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An electron in a bath with slow degrees of freeduch as soft solids, e.g., proteins driven by a strong
time-dependent electric field. In this molecular device, the electron dynamics are characterized by quasicoher-
ent oscillations with slow square-root decay even at room temperatures. The frequency of the oscillations and
the equilibrium distribution are found essentially to depend on the field intensity and the medium parameters.
The applied field effectively changes the relaxation time of the environment from fast to slow and vice versa.
The quasicoherence allows for the prevention of overheating in the microdevice. It is also shown that the
applied field is capable of changing the character of the electron dynamics from quasicoherence to incoherent
decay. The electron transition probability strongly depends upon the applied v@iageand at some values
of the field parameters, this voltage can quickly switch the coherent transfer over to incoherent transfer and
vice versaDespite the slow electron transfer in the incoherence region, the equilibrium distribution can favor
either products or reactants, depending upon the field intensity. In the incoherent regime, the electron local-
ization is possible. All these features can be exploited in microcomputers or quantum computers.
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[. INTRODUCTION (NIBA) or the same as the “Golden rule.” As found by Leg-
gettet al® (see also Ref. )6for the NIBA, a polar medium
The design and production of energy efficient, state-of{a solvent or proteinshould have rather fast relaxation in
the-art electronic devices depend on the ability to produc@rder to satisfy the following validity condition:
ever-higher densities of circuit elements within integrated

circuits. Indeed, the electronics industry is driven by this (A 2

very necessity. In order to achieve these goals, the use of o) =L @)

molecular devices in these applications has been suggested.

These molecular devices involve a long-range electronwhereA is the transition matrix element andl, is the relax-
transfer process in which the electron movements occur a@tion frequency of the medium modes. As demonstrated in
cording to binary logic. For this reason, these types of elecRefs. 15-19, the simplest microscopic model, which is ca-
tron transfer can be exploited in switchers or elementary?@ble of describing electron transfer in the most rigorous

We

cells in microcomputers or quantum computkrs. way, is based on the spin-boson Hamiltontar?

There are many advantages in using molecular devices for L L L )
these types of information-processing applications. For ex- ~ - . Pk 2 9
ample, the use of molecules for these purposes would allow 'S8~ _EﬁAax_szJrEzk: Fkerkwqu)
for high component density, increased response speeds, and
very high energy efficiency. Because of their small size, there +}A D @
have been many discussions regarding the possibility of in- 272 K 9>

creasing data-storage density to as much a¢ bils per

square centimeter with the use in molecular switcRériso, ~ where the set of oscillatork} of mass{m,} and frequency

since electron transfer occurs within the molecules on picofw} represents the slow environmerg,} are coupling

second or even femtosecond time scale, it should be possibf@nstants in the electron-boson interaction; ard the en-

to produce devices that respond extremely rapidly. ergy difference between the minima of the initial and final
A specific feature of molecular devices is that the electrorglectronic stategthe bias or applied voltageThe electronic

transfer takes place in an environment in which many polastate associated with the-) eigenstate of, (with eigen-

modes are strongly coupled to the electron. A promising sysvalue +1) shall be designated as the initial electronic state.

tem for experimental observation is primary long-range elecThe other electronic base state is then the final state. A tran-

tron transfer(longer than 17 Ain photosynthetic bacteria. sition between two states is due to the first term in the

Recent experiments on such electron transfer reveal nefdamiltonian.A is the transition matrix element.

properties in electron dynamics and one particular interesting In proteins, however, a physical picture is rather different.

phenomenon is nonexponential decay of the electrofror example, in a protein callasbiquitin it was found® that

density?~14 the cutoff frequency for the relaxation slow modes is
The normal approach to the description of electron tun-
neling is based on the noninteracting blip approximation w,=2%X10"2 cmt, 3
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For the primary electron transfer in photosynthetic bacteridows for manipulation of the electron motitfn“°® in opto-
A=25cm 12422 Apparently, the ratio electronic molecular devices. A new term of electron-field
A interaction should be introduced into the Hamiltonian
(w_c

becomes extremely large, and the NIBsee Eq(1)], there-  \ynare , is the dipole-moment difference between the donor
Igirr?é cannot be used to describe the electron transfer in proy,y acceptor state€(t) is the external arbitrary electric
. ) ) i ) (lasey field.
Since the NIBA is not valid for use in proteins, a new As it will be shown latefsee Eq(18)], the applied elec-

solution of the problem is necessary. We have, thereforgyq fie|q essentially changes the whole physical picture. In-
constructed in the framework of spin-boson Hamiltonian equalities(1) and (4) with Eq. (3), therefore, become
a solution for electron transfer in slow relaxation environ-

2
=1.4x10°>1 (4)

H=Fgs— 3uE(1)d,, (6)

ment. As shown in Ref. 17 conditidd) is more complicated AJ, (a)\? 2
and should be corrected in the following way: ( Mo ) :( ) >1(<1). 7)
We wer(Q)
A\2(KT , .
(w—c) (E—r)>1. (5)  HereJy (a) is the mgth order Bessel function. The laser

intensity parameter is defined in the following way:
Here the reorganization ener@y is defined as follows:

~Eo
1o % = ®)
E=5> —>. o
. L . . . where a cw electric field is defined as
This slow bath approximation was widely exploited in statis-
H H 3-25 —-28; 1~ 29,30
tical physics?®>~2°spectroscop§?~?instanton tunneling® E(t)=E cos wgt). )

spin glassed'~3and glasse¥ by many authors. We will use
this approximation for the dynamic problem of electron The effective relaxation time in E7) can be written in the

transfer. _ _ _ following way:
Transfer of an undriven electron in a slow relaxation bath

was analyzed in Ref. 17 where it was shown that the time-
dependent electron density exhibits quasicoherent oscilla-
tions with slow decay- \t. The physical picture of electron
transfer changes dramatically, however, when a laser field i L .
applied. Longg-]range electronytransfer can be manipulated b‘?hus, the.rel_axatlon time of thg medium bgcome§ afected by
a time-dependent electric field encoded with a high densit € glectr_m f"_eld' Wh?'h‘]mo(a” IS closg to its maximum the
of information. Many different authors have investigated themedium is still slow in accordance with E¢p). At Jy, (a)
unusual properties of electron tunneling in a strong electric— 0,04 w,; therefore, the protein relaxation becomes ex-
field. Hanggi and co-workerS 38 (see also review Ref. 39 tremely fast. Consequently, inequalit§) is valid, and the
discovered that tunneling can be suppressed by a timeNIBA should be used. Hence, a time-dependent field is able
dependent electric field. Cukier and Morflfd"! emphasized to change the relaxation time of a protein through driving the
that interaction of an electron with a stochastic environmengtlectron. We will study the main interesting properties of a
can essentially affect the tunneling transition rate. Giantdriven electron in proteins and consider possible applications
resonances in the rate constant with respect to the field irfor electron molecular devices.
tensity indicate that the electron transition can be practically The outline of this paper is as follows. In Sec. Il we
terminated(or greatly acceleratedy a small change of the present the derivation of the transition probability for a
field amplitude®®=%° Theoretical predictions were numeri- driven electron motion in a slow relaxation environment. The
cally verified in Refs. 46—48. The excellent agreement wasnalysis of the results and its properties relevant to electronic
found in Ref. 47. molecular devices are given in Sec. lll. The significance of
An applied electric field also has the ability to reverse thethis work is discussed in Sec. IV. The rigorous derivation of
direction of the electron transfer from an initial to final well the master equation and different expressions for the transi-
and vice versd"® If an applied electric field has a pulsed tion probability are presented in Appendices A and B.
structure, the electron density coherently oscillates between
two states, despite the strong dissipative interaction of an
electron with a polar environmefit->! The capability of
changing the direction of the electron transfer in quantum
heterostructures was theoretically examined in Refs. 52—-54 A time-dependent probability for driven electron transfer
and experimentally discovered in Refs. 55,56. is rigorously derived in Appendix A in the framework of
In this paper, we are interested in dynamics of an electrospin-boson Hamiltonia2) and(6) and given by the follow-
driven by an external time-dependent electric field. This aling equationsee Eqs(Al) and (A6)]:

We

(J)eff:|‘]moT)|. (10)

Il. THE TIME-DEPENDENT PROBABILITY:
MAIN RESULTS

045301-2



COHERENT AND INCOHERENT PHOTON-ASSISTED . ..

1

NG

where P(x,t) satisfies the following integro-differential
equation:

P(t)= dxexp(—x?)P(x,t), (11

©
—o0

dP(x,t) t X)
T —Azfo Cos{%(t—tl)wLV(t)
—V(ty) |P(ty)dt;. (12
V(1) is defined as follow$see Eq.(A7)]:
t
V(t)ZMfoE(T)dT. (13
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FIG. 1. Comparison of the transition probability calculated nu-
merically by employing Eq(B5) and analytically by making use of
Eq. (B7). Here a time is normalized te,=#/\E,kT. The reso-
nance condition is taken am,=0. The intensity of the field is
=uEy/hw=0 andaA/E,kT=5.0.

Here the electric field has an arbitrary shape. For cw electric

field (9), V(t) is equal to Ill. APPLICATION TO ELECTRONIC MOLECULAR

DEVICES

V() =asin(wot). (14 Conventional quantum wells of GaAsjda _,As are

The biase(x) depends on temperature, the parameter of inusually studied at low temperatures with no interaction be-
tegrationx, and the reorganization energy in the following ~ tween an electron and its environment. An electron-transfer
way: system in proteins can also be considered as a quantum well
or microelectronic molecular device. The important differ-
ence between GaAs/Aba _,As double-well heterostruc-
tures and molecular devices is that, in molecular devices, the
interaction with the protein environment is cruciak,(
=0.3-1.0 eV). The other essential feature of molecular
quantum wells, which is important from a technological
point of view, is the ability to operate at room temperatures.
The electron-transfer complex can also be considered as an
elementary cell for a microcomputer or quantum computer.

The applied time-dependent electric field drastically
changes the properties of the molecular device. There are a
few features that attribute to the unusual device properties.
First, according to Eq(16), the electron transport is quasi-
coherent at room temperatures despite the strong coupling to
the polar protein environment. This property should not be
mixed with a pure coherent motion in conventional quantum
is the decay probability of the electron density in the initial wells where the interaction with a medium is excluded from
state. The effective transition matrix element is given by Eqa Hamiltonian. Second, in molecular devices, the reorganiza-
(A21), tion energy appears in the frequency of the quasicoherent
oscillations[see Eq(15)]. The slow square-root decay indi-
cates that there is still weak dissipation into the environment.
] The quasicoherence, therefore, becomes a very important
Here m, stands for a resonance number defined as fo”OWEroperw for microdevices since a small amount of heat is
[Eq. (A14)]: transferred to the medium. This will allow the device to op-
erate without overheating, a common problem in circuits.
The third important property is the electron localization in
the initial well. This feature can be used in quantum comput-
ers.

€(X)=2x\VE,kT+e—E,. (15

The simplest solution of Eq$11) and(12) can be presented
in resonance approximatioiB2) as follows[see Eq.(B9)]
(t—):

A mo hA mo cogA mot + l4)

VAt

(16)

2\EkT/H2+A2  VEKT
where

1+P(t
Put)= o

17

Am,=Al3p ()], (19)

()1 +myw=0, (19)

where € is the bias[see Hamiltonian2)]. A more general
solution is presented in Appendices A and B.

As seen from Eq(ls)’ the electron density reveals quasi_ As mentioned in the |ntrOdUCti9n, the photon -aSSiSt.ance
coherent oscillations with weak square-root decay/f) at ~ can effectively chgnge the relaxation of the protein environ-
room temperatures despite the strong interaction between tffBent through driving the electrdisee Eq(10)],
electron and polar modes of the protein. As shown in Fig. 1,
the decay is very slow with respect to the period of oscilla-
tions. The numerical solution described by HEg87) and ana-
lytical Eq. (16) are very close.

We
Weff— T+, < -
T Imy(2)]
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FIG. 2. Time-dependent transition probability for two different  FIG. 3. Applied voltage or bias dependence of the transition
values of the field intensity. When the intensity paramate2.3 is  probability. The different resonance numbetg correspond to dif-
taken within theincoherenceregion, the evolution is exponential. ferent values of the voltage satisfying resonance condifiSh The
For a=3.8, the dynamics is oscillative. The values of the param-value of the parameteiA/\E kT=5.0. The intensity parameter
eters arany=0 and#A/E kT=5.0. a=1.8 is chosen to be within theoherenceregion. The dramatic

change in the transition probability is demonstrated.

When J,,, is far away from the zeros of thegth order . . . . .
o . L given. According to Fig. 3P4(t) is rather sensitive to the
Bessel function, the medium is slow. Consequently, the elec

. - . X applied voltage. Fomy=0 the transition probability has the
tron dynamics exhibits quasicoherent properties if(a) maximum, while formy=1, P(t) has the minimum.
—0, wer=wc /Iy (8)] becomes extremely large, and inequal-

ity (5) takes the opposite sign. The approach described in

Sec. Il, Appendices A and B, therefore, is invalid, and one | this work we have found some unusual features for
should use the traditional NIBA. driven electron transfer in proteins at room temperatures.
The transition probability for the transfer of an electron These characteristics can be very useful for electronic mo-
driven by a cw electric field is well known in the noninter- lecular devices or elementary cells in microcomputers or
acting blip approximatiofi>#® For high temperaturesi.  quantum computers. The investigated properties(ar¢he
<kT), P4(t) is equal to electron exhibits quasicoherent oscillations with slow
square-root decay at room temperatures despite strong cou-
pling to a bath;(b) the relaxation time of the environment
can effectively be changed from slow to fast arnde versa
by tuning the laser intensity(g) the electron can be quickly
wherel'y andI'; are the forward and backward reaction |ocalized in the initial state(d) the quasicoherent oscillations
rates, respectively, can be changed to exponential evolutions by choosing the
- appropriate intensity of the time-dependent electric field.
7 |\ (e—E *hwg)? Property(a) is important in microdevices since quasico-
—) > Jz(a)ex;{—— : perty P : q
EKT/ =" 4E KT herent current does not overheat the device at room tempera-
(21)  tures. On the contrary, the reaction with exponential evolu-
tion supplies the reaction heat into the environment that does
lead to overheating. Properti€b), (c), and (d) allow the
electron to quickly relax to the localized state without trans-
ferring the reaction heat into the environment. This localiza-
tion can become the main feature in quantum computers and
(22)  switchers.
All of the characteristics mentioned above have been rig-
d orously derived on the basis of spin-boson Hamiltor(@2n

essentially different from the quasicoherent oscillations deJ "€ validity condition is given by Eq(5). Quasicoherent
scribed by Eq.(16). The quasicoherent and incoherent re.features appear in a slow relaxation bath even at room tem-

gimes are shown in Fig. 2. The dashed line represents tHaeratures. For thg driV(_an electron the effective relaxation
fast exponential decay aly(2.3)=0.055. Fora=3.8, the time of the protein environment can be shortened by _the
zeroth order Bessel function has the maximum. Hence, thiime-dependent electric field in such a way that the quasico-
electron transfer is quasicoherdhiy(3.8)|=0.4]. As dem- herence is changed to exponential evolution. Only in the ex-

onstrated in Fig. 2, the coherence decay is much slower thaq)]onential regime can an electron can be localized in the ini-

that for the exponential regime. tial well.
Another important feature of the system is the dependence

on the applied voltage, or (see Fig. 3. Since we consider

only the resonance transitions satisfying Ef), the depen-

dence of the transition probability on the Bessel indgxis

IV. CONCLUSIONS

T+ exd — (T +T))t]
TL+1, ’

Pi(t)= (20)

hA?

F1,2= 4

Equation (21) was derived in a high-temperature limit. In
accordance with Eq20), the equilibrium electron density at
the donor state is described by the following equation:

1

Per=15T,/T,"

The time-dependent probability?,(t), is exponential an
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APPENDIX A: THE MASTER EQUATION Equation(A6) is valid for an arbitrary bias and driving force.

. . In this work, we restrict ourselves to a cw electric field given
We study dynamics of driven long-range electron transfer

in the framework of the spin-boson Hamiltonigsee Egs. by the following equation:

(1) and (6)]. In general, the transition probability can be 2Eo

found as an exact formal expansion relative to the value of a V(t)=asin(wt)= ——sin(wt), (A8)
transition matrix elemen,'® which, in our case, is modified hw

by the driving force®*® In this Appendix we follow the \yhere 4 is the electron dipole-moment difference, aig
derivation presented in Ref. 17. and » are the amplitude and the frequency of the electric

First, we assume that the observation time is muchie|q, respectively. Taking into consideration Eé8), Eq.
smaller than the relaxation time of the slow modes, .8.(A6) yields

tog<1. Second, the next assumption is inequally (see
the derivation in Ref. 1)7 It means that the relaxation of the dP(x,t) ZJt {e(x
=- 0

) .
environment is much slower than the shuttling of the electron at — (-t +asin(wt)

between the wellsX ~%). Under these assumptidiisve can

present the time-dependent probability in the following way _
[see Eq(11)]: —asin(wty) |P(ty)dt;. (A9)
1 (= ) In order to solve Eq(A9) one employs the following useful
P(t)y=— dxexp —x°)P(x,t), (A1) identity”
Jm )=
where the partial transition probability is defined as follows: ] - ]
exgasinwt)]= 2 Jn(a) explimwt).  (A10)
* o ton t, m=e
P(X’t):nzo (=49 fodtZ"fo dtz”—l”'fo dt, By making use of the Laplace transform,
n ©
X
<1 008 0ty 40+ Vi) Vit )| POV = [ Cdtex-aoPn, (A1)

(A2) one can obtain the following equation for the Laplace image

Here the reaction heat(x) stands for of the partial probabilityP(x,A):

2hX A® (= “
E(X)ET_+G_Er. (A3) )\P(X,)\)_1:_7fo dtlexq_)\tz)fo dt2
0
is the blip relaxation time defined in the following way: - X
o P g way X > Jn(a)JMm(a)(exp[i (7+mw
n,m=—c
i (A4)
To= .
VE(KT X(t;—ty)+inwty +c.c.)P(x,t2). (A12)
In the previous derivation we have assumed that the tempera-
ture is high, i.e., The direct integration ovet; andt, yields the following
equation forP(x,\):
fiwg<KT. (A5) , .
The high-temperature approximation becomes essential for AP(X,\)—1=—— 2 Jn(@)dn.m(a)
devices working at room temperatures. 2 nm=—c
Series(A2) can be obtained as a formal expansion of the PO\ —inw)
following integrodifferential master equation for the partial X i
probability P(x,t), A—i[e(X)A+(Nn+mM)w]
PN +inw)
dP(x,t) t €(x)
i =—A2JO cos{T(t—uHV(t)—V(m P(ty)dt, A Filelh+ (nrmw]” AT

(AB)  The terms, which mainly contribute to the series, are terms
with the initial conditionP(t=0)=1. HereV(t) is defined either in the exact resonance or close to resonance. The reso-
as follows: ' nance is defined by the following condition:

e(X)/h+(n+mM)w=0 (A14)

t
V(t):,u,J'OE(’T)dT. (A7) o
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A€ =|e(X)+(N+Mio|<ho. (A15) is smeared by the distribution &f Consequently, many reso-
_ _° _ _ nances(actually an infinite numberoccur. We consider
The latter condition assumes that the mismatch is very smalfields with high frequencies in order to study a single, well-

These resonance conditions were widely used for drivemefined resonance, assuming that the following condition is

electron transfer withotit and with dissipatiof® satisfied:
We denote the resonance value of the integer as follows:
Mmy=m-+n. (A16) hw>JEKT. (B1)

The double sum in EqA13) becomes single with resonance
condition(Al14) or (A15). Thus, for long times or smaN’s,
Eqg. (A13) can be transformed into the following equation:

The contribution of the term, whera+n=m, in Eq. (A13),
dominates. Heren, is determined from the following equa-

tion:
A? - P\ —inw)
AP(X,\)—1=— 7Jm0(<’:1)n=§;3c Jmy—n(@) N—ihe h e—E,+mphw=0. (B2)
0
P(N+inw) For a small mismatch, the following inequality takes place:
NI —, (A17)
)\+|Aem0/ﬁ

e—E,+myfiw|<2\EKT. B3
For n#0, one can neglect small in P(A =inw), since all | oo ' B3)

terms become the small corrections of the ordet«)? with
respect to unity in EqCAL17). Therefore, one should keep the
term with n=0. This condition essentially simplifies Eq.

In an experiment one measures an electron density at a donor
site rather than the probability differend(t). Hence the
probability for the electron density to be at the donor level

(A17), P1(t) can be merely defined throudgh(t),
, N (2P(X)
AP(X,\)—1=—-A m- (A18) PL(1)= 1+P(t) (B4)

5
The solution of this equation is straightforward,
Consequently, Eq(A23) is transformed to the following

2 2
1 N+ (Aem, /h) (Al9)  equation forPy(t):

POON=Y e,
0
where the Rabi frequendf,, is defined in the usual way, Arzno oc 1-cog O (X)t]
0 Pl(t)=1—?f dxeX[X—XZ)Qz—(X)

OF =A% +(Aem 17)?. (A20) . Mo (5)

A, stands for
Here the frequency)ﬁlo(x) stands for
Am=Al35 (3)] . (A21)
. . . . 2

Finally the time-dependent probability difference can be 2 i A2a2 2x e-Etmphio
found with the inverse Laplace transform of EG\19), Qmo(x)—A ‘Jmo(a)+ o + h (B6)

yielding the following solution:
(A 1h)? A2 Integral (B5) with Qﬁqo(x) defined by Eq.(B4) with reso-
¢ _XcogQ.t). (A22) hance conditionB2), can be performed using the saddle-
0

Qrzno Qf point approximation and results in the following expression

. . . S for P4(t):
The final expression for the transition probability difference

is determined by EqAL)

Pmo(xat) =

0

A
1 (= 2 ()=1- m02 2
P(t)s\/—; _dxexp(—x)Pp(x.t),  (A23) 2\EKTI?+ AL
with P, defined by Eq(A22). A, cog A t+ ¢(1)/2]

+ b
2(EKTIN+ AT )2 +12A7 (EKT/2h?)?
APPENDIX B: A HIGH FREQUENCY ELECTRIC FIELD

As seen from Eq9A3) and(A15), Aemo depends on the
parametex. Therefore, resonance conditioA1l4) or (A15)  where ¢(t) is defined by

(B7)
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E kt/A?+ AR
(E,kT/H%+ A§0)2+t2A§0(ErkT/2h2)2’

cog () ]= J

A /2
V(EKT/H2+ A;O)2+t2A§O(ErkT/2ﬁ2)2
(B8)
¢—0 whent—0 and¢— 7/2 whent—oo. Solution(B7) is

si ¢(1)]

valid when condition (B8) is satisfied, i.e., Ae(x)
<2+EKT.
At long t,
A, il COLAm t+m/4)
Py(t)=1-

+
2\EKTM2+AZ  VEKT  \JAnt
(B9)
Thus, att— o the coherent oscillations slowly decay in time

PHYSICAL REVIEW @& 045301

evolution predicted for electron transfer in a medium with
fast relaxation. In the derivation of E¢B7) or (B9) we have
not specified the value le\mo- It can be larger or smaller

than \/ErkT/hz. At the small ratio of the following param-
eter:
Am,

JE kT/H%

a time dependence becomes insignificant.

The other important characteristic that should be analyzed
is the equilibrium distributiorP ., determined from the fol-
lowing equation:

P..=1 Sy
& 2 J(EkTIR)?+ A7

(B10)

as 1At. This dependence is much slower than exponential Equation(B10) determines the current in a circuit.
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