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Abstract 
 

In this research it was proposed that a more robust record of volcanic activity for Mt. 

Taranaki (New Zealand) could be derived from tephras (pyroclastic fall deposits) within 

cores from several lakes and peatlands across a 120o arc, NE-SE of the volcano, 

covering a range of prevailing down-wind directions. These data were integrated with 

previous tephrochronology studies to construct one of the longest and most complete 

volcanic eruption history records ever developed for an andesitic stratovolcano. Using 

44 new radiocarbon dates, electron microprobe analysis of glass shard and 

titanomagnetite chemical composition, along with whole-rock chemistry, a chrono- and 

chemostratigraphy was established. The new record identifies at least 272 tephra-

producing eruptions over the last 30 cal ka BP. Six chemo-stratigraphic groups were 

identified: A (0.5 – 3 cal ka BP), B (3 – 4 cal ka BP), C (4 – 9.5 cal ka BP), D (9.5 – 14 

cal ka BP), E (14 – 17.5 cal ka BP), and F (23.5 – 30 cal ka BP). These were used to 

resolve previous stratigraphic uncertainties at upper-flank (proximal) and ring-plain 

(medial) sites. Several well-known “marker tephras” are now recognized as being 

~2000 years older than previously determined (e.g., Waipuku, Tariki, and Mangatoki 

Tephra units) with the prominent Korito Tephra stratigraphically positioned above the 

Taupo-derived Stent Tephra. Further, new markers were identified, including the 

Kokowai Tephra unit (~4.7 cal ka BP), at a beach-cliff exposure, 40-km north-east of 

the volcano. Once age-models were established for each tephra, units were matched 

between sites using statistical methods. Initial statistical integration showed that the 

immediate past high-resolution tephrochronological record suffered from a distinctive 

“old-carbon” effect on its ages (Lake Rotokare). This had biased the most recent 

probabilistic forecasting and generated artificially high probability estimates (52-59% 

eruption chance over the next 50 years). Once the Rotokare record was excluded and 

chemostratigraphy constraints were applied, a reliable multi-site tephra record could be 

built only for the last ~14 ka BP. The new data confirms a highly skewed distribution of 

mainly (98% of cases) short intervals between eruptions (mode of ~9 years and average 

interval ~65 years). Long intervals (up to 580 years) as seen in earlier records were 

reduced to 2% of the record, but can now be considered real, rather than missing data. 
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The new data confirm a cyclic pattern of varying eruption frequency (with a five-fold 

range in annual frequency) on a period of ~1000-1500 years. The new time-varying 

frequency estimates suggest a lower probability for a new eruption at Mt. Taranaki over 

the next 50 years of 33-42%. The newly established chemostratigraphy was further used 

to investigate time-related compositional changes. Whole-lapilli analyses highlighted 

that a specific very evolved Ca-rich and Fe-poor composition was only found within the 

easterly and south-easterly depositional sites. This was explained by eruption of a 

stratified magma reservoir, which holds greater modal proportions of plagioclase and 

lower proportions of pyroxene within low-density, gas-rich upper conduit regions. 

During the most explosive phases of eruptions, when plumes reach the stratospheric jet-

stream, the lowest-density pumice is thus dispersed by high-level stable westerly winds. 

Further, two distinct evolutional trends were seen in the long and new 

tephrochronological record; from 17.5 to 3 cal ka BP and <3 cal ka BP; with whole-

lapilli, glass, and titanomagnetite compositions overall evolving over time. The former 

compositional trend indicates a crystallising and cooling magma source in the deep 

crust, with multiple, spatially separated magma source regions forming, each generating 

magmas (i.e., magma batches) with unique titanomagnetite compositions. This trend is 

interrupted by a distinct shift towards less-evolved compositions and the initiation of a 

second parasitic vent (Fanthams Peak at the southern flank of Mt. Taranaki). 
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basis of four oxygen atoms as in Carmichael (1966). Major and minor element 

compositions of each titanomagnetite group are summarised in Table 3.2. .................. 92

 

Figure 3. 7 Glass major element compositions of Tephra Sequences A-F defined in lake 

and peat sediment cores from Mt. Taranaki (Appendix 3). Normalised analyses are 
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basalt-trachyandesite (bTA), trachyandesite (TA), trachydacite (TD) and rhyolite (R). 
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Colours represent the dominant titanomagnetite group of each tephra sequence (refer to 
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Figure 3. 8 All glass compositional data from Tephra Sequence A-F summarised on 
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indicated by horizontal bars; titanomagnetite group of each analysed tephra indicated 
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‘rew.’), and radiocarbon dating points given in calibrated ages (Table 3.2 and Turner, 

2008). The nomenclature of individual tephra layers is based on their stratigraphic 

order within the composite core (refer also to Figs. 3.2 to 3.5). Tephra Sequences A-F 

are indicated by coloured shaded fields. Correlation of individual members and/or 

groups of members is indicated by black dashed lines and/or described in text. Tephra 

layers characterised by a bimodal titanomagnetite composition are denoted with an 

asterisk (refer also to Fig. 3.6). Tephra layers characterised by variable 

titanomagnetite compositions are denoted with brackets (refer also to Fig. 3.6). ......... 99
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denoted publications. The published ages are re-calibrated using SHCal13 (Hogg et al., 

2013), see text and Table 4.1 for details. Ages with asterisks derived from a key section 

of Alloway et al. (1995) (section 23). PDC = pyroclastic density current, NPA&BS = 

New Plymouth ashes and buried soils, N = north, S = south, NW = north-west, NE = 
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Analyses in weight percent (wt%) and cation proportion (cat. prop.) calculated on the 
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Table 4.3). *E1-Konini and Mahoe (Franks et al., 1991) = Kaponga and Konini 
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