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Abstract 

The static dipole polarizabilities and ionization potentials of the first and second 
main group elements, including the charged ions, are obtained from all-electron 
relativistic coupled-cluster theory using a scalar relativistic Douglas-Kroll 
Hamiltonian. Spin-orbit coupling effects are investigated using a fully relativistic 
four-component Dirac-Coulomb-Hartree-Fock scheme followed by a second­
order many-body perturbation treatment to account for electron correlation. 
Periodic trends in the dipole polarizabilities and the ionization potentials are 
discussed. In each case, a detailed discussion on electron correlation and 
relativistic effects are given. A relationship for relativistic and electron 
correlation effects between the dipole polarizability and the ionization potential is 
established. Particular attention is paid to the evaluation of a near basis set limit 
quality of the dipole polarizabilities. This is accomplished by the evaluation of 
all-electron basis sets used, followed by an extensive study on the convergence 
behavior of the dipole polarizabilities with respect to a finite basis set expansion. 
The present all-electron dipole polarizabilities are believed to be very precise, 
especially for charged ions where the availability of experimental values are 
limited. Scalar relativistic small-core pseudopotentials are fitted and their 
performance is tested in terms of static dipole polarizabilities and ionization 
potentials. It is demonstrated that the small-core definition of the pseudopotential 
(nine-valence electron for the main group 1 and ten-valence electron for the main 
group 2 elements) enables us to safely omit core-valence correlation without 
scarifying accuracy. Following atomic dipole polarizabilities, applications are 
made to molecules starting with alkali dimers and their singly charged ions. The 
scalar relativistic pseudopotentials of this study are used to calculate equilibrium 
bond lengths, dissociation energies, vibrational frequencies and the dipole 
polarizabilities of these dimers. The change in the molecular dipole 
polarizabilities from the corresponding atomic dipole polarizabilities are 
discussed in terms of molecular bonding models. Simple ammonia complexes of 
the alkali-metals and their singly charged ions are studied. The equilibrium 
geometries, dissociation energies, harmonic vibrational frequencies as well as the 
dipole polarizabilities of these complexes are given. 
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