
	89
	91
	92
12.1	93
• •	93 94
· ·	93 94 95
	zabilit tion

7	The Neutral Group 2 Elements	101
	7.1 Basis Sets	102
	7.2 Basis Set Effects of the Dipole Polarizability	106
	7.2.1 Results	107
	7.3 Static Dipole Polarizabilities	109
	7.3.1 Nonrelativistic Results	109
	7.3.2 Relativistic Results	110
	7.3.3 Spin-Orbit Effects	114
	7.3.4 Comparison with other Values	114
	7.4 Ionization Potentials	115
	7.5 Pseudopotential Results	119
	7.5.1 Static Dipole Polarizabilities	119
	7.5.2 Ionization Potentials	121
8	The Singly Charged Group 2 Elements	127
	8.1 Basis Sets	127
	8.1.1 Basis Set Effects	128
	8.2 Static Dipole Polarizabilities	132
	8.2.1 Nonrelativistic Results	132
	8.2.2 Relativistic Effects	135
	8.2.3 Electron Correlation Effects at the Relativistic Level	137
	8.2.4 Spin-Orbit Effects	138
	8.2.5 Comparison with other Values	139
	8.3 Ionization Potentials	140
	8.4 Pseudopotential Results	143
	8.4.1 Static Dipole Polarizabilities	143
	8.4.2 Ionization Potentials	145
9	The Doubly Charged Group 2 Elements	149
	9.1 Basis Set	150
	9.1.1 Basis Set Effects	150
	9.2 Static Dipole Polarizabilities	155
	9.2.1 Nonrelativistic Results	155
	9.2.2 Scalar Relativistic Results	156
	9.2.3 Fully Relativistic Results	158
	9.2.4 Electron Correlation at the Relativistic Level	159
	9.2.5 Recommended Values and Comparison with other Values	160

9.3 Pseudopotential Results		•	•		•	•	·	•	•		161
9.3.1 Static Dipole Polarizabilities .		•									161
10 Ground-State Properties and Static D	ipo	ole	Po	lari	zab	iliti	ies	of	the	A	lkali
Dimers											167
10.1 Alkali Dimers											169
10.1.1 Spectroscopic Constants .											169
10.1.2 Static Dipole Polarizabilities											173
10.2 Singly Charged Alkali Dimers .											177
10.2.1 Spectroscopic Constants					•		·		·	•	177
11 Ammonia Complexes of Alkali-Metals	s										183
11.1 Method and Computational Details											184
11.2 Optimal Geometry											184
11.3 Dissociation Energies											186
11.4 Relativistic Effects in the M-N Inte	rac	tio	n								187
11.5 Vibrational Frequencies											189
11.6 Static Dipole Polarizabilities	•										192
12 Conclusion											199

12 Conclusion

Appendices

A	Pseudopotential Parameters
	Valence Basis Sets
	Core Polarization Potentials

B All-electron Basis Sets

Some of the work described in this thesis has been published already. The relevant references are:

- Ivan S. Lim, Markus Pernpointner, Michael Seth, Jon K. Laerdahl, and Peter Schwerdtfeger, *Relativistic coupled-cluster static dipole polarizabilities of the* alkali metals from Li to element 119, Phys. Rev. A 60, 2822-2828 (1999).
- [2] Ivan S. Lim, Jon K. Laerdahl, and Peter Schwerdtfeger, *The static electric dipole polarizability of Rb*⁺, J. Phys. B **33**, L91-L96 (2000).
- [3] Ivan S. Lim, Jon K. Laerdahl, and Peter Schwerdtfeger, Fully relativistic coupled-cluster static dipole polarizabilities of the positively charged alkali ions from Li⁺ to element 119⁺, J. Chem. Phys. **116**, 172-178 (2002).
- [4] Ivan S. Lim and Peter Schwerdtfeger, Four-component and scalar relativistic Douglas-Kroll calculations for static dipole polarizabilities of the alkaline-earth elements and their ions from Caⁿ to Raⁿ (n=0, +1, +2), Phys. Rev. A 70, 062501-1 (2004).
- [5] Ivan S. Lim, Bernhard Metz, Hermann Stoll, and Peter Schwerdtfeger, Allelectron and relativistic pseudopotentials studies for the group 1 element polarizabilities from K to element 119, J. Chem. Phys. accepted, Dec (2004).
- [6] Ivan S. Lim, Peter Schwerdtfeger, Tilo Söhnel, and Hermann Stoll, Ground state properties and static dipole polarizabilities of the alkali dimers from K_2^n to Fr_2^n (n=0, +1) from relativistic pseudopotential coupled-cluster and density functional studies, J. Chem. Phys. submitted (2004).
- [7] Ivan S. Lim, Bernhard Metz, Hermann Stoll, and Peter Schwerdtfeger, Relativistic small-core energy-consistent pseudopotentials for the group 2 elements from Ca to Ra, J. Chem. Phys. in preparation (2004).
- [8] Ivan S. Lim, Peter Botschwina, Hermann Stoll, and Peter Schwerdtfeger, *The* ground state properties and static dipole polarizabilities of the alkali metal ammonia complexes from $(K-NH_3)^n$ to $(Fr-NH_3)^n$ (n=0, +1), J. Chem. Phys. in preparation (2004).