Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. SOME ENDOGENOUS FACTORS AFFECTING ROOT FORMATION

ON HARDWOOD CUTTINGS OF TWO CLONES OF APPLE

(MALUS SYLVESTRIS MILL.) ROOTSTOCKS

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy at

Massey University

DONALD STUART TUSTIN

1976

The author would like to extend his sincere gratitude and appreciation to Mr Murray Richards and Dr David Woolley for their continued encouragement and assistance in their capcity as supervisors of this thesis.

Thanks are also extended to the following people and organisations:

The N.Z. Fruitgrowers Federation Nursery and the Levin Horticultural Research Station for supplying apple rootstocks.

The Asian Vegetable Research and Development Centre for the gift of mung bean seed.

Messrs B. Wilcox, A. Watson and D. Anderson for technical assistance.

Mrs Sara Grant for the typing of the thesis.

The University Grants Committee, whose award of a Postgraduate Scholarship made this study possible.

Page

ACKNOWLEDGEMENTS

ABSTRACT

REVIEW O	F LIT	ERATURE	1
Α.	Intr	oduction.	1
Β.	Part	I. Physical Factors Affecting the Propagation of	
	Appl	e Rootstocks from Cuttings.	2
	(1)	Physiological Age of Parent Plant	2
	(2)	Choice of Material from Parent Plant	5
	(3)	Seasonal Effects and the Time of Taking Cuttings	7
	Part	II. Physical Treatments Prior to Planting.	8
	(1)	Treatment with Synthetic Growth Substances	8
	(2)	Temperature Treatments Prior to Planting	12
	(3)	Wounding and Bud Removal as an Aid to Root	
		Initiation	14
	Part	III. Physical Treatment during Root Initiation.	16
	(1)	High Temperature Storage of Cuttings	16
С.	PLAN	I GROWTH REGULATORS AND THEIR EFFECT ON ADVENTITIOUS	
	ROOT	INITIATION	18
	(1)	Endogenous Auxins	18
	(2)	Gibberellins	23
	(3)	Cytokinins	27
	(4)	Abscisic Acid	30
	(5)	Rooting Cofactors	32
	(6)	Endogenous Rooting Inhibitors	38
	(7)	Ethylene	40

				Page
	D.	META	ABOLISM OF INDOLEACETIC ACID DURING ADVENTITIOUS	
		ROOT	? INITIATION	41
		RATI	CONALE OF THE PRESENT WORK	44
MA	TERIAI	LS ANI) METHODS	46
	Α.	PLAN	IT MATERIALS	46
	Β.	COLI	LECTION AND PREPARATION OF CUTTING MATERIALS	46
	C.	TREA	ATMENT AND PLANTING OF CUTTINGS	46
	D.	PROI	DUCTION OF MAIDEN TREES	47
	E.	RECI	IPROCAL DONOR GRAFTING	48
	F.	SAMF	PLING OF MATERIAL FOR HORMONE EXTRACTION	49
	G.	EXTF	ACTION OF PLANT MATERIAL FOR HORMONE ANALYSIS	49
		(1)	Initial Extraction	49
		(2)	Procedure for Separation of Auxins, Inhibitors	
			and Cytokinins	50
		(3)	Extraction and Separation of Rooting Cofactors	51
	H.	CHRC	MATOGRAPHY OF EXTRACTS FOR HORMONE ANALYSIS	53
		(1)	Column Chromatography of the Acidic Ether Fraction	55
		(2)	Column Chromatography of the Neutral Ether Fraction	56
		(3)	Column Chromatography of the Butanol-soluble	
			Cytokinins	57
		(4)	Paper Chromatography of Auxins and Inhibitors	58
		(5)	Paper Chromatography of Rooting Cofactors	59
		(6)	Paper Chromatography of Butanol-soluble Cytokinins	59
	I.	BIOA	ASSAY PROCEDURES	59
		(1)	Triticum Coleoptile Bioassay	59
		(2)	Avena Coleoptile Bioassay	60
		(3)	Mung Bean Root Initiation Bioassay	62
		(4)	Radish Cotyledon Expansion Bioassay	66

J.	LANC	LIN PASTES	67
K.	RADIOACTIVE CHEMICALS		
L.	RADI	CASSAY OF ¹⁴ C	69
	(1)	Scintillation Cocktails	69
	(2)	¹⁴ CO ₂ Trapping System	70
	(3)	Preparation of External Medium for Counting	70
	(4)	Preparation of Samples for Counting	71
	(5)	Treatment of Tissue Residue	71
	(6)	Counting of Radioactive Samples	71
	(7)	Quench Correction	72

Page

85

EXPER IMENTAL

SECTION I. SEASONAL CHANGES IN ROOT INITIATION, BUD DORMANCY AND HORMONAL STATUS IN MM 106 AND EM XII APPLE ROOTSTOCK HARDWOOD CUTTINGS 75

Α.	SEASONAL CHANGES IN ROOT INITIATION OF HARDWOOD	
	CUTTINGS	75
	Introduction and Methods	75
	Results	76

B. THE RELATIONSHIP BETWEEN BUD DORMANCY AND ROOT
INITIATION 79
Introduction and Methods 79
Results 80

С.	SEASONAL CHANGES OF ENDOGENOUS	GROWTH	REGULATORS	of MM	106	
	AND EM XII APPLE ROOTSTOCKS					80
	Methods					80
	Results					81
	(1) Auxins					81

(2) Abscisic Acid

		Page
	(3) Rooting Cofactors	86
	(4) Butanol-soluble Cytokinins	89
DIS	CUSSION	95
SEC	TION II. DEMONSTRATION AND LOCATION OF A TRANSMISSIBLE	
ROC	T PROMOTER IN APPLE ROOTSTOCK HARDWOOD CUTTINGS	107
A.	ROOT INITIATION TRIALS OF RECIPROCAL DONOR GRAFTED	
	ROOTSTOCKS	107
	Introduction and Methods	107
	Results	107
Β.	EXAMINATION OF ENDOGENOUS GROWTH REGULATORS FROM	
	RECIPROCAL DONOR GRAFTED MM 106 and EM XII APPLE	
	ROOTSTOCKS	109
	Methods	109
	Results	109
	(1) Auxins	109
	(2) Abscisic Acid	111
	(3) Rooting Cofactors	111
	(4) Butanol-soluble Cytokinins	111
DIS	CUSSION	116
SEC	TION III. EXAMINATION OF THE ROLES OF IAA AND IBA IN ROOT	
FOR	MATION OF DIFFICULT AND EASY-TO-ROOT CUTTINGS OF APPLE	
ROO	TSTOCKS	120
Int	roduction	120
A.	THE EFFECT OF IAA AND IBA ON ROOT FORMATION WHEN APPLIED	
	ALONE OR IN COMBINATION, I.	120
	Methods	120
	Results	121

T	Y		2	-
- 1-	$^{\prime}$ a	C	n	\cap
-	C4	195	ς.	6

Β.	THE EFFECT OF IAA AND IBA ON ROOT FORMATION WHEN APPLIED	
	ALONE OR IN COMBINATION, II.	125
	Introduction	125
	Methods	125
	(1) EM XII Hardwood Cuttings	125
	Results	125
	(2) MM 106 Hardwood Cuttings	127
	Introduction	127
	Methods	128
	Results	128
2	THE FEFFOR OF VARYING CONCENTRATIONS OF TRA ON ROOM	
0.	FORMATION OF MM 106 AND FM XII HARDWOOD CUTTINGS	13/
	FORMATION OF ME TOO AND ME ATT MANDWOOD COTTINGD	1)4
D.	The metabolism of 14 c-iaa in hardwood cuttings of mm 106	
	AND EM XII APPLE ROOTSTOCKS	136
	Methods	136
	Results	137
	(1) 14_{CO_2} Evolution	137
	(2) External Solutions	139
	(3) Alcohol Extracts of Cuttings	143
	(4) Alcohol Insoluble Compounds	145
DIS	CUSSION	147
SUMMARY	AND GENERAL DISCUSSION	157
APPENDIX	I: Buffer solutions	
APPENDIX	II: Summary of statistical analyses	
BIBLIOGR	АРНҮ	

+

Figu	are	Page
1	Summary of Extraction Procedure	52
2	Summary of Revised Mung Bean Extraction Procedure	54
3	Standard curve for wheat coleoptile response to abscisic acid.	
	Standard errors shown.	61
4	Standard curve for oat coleoptile response to indole-acetic	
	acid	63
5	Standard curve for oat coleoptile response to indole-	
	acetonitrile	64
6	Standard curve for radish cotyledon response to kinetin.	
	Standard errors shown.	68
7	Colour quench correction curve	73
8	Seasonal changes in root initiation of hardwood cuttings	
	of apple rootstocks	77
9	Seasonal changes of an acidic growth promoter, the same as or	
	similar to IAA, determined by the oat coleoptile bioassay of	
	the acid ether fractions of stem tissue samples of apple	
	rootstocks	82
10	Seasonal changes of a neutral growth promoter, the same as	
	or similar to IAN, determined by the oat coleoptile bioassay	
	of neutral ether fractions of stem tissue samples of apple	
	rootstocks	84
11	Seasonal changes of an acidic growth inhibitor, the same as	
	or similar to ABA, determined by the wheat coleoptile bioassay	
	of acidic ether fractions of stem tissue samples of apple	
	rootstocks	87
12	Seasonal changes in an acidic root initiation promoter from	
	MM 106 and EM XII apple rootstocks, determined by the mung	

bean bioassay

88

Figure

- Histograms of an aqueous promoter from stem tissue samples of MM 106 and EM XII apple rootstocks, determined by the mung bean bioassay.
- 14 Histograms of an aqueous promoter from stem tissue samples of MM 106 and EM XII apple rootstocks, determined by the mung bean bioassay, minus 1 ppm IAA 91
- 15 Seasonal changes in butanol-soluble cytokinins from MM 106 and EM XII apple rootstocks 93
- 16 Histograms of IAA-like acidic growth promoters from stem tissue samples of reciprocal donor-grafted apple rootstocks, determined by the oat coleoptile bioassay
 110
- 17 Histograms of IAN-like neutral growth promoters from stem tissue samples of reciprocal donor-grafted apple rootstocks, determined by the oat coleoptile bioassay
 112
- 18 Histograms of ABA-like acidic growth inhibitors from stem tissue samples of reciprocal donor-grafted apple rootstocks, determined by the wheat coleoptile bioassay
 113
- 19 Histograms of an aqueous promoter from stem tissue samples of reciprocal donor-grafted apple rootstocks, determined by the mung bean bioassay
 114
- 20 Histograms of an aqueous promoter from stem tissue and centrifu ate of MM 106 apple rootstock
- 21 Histograms of IAA-like growth promoters from stem tissue and centrifugate of MM 106 apple rootstock 133
- 22 Rate curves of 1-¹⁴CO₂ evolution by MM 106 and EM XII hardwood cuttings 138
- 23 Rate curves of 2-¹⁴CO₂ evolution by MM 106 and EM XII hardwood cuttings
- 24 Histograms of chromatogram segments of the 1-¹⁴C-IAA external solution 141
- 25 Histograms of chromatogram segments of the 2-¹⁴C-IAA external solution

132

140

142

Page

Figure

- 26 Histograms of chromatogram segments of the alcoholic extracts of MM 106 and EM XII hardwood cuttings treated with 1-¹⁴C-IAA 144
- 27 Histograms of chromatogram segments of the alcoholic extracts of MM 106 and EM XII hardwood cuttings treated with $2-{}^{14}C-IAA$ 146

Page

Tabl	e	Page
1	Mean number of cuttings rooted on successive harvest dates	78
2	Time in days, to 50% bud burst of cuttings of MM 106 and	
	EM XII apple rootstocks	80
3	Results of root initiation trials of stock-scion combinations	
	of MMi 106 and EM XII apple rootstocks	108
4	The number of MM 106 cuttings rooted, and the average number	
	of roots per cutting when treated either singly or in	
	combination with IAA or IBA	121
5	The number of EM XII cuttings rooted, and the average	
	number of roots per cutting, when treated either singly or	
	in combination with IAA or IBA	122
6	The number of EM XII cuttings rooted and the average number	
	of roots per cutting, when treated either singly or in	
	combination with IAA (1.0%) and IBA	126
7	The number of centrifuged MM 106 $\operatorname{cuttin}_{\operatorname{\mathfrak{E}}}^{\operatorname{s}}$ rooted and the	
	average number of roots per cutting, when treated either	
	singly or in combination with IAA (1.0%) and IBA	129
8	The effect of IBA concentration on root initiation of	
	EM XII apple rootstock hardwood cuttings	134
9	The effect of IBA concentration on root initiation of MM 106 $$	
	apple rootstock hardwood cuttings	135

Plate

- A photographic representation of the effects of IBA and 0.1% IAA in lanolin, applied either separately or in combination, on root formation of apple rootstock hardwood cuttings
- 2 A photographic representation of the effects of IBA and 1.0% IAA in lanolin, applied either separately or in combination, on root formation of MM 106 apple rootstock hardwood cuttings after centrifugation and base removal

123