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Coherent and incoherent photon-assisted electron tunneling in optoelectronic molecular devices
in soft solids
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An electron in a bath with slow degrees of freedom~such as soft solids, e.g., proteins! is driven by a strong
time-dependent electric field. In this molecular device, the electron dynamics are characterized by quasicoher-
ent oscillations with slow square-root decay even at room temperatures. The frequency of the oscillations and
the equilibrium distribution are found essentially to depend on the field intensity and the medium parameters.
The applied field effectively changes the relaxation time of the environment from fast to slow and vice versa.
The quasicoherence allows for the prevention of overheating in the microdevice. It is also shown that the
applied field is capable of changing the character of the electron dynamics from quasicoherence to incoherent
decay. The electron transition probability strongly depends upon the applied voltage~bias! and at some values
of the field parameters, this voltage can quickly switch the coherent transfer over to incoherent transfer and
vice versa. Despite the slow electron transfer in the incoherence region, the equilibrium distribution can favor
either products or reactants, depending upon the field intensity. In the incoherent regime, the electron local-
ization is possible. All these features can be exploited in microcomputers or quantum computers.

DOI: 10.1103/PhysRevB.65.045301 PACS number~s!: 73.40.Gk, 73.23.Hk, 85.35.Gv
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I. INTRODUCTION

The design and production of energy efficient, state-
the-art electronic devices depend on the ability to prod
ever-higher densities of circuit elements within integra
circuits. Indeed, the electronics industry is driven by t
very necessity. In order to achieve these goals, the us
molecular devices in these applications has been sugge
These molecular devices involve a long-range electr
transfer process in which the electron movements occur
cording to binary logic. For this reason, these types of e
tron transfer can be exploited in switchers or element
cells in microcomputers or quantum computers.1–7

There are many advantages in using molecular devices
these types of information-processing applications. For
ample, the use of molecules for these purposes would a
for high component density, increased response speeds
very high energy efficiency. Because of their small size, th
have been many discussions regarding the possibility of
creasing data-storage density to as much as 1018 bits per
square centimeter with the use in molecular switchers.2 Also,
since electron transfer occurs within the molecules on p
second or even femtosecond time scale, it should be pos
to produce devices that respond extremely rapidly.

A specific feature of molecular devices is that the elect
transfer takes place in an environment in which many po
modes are strongly coupled to the electron. A promising s
tem for experimental observation is primary long-range el
tron transfer~longer than 17 Å! in photosynthetic bacteria
Recent experiments on such electron transfer reveal
properties in electron dynamics and one particular interes
phenomenon is nonexponential decay of the elect
density.8–14

The normal approach to the description of electron t
neling is based on the noninteracting blip approximat
0163-1829/2001/65~4!/045301~8!/$20.00 65 0453
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~NIBA ! or the same as the ‘‘Golden rule.’’ As found by Leg
gett et al.5 ~see also Ref. 16! for the NIBA, a polar medium
~a solvent or protein! should have rather fast relaxation
order to satisfy the following validity condition:

S D

vc
D 2

!1, ~1!

whereD is the transition matrix element andvc is the relax-
ation frequency of the medium modes. As demonstrated
Refs. 15–19, the simplest microscopic model, which is
pable of describing electron transfer in the most rigoro
way, is based on the spin-boson Hamiltonian:15,19

ĤSB52
1

2
\Ds̃x2
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eŝz1

1

2(k
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mk
1mkvk

2qk
2D

1
1

2
ŝz(

k
gkqk , ~2!

where the set of oscillators$k% of mass$mk% and frequency
$vk% represents the slow environment;$gk% are coupling
constants in the electron-boson interaction; ande is the en-
ergy difference between the minima of the initial and fin
electronic states~the bias or applied voltage!. The electronic
state associated with theu1& eigenstate ofŝz ~with eigen-
value 11! shall be designated as the initial electronic sta
The other electronic base state is then the final state. A t
sition between two states is due to the first term in
Hamiltonian.D is the transition matrix element.

In proteins, however, a physical picture is rather differe
For example, in a protein calledubiquitin it was found20 that
the cutoff frequency for the relaxation slow modes is

vc5231022 cm21 . ~3!
©2001 The American Physical Society01-1
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For the primary electron transfer in photosynthetic bacte
D525 cm21.21,22Apparently, the ratio

S D

vc
D 2

.1.43106@1 ~4!

becomes extremely large, and the NIBA@see Eq.~1!#, there-
fore, cannot be used to describe the electron transfer in
teins.

Since the NIBA is not valid for use in proteins, a ne
solution of the problem is necessary. We have, theref
constructed in the framework of spin-boson Hamiltonian~2!,
a solution for electron transfer in slow relaxation enviro
ment. As shown in Ref. 17 condition~4! is more complicated
and should be corrected in the following way:

S D

vc
D 2S kT

Er
D@1. ~5!

Here the reorganization energyEr is defined as follows:

Er5
1

2 (
k

gk
2

mkvk
2 .

This slow bath approximation was widely exploited in stat
tical physics,23–25spectroscopy,26–28 instanton tunneling,29,30

spin glasses,31–33and glasses34 by many authors. We will use
this approximation for the dynamic problem of electr
transfer.

Transfer of an undriven electron in a slow relaxation b
was analyzed in Ref. 17 where it was shown that the tim
dependent electron density exhibits quasicoherent osc
tions with slow decay;At. The physical picture of electron
transfer changes dramatically, however, when a laser fie
applied. Long-range electron transfer can be manipulated
a time-dependent electric field encoded with a high den
of information. Many different authors have investigated t
unusual properties of electron tunneling in a strong elec
field. Hänggi and co-workers35–38 ~see also review Ref. 39!
discovered that tunneling can be suppressed by a ti
dependent electric field. Cukier and Morillo40,41 emphasized
that interaction of an electron with a stochastic environm
can essentially affect the tunneling transition rate. Gi
resonances in the rate constant with respect to the field
tensity indicate that the electron transition can be practic
terminated~or greatly accelerated! by a small change of the
field amplitude.42–45 Theoretical predictions were numer
cally verified in Refs. 46–48. The excellent agreement w
found in Ref. 47.

An applied electric field also has the ability to reverse
direction of the electron transfer from an initial to final we
and vice versa.45 If an applied electric field has a pulse
structure, the electron density coherently oscillates betw
two states, despite the strong dissipative interaction of
electron with a polar environment.49–51 The capability of
changing the direction of the electron transfer in quant
heterostructures was theoretically examined in Refs. 52
and experimentally discovered in Refs. 55,56.

In this paper, we are interested in dynamics of an elect
driven by an external time-dependent electric field. This
04530
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lows for manipulation of the electron motion42–45 in opto-
electronic molecular devices. A new term of electron-fie
interaction should be introduced into the Hamiltonian

Ĥ5ĤSB2 1
2 mE~ t !ŝz , ~6!

wherem is the dipole-moment difference between the don
and acceptor states,E(t) is the external arbitrary electric
~laser! field.

As it will be shown later@see Eq.~18!#, the applied elec-
tric field essentially changes the whole physical picture.
equalities~1! and ~4! with Eq. ~3!, therefore, become

S DJm0
~a!

vc
D 2

5S D

veff~a! D
2

@1~!1!. ~7!

Here Jm0
(a) is the m0th order Bessel function. The lase

intensity parameter is defined in the following way:

a5
mE0

\v0
, ~8!

where a cw electric field is defined as

E~ t !5E0 cos~v0t !. ~9!

The effective relaxation time in Eq.~7! can be written in the
following way:

veff5
vc

uJm0
~a!u

. ~10!

Thus, the relaxation time of the medium becomes affected
the electric field. WhenuJm0

(a)u is close to its maximum the

medium is still slow in accordance with Eq.~5!. At Jm0
(a)

→0,veff@vc ; therefore, the protein relaxation becomes e
tremely fast. Consequently, inequality~1! is valid, and the
NIBA should be used. Hence, a time-dependent field is a
to change the relaxation time of a protein through driving
electron. We will study the main interesting properties o
driven electron in proteins and consider possible applicati
for electron molecular devices.

The outline of this paper is as follows. In Sec. II w
present the derivation of the transition probability for
driven electron motion in a slow relaxation environment. T
analysis of the results and its properties relevant to electro
molecular devices are given in Sec. III. The significance
this work is discussed in Sec. IV. The rigorous derivation
the master equation and different expressions for the tra
tion probability are presented in Appendices A and B.

II. THE TIME-DEPENDENT PROBABILITY:
MAIN RESULTS

A time-dependent probability for driven electron transf
is rigorously derived in Appendix A in the framework o
spin-boson Hamiltonian~2! and~6! and given by the follow-
ing equation@see Eqs.~A1! and ~A6!#:
1-2
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COHERENT AND INCOHERENT PHOTON-ASSISTED . . . PHYSICAL REVIEW B65 045301
P~ t ![
1

Ap
E

2`

`

dx exp~2x2!P~x,t !, ~11!

where P(x,t) satisfies the following integro-differentia
equation:

dP~x,t !

dt
52D2E

0

t

cosFe~x!

\
~ t2t1!1V~ t !

2V~ t1!GP~ t1!dt1 . ~12!

V(t) is defined as follows@see Eq.~A7!#:

V~ t !5mE
0

t

E~t!dt. ~13!

Here the electric field has an arbitrary shape. For cw elec
field ~9!, V(t) is equal to

V~ t !5a sin~v0t !. ~14!

The biase(x) depends on temperature, the parameter of
tegrationx, and the reorganization energyEr in the following
way:

e~x!52xAErkT1e2Er . ~15!

The simplest solution of Eqs.~11! and~12! can be presented
in resonance approximation~B2! as follows @see Eq.~B9!#
(t→`):

P1~ t !512
Dm0

2AErkT/\21Dm0

2
1

\Dm0

AErkT

cos~Dm0
t1p/4!

ADm0
t

,

~16!

where

P1~ t !5
11P~ t !

2
~17!

is the decay probability of the electron density in the init
state. The effective transition matrix element is given by E
~A21!,

Dm0
[DuJm0

~a!u. ~18!

Here m0 stands for a resonance number defined as follo
@Eq. ~A14!#:

e~x!/\1m0v50, ~19!

where e is the bias@see Hamiltonian~2!#. A more general
solution is presented in Appendices A and B.

As seen from Eq.~16!, the electron density reveals quas
coherent oscillations with weak square-root decay (;At) at
room temperatures despite the strong interaction between
electron and polar modes of the protein. As shown in Fig
the decay is very slow with respect to the period of osci
tions. The numerical solution described by Eq.~B7! and ana-
lytical Eq. ~16! are very close.
04530
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III. APPLICATION TO ELECTRONIC MOLECULAR
DEVICES

Conventional quantum wells of GaAs/AlxGa12xAs are
usually studied at low temperatures with no interaction
tween an electron and its environment. An electron-trans
system in proteins can also be considered as a quantum
or microelectronic molecular device. The important diffe
ence between GaAs/AlxGa12xAs double-well heterostruc
tures and molecular devices is that, in molecular devices,
interaction with the protein environment is crucial (Er
.0.3– 1.0 eV). The other essential feature of molecu
quantum wells, which is important from a technologic
point of view, is the ability to operate at room temperatur
The electron-transfer complex can also be considered a
elementary cell for a microcomputer or quantum comput

The applied time-dependent electric field drastica
changes the properties of the molecular device. There a
few features that attribute to the unusual device propert
First, according to Eq.~16!, the electron transport is quas
coherent at room temperatures despite the strong couplin
the polar protein environment. This property should not
mixed with a pure coherent motion in conventional quant
wells where the interaction with a medium is excluded fro
a Hamiltonian. Second, in molecular devices, the reorgan
tion energy appears in the frequency of the quasicohe
oscillations@see Eq.~15!#. The slow square-root decay ind
cates that there is still weak dissipation into the environme
The quasicoherence, therefore, becomes a very impo
property for microdevices since a small amount of hea
transferred to the medium. This will allow the device to o
erate without overheating, a common problem in circu
The third important property is the electron localization
the initial well. This feature can be used in quantum comp
ers.

As mentioned in the Introduction, the photon assistan
can effectively change the relaxation of the protein enviro
ment through driving the electron@see Eq.~10!#,

veff5
vc

uJm0
~a!u

.

FIG. 1. Comparison of the transition probability calculated n
merically by employing Eq.~B5! and analytically by making use o
Eq. ~B7!. Here a time is normalized tot0[\/AErkT. The reso-
nance condition is taken atm050. The intensity of the field isa
5mE0 /\v50 and\D/AErkT55.0.
1-3
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JOSHUA D. BODYFELT AND YURI DAHNOVSKY PHYSICAL REVIEW B65 045301
When Jm0
is far away from the zeros of them0th order

Bessel function, the medium is slow. Consequently, the e
tron dynamics exhibits quasicoherent properties. IfJm0

(a)

→0, veff5vc /uJm0
(a)u becomes extremely large, and inequ

ity ~5! takes the opposite sign. The approach described
Sec. II, Appendices A and B, therefore, is invalid, and o
should use the traditional NIBA.

The transition probability for the transfer of an electr
driven by a cw electric field is well known in the noninte
acting blip approximation.42,45 For high temperatures (\vc
!kT), P1(t) is equal to

P1~ t !5
G21G1 exp@2~G11G2!t#

G11G2
, ~20!

where G1 and G2 are the forward and backward reactio
rates, respectively,

G1,25
\D2

4 S p

ErkTD 1/2

(
n52`

`

Jn
2~a!expF2

~e2Er6\v0!2

4ErkT G .

~21!

Equation ~21! was derived in a high-temperature limit. I
accordance with Eq.~20!, the equilibrium electron density a
the donor state is described by the following equation:

Peq5
1

11G1 /G2
. ~22!

The time-dependent probability,P1(t), is exponential and
essentially different from the quasicoherent oscillations
scribed by Eq.~16!. The quasicoherent and incoherent r
gimes are shown in Fig. 2. The dashed line represents
fast exponential decay atJ0(2.3)50.055. Fora53.8, the
zeroth order Bessel function has the maximum. Hence,
electron transfer is quasicoherent@ uJ0(3.8)u.0.4#. As dem-
onstrated in Fig. 2, the coherence decay is much slower
that for the exponential regime.

Another important feature of the system is the depende
on the applied voltage, ore ~see Fig. 3!. Since we consider
only the resonance transitions satisfying Eq.~19!, the depen-
dence of the transition probability on the Bessel indexm0 is

FIG. 2. Time-dependent transition probability for two differe
values of the field intensity. When the intensity parametera52.3 is
taken within theincoherenceregion, the evolution is exponentia
For a53.8, the dynamics is oscillative. The values of the para
eters arem050 and\D/AErkT55.0.
04530
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given. According to Fig. 3,P1(t) is rather sensitive to the
applied voltage. Form050 the transition probability has th
maximum, while form051, P1(t) has the minimum.

IV. CONCLUSIONS

In this work we have found some unusual features
driven electron transfer in proteins at room temperatur
These characteristics can be very useful for electronic m
lecular devices or elementary cells in microcomputers
quantum computers. The investigated properties are~a! the
electron exhibits quasicoherent oscillations with slo
square-root decay at room temperatures despite strong
pling to a bath;~b! the relaxation time of the environmen
can effectively be changed from slow to fast andvice versa
by tuning the laser intensity;~c! the electron can be quickly
localized in the initial state;~d! the quasicoherent oscillation
can be changed to exponential evolutions by choosing
appropriate intensity of the time-dependent electric field.

Property~a! is important in microdevices since quasic
herent current does not overheat the device at room temp
tures. On the contrary, the reaction with exponential evo
tion supplies the reaction heat into the environment that d
lead to overheating. Properties~b!, ~c!, and ~d! allow the
electron to quickly relax to the localized state without tran
ferring the reaction heat into the environment. This localiz
tion can become the main feature in quantum computers
switchers.

All of the characteristics mentioned above have been
orously derived on the basis of spin-boson Hamiltonian~2!.
The validity condition is given by Eq.~5!. Quasicoherent
features appear in a slow relaxation bath even at room t
peratures. For the driven electron the effective relaxat
time of the protein environment can be shortened by
time-dependent electric field in such a way that the quas
herence is changed to exponential evolution. Only in the
ponential regime can an electron can be localized in the
tial well.
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FIG. 3. Applied voltage or bias dependence of the transit
probability. The different resonance numbersm0 correspond to dif-
ferent values of the voltage satisfying resonance condition~19!. The
value of the parameter\D/AErkT55.0. The intensity paramete
a51.8 is chosen to be within thecoherenceregion. The dramatic
change in the transition probability is demonstrated.
1-4
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APPENDIX A: THE MASTER EQUATION

We study dynamics of driven long-range electron trans
in the framework of the spin-boson Hamiltonian@see Eqs.
~1! and ~6!#. In general, the transition probability can b
found as an exact formal expansion relative to the value
transition matrix elementD,15 which, in our case, is modified
by the driving force.16,58 In this Appendix we follow the
derivation presented in Ref. 17.

First, we assume that the observation time is mu
smaller than the relaxation time of the slow modes, i
tvc

s!1. Second, the next assumption is inequality~5! ~see
the derivation in Ref. 17!. It means that the relaxation of th
environment is much slower than the shuttling of the elect
between the wells (D21). Under these assumptions17 we can
present the time-dependent probability in the following w
@see Eq.~11!#:

P~ t ![
1

Ap
E

2`

`

dx exp~2x2!P~x,t !, ~A1!

where the partial transition probability is defined as follow

P~x,t !5 (
n50

`

~2D2!nE
0

t

dt2nE
0

t2n
dt2n21¯E

0

t2
dt1

3)
j 51

n

cosFe~x!

\
~ t2 j2t2 j 21!1V~ t2 j !2V~ t2 j 21!G .

~A2!

Here the reaction heate(x) stands for

e~x![
2\x

t0
1e2Er . ~A3!

t0 is the blip relaxation time defined in the following way

t0[
\

AErkT
. ~A4!

In the previous derivation we have assumed that the temp
ture is high, i.e.,

\vc
s<kT. ~A5!

The high-temperature approximation becomes essentia
devices working at room temperatures.

Series~A2! can be obtained as a formal expansion of
following integrodifferential master equation for the part
probability P(x,t),

dP~x,t !

dt
52D2E

0

t

cosFe~x!

\
~ t2t1!1V~ t !2V~ t1!GP~ t1!dt1

~A6!

with the initial conditionP(t50)51. HereV(t) is defined
as follows:

V~ t !5mE
0

t

E~t!dt. ~A7!
04530
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Equation~A6! is valid for an arbitrary bias and driving force
In this work, we restrict ourselves to a cw electric field giv
by the following equation:

V~ t !5a sin~vt ![
mE0

\v
sin~vt !, ~A8!

where m is the electron dipole-moment difference, andE0
and v are the amplitude and the frequency of the elec
field, respectively. Taking into consideration Eq.~A8!, Eq.
~A6! yields

dP~x,t !

dt
52D2E

0

t

cosFe~x!

\
~ t2t1!1a sin~vt !

2a sin~vt1!GP~ t1!dt1 . ~A9!

In order to solve Eq.~A9! one employs the following usefu
identity:57

exp@a sin~vt !#[ (
m5`

`

Jm~a! exp~ imvt !. ~A10!

By making use of the Laplace transform,

P~x,l!5E
0

`

dt exp~2lt !P~x,t !, ~A11!

one can obtain the following equation for the Laplace ima
of the partial probabilityP(x,l):

lP~x,l!2152
D2

2 E
0

`

dt1 exp~2lt2!E
0

t1
dt2

3 (
n,m52`

`

Jn~a!Jn1m~a!XexpH i F ~x!

\
1mvG

3~ t12t2!1 invt1J 1c.c.CP~x,t2!. ~A12!

The direct integration overt1 and t2 yields the following
equation forP(x,l):

lP~x,l!2152
D2

2 (
n,m52`

`

Jn~a!Jn1m~a!

3F P~l2 inv!

l2 i @e~x!\1~n1m!v#

1
P~l1 inv!

l1 i @e~x!/\1~n1m!v#G . ~A13!

The terms, which mainly contribute to the series, are ter
either in the exact resonance or close to resonance. The
nance is defined by the following condition:

e~x!/\1~n1m!v50 ~A14!

or
1-5
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Dem0
[ue~x!1~n1m!\vu!\v. ~A15!

The latter condition assumes that the mismatch is very sm
These resonance conditions were widely used for dri
electron transfer without59 and with dissipation.60

We denote the resonance value of the integer as follo

m0[m1n. ~A16!

The double sum in Eq.~A13! becomes single with resonanc
condition~A14! or ~A15!. Thus, for long times or smalll’s,
Eq. ~A13! can be transformed into the following equation

lP~x,l!2152
D2

2
Jm0

~a! (
n52`

`

Jm02n~a!F P~l2 inv!

l2 iDem0
\

1
P~l1 inv!

l1 iDem0
/\G . ~A17!

For nÞ0, one can neglect smalll in P(l6 inv), since all
terms become the small corrections of the order (D/v)2 with
respect to unity in Eq.~A17!. Therefore, one should keep th
term with n50. This condition essentially simplifies Eq
~A17!,

lP~x,l!2152D2
lJm0

2 ~a!P~x!

l21~Dem0
/\!2 . ~A18!

The solution of this equation is straightforward,

P~x,l!5
1

l

l21~Dem0
/\!2

l21Vm0

2 , ~A19!

where the Rabi frequencyVm0
is defined in the usual way,

Vm0

2 [Dm0

2 1~Dem0
/\!2 . ~A20!

Dm0
stands for

Dm0
[DuJm0

~a!u . ~A21!

Finally the time-dependent probability difference can
found with the inverse Laplace transform of Eq.~A19!,
yielding the following solution:

Pm0
~x,t !5

~Dem0
/\!2

Vm0

2 1
Dm0

2

Vm0

2 cos~Vm0
t !. ~A22!

The final expression for the transition probability differen
is determined by Eq.~A1!

P~ t ![
1

Ap
E

2`

`

dx exp~2x2!Pm0
~x,t !, ~A23!

with Pm0
defined by Eq.~A22!.

APPENDIX B: A HIGH FREQUENCY ELECTRIC FIELD

As seen from Eqs.~A3! and~A15!, Dem0
depends on the

parameterx. Therefore, resonance condition~A14! or ~A15!
04530
ll.
n

s:

is smeared by the distribution ofx. Consequently, many reso
nances~actually an infinite number! occur. We consider
fields with high frequencies in order to study a single, we
defined resonance, assuming that the following condition
satisfied:

\v@AErkT. ~B1!

The contribution of the term, wherem1n5m0 in Eq. ~A13!,
dominates. Herem0 is determined from the following equa
tion:

e2Er1m0\v50. ~B2!

For a small mismatch, the following inequality takes plac

ue2Er1m0\vu!2AErkT. ~B3!

In an experiment one measures an electron density at a d
site rather than the probability differenceP(t). Hence the
probability for the electron density to be at the donor lev
P1(t) can be merely defined throughP(t),

P1~ t !5
11P~ t !

2
. ~B4!

Consequently, Eq.~A23! is transformed to the following
equation forP1(t):

P1~ t !512
Dm0

2

2Ap
E

2`

`

dx exp~2x2!
12cos@Vm0

~x!t#

Vm0

2 ~x!
.

~B5!

Here the frequencyVm0

2 (x) stands for

Vm0

2 ~x!5D2Jm0

2 ~a!1S 2x

t0
1

e2Er1m0\v

\ D 2

. ~B6!

Integral ~B5! with Vm0

2 (x) defined by Eq.~B4! with reso-

nance condition~B2!, can be performed using the saddl
point approximation and results in the following expressi
for P1(t):

P1~ t !512
Dm0

2AErkT/\21Dm0

2

1
Dm0

cos@Dm0
t1f~ t !/2#

2A4 ~ErkT/\21Dm0

2 !21t2Dm0

2 ~ErkT/2\2!2
,

~B7!

wheref(t) is defined by
1-6
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cos@f~ t !#[
Erkt/\21Dm0

2

A~ErkT/\21Dm0

2 !21t2Dm0

2 ~ErkT/2\2!2
,

sin@f~ t !#[
Dm0

t/2

A~ErkT/\21Dm0

2 !21t2Dm0

2 ~ErkT/2\2!2

~B8!

f→0 whent→0 andf→p/2 whent→`. Solution~B7! is
valid when condition ~B8! is satisfied, i.e., De(x)
!2AErkT.

At long t,

P1~ t !512
Dm0

2AErkT/\21Dm0

2
1

\Dm0

AErkT

cos~Dm0
t1p/4!

ADm0
t

.

~B9!

Thus, att→` the coherent oscillations slowly decay in tim
as 1/At. This dependence is much slower than exponen
.

r

i,

io

on

.

hy

rf

A

04530
al

evolution predicted for electron transfer in a medium w
fast relaxation. In the derivation of Eq.~B7! or ~B9! we have
not specified the value ofDm0

. It can be larger or smalle

thanAErkT/\2. At the small ratio of the following param
eter:

Dm0

AErkT/\2
,

a time dependence becomes insignificant.
The other important characteristic that should be analy

is the equilibrium distributionPeq determined from the fol-
lowing equation:

Peq512
Dm0

2A~ErkT/\!21Dm0

2
. ~B10!

Equation~B10! determines the current in a circuit.
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