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Abstract 

During abomasal parasitism, parietal cells  are inhibited and may be lost, 

although the exact mechanism is not known. The present in vivo and in vitro 

experiments investigated whether the hypoacid ity was l inked to the host's 

i nflammatory response and whether they are d i rectly targeted by parasites. 

Pathophysiological consequences of abomasal parasitism, particularly the 

effects on parietal cells were studied in d ifferent immunological settings in high­

fleece weight lambs (HFW) and their unselected controls (C) . lambs were 

infected with a single dose of Ostertagia circumcincta l3 at the age of 6.5 

months (Experiment 1 )  or 4.5 months (Experiment 2) .  The older lambs also 

received further doses of l3 weekly fol lowing  p rimary infection .  lambs were 

ki l led on Day 94 or Day 8 or 28 respectively. Serum gastrin and pepsinogen 

concentrations, blood eosinophi ls, abomasal pH,  paracortical cel ls in wool 

foll icles (wool quality) , FEC and worm burden were monitored. Antibody levels 

were measured in Experiment 1 and lymphocyte types in abomasal lymph 

nodes and food intake in Experiment 2. 

Tissue eosinophil and parietal cell counts, mucosal thickness and general 

histopathological changes in abomasal tissues from lambs in Experiment 2 

were studied along with tissues collected from randomly bred lambs between 

five and 30 days after infection with 0. circumcincta l3 or six to 72 hours after 

transplantation of adult 0. circumcincta. 

H FW lambs exhibited resil ience, but its expression d iffered with age. 

Paracortical cells i n  wool fol licles were lower and increased later in both 

experiments, yet FEC was higher in older H FW lambs. The rise i n  abomasal 

pH was delayed and serum pepsinogen concentrations were higher in older 

HFW lambs. Generally, blood eosinophils tended to be higher in controls and 

cytokine responses suggested a lower Th2 response in HFW lambs. I n  

Experiment 2 ,  tissue eosinophils were lower in HFW sheep on Day 8 .  

Resilience in  H FW lambs appeared to  be  based on  a down-regulated 



jj 

inflammatory response and the expression of resi l ience, which was dependent 

on ful l  immune responsiveness with age. Additional bases for resi l ience may 

be the abil ity to delay gastric hypoacidity and a higher food intake before and 

during parasitism as seen in the younger H FW lambs. 

No conclusive answer could be g iven to the question of hypoacidity being 

secondary to i nflammation ,  although there was a strong link between 

inflammation and raised abomasal pH associated with vacuolation and loss of 

parietal cel ls .  Tissue eosinophils were correlated with abomasal pH in al l  

lambs . Parietal cell loss coincided with hypoacidity and inflammation . B lood 

eosinophil levels d id not correlate wel l  with abomasal m ucosal eosinohi ls. I n  

tissues collected 30  hours after larval infection,  eosinophils appeared chiefly i n  

the tips of folds, but parietal cell numbers were not reduced. 

Evidence for a d i rect effect of parasite excretory/secretory products on 

epithelial cells was obtained in vitro using the HeLa cell test system for 

vacuolating activity (neutral red uptake}. Adult products were more potent than 

L3 chemicals. 

These experiments support roles for both the host inflammatory response and 

parasite chemicals in inhibiting and damaging parietal cells. 
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I ntroduction 

The agricultural industry, especially pastoral farming, p lays an important role in 

the New Zealand economy. Since l ivestock are almost exclusively kept on 

pasture i n  New Zealand, parasites, especially internal helminths, have a 

significant impact on the outcome of the sheep and beef and dairy industries. 

The alarming number of reports of d rench resistance, the increasing interest in 

o rganic farming and the recognition of the long-term impact of agricultural 

chemicals on the environment are al l  incentives to develop alternative 

strategies to the current chemical anthelmintics. H igh concentrations of 

anthelmintics are excreted in  the faeces onto the pasture where free-l iving 

nematodes and other soil and pasture dwellers are also being affected by 

highly potent chemicals. Further, there is a significant incidence of anthelmintic 

resistance amongst the common nematodes infecting  rum inants in New 

Zealand, as is the case elsewhere in the world. This alone has h ighl ighted the 

n eed to supplement current d renches with other measures to minimise the use 

of these chemicals to slow the rate of development of resistance. 

Alternative strategies to d renching include better management to minimise 

larval i ntake, exploiting the genetic variation in susceptibi l ity of animals to 

parasites and to their  impact on productivity, the use of plants containing 

natural anthelmintics as fodder, trapping the free-l iving stages of nematodes by 

fungi and the development of vaccines against the parasites. Another 

alternative would be biological control by interfering with parasite establishment, 

metabolism or reproduction. This approach wil l  depend on a much more detailed 

u nderstanding of the host-parasite interaction ,  parasite biology and the 

pathophysiological basis for resistance, resilience and susceptibility of hosts. 

The objective of the present experiments was to study the responses of sheep of 

different genetic backgrounds to infection with abomasal parasites in order to 

learn more about the communication between the parasite and the host tissues 

and the relative importance of host inflammatory responses and the 
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excretory/secretory products of the worms in causing abomasal dysfunction .  The 

effects of infection with Ostertagia circumcincta or Haemonchus contortus in 

outbred sheep are well described: inhibition of gastric acid secretion, 

hypersecretion of gastrin, increased levels of circulating pepsinogen, loss of 

functioning parietal cells, inflammation characterised by large numbers of 

eosinophils and mucous cel l  hyperplasia in the infected abomasum. What is still 

unknown is whether the parasites actively inhibit acid secretion to promote their 

survival , if so, how do they do it and could this be a target for biological control of 

abomasal nematodes. 

Alternatively, it may be more practical to breed for resistant or resi lient hosts to 

reduce the impact of the parasites with a minimum of chemical intervention. 

Whereas it has been established that resistance has an immunological basis, 

there seems to be no information on the physiological basis for resilience to 

parasitism. If resistance and resi l ience are not opposite extremes of the same 

phenomenon, then selection may provide a way for the i ncorporation of both traits 

i nto a breeding p rogramme. The experiments described in this thesis are also 

aimed at establishing the underlying reasons for d ifferent host responses to 

abomasal parasites and from these studies also to gain a better understanding of 

the pathophysiological processes initiated by the parasites. 




