Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A Dynamic Modelling Methodology for the Simulation of Industrial Refrigeration Systems

A thesis presented in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Biotechnology and Bioprocess Engineering at Massey University.

Simon James Lovatt, B.E. (Hons) (Cantuar.)

1992

Abstract

A dynamic modelling methodology has been developed for the computer simulation of industrial refrigeration systems. A computer program, RefSim, has been developed which embodies the new methodology. RefSim contains a total of 33 separate models — 11 derived from existing models, six which are substantially enhanced and 16 which are new. In general, these models were derived from thermal considerations and ignored the effect of hydrodynamic processes in the refrigeration circuit. Models can be dynamically linked together as specified by the input data in order to simulate a complete plant. The program includes a set of simulation utilities which reduce the amount of work required to develop models. The object-oriented features of inheritance, encapsulation and polymorphism are used extensively.

Substantial model development was carried out to achieve accurate predictions of the heat release profile during chilling and freezing of food product as product cooling makes the greatest contribution to both mean and peak heat loads in many industrial refrigeration plants. The new ordinary differential equation (ODE) model was tested against finite difference (FD) calculations for a range of product shapes and Biot numbers. The ODE model predicted to within $\pm 10\%$ of the FD calculation during almost all of the cooling process under the test conditions. The ODE model required several orders of magnitude less computation than FD while being capable of extension to shapes that could not be handled by FD.

To test the new ODE model against experimental data, a differential air temperature method to measure the cooling food product heat load profile was developed. Both the FD and ODE methods predicted the heat load profile of freezing meat cartons to within the experimental margin for error ($\pm 10\%$). The ODE model also predicted the heat load profile of freezing lamb carcasses to a similar level of accuracy.

Three refrigeration plants (a laboratory water chiller, a 18500 lamb per day meat processing plant, and a 6000 lamb/1000 beef per day meat processing plant)

were surveyed to obtain data for testing the whole simulation environment. RefSim was found to predict the measured data satisfactorily in most cases. The results were superior to those from a commercial refrigeration simulation environment and comparable to an enhanced version of that environment which included the new ODE product heat load model. Differences between the measured values and those predicted by Refsim were probably more attributable to uncertainties in the simulation input data than to model deficiencies. RefSim was found to be a flexible environment which was general enough to simulate both simple and complex refrigeration systems. Unusual components could be simulated by combining existing models rather than implementing custom models.

Nevertheless, the simulation results have indicated a number of areas for further model improvement. The effects of air mixing and the thermal buffering of structural materials were shown to be modelled poorly for some refrigerated rooms. There is some scope for improving the chilling stage of the ODE product heat load model.

iii

Acknowledgements

The author would like to thank the following persons for advice and assistance during the course of this project:

Associate Professor Andrew C Cleland, Department of Biotechnology, Massey University, Chief Supervisor.

Mr Mark P F Loeffen, Head of Electrical Engineering Section, Meat Industry Research Institute of New Zealand, Supervisor.

Dr Q Tuan Pham, formerly Head of Refrigeration and Energy Section, Meat Industry Research Institute of New Zealand.

The author would like to thank the following persons for technical assistance during the experimental phase of the project:

Mr Robert M Kemp, Senior Technical Officer, Process Technology Section, Meat Industry Research Institute of New Zealand.

Mr James Willix, Senior Technical Officer, Process Technology Section, Meat Industry Research Institute of New Zealand.

Mr David Lindsay, Senior Technician, Process Technology Section, Meat Industry Research Institute of New Zealand.

The author would like to thank the following persons for assistance in gathering plant data which has been used for simulation testing:

Mr Frank Steans, formerly Chief Engineer, Alliance Ocean Beach Plant and the engineering staff of Alliance Ocean Beach.

Mr Co Coppoolse, formerly Head Shift Engineer, AFFCO Horotiu Plant and the engineering staff of AFFCO Horotiu.

The author would like to thank the Meat Industry Research Institute of New Zealand for funding this project and for making available the advice, technical support and industry contacts acknowledged above. In particular the author would like to acknowledge the support of:

Dr A Keith Fleming, Head of Process Engineering Division, Meat Industry Research Institute of New Zealand.

The design and implementation of the original computer software described in this thesis are Copyright[©] Simon James Lovatt (1991), All Rights Reserved.

Table of Contents

Abstract	ii
Acknowledgements	iv
Table of contents	vi
List of figures	
List of tables	xviii

Chapter

1	Introd	luction		1
2	Litera	ture review		3
	2.1	Refrigeration	system components	3
		2.1.1	Models	3
		2.1.2	Refrigerant thermodynamic and transport property	
			correlations	11
		2.1.3	Summary	11
	2.2	Application of	components	12
		2.2.1	Food product models	12
		2.2.2	Food product thermophysical properties	15
		2.2.3	Non-product models	16
		2.2.4	Summary	19
	2.3	Refrigeration	system simulation environments	19
		2.3.1	Custom-built simulations in general purpose	
			programming languages	20
		2.3.2	Custom-built simulations making use of simulation	
			libraries	22
		2.3.3	Custom-built simulations in specialised simulation	
			programming languages	23

A Dynamic Modelling Methodology for the Simulation of Industrial Refrigeration Systems

vi

				vii
		2.3.4	Refrigeration system simulation environments with	h
			generalised models	23
		2.3.5	Refrigeration system simulation generators	25
	2.4	General sys	stem simulation	27
		2.4.1	Summary	29
3	Preli	minary consid	lerations	30
			_	
4	Produ	ict heat load	model development	33
	4.1	Objectives		33
	4.2	The food c	ooling process	34
	4.3	Previous w	ork	36
		4.3.1	Freezing heat load	36
		4.3.2	Chilling heat load	39
	4.4	The present	t work	40
		4.4.1	Theoretical development	40
	4.5	Chilling mo	odel	41
	4.6	Freezing m	odel	43
		4.6.1	Product enthalpy in freezing and sub-cooling	46
	4.7	Sub-cooling	g model	47
	4.8	Criteria for	transition between models	48
	4.9	Evaluation	of freezing equation parameters	50
	4.10	Practical in	plementation	51
	4.11	Extension to	o non-food materials	51
5	Meas	urement of fo	od product heat load	54
	5.1	Developme	nt of methods for measuring product heat load	54
		5.1.1	Industrial freezer air cooler load measurement	54
		5.1.2	Electrical heat make-up	56
		5.1.3	Differential air temperature measurement	60

				viii			
	5.2	Materials and	l preparation	62			
		5.2.1	Carton shape	62			
		5.2.2	Lamb and sheep carcasses	62			
	5.3	Experimental	method	63			
	5.4	Air flow rate	measurement	65			
	5.5	Logged differ	rential thermocouple array output	66			
	5.6	Conclusions		66			
6	Heat l	oad measurem	ent analysis and model testing	68			
	6.1	Heat load base line estimation					
	6.2	Carton shapes	S	69			
		6.2.1	Finite difference calculations	69			
		6.2.2	Experimental measurements	70			
		6.2.3	Sources of experimental error	71			
		6.2.4	Sources of finite difference error	74			
		6.2.5	ODE model validation	77			
	6.3	Other regular	shapes	78			
		6.3.1	ODE model validation	78			
	6.4	Lamb carcass	es	82			
		6.4.1	Experimental results	82			
		6.4.2	Evaluation of E for a lamb carcass	83			
		6.4.3	Evaluation of N for a lamb carcass	85			
		6.4.4	Evaluation of thermal properties	86			
		6.4.5	Evaluation of the mean heat transfer coefficient	87			
		6.4.6	Comparison of experimental carcass results with the				
			ODE method	87			
	6.5	Discussion		93			
		6.5.1	Experimental technique	93			
		6.5.2	ODE heat load prediction method	94			

			ix
Simu	lation enviro	onment design	95
7.1	Design pr	inciples	95
	7.1.1	Simulation as a representation of reality	95
	7.1.2	Model validation	98
7.2	Scope of	a refrigeration system simulation	98
	7.2.1	Refrigeration system components	99
	7.2.2	Application components	99
	7.2.3	Control systems	100
7.3	Combined	d continuous/discrete event simulation	100
	7.3.1	Applicability to refrigeration system simulation	101
	7.3.2	Special difficulties	102
7.4	Applicatio	on of object-oriented design to the simulation problem	103
	7.4.1	Encapsulation	104
	7.4.2	Inheritance	105
	7.4.3	Polymorphism	105
	7.4.4	Message passing	106
7.5	Mapping	models to objects in RefSim	106
	7.5.1	Component model design	107
	7.5.2	Model types	111
7.6	Communi	cation between models	112
	7.6.1	The data request	112
	7.6.2	Allowable data transfer	113
7.7	Required	level of component model detail	114
7.8	Model hie	rarchy	115
7.9	Model inte	erface specification	115
7.10	Model lin	king	117
7.11	Access to	simulation utilities	120

Ref	Sim implemen	atation	123			
8.1	Implement	Implementation goals				
8.2	Choice of	implementation language	124			
	8.2.1	FORTRAN-77 implementation	124			
	8.2.2	TopSpeed Modula-2 implementation	126			
8.3	Program st	tructure	127			
8.4	Simulation	n environment	130			
	8.4.1	The simulation generator App2Ref	130			
	8.4.2	Fluid thermodynamic and transport property co	orrelations			
			132			
	8.4.3	Ordinary differential equation solver	135			
	8.4.4	Ordinary differential equation solver step size				
		controllers	138			
	8.4.	.4.1 Conventional controller with safety fact	or			
		retuning	138			
	8.4.	.4.2 Proportional-integral step size controller	r 140			
	8.4.	.4.3 Step size controller usage	141			
	8.4.5	Integration strategy controller	142			
	8.4.6	Discrete event scheduler	142			
	8.4.7	List	144			
	8.4.8	Pseudo-random number generators	146			
	8.4.9	Input parsing	146			
	8.4.	9.1 Parser	146			
	8.4.	9.2 MParser	147			
	8.4.	.9.3 LexAnal	148			
	8.4.10	Output	148			
	8.4.11	Simulation error handling	149			
8.5	Model imp	lementation specifications	149			
8.6	Model imp	lementation caveats	151			
	8.6.1	Changes in state level	151			

х

					xi
		8.6.2	Model	s with memory	153
	8.7	Execution eff	īciency		154
		8.7.1	Discre	te event scheduler rounding	154
		8.7.2	The "N	Multiple" parameter	155
	8.8	Limitations, h	ardwar	e and software requirements	156
	8.9	Conclusions			157
9	Model	implementatio	on		159
	9.1	Example simi	ulation	-	159
	9.2	Room			161
	9.3	RADSRoom			169
	9.4	Door			169
	9.5	Ventilation			171
	9.6	Wall			173
	9.7	ThermalObjec	ct		174
	9.8	RADSPipe			177
	9.9	Header			179
	9.10	RADSVessel			180
	9.11	RADSConder	nser		182
	9.12	Other models			182
10	Simula	tion testing			184
	10.1	Testing objec	tives		184
	10.2	Water chiller			186
		10.2.1 Plant o	descript	ion	186
		10.2.2 ISIM :	simulati	ion	188
		10.2.3 RefSir	n simul	ation	190
		10.2.3	. 1	Liquid tank model: FluidTank	190
		10.2.3	.2	Evaporator model: GenEvaporator	191
		10.2.3	.3	Condenser model: GenCondenser	193

		10.2.3.4	Compressor model enhancement:	
			RADSCompressor	193
		10.2.3.5	Simulation input file	194
	10.2.4	RADS V2.2 s	simulation	194
	10.2.5	RADS V3.1 s	simulation	195
	10.2.6	Simulation re	sults	196
10.3	Allian	ce Ocean Beac	h	200
	10.3.1	RADS V2.2 s	simulation	203
	10.3.2	RADS V3.1 s	simulation	204
	10.3.3	RefSim simul	ation	204
	10.3.4	Comparison		205
		10.3.4.1	Blast freezers	210
		10.3.4.2	Chiller rooms	211
		10.3.4.3	Natural-convection cold stores	211
		10.3.4.4	Continuous carton freezing tunnel	212
		10.3.4.5	Forced convection cold stores	213
		10.3.4.6	Cooling floor	213
10.4	AFFC	O Horotiu Plar	nt	213
	10.4.1	RADS V2.2 s	simulation	216
	10.4.2	RADS V3.1 s	simulation	216
	10.4.3	RefSim simul	ation	217
	10.4.4	Comparisons		217
		10.4.4.1	Refrigerant vessels	218
		10.4.4.2	Cold stores	222
		10.4.4.3	Cooling floor	223
		10.4.4.4	Beef chiller	. 223
		10.4.4.5	Continuous carton freezer	224
Simul	ation tes	t analysis		225
11.1	Metho	ds for compari	ng simulation programs	225

A Dynamic Modelling Methodology for the Simulation of Industrial Refrigeration Systems

11

xii

.:

			xiii
	11.2	Model expression	227
	11.3	Simulation results comparison	228
	11.4	Simulation flexibility	228
	11.5	Ease of model testing	230
	11.6	Conclusions	231
12	Conclusions		
	12.1	Product heat load model	233
	12.2	Simulation environment	233
	12.3	Simulation testing	234
	Notatio	n	236
	Refere	nces	243

ý.

Appendices:

- A1 Personal communication from Pham (1989): "Approximate formulae for heat load during freezing and thawing"
- A2 Extended Backus-Naur Form definition of the RefSim input language
- A3 Definition of the RefSim output format
- A4 Work published
 - A4.1 A New Method of Predicting the Time-Variability of Product Heat
 Load During Food Cooling Part 1: Theoretical
 Considerations

- A4.2 A New Method of Predicting the Time-Variability of Product Heat Load During Food Cooling — Part 2: Experimental Testing
- A4.3 Assessment of a Simple Mathematical Model for Predicting the Transient Behaviour of a Refrigeration System.
- A5 Detailed descriptions of RefSim models.
- A6 Notes on the interpretation of component model descriptions.
- A7 RefSim runtime options.
- A8 RefSim source code and executable (on IBM-compatible 1.2MB diskette).

List of Figures

5-1	Diagram of the MIRINZ environmental tunnel as set up for product heat lo	bad
	measurements	57
5-2	Diagram of Tylose-filled meat carton shapes as arranged for product heat l	oad
	measurements .	63
5-3	Sample output from the differential air temperature arrays	67
6-1	Single meat carton shape heat load as measured and as predicted by both F	D
	and ODE methods	73
6-2	Product temperatures around the meat carton shape during freezing —	
	measured	75
6-3	Product temperatures around the meat carton shape during freezing -	
	predicted by the FD method with uneven heat transfer coefficients	76
6-4	Ratio of ODE to FD heat load predictions — Slab, range of Bi	79
6-5	Ratio of ODE to FD heat load predictions — Cube, range of Bi	80
6-6	Ratio of ODE to FD heat load predictions — $Bi = 1.0$, range of shapes	81
6-7	Heat load of a carton shape as predicted by the FD method, the ODE meth	od
	of Chapter 4 and the ODE method of Cleland (1986b)	82
6-8	Measured heat load for lamb carcass run 4, and loads predicted by the ODI	E
	method which show the effects of using extreme N values	88
6-9	Measurement and ODE prediction of lamb carcass heat load - Run 1	89
6-10	Measurement and ODE prediction of lamb carcass heat load - Run 2	89
6-11	Measurement and ODE prediction of lamb carcass heat load - Run 3	90
6-12	Measurement and ODE prediction of lamb carcass heat load - Run 4	90
6-13	Measurement and ODE prediction of lamb carcass heat load — Run 5	91
6-14	Measurement and ODE prediction of lamb carcass heat load — Run 6 $$	91
6-15	Measurement and ODE prediction of lamb carcass heat load - Run 7	92
6-16	Measurement and ODE prediction of lamb carcass heat load - Run 8	92
6-17	Measurement and ODE prediction of lamb carcass heat load — Run 9 $$	93
7-1	Conceptual diagram of the RefSim Room model	109

		xvi
7-2	RefSim model hierarchy	116
7-3	Links between a model and the simulation environment data structures	119
7-4	Extract from a RefSim simulation input file	122
8-1	RefSim program structure diagram	128
8-2	Simulation utilities which may be called by model methods	129
8-3	Refrigerant property library interface	133
8-4	Air property library interface	134
8-5	Water property library interface	134
8-6	DynVarRec — the dynamic variable type	137
8-7	Structure of the RefSim skip list implementation	145
8-8	SimErr simulation error reporting procedures	150
8-9	Model interface specification as implemented	151
9-1	Simple unrefrigerated room simulation	160
9-2	Minimum model type list for the unrefrigerated room simulation	162
9-3	Model list for the unrefrigerated room simulation	163
9-4	State of the Scheduler event queue at the start of the unrefrigerated room	
	simulation	164
9-5	Conceptual diagram of a buffered door as it may be modelled in RefSim	172
9-6	Two alternative conceptual diagrams for a Wall model	175
9-7	RADS condenser arrangement as it may be implemented in RefSim	183
10-1	Laboratory water chiller plant	187
10-2	ISIM program to simulate water chiller run 1	189
10-3	RefSim input file for water chiller run 1	195
10-4	RADS V3.1 application data file for water chiller run 1	196
10-5	RADS V3.1 engine room data file for water chiller run 1	197
10-6	Water chiller run 1	198
10-7	Water chiller run 2	198
10-8	Water chiller run 3	199
10-9	Alliance Ocean Beach plant engine room configuration	202
10-10	Ocean Beach freezer room 11	206

		xvii
10-11	Ocean Beach chiller room 16	206
10-12	Ocean Beach chiller room 20	207
10-13	Ocean Beach pallet store	207
10-14	Ocean Beach carton freezing tunnel	208
10-15	Ocean Beach carton store	208
10-16	Ocean Beach cooling floor	209
10-17	AFFCO Horotiu plant engine room configuration	215
10-18	Horotiu condensing temperature	219
10-19	Horotiu HP pot	219
10-20	Horotiu LLP pot	220
10-21	Horotiu '69 store bottom floor	220
10-22	Horotiu cooling floor	221
10-23	Horotiu beef chiller 1 A	221
10-24	Horotiu continuous carton freezer 2	222

List of Tables

6-1	Thermal conductivity of Tylose MH1000	71
6-2	Temperature vs. enthalpy data for Tylose MH1000	72
6-3	Lamb and sheep carcass experimental data summary	84
10-1	Water chiller dynamic run parameters and initial conditions	188

A Dynamic Modelling Methodology for the Simulation of Industrial Refrigeration Systems

xviii