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Abstract

This thesis presents mathematical models for the dynamics of vaccine preventable diseases,

specifically looking at the New Zealand situation. Through the use of integral and

differential equations, we develop models and compare the results of these to known data.

Using game theory analysis we determine and compare the proportion of the population

that needs to be vaccinated in order to minimise the expected costs to the individuals in

the population and to the community. Two different scenarios and methods are considered,

where the effects of vaccination last only one epidemic cycle (using an integral equation

method) and where vaccination is effective over an entire lifetime (using a differential

equation method). For both scenarios, we find that the minimum cost for the individuals

is reached when a lower proportion of the population is vaccinated than needed for the

minimum cost to the community.

We then elaborate on the integral equation method to produce a model for repeated

epidemics of measles in a population, where a discrete mapping is used to include the

year to year demographics of the population. The results of this model show a different

epidemic pattern then that produced from a differential equation model, with numerical

problems encountered. From here on, we use differential equation models in our analysis.

A critique and extension to an existing model for the dynamics of the hepatitis B

virus is presented, with discussion on the appropriateness of the model’s construct for

predicting the incidence of infection. Alternative differential equation models for hepatitis

B virus and immunisation that include splitting the population into age groups with non-

homogeneous mixing are presented. The results of these models are compared with the

known data on incidence of infection and carriage in New Zealand, showing how affective

different immunisation schedules may have been.

Differential equation models are then presented for meningococcal B virus epidemiol-

ogy in New Zealand, with the models incorporating different features of the virus until

the best model is found that fits the New Zealand data. Each model is compared with

the known incidence of infection, with the population being either treated as a whole or

split into age groups with non-homogeneous mixing. The effect of vaccination is included

in this model so that we can explore the future of the infection in the population, and

how best to tackle any future epidemics. The model shows that the current vaccination

campaign was the best solution for controlling the epidemic, but there will be epidemics

in the future that will need subsequent vaccination campaigns to limit the number of

infections.
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Chapter 1

Introduction

When the incidence of an infection starts to increase in any population, people start to

look at how best to combat the outbreak or at least to curb the number of infections.

Launching nationwide vaccination campaigns (or even vaccinating a small group of a

population) can be a costly and time consuming endeavour, so any tool that will enable

the campaign to be more directed or to predict the outcome is highly valuable.

Daniel Bernoulli developed a mathematical model of the impact of vaccination

against smallpox in 1760, and since then there has been an increasing number of

mathematical epidemiology papers published. Using mathematical models, we gain a

better understanding of the dynamics of the infection and some of the underlying features

of infections that may not be easily observed, for example the carriage state of hepatitis

B virus, where people can be infectious but shows no outward signs of infection. These

people could play a key role in aiding the control of an epidemic, yet in practice it is

hard to identify the role they have in the epidemic process – hence there is a need for

models that allow us to take these aspects into consideration to better implement control

measures.

Anderson & May (1992) give a background to the use of mathematics to study

infectious diseases, with reference that the more recent publications tend to focus on

the use of models to influence public health policy for disease eradication or control. As a

more recent example, mathematical models were utilised in the control of the outbreak of

foot and mouth disease in the United Kingdom (Kao, 2002), with an emphasis that these

models need to be accessible and understandable to those making the policy guideline.

This was also echoed in Regan & Wilson (2008), discussing the use of mathematical models

for sexually transmitted infections, and the need for models to reflect and explain the

known data. Glasser et al. (2004) give a brief outline of selected cases internationally where

mathematical models have influenced public health policy. In New Zealand, mathematical

models have been used in the past by the Ministry of Health when making decisions about

vaccination policy and healthcare (for example Roberts (2000a), Tobias et al. (2002) and,

Tobias & Cheung (2002)).
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In this thesis, we aim to construct new mathematical models for diseases in New

Zealand, and investigate the impact of vaccination on the epidemic’s progress.

1.1 Background Information

Although the meanings of vaccination and immunisation are not equivalent, we shall use

vaccination to mean that a person has been treated with a preventative medicine - whether

it is through a vaccine or an immunisation. The difference in the terms vaccination and

immunisation can be seen in Macpherson (1992): Immunisation – “the introduction of

antigens into a body to produce immunity.” Whereas, “Vaccination, from vacca, Latin

for cow, means inoculation with the material of cowpox, performed to afford protection

to the inoculated person against an attack of smallpox, or at all events with the view of

diminishing the seriousness of, and averting a fatal result from, any such attack. This is

the strict sense of the term, but it is used nowadays to describe the process of inoculating

with any vaccine to obtain immunity, or protection, against the corresponding disease.”

Throughout this thesis we use the basic reproduction ratio, R0, to measure the rate

at which an infection spreads through a population. The basic reproduction ratio is

defined as the expected number of secondary cases of infection that would occur due

to a primary case in a fully susceptible population. See, for example Anderson & May

(1992) and Diekmann & Heesterbeek (2000). If R0 < 1, then there may be a few cases of

infection, but, on average, an infectious person will infect less than one other person, so

an epidemic cannot occur. If R0 > 1, then an epidemic is going to occur, as an infected

person is infecting more than one other person.

In a model with age structure, to calculate the basic reproduction ratio we need to

calculate the next generation matrix – then R0 will be the largest eigenvalue of this matrix

(Diekmann & Heesterbeek, 2000). The next generation matrix is structured according to

infection type – for our models this is usually infectious or carriers in each of our age groups.

The entries in the next generation matrix can then be thought of as basic reproduction

ratios for each type of infection: an entry in the ith row and jth column is the expected

number of type “i” infections caused by a single type “j” infectious person in a fully

susceptible population. Some estimates of R0 values for various infections and different

locations are given in the Table 1.1.

1.2 Outline of the thesis

We begin the thesis with a look at what proportion of the population needs to be

vaccinated in order to minimise the cost to an individual and to the community as a whole.

After introducing a vaccine into a population to combat a current or potential epidemic,

a debate arises about whether to enforce vaccination or leave the decision to individuals.

The choice of vaccination policy can cause different outcomes for the community as a
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Measles Other Infections

Location Estimate of R0 Infection and location Estimate of R0

Italy 6.1 Mumps in ‘Europe’ 3.6 - 4.5

‘Europe’ 9.6 Rubella in ‘Europe’ 3.4 - 6.4

UK and USA 12 -13 Pertussis in USA 3.7 - 5.4

New Zealand 12.8 Pertussis in New Zealand 15.8

Ghana 14 -15 Pertussis in UK 16 -18

Nigeria 16 -17 Smallpox (developing countries) 3 - 5

Niger 18.8 Polio (developing countries) 5 - 7

HIV in UK, homosexual males 2 - 5

HIV in Uganda, heterosexuals 10 -11

SARS in 2003 3.3

Table 1.1: Some estimates of R0 for measles and other infections (information obtained through

a private communication with M. Roberts).

whole; the best strategy for enforced vaccination may require a different proportion of the

population vaccinated than what would occur if left to individuals to decide. In the second

chapter we explore the proportion of the population that is required to be vaccinated in

order to minimise the cost to individuals and to the community as a whole when two

strategies are available to them: remain susceptible and risk infection, or be vaccinated

and not risk infection. The methods used in this chapter (a simple SIR model and an

integral equation model) serve as an introduction for the rest of the thesis, where both

these methods are used and expanded.

The third chapter presents an integral equation model for repeated epidemics that

occur within a year, with a discrete map that allows us to include the demographic changes

in the population at the end of an epidemic. The population is split into four age classes,

and the number of people infected each year is calculated. This is then compared to the

known data on measles epidemics in New Zealand, and to a past model that successfully

predicted a measles epidemic. The model results from the integral equation method are

different to those from the differential equation method (which showed a strong match to

the known data), and numerical problems arose when solving the integral equation. For

these reasons, we changed our approach on modelling to use differential equation methods

for the subsequent chapters.

The fourth and fifth chapters deal with modelling the epidemiology of Hepatitis B

infection. Chapter Three gives a literature review of models of this disease, and then

focuses on Medley et al. (2001). A previous model (Edmunds et al., 1993) showed that the

probability of developing the carriage state depends on the age at infection, and in Medley

et al. (2001) they assume this probability is a function dependant on the force of infection,

that is inversely related to the age at infection. By making this assumption, their model

produces a backwards bifurcation, showing that infection can persist even when the basic
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reproduction ratio is less than one. We then extend this model to a population split into

two age groups, where the probability of developing carriage is made constant for each age

group, to see if the results from the single population model can be replicated. However,

the two-age-group model does not produce the backwards bifurcation seen in Medley et al.

(2001), but gives a high yearly incidence of infection with a large number of carriers always

present in the population.

In Chapter Five, we narrow our focus to modelling the hepatitis B situation in New

Zealand by developing a different differential equation model to best fit the known data.

Hepatitis B has the second highest death rate for a vaccine preventable disease in New

Zealand (New Zealand Ministry of Health, 2002), so producing a model that can explore

the effects of vaccination schedules would be of great benefit. Vaccination against hepatitis

B was only introduced in 1985, with a catch up campaign in 1988 to immunise all

preschoolers, and is still a routine infant vaccination. The recorded data for incidence of

hepatitis B infection is hard to analyse, as data before 1984 included both acute infections

and notifications of the chronic carrier state. One of the interesting features of hepatitis B

is that acute cases can be asymptomatic, with the symptomatic infection becoming more

likely with increasing age. We develop a model incorporating the different probabilities for

developing carriage and presenting symptoms depending on age, and include the effects

of vaccination. We then explore the outcome on the incidence of infection on alternative

vaccination campaigns.

The last two chapters present a number of models for meningococcal B infection in

New Zealand, and the effect of the recent nation-wide vaccination campaign. New Zealand

has been experiencing an epidemic of meningococcal B disease since mid-1991, with a peak

of 370 cases in 2001. The vaccination campaign initiated in 2004 was aimed at people

aged less than 20 years old, in the hope of ending the epidemic. In Chapter Six we

give a literature review of meningococcal models, although none have been used to look

specifically at the New Zealand epidemic strain. We then develop a non-age-structured

susceptible-carrier-infected-removed differential equation model, which is subsequently

structured to include age dependent parameters and compared with the known yearly

incidence of infection.

Chapter Seven then gives some alternative models for meningococcal B disease by

considering the possibility that a person can be immune for a limited period of time. We

explore different routes by which a person can be re-infected: return to the susceptible

state after acute infection and carriage, with no immune class; immunity for those who

have had the acute infection with carriers returning to the susceptible class; and a model

that allows temporary immunity after both carriage and acute infection. The model with

temporary immunity gives us the best fit to the known yearly incidence of infection for

all age groups before vaccination, so we include the effect of the vaccination programme

in this model to help us predict what the future of the epidemic will be. From here, we

explore the effect of different vaccination campaigns, and show how the current vaccination
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campaign has decreased our predicted yearly incidence of infection.
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Chapter 2

Vaccination Strategies

2.1 Introduction

Vaccination is one of the most cost-effective ways of combating infectious diseases.

Although vaccination against many childhood infections is highly recommended by health

professionals, it is not compulsory - so the choice of whether to be vaccinated or not

is left to the individual (or carer/parent of the child[ren]). However, the choice to be

vaccinated not only affects the protection of the individual against the infection, but also

the immunity of the entire community through “herd immunity”.

In New Zealand, as well as the rest of the world, there are a number of groups

and individuals who are against immunisation1, who are concerned about issues such

as the adverse side effects and efficiency of the vaccine and hold the opinion that natural

immunity is better than imposed immunity. Hamilton et al. (2004) found that the majority

of parents that chose not to immunise their child[ren] did so due to concerns about the

risk of side-effects and complications from immunisations. Such concerns are compounded

by media articles: in 1997 the measles-mumps-rubella (MMR) vaccine coverage declined

in New Zealand (Mansoor et al., 1998) after a possible linkage between the vaccination

and Crohn’s disease2 (Thompson et al., 1995) was announced in the media (and later

discredited Feeney et al. (1997)). Yet Mansoor & Pillans (1997) state that the most

frequently reported adverse side effect to the MMR vaccination in New Zealand is a rash,

reported in 17 out of 100, 000 doses. Wakefield et al. (1998) claimed there was a link

between the MMR vaccination and autism in children. This was later retracted (Murch

et al., 2004) by most of the authors, and a later study found no such link (Smeeth et al.,

2004).

When deciding on whether to be vaccinated, the relative “costs” of the benefits and

drawbacks of the vaccination both need to be considered. Suppose that there is an

1An example of such a group in New Zealand is the Immunisation Awareness Society

(http://www.ias.org.nz/).
2Crohn’s disease in an inflammatory disease of the digestive system which can cause abdominal pain,

diarrhoea, vomiting and weight loss, of which there is no known drug or surgical cure.
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expected cost associated with being vaccinated, CV (Bauch et al., 2003). This expected

cost takes into account all the possible “costs”: the monetary cost of the vaccine, the

possible side effects that vaccination may cause and the time it takes to be vaccinated.

With some vaccines this cost may be quite low, but with others it can be very high.

The smallpox vaccination, for example, causes 1-2 deaths per million vaccinations (World

Health Organisation, 2004). There is also an expected cost associated with being infected,

CI . This expected cost takes into account the effects of the infection, the monetary cost

of treatment, the time required off work for recovery and any lasting side effects that

may occur from the infection (for example scars from chicken pox, or the loss of limbs

from meningitis). These two costs can be seen in purely monetary terms, as is used when

calculating insurance rates. For the following calculations, it is assumed that CV and CI

are both constant.

Assume that individuals can choose from the two options: remaining susceptible and

risking being infected, or being vaccinated. The expected cost for the individual of

remaining susceptible depends on the proportion of people in the population who are

vaccinated, as this affects their chance of being infected. The individual will choose the

option they perceive to present the lowest expected cost to them. However, the expected

cost to the community as a whole also depends on the proportion of individuals choosing

each strategy and the cost associated with each strategy. We assume that everyone in the

population has access to the same information regarding the risks of being vaccinated and

being infected, and that everyone perceives this information in the same manner.

We will now consider two different vaccination scenarios. The first is in response to an

infection that requires a yearly vaccination, such as influenza, where we assume that the

previous year’s vaccination has had no lasting effect, and at the beginning of each year

the entire population is once again susceptible to infection (Andreasen (2003) explores

the case when different strains of influenza are present in the population each year). The

second scenario is in response to an infection that is endemic in the population but has

low prevalence, for which the vaccination is effective over a lifetime, such as tuberculosis.

We will establish the proportion of the population that should be vaccinated in order

to minimize the cost to the community as a whole, and compare this with the optimal

solution for the individual.

The models used in this chapter will be used and extended in later chapters that involve

more detailed models of the epidemiology of particular infections, where this chapter serves

more as an (almost) infection independent analysis of the best vaccination strategies for

individuals and the community.

2.2 Yearly Epidemics

Consider an infection, such as influenza, where individuals need to be vaccinated every

year in order to be protected against infection. We require some preliminary calculations
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regarding the infection before we look at the expected costs to the community and

individuals. These calculations will be in terms of the proportion of the population that

is vaccinated.

2.2.1 Background

Recall that if the basic reproduction ratio, R0, is less than one then we know that on

average one infected person will infect less than one other person, so an epidemic will not

occur. Conversely, if R0 > 1 we know that there will be an epidemic. Suppose that a

proportion v of the population has been vaccinated at birth (or close to birth), by way of

injection, mouth or other means, or they are naturally immune from the infection. Then,

by definition of R0, if

R0(1 − v) > 1

v < 1 − 1

R0
(2.1)

there will be an epidemic.

We can calculate R0 from:

R0 = N

ˆ

∞

0
p(t)C(t)dt (2.2)

where N is the total number of people in the population and p(t) is the probability of

infection given contact with an infective at time t after they were infected. C(t) is the

contact/mixing rate between a susceptible and an infective (Diekmann & Heesterbeek,

2000), which may depend on the time since the infectives were themselves infected.

At time t, the rate of new cases of infection (the incidence of infection, i(t)) depends

on the contacts between susceptibles and infectives. We have:

i(t) = i(0)δ(t) + S(t)

ˆ t

0
p(τ)C(τ)i(t − τ)dτ (2.3)

where i(0)δ(t) accounts for the number of initial cases of the infection in the population

(δ(t) is the Dirac delta function), and S(t) is the number of the population who are

susceptible to infection at time t. For our simulations we have assumed that there is only

one initial case of infection in the population.

The incidence of infection is equal to the negative rate of change in the susceptible

population. Thus, we may rewrite Equation (2.3) as:

−dS(t)

dt
= i(0)δ(t) + S(t)

ˆ t

0
p(τ)C(τ)

[

−dS(t − τ)

dt

]

dτ (2.4)

To calculate the final size of the epidemic3 we assume t > 0, and exclude the initial

introduction of the infection in the population. We can then integrate with respect to

3This is based on the theory given in (Diekmann & Heesterbeek, 2000)
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time to gain:
ˆ S(∞)

S(0)

1

S(t)
dS(t) =

ˆ

∞

0

ˆ t

0
p(τ)C(τ)

dS(t − τ)

dt
dτdt (2.5)

By changing the order of integration we gain:

ˆ S(∞)

S(0)

1

S(t)
dS(t) =

ˆ

∞

0

ˆ

∞

τ

p(τ)C(τ)
dS(t − τ)

dt
dtdτ (2.6)

Calculating the integral gives:

log

(

S(∞)

S(0)

)

= [S(∞) − S(0)]

ˆ

∞

0
p(τ)C(τ)dτ (2.7)

We can re-write Equation (2.7) in terms of proportions of the population by letting

s(∞) = S(∞)
N

and s(0) = S(0)
N

, giving:

log

(

s(∞)

s(0)

)

=

[

s(∞)

s(0)
− 1

]

s(0)N

ˆ

∞

0
p(τ)C(τ)dτ

log

(

s(∞)

s(0)

)

=

[

s(∞)

s(0)
− 1

]

s(0)R0 (2.8)

From the above we see that that final size of an epidemic depends only on the basic

reproduction ratio and the initial proportion of susceptibles in the population. Assuming

that the basic reproduction ratio is set initially, we define a new reproduction ratio under

vaccination, Rv, such that:

Rv = (1 − v)R0 (2.9)

Initially, we assume s(0) = 1 − v. Substituting this into Equation (2.8) gives:

log

(

s(∞)

1 − v

)

=

(

s(∞)

1 − v
− 1

)

Rv (2.10)

We can calculate the proportion of the population that will still be susceptible after a

disease outbreak has finished from the above equation4. If Rv < 1, then there will not be

an epidemic, and the proportion of susceptibles in the population will remain unchanged,

s(∞) = 1 − v, and Equation (2.10) will not need to be solved. If Rv > 1 we can solve

Equation (2.10) to find the solution s(∞) 6= 1 − v.

To prove the existence of solutions to Equation (2.10) we let z = s(∞)
1−v

and define

f(z) = log z − Rv(z − 1), and now search for the roots of f(z). As shown in Figure 2.1,

we have two cases to consider: when Rv > 1 and when Rv < 1. From it’s definition:

f ′(z) =
1

z
− Rv, and

f ′′(z) = − 1

z2

As the second derivative is concave down for all positive values of z, we know f(z) has at

most two roots, one of which is located at z = 1. When Rz < 1, f(z) will be decreasing at
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Figure 2.1: Plotting f(z) = log z − Rv(z − 1) for two values of Rv: the solid line for Rv = 2

and the dashed line for Rv = 0.5. When Rv < 1 there is only one root in the range

0 < z < 1, and when Rv > 1, there is a root in the range 0 < z < 1.

some point when z > 1, thus a second root is located in the range 1 < z < ∞. If Rv > 1,

f(z) will be decreasing when z < 1, so the second roots lies in the range 0 < z < 1.

We know that 0 < s(∞) < 1 and we also need to establish that s(∞) < 1
R0

. To do

this, we consider Equation (2.10) in exponential form, substituting z = s(∞)
1−v

:

z = eRv(z−1) (2.11)

This relationship is illustrated in Figure 2.2. If we let q(z) = eRv(z−1), then q′(z) =

Rve
Rv(z−1) = Rvq(z). We know that p(z) = z intersects q(z) at z = 1 and at second

point when z < 1 and q′(z) < 1. The intersection at z = 1 corresponds to the trivial case

where there is no epidemic – we are interested in the case where z < 1 corresponding to

an epidemic:

q′(z) < 1

⇒ Rve
Rv(z−1) < 1

⇒ Rvz < 1

⇒ z < 1
Rv

⇒ s(∞) < 1
R0

(2.12)

We can see in Figure (2.3), s(∞) appears to reach a maximum when v = 1 − 1
R0

. To

verify this we consider the derivative of Equation (2.10) with respect to v:

ds(∞)

dv
=

s(∞)(R0(1 − v) − 1)

(1 − v)(1 − R0s(∞))
(2.13)

4A derivation of the final size equation using an SIR model is given in the Appendix.
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Figure 2.2: We can use Equation (2.11) to calculate the ratio z given any value for Rv. Note

that it can be clearly seen that the dashed line representing z = 1

Rv

is always greater

than the solution to the equation.
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Figure 2.3: We can use Equation (2.10) to calculate sv(∞) for any given value of v - where sv(∞)

is the proportion of the population that are susceptible after an epidemic. For this

example we have R0 = 5. Note that when v > 1 − 1

R0

(0.8 in this example), there is

no epidemic (then sv(∞) = 1 − v).
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As this function is only valid in the range v ∈
[

0, 1 − 1
R0

]

we know R0(1 − v) − 1 > 0

(as R0 > 1), and we know s(∞), (1 − v), R0 and (1 − R0s(∞)) are all positive, so the

above is an increasing function. When v ∈
(

1 − 1
R0

, 1
]

we have s(∞) = 1−v (a decreasing

function), thus the maximum s(∞) is reached when v = 1 − 1
R0

.

Substituting v = 1 − 1
R0

into Equation (2.10) yields:

log (s(∞)R0) = s(∞)R0 − 1 (2.14)

which has only one solution: s(∞)R0 = 1, that is s(∞) = 1
R0

.

Thus the maximum proportion of susceptibles remaining after an epidemic is s(∞) =
1

R0
and is achieved when the proportion of the population equal to v = 1 − 1

R0
has been

vaccinated. The proportion v = 1 − 1
R0

is the minimum proportion of the population

that is required to be vaccinated in order to reduce the basic reproduction ratio below

one. Ideally, a larger proportion of the population would need to be vaccinated in order

to guarantee that there would be no more epidemics. If R0 is close to one, there is likely

to still be a few cases of infection, and stochastic fade out would occur, where there may

be a few small outbreaks of infection before the infection is finally removed from the

population.

2.2.2 Individual and Community Expected Costs

We let the cost associated with being vaccinated, CV , and the cost associated with being

infected, CI , be constant. If v is the proportion of the population who are vaccinated,

then the expected cost for individuals choosing to be vaccinated or not to be vaccinated

(respectively) are:

EY
v = CV

EY
s =

1 − v − s(∞)

1 − v
CI (2.15)

(where the superscript denotes we are dealing with yearly vaccination).

As 1−v−s(∞) is the proportion of the population who are infected after an epidemic,
1−v−s(∞)

1−v
is the probability that a non-vaccinated individual will be infected during an

epidemic.

The expected cost to the whole community will be a linear combination of the expected

costs of the two individual strategies:

CY (v) = vCV + (1 − v)
1 − v − s(∞)

1 − v
CI

= vCV + (1 − v − s(∞))CI (2.16)

However, this only applies in the range v ∈
[

0, 1− 1

R0

]

, as if v is outside this range we

know an epidemic will not occur (from Equation (2.1)), so we will only have to consider
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the cost associated with vaccination. Thus:

CY (v) =

{

vCV + (1 − v − s(∞))CI if 0 ≤ v ≤ 1 − 1
R0

vCV if 1 − 1
R0

< v ≤ 1
(2.17)

2.2.3 What Proportion of the Population should be Vaccinated?

We will calculate the proportion of the population that needs to be vaccinated to minimise

the expected costs to individuals and the community.

For an individual, the lowest expected cost will either be CV (the expected cost

associated with being vaccinated) or 1−v−s(∞)
1−v

CI (the expected cost associated with being

infected) which depends on the proportion of the population that is vaccinated, v.

The individual’s two strategies will be equal when:

EY
v = EY

s

(1 − v)CV = (1 − v − s(∞))CI

(1 − v)

(

CV

CI
− 1

)

= −s(∞)

v = 1 − s(∞)

1 − CV

CI

(2.18)

where s(∞)(6= 1) is the solution to Equation (2.10). This point is only valid in the range

v ∈
(

0, 1 − 1
R0

)

, as when v is outside this range there is only the cost associated with

being vaccinated to consider. If the cost associated with being vaccinated is less than the

cost associated with being infected, then

v = 1 − s(∞)

1 − CV

CI

(2.19)

We know that v = 1 − s(∞)

1−
CV
CI

< 1 − 1
R0

, as the individuals expected cost of remaining

susceptible goes to zero as v approaches 1 − 1
R0

(as EY
s is a decreasing function in v). So

the individuals two strategies must be equal at some point v < 1 − 1
R0

.

If the cost associated with being vaccinated is zero, the break even point between the

two costs will be at v = 1− s(∞). As shown previously, this will be at its minimum when

s(∞) = 1
R0

. Hence, when CV = 0 the individual’s break even point occurs when:

v = 1 − 1

R0
(2.20)

For the community, we need to minimise the community’s cost function over v to find

the proportion of the population that needs to be vaccinated. Differentiating Equation

(2.17) with respect to v yields:

dCY (v)

dv
=

{

CV − (1 + ds(∞)
dv

)CI if 0 < v < 1 − 1
R0

CV if 1 − 1
R0

< v < 1
(2.21)
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recalling
ds(∞)

dv
=

s(∞)(R0(1 − v) − 1)

(1 − v)(1 − R0s(∞))
(2.22)

from Equation (2.13), and remembering that Rv = (1 − v)R0. This gives:

dCY (v)

dv
=







CV −
(

1 +
s(∞)(R0(1 − v) − 1)

(1 − v)(1 − R0s(∞))

)

CI if 0 < v < 1 − 1
R0

CV if 1 − 1
R0

< v < 1
(2.23)

In the range v ∈
(

1 − 1
R0

, 1
)

there are no critical points unless the cost associated

with vaccination is zero.

In the range v ∈
(

0, 1 − 1
R0

)

a critical point occurs when:

CV

CI
− 1 =

s(∞)(R0(1 − v) − 1)

(1 − v)(1 − R0s(∞))

v =
CV (1 − R0s(∞)) − CI(1 − s(∞))

CV (1 − R0s(∞)) − CI
(2.24)

For the above relation to hold, we need CV

CI
> 1 – that is, the cost associated with

vaccination is greater than the cost associated with being infected. If this were the case,

the vaccination would probably not be available to the population, so we say that this is

not a feasible scenario (the mathematical exploration of this case is left to the Appendix).

If the cost associated with vaccination is less than the cost associated with being

vaccinated, we can see that CY (v) is a decreasing function (in v) if v ∈
(

0, 1 − 1
R0

)

, then

an increasing function when v ∈
(

1 − 1
R0

, 1
)

. Thus, the minimum expected cost to the

community is achieved when:

v = 1 − 1

R0
(2.25)

As a special case, if the cost associated with vaccination is zero, then from Equation

(2.17), we see that the cost to the community will be zero when v ∈
(

1 − 1
R0

, 1
)

, and

will be decreasing when v ∈
(

0, 1 − 1
R0

)

. Thus the minimum cost to the community is

achieved when:

v ≥ 1 − 1

R0
(2.26)

An example of the relationship between the two individual expected costs and the

community’s expected cost is shown in Figure 2.4 which clearly shows the individuals

“break even” point is before the minimum cost for the community where CV < CI . An

example of the situation where CV = 0 is shown in Figure 2.5. A summary of all the

results from this section is given in Table 2.1.

The distance between the individual’s break even point and v = 1 − 1
R0

depends on

the ratio of the cost associated with vaccination and with being infected. We let

v∗i = 1 − s(∞)

1 − CV

CI

(2.27)
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0 < CV < CI CV = 0

v value Expected Cost v value Expected Cost

Individual’s 1 − s(∞)

1−
CV
CI

CV 1 − 1
R0

0

Strategies Equal

Community Cost 1 − 1
R0

(

1 − 1
R0

)

CV ≥ 1 − 1
R0

0

at its Minimum

Table 2.1: Table to summarise the proportion of the population that needs to be vaccinated in

order to minimise the expected cost to the community and when the two individual

strategies are equal, and the associated expected cost.
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Figure 2.4: When the expected cost of remaining susceptible is greater than the cost of being

vaccinated, we can see that the individual’s best strategy is to be vaccinated, until

v reaches v∗ind – the break even point between the individual’s strategies (where all

three lines intersect), then their best strategy is to remain susceptible. The best

strategy for the community is to vaccinate the proportion of the population equal to

1 − 1

Rv

– which is greater than the individual’s best strategy. R0 = 5, Cv = 3 and

Ci = 8 for this example.

and

v∗c = 1 − 1

R0
(2.28)

Then plotting v∗c − v∗i (as shown in Figure 2.6) as a function of CV

CI
we can see that as the

ratio of the two costs increases towards one, the difference tends towards 1 − 1
R0

.
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Figure 2.5: When the cost associated with being vaccinated is zero, the break even point between

the two individual strategies and the minimum cost to the community occur when

v = 1 − 1

R0

. For this example, R0 = 5.
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Figure 2.6: The distance between v∗c and v∗i as a function of the ratio of the two costs, where

R0 = 5.



Vaccine (number of doses) Vaccine Efficacy Duration of immunity after primary series

BCG a (1) 0% − 80% for pulmonary tuberculosis, Unknown; some evidence that immunity

75% − 86% for meningitis and miliary TB wanes with time

Diphtheria toxios (3) > 87% (no data from developing countries) Variable: probably around 5 years; longer in

presence of natural boosting or booster doses

Tetanus toxoid (3) > 95% (> 80% after two doses) in infants five years

Pertussis (3) Estimates vary widely because the products Unknown; some evidence that it wanes

vary; efficacy higher against severe disease with time

(in most instances at least 80% protection

against severe disease)

Polio (3) > 90% in industrialised countries; Lifelong if boosted by wild virus; may be

72% − 98% in hot climates; lower protection shorter when no wild virus circulating

against type 3

Measles (1) > 90% at 12 months of age Lifelong if boosted by wild virus; may be

> 85% at 9 months of age shorter when no wild virus circulating

Hib b (3) > 95% for invasive disease Unknown but lasts for at least 3 years

beyond period of greatest exposure

Hepatitis B (3) 75% − 95% efficacy against chronic infection > 15 years; further follow-up continuing

Yellow fever (1) 90%− 98% For at least several decades, possibly for life

Table 2.2: Vaccine duration after primary series of immunisation for some vaccine preventable infections. Values taken from (World Health

Organisation, 2002)

aBacillus Calmette-Guerin immunisation for Tuberculosis
bHaemophilus influenzae type b
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2.3 Life-Long Vaccination

Now consider an infection, such as tuberculosis, for which one vaccination is sufficient

to give immunity over a lifetime (New Zealand Ministry of Health, 2002) (see Table 2.2

for vaccine efficacy and duration for selected infections). We assume that if a person is

vaccinated it is at birth or near to birth, and they are not included in the susceptible

population prior to vaccination.

To calculate the proportion of the population that needs to be vaccinated in order

to minimise the cost to the individual and to the community, we start by considering a

susceptible, infected and removed (SIR) model for the infection.

2.3.1 SIR Model

We let S(t), I(t) and R(t) denote the number of the population that are susceptible,

infectious and removed/immune, respectively, in relation to the infection. We can express

the relationship between the rate of change in these three classes by the following model,

where the population size is constant, N :

dS

dt
= µ(1 − v)N − βSI − µS (2.29)

dI

dt
= βSI − γI − µI (2.30)

dR

dt
= γI − µR + µvN (2.31)

where v is the proportion of the population who have been vaccinated at birth5, so are not

susceptible to the infection. The birth and death rate, µ, is held constant to maintain a

constant population size, γ is the rate at which infectives recover, and β is the transmission

coefficient. As the population size is constant (S +I +R = N), one of the above equations

is redundant – we shall omit the dR
dt

equation in later calculations.

We can then non-dimensionalise Equations (2.29)–(2.31) by letting s = S
N

, i = I
N

,

r = R
N

, and τ = γt. If we let µ
γ

= ǫ, Equations (2.29)–(2.31) become6:

ds

dτ
= ǫ(1 − v) − (R0(1 + ǫ)i + 1)s

di

dτ
= (1 + ǫ) (R0s − 1) i

dr

dτ
= i − ǫ(r − v) (2.32)

where the basic reproduction ratio for the system is given by R0 = βN
γ(1+ǫ) (Anderson &

May, 1992).

5At birth means the entry class into the susceptible population - as we will be starting our simulations

from age 6 months.
6note that i is now representing the proportion of the population who are infected, as opposed to the

incidence of infection.
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There are two steady states for the above system (found by setting the left hand side

of each equation to zero and solving): the trivial steady state (s∗, i∗) = (1 − v, 0), so

everyone who is not vaccinated is susceptible to the infection and no one is infective.

The endemic steady state of the system, where the infection is always present is:

(s∗, i∗) =

(

R−1
0 ,

ǫ(R0(1 − v) − 1)

R0(1 + ǫ)

)

(2.33)

This is a well known result and is shown in Anderson & May (1992) and Diekmann &

Heesterbeek (2000), who demonstrate that this is a stable steady state solution.

2.3.2 Individual and Community Expected Costs

If the proportion of the population susceptible and infected is held at steady state value,

the chance that a person will be infected at some point during their lifetime is given by:

Prob(infection during lifetime) =
R0(1 + ǫ)i∗

R0(1 + ǫ)i∗ + ǫ
(2.34)

Substituting in our value for i∗ from the endemic steady state, Equation (2.33), we

have:

Prob(infection during lifetime) = 1 − 1

R0(1 − v)
(2.35)

If we let the basic reproduction ratio under vaccination be defined as Rv = (1 − v)R0, we

can re-write the probability of being infected during a lifetime as:

Prob(infection during lifetime) = 1 − 1

Rv
(2.36)

We may now calculate the expected costs for individuals and the community for

remaining susceptible and for being vaccinated. Assume that there is a constant cost

associated with being vaccinated, CV , and a constant cost associated with being infected,

CI . An individual in the population can decided whether to remain susceptible or be

vaccinated (at birth or close to birth), then the expected cost for each of these strategies,

respectively, is:

EL
v = CV

EL
s =

(

1 − 1

Rv

)

CI (2.37)

The expected cost to the community will be a combination of the above two individual

strategies:

CL(v) = vCV + (1 − v)(1 − 1

Rv
)CI

= vCV +

(

(1 − v) − 1

R0

)

CI (2.38)
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Again, we know that the infection will be prevented when v > 1− 1
R0

, so we can write the

expected community cost as a piecewise continuous function:

CL(v) =

{

vCV +
((

1 − 1
R0

)

− v
)

CI if 0 < v < 1 − 1
R0

vCV if 1 − 1
R0

< v < 1
(2.39)

2.3.3 What Proportion will Minimise the Costs?

For an individual, there is a point when the expected costs of remaining susceptible and

being vaccinated are equal, that is:

EL
v = EL

s

CV =

(

1 − 1

R0(1 − v)

)

CI

v = 1 − 1

R0

(

1 − CV

CI

) (2.40)

This is only feasible when the cost associated with being infected is greater than

the cost of being vaccinated. We can also see that this break even point occurs when

v < 1 − 1
R0

.

To find the proportion of the population that needs to be vaccinated in order to

minimise the expected cost to the community, we calculate the derivative of Equation

(2.39):

dCL(v)

dv
=

{

CV − CI if 0 < v < 1 − 1
R0

CV if 1 − 1
R0

< v < 1
(2.41)

As a special case, if the cost associated with being vaccinated is zero (as shown in

Figure 2.8), then the lowest cost to the community will be achieved whenever

v ≥ 1 − 1

R0
(2.42)

When the cost associated with vaccination is less than the cost associated with being

infected, we can see that the community’s expected cost is a decreasing function of v when

0 < v < 1 − 1
R0

and an increasing function when 1 − 1
R0

< v < 1 (as example of this is

shown in Figure 2.7. So the minimum expected cost to the community will occur when

v = 1 − 1

R0
(2.43)

If we now let

v∗i = 1 − 1

R0

(

1 − CV

CI

) (2.44)

and

v∗c = 1 − 1

R0
(2.45)
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, and the individual

equilibrium occurs at a point v∗ind less than v = 1 − 1

R0

. Cv = 3 and Ci = 8.
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Figure 2.8: When the cost associated with being vaccinated is zero, the minimum cost to the

community and the break even point between the two individual strategies are when

v = 1 − 1

R0

, and the corresponding expected cost is 0. For this plot R0 = 5.
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then the difference between the individuals’ break even point and the minimum cost to

the community is:

v∗c − v∗i =

CV

CI

R0

(

1 − CV

CI

) (2.46)

When CV < CI , the individual’s “break even” point occurs when the proportion of

the population that is vaccinated is less than 1− 1
R0

, and the community’s minimum cost

is at v∗c = 1 − 1
R0

. As the ratio Cv/CI tends towards the community’s minimum cost,

the difference between the minimum cost to the community and the individual’s “break

even” point tends to 1− 1
R0

. Thus, the largest difference between the best community and

individual strategy is when CV

CI
→1 − 1

R0
(depicted in Figure 2.9).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
V
 / C

I

v* c −
 v

* i

Figure 2.9: The difference between the individual’s break even point and 1 − 1

R0

= 0.8 plotted

as a function of the ratio of the costs associated with being vaccination and being

infected, when R0 = 5.

2.4 Discussion

When given a choice to be vaccinated, there are many different factors to consider. The two

main factors are the relative costs associated with being vaccinated and being infected.

If the expected cost associated with the vaccine is higher than the expected cost from

actually having the infection, then the best option is to simply not be vaccinated. This

strategy extends to the community as a whole – if the expected cost of being vaccinated

is higher than the expected cost of the infection, then no one in the community should

be vaccinated (as can be seen in Figures A.1 and A.2 in the Appendix). This is merely

common sense, and we would hope that a vaccine such as this would not be marketed!

If the cost for being infected and being vaccinated are the same, then the break even

point (for both yearly and lifelong vaccination) for individuals is for a proportion 1 − 1
R0

of the population to be vaccinated. This is the same proportion of the population that
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needs to be vaccinated in order for the expected cost to the community to be minimised.

Examples of this can be seen in Figures (A.1) and (A.2).

Ideally, the cost of the vaccination should be lower than the cost of being infected. Then

the best strategy for the community is to always vaccinate a proportion of the population

equal to 1− 1
R0

, as demonstrated in Figures (2.4) and (2.7). Note that this value depends

only on the characteristics of the infection and not on either of the associated costs. From

an individual’s point of view, if the cost associated with being vaccinated is lower than

the cost associated with remaining susceptible, as long as a large enough proportion of the

population are vaccinated, they need not be vaccinated - which leads to a lower individual

expected cost. This, again is common sense, as, if everyone you are in contact with is

vaccinated against the infection (assuming that the vaccination inhibits the ability to carry

and contract the disease), then there is little chance that you will be infected.

A break even point between the two individual’s strategy choices (to vaccinate or not

to vaccinate) is reached when the proportion of the population equal to 1− s(∞)CI

CI−CV
(where

s(∞) is calculated from the non-linear Equation (2.10)) has been vaccinated in the case of

yearly vaccination and when the proportion of the population equal to 1− 1

R0

(

1−
CV
CI

) has

been vaccinated for lifelong vaccination. Up to this break even point, the best strategy

for the individual is to be vaccinated, but between this point and the the community’s

optimum at v = 1 − 1
R0

, the lowest expected cost is achieved by remaining susceptible.

This can be seen from Equations (2.15) and (2.37), by letting v increase toward 1 − 1
R0

.

The same result has been shown by (Bauch & Earn, 2004), for the yearly epidemics from

an individual’s point of view, using game theory analysis.

When there is a perfect vaccination, in the sense that the cost associated with it is zero,

in both the yearly and life long vaccination schedules, the best strategy for the community

is to vaccinate a proportion of the population equal to 1 − 1
R0

. For the individuals, the

best strategy will always be to be vaccinated, but the expected cost for both options will

be equal when v ≥ 1 − 1
R0

.

If s(∞) = 1 − 1
R0

in the yearly vaccination scenario, it becomes equivalent to the

lifelong scenario in terms of the individuals break even point. However, for s(∞) = 1− 1
R0

in the yearly case, Equation (2.10) only has one solution Rv = 1, that is v = 1− 1
R0

which

makes the individuals and community’s minimum costs coincide.

For both cases, yearly and lifelong vaccination schedules, the expected cost of

remaining susceptible is equal to the cost of being infected multiplied by the probability

of being infected (which depends on the proportion of the population that is vaccinated).

So individuals either incur the full cost, or no cost at all associated with being infected -

which may not be realistic for some infections, as there may be mild and severe cases of

infection that should be reflected with different expected costs.

Bauch et al. (2003) presented a similar analysis considering the smallpox virus for

which they used a differential equation model for the epidemic that had to be solved

numerically. They found the individual break even point occurred when 19% of the
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population was vaccinated, compared to 47% needed for the minimum cost to the

community to be acheived. They then did a sensitivity analysis on their parameters

(using a Monte Carlo method) and found that the average values for both the individual

and community optimum proportions vaccinated always differed with v∗i < v∗c . Shortly

after the work presented in this thesis was completed, Bauch et al. published a paper

using an SIR epidemic model (Bauch & Earn, 2004) that could be solved analytically.

They went on to analyse the changes in vaccine uptake given changes in the perceived risk

of vaccination.

Both the integral equation model and the SIR model can be expanded to include

a structured population - where the structure could be based on age, location or even

socio-economic group. Further investigation can include making the cost associated with

vaccination and remaining susceptible dependent on time, which was considered using a

different method by Bauch et al. (2003), and iterating the yearly epidemics in a discrete

map to explore the long term behaviour of the model.

2.5 Conclusion

We have shown that if the cost associated with being vaccinated is zero or less than the

cost associated with being infected, the lowest expected cost to the community is reached

when a proportion of the population equal to 1 − 1
R0

has been vaccinated.

When the cost associated with vaccination is non-zero and less than the cost associated

with remaining susceptible, the individual’s lowest cost is achieved from vaccination when

v is less than the break even point between the two strategies. When v is between the

break even point and 1 − 1
R0

, the lowest cost to the individual is gained by remaining

susceptible. However, if the cost associated with being vaccinated is zero, then, obviously,

the lowest expected cost to the individual is achieved by being vaccinated - no matter

what proportion of the population has already been vaccinated. In this case, the two

strategies available to the individual will be equal when v = 1 − 1
R0

- when the lowest

expected cost to the community is achieved.

If the cost associated with being infected and the cost associated with being vaccinated

are the same, then the lowest cost to the community is still attained when v = 1 − 1
R0

,

but for the individuals, their two strategies will never be equal.

If the choice of being vaccinated is left to the individual, there is a chance that the

community may suffer if a high enough proportion decides against vaccination. Conversely

there is a chance that the individuals may endure a higher expected cost than necessary

in order to minimise the cost to the community.
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Chapter 3

Discrete Mapping for Repeated

Measles Epidemics

3.1 Introduction

In 2003 there were more than half a million deaths worldwide caused by measles1, the

majority of these being deaths of children. The measles virus replicates in the cells at

the back of the throat and lungs, and causes one of the most contagious diseases known,

with almost all non-immunised children contracting the infection if they are exposed to

it. However, children do not usually die directly from the infection, but rather from

the complications caused by the infection (such as pneumonia and severe diarrhoea);

complications are more common in children under 5 and adults over 20.

The initial signs of infection start 10 – 12 days after exposure and last for 1 – 7 days.

Symptoms usually start with a high fever (for 1 – 7 days) then progress to a runny nose,

cough, red and watering eyes and, finally, small white spots on the inside of the cheeks.

Several days later a rash develops usually on the face and upper neck, which then spreads

downwards to cover the rest of the body over a period of about three days, and persists for

a further 5 – 6 days before fading. The virus can be transmitted by an infected individual

from four days prior to the onset of the rash to four days after.

Immunisation against measles was introduced in New Zealand in 1969 for children

between 10 months and five years of age who had not previously had measles, and for

children aged under ten years who were deemed to be at special risk. The vaccination

schedule was altered in 1974 and again in 1981 to finally result in the vaccine that was

administered at 10 months old to be administered between 12 – 15 months of age. The

measles vaccine was abolished in 1990 when the triple MMR (measles-mumps-rubella) was

introduced and administered at 12 – 15 months of age (New Zealand Ministry of Health

(2002)). In 1992 another scheduled vaccination for 11 years old was introduced, and in

1996 the first vaccination was given at 15 months of age.

1World Health Organisation: http://www.who.int/mediacentre/factsheets/fs286/en/
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At this stage epidemics were still occurring every 5 – 6 years. In 1996 a mathematical

model using a differential equations approach (Roberts and Tobias, 2002) successfully

predicted an epidemic in 1997 and was a key factor in the decision to implement an

intensive MMR vaccination campaign for children under 10 years of age, which was

successful in preventing the epidemic. The model also went on to predict that with the

then current vaccination schedule, another epidemic would occur in 2003 or 2004. This

did not happen as the vaccination schedule was changed to give the first MMR vaccination

at 15 months of age and the second vaccination at four years (New Zealand Ministry of

Health (2003)), which increased coverage sufficiently high enough in the population to

prevent further epidemics.

We have used an alternative approach to modelling the dynamics of epidemics by using

integral equations to generate a discrete mapping that in turn generates the epidemic

pattern. This allows us to separate out the two time scales that are present within the

model, as the actual epidemic moves on a much faster time scale than the change in the

population. An integral equation method is used to calculate the number of susceptibles

who are infected during an epidemic, then a discrete map is developed by combining this

with the change in the population demographics.

The incidence of new cases of infection depends on the history of the epidemic through

an infection kernel rather than simply on the current susceptible and infected population

sizes. This allows a general model to be easily reformulated for a specific infection by

simply altering the kernel (details of the integral equation approach appear in Diekmann &

Heesterbeek (2000)). While the rate of spread and the probability of disease transmission

over the course of a year depend on this kernel, the total number of susceptibles infected

during an epidemic depends only on the basic reproduction ratio.

3.2 An integral equation model

As measles tends to effect children more than adults, we will stratify our population into

four age classes in relation to the infection: 6 – 15 months (group 1); 15 months – 5 years

(group 2); 5 – 11 years (group 3) and 11 – 25 years (group 4). Infants under 6 months old

are assumed to have protection from maternal antibodies, and those older than 25 years

we deem not to be at risk of infection, so both of these age groups will not play a part in

the epidemic process.

To find the number of people who are infected during the course of an epidemic (which

will run during a one year time frame), we use the equation for incidence of infection:

ij(t) = δ(t)ij(0) + Sj(t)
4
∑

m=1

Cjm

ˆ t

0
Am(τ)im(t − τ)dτ (3.1)

for j = {1, 2, 3, 4}, where i(t) is a 1 × 4 vector of the incidence of infection is each age

category at time t noting that

il = −dSl

dt
(3.2)
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S(t) is a 1× 4 vector containing the number of susceptibles in each age category, A(τ)

is also a 1 × 4 vector, representing the probability of being infected given contact with

an infective (at time τ after they were themselves infected). C is a matrix describing the

(constant) contact rates between each age group, where ǫ < 1 is a parameter to weight

the between-class contacts (we have used ǫ = 0.4 for our simulations) – which implies that

the mixing rates between classes is substantially smaller than the mixing within classes,

as shown below. The values ai in the contact matrix are seen as an activity level for each

age group (we have used {a1, a2, a3, a4} = {1, 2, 6, 3} for our simulations, see Roberts &

Tobias (2000) for more details). We take a weighted geometric average of the activity

levels to describe the contact between people in different age groups, but we do not weight

the activity between contacts within the same age group.

C =













a1 ǫ
√

a1a2 ǫ
√

a1a3 ǫ
√

a1a4

ǫ
√

a1a2 a2 ǫ
√

a2a3 ǫ
√

a2a4

ǫ
√

a1a3 ǫ
√

a2a3 a3 ǫ
√

a3a4

ǫ
√

a1a4 ǫ
√

a2a4 ǫ
√

a3a4 a4













(3.3)

To measure the spread of an infection in a population we use the basic reproduction

ratio, R0, some examples of R0 values for measles are given in Table 1.1. If R0 > 1 then

there is an epidemic, but if R0 < 1 a few people may be infected, but the infection will not

last in the population and there is no epidemic. For a multiple compartment model, we

calculate R0 from the next generation matrix, which can be thought of as a matrix with

each component representing a basic reproduction ratio for each type of infection – for this

model, the type of infection is the age group that the person belongs to. The entry Mi,j is

the number of secondary cases of infection in group i due to primary infection in group j.

For example, the second entry on the third row will be the expected number of age group

3 infectives that are produced from an infectious person in age class 2. To determine the

next generation matrix we first make the assumption that the probability of being infected

given contact with an infective is the same for every age group, so A1 = A2 = A3 = A4.

We let
´ t

0 A(τ)dτ = Ã, so the next generation matrix is:

M = Ã













a1S1(0) ǫ
√

a1a2S1(0) ǫ
√

a1a3S1(0) ǫ
√

a1a4S1(0)

ǫ
√

a1a2S2(0) a2S2(0) ǫ
√

a2a3S2(0) ǫ
√

a2a4S2(0)

ǫ
√

a1a3S3(0) ǫ
√

a2a3S3(0) a3S3(0) ǫ
√

a3a4S3(0)

ǫ
√

a1a4S4(0) ǫ
√

a2a4S4(0) ǫ
√

a3a4S4(0) a4S4(0)













(3.4)

where Si(0) is the initial susceptible population in group i. The basic reproduction ratio

for the system is the spectral radius (the largest eigenvalue) of the next generation matrix2:

R0 = ρ (M) (3.5)

The basic reproduction ratio for measles in New Zealand with no vaccination was

estimated by Roberts & Tobias (2000) to be 12.8. As the contact rates and initial

2See Diekmann & Heesterbeek (2000) for more details on the calculation of R0.
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susceptible populations are known, so we can calculate

Ã =
R0

ρ
(

M̃
) (3.6)

where M̃ = M/Ã.

Our model does not depend on the shape of each function Al(τ), but only on the area

under each function, which we have assumed to be the same for all age groups. However,

the progression of the epidemic itself depends on the shape of the each function Al(τ)

which we have not explored.

To calculate the number of susceptibles remaining in the population after an epidemic

(S(∞)) we use the final size equation, which is gained by making the substitution of

Equation (3.2) into Equation (3.1), and integrating:

(

log
Sj(∞)

Sj(0)

)

= Ã
4
∑

m=1

Cjm(Sj(∞) − Sj(0)) (3.7)

Initially we set the populations of each age group to be proportional to the birthrate

and the size of the age group:

S1(0) = B
15 − 6

12

S2(0) = B

(

5 − 15

12

)

S3(0) = B (11 − 5)

S4(0) = B (25 − 11) (3.8)

where B = 57435 births per year – the live birth rate in 2004 (Statistics New Zealand

(2004)).

The system of Equations (3.7) cannot be solved directly when ǫ is non-zero, so we

expand Sl(∞) asymptotically in the small parameter ǫ (when ǫ = 0 the system decouples

to four separate equations which will not require asymptotic expansions to solve). That

is:

Sj(∞) = Sj0 + ǫSj1 + ǫ2Sj2 + ǫ3Sj3 + . . . (3.9)

for j = 1, 2, 3, 4.
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The full asymptotic expansion of our equations is:

















log S10

S1(0) + S11

S10
ǫ +

(

S12

S10
− S2

11

2S2
10

)

ǫ2 + . . .

log S20

S2(0) + S21

S20
ǫ +

(

S22

S20
− S2

21

2S2
20

)

ǫ2 + . . .

log S30

S3(0) + S31

S30
ǫ +

(

S32

S30
− S2

31

2S2
30

)

ǫ2 + . . .

log S40

S4(0) + S41

S40
ǫ +

(

S42

S40
− S2

41

2S2
40

)

ǫ2 + . . .

















=

Ã













a1 ǫ
√

a1a2 ǫ
√

a1a3 ǫ
√

a1a4

ǫ
√

a1a2 a2 ǫ
√

a2a3 ǫ
√

a2a4

ǫ
√

a1a3 ǫ
√

a2a3 a3 ǫ
√

a3a4

ǫ
√

a1a4 ǫ
√

a2a4 ǫ
√

a3a4 a4

























S10 + ǫS11 + ǫ2S12 + · · · − S1(0)

S20 + ǫS21 + ǫ2S22 + · · · − S2(0)

S30 + ǫS31 + ǫ2S32 + · · · − S3(0)

S40 + ǫS41 + ǫ2S42 + · · · − S4(0)













(3.10)

Equating the coefficients of ǫ0 we use MATLAB to solve the non-linear equations to

find the Sj0 terms:

log
Sj0

Sj(0)
= Ãaj(Sj0 − Sj(0)) (3.11)

There are two solutions to this equation: the trivial case where Sj0 = Sj(0) and where

Sj0 < Sj(0). We are interested in finding the second solution where the infection is present

in the population, but if R0 < 1 we know that there is no epidemic so we do not need to

solve this system.

By equating higher powers of ǫ we calculate the terms Sj1 to Sj4 , where j ∈ {1, 2, 3, 4},
so we gain the number of susceptibles remaining in each age category at the end of each

epidemic. We do not expand past ǫ4 as the terms become negligible.

From this solution of the asymptotic expansion, we gain the number of people who are

infected in one epidemic. We now wish to iterate this process and allow for population

changes at the end of each year. An amended reproduction ratio, Rn, is calculated each

year to take account of the change in the susceptible population. It is no longer the basic

reproduction ratio as the entire population is no longer susceptible to infection, but is still

a measure of spread of the infection in the population each year.

Rn = ρ
(

M (n)
)

(3.12)

where M (n) is the next generation matrix calculated using the number of susceptibles for

each age group at year n.

At the end of each year we let a proportion of the remaining susceptible population

from each age class move into the next age class and introduce new susceptibles into the

population, to account for demographic change. Each epidemic of measles is completed

within a year, so we have the two time scales to work on, with the integral equation for the

epidemic numbers being solved without having to account for demographic change while

it is happening. As the first age group does not encompass an entire year (6 months to

15 months old), we have new susceptibles introduced into both the first and second age
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groups.

S
(n+1)
l (0) = B

15 − 6

12

S
(n+1)
2 (0) = S

(n)
1 (∞) +

(

1 − 15 − 6

12

)

B +

(

1 − 1

5 − 15
12

)

S
(n)
2 (∞)

S
(n+1)
3 (0) =

1

5 − 15
12

S
(n)
2 (∞) +

(

1 − 1

11 − 5

)

S
(n)
3 (∞)

S
(n+1)
3 (0) =

1

11 − 5
S

(n)
3 (∞) +

(

1 − 1

25 − 11

)

S
(n)
4 (∞) (3.13)

where S
(n)
j (∞) is the final size of the susceptible population at the end of year n. We then

calculate the reproduction ratio for that year using Equation (3.12). By repeating this

process, we derive a model for the epidemic pattern over many years, with the predicted

number of people infected each year and the reproduction ratio. From the way in which we

do the demographic adjustment at the end of each year, it is assumed that once infected

a person cannot become infected again – even after recovering form the virus.

A summary of the parameter values we use in this model and a brief description are

given in Table 3.1.

Parameter Name Value Meaning

ǫ 0.4 Weighting to inter-class mixing

a1 1 Activity level for 6–15 months old

a2 3 Activity level for 15month – 5 years old

a3 6 Activity level for 5–11 years old

a4 3 Activity level for 11–25 years old

B 57435 Birth rate

S1(0) B
(

15−6
12

)

Initial population for 6–15 months old

S2(0) B
(

5 − 15
12

)

Initial population for 15 month –5 years olds

S3(0) B(11 − 5) Initial population for 5–11 years old

S4(0) B(25 − 11 Initial population for 11–25 years old

Table 3.1: Parameter values and descriptions for the integral equation model for repeated measles

epidemics.

3.3 Model results

Using MATLAB to complete the asymptotic expansion to give the number of susceptibles

remaining in each age group after an epidemic and then complete the inter-class movement

at the end of each year, we plot the susceptible population in each age group at the end of

each year (before the change over of susceptibles between age groups and the introduction
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Figure 3.1: For this example, R0 = 12.8. Top: The number of susceptibles in each age group at

the end of the year, i.e. before people are moved between groups and new susceptibles

introduced into the population. Bottom: Cumulative susceptible populations at

the end of each year. The lowest line is the first age group, the next plotted line

represents the sum of age groups 1 and 2, the third line represents the total susceptible

population in groups 1-3 inclusive, and the highest line is the total susceptible

population (5 month – 25 year olds) at the end of each year.

of new susceptibles) in Figure 3.1 (top figure). The cumulative susceptible population at

the end of each year is shown in Figure 3.1 (bottom figure), where the lowest curve is age

group one susceptible, the second curve is age groups one and two susceptible, to the top

curve which represents the total number of susceptibles each year. It can be clearly seen

in Figure 3.1 that the susceptible population reaches a peak every three years before it

reduces, so our population is experiencing epidemics of measles every three years. The

largest susceptible populations are in our bottom two age groups, which are the two age

classes that have newborns included into at the end of each year. The older age groups do

not have a large susceptible population, as by the time children reach these classes, the

majority of them have already been infected.

The asymptotic expansion was only used to solve our model if the reproduction ratio

came out to be greater than one. If the reproduction ratio was less than one, an epidemic

was assumed not to occur, so the number of susceptibles in the population for the year

remaining unchanged and only demographic changes were allowed. Figure 3.2 shows the



Model results 34

0 5 10 15
0

0.25

0.5

0.75

1

1.25

1.5

year

Relative R Value

R
n

Figure 3.2: The relative reproduction ratio values calculated at the end of each year for the entire

population, with initially R0 = 12.8.

effective reproduction ratio as the disease progresses through the population. We can see

that the basic reproduction ratio is only just increasing over one every third year, which

means an epidemic occurs and the asymptotic expansion has to be solved.

By varying the basic reproduction ratio and running the model for fifty years for

the epidemic pattern to establish, we gain Figure 3.3(a), showing the final susceptible

population size. In Figure 3.3(b) we can see the number of years between epidemics

for varying values of R0. As R0 increases the inter-epidemic period generally decreases,

however we see that for some values of R0 we have two different inter-epidemic periods. For

example when 12 ≤ R0 ≤ 12.6 epidemics occur after 4 years, then after 3 years alternately

as demonstrated in Figure 3.4(a) and a similar pattern also occurs when R0 > 18.6, as

shown in Figure 3.4(b) where R0 = 18.6 and we see epidemics occur on an alternating 2

year to 1 year time scale.

To vary the value of R0 in our model we are actually varying the value of Ã (the

probability of being infected given contact with an infectious person). All other values in

model remain unchanged for these calculations.
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Figure 3.3: Using different values for R0, in Figure (a) the model is run for 200 years, then the

next 50 years final susceptible population is plotted. As R0 increases, the number of

susceptible populations for each value decreases, showing that the epidemic pattern

begins to settle. For Figure (b), the model is run for 200 years, then the final 50

years of data is used to calculate the number of years between epidemics.
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Figure 3.4: (a) is when R0 = 12.4. (b) When R0 = 18.6. For both figures, the top figure is

the number of susceptibles in each age group at the end of the year and the bottom

figure is the cumulative susceptible populations at the end of each year.
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3.4 Discussion

Without vaccination present in the population, measles epidemics in New Zealand were

observed every two years, yet our model shows repeated epidemics every three years when

a basic reproduction ratio of 12.8 is used. The largest epidemics are seen in the 15 month

to 5 year age group, with the smallest epidemics in the 15–25 year age group. As the first

age group width is less than a year, the discrete mapping from year to year does not quite

make sense, and also explains why there is never an epidemic within that age group (this

is something that could be changed in the future). The basic reproduction ratio reduces

substantially after the initial epidemic, and never increases back to that level (R0 = 12.8)

– if it increases above one an epidemic occurs. To modify our model to gain the two yearly

epidemic pattern, the probability of being infected given contact with an infective (the

vector A(τ)) could be increased, thus increasing R0 to be much higher than the predicted

value given by Roberts & Tobias (2000).

To find the number of people infected during the course of an epidemic, the final size

equation was solved. It is always assumed that an epidemic will be over within a year (as is

historically the case with measles epidemics in New Zealand). Theoretically, it is possible

for an epidemic to span over a number of years, in which case the discrete mapping would

need to be changed in our model to allow for a greater number of people to move between

age groups once the epidemic is over.

The differential equations model Roberts & Tobias (2000) successfully modelled the

two yearly epidemic pattern when no vaccination was present in the population. If a

population is not structured (i.e. the one dimensional case) both the integral equation

model and the differential equation model (SIR model) produce the same results, yet it has

been demonstrated here that with a structured population the models differ substantially

in their results.

A similar integral equation method has been used by Andreasen & Frommelt (2005)

using single year age groups, and has shown analytically that when the transmissibility

of infection is different for each age class, three year limit cycles appear. Both our model

and Andreasen & Frommelt (2005) do not include a seasonal forcing, as the population

demographics are calculated separately from the epidemic process, yet it is known that

seasonal forcing is required to make a differential equation model exhibit the repeated

epidemic pattern. Andreasen & Frommelt (2005) looked at the dynamics of of the yearly

epidemics in terms of parameter values, concentrating on the stability of steady states,

rather than comparing the model results with known data.

Numerical problems were encountered when solving the nonlinear Equation (3.11), as

to find the non-trivial solution we need Ãaj > 1 which is not always true when R0 > 1

(as R0 is calculated form the entire system rather than solely relying on the diagonal

entries in the next generation matrix). To work around this problem, in the instances

when Ãal < 1 for any of the age groups, the system was solved for the entire population,

and then the solution was distributed accordingly amongst the age groups. After running
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several simulations it was found that this was always the case – that is, the years where

there are epidemics either one or all Ãal < 1.

Ma & Earn (2006) shows that the final size equation has a unique non-trivial solution,

when the contact matrix is a positive, stochastic matrix, with largest eigenvalue one,

and the probability of being infected given contact is constant and the same for every

age group. If the contact matrix does not satisfy these conditions, or the probability of

infection given contact is different for each age group, then the final size equation cannot

be used. Ma & Earn (2006) show the existence and uniqueness of solutions to the final

size equation when used for age structured and spatially structured population, but they

do not actually find the solutions.
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Chapter 4

Review and Extensions to the

Medley et al. (2001) Hepatitis B

Virus Model

4.1 Introduction

Hepatitis was first identified as being transmitted through blood in Germany in 1883, but

it was not until 1947 that the term Hepatitis B virus (HBV) was proposed. The surface

antigen for the virus, HBsAg, was identified in 1967, and is now used for the vaccine against

HBV (New Zealand Ministry of Health, 2002). Hepatitis B has the second highest death

rate for vaccine preventable diseases in New Zealand (New Zealand Ministry of Health,

2002) and is the leading cause of liver cancer in the world (The Hepatitis Foundation

of New Zealand, 2007).

Hepatitis means inflammation of the liver cells (Macpherson, 1992), which may be

acute or chronic. There are five viruses that cause hepatitis, called hepatitis A, B, C,

D and E. Hepatitis A and E viruses cause infectious hepatitis, transmitted by eating

food contaminated with faecal material from an infected individual. Viruses B, C and

D are called serum hepatitis and are transmitted by contact with blood or body fluids

of an infected person. Hepatitis B virus, the most serious type of viral hepatitis (World

Health Organisation, 2000), can cause acute infection, chronic carrier status and chronic

hepatitis. Hepatitis B virus is the only hepatitis virus causing chronic hepatitis that is

vaccine preventable.

HBV is transmitted through infected blood or bodily fluids in the same way as human

immunodeficiency virus (HIV) — although HBV is 50–100 times more infectious than HIV

(World Health Organisation, 2000). The most common ways of being infected are: from

mother to baby at birth; child-to-child transmission; through intravenous drug use, and

unprotected sexual activity.

Once infected with HBV there is an incubation period of four to ten weeks, the surface
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antigen HBsAg then becomes detectable in the blood, with anti-HBc antibodies detectable

shortly after (Ganem & Prince, 2004). Another surface antigen, HBeAg, is then released

into the blood indicating that the virus is infecting the liver cells and that the host is

highly infectious. If the infection is going to clear, the levels of antigen HBsAG and

HBeAg recede from circulation and the anti-HBs antibodies become detectable — this

is when a patient is classed as immune from further HBV infection. During this period

symptoms of infection may last for several weeks and can include jaundice (yellowing

of the skin), fatigue, nausea, vomiting and abdominal pain (World Health Organisation,

2000). However, about 60% of infected individuals will be asymptomatic (New Zealand

Ministry of Health, 2002). Following this acute phase of the disease there is a long period

of recuperation lasting several months to a year. Acute hepatitis occurs only rarely in

infants, in about 6% of infected children and in 33% of infected adults, and will scarcely

(2%) be fatal in all age groups (New Zealand Ministry of Health, 2002).

If the infection does not produce an effective immune response a chronic carrier (CHB)

state may develop, where the virus survives and continues to replicate in the body for many

years. In this state the antigen HBsAg remains detectable in the blood six months after

the initial infection (Juszczyk, 2000). The chance of becoming a chronic carrier depends on

the age at initial infection: 90% of newborns (up to six months old), 25–50% of children

aged under 5 years old and 5–10% of adults who are infected develop CHB (Juszczyk,

2000; New Zealand Ministry of Health, 2002; World Health Organisation, 2000). People

with CHB will often have no history of acute illness. Patients with CHB may develop

cirrhosis (liver scarring) that can lead to liver failure, and they may also develop liver

cancer (The Hepatitis Foundation of New Zealand, 2007). A small portion (1–6%) of

chronic carries will clear the virus naturally (New Zealand Ministry of Health, 2002; The

Hepatitis Foundation of New Zealand, 2007).

4.2 Literature Review.

There have been numerous mathematical models published on hepatitis B, but none

specifically targeted at the New Zealand situation, where we have overall low endemic

rates of disease, with medium to high rates in certain regions of the country. In this

section we shall highlight some of the models relevant to our current study.

Similar to meningococcal disease, a key feature of Hepatitis B disease is the carrier

state, where an individual is asymptomatic but still infectious. Edmunds et al. (1993)

examined the relationship between age at infection with HBV and the development of

the carrier state. They fitted an exponential model to the data collected from over 30

sources/published results and found that the proportion of people who become carriers

decreases with the age at infection. Their maximum likelihood solution for the model is

used in a later model (Medley et al., 2001), and we will use a simplified version of it in

our model, as will be discussed in detail in section 4.3.
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Williams et al. (1996) used an age and sexual orientation dependent partial differential

equation model with six compartments: susceptible to infection, latently infected, acutely

infected, immune following infection, chronic carrier and immune following vaccination.

Each of these compartments is split into 12 age classes, with the rate of acquiring

sexual partners varying for each age group. They have assumed that there is no risk

of infection after birth until the onset of sexual activity, and that there are births into

three compartments: susceptible, vaccinated immune and latent (as a results of vertical

transmission). This assumption of no infection for children under the age of 15 does

not allow for child-to-child infection, and there is also no infection after the age of 60 as

sexual activity is assumed to be zero. They assumed the duration of carriage to be 65

years, and there to be an extra mortality rate due to acute and chronic infection. The

risk of becoming a carrier following acute infection is kept constant for all age groups at

10%. Their results for the endemic steady state are consistent with the data from the

United Kingdom for the proportion of people who are seropositive for HBV (have been

infected at some stage in their lives), with an estimated basic reproduction ratio of 1.2 for

the heterosexual population and 4 for the homosexual population. The difference in the

value R0 for the two sub populations can be attributed to the different rates of change of

partners and different tranmission risks for each population (the homosexual population

has a higher risk of transmission). Williams et al. predict that targeted vaccination at

genito-urinary clinics would have a more rapid response then mass infant or adolescent

vaccination, as there is no lag in the effect (measured by decrease in carrier prevalence),

and it is highly targeted.

Kretzschma et al. (2002) look at the effect of vaccination against HBV in countries

with low endemic status, using (Williams et al., 1996) as a basis for their model. They add

in the effect of immigration of Hepatitis B virus carriers from countries with higher disease

prevalence, and compare their results to data from the Netherlands. They also make a

key change to the Williams et al. (1996) model by allowing the probability of becoming

a carrier depend on age at infection. The population remains at a constant size, with

rescaling taking place to allow for a constant annual net per capita rate of immigration,

with a fixed age distribution and constant prevalence of carriers and immunes. These key

changes lower the basic reproduction ratio for the heterosexual population to 0.53 and the

homosexual population to 2.66. In the heterosexual population, the disease endemicity

is maintained by the constant influx of carriers immigrating. They consider three levels

of immigration relative to their carrier levels, and find the effect of universal vaccination

of newborns to have little effect on the prevalence of carriers in all cases, as the force of

infection will not decrease substantially with vaccination. They predict that vaccination

would need to be maintained for decades in order to protect the population.

Anderson & May (1992) give a simple SEICR model, where the carrier state is

presumed to be lifelong, and the average age at infection is 5–7 years old. Their model

gives a basic reproduction ratio of six, with non-carriers being ten times more infectious
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than carriers. The presence of carriers in the population is the source of the infection, so

the disease cannot be totally removed from the population unless the vaccination affects

carriers. If the vaccination does not affect carriers (which is the case of the vaccine used

in New Zealand), the disease will not be eliminated until the carriers have all died. They

also state that as the carriers are a source of infection, they eliminate the oscillations or

repeated epidemic peaks that are seen with diseases that do not have the carrier state.

The simple model by Anderson & May (1992) is expanded by Wilson et al. (1998) to

consider a variant of the infection that escapes vaccination in a highly endemic area. They

present a seven compartment model: susceptibles; vaccinated; infected with primary HBV

infection; infected with a variant; chronic carriers of either type of infection and recovered.

Their model is not structured by age, so infection is transmitted horizontally through age-

independent mixing and vertically through chronic carrier mothers. They assume that

carriers are only 16% as infectious as acutely infected individuals, and (as there is no age

structure) let 30% of those infected go on to become carriers. Under the worst case scenario

that vaccination provides no protection against the variant strain, it takes decades for the

variant strain to emerge in the population. This model is not really concerned about the

current levels of hepatitis B disease, but the possibility that a vaccine resistant strain

could emerge, and hence their results are not directly compared to any known data.

The model presented by McLean & Blumberg (1994) concentrates on areas with a high

carrier prevalence, where the whole population is at a high risk of infection. They split

the population into six compartments with relation to the infection process: susceptible;

primary infected; immune; infectious carrier; non-infectious carrier and vaccinated. They

consider three possible causes of disease transmission: perinatal and vertical transmission

from infectious mothers to their children; casual (non-sexual) transmission among the

whole population; and sexual transmission amongst individuals in the the sexually active

classes. McLean & Blumberg allow two different proportions of children to be born into

the infectious class depending on the status of their mothers – whether they are infectious

or non-infectious carriers at the time. The probability of carriage after infection depends

on their age and sex at the time of infection (decreasing with age and higher in males), and

force of infection depends on the size of the infectious population. There are two different

forces of infection – for casual transmission and sexual transmission for male and females,

with the force for sexual transmission relating to partner change rates. An additional

death rate is included for both carrier compartments, and this is dependant on age and

sex. The effect of the vaccination is assumed to wane over the years, with the average

protection period of 22.2 years, whereas immunity after being infected is assumed to be

lifelong. The model’s results are not compared with any data, and no model results are

actually presented – only the formulation of parameter estimates based on data from the

United Kingdom. This model is a framework that could be used to predict the outcomes

of various vaccination schemes on the number of acute infections and carriers present in

the population.



Literature Review. 43

A SEICR type model is presented by Zhao et al. (2000), with the population split into

susceptibles, latently infected, temporary carrier, chronic carrier and immune. Both the

carrier compartments are infectious, with the force of infection dependent on age and the

time after vaccination is introduced. The force of infection peaks in infancy and early

childhood, and declines rapidly with age, being low from 15 years old onwards – they

have used a cubic function in age. They assume that immunity after infection or through

vaccination is lifelong, and there is an additional death rate for those in the chronic carrier

state dependant on age. The probability of becoming a chronic carrier is also dependant on

age, using an exponential expression similar to that given by Edmunds et al. (1993). The

rate at which chronic carriers become immune is also dependant on age, with the rate for

over 50 years old being much higher than before 30, a low reversion rate in people between

5–45 years old, and no reversion for those under 5 years old. This could be explained by

the decrease in carriers over the age of 50 in the data they have based their model on,

meaning there is a higher death rate for carriers than for non-carriers. The model fits well

to the prevalence and carriage of HBV by age, before and after vaccination is included

in their model. They predict that carriage rates will remain high even after vaccination,

and the only drop in carriage rates will be when the existing carriers die. They assumed

that with a 100% vaccination coverage and 90% effectiveness of the vaccine, it would take

nearly 70 years to eliminate the acute infection in the population, as the incidence ratio of

carriers takes nearly 25 years to start to decline after the introduction of the vaccination.

A very simple susceptible, infectious, carrier model is presented by Edmunds et al.

(1996) for areas that are highly endemic (more than 75% of the adult population has

evidence of past or current infection). They assume that the probability of developing

carriage is a non-linear decreasing function of age, and that the force of infection is also

dependent on age (they used two different methods for calculating the force of infection –

one dependent on the number of susceptibles in the neighbouring age classes, and the other

a continuous polynomial of order 1–4). Key characteristics of high endemic areas are a low

average age at infection and a high prevalence of carriers. Comparing their model to data

from high prevalence areas, they found the force of infection to be highest in young children

and to decline throughout childhood – which corresponds to the probability of becoming

a carrier depending on age at infection. Both of the high prevalence areas that their data

were taken from showed that horizontal transmission was highest in children, but East

Asia had a slightly higher prevalence of vertical transmission than sub-Saharan Africa.

They predicted that a mass infant vaccination campaign would decrease the generation of

carriers, and it is this age group that is most likely to become carriers after infection.

Goldstein et al. (2005) present a model to estimate the morbidity and mortality from

hepatitis B virus and the impact of vaccination on the morbidity and mortality, and also

the development of the acute form of the infection and the carrier stage. Their model can

be run through a simulator on the Center for Disease Controls website (Center for Disease

Control, 2008). Few details of the actual model are given in the paper and their model
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requires population–specific data in order to run: the number of new borns surviving past

the first year of life; the prevalence of infectious and carrier women of child bearing age and

the prevalence of acute and carrier infection among five year olds and the above 30 years

old. If the effect of vaccination is to be included in the model outputs, the proportion of

the surviving newborn age class that is expected to receive the vaccine and the proportion

expected to receive the full course of the vaccine are also required. Given these inputs (that

would be hard to estimate for many countries due to the carrier population being largely

unknown), the model will calculate the disease burden for a specific year and for a specific

new born age group over the course of their lifetime. They have included an age specific

risk of infection and probability of acute and chronic infection, but no details are given as

to how the model works. Goldstein et al. give estimates for the current (year 2000) and

future burden of infection in various parts of the world but do not directly compare these

to any known data. Their model is intended to be used as a tool for countries to see the

impact of infant vaccination campaigns.

We now go on to look in detail at Medley et al. (2001), as this model stood out from

all other papers as it shows a possibility for the infection to be endemic in the population

even when the basic reproduction number is less than one.

4.3 Critical Review of Medley et al. (2001).

We will use the paper (Medley et al., 2001) as the basis for our work, as their model

exhibits interesting dynamics while still modelling many of the critical aspects of HBV.

Medley et al. (2001) present a susceptible, exposed, infectious, carrier and removed

(SEICR) differential equation model, with a constant population size. As the force of

infection is inversely related to the age at infection, they have assumed that the probability

of becoming a carrier will depend on the force of infection. Letting x be the proportion

of the population susceptible to infection; h be the proportion who are infected but not

yet infectious; y be the proportion who are acutely infected; c be the proportion who are

carriers; and r be the proportion who are immune, the differential equations for the model

are:

dx

dt
= −(λ + µ)x + µω(1 − νc)

dh

dt
= λx − (σ + µ)h

dy

dt
= σh − (γ1 + µ)y

dc

dt
= q(λ)γ1y − (γ2 + µ)c + µωνc

dr

dt
= [1 − q(λ)]γ1y + γ2c − µz + µ(1 − ω) (4.1)

The parameters and their values are described in Table 4.1. The force of infection,

λ, depends on the proportions of acutely infected and carriers in the populations: λ =
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β(y + αc).

Medley at al. have used the result that the average age at infection is inversely related

to the force of infection, and so have let λ = 1/p in the function for carriage development

given by Edmunds et al. (1993):

q(λ) = f + (1 − f) exp(−0.645λ−0.455) (4.2)

We see that q(λ) is an increasing function in λ, with the lowest value it can take being

f . The authors state that this will essentially be the probability of an adult developing

carriage.

Symbol Parameter Description Value

σ the rate at which latently in-

fected individuals become infec-

tive

6 per year

γ1 the rate at which acutely infected

individuals recover

4 per year

γ2 the rate at which carrier individ-

uals recover

0.025 per year

ν the proportion of unimmunised

children born to carrier mothers

who develop carriage

0.11

1 − ω the proportion of infants who are

successfully immunised

refer to text

β transmission coefficient refer to text

α infectiousness of carriers relative

to acutely infected individuals

0 ≤ α ≤ 1

µ birth/death rate 1/70 per per-

son per year

Table 4.1: The parameters and variables used in the model given by Medley et al. (2001)

For numerical computation, we calculated the steady states of the model by

substituting x = 1 − (h + y + c + z) and solved as a system with respect to λ:












σ + λ + µ λ λ λ

σ −(γ1 + µ) 0 0

0 q(λ)γ1 νµ − (γ2 + µ) 0
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To solve this, we fix the value of λ and solve to find the values of h, y, c and z. Once

these are know, it is simple to calculate x.

We can calculate the basic reproduction ratio for this model by first considering the

next generation matrix, K. We note that there are two host types in this model: those
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who are infected through contact with an acutely infected or carrier individual; and those

who are infected at birth. The components of the next generation matrix are given by:

K1,1 : Acutely infected individuals infect others at rate β, and remain infectious for 1
γ1+µ

years. A proportion, qγ1, of acutely infected individuals become carriers and infect

others at rate αβ, and remain infectious for 1
γ2+µ

years. Of those who are infected,

a proportion σ
σ+µ

become infectious.

K1,2 : Carriers infect others at rate αβ, and remain infectious for 1
γ1+µ

years. A

proportion, σ
σ+µ

, of those infected go on to be infectious.

K2,1 : A proportion, qγ1, of acutely infected individuals go on to become carriers, who

then remain carriers for 1
γ2+µ

years. Carriers give birth at rate µ, and a proportion,

ν, of these births are carriers.

K2,2 : Carriers give birth at rate µ, then a proportion of these, ν, go on to become

carriers. Carriers remain in that compartment for 1
γ2+µ

years.

Thus, the next generation matrix for the Medley et al. (2001) model is:

K =





σ
σ+µ

β
γ1+µ

(

1 + q(0)γ1α
γ2+µ

)

σ
σ+µ

αβ
γ2+µ

q(0)γ1νµ
(γ1+µ)(γ2+µ)

µν
γ2+µ





The basic reproduction ratio is then given by the largest eigenvalue of the next generation

matrix, i.e. the largest root of the quadratic:

R2 − R

(

σβ(γ2 + µ + q(0)γ1α) + νµ(σ + µ)(γ1 + µ)

(σ + µ)(γ1 + µ)(γ2 + µ)

)

+
νµσβ

(σ + µ)(γ1 + µ)(γ2 + µ)
= 0 (4.3)

This is different to the R0 given in Medley et al. (2001) (for which no justification was

given), however it leads to similar analytic results.

Solving Equation (4.3) numerically and plotting the proportion of the population who

are seropositive to the infection (1 − x∗) against the basic reproduction ratio we obtain

Figure 4.1 - which is similar to the results given by Medley et al. even though we have

used a different formula for R0. By varying the value of the parameter f (that is seen

as the probability of adults developing carriage), we see that we can have the situation

where the infection persists in the population even when the basic reproduction ratio is

below one. The dashed parts of the curves represent an unstable steady state, and the

solid parts of the curves represent a stable steady state. If the value of f is low enough,

we can have a hysteresis effect – for example consider the f = 0 curve in Figure 4.1: if the

proportion of the population that is seropositive to the infection is 0.2 and R0 is increased,

the proportion of the population that is seropositive will “jump” to the upper branch of

the curve close to 1. Once this has occurred, if R0 is lowered, 1 − x∗ will decrease until
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it reaches the unstable steady state and it “jumps” from there to the 1 − x∗ = 0 steady

state. If the function q(λ) is constant, the backwards bifurcations do not occur, and the

graph behaves as the right most curve in Figure 4.1.
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f = 0 f = 0.02 f = 0.04 f = 0.06 f = 0.08 

Figure 4.1: The steady state proportion of the seropositive population plotted against R0 for

varying values of f . As f increases, we see that the backwards bifurcation vanishes.

For all the curves, α = 1. The dashed lines are unstable steady states, and the solid

lines are stable steady states. The line 1 − x∗ = 0 is a stable steady state when

R0 < 1 and unstable afterwards.

Figure 4.2 shows the combinations of the parameters f and α that produce a backwards

bifurcation in the R0 versus proportion seropositive graph. This was found by numerically

calculating the steady state values for varying values of λ, for each combination of α and

f , and plotting the point where R0 decreases from the previous iteration. This leads to

an interesting question: what conditions need to be met for the backwards bifurcation to

occur, and more specifically, what part of the definition of the function q(λ) causes the

backwards bifurcation? To explore this further, we analytically find the steady states of

Equation (4.1).
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Figure 4.2: The values of the two parameters α and f that produce a backwards bifurcation in

the R0 versus proportion seropositive curve.

The steady state for the system of Equations (4.1):

dh

dt
= 0 ⇒ h∗ = β(y∗+αc∗)x∗

σ+µ
(4.4)

dy

dt
= 0 ⇒ y∗ = βσαc∗x∗

A−βσx∗
(4.5)

dc

dt
= 0 ⇒ x∗ = AD

σβ(q(λ∗)γ1α+D) (4.6)

dx

dt
= 0 ⇒ c∗ = µ(x∗

−ω)(A−βσx∗)
βx∗(σµων−αA)−µωνA

(4.7)

c∗ = q(λ∗)γ1µ(ωσβ(q(λ∗)γ1α+D)−AD)
β(AD+µωνσq(λ∗)γ1)(q(λ∗)γ1α+D) (4.8)

where A = (γ1 + µ)(σ + µ) and D = γ2 + µ − µνω. We also know:

λ∗ = β(y∗ + αc∗)

= µ(ωσβ(q(λ∗)γ1α+D)−AD)
AD+µωνσq(λ∗)γ1

(4.9)

We want to find what conditions lead to dR0

dx∗
= 0, giving us the backwards bifurcation

in Figure 4.1. As R0 is the largest eigenvalue of the next generation matrix, K, from

Equation (4.3) we know R0 will be the largest root of:

R2 − R

(

σβ

A

(

1 +
fγ1α

γ2 + µ

)

+
νµ

γ2 + µ

)

+
σβνµ

A(γ1 + µ)
= 0 (4.10)
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By rearranging Equation (4.6) for β and substituting into the above equation we gain:

R0 = max

(

1

2x∗(q(λ∗)γ1α + D)(γ2 + µ)

× [D(γ2 + µ + fγ1α + νµx∗) + νµx∗q(λ∗)γ1α

±
(

(D(fγ1α + νµx∗ − (γ2 + µ)) + νµx∗q(λ∗)γ1α)2 + 4D2(γ2 + µ)fγ2α
)

1

2

])

(4.11)

We can differentiate Equation (4.11) with respect to x∗, but in this form it is hard to

draw any conclusions. Instead, we look at dR0

dx∗
= dR0

dβ
dβ
dλ∗

dλ∗

dx∗
. If we can show that dR0

dβ
6= 0

and dλ∗

dx∗
6= 0, then dR0

dx∗
= 0 when dβ

dλ∗
= 0. We can see the relationship between the four

variables R0, x, λ and β at the steady state numerically in Figure 4.3 for varying values

of f .
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Figure 4.3: Steady state values for f = 0; 0.02; 0.04; 0.06. Figure (a) shows R0 against the

proportion of susceptibles in the population at the steady state, x∗, with the value

of f increasing from 0 to 0.06 from the lowest to highest curve; Figure (b) shows R0

versus β, where the value of f increases from the lowest to highest curves; Figure

(c) shows β versus λ, with the value of f decreasing from the lowest to the highest

curve - where the top two curves have maximums that correspond to the backwards

bifurcations shown in Figure 4.1; Figure (d) shows λ versus the proportion susceptible

which does not vary for changes in f .
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To express R0 in terms of β, we simply take the largest root of the characteristic

equation of our next generation matrix:

R0 = max

(

1

2A(γ2 + µ)
(σβ(γ2 + µ + fγ1α) + νµA

±
[

(σβ(γ2 + µ + fγ1α) + νµA)2 − 4Aσβνµ(γ2 + µ)
]

1

2

))

(4.12)

We always take R0 to be the largest root of the quadratic given in Equation (4.12), and

we know that this will always yield a positive, real value. Note that the square root part

of the definition of R0 will only be zero when:

(σβ(γ2 + µ + fγ1α) + νµA)2 − 4Aσβνµ(γ2 + µ) = 0

⇒ σβ =
νµA(γ2 + µ − fγ1α) ± νµA

√

−4fγ2α(γ2 + µ))

(γ2 + µ + fγ2α)2
(4.13)

As R0 is a real value, this can only occur if ν, f or α are zero (as µ, γ1 and A are all

non-zero parameters). As we are considering values at the steady state, we know from

Equation (4.6) that

σβ =
A(γ2 + µ − νµω)

x∗(γ2 + µ − νµω + q(λ)γ1α)
(4.14)

If ν = 0, then Equation (4.13) gives σβ = 0, but we know from Equation (4.14) that

σβ 6= 0. So the case ν = 0 is not a possible solution.

If α = 0, then Equation (4.13) gives σβ = νµA
γ2+µ

. Substituting this into Equation 4.14

we gain:

x∗ =
γ2 + µ

νµ
>

µ

νµ
>

1

ν
(4.15)

As ν is a proportion, we know that it less than or equal to one. So we have a contradiction,

as x∗ < 1 - so α = 0 is not a possible solution.

If f = 0, then Equation (4.13) gives σβ = νµA
γ2+µ

, substituting this in Equation (4.14)

we have:

νµx∗ =
(γ2 + µ − νµω)(γ2 + µ)

(q(λ∗)γ1α + γ2 + µ − νµω)
(4.16)

which is a possible solution.

We want to find if dR0

dβ
= 0. When f = 0 (and we know a bifurcation occurs), we have

R0 = σβ
(σ+µ)(γ1+µ) , which is non-zero (even in the case where σβ = νµA

γ2+µ
). When f 6= 0 we

solve the following, letting dR0

dβ
= 0:

dR0

dβ
=

1

2A(γ2 + µ)
[σ(γ2 + µ + fγ1α)

+
σ(γ2 + µ + fγ1α)(σβ(γ2 + µ + fγ1α) + νµA) − 2Aσνµ(γ2 + µ)

√

(σβ(γ2 + µ + fγ1α) + νµA)2 − 4Aσβνµ(γ2 + µ)

]

(4.17)
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The parameters σ, A and γ2 + µ are all non-zero, as is the square root term (as shown

earlier), so we have:

(γ2 + µ + fγ1α)
√

(σβ(γ2 + µ + fγ1α) + νµA)2 − 4Aσβνµ(γ2 + µ)

= νµA(γ2 + µ + fγ1α) − σβ(γ2 + µfγ1α)2

⇒

(γ2 + µ + fγ1α)2((σβ)2(γ2 + µ + fγ1α)2 − 2νµA(γ2 + µ − fγ1α) + (νµA)2)

= (νµA)2(γ2 + µ − fγ1α)2

− 2νµAσβ(γ2 + µ − fγ1α)(γ2 + µ + fγ1α)2 + (σβ)2(γ2 + µ + fγ1α)2

⇒
(νµA)2(γ2 + µ − fγ1α)2 = (νµA)2(γ2 + µ + fγ1α)2 (4.18)

Equation (4.18) can only be true if f , γ1 or α are zero. We stated at the beginning that

we are dealing with the f 6= 0 case, and γ1 is non-zero parameter. Substituting α = 0 into

our equation for dR0

dβ
(Equation (4.17)), we gain a non-zero result. Therefore, dR0

dβ
6= 0.

To show that dλ∗

dx∗
6= 0, we first calculate λ at the steady state, using Equations (4.5)

and (4.7):

λ∗ = β(y∗ + αc∗)

= αβAµ(x∗
−ω)

x∗β(σµων−αA)−µωνA
(4.19)

As λ is the force of infection, we know that it is positive, giving us:

βσµων − Aαβ >
Aµων

x∗
(4.20)

Differentiating Equation (4.19) with respect to x∗:

dλ

dx∗
=

αβAµ[βω(σµων − αA) − µωνA]

(x∗β(σµων − αA) − µωνA)2
(4.21)

For dλ
dx∗

≤ 0 we would need:

βσµων − Aαβ ≤ Aνµ (4.22)

Using Equation (4.20) that gives:

Aµων

x∗
< βσµων − Aαβ ≤ Aµν

⇒ ω

x∗
< 1

⇒ ω < x∗ (4.23)

Recalling that 1 − ω is the proportion of births who are successfully immunized, so ω

is essentially the proportion of unsuccessfully immunized births, and hence susceptible to
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infection1 - it is not possible to have x∗ > ω. Thus, dλ∗

dx∗
> 0, as shown in Figure 4.3(d).

Therefore, we must have dR0

dx
= 0 when dλ

dβ
= 0.

To find β in terms of λ, we rearrange Equation (4.9) for β:

β =
λ∗(AD + µωνσq(λ∗)γ1) + ADµ

µωσ(q(λ∗)γ1α + D)
(4.24)

Differentiating with respect to λ at the steady state:

dβ

dλ∗
=

1

µωσ(q(λ)γ1α + D)
[AD(q(λ)γ1α + D) + µωνσq(λ)γ1(q(λ)γ1α + D)

+ {λνγ1µωσ(q(λ)γ1α + D) − γ1αλ(AD + µνωσq(λ)γ1) − ADγ1αµ} dq(λ)

dλ

] (4.25)

Therefore, dβ
dλ∗

= 0 when the following quadratic in q(λ∗) is satisfied:

0 = q2γ2
1αµωνσ + qγ1D(Aα + µωνσ)

+ AD2 +
dq

dλ
γ1D(λνµωσ − Aα(λ + µ))

(4.26)

Thus, a bifurcation occurs when the following is satisfied (as shown in Figure 4.4):

qbif =
D(Aα + νωµσ

2γ1ασνµω

{

−1 +

√

1 − 4ασνµω

D(Aα + µνωσ)2
(AD − γ1(Aαµ + λ(Aα − νµωσ)))

dq

dλ

}

(4.27)

If the function q(λ) at the steady state is the same as qbif given in Equation (4.27)

then a bifurcation will occur in the R0 versus 1− x∗ plane. Note that the analysis of this

condition is independent of the definition of the function q(λ) given by Medley et al.; any

function q(λ) that satisfies Equation 4.27 will produce a backwards bifurcation.

The unstable equilibrium of Medley et al. is extremely sensitive to the values of the

two parameters f and α, relating to the probability that an adult will become a carrier

and the relative infectiousness of a carrier. The probability of an adult developing carriage

needs to be very low (0 < f < 0.04), and α > 0.2 to cause a bifurcation. There is little

information available on the infectiousness of carriers relative to infected individuals -

however α is something that could be affected by a vaccination program. For f to be

less than 0.04 would require the average age at infection to be greater than 34 years (by

substituting 0.04 into the p(a) equation presented in Edmunds et al. (1993)).

1We can also show that x∗ < ω from the steady state of the differential equation: dx
dt

= −(λ + µ) +

µω(1 − νc) = 0, so x∗ = ω µ

λ+µ
(1 − νc). It is clear that µ

λ+µ
is less than one, and as ν is a proportion,

(1 − νc) < 1, thus x∗ < ω
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Figure 4.4: For increasing values of f (f = 0, 0.01, ..., 0.04, f = 0 produces the bottom curves),

q(λ) is shown as the solid line, and the condition for dβ
dλ

= 0 (Equation (4.27))

is shown as a dotted line. Where the two curves intercept is the location of the

bifurcation points, and the backwards bifurcation. When f is slightly less than 0.04,

the two curves no longer intercept, hence a bifurcation does not occur. For this

diagram α = 1 and ω = 1.
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4.4 Extending the Medley et al. model to multiple age

classes.

We now extend the Medley et al. (2001) model by discretising the population into age

classes and allocate each age class a probability qi of developing the carriage state (given

infection) that we can vary.

4.4.1 SEICR Model with two population classes.

For our first model we split the population into two age groups: children (aged 0–15

years) and adults (older than 15 years). We then have the following compartments for

each of the age groups: susceptible, exposed (but not yet infectious), infectious, carrier

(asymptomatic) and removed. Infectious individuals are those who are positive for HBsAg

and HBeAg; chronically infected carriers will have been positive for HBsAg, HBeAg and

Anti-HBc for longer than six months; and removed individuals are those who test positive

for Anti-HBs and Anti-HBc antigens (Juszczyk, 2000; The Hepatitis Foundation of New

Zealand, 2007). Children and adults both move from their susceptible compartment to the

exposed compartment, then on into the infectious compartment. From being infectious,

both children and adults can either become carriers or become removed (and immune

from Hepatitis B). After being a carrier, you can only become removed. Children also

move from S, E, I, C and R compartments to the corresponding adult compartments, as

shown in Figure 4.5. We have inflow to the childhood population through the susceptible

and carrier compartments. We use the model given in Medley et al. (2001) as a base, and

adapt it to include a structured population.

children































dSc

dt
= (1 − ν Ca

Na
)B − (λ + µc)Sc

dEc

dt
= λSc − (σ + µc)Ec

dIc

dt
= σEc − (γ1 + µc)Ic

dCc

dt
= ν Ca

Na
B + q1γ1Ic − (γ2 + µc)Cc

dRc

dt
= (1 − q1)γ1Ic + γ2Cc − µcRc

adults































dSa

dt
= µcSc − (λ + µa)Sa

dEa

dt
= µcEc + λSa − (σ + µa)Ea

dIa

dt
= µcIc + σEa − (γ1 + µa)Ia

dCa

dt
= µcCc + q2γ1Ia − (γ2 + µa)Ca

dRa

dt
= µcRc + (1 − q2)γ1Ia + γ2Ca − µaRa

(4.28)

The force of infection, λ, is dependent on the infectious and carrier populations. We

assume that infection is more likely to happen from contact with an infectious person than

with a carrier, so we have

λ =
β

Nc + Na
(Ia + Ic + α(Ca + Cc)) (4.29)
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Figure 4.5: Flow chart to show the infection course for Hepatitis B when the population is split

into two age groups: children and adults. There are births into both the susceptible

and carrier children populations.

where Nc is the number of children in the population, and Na is the number of adults in

the population, and α < 1 (assuming that carriers are less infective than acutely infected

people).

A proportion, ν, of children born to carrier mothers become carriers. The proportion

of infected individuals that go on to become carriers depends on the age at infection,

with q1 > q2. We have ignored deaths in the child age group, but have allowed a natural

death rate from the adult compartments, and have assumed that the recovery and viral

progression rates are the same for both age groups. The transmission coefficient, β, has

units per year and B is a constant birth rate per year. The rate at which children become

adults is µc (= 1
15 per year, i.e. they remain children for an average of 15 years), and is

the rate at which adults die is µa (= 1
55 per year, i.e. they remain adults for an average of

55 years). The rate at which those exposed become infected is σ, the rate at which those

infected leave the compartment to become either carriers or immune is γ1 , and the rate

at which carriers become removed is γ2.

We calculate R0 from the largest value of the next generation matrix, which is

constructed as follows — there are three types of infection: horizontally infected children;

horizontally infected adults, and born carriers. Figure 4.6 shows the proportions of each

host type that move on to the next host type. Only infected and carrier adults and

children are able to infect others. Infected children infect β
(Na+Nc)(γ1+µc)

people, infected

adults infect β
(Na+Nc)(γ1+µa) , carrier children infect αβ

(Na+Nc)(γ2+µc)
and carrier adults infect

αβ
(Na+Nc)(γ2+µa) .
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Figure 4.6: The movement between the infected compartments, used for constructing the next

generation matrix. From the carrier compartments, individuals become removed and

are no longer infected. The three types in infection are noted with the superscripts:

1) horizontally infected children, 2) horizontally infected adults and 3) born carrier

children (or vertically infected children).

We construct a 3x3 matrix to show the infection interactions between these types.

K1,1 : horizontally infected children to horizontally infected children: Horizontally

infected children start in the Ec compartment. In order to infect other children they

have to become either: 1) infected children; 2) infected adults; 3) carrier children or

4) carrier adults.

1) A proportion σ
σ+µc

of exposed children go on to become infected children, who

will infect βNc

(γ1+µc)(Na+Nc)
others.

2) For exposed children to become infected adults, they must first either become

infected children ( σ
σ+µc

µc

γ1+µc
) or exposed adults ( µc

σ+µc

σ
σ+µc

). The number of children

they then go on to infect is βNc

(γ1+µa)(Na+Nc)
.

3) The proportion of exposed children who become infected children, then carrier

children is σ
σ+µc

q1γ1

γ1+µc
. They then go on to infect αβNc

(γ2+µc)(Na+Nc)
children.

4) There are three ways for exposed children to become carrier adults: a proportion

of exposed children will first become infected, then carrier children and then finally

carrier adults, σ
σ+µc

q1γ1

γ1+µc

µc

γ2+µc
; a proportion will become infected children, then

infected adults then carrier adults, σ
σ+µc

µc

γ1+µc

q2γ1

γ1+µa
; and a proportion will become

exposed adults, then infected and carrier adults, µc

σ+µc

σ
σ+µa

q2γ1

γ1+µa
. Carrier adults will

then infect αβNc

(γ2+µa)(Na+Nc)
children.



Extending the Medley et al. model to multiple age classes. 58

Putting these four components together we have the first entry in the next generation

matrix:

K1,1 =
σ

σ + µc

βNc

(γ1 + µc)(Na + Nc)

+

(

σ

σ + µc

µc

γ1 + µc
+

µc

σ + µc

σ

σ + µa

)

βNc

(γ1 + µa)(Nc + Na)

+
σ

σ + µc

q1γ1

γ1 + µc

αβNc

(γ1 + µc)(Nc + Na)

+

(

σ

σ + µc

q1γ1

γ1 + µc

µc

γ2 + µc
+

σ

σ + µc

µc

γ1 + µc

q2γ1

γ1 + µa

+
µc

σ + µc

σ

σ + µa

q2γ1

γ1 + µa

)

αβNc

(γ2 + µa)(Nc + Na)

K1,2 : horizontally infected adults to horizontally infected children: Exposed adults can

infect children when they become infected or carrier adults. The number of children

infected by exposed adults that become infected adults is σ
σ+µa

βNc

(γ1+µa)(Na+Nc)
, and

the number of children who are infected by exposed adults who have become carrier

adults is σ
σ+µa

q2γ1

γ1+µa

αβNc

(γ2+µa)(Na+Nc)
. Hence

K1,2 =
σβ

(σ + µa)(γ1 + µa)

(

1 +
αq2γ1

γ2 + µa

)

Nc

Na + Nc

K1,3 : born carriers to horizontally infected children: Born carriers either infect children

directly, αβNc

γ2+µc
, or they go to to become carrier adults and infect µc

γ2+µc

αβNc

γ2+µa
children.

Thus

K1,3 =
αβ

γ2 + µc

(

1 +
µc

γ2 + µa

)

Nc

Na + Nc

K2,1 : horizontally infected children to horizontally infected adults: Horizontally infected

children create horizontally infected adults in exactly the same manner as they create

horizontally infected children, but the number of adults they infect will depend on

Na rather than Nc. So K2,1 = K1,2
Na

Nc
.

K2,1 =
σ

σ + µc

βNa

(γ1 + µc)(Na + Nc)

+

(

σ

σ + µc

µc

γ1 + µc
+

µc

σ + µc

σ

σ + µa

)

βNa

(γ1 + µa)(Nc + Na)

+
σ

σ + µc

q1γ1

γ1 + µc

αβNa

(γ1 + µc)(Nc + Na)

+

(

σ

σ + µc

q1γ1

γ1 + µc

µc

γ2 + µc
+

σ

σ + µc

µc

γ1 + µc

q2γ1

γ1 + µa

+
µc

σ + µc

σ

σ + µa

q2γ1

γ1 + µa

)

αβNa

(γ2 + µa)(Nc + Na)
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K2,2 : horizontally infected adults to horizontally infected adults: Horizontally infected

adults can go on to become infected adults, and they will infect σ
σ+µa

βNa

(γ1+µa)(Na+Nc)

other adults. From being infected adults, a number will of these will go on to become

carrier adults and will infect σ
σ+µa

q2γ1

γ1+µa

αβNa

(γ2+µa)(Na+Nc)
more adults. Therefore,

K2,2 =
σβ

(σ + µa)(γ1 + µa)

(

1 +
αq2γ1

γ2 + µa

)

Na

Na + Nc

K2,3 : born carriers to horizontally infected adults: A born carrier will infect other adults

in the same was as they infect children, but the rates of infection will be multiplied

by Na rather than Nc. Accordingly,

K2,3 =
αβ

γ2 + µc

(

1 +
µc

γ2 + µa

)

Na

Na + Nc

K3,1 : horizontally infected children to born carriers: Horizontally infected children can

only give rise to born carriers by first becoming carrier adults, which they can do in

three ways: 1) by becoming an infected child, carrier child then carrier adults; 2) by

becoming an infected child, then adult, then a carrier adults, and 3) by becoming

an exposed, infected then carrier adult. Once the carrier adult status is reached, the

number of born carriers produced is νB
Na(γ2+µa) .

1) The number of exposed children who become an infected child, carrier child, then

carrier adult is σ
σ+µc

q1γ1

γ1+µc

µc

γ2+µc
.

2) The number of exposed children who become an infected child, then adults, then

a carrier adult is σ
σ+µc

µc

γ1+µc

q2γ1

γ1+µa
.

3) The number of exposed children who become an exposed, infected than carrier

adult is µc

σ+µc

σ
σ+µa

q2γ1

γ1+µa
.

Combining these:

K3,1 =
νγ1µcσ

(γ2 + µa)(σ + µc)

(

q1

(γ1 + µc)(γ2 + µc)

+
q2

(γ1 + µc)(γ1 + µa)
+

q2

(σ + µa)(γ1 + µa)

)

B

Na

K3,2 : horizontally infected adults to to born carriers: A proportion , σ
σ+µa

q2γ1

γ1+µa
, of

exposed adults go on to become carrier adults, who then create νB
Na(γ2+µa) born

carriers. It follows that

K3,2 =
σq2γ1ν

(σ + µa)(γ1 + µa)(γ2 + µa)

B

Na

K3,3 : born carriers to born carriers: A proportion of born carriers become adult carriers,
µc

γ2+µc
, who then go on to give birth to carriers, νB

Na(γ2+µa) . Giving

K3,3 =
µc

γ2 + µc

ν

γ2 + µa

B

Na
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The matrix K is our next generation matrix, the largest eigenvalue of which is R0.

To calculate the Jacobian matrix for Equations (4.28), we note that there is a

redundancy as the population remains constant (so we omit the equations for Rc and

Ra), thus the Jacobian matrix is:

J =

































−λ − µc 0 β
Na+Nc

Sc − αβ
Na+Nc

Sc

λ −(σ + µc)
β

Na+Nc
Sc

αβ
Na+Nc

Sc

0 σ −(γ1 + µc) 0

0 0 q1γ1
νB

Na+Nc
− (γ2 + µc)

µc 0 − β
Na+Nc

Sa − αβ
Na+Nc

Sa

0 µc
β

Na+Nc
Sa

αβ
Na+Nc

Sa

0 0 µc 0

0 0 0 µc

(4.30)

. . . 0 0 β
Na+Nc

Sc − αβ
Na+Nc

Sc − νB
Na

. . . 0 0 β
Na+Nc

Sc
αβ

Na+Nc
Sc

. . . 0 0 0 0

. . . 0 0 0 0

. . . −(λ + µa) 0 − β
Na+Nc

Sa − αβ
Na+Nc

Sa

. . . λ −(σ + µa)
β

Na+Nc
Sa

αβ
Na+Nc

. . . 0 σ −(γ1 + µa) 0

. . . 0 0 q2γ1 −(γ2 + µa)

































We can show numerically that the eigenvalues of the Jacobian matrix at the trivial steady

state (Sc = Nc = B
µc

, Sa = Na = B
µa

, and Ec,a = Ic,a = Cc,a = Rc,a = 0) are all negative

when R0 < 1 - indicating that the trivial steady state is stable (see Figure 4.7), and

that there is a positive eigenvalue when R0 > 1. We can also show numerically that the

Jacobian at the trivial steady state has an eigenvalue of zero when the next generation

matrix has an eigenvalue of one (R0 = 1).

The bifurcation diagram for this case is shown in Figure 4.8 - the trivial steady state

along the zero seropositive line is not shown, but would be stable when R0 < 1 (and the

only steady state) then unstable afterwards. The endemic steady state is shown in the

figure, and is stable when R0 > 1.

We can solve this system of Equations (4.28) numerically using MATLAB. Initially

letting there be one infected and one carrier adult in the population, we gain the results

shown in Figure 4.9, with no vaccination. We see that the epidemic takes 50 years to reach

the peak number of infectious people in the population. After this point, the number

of infectious people decreases to a fairly constant level, whereas the number of carriers

continues to increase for a few more years before settling to a steady state. The parameter

values for this solution are the same as those used by Medley et al. (2001), with two death

rates, a birth rate of 64460 people per year and α = 0.2. The probability of becoming

a carrier for each age group was taken as a mean value of Medley et al. function q(t):
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Figure 4.7: Finding the eigenvalues of the next generation matrix and the Jacobian at the trivial

state for our two population model, we can see that the largest eigenvalue of the

Jacobian is negative when R0 < 1 and zero when R0 = 0, indicating that the trivial

steady state is stable.
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Figure 4.8: Bifurcation diagram for the two population Hepatitis model. The endemic steady

state is shown, which is stable when R0 is greater than one. A transcritical bifurcation

happens when R0 = 1, with the trivial steady state becoming unstable, and the

endemic state appearing.
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Figure 4.9: The progression of Hepatitis B in a population split into the age groups is shown.

Subplot (a) shows the number of infected children, adults and total and subplot (b)

shows the number of children, adults and total carriers. The epidemic takes 50 years

to peak, leaving a large number of carriers and infected people in the population.

The basic reproduction number is R0 = 3.14 and we started the epidemic by having

one carrier and one infected in the adult population.

q1 = (1−exp(−0.645×150.455))/2 = 0.4452 and q2 = (exp(−0.645×150.455)−exp(−0.645×
700.455))/2 = 0.0490 (f = 0). These parameters gave us a basic reproduction ratio of 3.14.

Our results have shown that splitting the population into two age groups, and using

a discrete value for the probability of becoming a carrier based on age, has not yielded

the same results as Medley et al. (2001). Our results have also shown a very high number

of infectious people in the population, even with a relatively low basic reproduction ratio

of 3.14. To compare this model to known data, we first need to calculate the incidence

of infection (ic and ia) – the number of new cases of infection per year. This is given
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Figure 4.10: The yearly incidence of infection for the two age cohort model, with a basic

reproduction ratio of 3.14 (parameter values given in text).

by: ic = σEc for the childhood population and ia = σEa for the adult population. After

solving the Equations (4.28), we calculate the incidence of infection for the children and

adults per year with the results shown in Figure 4.10. A peak incidence of approximately

171,000 infections per year is reached fifty years after the infection was introduced into the

population, and a steady state is reached after approximately 110 years where children

have a higher incidence rate than adults.

4.5 Discussion

We have shown a detailed critique of Medley et al. (2001), and found the conditions that

are needed to gain the backwards bifurcation. Extending this model to two age classes, so

a discrete value in each age group for the probability of becoming a carrier is used, did not

give a backwards bifurcation. This model did produce results that we would expect for a

model of Hepatitis B, with a peak in incidence of infection followed by an endemic steady

state with the number of children infected higher than the number of adults infected.

Although the model by Medley et al. produces interesting mathematical results, it

may not be the best model and parameter estimates for Hepatitis B. The model is very

sensitive to initial conditions, but even with very low values of R0 can still produce a high

proportion of the population who are infected. When extended to two age groups, the
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model still gives a high incidence of infection. The model presented in this chapter does

not appear to be very sensitive to initial conditions, but a more robust analysis of the

parameters and the initial conditions is left to future work.

The model given by Medley et al. is, obviously, sensitive to the two parameters f and

α, with select combinations of these giving rise to the backwards bifurcation (as shown

in Figure 4.2). Their model is also sensitive to other parameters (as discussed in their

paper), noting that when the duration of carriage is of the same time-scale as the duration

of acute infection, the backwards bifurcation does not occur. Their model is also sensitive

to initial conditions.

Our two age class model captures the important aspects of the epidemiology of

Hepatitis B infection in New Zealand, the model does not give the backwards bifurcations

that (Medley et al., 2001) gives, as we were expecting. This could be mostly due to the

approximation that (Medley et al., 2001) made for the proportion of infected individuals

that go on to the become carriers, q(λ), whereas our model had constant values for each age

group. We found the condition that the function q(λ) must satisfy to give the backwards

bifurcation, which does not depend on the exact q(λ) that (Medley et al., 2001) used.

From all the literature that we reviewed, Medley et al. (2001) was the only model to

exhibit the backwards bifurcation. Thornley et al. (2008) applied the model presented by

Medley et al. (2001) to the adult Tongan population in New Zealand, and found that the

model overestimated the number of people in the infected class and the number of people

who are seropositive (infected at some time in their lives, but not necessarily infectious

now) in the population. With our extension to the Medley et al. (2001) and the results

from Thornley et al. (2008), we are led to think that although it is an interesting model,

it is not entirely suited for the accurate modelling of epidemiology of Hepatitis B virus.
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Chapter 5

Modelling the Epidemiology of

Hepatitis B in New Zealand

5.1 Introduction

Chapter 4 gave an introduction to the epidemiology of Hepatitis B, and a brief extension

to an existing model for Hepatitis B, but did not compare this with any known data. In

this chapter we shall formulate other models for Hepatitis B and fit them to New Zealand

data.

Vaccination against Hepatitis B was introduced in New Zealand in 1985 where it was

only offered to newborns of infected mothers. The vaccination schedule has been changed

numerous times since then, with the current schedule having three doses of vaccine: at

age six weeks, three months and five months. Babies born to carrier mothers receive the

hepatitis B vaccine and hepatitis B immunoglobulin at birth. The vaccine will not cure

chronic hepatitis, but it is 95% effective in preventing chronic infections (World Health

Organisation, 2000). New Zealand as a whole is defined as a country with low endemicity

of Hepatitis B (World Health Organization, 2001), but there are areas within the country

with medium to high endemic levels (New Zealand Ministry of Health, 2002).

5.2 Five Age Groups with Vaccination

We start by extending our previous two age group model to include five age groups so

that we can more easily include historic vaccination campaigns. Age group one is 0 – 15

months old, group 2 is 15 months – 6 years old, group 3 is 6 – 16 years old, group 4 is 16

– 45 years old, and age group 5 is the rest of the population, as shown in Equations (5.1)–

(5.5). Pi(t) are the proportion of each susceptible age class that are vaccinated at time

t — the dependence on time allows us to vary the vaccination rates to match the known

schedules. Vaccination of newborns is also dependent on time, 1−ω(t), and the proportion

of carrier babies born to carrier mothers is also time dependent, ν(t). Those older than
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16 years are not vaccinated. Each age group has a decreasing proportion of infectives

that go on to become carriers with parameter values taken from (Edmunds et al., 1993),

and we assume that only women from age group 4 (16 – 45 years old) are able to reproduce.

group 1 (0–1.25 years old)



































dS1

dt
= ω

(

1 − ν C4

N4

)

B − (λ1 + µ1)S1

dE1

dt
= λ1S1 − (σ + µ1)E1

dI1
dt

= σE1 − (γ1 + µ1)I1

dC1

dt
= ων C4

N4
B(t) + q1γ1I1 − (γ2 + µ1)C1

dR1

dt
= (1 − ω)B + (1 − q1)γ1I1 + γ2C1 − µ1R1

(5.1)

group 2 (1.25–6 years old)































dS2

dt
= (1 − P1(t))µ1S1 − (λ2 + µ2)S2

dE2

dt
= µ1E1 + λ2S2 − (σ + µ2)E2

dI2
dt

= µ1I1 + σE2 − (γ1 + µ2)I2

dC2

dt
= µ1C1 + q2γ1I2 − (γ2 + µ2)C2

dR2

dt
= µ1R1 + P1(t)µ1S1 + (1 − q2)γ1I2 + γ2C2 − µ2R2

(5.2)

group 3 (6–16 years old)































dS3

dt
= (1 − P2(t))µ2S2 − (λ3 + µ3)S3

dE3

dt
= µ2E2 + λ3S3 − (σ + µ3)E3

dI3
dt

= µ2I2 + σE3 − (γ1 + µ3)I3

dC3

dt
= µ2C2 + q3γ1I3 − (γ2 + µ3)C3

dR3

dt
= µ2R2 + P2(t)µ2S2 + (1 − q3)γ1I3 + γ2C3 − µ3R3

(5.3)

group 4 (16–45 years old)































dS4

dt
= (1 − P3(t))µ3S3 − (λ4 + µ4)S4

dE4

dt
= µ3E3 + λ4S4 − (σ + µ4)E4

dI4
dt

= µ3I3 + σE4 − (γ1 + µ4)I4

dC4

dt
= µ3C3 + q4γ1I4 − (γ2 + µ4)C4

dR4

dt
= P3(t)µ3S3 + µ3R3 + (1 − q4)γ1I4 + γ2C4 − µ4R4

(5.4)

group 5 (45–70 years old)































dS5

dt
= µ4S4 − (λ5 + µ5)S5

dE5

dt
= µ4E4 + λ5S5 − (σ + µ5)E5

dI5
dt

= µ4I4 + σE5 − (γ1 + µ5)I5

dC5

dt
= µ4C4 + q5γ1I5 − (γ2 + µ5)C5

dR5

dt
= µ4R4 + (1 − q5)γ1I5 + γ2C5 − µ5R5

(5.5)
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where

λi =
β

∑5
k=1 Nk

5
∑

j=1

mij(Ij + αCj) (5.6)

dN

dt
= B − µ5N5 (5.7)

and mij are the components of a matrix representing the different contact rates between

different age classes (as shown in Equation (5.8)). Values used for the mixing parameters

are: a1 = 1, a2 = 2, a3 = 2, a4 = 4, a5 = 1 and ǫ = 0.18. Solving this numerically using

MATLAB, we initially let there be one exposed and one infected person in age groups 4

and 5, and every other age group fully susceptible. We use similar parameter values to

those used in the two population age group model, and gain Figure 5.1. The lowest line

in both plots is for age group 1, then the second line is age groups 1 and 2, and so forth

until the top line is the entire population. There is a peak in the total number of people

infected before the epidemic reduces to a endemic steady state. The majority of the cases

are in age group 4 (16–45 years old), but this is not entirely unexpected as this is our

largest age group.

M =

















a1 ǫ
√

a1a2 ǫ
√

a1a3 ǫ
√

a1a4 ǫ
√

a1a5

ǫ
√

a1a2 a2 ǫ
√

a2a3 ǫ
√

a2a4 ǫ
√

a2a5

ǫ
√

a1a3 ǫ
√

a2a3 a3 ǫ
√

a3a4 ǫ
√

a3a5

ǫ
√

a1a4 ǫ
√

a2a4 ǫ
√

a3a4 a4 ǫ
√

a4a5

ǫ
√

a1a5 ǫ
√

a2a5 ǫ
√

a3a5 ǫ
√

a4a5 a5

















(5.8)

To calculate the next generation matrix for this system, we look at the proportion

of people that move between compartments and the expected time they spend in each

of these compartments, as shown in Figure 5.2. There are six initial types of infection –

each of the exposed classes and the born carrier class. So we have a 6x6 matrix with the

first row/column representing horizontally infected age group 1, the second row/column

representing horizontally infected age group 2, and so on until the sixth row/column

represents the born carriers. As the number of compartments is quite large, and there are

numerous routes to take, we shall break the process down further. Infections only occur

with contact with Ii and Ci class individuals, so we first find the rate at which people

from each Ei class that get to each infected and carrier compartment.

We let ιkj be the proportion of exposed age class k that become age class j infectious,

and let κk
j be the proportion of exposed age class k that become carriers in age class j.

These are calculated as follows:

Starting from E1 we have to consider the proportions that move to each of Ci and Ii for

i = 1..5. We use a single arrow to denote a direct movement between compartments/age

classes, and a double arrow to imply that there are multiple routes. Thus, we have:

• To become an I1 from E1: (E1 → I1).

ι11 =
σ

σ + µ1
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Figure 5.1: The number of people infected (a) and becoming carriers (b) in each age class of the

population. The parameter values used to generate this taken from (Medley et al.,

2001), with our qi values taken as an average of the function p(a) = exp(−0.645a0.455)

from (Edmunds et al., 1993). The epidemic started in 1950 with a one carrier and

one acutely infected in age class 4, with R0 = 1.5.

• To become a C1 from E1: (E1 → I1 → C1)

κ1
1 = ι11

q1γ1

γ1 + µ1

• To become an I2 from E1: (E1 → E2 → I2 and E1 → I1 → I2)

ι12 =
µ1

σ + µ1

σ

σ + µ2
+ ι11

µ1

γ1 + µ1
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Figure 5.2: Schematic for the movement between each compartment for the five age class model.

There are six ways to be infected initially: through each of the exposed compartments

or by being born a carrier, denoted with superscripts.

• To become a C2 from E1: (E1 =⇒ I2 → C2 and E1 → C1 → C2)

κ1
2 = ι12

q2γ1

γ1 + µ2
+ κ1

1

µ1

γ2 + µ1

• To become an I3 from E1: (E1 =⇒ E3 → I3 and E1 =⇒ I2 → I3)

ι13 =
µ1

σ + µ1

µ2

σ + µ2

σ

σ + µ3
+ ι12

µ2

γ1 + µ2

• To become a C3 from E1: (E1 =⇒ I3 → C3 and E1 =⇒ C2 → C3)

κ1
3 = ι13

q3γ1

γ1 + µ3
+ κ1

2

µ2

γ2 + µ2

• To become an I4 from E1: (E1 =⇒ E3 → E4 → I4 and E1 =⇒ I3 → I4)

ι14 =
µ1

σ + µ1

µ2

σ + µ2

µ3

σ + µ3

σ

σ + µ4
+ ι13

µ3

γ1 + µ3

• To become a C4 from E1: (E1 =⇒ I4 → C4 and E1 =⇒ C3 → C4)

κ1
4 = ι14

q4γ1

γ1 + µ4
+ κ1

3

µ3

γ2 + µ3

• To become an I5 from E1: (E1 =⇒ E4 → E5 → I5 and E1 =⇒ I4 → I5)

ι15 =
µ1

σ + µ1

µ2

σ + µ2

µ3

σ + µ3

µ4

σ + µ4

σ

σ + µ5
+ ι14

µ4

γ2 + µ4
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• To become a C5 from E1: (E1 =⇒ I5 → C5 and E1 =⇒ C4 → C5)

κ1
5 = ι15

q5γ1

γ1 + µ5
+ κ1

4

µ4

γ2 + µ4

Starting from E2, the proportions that move to each of the infected and carrier

compartments:

• To become an I2 from E2: (E2 → I2)

ι22 =
σ

σ + µ2

• To become a C2 from E2:(E2 → I2 → C2)

κ2
2 = ι22

q2γ1

γ1 + µ2

• To become an I3 from E2: (E2 → E3 → I3 and E2 → I2 → I3)

ι23 =
µ2

σ + µ2

σ

σ + µ3
+ ι22

µ2

γ1 + µ2

• To become a C3 from E2: (E2 =⇒ I3 → C3 and E2 =⇒ C2 → C3)

κ2
3 = ι23

q3γ1

γ1 + µ3
+ κ2

2

µ2

γ2 + µ2

• To become an I4 from E2: (E2 → E3 → E4 → I4 and E2 =⇒ I3 → I4)

ι24 =
µ2

σ + µ2

µ3

σ + µ3

σ

σ + µ4
+ ι23

µ3

γ1 + µ3

• To become a C4 from E2: (E2 =⇒ I4 → C4 and E2 =⇒ C3 → C4)

κ2
4 = ι24

q4γ1

γ1 + µ4
+ κ2

3

µ3

γ2 + µ3

• To become an I5 from E2: (E2 =⇒ E4 → E5 → I5 and E2 =⇒ I4 → I5)

ι25 =
µ2

σ + µ2

µ3

σ + µ3

µ4

σ + µ4

σ

σ + µ5
+ ι24

µ4

γ1 + µ4

• To become a C5 from E2: (E2 =⇒ I5 → C5 and E2 =⇒ C4 → C5)

κ2
5 = ι25

q5γ1

γ1 + µ5
+ κ2

4

µ4

γ2 + µ4

Starting from E3, the proportions that move to each of the infected and carrier

compartments:

• To become an I3 from E3: (E3 → I3)

ι33 =
σ

σ + µ3
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• To become a C3 from E3: (E3 → I3 → C3)

κ3
3 = ι33

q3γ1

γ1 + µ3

• To become an I4 from E3: (E3 → E4 → I4 and E3 → I3 → I4)

ι34 =
µ3

σ + µ3

σ

σ + µ4
+ ι33

µ3

γ1 + µ3

• To become a C4 from E3: (E3 =⇒ I4 → C4 and E3 =⇒ C3 → C4)

κ3
4 = ι34

q4γ1

γ1 + µ4
+ κ3

3

µ3

γ2 + µ3

• To become an I5 from E3: (E3 → E4 → E5 → I5 and E3 =⇒ I4 → I5)

ι35 =
µ3

σ + µ3

µ4

σ + µ4

σ

σ + µ5
+ ι34

µ4

γ1 + µ4

• To become a C5 from E3: (E3 =⇒ I5 → C5 and E3 =⇒ C4 → C5)

κ3
5 = ι35

q5γ1

γ1 + µ5
+ κ3

4

µ4

γ2 + µ4

Starting from E4, the proportions that move to each of the infected and carrier

compartments:

• To become an I4 from E4: (E4 → I4)

ι44 =
σ

σ + µ4

• To become a C4 from E4: (E4 → I4 → C4)

κ4
4 = ι44

q4γ1

γ1 + µ4

• To become an I5 from E4: (E4 → E5 → I5 and E4 → I4 → I5)

ι45 =
µ4

σ + µ4

σ

σ + µ5
+ ι44

µ4

γ1 + µ4

• To become a C5 from E4: (E4 =⇒ I5 → C5 and E4 =⇒ C4 → C5)

κ4
5 = ι45

q5γ1

γ1 + µ5
+ κ4

4

µ4

γ2 + µ4

Starting from E5, the proportions that move to each of the infected and carrier

compartments:

• To become an I5 from E5: (E5 → I5)

ι55 =
σ

σ + µ5
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• To become a C5 from E5: (E5 → I5 → C5)

κ5
5 = ι55

q5γ1

γ1 + µ5

Born carriers infect others immediately (from their C1 state) or from becoming a

carrier in the other age groups:

• To become a C2 from C1:
µ1

γ2+µ1

• To become a C3 from C1:
µ1

γ2+µ1

µ2

γ2+µ2

• To become a C4 from C1:
µ1

γ2+µ1

µ2

γ2+µ2

µ3

γ2+µ3

• To become a C5 from C1:
µ1

γ2+µ1

µ2

γ2+µ2

µ3

γ2+µ3

µ4

γ2+µ4

Then the next generation matrix has the following entries:

K1,1 The expected number of horizontally infected class 1 children from a single

horizontally infected class 1 child:

K1,1 =
βS∗

1

N

(

ι11
m11

γ1+µ1
+ ι12

m12

γ1+µ2
+ ι13

m13

γ1+µ3
+ ι14

m14

γ1+µ4
+ ι15

m15

γ1+µ5

)

+
αβS∗

1

N

(

κ1
1

m11

γ2+µ1
+ κ1

2
m12

γ2+µ2
+ κ1

3
m13

γ2+µ3
+ κ1

4
m14

γ2+µ4
+ κ1

5
m15

γ2+µ5

)

K1,2 : The expected number of horizontally infected class 1 children from a single

horizontally infected class 2 child:

K1,2 =
βS∗

1

N

(

ι22
m21

γ1+µ2
+ ι23

m31

γ1+µ3
+ ι24

m41

γ1+µ4
+ ι25

m51

γ1+µ5

)

+
αβS∗

1

N

(

κ2
2

m21

γ2+µ2
+ κ2

3
m31

γ2+µ3
+ κ2

4
m41

γ2+µ4
+ κ2

5
m51

γ2+µ5

)

K1,3 : The expected number of horizontally infected class 1 children from a single

horizontally infected class 3 child:

K1,3 =
βS∗

1

N

(

ι33
m31

γ1+µ3
+ ι34

m41

γ1+µ4
+ ι35

m51

γ1+µ5

)

+
αβS∗

1

N

(

κ3
3

m31

γ2+µ3
+ κ3

4
m41

γ2+µ4
+ κ3

5
m51

γ2+µ5

)

K1,4 : The expected number of horizontally infected class 1 children from a single

horizontally infected class 4 adult:

K1,4 =
βS∗

1

N

(

ι44
m41

γ1+µ4
+ ι45

m51

γ1+µ5

)

+
αβS∗

1

N

(

κ4
4

m41

γ2+µ4
+ κ4

5
m51

γ2+µ5

)

K1,5 : The expected number of horizontally infected class 1 children from a single

horizontally infected class 5 adult:

K1,5 =
βS∗

1

N

(

ι55
m51

γ1 + µ5

)

+
αβS∗

1

N

(

κ5
5

m51

γ2 + µ5

)
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K1,6 : The expected number of horizontally infected class 1 children from a single born

carrier:

K1,6 =
αβS∗

1

N

(

m11

γ2 + µ1
+

m12

γ2 + µ2

µ1

γ2 + µ1
+

m13

γ2 + µ3

µ1

γ2 + µ1

µ2

γ2 + µ2

+
m14

γ2 + µ4

µ1

γ2 + µ1

µ2

γ2 + µ2

µ3

γ2 + µ3

+
m15

γ2 + µ5

µ1

γ2 + µ1

µ2

γ2 + µ2

µ3

γ2 + µ3

µ4

γ2 + µ4

)

K2,1 : The expected number of horizontally infected class 2 children from a single

horizontally infected class 1 child:

K2,1 =
βS∗

2

N

(

ι11
m21

γ1 + µ1
+ ι12

m22

γ1 + µ2
+ ι13

m23

γ1 + µ3
+ ι14

m24

γ1 + µ4
+ ι15

m25

γ1 + µ5

)

+
αβS∗

2

N

(

κ1
1

m21

γ2 + µ1
+ κ1

2

m22

γ2 + µ2
+ κ1

3

m23

γ2 + µ3
+ κ1

4

m24

γ2 + µ4
+ κ1

5

m25

γ2 + µ5

)

K2,2 : The expected number of horizontally infected class 2 children from a single

horizontally infected class 2 child:

K2,2 =
βS∗

2

N

(

ι22
m22

γ1 + µ2
+ ι23

m23

γ1 + µ3
+ ι24

m24

γ1 + µ4
+ ι25

m25

γ1 + µ5

)

+
αβS∗

2

N

(

κ2
2

m22

γ2 + µ2
+ κ2

3

m23

γ2 + µ3
+ κ2

4

m24

γ2 + µ4
+ κ2

5

m25

γ2 + µ5

)

K2,3 : The expected number of horizontally infected class 2 children from a single

horizontally infected class 3 child:

K2,3 =
βS∗

2

N

(

ι33
m32

γ1 + µ3
+ ι34

m42

γ1 + µ4
+ ι35

m52

γ1 + µ5

)

+
αβS∗

2

N

(

κ3
3

m32

γ1 + µ3
+ κ3

4

m42

γ1 + µ4
+ κ3

5

m52

γ1 + µ5

)

K2,4 : The expected number of horizontally infected class 2 children from a single

horizontally infected class 4 adult:

K2,4 =
βS∗

2

N

(

ι44
m42

γ1 + µ4
+ ι45

m52

γ1 + µ5

)

+
αβS∗

2

N

(

κ4
4

m42

γ1 + µ4
+ κ4

5

m52

γ1 + µ5

)

K2,5 : The number expected of horizontally infected class 2 children from a sinlge

horizontally infected class 5 adult:

K2,5 =
βS∗

2

N
ι55

m52

γ1 + µ5
+

αβS∗

2

N
κ5

5

m52

γ2 + µ5
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K2,6 : The expected number of horizontally infected class 2 children from a single born

carrier:

K2,6 =
αβS∗

2

N

(

m21

γ2 + µ1
+

m22

γ2 + µ2

µ1

γ2 + µ1
+

m23

γ2 + µ3

µ1

γ2 + µ1

µ2

γ2 + µ2

+
m24

γ2 + µ4

µ1

γ2 + µ1

µ2

γ2 + µ2

µ3

γ2 + µ3

+
m25

γ2 + µ5

µ1

γ2 + µ1

µ2

γ2 + µ2

µ3

γ2 + µ3

µ4

γ2 + µ4

)

K3,1 : The expected number of horizontally infected class 3 children from a single

horizontally infected class 1 child:

K3,1 =
βS∗

3

N

(

ι11
m13

γ1 + µ1
+ ι12

m23

γ1 + µ2
+ ι13

m33

γ1 + µ3

+ι14
m43

γ1 + µ4
+ ι15

m53

γ1 + µ5

)

+
αβS∗

3

N

(

κ1
1

m13

γ2 + µ1
+ κ1

2

m23

γ2 + µ2
+ κ1

3

m33

γ2 + µ3

+κ1
4

m43

γ2 + µ4
+ κ1

5

m53

γ2 + µ5

)

K3,2 : The expected number of horizontally infected class 3 children from a single

horizontally infected class 2 child:

K3,2 =
βS∗

3

N

(

ι22
m23

γ1 + µ2
+ ι23

m33

γ1 + µ3
+ ι24

m34

γ1 + µ4
+ ι25

m35

γ1 + µ5

)

+
αβS∗

3

N

(

κ2
2

m23

γ2 + µ2
+ κ2

3

m33

γ2 + µ3
+ κ2

4

m34

γ2 + µ4
+ κ2

5

m35

γ2 + µ5

)

K3,3 : The expected number of horizontally infected class 3 children from a single

horizontally infected class 3 child:

K3,3 =
βS∗

3

N

(

ι33
m33

γ1 + µ3
+ ι34

m34

γ1 + µ4
+ ι35

m35

γ1 + µ5

)

+
αβS∗

3

N

(

κ3
3

m33

γ2 + µ3
+ κ3

4

m34

γ2 + µ4
+ κ3

5

m35

γ2 + µ5

)

K3,4 : The expected number of horizontally infected class 3 children from a single

horizontally infected class 4 adult:

K3,4 =
βS∗

3

N

(

ι44
m43

γ1 + µ4
+ ι45

m53

γ1 + µ5

)

+
αβS∗

3

N

(

κ4
4

m43

γ2 + µ4
+ κ4

5

m53

γ2 + µ5

)

K3,5 : The expected number of horizontally infected class 3 children from a single

horizontally infected class 5 adult:

K3,5 =
βS∗

3

N
ι55

m35

γ1 + µ5
+

αβS∗

3

N
κ5

5

m35

γ2 + µ5
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K3,6 : The expected number of horizontally infected class 3 children from a single born

carrier:

K3,6 =
αβS∗

3

N

(

m13

γ2 + µ1
+

m23

γ2 + µ2

µ1

γ2 + µ1
+

m33

γ2 + µ3

µ1

γ2 + µ1

µ2

γ2 + µ2

+
m43

γ2 + µ4

µ1

γ2 + µ1

µ2

γ2 + µ2

µ3

γ2 + µ3

+
m53

γ2 + µ5

µ1

γ2 + µ1

µ2

γ2 + µ2

µ3

γ2 + µ3

µ4

γ2 + µ4

)

K4,1 : The expected number of horizontally infected class 4 adults from a single

horizontally infected class 1 child:

K4,1 =
βS∗

4

N

(

ι11
m41

γ1 + µ1
+ ι12

m42

γ1 + µ2
+ ι13

m43

γ1 + µ3
+ ι14

m44

γ1 + µ4
+ ι15

m45

γ1 + µ5

)

+
αβS∗

4

N

(

κ1
1

m41

γ2 + µ1
+ κ1

2

m42

γ2 + µ2
+ κ1

3

m43

γ2 + µ3
+ κ1

4

m44

γ2 + µ4
+ κ1

5

m45

γ2 + µ5

)

K4,2 : The expected number of horizontally infected class 4 adults from a single

horizontally infected class 2 child:

K4,2 =
βS∗

4

N

(

ι22
m42

γ1 + µ2
+ ι23

m43

γ1 + µ3
+ ι24

m44

γ1 + µ4
+ ι25

m45

γ1 + µ5

)

+
αβS∗

4

N

(

κ2
2

m42

γ2 + µ2
+ κ2

3

m43

γ2 + µ3
+ κ2

4

m44

γ2 + µ4
+ κ2

5

m45

γ2 + µ5

)

K4,3 : The expected number of horizontally infected class 4 adults from a single

horizontally infected class 3 child:

K4,3 =
βS∗

4

N

(

ι33
m43

γ1 + µ3
+ ι34

m44

γ1 + µ4
+ ι35

m45

γ1 + µ5

)

+
αβS∗

4

N

(

κ3
3

m43

γ2 + µ3
+ κ3

4

m44

γ2 + µ4
+ κ3

5

m45

γ2 + µ5

)

K4,4 : The expected number of horizontally infected class 4 adults from a single

horizontally infected class 4 adult:

K4,4 =
βS∗

4

N

(

ι44
m44

γ1 + µ4
+ ι45

m45

γ1 + µ5

)

+
αβS∗

4

N

(

κ4
4

m44

γ2 + µ4
+ κ4

5

m45

γ2 + µ5

)

K4,5 : The expected number of horizontally infected class 4 adults from a single

horizontally infected class 5 adult:

K4,5 =
βS∗

4

N
ι55

m45

γ1 + µ5
+

αβS∗

4

N
κ5

5

m45

γ2 + µ5

K4,6 : The expected number of horizontally infected class 4 adults from a born carrier:

K4,6 =
αβS∗

4

N

(

m14

γ2 + µ1
+

m24

γ2 + µ2

µ1

γ2 + µ1
+

m34

γ2 + µ3

µ1

γ2 + µ1

µ2

γ2 + µ2

+
m44

γ2 + µ4

µ1

γ2 + µ1

µ2

γ2 + µ2

µ3

γ2 + µ3

+
m54

γ2 + µ5

µ1

γ2 + µ1

µ2

γ2 + µ2

µ3

γ2 + µ3

µ4

γ2 + µ4

)
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K5,1 : The expected number of horizontally infected class 5 adults from a single

horizontally infected class 1 child:

K5,1 =
βS∗

5

N

(

ι11
m51

γ1 + µ1
+ ι12

m52

γ1 + µ2
+ ι13

m53

γ1 + µ3
+ ι14

m54

γ1 + µ4
+ ι15

m55

γ1 + µ5

)

+
αβS∗

5

N

(

κ1
1

m51

γ2 + µ1
+ κ1

2

m52

γ2 + µ2
+ κ1

3

m53

γ2 + µ3
+ κ1

4

m54

γ2 + µ4
+ κ1

5

m55

γ2 + µ5

)

K5,2 : The expected number of horizontally infected class 5 adults from a single

horizontally infected class 2 child:

K5,2 =
βS∗

5

N

(

ι22
m52

γ1 + µ2
+ ι23

m53

γ1 + µ3
+ ι24

m54

γ1 + µ4
+ ι25

m55

γ1 + µ5

)

+
αβS∗

5

N

(

κ2
2

m52

γ2 + µ2
+ κ2

3
m53

γ2 + µ3
+ κ2

4
m54

γ2 + µ4
+ κ2

5
m55

γ2 + µ5

)

K5,3 : The expected number of horizontally infected class 5 adults from a single

horizontally infected class 3 child:

K5,3 =
βS∗

5

N

(

ι33
m35

γ1 + µ3
+ ι34

m45

γ1 + µ4
+ ι35

m55

γ1 + µ5

)

+
αβS∗

5

N

(

κ3
3

m35

γ2 + µ3
+ κ3

4

m45

γ2 + µ4
+ κ3

5

m55

γ2 + µ5

)

K5,4 : The expected number of horizontally infected class 5 adults from a single

horizontally infected class 4 adult:

K5,4 =
βS∗

5

N

(

ι44
m45

γ1 + µ4
+ ι45

m55

γ1 + µ5

)

+
αβS∗

5

N

(

κ4
4

m45

γ2 + µ4
+ κ4

5

m55

γ2 + µ5

)

K5,5 : The expected number of horizontally infected class 5 adults from a single

horizontally infected class 5 adult:

K5,5 =
βS∗

5

N
ι55

m55

γ1 + µ5
+

αβS∗

5

N
κ5

5

m55

γ2 + µ5

K5,6 : The expected number of horizontally infected class 5 adults from a single born

carrier:

K5,6 =
αβS∗

5

N

(

m15

γ2 + µ1
+

m25

γ2 + µ2

µ1

γ2 + µ1
+

m35

γ2 + µ3

µ1

γ2 + µ1

µ2

γ2 + µ2

+
m45

γ2 + µ4

µ1

γ2 + µ1

µ2

γ2 + µ2

µ3

γ2 + µ3

+
m55

γ2 + µ5

µ1

γ2 + µ1

µ2

γ2 + µ2

µ3

γ2 + µ3

µ4

γ2 + µ4

)

K6,1 : The expected number of born carriers from a single horizontally infected class 1

child:

K6,1 = κ1
4

νB

N4(γ2 + µ4)
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K6,2 : The expected number of born carriers from a single horizontally infected class 2

child:

K6,2 = κ2
4

νB

N4(γ2 + µ4)

K6,3 : The expected number of born carriers from a single horizontally infected class 3

child:

K6,3 = κ3
4

νB

N4(γ2 + µ4)

K6,4 : The expected number of born carriers from a single horizontally infected class 4

adult:

K6,4 = κ4
4

νB

N4(γ2 + µ4)

K6,5 : The expected number of born carriers from a single horizontally infected class 5

adult:

K6,5 = 0

K6,6 : The expected number of born carriers from a single born carrier:

K6,6 =
νB

N4(γ2 + µ4)

µ1

γ2 + µ1

µ2

γ2 + µ2

µ3

γ2 + µ3

To find the basic reproduction ratio we let each S∗

i = Ni = B/µi (as the population is

fully susceptible to infection) in K, and then find largest eigenvalue of K. To calculate the

steady state of the system, Equations (5.1)–(5.5) were solved numerically until a steady

state was found (the solutions to the equations were calculated until 2500 years to ensure

a steady state had been reached). We can then obtain a bifurcation diagram, Figure 5.3,

by plotting the steady state of our equations for various values of R0.
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Figure 5.3: Bifurcation diagram for the five age classes model - the number of people who have

been infected (the exposed, carrier, infected and recovered classes) plotted against the

basic reproduction ratio. The zero steady state becomes unstable when R0 increases

past one, and the second branch is stable. This was generated numerically using the

parameters given in Table 5.1, and the epidemic is run for a minimum of 2500 years,

or until the system reaches an equilibrium.
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Symbol Parameter Description Value

σ the rate at which exposed indi-

viduals become infective

6 per year

γ1 the rate at which acutely in-

fected individuals recover

4 per year

γ2 the rate at which carrier indi-

viduals recover

0.025 per year

β transmission coefficient 2.2

α infectiousness of carriers rela-

tive to acutely infected individ-

uals

0.5

µ1 death rate of age class 1 12/15 per year

µ2 death rate of age class 2 4/19 per year

µ3 death rate of age class 3 1/10 per year

µ4 death rate of age class 4 1/29 per year

µ5 death rate of age class 5 1/25 per year

B Birth rate 64460 births

q1 the proportion of age class 1

who become carriers

0.2551

q2 the proportion of age class 2

who become carriers

0.1285

q3 the proportion of age class 3

who become carriers

0.0651

q4 the proportion of age class 4

who become carriers

0.0382

q5 the proportion of age class 5

who become carriers

0.0073

Table 5.1: The parameters and variables used 5 age class model for Hepatitis B infection in New

Zealand.

Comparing the model to known data

The data available on the recorded number of cases of Hepatitis B in New Zealand can be

split into two eras: data recorded between 1971 (when records began) and 1984; and after

1984. Prior to 1984 the number of notifications recorded included not only notifications of

the acute infection, but also included notifications of the chronic carrier state. After 1984,

only the acute cases were recorded. Asymptomatic infection occurs in approximately 60%

of infections (New Zealand Ministry of Health (2006)), whereas acute hepatitis is rare,

with only 6% of children and 33% of adults presenting as acute infections, so we should

bear in mind that not all cases of infection would have been recorded.
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To compare our model with this data we need to calculate the incidence of infection

(ij) and carriage (cj) each year for each age group j ∈ {1..5}. This is calculated from the

equations below:

i1 = σE1 c1 = ων C4

N4
B + q1γ1I1

i2 = σE2 c2 = q2γ1I2

i3 = σE3 c3 = q3γ1I3

i4 = σE4 c4 = q4γ1I4

i5 = σE5 c5 = q5γ1I5

Vaccination against Hepatitis B was introduced in New Zealand in 1985, when newborn

babies of carrier mothers were vaccinated (the parameter ν captures the effect of this in

our model). In 1987 this vaccination was extended to babies that were also born in areas

deemed to be “high risk”. From 1988, the vaccination was given in four doses: at birth,

six weeks, three months and 15 months of age, and in 1988 there was also a catch up

campaign for pre-schoolers. The vaccination at birth was removed from the vaccination

schedule in 1989 as a different vaccine was used, and it was only newborns to carrier

mothers who received the vaccination at birth. From early 1990, a free immunisation was

offered to all children under the age of 16.

The schedule was last changed in 1996, with the third dose being brought forward

from 15 months to five months of age, with a vaccination at birth offered to children born

from mothers carrying the virus.

The modelled incidence of acute infection without vaccination is shown in Figure 5.4.

The epidemic was seeded with one carrier and one acutely infected person in age group

four in 1900, with a basic reproduction ratio of 1.54. The parameter values were taken

from Medley et al. (2001) (apart from the birth and death rates). Our model has not

produced a very good fit to the data, as we have a slow rate of increase in the incidence

of infection.

To include the effects of vaccination in our model we altered the values of ω, ν and Pi:

ν =







0.11 if t < 1985

0.01 if t ≥ 1985
(5.9)

ω =































1 if t < 1987

0.6 if 1987 ≤ t < 1988

0.4 if 1988 ≤ t < 1989

1 if t ≥ 1989

(5.10)

P1 =



















0 if t < 1988

0.8 if 1988 ≤ t < 1996

0.99 it t ≥ 1996

(5.11)
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Figure 5.4: The incidence of infection for the five age group model, using the same parameters

given in Medley et al. (2001). The stars are the recorded incidence of infection and

chronic carriers prior to 1984, then only the incidence of acute infection after 1984.

Vaccination against Hepatitis B was started in 1985 which also contributed to the

decrease in the recorded incidence of infection. R0 = 1.54.

P2 =







0 if t < 1988

0.9 if t ≥ 1988
(5.12)

P3 =







0 if t < 1990

0.2 if t ≥ 1990
(5.13)

These rates incorporate both the coverage of vaccination and the efficacy of the vaccine.

The incidence of infection once the effect of vaccination is included is shown in Figure 5.5.

We can see that vaccination does decrease the incidence of infection in our population,

but our incidence does not decrease as quickly as the observed rate. To alter the speed

at which the epidemic progresses, the parameters for each age group need to be varied,

as we show in the next section. For this model the average amount of time spent in each

compartment is given in Table 5.2.
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Compartment

Age Group E I C R

One 7.6 weeks 10.8 weeks 1.21 years 1.25 years

Two 8.3 weeks 12.35 weeks 4.25 years 4.75 years

Three 8.5 weeks 12.68 weeks 8 years 10 years

Four 8.6 weeks 12.9 weeks 16.8 years 29 years

Five 8.6 weeks 12.9 weeks 15.4 years 25 years

Table 5.2: The average time spent in each of the exposed, acutely infected, carrier and removed

compartments for the five age group model with the same parameters as Medley et al.

(2001).
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Figure 5.5: The incidence of infection for our five age group model with vaccination included.

The stars represent the recorded incidence of infection (and include chronic carriers

prior to 1984).
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5.3 Five age group model with age dependent parameters

In the model given in section 5.2, the average time spent in each compartment varied with

age, due to the rates of movement between compartments being the same for each age

group, even though they all had different death rates. Using a similar type of system as

previously, we now let the rate at which people who become acutely infected, and the rate

at which acutely infected and carriers recover depend on age. The latency period between

being infected and becoming acutely infected (or infectious) is between 4–10 weeks, so

we set each of our σj values to give the average time in each Ej compartment as 0.07.

Similarly, we know that acute infection (or the period that a person remains infectious)

is between 3–12 weeks, so we set our γj parameters from the Ij compartments, to give

an average time in each Ij compartment as 0.12. Approximately 1–6% of carriers will

naturally clear infection, so our γj values in each Cj compartment are set to 0.03 – for all

age classes. Thus our system is now:

group 1 (0–1.25 years old)



































dS1

dt
=
(

ω0 − ω1ν
C4

N4

)

B(t) − (λ1 + µ1)S1

dE1

dt
= λ1S1 − (σ1 + µ1)E1

dI1
dt

= σ1E1 − (γ1 + µ1)I1

dC1

dt
= ω1ν

C4

N4
B(t) + q1γ1I1 − (γ2 + µ1)C1

dR1

dt
= (1 − ω0)B + (1 − q1)γ1I1 + γ2C1 − µ1R1

(5.14)

group 2 (1.25–6 years old)































dS2

dt
= (1 − P1(t))µ1S1 − (λ2 + µ2)S2

dE2

dt
= µ1E1 + λ2S2 − (σ2 + µ2)E2

dI2
dt

= µ1I1 + σ2E2 − (γ3 + µ2)I2

dC2

dt
= µ1C1 + q2γ3I2 − (γ4 + µ2)C2

dR2

dt
= µ1R1 + P1(t)µ1S1 + (1 − q2)γ3I2 + γ4C2 − µ2R2

(5.15)

group 3 (6–16 years old)































dS3

dt
= (1 − P2(t))µ2S2 − (λ3 + µ3)S3

dE3

dt
= µ2E2 + λ3S3 − (σ3 + µ3)E3

dI3
dt

= µ2I2 + σ3E3 − (γ5 + µ3)I3

dC3

dt
= µ2C2 + q3γ5I3 − (γ6 + µ3)C3

dR3

dt
= µ2R2 + P2(t)µ2S2 + (1 − q3)γ5I3 + γ6C3 − µ3R3

(5.16)
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group 4 (16–45 years old)































dS4

dt
= (1 − P3(t))µ3S3 − (λ4 + µ4)S4

dE4

dt
= µ3E3 + λ4S4 − (σ4 + µ4)E4

dI4
dt

= µ3I3 + σ4E4 − (γ7 + µ4)I4

dC4

dt
= µ3C3 + q4γ7I4 − (γ8 + µ4)C4

dR4

dt
= P3(t)µ3S3 + µ3R3 + (1 − q4)γ7I4 + γ8C4 − µ4R4

(5.17)

group 5 (45–70 years old)































dS5

dt
= µ4S4 − (λ5 + µ5)S5

dE5

dt
= µ4E4 + λ5S5 − (σ5 + µ5)E5

dI5
dt

= µ4I4 + σ5E5 − (γ9 + µ5)I5

dC5

dt
= µ4C4 + q5γ9I5 − (γ10 + µ5)C5

dR5

dt
= µ4R4 + (1 − q5)γ9I5 + γ10C5 − µ5R5

(5.18)

where

λi =
β

∑5
k=1 Nk

5
∑

j=1

mij(Ij + αCj) (5.19)

dN

dt
= B(t) − µ5N5 (5.20)

We introduce two vaccination parameters ω0 and ω1 for infants. This is so we will not

vary the parameter ν to take into account vaccinating new borns of carrier mothers, but

keep it fixed and vary ω1 instead. The proportion of babies born to carrier mothers who

are vaccinated at birth is ω1, and the proportion of babies born to non-infected mothers

who are vaccinated is ω0. The value of ω1 is slightly higher than the vaccination rate for

all new borns, as the carrier status of a mother is probably not known in many cases.

Once infected with HBV there is an incubation period of four to ten weeks, the acute

phase lasts for several weeks and chronic carriage can last for the rest of the persons life.

At present, we not aware that re-infection is possible, so once a person enters the removed

compartment they stay there for the rest of their life. Approximately 60% of those infected

are asymptomatic, it is unlikely that these cases will be recorded so we expect our model

to show a higher yearly incidence of infection than the known data. Also noting that the

recorded data before 1985 included both chronic carriers and acutely infected people, then

after 1985 only acutely infected people, we expect the effect of vaccination to show later

in our model than in the data (vaccination was also started in 1985).

The mixing matrix was set with a weighting of 0.6 for mixing between age groups,

with age group 2 have the highest activity level (a1 = 1, a2 = 6, a3 = 3, a4 = 2, and

a5 = 1). Using these values, we then solve our new system numerically in MATLAB, we

plot only 40% of the yearly incidence of infection and include the incidence of carriage

for the years before 1985, and we have included the effects of the vaccination campaign.

The results of this can be seen in Figure 5.6, plotted with the known yearly incidence of

infection (shown as stars). We calculated the next generation matrix in a similar manner
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Figure 5.6: The incidence of infection (and carriage prior to 1985) shown by the stars and our

model results (bottom curve is the incidence in the first age class, the second curve

is the incidence in age classes 1 and 2, so on to the top curve with is the total

incidence). Only 40% of the models yearly incidence of infection is plotted, and the

yearly incidence of carriage is included before 1985. R0 = 3.2

to our last model, and have a basic reproduction ratio of 3.2 for this example. We let

α = 1, and started the epidemic in 1940 with one carrier in age classes 3 and 4 and one

infected in age class 4.

Even with the effect of vaccination included in our model, our results do not show the

decrease that was seen in the reported incidence of infection. This is mainly due to the

large reservoir of carriers that are still present in the population, as the vaccination does

not affect people who are already in the carriage state. The yearly incidence of carriage

decreases after the vaccination campaign was started (as shown in Figure 5.7(a)), but as

carriage is often life long after infection, the total number of carriers remains very high

(shown in Figure 5.7(b)).

For the previous example we let α = 1, implying that carriers are equally as infectious

as acutely infected individuals. If we let α be much smaller than one, then carriers would

not have as great an impact on the spread of infection. Figure 5.6 shows a large number

of cases in the adult age groups, which is not reflected in the data. This could imply that

there is a further difference between the infection process in adults and children, and that

adults are less likely to be infected given contact with an infectious person. We now let

α be very small, and let the probability of being infected given contact with an infectious
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Figure 5.7: (a) shows the cumulative incidence of carriage (with vaccination) for the five age

classes, where (b) shows the cumulative number of carriers in each age class (with

vaccination). Although the incidence of carriage decreases after the vaccination

campaign was initiated, the total number of carriers in the population remains high.

R0 = 3.2
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person decrease with age, thus changing our λ parameters (for j = 1..5):

λ1 =
β

N

5
∑

j=1

m1j(Ij + αCj)

λ2 =
β

N

5
∑

j=1

m2j(Ij + αCj)

λ3 =
0.75β

N

5
∑

j=1

m3j(Ij + αCj)

λ4 =
0.35β

N

5
∑

j=1

m4j(Ij + αCj)

λ5 =
0.3β

N

5
∑

j=1

m5j(Ij + αCj) (5.21)

According to the New Zealand Ministry of Health (New Zealand Ministry of Health

(2006)), acute hepatitis occurs rarely in infants and in approximately 6 percent of infected

children. It is higher in adults, reaching approximately 33 percent. To adjust our model

for this, we shall only graph 1 percent of the incidence of infection in our first age group

(new borns to 15 months old), 6 percent of our second age group (15 month to 6 years

old) incidence, 10 percent of our third age group (6 years to 16 years old) incidence, 30

percent of our fourth age group incidence (16 to 45 years old), and 33 percent of our fifth

age group (45 to 70 years old) incidence – as these are the percentage of acute infections

in each age group that we would expect to be reported. The results of this are shown in

Figure 5.8. We have not included the incidence of carriage in our results this time when

comparing our model to data, as it is unlikely that people newly acquiring carriage would

have been reported prior to 1985. Thus we expect our model predictions to be lower than

the recorded incidence before 1985.

The total yearly incidence of infection and carriage are shown in Figure 5.9, without

adjusting for the percentage that present acute infection. Our model predicts a peak

total incidence of just over 3200 in 1988, and a peak total incidence of carriage of 171 in

1987. We would expect the incidence of carriage to decrease soon after the introduction

of vaccination, as the vaccination campaign was aimed at children who are most likely to

become carriers if they are infected.

Without vaccination, our model results for the yearly incidence of infection and

carriage are shown in Figure 5.10. If there were no vaccination, our model predicts that

there would have been a peak total of nearly 5,000 infections (in 2035), and a peak yearly

incidence of carriage of approximately 3,250 (in 2042). The introduction of vaccination

caused a decrease in the incidence of carriage before a decrease in the incidence of infection,

however this is reversed when there is no vaccination.

Our model gives a basic reproduction ratio of 1.5. We can look at the reproduction

ratio during the course of the epidemic (Rt) and compare this to the reproduction ratio
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Figure 5.8: The incidence of infection (and carriage prior to 1985) shown by the stars and our

model results with percentage of incidence plotted increasing with age (bottom curve

is the incidence in the first age class, the second curve is the incidence in age classes

1 and 2, so on to the top curve with is the total incidence). R0 = 1.5

under vaccination (Rvt) – both of which are shown in Figure 5.11. The introduction of

vaccination to babies in high risk areas caused the reproduction ratio under vaccination

to suddenly decrease, the earlier introduction of vaccination to babies of carrier mothers

caused only a slight decrease. As shown, without vaccination, the reproduction ratio

would have eventually settled down to approximately one, which would have most likely

caused sporadic outbreaks of epidemics.

We have assumed a low level of inter-age group mixing for this example, with ǫ = 0.25,

and the highest activity level being for our second age group – 15 month –6 years old

(a1 = 1, a2 = 1.75, a3 = 1.25, a4 = 1, and a5 = 1). The inter-age group mixing is

assumed to be low due to the nature in which Hepatitis B is transmitted, and the highest

activity levels are given to the pre-school aged children and school aged children as these

age groups reported the highest number of cases.

Figure 5.12 shows the actual number of carriers present in the population at any time

cumulatively for the five age groups. Gane (2005) states that there were an estimated

67,000 New Zealanders with chronic Hepatitis B (or 1.96% of the target population) –

what we would include as a carrier in our model – with data taken from a screening

programme that ran for three years from 1999. Gane based his estimate on the results

published by Robinson et al. (2005), where only those aged over 15 were included in the

target population. Robinson et al. (2005) assumed that those aged under 15 years would
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Figure 5.9: (a) shows the total incidence of infection for our four age groups (group 1 is the

lowest curve, followed by group 1 and 2 (dot-dashed curve), all the way up to the

total incidence (solid line)). The recorded incidence of infection is shown by the

stars. (b) shows the yearly incidence of carriage for the four age groups, with the

highest solid line being the total incidence of carriage.
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Figure 5.10: (a) shows the incidence of infection for the cumulative four age classes if there was

no vaccination campaign, and (b) shows the cumulative yearly incidence of carriage

for the four age classes in the absence of vaccination.
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Figure 5.11: The reproduction ratios plotted over the course of the epidemic. Rtv (the ratio

when vaccination is included) is shown as a solid line, and Rt (the ratio with no

vaccination) is shown by the dashed line.

have been affected by the vaccination campaign, and hence play little role (if any) in the

prevalence of carriage. Our model predicts that there were nearly 1,557 (0.04% of the

total population) who were carriers in 1999, but this reduced to 1,469 (0.03% of the total

population) by 2002. One reason for our figures not being the same is that we have looked

at the entire population, rather than those aged over 15 years.

For our model to give a higher number of carriers (to be in line with Gane (2005)),

we would have to drastically lower the percentage of acute cases for each age group and

significantly increase the basic reproduction ratio. This would then make our model

parameters very different from what has been published in the literature. As there are no

data available on prevalence within age groups, we can assume that there is some aspect

of the infection process that our model is not capturing. It is also difficult to compare our

model to the known yearly incidence of infections, as the data prior to 1985 includes both

acute infections and carriers – of which the carriers could have been in the carriage state

for a number of years.

5.3.1 Other Vaccination Schemes

Although our model does not follow the data exactly, we can use it to predict what

would have happened if the vaccination schedule had not been implemented as it was. If

only babies to carrier mothers and new borns were vaccinated (assuming a near perfect
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Figure 5.12: The five age class model results for the number of carriers in the population at any

time.

efficiency of the vaccine and a 95% coverage), the resulting yearly incidence of infection

is shown in Figure 5.13 with the corresponding model results for the full vaccination

scheme. From this scheme, there would not have been a significant increase in the number

of infection in children, but the number of infections in adults would have been higher, and

remained high for longer. With vaccinating only babies, the reproduction ratio would have

only decreased to 0.1 (after some time), as opposed to the 0.04 that the full vaccination

scheme predicts.

From Figure 5.9(a) the predicted true number of acute infections was already high

before the vaccination campaign was launched. What would have happened if the same

vaccination campaign could have been launched five years earlier? The results of this

are shown in Figure 5.14. At first glance, the results look very similar to those from

the actual vaccination campaign, but the maximum yearly incidence of infections was just

below 2,000 (our model predicted just over 3,000 for the real campaign). In 1990, this pre-

emptive campaign predicts a total of nearly 800 acute infections, where the real campaign

model predicts approximately 2,500. Although the shape is similar for both scenarios,

the total numbers are considerable lower in the pre-emptive model. Unfortunately, the

vaccines for Hepatitis B have only been available since 1982 (Heymann (2004)), so New

Zealand initiating a vaccination campaign in 1985 was the best case scenario for decreasing

the impact of this disease.
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Figure 5.13: The model results for the yearly incidence of infection in cumulative age groups, if

only babies were vaccinated (the higher curves after 1985), with the model results

for the full vaccination campaign (the lower curves after 1985).

5.4 Parameter Estimation

For all the models we have presented so far, and in our subsequent models, we have not

utilised any formal parameter fitting methods. Wherever possible, we have taken our

parameters from known data for the infection (for instance the length of time a person

remains infectious), but many of the parameters we have estimated. For parameters that

relate to the length of time a person is in each compartment, we have used published

results to make our estimates. However, for the contact/mixing rates between classes,

we have chosen parameters that give us a basic fit to the known data, without using any

formal method.

A more formal estimation of the parameters could be carried out using a maximum

likelihood method (for example see Powers & Xie (2008) and Johnson & Wichern (2007))

to establish estimates for the mixing/contact parameters, the transmission coefficient (β),

and the infectiousness of carriers relative to acutely infected individuals (α). As the data

for the incidence of infection are only reliable for the years 1985-2004 (prior to this, both

the incidence of infection and any chronic carriers were recorded), we have a small data

set to use for our parameter fitting, which could cause a bias in the method. As we have

a large number of parameters to estimate, and such a limited data set, we chose not to

implement a formal parameter fitting method in all our models.
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Figure 5.14: The cumulative incidence of infection for the five age classes if the vaccination

campaign were started in 1980 (five years before the campaign actually started).

5.5 Conclusions

Data on Hepatitis B infections in New Zealand have only been recorded since 1971 (the

virus was only discovered in 1967), giving us a limited amount of data to compare our

results to. There is also a limited amount of data available about the length of the carriage

state, or the number of carriers in the population. Our five age class model shows a rough

fit to the known data, but predicts much higher numbers in cases of infection than were

actually seen. However, the number of carriers predicted by the model is low compared to

the approximation given in Gane (2005). From our model we can say that the vaccination

campaign greatly decreased the number of carriers in our population (by decreasing the

number of infections), thus reducing the number of cases of infection to zero by 2100. We

were also able to explore the potential effects of a different vaccination scenario, and the

effect of the current campaign if it were introduced five years earlier.

New Zealand is classed with a low endemic level of hepatitis B (less than 2 percent

level of carriage or endemicity), yet there are areas of medium (2–7 percent) and high (8

percent and over) levels. New Zealand Ministry of Health (2006) states that in 1985 there

was evidence of past infection in 15 percent of New Zealand children, but there is also

evidence that nearly half of the population in the eastern Bay of Plenty who were infected

by age 15. Our models do not differentiate between high and low prevalence areas, but

concentrate only on incidence of infection and carriage related to age. Future work to

improve our models could be to add a spatial structure to the model with varying rates



Conclusions 95

of infection, and possibly include the effects of migration from high endemic countries.

We also made the assumption that vaccination did not wane over time, and that

immunity through past infection was lifelong. The response to vaccination reduces with

the age at which it is administered (New Zealand Ministry of Health, 2006), which could

be included in the model. In the literature we reviewed, a number of papers split the

population by age groups, male/female, or sexual orientation so that the more “at risk”

groups could be targeted separately. For this kind of structure to be included in the

New Zealand model, a structure relating to ethnicity would be more appropriate. This

structuring of the population would be more comparable to the known data on targeting

screening for Hepatitis B (Gane, 2005), and help predict the effect and cost of a more

targeting immunisation campaign in the future.

The inclusion of a separate chronic hepatitis disease class would also be a beneficial

amendment to our model, as it is this class that requires ongoing care for chronic active

hepatitis or cirrhosis. Presently, our model includes these in our carrier compartment,

and we have not included any provision for the shortened life expectancy if the chronic

condition develops.

The models we have presented can be expanded to be better suited for the New Zealand

situation, but already show a good framework on which to construct a fuller model.
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Chapter 6

A Mathematical Model of

Meningococcal Disease in New

Zealand

6.1 Introduction

The first epidemic of meningococcal disease was reported in 1661 by Thomas Willis, yet it

was not classified as meningococcal disease then but as an outbreak of “cerebrospinal

fever”. Vieusseuz is accredited for the first account of a meningococcal epidemic in

Geneva and its surroundings in 1805 (Cartwright, 1995; New Zealand Ministry of Health,

2002). It was not until 1887 that the bacterium that causes meningococcal disease,

Neisseria meningitidis, was identified by Anton Weichselbaum in Vienna (Cartwright,

1995; World Health Organisation, 1998). There have been numerous meningitis epidemics

reported during the 20th Century, with major outbreaks during World War I, World War

II, and an ongoing epidemic in Africa since 1909 (World Health Organisation, 1998).

Infection with meningococcus can cause a variety of diseases, but the most common

are meningitis (the swelling of the membranes and fluid that cover the brain and spinal

cord) and/or septicaemia (blood poisoning) (New Zealand Ministry of Health, 2002).

Meningococcal disease is caused by a bacterium, N. meningitidis, which colonises the

upper respiratory tract. There are numerous serogroups of the bacterium, with serogroup

B being the causative strain of the New Zealand epidemic. The infection is transmitted

by either aerosolised droplets of respiratory secretions, or by contact (e.g. sharing a glass)

with these secretions. Once the bacteria have been acquired, they bond to the cells at

the back of the throat and nasal passage. The bacteria can then manoeuvre their way

into the bloodstream where they may invade and multiply in the cerebrospinal fluid. The

colonisation of the nasopharynx can continue for months causing a persistent source of

infection to others. In most people, antibodies kill the bacteria before they can cause the

disease (Thomas, 2004), however it is possible to carry the meningococci and be infectious
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Figure 6.1: The recorded number of meningococcal cases of infection, with data from CBG Health

Research Ltd (2006). The group B epidemic strain is responsible for the majority of

meningococcal disease cases.

while not showing any symptoms of infection.

Infection with the invasive form of meningococcal disease leads to a quick onset of

symptoms including headache, nausea and vomiting, with approximately two-thirds of

cases presenting a rash. Acute infection can lead to death within 24 hours. “For every

100 people who get the disease, four will die. Another 20 will be left with some degree of

serious disability, such as brain damage, deafness, loss of limbs or damaged skin. A further

proportion is left with learning or behavioural difficulties.” (New Zealand Ministry of

Health, 2004).

New Zealand’s epidemic of meningococcal disease began in mid-1991, and in 2004 an

immunisation program was introduced in the hope of ending the epidemic. The annual

number of meningococcal cases can be seen in Figure 6.1, noting that the epidemic strain

is responsible for the majority of cases in New Zealand. On average, 80% of cases of

meningococcal disease occur in people aged 0-19 years, and within this age group the

majority of these cases are seen in under five year olds (New Zealand Ministry of Health,

2004), shown in Figure 6.2. We can use a mathematical model to investigate the impact of

the vaccination scheme on the epidemic patterns, and investigate the potential outcomes

of alternate vaccination strategies. To do so, we first need to develop a mathematical

model of the number of acute infections and carriers of the infection, then compare this to

the known history of the epidemic in New Zealand. We present a brief overview of models

that have already been completed, and then formulate a model that is most appropriate

for the New Zealand epidemic.
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Figure 6.2: The recorded number of meningococcal epidemic strain cases of infection, with data

from Kieft et al. (2001) and Martin et al. (2007). The lowest bar represents cases

in infants less than one year old, the second bar 1–4 year olds, then 5–9 year olds,

10–14, 15–19, 20–29, 30–39, then over 40 year olds. The largest number of cases are

seen in the 1–4 year old age group.

6.2 Literature Review

There are a number of mathematical models of meningococcal disease, with many of them

looking at the bacterial level of the infection process and then a smaller portion modelling

the spread and control of the disease. To date, we are unaware of any mathematical

modelling papers published specifically looking at the New Zealand meningitis epidemic,

as the majority of published models take their data from epidemics and vaccination

campaigns in Europe and the United States.

One of the interesting features of meningococcal disease is that there is a carriage state,

where a person is infected and infectious, but shows no signs of illness, which is something

that we feel should be allowed for in a model, making it somewhat similar to infections

such as Hepatitis B. Tuckwell et al. (2003) have not included a carriage state in their

model and assumed that the infection was at steady state with carriers and non-carriers

in equilibrium. Meyers et al. (2001) do not explicitly include a carrying population, but

they have two strains of infection - one that is more likely to cause the invasive form of

the infection and one that is likely to stay benign. Trotter & Gay (2003) only considered

the population to be in two states: those carrying the infection and those not. However,

their paper is mainly concerned with the sensitivity of techniques used to identify whether

the infection is present in carriers and the infection and recovery rate, rather than with

the actual spread of the infection in the population.

As a large number of cases are seen in the under twenty year old age bracket, sectioning

the population into age classes would be beneficial when creating a model. Tuckwell et al.
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(2003); Coen et al. (2000); Guinea et al. (2005); Martcheva & Crispino-O’Connell (2003);

Trotter & Gay (2003) and Trotter et al. (2006) all included age structure in their models.

Tuckwell et al. (2003) state that the most effective vaccination campaign over a 10 year

period is to immunise all of the population aged between 2 and 20 years. Trotter et al.

(2005, 2006) showed that the most effective campaign targeted teenagers thus maximising

the herd immunity, and therefore reducing the prevalence of carriage to an extent that it

took years to recover.

Stollenwerk and co-workers have published a number of papers on the modelling of

invasive meningococcal disease, see: Stollenwerk et al. (2004); Stollenwerk & Jansen

(2003a,b) and Guinea et al. (2005). They implemented an SIRYX model, in which the I

class are those infected with a benign strain of meningococcal disease (which can be seen

as carriers), the Y class are those infected with a mutant strain of the infection that can

cause acute infection, and class X are the severely affected hosts. Those in the acutely

infected class cannot infect others, but can return to the susceptible class. Carriers, I

class, can develop the mutant strain of infection and become Y class, but the chance of

this is extremely small. From the I and Y classes, individuals become removed, but the

removed class then feeds back into the susceptible class. There is no age structure included

in their models, and all the models are implemented stochastically using a Markov process.

A constant population size is imposed, with 25% of the population being in the benign

carriage class, I, at any time. The average duration of both carriage and immunity is

ten months. By letting there be seasonal changes in transmission, the model produces

seasonal changes in the carriage rates which lead to variations in the incidence of disease.

Yet, the seasonality in transmission did not yield any variation in the yearly incidence

rate unless both the benign and the mutant strain were present. It is this diversity in the

strains of disease that the authors conclude are crucial for epidemics of meningococcal

disease to occur.

Trotter and co-workers also published a number of papers on modelling meningococcal

disease in England and Wales, and looked at the impact of the vaccine against the epidemic

strain (Trotter et al. (2006); Trotter & Gay (2003) and Trotter et al. (2005)). They split

the population into nine compartments: susceptible and un-vaccinated; susceptible and

routinely vaccinated; susceptibles vaccinated during a catch-up campaign; un-vaccinated

carriers; carriers who were vaccinated during one of the catch-up campaigns; un-vaccinated

carriers of other strains of meningococcal; routinely vaccinated carriers of other strains

of meningococcal and carriers of other meningococcal who were vaccinated during a

catch-up campaign. The effects of vaccination wane over time, and the model allows

an individual to be a carrier a multiple number of times for any strain of meningococcal.

They split the population into 75 one year age cohorts, and let the prevalence of carriage

be dependent on age with low prevalence in young children and peaking in teenagers,

and implement their model using differential equations. They do not explicitly model

the invasive meningococcal disease, but calculate the incidence based on carriers. They
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assume that co-infection with more than one strain of meningococcal is not possible, and

that the duration of carriage is only 3 months (this is decreased to better fit the model

to the known data). Their model produces a good fit to the England and Wales epidemic

data, with an estimated basic reproduction ratio of 1.36. Trotter et al. (2005) look at

various vaccination campaigns, and conclude that the most effective use of vaccination is

to target teenagers to generate herd immunity in the population.

Tuckwell et al. (2003) give a difference equation model with discrete time and monthly

age groups for the effects of vaccination on a non-specific disease, which they then apply to

meningococcal disease. The population is compartmentalised according to their immune

status: never vaccinated; non–susceptible; unsuccessful vaccination; non-fatal case; death

from disease and death from other causes. All births go into the susceptible compartment,

and immunity results from non-fatal infection or from successful vaccination. Carriers of

the infection are not specifically included in the model, they assume a steady state where

the carriers and non-carriers are in equilibrium, and the per capita rates of fatal and non-

fatal cases are fixed – which implies that these rates are small relative to the overall birth

and death rates, so the carriage rates do not change significantly. This lack of change in

carriage rates has been noted in most of the models, with the assumption that a certain

percentage of the population is always in a carrier state. They apply various vaccination

schedules and use parameter estimates from an epidemic of meningococcal C disease in

France. The best vaccination schedule, in regard to number of deaths and cases of infection

avoided, is by vaccinating everyone in the population between 2 and 20 years old – which

is the best scheme other than to vaccinate the entire population. However, the scheme in

which only one year olds are vaccinated also performs as well in terms of cases avoided,

but not deaths avoided per dose of vaccine.

Meyers et al. (2003) and Coen et al. (2000) both look at modelling with two strains

of infection. Meyers et al. (2003) use two different strains of meningococcal, a fast phase-

shifting strain and a wild strain with limited or no phase shifting. The fast phase shifting

strain is the one that causes the invasive disease, where the wild strain is the carrier strain.

They present two models, first where the population is split into two groups with respect

to the strains and a second model where secondary infection is allowed with a different

strain. The paper is mostly concerned with the with-in host infection dynamics, and the

need of the two strains to cause an epidemic, and does not compare their findings to known

data. Coen et al. (2000) look at meningococcal disease and carriage, as well as carriage

of Neisseria lactamica which is a related organism to N. meningitidis. They present three

models for the incidence of carriage and of disease, and use an estimated duration of

carriage of 13.3 months, based on data from Belgian school children. The model that best

fits their known data, was one that has acquisition of meningococcal carriage inhibited

by carriage of N. lactamica, and carriage rates dependant on age, with infants having the

greatest pre-carriage rates of illness.

An age structured partial differential equation model is presented by Martcheva &
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Crispino-O’Connell (2003), with the population split into four compartments in relation

to the infection: susceptible, infected, carrier and temporarily immune. Everyone is born

immune to infection, and then lose that immunity to become susceptible at an average

age of three months. Martcheva & Crispino-O’Connell assume an age distribute rate of

carriage, which peaks at 45% in teenagers and young adults. There is no immunity in

the model (apart from at birth), either from infection or from carriage, and there is no

mortality rate due to infection. The paper looks at the stability of the disease free state,

the existence and stability of the endemic equilibrium, and the persistence of the disease,

but not at the solutions of the model and does not make any comparison to known data.

All of the papers mentioned here are based on epidemic data from outside New Zealand,

and not for the B strain of the disease. To create a model specifically for New Zealand,

we can utilise some of the ideas and assumptions made in other papers, then include the

vaccination campaign that has been initiated and the long-time span of the epidemic.

6.3 SCIR Model

We can think of the population as being split into four distinct compartments: the

proportion of the population who are susceptible to infection (s); those who are carrying

the infection and are infectious, but show no signs of the invasive disease (c); those who

have the invasive disease and are still infectious (i); and those who are “removed” - no

longer take part in the infection cycle due to immunity (r). We assume that you cannot

die directly from the disease.

From being susceptible you may become either a carrier or invasively infected after

contact with someone in either of these compartments. Once in the carriage compartment,

you may move to the invasively infected or removed compartment, and once invasively

infected there is only movement to the removed compartment. From each compartment

there is a natural death rate from causes other than the infection and we have assumed

a constant population with the birth and death rates being equal (as death from the

infection is not taken into consideration). This is shown in Figure 6.3 and the system of

Equations (6.1) below:

ds

dt
= −βs(i + αc) − µs + µ

dc

dt
= βsp(i + αc) − c(γ1 + σ + µ)

di

dt
= (1 − p)β(i + αc)s + σc − i(γ2 + µ)

dr

dt
= γ1c + γ2i − µr (6.1)

We call λ = β(i+αc) the force of infection, where β is the transmission coefficient, and

α is the infectiousness of carriers relative to invasively infected individuals. Respectively,
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Figure 6.3: Flow diagram for susceptible, carriage, infection and recovery process. The rates of

change between each compartment are given.

γ1 and γ2 are the rates (per year) at which carriers and invasively infected people recover.

p is the proportion of those infected that become carriers; and σ is the rate (per year) at

which carriers become invasively infected. µ is the birth/death rate. Table 6.1 shows the

values of the model parameters.

We assume that people cannot recover from the carriage state or infected state and

return to the susceptible population - i.e. once infected you can not be re-infected. We

also have one redundant equation, as the population size remains constant.

We can solve the system of equations numerically using MATLAB, using the parameter

values given in Table 6.1. Initially we let 10% of the population be in the carriage state

and the rest of the population be in the susceptible state, as shown in Figure 6.4. This

model demonstrates that when meningococcal disease is introduced into the population

we initially have a large spike in the number of invasive infections and carriers. This then

settles down to a steady state, where the infection is still present, but there is a higher

proportion of the population in the carriage state, as opposed to the invasive infection

state. However, changing some of the parameter values, we can introduce more complex

behaviour into our model as shown in Figure 6.5: we see fluctuations in the proportion

of susceptibles and carriers; and minor fluctuations in the proportion of infectious people

before settling down to an endemic steady state.

Analysis of the simple SCIR model

To analyse this model, we calculate the basic reproduction ratio, then check the consistency

of the next generation matrix by calculating the Jacobian at the trivial steady state. The
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Parameter Description Units Value

α infectiousness of carriers relative proportion 0.8

to invasively infected.

µ birth/death rate. per year 0.0125

p proportion of the people infected proportion 0.9

who become carriers.

γ1 rate at which carriers recover. per year 0.3

σ rate at which carriers become per year 0.001

invasively infected.

γ2 rate at which invasively infected per year 0.1

people recover.

Table 6.1: Description of parameters used in the model, with values used in the examples.
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Figure 6.4: The proportion of the population in each compartment over time. Initially s = 0.9,

c = 0.1 and i = 0. Parameter values listed in Table 6.1.

stability of the steady state should change as R0 passes through one, therefore the Jacobian

matrix should have a zero eigenvalue when R0 = 1. We will use this method to check the

consistency of our next generation matrix in all our following models.

The measure of spread of an infection is the basic reproduction ratio, R0 - that is:

the expected number of secondary cases that would occur from a primary case in a fully

susceptible population (Anderson & May, 1992; Diekmann & Heesterbeek, 2000). To

calculate R0 we first need the next generation matrix which describes the expected number

of secondary cases that would occur from a primary case in a fully susceptible population

in each category. For our model we require a 2×2 next generation matrix, the first column

representing the number of secondary cases that would occur due to a primary infectious
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Figure 6.5: The proportion of the population in each compartment over time. Initially s = 0.9,

c = 0.1 and i = 0. Parameter values: γ1 = 2, σ = 0.01, γ2 = 7 and all other values

as in Table 6.1.

carrier, and the second column representing the number of secondary cases that would

occur due to a primary invasive infectious person. Then

K1,1 : Carrier hosts infect others at rate βα and remain infectious for 1
γ1+σ+µ

years. A

proportion σ
γ1+σ+µ

of carriers go on to become infected hosts, who in turn infect

people at rate β and remain infectious for 1
γ2+µ

years. A proportion p of those

infected go on to become carriers.

K1,2 : Invasively infected hosts infect others at rate β and remain infectious for 1
γ2+µ

years. A proportion, p of those infected then become carrier hosts.

K2,1 : Carrier hosts infect others at rate βα and remain infectious for 1
γ1+σ+µ

years, then

a proportion 1 − p of those infected go on to become invasively infected hosts. A

proportion σ of carriers go on to become invasively infected hosts, who in turn infect

people at rate β and remain infectious for 1
γ2+µ

years.

K2,2 : Invasively infected hosts infect others at rate β and remain infectious for 1
γ2+µ

years. A proportion, 1 − p of those infected then go on to be invasively infected.

Hence, the next generation matrix is:

K =





βp
γ1+σ+µ

(

α + σ
γ2+µ

)

βp
γ2+µ

β(1−p)
γ1+σ+µ

(

α + σ
γ2+µ

)

(1−p)β
γ2+µ



 (6.2)
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The basic reproduction ratio is the largest eigenvalue of the next generation matrix

(as this matrix has linearly dependent rows, we see that this is just the trace):

R0 =
β((µ + γ1)(1 − p) + pα(µ + γ2) + σ)

(γ1 + σ + µ)(γ2 + µ)
(6.3)

To find the steady states, we first note that as the population is of constant size we

have one redundant equation in the system given in Equation (6.1). We work with the

first three equations only. Setting the derivatives to zero, we can re-write the steady state

equations as a linear matrix equation:

βs∗

(

p αp

1 − p (1 − p)α

)(

i∗

c∗

)

=

(

0 γ1 + σ + µ

γ2 + µ −σ

)(

i∗

c∗

)

By taking the inverse of the matrix on the right hand side and rearranging, we gain the

following:

β

(

σp
(σ+γ1+µ)(γ2+µ) + 1−p

γ2+µ
σαp

(σ+γ1+µ)(γ2+µ) + α(1−p)
γ2+µ

p
σ+γ1+µ

αp
σ+γ1+µ

)(

i∗

c∗

)

=
1

s∗

(

i∗

c∗

)

We see that s∗ is the inverse of the non-zero eigenvalue of the previous matrix, and we

know that there is also the trivial solution, so:

s∗ = 1

s∗ =
(γ1 + σ + µ)(γ2 + µ)

β((µ + γ1)(1 − p) + pα(µ + γ2) + σ)
=

1

R0
(6.4)

Thus there are only two steady states for this system of equations, one where there is

no infection present in the population (s, i, c) = (1, 0, 0), and an endemic steady state,

(s∗, i∗, c∗). We find the endemic steady state values for the carrier and invasively infected

populations by substituting s∗ = 1
R0

in Equations (6.1) and setting the derivatives to zero.

From ds
dt

= 0, with λ = β(c∗ + α∗) we gain:

i∗ =
µ(1 − s∗)

βs∗
− αc∗ (6.5)

Then using this in Equation (6.1) for the carriers, we get a solution for c∗:

c∗ =
pµ(1 − s∗)

σ + γ1 + µ
(6.6)

Thus, the non-trivial steady state is given by:

(s∗, c∗, i∗) =





1

R0
,
pµ
(

1 − 1
R0

)

σ + γ1 + µ
, µ

(

1 − 1

R0

)(

R0

β
− α

σ + γ1 + µ

)



 (6.7)

To determine the stability of the steady states we construct the Jacobian matrix. To

see if our system changes stability at the trivial steady state, we calculate the eigenvalues
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of the Jacobian at the trivial steady state, and compare these to R0 at the trivial steady

state. The Jacobian for the system of Equations (6.1) is given by:

J =







−β(i + αc) − µ −βsα −βs

βp(i + αc) βspα − γ1 − σ − µ βsp

(1 − p)β(i + αc) (1 − p)βsα + σ (1 − p)βs − γ2 − µ







At the trivial steady state (s = 1, c = i = 0) the Jacobian becomes:

J1 =







−µ −βα −β

0 βpα − γ1 − σ − µ βp

0 (1 − p)βα + σ (1 − p)β − γ2 − µ







We can re-write this as:

J1 =







0 −βα −β

0 βpα βp

0 (1 − p)βα + σ (1 − p)β






−







µ 0 0

0 γ1 + σ + µ 0

0 0 γ2 + µ







= J̃1 − D (6.8)

Suppose that J1 has an eigenvalue ω with corresponding eigenvector x, then:

J1x = ωx

(J̃1 − D)x = ωx

(D + Iω)−1J̃1x = x (6.9)

We see that (D + Iω)−1J̃1 has an eigenvalue of 1. Letting ω = 0 the characteristic

polynomial of D−1J̃1 is:

u2 − uβ

(

αp(γ2 + µ) + (1 − p)(γ1 + σ + µ)

(γ1 + σ + µ)(γ2 + µ)

)

− βpσ

(γ1 + σ + µ)(γ2 + µ)
= 0

u2 − u(f + g) − h = 0 (6.10)

where f = βαp(γ2+µ)
(γ1+σ+µ)(γ2+µ) , g = β(1−p)(γ2+σ+µ)

(γ1+σ+µ)(γ2+µ) and h = βpσ
(γ1+σ+µ)(γ2+µ) .

The characteristic polynomial for the next generation matrix, K, is:

v

(

v − β
(µ + γ1)(1 − p) + pα(µ + γ2) + σ

(γ1 + σ + µ)(γ2 + µ)

)

= 0

v(v − (f + g + h)) = 0 (6.11)

From the previous two Equations (6.10) and (6.11) we see u = 1 ⇔ v = 1, thus if the

Jacobian at the trivial steady state has an eigenvalue of zero, then the next generation

matrix has an eigenvalue of one.

We can show numerically that when the next generation matrix has eigenvalues less

than one (meaning that R0 < 1 and the infection cannot persist in the population) then

the Jacobian at the trivial steady state has negative eigenvalues - so the trivial steady state



SCIR Model 108

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Non−zero eigenvalue of the next generation matrix (R
0
)

E
ig

en
va

lu
es

 o
f t

he
 J

ac
ob

ia
n 

at
 th

e 
tr

iv
ia

l s
te

ad
y 

st
at

e

Eignevalues of the Jacobian at the trivial steady state vrs R
0

Figure 6.6: The eigenvalues of the Jacobian matrix for the simple SCIR model plotted against

the non-zero eigenvalue of the next generation matrix (R0). We can see that when

R0 < 1 the eigenvalues of J1 are all negative, indicating that the trivial steady state

(s = 1, c = i = 0) is stable.

is stable (shown in Figure 6.6). We have a transcritical bifurcation when R0 = 1 (as can

be seen in Figure 6.7): the steady state relating to no infection in the population changes

from stable to unstable and the endemic steady state appears and is stable. We see that as

the basic reproduction ratio increases the proportion of susceptibles in our population at

the steady state decreases towards, but never actually reaches zero. The unstable steady

state when R0 < 1 shown in Figure 6.7, does not make sense biologically as the proportion

of the population susceptible is greater than one, but it is mathematically present and we

can prove it is unstable.

This model captures the main characteristics of an epidemic of meningococcal disease,

however it does not include the fact that a large proportion of the cases that are seen in

New Zealand occur in the under 5 years old age group. With this is mind, we now expand

our model to have a population split into five age groups, so that we can look more closely

at what is happening at the age group level, and tailor our model to reflect any differences

that occur in disease transmission in each of the age groups. This will also allow us to

include the affect of vaccination more easily, and compare our model results to known

data. Also, as we have calculated this in terms of proportion of the population infected,

it is hard to compare this to the known number of cases recorded, so we now change to

deal in number of people infected.
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Figure 6.7: Bifurcation diagram for the simple SCIR proportion model, with the bifurcation

when R0 = 1 - the solid lines represent the stable steady state, and the dashed lines

the unstable steady state. When R0 < 1 the trivial steady state is stable, meaning

that an infection will not persist in the population. For R0 > 1, the non-trivial

steady state becomes stable, so an infection will persist in the population. As R0

increases, we see that the number of people that remain susceptible at the steady

state decreases.
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6.4 Structured SCIR Model

We now split our population into 5 age classes: class 1: new born – 1 year old; class 2:

1–10 years old; class 3: 10–20 years old; class 4: 20–40 years old and class 5: 40–70 year

old. We have chosen these age classes to align with the recorded data for the number of

infections each year. We have again split our population into four distinct compartments

for each age class, but this time looking at the number of people in each compartment,

rather than proportion: Si is the number of susceptibles in age class i; Ci is the number

of carriers in age class i; Ii is the number of infected people in age class i and Ri is the

number of recovered or immune people in age class i. This is an extension of our previous

model, but we have allowed for non-homogeneous mixing between the age classes: mjk, is

the mixing rate between age classes j and k, shown in Equation (6.15). A schematic of

the infection process can be seen in Figure 6.8.

Figure 6.8: Flow diagram for the meningococcal disease infection process, when the population

is split into five age classes.

group 1 (0–1 year)























dS1

dt
= B − (λ1 + µ1)S1

dC1

dt
= pλ1S1 − (σ + γ1 + µ1)C1

dI1
dt

= (1 − p)λ1S1 + σC1 − (γ2 + µ1)I1

dR1

dt
= γ1C1 + γ2I1 − µ1R1

(6.12)
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groups 2–5























dSj

dt
= µj−1Sj−1 − (λj + µj)Sj

dCj

dt
= µj−1Cj−1 + pλjSj − (σ + γ1 + µj)Cj

dIj

dt
= µj−1Ij−1 + (1 − p)λjSj + σCj − (γ2 + µj)Ij

dRj

dt
= µj−1Rj−1 + γ1Cj + γ2Ij − µjRj

(6.13)

where

λj =
β

N

5
∑

k=1

mjk(Ik + αCk) (6.14)

The parameter values and their descriptions for this model are shown in Table 6.2.

Parameter Description Value

B birth rate 64460 people

per year

α infectiousness of carriers relative 1

to invasively infected.

µ1 rate at which age class 1 moved to age

class 2

1 year−1

µ2 rate at which age class 2 moved to age

class 3

1
10−1 year−1

µ3 rate at which age class 3 moved to age

class 4

1
20−10 year−1

µ4 rate at which age class 4 moved to age

class 5

1
40−20 year−1

µ5 death rate of age class 5 1
70−40 year−1

p proportion of the people infected 0.99

who become carriers.

γ1 rate at which carriers recover. 2 year−1

σ rate at which carriers become 0.0001 year−1

invasively infected.

γ2 rate at which invasively infected 10 year−1

people recover.

β transmission coefficient refer to text

Table 6.2: Description of parameters used in the model, with values used in the examples.

We use similar mixing rates to Roberts & Tobias (2000) as meningococcal is spread

in a similar manner to measles (a1 = 1, a2 = 5, a3 = 5, a4 = 2, a5 = 1 and ǫ = 0.4). This

is a mixture of preferential mixing (where the off diagonal entries would be zero), and

proportionate mixing (the mixing between groups is proportionate the the activity levels

of these groups). The parameter ǫ adds a weighting to the proportionate mixing, letting



Structured SCIR Model 112

the mixing between two age classes be damped down slightly.

m =

















a1 ǫ
√

a1a2 ǫ
√

a1a3 ǫ
√

a1a4 ǫ
√

a1a5

ǫ
√

a2a1 a2 ǫ
√

a2a3 ǫ
√

a2a4 ǫ
√

a2a5

ǫ
√

a3a1 ǫ
√

a3a2 a3 ǫ
√

a3a4 ǫ
√

a3a5

ǫ
√

a4a1 ǫ
√

a4a2 ǫ
√

a4a3 a4 ǫ
√

a4a5

ǫ
√

a5a1 ǫ
√

a5a2 ǫ
√

a5a3 ǫ
√

a4a5 a5

















(6.15)

We calculate the next generation matrix for this model by considering it as a sum

of matrices - the first matrix is a next generation matrix that does not include the

demographics of our population (so we will leave out the inter-age compartment changes),

and then subsequent matrices include the demographic changes. Each matrix is a 10× 10

matrix, as there are ten types of infection: either carrier or infectious in each of our five

age classes. Each column of the matrix represents who caused the infection, and each

row of the matrix represents what type of infection was caused. Columns/rows 1 . . . 5 are

from/to Ci and columns/rows 6..10 are from/to Ii. We let K0 be the matrix that does

not take into account any demographics, K1 will be the demographic adjustment for one

change in age class, K2 will the be the demographic adjustment for a change over two

age classes and Kj will be the matrix with demographic adjustment for change over j age

classes.

Considering K0, we can easily split this into four parts, each being a 5×5 sub-matrix:

K0 =

(

A B

C D

)

(6.16)

The upper left sub-matrix of K0, A, will be expected number of carriers caused by carriers

for all the age class combinations. Carriers infect others at rate αβ
N

and remain carriers

(of age class i) for an average of 1
σ+γ1+µi

years. They mix with age class j at rate mij and

pS∗

j of those infected go on to become carriers. A proportion, σ
σ+γ1+µi

, of carriers can also

go on to become acutely infected individuals who will infect others at rate β
N

and remain

infectious for 1
γ2+µi

years. They mix with age class j at rate mij and a proportion p of

those they have infected will go on to be carriers. Thus, the upper left 5 × 5 sub-matrix

will have entries of the form
βS∗

j

N

mijp

σ+γ1+µi

(

α + σ
γ2+µi

)

.
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A =
βp

N























S∗

1m11

σ+γ1+µ1

(

α + σ
γ2+µ1

)

S∗

1m12

σ+γ1+µ2

(

α + σ
γ2+µ2

)

S∗

1m13

σ+γ1+µ3

(

α + σ
γ2+µ3

)

S∗

2
m21

σ+γ1+µ1

(

α + σ
γ2+µ1

)

S∗

2
m22

σ+γ1+µ2

(

α + σ
γ2+µ2

)

S∗

2
m23

σ+γ1+µ3

(

α + σ
γ2+µ3

)

S∗

3
m31

σ+γ1+µ1

(

α + σ
γ2+µ1

)

S∗

3
m32

σ+γ1+µ2

(

α + σ
γ2+µ2

)

S∗

3
m33

σ+γ1+µ3

(

α + σ
γ2+µ3

)

S∗

4m41

σ+γ1+µ1

(

α + σ
γ2+µ1

)

S∗

4m42

σ+γ1+µ2

(

α + σ
γ2+µ2

)

S∗

4m43

σ+γ1+µ3

(

α + σ
γ2+µ3

)

S∗

5
m51

σ+γ1+µ1

(

α + σ
γ2+µ1

)

S∗

5
m52

σ+γ1+µ2

(

α + σ
γ2+µ2

)

S∗

5
m53

σ+γ1+µ3

(

α + σ
γ2+µ3

)

S∗

1
m14

σ+γ1+µ4

(

α + σ
γ2+µ4

)

S∗

1
m15

σ+γ1+µ5

(

α + σ
γ2+µ5

)

S∗

2m24

σ+γ1+µ4

(

α + σ
γ2+µ4

)

S∗

2m25

σ+γ1+µ5

(

α + σ
γ2+µ5

)

S∗

3
m34

σ+γ1+µ4

(

α + σ
γ2+µ4

)

S∗

3
m35

σ+γ1+µ5

(

α + σ
γ2+µ5

)

S∗

4
m44

σ+γ1+µ4

(

α + σ
γ2+µ4

)

S∗

4
m45

σ+γ1+µ5

(

α + σ
γ2+µ5

)

S∗

5m54

σ+γ1+µ4

(

α + σ
γ2+µ4

)

S∗

5m55

σ+γ1+µ5

(

α + σ
γ2+µ5

)























(6.17)

The lower left 5 × 5 sub-matrix of K0 represents infectious individuals caused by

carrier individuals for all the age class combinations. This is similar to the upper left

5 × 5, but a proportion (1 − p)S∗

j go on to become infectious, so the entries look like
βS∗

j

N

mij(1−p)
σ+γ1+µi

(

α + σ
γ2+µi

)

.

C =
β(1 − p)

N























S∗

1
m11

σ+γ1+µ1

(

α + σ
γ2+µ1

)

S∗

1
m12

σ+γ1+µ2

(

α + σ
γ2+µ2

)

S∗

1
m13

σ+γ1+µ3

(

α + σ
γ2+µ3

)

S∗

2
m21

σ+γ1+µ1

(

α + σ
γ2+µ1

)

S∗

2
m22

σ+γ1+µ2

(

α + σ
γ2+µ2

)

S∗

2
m23

σ+γ1+µ3

(

α + σ
γ2+µ3

)

S∗

3m31

σ+γ1+µ1

(

α + σ
γ2+µ1

)

S∗

3m32

σ+γ1+µ2

(

α + σ
γ2+µ2

)

S∗

3m33

σ+γ1+µ3

(

α + σ
γ2+µ3

)

S∗

4
m41

σ+γ1+µ1

(

α + σ
γ2+µ1

)

S∗

4
m42

σ+γ1+µ2

(

α + σ
γ2+µ2

)

S∗

4
m43

σ+γ1+µ3

(

α + σ
γ2+µ3

)

S∗

5m51

σ+γ1+µ1

(

α + σ
γ2+µ1

)

S∗

5m52

σ+γ1+µ2

(

α + σ
γ2+µ2

)

S∗

5m53

σ+γ1+µ3

(

α + σ
γ2+µ3

)

S∗

1m14

σ+γ1+µ4

(

α + σ
γ2+µ4

)

S∗

1m15

σ+γ1+µ5

(

α + σ
γ2+µ5

)

S∗

2
m24

σ+γ1+µ4

(

α + σ
γ2+µ4

)

S∗

2
m25

σ+γ1+µ5

(

α + σ
γ2+µ5

)

S∗

3
m34

σ+γ1+µ4

(

α + σ
γ2+µ4

)

S∗

3
m35

σ+γ1+µ5

(

α + σ
γ2+µ5

)

S∗

4m44

σ+γ1+µ4

(

α + σ
γ2+µ4

)

S∗

4m45

σ+γ1+µ5

(

α + σ
γ2+µ5

)

S∗

5
m54

σ+γ1+µ4

(

α + σ
γ2+µ4

)

S∗

5
m55

σ+γ1+µ5

(

α + σ
γ2+µ5

)























(6.18)

The upper right 5×5 sub-matrix of K0 represents carrier infections caused by infectious

individuals. Infectious individuals infect susceptibles at rate β and remain infectious (in

age class i) for an average of 1
γ2+µi

years. They mix with age class j at rate mij and a

proportion p of those infected go on to become carriers. So the entries will be of the form
βS∗

j p

N(γ2+µi)
mij .
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B =
βp

N



















S∗

1m11

γ2+µ1

S∗

1m21

γ2+µ2

S∗

1m31

γ2+µ3

S∗

1m41

γ2+µ4

S∗

1m51

γ2+µ5

S∗

2m11

γ2+µ1

S∗

2m21

γ2+µ2

S∗

2m31

γ2+µ3

S∗

2m41

γ2+µ4

S∗

2m51

γ2+µ5
S∗

3
m11

γ2+µ1

S∗

3
m21

γ2+µ2

S∗

3
m31

γ2+µ3

S∗

3
m41

γ2+µ4

S∗

3
m51

γ2+µ5

S∗

4m11

γ2+µ1

S∗

4m21

γ2+µ2

S∗

4m31

γ2+µ3

S∗

4m41

γ2+µ4

S∗

4m51

γ2+µ5

S∗

5m11

γ2+µ1

S∗

5m21

γ2+µ2

S∗

5m31

γ2+µ3

S∗

5m41

γ2+µ4

S∗

5m51

γ2+µ5



















(6.19)

The lower right 5× 5 sub-matrix will be infectious age class j caused by infectious age

class i. These will be similar to the upper right sub-matrix, but a proportion (1 − p) of

infections result in infectious people. So the entries will be of the form:
βS∗

j (1−p)

N(γ2+µi)
mij.

D =
β(1 − p)

N



















S∗

1m11

γ2+µ1

S∗

1m21

γ2+µ2

S∗

1m31

γ2+µ3

S∗

1m41

γ2+µ4

S∗

1m51

γ2+µ5
S∗

2
m11

γ2+µ1

S∗

2
m21

γ2+µ2

S∗

2
m31

γ2+µ3

S∗

2
m41

γ2+µ4

S∗

2
m51

γ2+µ5
S∗

3
m11

γ2+µ1

S∗

3
m21

γ2+µ2

S∗

3
m31

γ2+µ3

S∗

3
m41

γ2+µ4

S∗

3
m51

γ2+µ5

S∗

4m11

γ2+µ1

S∗

4m21

γ2+µ2

S∗

4m31

γ2+µ3

S∗

4m41

γ2+µ4

S∗

4m51

γ2+µ5
S∗

5
m11

γ2+µ1

S∗

5
m21

γ2+µ2

S∗

5
m31

γ2+µ3

S∗

5
m41

γ2+µ4

S∗

5
m51

γ2+µ5



















(6.20)

To simplify the matrices that take into account demographic change, we introduce κk
j

be proportion of carriers in age class j who become a carrier in age class k. A carrier in

age class j will become a carrier in age class j + 1 at rate µj, and they remain carriers in

age class j for an average 1
σ+γ1+µj

years. From C1 you can go on to any of the other C

classes (as can be seen in Figure 6.8):

κ2
1 =

µ1

σ + γ1 + µ1
κ3

1 = κ2
1

µ2

σ + γ1 + µ2

κ4
1 = κ3

1

µ3

σ + γ1 + µ3
κ5

1 = κ4
1

µ4

σ + γ1 + µ4
(6.21)

From C2:

κ3
2 =

µ2

σ + γ1 + µ2
κ4

2 = κ3
2

µ3

σ + γ1 + µ3

κ5
2 = κ4

2
µ4

σ + γ1 + µ4
(6.22)

From C3:

κ4
3 =

µ3

σ + γ1 + µ3
κ5

3 = κ4
3

µ4

σ + γ1 + µ4
(6.23)

And from C4 you can only go on to C5:

κ5
4 =

µ4

σ + γ1 + µ4
(6.24)

The proportion of acutely infected age class j to become acutely infected age class k

is given by ηk
j - from infected class j you move on to class j + 1 at rate µj and remain
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infectious for an average 1
γ2+µj

years. From I1 you can move through to be in any of the

other I classes:

η2
1 =

µ1

γ2 + µ1
η3
1 = η2

1

µ2

γ2 + µ2

η4
1 = η3

1

µ3

γ2 + µ3
η5
1 = η4

1

µ4

γ2 + µ4
(6.25)

From I2:

η3
2 =

µ2

γ2 + µ2
η4
2 = η3

2

µ3

γ2 + µ3

η5
2 = η4

2

µ4

γ2 + µ4
(6.26)

From I3:

η4
3 =

µ3

γ2 + µ3
η5
3 = η4

3

µ4

γ2 + µ4
(6.27)

And from I4:

η5
4 =

µ4

γ2 + µ5
(6.28)

We let ιkj be the proportion of carriers in age class j who become acutely infected

in age class k. Cj become acutely infected at rate σ and remain carriers for an average
1

σ+γ1+µj
years, from here they then become acutely infected class k (ηk

j ), or from carrier

class j they can become a carrier class k (κk
j ) and then go on to be acutely infected. From

C1 to Ik:

ι11 =
σ

σ + γ1 + µ1

ι21 = ι11η
2
1 + κ2

1

σ

σ + γ1 + µ2

ι31 = ι21η
3
2 + κ3

1

σ

σ + γ1 + µ3

ι41 = ι31η
4
3 + κ4

1

σ

σ + γ1 + µ4

ι51 = ι41η
5
4 + κ5

1

σ

σ + γ1 + µ5
(6.29)

From C2 to Ik:

ι22 =
σ

σ + γ1 + µ2

ι32 = ι22η
3
2 + κ3

2

σ

σ + γ1 + µ3

ι42 = ι32η
4
3 + κ4

2

σ

σ + γ1 + µ4

ι52 = ι42η
5
4 + κ5

2

σ

σ + γ1 + µ5
(6.30)
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From C3 to Ik:

ι33 =
σ

σ + γ1 + µ3

ι43 = ι33η
4
3 + κ4

3

σ

σ + γ1 + µ4

ι53 = ι43η
5
4 + κ5

3

σ

σ + γ1 + µ5
(6.31)

From C4 to Ik:

ι44 =
σ

σ + γ1 + µ4

ι54 = ι44η
5
4 + κ5

4

σ

σ + γ1 + µ5
(6.32)

From C5 to I5 = ι55 = σ
σ+γ2+µ5

.

The matrix K1 will represent the expected number of infections caused from

carriers/acutely infected people after one change in age class. Columns 5 and 10

will contain zeros, as these represent infections caused by those initially carriers/acute

infections in age class 5 – our last age class, so they can not move to another class.

Column 1 will be infections caused by carriers who were initially in age class 1, but have

since moved to age class 2, and may now be either carriers or acutely infected; similarly

for columns 2 to 4. Column 6 will be infections caused by those who were initially acutely

infected age class 1, and are now acutely infected age class 2; similarly for columns 7 to

9. We can split K1 into four sub-matrices as shown below.

K1 =

(

A1 B1

C1 D1

)

The sub-matrix A1 represents the number of carriers caused by carriers who have moved

up an age class. A proportion of carriers in age class j will create other carriers by

either directly moving age classes in the carrier compartment (a proportion κj+1
j ), or by

becoming an acutely infected individual in age class j + 1 (a proportion ιj+1
j ). Carriers

in age class j + 1 infect others at rate αβ, and remain carriers for an average 1
σ+γ1+µj+1

years. Acutely infected class j + 1 infect others at rate β and remain infectious for an

average 1
γ2+µj+1

years. They mix with class j at rate mi,j+1, and a proportion p will
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become carriers - the entries A1
i,j are of the form:

βmi,j+1S∗

i

N

(

ακ
j+1

j

σ+γ1+µj+1
+

ι
j+1

j

γ2+µj+1

)

A1 =
pβ

N























m12S
∗

1

(

ακ2
1

σ+γ1+µ2
+

ι2
1

γ2+µ2

)

m13S
∗

1

(

ακ3
2

σ+γ1+µ3
+

ι3
2

γ2+µ3

)

m22S
∗

2

(

ακ2
1

σ+γ1+µ2
+

ι2
1

γ2+µ2

)

m23S
∗

2

(

ακ3
2

σ+γ1+µ3
+

ι3
2

γ2+µ3

)

m32S
∗

3

(

ακ2
1

σ+γ1+µ2
+

ι21
γ2+µ2

)

m33S
∗

3

(

ακ3
2

σ+γ1+µ3
+

ι32
γ2+µ3

)

m42S
∗

4

(

ακ2
1

σ+γ1+µ2
+

ι2
1

γ2+µ2

)

m43S
∗

4

(

ακ3
2

σ+γ1+µ3
+

ι3
2

γ2+µ3

)

m52S
∗

5

(

ακ2
1

σ+γ1+µ2
+

ι21
γ2+µ2

)

m53S
∗

5

(

ακ3
2

σ+γ1+µ3
+

ι32
γ2+µ3

)

m14S
∗

1

(

ακ4
3

σ+γ1+µ4
+

ι43
γ2+µ4

)

m15S
∗

1

(

ακ5
4

σ+γ1+µ5
+

ι54
γ2+µ5

)

0

m24S
∗

2

(

ακ4
3

σ+γ1+µ4
+

ι4
3

γ2+µ4

)

m25S
∗

2

(

ακ5
4

σ+γ1+µ5
+

ι5
4

γ2+µ5

)

0

m34S
∗

3

(

ακ4
3

σ+γ1+µ4
+

ι4
3

γ2+µ4

)

m35S
∗

3

(

ακ5
4

σ+γ1+µ5
+

ι5
4

γ2+µ5

)

0

m44S
∗

4

(

ακ4
3

σ+γ1+µ4
+

ι43
γ2+µ4

)

m45S
∗

4

(

ακ5
4

σ+γ1+µ5
+

ι54
γ2+µ5

)

0

m54S
∗

5

(

ακ4
3

σ+γ1+µ4
+

ι4
3

γ2+µ4

)

m55S
∗

5

(

ακ5
4

σ+γ1+µ5
+

ι5
4

γ2+µ5

)

0























(6.33)

The sub-matrix C1 represents the expected number of secondary cases of acute

infections caused by people who were initially carriers in age class j but are now infectious

in age class j + 1; the entries are similar to those of A1 but a proportion (1 − p) of those

infected become acutely infected.

C1 =
(1 − p)β

N























m12S
∗

1

(

ακ2
1

σ+γ1+µ2
+

ι2
1

γ2+µ2

)

m13S
∗

1

(

ακ3
2

σ+γ1+µ3
+

ι3
2

γ2+µ3

)

m22S
∗

2

(

ακ2
1

σ+γ1+µ2
+

ι2
1

γ2+µ2

)

m23S
∗

2

(

ακ3
2

σ+γ1+µ3
+

ι3
2

γ2+µ3

)

m32S
∗

3

(

ακ2
1

σ+γ1+µ2
+

ι21
γ2+µ2

)

m33S
∗

3

(

ακ3
2

σ+γ1+µ3
+

ι32
γ2+µ3

)

m42S
∗

4

(

ακ2
1

σ+γ1+µ2
+

ι2
1

γ2+µ2

)

m43S
∗

4

(

ακ3
2

σ+γ1+µ3
+

ι3
2

γ2+µ3

)

m52S
∗

5

(

ακ2
1

σ+γ1+µ2
+

ι2
1

γ2+µ2

)

m53S
∗

5

(

ακ3
2

σ+γ1+µ3
+

ι3
2

γ2+µ3

)

m14S
∗

1

(

ακ4
3

σ+γ1+µ4
+

ι4
3

γ2+µ4

)

m15S
∗

1

(

ακ5
4

σ+γ1+µ5
+

ι5
4

γ2+µ5

)

0

m24S
∗

2

(

ακ4
3

σ+γ1+µ4
+

ι43
γ2+µ4

)

m25S
∗

2

(

ακ5
4

σ+γ1+µ5
+

ι54
γ2+µ5

)

0

m34S
∗

3

(

ακ4
3

σ+γ1+µ4
+

ι4
3

γ2+µ4

)

m35S
∗

3

(

ακ5
4

σ+γ1+µ5
+

ι5
4

γ2+µ5

)

0

m44S
∗

4

(

ακ4
3

σ+γ1+µ4
+

ι43
γ2+µ4

)

m45S
∗

4

(

ακ5
4

σ+γ1+µ5
+

ι54
γ2+µ5

)

0

m54S
∗

5

(

ακ4
3

σ+γ1+µ4
+

ι4
3

γ2+µ4

)

m55S
∗

5

(

ακ5
4

σ+γ1+µ5
+

ι5
4

γ2+µ5

)

0























(6.34)

The sub-matrix B1 represents the expected number of secondary cases of carrier

infection caused by an acutely infectious person initially in age class j but now in age class

j + 1. From the acutely infectious class, a person can only move up to the subsequent

acutely infected age class, so we will again have the fifth column being all zero. A

proportion, ηj+1
j , of acutely infected individuals in age class j moves into age class j + 1.

They then infect others at rate β, and remain infectious for an average 1
γ2+µj+1

years. They

mix with age class i at rate mij and a proportion p of those infected become carriers. Thus,
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entries in the matrix B1 have the form:
pS∗

i

N

mijη
j+1

j

γ2+µj+1

B1 =
p

N



















m12S∗

1
η2
1

γ2+µ2

m13S∗

1
η3
2

γ2+µ3

m14S∗

1
η4
3

γ2+µ4

m14S∗

1
η45

γ2+µ5
0

m22S∗

2η2
1

γ2+µ2

m23S∗

2η3
2

γ2+µ3

m24S∗

2η4
3

γ2+µ4

m24S∗

2η5
4

γ2+µ5
0

m32S∗

3
η2
1

γ2+µ2

m33S∗

3
η3
2

γ2+µ3

m34S∗

3
η4
3

γ2+µ4

m34S∗

3
η5
4

γ2+µ5
0

m42S∗

4
η2
1

γ2+µ2

m43S∗

4
η3
2

γ2+µ3

m44S∗

4
η4
3

γ2+µ4

m44S∗

4
η5
4

γ2+µ5
0

m52S∗

5η2
1

γ2+µ2

m53S∗

5η3
2

γ2+µ3

m54S∗

5η4
3

γ2+µ4

m54S∗

5η5
4

γ2+µ5
0



















(6.35)

The sub-matrix D1 represents the expected number of secondary cases of acute infection

caused by an acutely infected age class j individual who is now an acutely infected age

class j +1 individual. This will be similar to the matrix B1, apart from a proportion 1−p

becoming acutely infected.

D1 =
(1 − p)

N



















m12S∗

1
η2
1

γ2+µ2

m13S∗

1
η3
2

γ2+µ3

m14S∗

1
η4
3

γ2+µ4

m14S∗

1
η5
4

γ2+µ5
0

m22S∗

2
η2
1

γ2+µ2

m23S∗

2
η3
2

γ2+µ3

m24S∗

2
η4
3

γ2+µ4

m24S∗

2
η5
4

γ2+µ5
0

m32S∗

3η2
1

γ2+µ2

m33S∗

3η3
2

γ2+µ3

m34S∗

3η4
3

γ2+µ4

m34S∗

3η5
4

γ2+µ5
0

m42S∗

4
η2
1

γ2+µ2

m43S∗

4
η3
2

γ2+µ3

m44S∗

4
η4
3

γ2+µ4

m44S∗

4
η5
4

γ2+µ5
0

m52S∗

5η2
1

γ2+µ2

m53S∗

5η3
2

γ2+µ3

m54S∗

5η4
3

γ2+µ4

m54S∗

5η5
4

γ2+µ5
0



















(6.36)

We construct the matrix K2 in which we consider new cases of infection caused after

infectious people have moved up two age classes. All the entries in columns 4, 5, 9, and

10 are now zero.

K2 =

(

A2 B2

C2 D2

)

(6.37)

The sub-matrix A2 represents the expected number of carriers that will occur due to a

single carrier that has moved up two age groups. A proportion, κj+2
j , of carriers in age

class j will become a carrier in age class j+2, who will infect others at rate αβ and remain

infectious for an average of 1
σ+γ1+µj+2

years. They mix with age class i at rate mi,j+2 and

a proportion p of those infected will become carriers. A proportion of carriers, ιj+2
j , in

age class j can also go on to become an acutely infected person in age class j + 2, who

then infects others at rate β and remains infectious for an average of 1
γ2+µj+2

years. So

the (i, j) entry of A2 will be of the form:
βpmi,j+2S∗

i

N

(

ακ
j+2

j

σ+γ1+µj+2
+

ι
j+2

j

γ2+µj+2

)

.
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A2 =
βp

N























S∗

1m13

(

ακ3
1

σ+γ1+µ3
+

ι3
1

γ2+µ3

)

S∗

1m14

(

ακ4
2

σ+γ1+µ4
+

ι4
2

γ2+µ4

)

S∗

2m23

(

ακ3
1

σ+γ1+µ3
+

ι3
1

γ2+µ3

)

S∗

2m24

(

ακ4
2

σ+γ1+µ4
+

ι4
2

γ2+µ4

)

S∗

3m33

(

ακ3
1

σ+γ1+µ3
+

ι31
γ2+µ3

)

S∗

3m34

(

ακ4
2

σ+γ1+µ4
+

ι42
γ2+µ4

)

S∗

4m43

(

ακ3
1

σ+γ1+µ3
+

ι3
1

γ2+µ3

)

S∗

4m44

(

ακ4
2

σ+γ1+µ4
+

ι4
2

γ2+µ4

)

S∗

5m53

(

ακ3
1

σ+γ1+µ3
+

ι31
γ2+µ3

)

S∗

5m54

(

ακ4
2

σ+γ1+µ4
+

ι42
γ2+µ4

)

S∗

1m15

(

ακ5
3

σ+γ1+µ5
+

ι53
γ2+µ5

)

0 0

S∗

2m25

(

ακ5
3

σ+γ1+µ5
+

ι5
3

γ2+µ5

)

0 0

S∗

3m35

(

ακ5
3

σ+γ1+µ5
+

ι5
3

γ2+µ5

)

0 0

S∗

4m45

(

ακ5
3

σ+γ1+µ5
+

ι53
γ2+µ5

)

0 0

S∗

5m55

(

ακ5
3

σ+γ1+µ5
+

ι5
3

γ2+µ5

)

0 0























(6.38)

The sub-matrix C2 will be similar to A2, apart from a proportion 1−p of those infected

become acutely infected:

C2 =
β(1 − p)

N























S∗

1m13

(

ακ3
1

σ+γ1+µ3
+

ι31
γ2+µ3

)

S∗

1m14

(

ακ4
2

σ+γ1+µ4
+

ι42
γ2+µ4

)

S∗

2m23

(

ακ3
1

σ+γ1+µ3
+

ι3
1

γ2+µ3

)

S∗

2m24

(

ακ4
2

σ+γ1+µ4
+

ι4
2

γ2+µ4

)

S∗

3m33

(

ακ3
1

σ+γ1+µ3
+

ι3
1

γ2+µ3

)

S∗

3m34

(

ακ4
2

σ+γ1+µ4
+

ι4
2

γ2+µ4

)

S∗

4m43

(

ακ3
1

σ+γ1+µ3
+

ι31
γ2+µ3

)

S∗

4m44

(

ακ4
2

σ+γ1+µ4
+

ι42
γ2+µ4

)

S∗

5m53

(

ακ3
1

σ+γ1+µ3
+

ι3
1

γ2+µ3

)

S∗

5m54

(

ακ4
2

σ+γ1+µ4
+

ι4
2

γ2+µ4

)

S∗

1m15

(

ακ5
3

σ+γ1+µ5
+

ι5
3

γ2+µ5

)

0 0

S∗

2m25

(

ακ5
3

σ+γ1+µ5
+

ι53
γ2+µ5

)

0 0

S∗

3m35

(

ακ5
3

σ+γ1+µ5
+

ι5
3

γ2+µ5

)

0 0

S∗

4m45

(

ακ5
3

σ+γ1+µ5
+

ι5
3

γ2+µ5

)

0 0

S∗

5m55

(

ακ5
3

σ+γ1+µ5
+

ι53
γ2+µ5

)

0 0























(6.39)

The two right hand side sub-matrices of K2 represent the number of new infections

caused by acutely infected people who have moved up two age classes. A proportion, ηj+2
j ,

of acutely infected people in age class j become acutely infected age class j+2. They then

infect people in age class i at rate mi,j+2β and remain infectious for an average 1
γ2+µj+2

years, a proportion p become carriers, and a proportion 1 − p become acutely infected.

B2 =
pβ

N



















S∗

1
m13η3

1

γ2+µ3

S∗

1
m14η4

2

γ2+µ4

S∗

1
m15η5

3

γ2+µ5
0 0

S∗

2
m23η3

1

γ2+µ3

S∗

2
m24η4

2

γ2+µ4

S∗

2
m25η5

3

γ2+µ5
0 0

S∗

3m33η3
1

γ2+µ3

S∗

3m34η4
2

γ2+µ4

S∗

3m35η5
3

γ2+µ5
0 0

S∗

4
m43η3

1

γ2+µ3

S∗

4
m44η4

2

γ2+µ4

S∗

4
m45η5

3

γ2+µ5
0 0

S∗

5m53η3
1

γ2+µ3

S∗

5m54η4
2

γ2+µ4

S∗

5m55η5
3

γ2+µ5
0 0



















(6.40)
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and

D2 =
(1 − p)β

N



















S∗

1
m13η3

1

γ2+µ3

S∗

1
m14η4

2

γ2+µ4

S∗

1
m15η5

3

γ2+µ5
0 0

S∗

2m23η3
1

γ2+µ3

S∗

2m24η4
2

γ2+µ4

S∗

2m25η5
3

γ2+µ5
0 0

S∗

3
m33η3

1

γ2+µ3

S∗

3
m34η4

2

γ2+µ4

S∗

3
m35η5

3

γ2+µ5
0 0

S∗

4m43η3
1

γ2+µ3

S∗

4m44η4
2

γ2+µ4

S∗

4m45η5
3

γ2+µ5
0 0

S∗

5
m53η3

1

γ2+µ3

S∗

5
m54η4

2

γ2+µ4

S∗

5
m55η5

3

γ2+µ5
0 0



















(6.41)

We construct K3 and K4 in a similar manner.

K3 =

(

A3 B3

C3 D3

)

(6.42)

where:

A3 =
βp

N
×























S∗

1m14

(

ακ4
1

σ+γ1+µ4
+

ι4
1

γ2+µ4

)

S∗

1m14

(

ακ5
2

σ+γ1+µ5
+

ι5
2

γ2+µ5

)

0 0 0

S∗

2m24

(

ακ4
1

σ+γ1+µ4
+

ι41
γ2+µ4

)

S∗

2m25

(

ακ5
2

σ+γ1+µ5
+

ι52
γ2+µ5

)

0 0 0

S∗

3m34

(

ακ4
1

σ+γ1+µ4
+

ι4
1

γ2+µ4

)

S∗

3m35

(

ακ5
2

σ+γ1+µ5
+

ι5
2

γ2+µ5

)

0 0 0

S∗

4m44

(

ακ4
1

σ+γ1+µ4
+

ι41
γ2+µ4

)

S∗

4m45

(

ακ5
2

σ+γ1+µ5
+

ι52
γ2+µ5

)

0 0 0

S∗

5m54

(

ακ4
1

σ+γ1+µ4
+

ι4
1

γ2+µ4

)

S∗

5m55

(

ακ5
2

σ+γ1+µ5
+

ι5
2

γ2+µ5

)

0 0 0























(6.43)

C3 =
β(1 − p)

N
×























S∗

1m14

(

ακ4
1

σ+γ1+µ4
+

ι4
1

γ2+µ4

)

S∗

1m14

(

ακ5
2

σ+γ1+µ5
+

ι5
2

γ2+µ5

)

0 0 0

S∗

2m24

(

ακ4
1

σ+γ1+µ4
+

ι4
1

γ2+µ4

)

S∗

2m25

(

ακ5
2

σ+γ1+µ5
+

ι5
2

γ2+µ5

)

0 0 0

S∗

3m34

(

ακ4
1

σ+γ1+µ4
+

ι41
γ2+µ4

)

S∗

3m35

(

ακ5
2

σ+γ1+µ5
+

ι52
γ2+µ5

)

0 0 0

S∗

4m44

(

ακ4
1

σ+γ1+µ4
+

ι4
1

γ2+µ4

)

S∗

4m45

(

ακ5
2

σ+γ1+µ5
+

ι5
2

γ2+µ5

)

0 0 0

S∗

5m54

(

ακ4
1

σ+γ1+µ4
+

ι4
1

γ2+µ4

)

S∗

5m55

(

ακ5
2

σ+γ1+µ5
+

ι5
2

γ2+µ5

)

0 0 0























(6.44)

B3 =
pβ

N



















S∗

1
m14η4

1

γ2+µ4

S∗

1
m15η5

2

γ2+µ5
0 0 0

S∗

2m24η4
1

γ2+µ4

S∗

2m25η5
2

γ2+µ5
0 0 0

S∗

3
m34η4

1

γ2+µ4

S∗

3
m35η5

2

γ2+µ5
0 0 0

S∗

4
m44η4

1

γ2+µ4

S∗

4
m45η5

2

γ2+µ5
0 0 0

S∗

5m54η4
1

γ2+µ4

S∗

5m55η5
2

γ2+µ5
0 0 0



















(6.45)

D3 =
(1 − p)β

N



















S∗

1
m14η4

1

γ2+µ4

S∗

1
m15η5

2

γ2+µ5
0 0 0

S∗

2
m24η4

1

γ2+µ4

S∗

2
m25η5

2

γ2+µ5
0 0 0

S∗

3m34η4
1

γ2+µ4

S∗

3m35η5
2

γ2+µ5
0 0 0

S∗

4
m44η4

1

γ2+µ4

S∗

4
m45η5

2

γ2+µ5
0 0 0

S∗

5m54η4
1

γ2+µ4

S∗

5m55η5
2

γ2+µ5
0 0 0



















(6.46)
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Finally,

K4 =

(

A4 B4

C4 D4

)

(6.47)

where:

A4 =
βp

N























S∗

1m15

(

ακ5
1

σ+γ1+µ5
+

ι5
1

γ2+µ5

)

0 0 0 0

S∗

2m25

(

ακ5
1

σ+γ1+µ5
+

ι51
γ2+µ5

)

0 0 0 0

S∗

3m35

(

ακ5
1

σ+γ1+µ5
+

ι5
1

γ2+µ5

)

0 0 0 0

S∗

4m45

(

ακ5
1

σ+γ1+µ5
+

ι5
1

γ2+µ5

)

0 0 0 0

S∗

5m55

(

ακ5
1

σ+γ1+µ5
+

ι51
γ2+µ5

)

0 0 0 0























(6.48)

C4 =
β(1 − p)

N























S∗

1m15

(

ακ5
1

σ+γ1+µ5
+

ι51
γ2+µ5

)

0 0 0 0

S∗

2m25

(

ακ5
1

σ+γ1+µ5
+

ι5
1

γ2+µ5

)

0 0 0 0

S∗

3m35

(

ακ5
1

σ+γ1+µ5
+

ι5
1

γ2+µ5

)

0 0 0 0

S∗

4m45

(

ακ5
1

σ+γ1+µ5
+

ι51
γ2+µ5

)

0 0 0 0

S∗

5m55

(

ακ5
1

σ+γ1+µ5
+

ι5
1

γ2+µ5

)

0 0 0 0























(6.49)

B4 =
pβ

N



















S∗

1
m15η5

1

γ2+µ5
0 0 0 0

S∗

2m25η5
1

γ2+µ5
0 0 0 0

S∗

3
m35η5

1

γ2+µ5
0 0 0 0

S∗

4
m45η5

1

γ2+µ5
0 0 0 0

S∗

5m55η5
1

γ2+µ5
0 0 0 0



















(6.50)

D4 =
(1 − p)β

N



















S∗

1m15η5
1

γ2+µ5
0 0 0 0

S∗

2
m25η5

1

γ2+µ5
0 0 0 0

S∗

3
m35η5

1

γ2+µ5
0 0 0 0

S∗

4m45η5
1

γ2+µ5
0 0 0 0

S∗

5
m55η5

1

γ2+µ5
0 0 0 0



















(6.51)

We can then calculate the basic reproduction ratio by taking the largest eigenvalue

of our next generation matrix K = K1 + K2 + K3 + K4 when the entire population

is susceptible. We have shown numerically that the eigenvalues of the Jacobian at the

infection free steady state are all negative when R0 < 1, indicating that the trivial steady

state is stable, and then the Jacobian has a positive eigenvalue when R0 passes one meaning

the steady state changes stability, as shown in Figure 6.9.

Results

Solving Equations (6.12)–(6.13) numerically, using the parameter values shown in Table

6.2, we find the number of acutely infected people and carriers at any time t. To compare

this to the known data on the number of infections recorded, we need to calculate the
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Figure 6.9: The larger eigenvalues of the Jacobian plotted again the basic reproduction ratio

at the infection free steady state. The eigenvalues are all negative when R0 < 1

indicating that the steady state is stable, but then R0 increases above one, the trivial

steady state becomes unstable as we have a positive eigenvalue from the Jacobian

matrix.

incidence of infection (the number of new cases each year). The incidence of infection in

age group j is given by:

ij = (1 − p)λjSj + σCj (6.52)

Thus, the incidence of infection each year is found by averaging the above equation over

a one year time step. We can then compare this to the known data Kieft et al. (2001);

Martin et al. (2007) (shown in Figure 6.10).

For this model, we have used an inter-age group mixing weight of ǫ = 0.4 (in Equation

(6.15)), with activity levels comparable to those used in Roberts & Tobias (2000) for

modelling measles epidemics in New Zealand (a1 = 1, a2 = 5, a3 = 5, a4 = 2 and a5 = 1).

The model results do not show a good fit to the data, especially in the older age

classes where the model predicts much higher incidence of infection than actually seen,

and under-predicts the number of cases in the infant age group. This may be due to the

same parameter values being used for each age class - it is known that the probability

of carriage decreases with age, and the incidence of infection also decreases with age.

Therefore, to improve our model, we will introduce age dependent parameters.
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Figure 6.10: Yearly incidence of infection for the simple 5 age class model for meningococcal

disease, showing the incidence in each age group. To start the epidemic pattern,

one carrier in age class 4 was introduced into the population in 1960, with R0 = 1.15.

The stars are the recorded number of meningococcal infections in each year, and

the circles are the recorded number of meningococcal serogroup B infections.
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6.4.1 Five Age class model with age dependent parameters.

For this model we alter the parameters in each age class to allow for differences in the

probability of becoming a carrier and being acutely infected, yet still follow a framework

similar to the previous section. As we have seen in Chapter 4, for Hepatitis B virus the

proportion of those infected who go on to become carriers is dependent on age, so we

allow our parameter p to be different for each age class to see if that is also the case for

meningococcal disease. We also let the parameter σ be different for each age class as a

person’s age may effect how quickly they recover from the invasive infection. The system

of equations we solve is now:

group 1 (0–1 years old)























dS1

dt
= B − (λ1 + µ1)S1

dC1

dt
= p1λ1S1 − (σ1 + γ1 + µ1)C1

dI1
dt

= (1 − p1)λ1S1 + σ1C1 − (γ2 + µ1)I1

dR1

dt
= γ1C1 + γ2I1 − µ1R1

(6.53)

group 2 (1–10 years old)























dS2

dt
= µ1S1 − (λ2 + µ2)S2

dC2

dt
= µ1C1 + p2λ2S2 − (σ2 + γ1 + µ2)C2

dI2
dt

= µ1I1 + (1 − p2)λ2S2 + σ2C2 − (γ2 + µ2)I2

dR2

dt
= µ1R1 + γ1C2 + γ2I2 − µ2R2

(6.54)

group 3 (10–20 years old)























dS3

dt
= µ2S2 − (λ3 + µ3)S3

dC3

dt
= µ2C2 + p3λ3S3 − (σ3 + γ1 + µ3)C3

dI3
dt

= µ2I2 + (1 − p3)λ3S3 + σ3C3 − (γ2 + µ3)I3

dR3

dt
= µ2R2 + γ1C3 + γ2I3 − µ3R3

(6.55)

group 4 (20–40 years old)























dS4

dt
= µ3S3 − (λ4 + µ4)S4

dC4

dt
= µ3C3 + p4λ4S4 − (σ4 + γ1 + µ4)C4

dI4
dt

= µ3I3 + (1 − p4)λ4S4 + σ4C4 − (γ2 + µ4)I4

dR4

dt
= µ3R3 + γ1C4 + γ2I4 − µ4R4

(6.56)

group 5 (40–70 years old)























dS5

dt
= µ4S4 − (λ5 + µ5)S5

dC5

dt
= µ4C4 + p5λ5S5 − (σ5 + γ1 + µ5)C5

dI5
dt

= µ4I4 + (1 − p5)λ5S5 + σ5C5 − (γ2 + µ5)I5

dR5

dt
= µ4R4 + γ1C5 + γ2I5 − µ5R5

(6.57)

We construct the next generation matrix in the same manner as for the last model

(Equations (6.12)–(6.13)), but substitute for pi and σi where appropriate. We then solve

the system numerically, and find the incidence of infection so that we can compare it to

known data - the results are shown in Figure 6.11. For this we used: a1 = 0.8, a2 = 3,

a3 = 3.8, a4 = 2 and a5 = 1 with ǫ = 0.4; the infectivity of carriers relative to acutely
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infected was α = 0.8. We let the probability of becoming acutely infected from the carrier

state and the rate of being acutely infected decrease with age: p1 = 0.96, p2 = 0.9945,

p3 = 0.997, p4 = 0.999, and p5 = 0.9995; and σ1 = 10−6 per year, σ2 = σ3 = 10−7 per

year, σ4 = σ5 = 10−9 per year. Previously, in Equations (6.12)–(6.13), p = 0.99 and

σ = 0.0001 for all age groups. The age dependant parameters model yields a closer fit

to the data than the previous model, showing that there is a difference across the age

groups in the probability of being infected. However, the time spent in each of the carrier

compartments varies with age – which may not necessarily be true – we expect everyone

to have a similar time as a carrier and acutely infected. The maximum time spent as a

carrier is in age class 5, which is approximately half a year. Cartwright (1995); Trotter

et al. (2006); Coen et al. (2000) estimate the duration of carriage to be an average of 10

months.

We have not included vaccination in our model yet, but the model already predicts a

down turn in the total number of infections consistent with the data (on a total number of

infections level, rather than age class level). The vaccination campaign was only started in

2004 – after the recorded and predicted number of acute infections was already decreasing.

As there is little data available on the carriage rates of meningococcal disease or on how

infective a carrier is relative to an acutely infected individual, this allows us some freedom

in choosing our parameters to match the known data. However, it is possible for an

individual to be in the carrier state more than once in their lifetime, so we now explore

this possibility with models that include re-infection.

We have constructed a number of models so far that are based on the SCIR model,

but none of these have given us a good fit to the known data. In the next chapter we shall

explore different types of models to see if we can gain a better fit.
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Figure 6.11: Numerical solution to the simple 5 age class model for meningococcal disease with

age dependent proportions, showing the number of infected people in the population

in each age group. To start the epidemic pattern, one carrier in each of age class 2

and age class 4 were introduced into the population in 1976, with R0 = 1.23. The

stars in are the recorded number of meningococcal infections in each year, and the

circles are the recorded number of meningococcal serogroup B infections.
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Chapter 7

Alternative Models for

Meningococcal Disease in New

Zealand

In the previous chapter, we have seen that a basic SCIR-type model can give us a close

fit to the known yearly incidence of infection for meningococcal disease, but not what

would be called a good fit. In this chapter, we shall explore some alternative models to

see if we can gain a better fit to the data. By varying the structure of our model, we

can investigate which mechanisms of the infection process play an important role in the

spread of the infection.

7.1 Reinfection models, with no removed class.

We now include the possibility that a person can be in the carrier compartment multiple

times in their lifetime (Cartwright (1995); Trotter & Gay (2003); Tyski et al. (2001)), and

there is also a chance of developing the acute infection multiple times (although highly

unlikely, as we have not found any strong supporting literature about this fact). From the

susceptible age class, people can either become carriers or acutely infected; then from the

carrier class, a small proportion will become acutely infected, or they may return to the

susceptible class; from the acutely infected class, a person may return to the carrier class

or to the susceptible class. There are a constant number of births into the susceptible

population, and we allow the same death rate from each compartment. A schematic of

this is shown in Figure 7.1.
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Figure 7.1: Flow diagram to depict the movement between compartments – susceptibles can

become carriers or invasively infected; carriers can become susceptible again or

invasively infected; and invasively infected people can become carriers or susceptible

again. There is no immunity to infection, and a natural death rate from each

compartment.

The system of equations for our new model is:

dS

dt
= B − (λ + µ)S + γ3C + γ4I

dC

dt
= pλS + σ2I − (σ1 + γ3 + µ)C

dI

dt
= (1 − p)λS + σ1C − (γ4 + σ2 + µ)I (7.1)

with

dN

dt
= B − µN

λ =
β

N
(I + αC) (7.2)

To calculate the next generation matrix, K, we decompose it as a sum of matrices

K = K0 + K1 + K2 + ..., where each superscript represents the number of changes in

infectious type before infecting others. Initially, carriers infect others at rate αβ and

remain infectious for 1
µ+σ1+γ3

years. A proportion p of those infected will become carriers,

while the proportion (1−p) will go on to be acutely infected. Acutely infected people infect

others at rate β
N

and remain infectious for an average 1
µ+σ2+γ4

years. When calculating

the next generation matrix, we assume that the entire population is susceptible, so we

multiple this by N . Thus, the first component of our next generation matrix is:

K0 = β

(

αp
µ+σ1+γ3

p
µ+σ2+γ4

α(1−p)
µ+σ1+γ3

(1−p)
µ+σ2+γ4

)

(7.3)

A proportion of carriers become acutely infected σ1

µ+σ1+γ3
, and a proportion of acutely
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infected become carriers σ2

µ+σ2+γ4
, both of whom then go on to infect others:

K1 = β

(

σ1

µ+σ1+γ3

p
µ+σ2+γ4

σ2

µ+σ2+γ4

αp
µ+σ1+γ3

σ1

µ+σ1+γ3

(1−p)
µ+σ2+γ4

σ2

µ+σ2+γ4

α(1−p)
µ+σ1+γ3

)

=
β

(µ + σ1 + γ3)(µ + σ2 + γ4)

(

σ1p σ2αp

σ1(1 − p) σ2α(1 − p)

)

(7.4)

We now let there be two changes in infective class - a proportion of carriers go to be

acutely infected then back to carriers, and a proportion of acutely infected go to carriers

then back to acutely infected:

K2 = β

(

σ1

µ+σ1+γ3

σ2

µ+σ2+γ4

αp
µ+σ1+γ3

σ2

µ+σ2+γ4

σ1

µ+σ1+γ3

p
µ+σ2+γ4

σ1

µ+σ1+γ3

σ2

µ+σ2+γ4

α(1−p)
µ+σ1+γ3

σ2

µ+σ2+γ4

σ1

µ+σ1+γ3

(1−p)
µ+σ2+γ4

)

=
βσ1σ2

(µ + σ1 + γ3)(µ + σ2 + γ4)

(

αp
µ+σ1+γ3

p
µ+σ2+γ4

α(1−p)
µ+σ1+γ3

(1−p)
µ+σ2+γ4

)

=
σ1σ2

(µ + σ1 + γ3)(µ + σ2 + γ3)
K0 (7.5)

Progressing one stage further, our carriers become acutely infected and our acutely

infected become carriers again:

K3 = β

(

( σ1

µ+σ1+γ3
)2 σ2

µ+σ2+γ4

αp
µ+σ1+γ3

( σ2

µ+σ2+γ4
)2 σ1

µ+σ1+γ3

p
µ+σ2+γ4

( σ1

µ+σ1+γ3
)2 σ2

µ+σ2+γ4

α(1−p)
µ+σ1+γ3

( σ2

µ+σ2+γ4
)2 σ1

µ+σ1+γ3

(1−p)
µ+σ2+γ4

)

=
βσ1σ2

(µ + σ1 + γ3)2(µ + σ2 + γ4)2

(

σ1p ασ2p

σ1(1 − p) ασ2(1 − p)

)

=
σ1σ2

(µ + σ1 + γ3)(µ + σ2 + γ4)
K1 (7.6)

From here we can see a pattern emerging, and it is easy to demonstrate:

K4 =
σ2

1σ
2
2

(µ + σ1 + γ3)2(µ + σ2 + γ4)2
K0

K5 =
σ2

1σ
2
2

(µ + σ1 + γ3)2(µ + σ2 + γ4)2
K1

K6 =
σ3

1σ
3
2

(µ + σ1 + γ3)3(µ + σ2 + γ4)3
K0

K7 =
σ3

1σ
3
2

(µ + σ1 + γ3)3(µ + σ2 + γ4)3
K1 (7.7)
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Summing these terms we get a series representation for our next generation matrix:

K =K0 + K1 +
σ1σ2

(µ + σ1 + γ3)(µ + σ2 + γ4)
K0

+
σ1σ2

(µ + σ1 + γ3)(µ + σ2 + γ4)
K1

+
σ2

1σ
2
2

(µ + σ1 + γ3)2(µ + σ2 + γ4)2
K0

+
σ2

1σ
2
2

(µ + σ1 + γ3)2(µ + σ2 + γ4)2
K1...

=(K0 + K1)

[

1 +
σ1σ2

(µ + σ1 + γ3)(µ + σ2 + γ4)

+

(

σ1σ2

(µ + σ1 + γ3)(µ + σ2 + γ4)

)2

+ ...

]

(7.8)

The expression in the square brackets is a convergent geometric series, so our next

generation matrix is:

K =(K0 + K1)
(µ + σ1 + γ3)(µ + σ2 + γ4)

(µ + σ1 + γ3)(µ + σ2 + γ4) − σ1σ2

=
β

(µ + σ1 + γ3)(µ + σ2 + γ4) − σ1σ2
×

(

p(α(µ + σ2 + γ4) + σ1) p(ασ2 + (µ + σ1 + γ3))

(1 − p)(α(µ + σ2 + γ4) + σ1) (1 − p)(ασ2 + (µ + σ1 + γ3))

)

(7.9)

The Jacobian matrix for Equations (7.1) is:

J =







−(λ + µ) −βαS
N

+ γ3 −βS
N

+ γ4

pλ pαβS
N

− (γ3 + σ1 + µ) pβS
N

+ σ2

(1 − p)λ (1−p)αβS
N

+ σ1
(1−p)βS

N
− (γ4 + σ2 + µ)







We show numerically, Figure 7.2, that at the trivial steady state the Jacobian matrix

has only negative eigenvalues (showing that the disease free state in stable) when R0 < 1,

and when R0 > 1 a positive eigenvalue is found, so the disease free steady state becomes

unstable.

Solving the system of Equations (7.1) numerically in Matlab, and plotting the incidence

of acute infection with the known data (using the same method as in section 6.4), we see

from Figure 7.3 that this model does not produce a very good fit. By introducing only one

carrier in 1940, and having a very low value for the basic reproduction ratio (R0 = 1.16),

the number of people infected each year continues to climb until a very high endemic

steady state is reached. The average time spent in the carriage state was 0.76 of a year,

and in the acutely infected state was 0.1 of a year - which are realistic values. This model

may not be a good fit as it does not include demographics, so our next step is to extend

this model to our five age groups with age dependent probabilities of becoming acutely

infected.
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Figure 7.2: The largest eigenvalues of the Jacobian matrix versus R0 at the disease free steady

state. The Jacobian matrix has negative eigenvalues when R0 < 1 indicating that

the disease free steady state is stable, and when R0 > 1 the Jacobian matrix has a

positive eigenvalue indicating that the steady state is unstable.
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Figure 7.3: The yearly incidence of infection for the SCI reinfection model with the whole

population as one age class. The epidemic was seeded with one carrier in 1940,

and has R0 = 1.16.
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7.2 Five age class model with reinfection

We now split our population into five age groups and allow each age group to have an

S, C and I compartment. Within each age group, people can move between the S, C

and I compartments, but at the change of age group individuals can only move to the

corresponding compartment in the next age class (e.g. from S1 to S2). The probability

of becoming acutely infected is different for each age group, and we include the mixing

matrix used previously (Equation (6.15)). Our system of equations is:

group 1











dS1

dt
= B − (λ1 + µ1)S1 + γ3C1 + γ4I1

dC1

dt
= p1λ1S1 + σ2I1 − (σ1 + γ3 + µ1)C1

dI1
dt

= (1 − p1)λ1S1 + σ1C1 − (γ4 + σ2 + µ1)I1

(7.10)

groups 2–5











dSj

dt
= µj−1Sj−1 − (λj + µj)Sj + γ3Cj + γ4Ij

dCj

dt
= µj−1Cj−1 + pjλjSj + σ2Ij − (σ1 + γ3 + µj)Cj

dIj

dt
= µj−1Ij−1 + (1 − pj)λjSj + σ1Cj − (γ4 + σ2 + µj)Ij

(7.11)

where

λi =
β

N

5
∑

k=1

mjk(Ik + αCk) (7.12)

To calculate the next generation matrix, we first consider a set of differential equations

for the average amount of time spent in each of the infectious compartments (C̄i’s and

Īi’s):

dC̄j

dt
= σ2Īj − (γ3 + σ1 + µj)C̄j

dĪj

dt
= σ1C̄j − (γ4 + σ2 + µj)Īj (7.13)

for j = 1 . . . 5. We can re-write this as a linear system in C̄i and Īi such that:

dx

dt
= Ax, x(0) = x0 (7.14)

the solution to which is x(t) = eAtx0. We then calculate the expected time it takes

to move between compartments, so we need
´

∞

0 eAtx0dt for starting conditions in each

compartment. It can be shown that the eigenvalues of A are all negative, so A is

asymptotically stable, thus
´

∞

0 eAtx0dt = −A−1x0, (Bernstein, 2005).

To find the expected amount of time that an individual from C1 would take to get to

each of the other infective compartments, we simply calculate −A−1e1 (where e1 is the

1x10 vector with 1 in the first row and zeros everywhere else); the expected amount of

time that an individual from C2 would take to get to each of the other compartments is

−A−1e2, and so on for all the other compartments.

We let:

V = [−A−1e1,−A−1e2,−A−1e3, . . . ,−A−1e10] (7.15)

Thus V is a 10 × 10 matrix, that gives us the number of sojourns an individual starting

in any of the ten infectious compartments will take before reaching another infectious
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compartment. We let M2 be a matrix containing the mixing rates between age groups,

and the expected number of people each type of infectious person is going to create:

M2 =
β

N
×











































S1p1αm11 . . . S1p1αm51 S1p1m11 . . . S1p1m15

S2p2αm12 . . . S2p2αm52 S2p2m12 . . . S2p2m52

S3p3αm13 . . . S3p3αm53 S3p3m13 . . . S3p3m53

S4p4αm14 . . . S4p4αm54 S4p4m14 . . . S4p4m54

S5p5αm15 . . . S5p5αm55 S5p5m15 . . . S5p5m55

S1(1 − p1)αm11 . . . S1(1 − p1)αm51 S1(1 − p1)m11 . . . S1(1 − p1)m51

S2(1 − p2)αm12 . . . S2(1 − p2)αm52 S2(1 − p2)m12 . . . S2(1 − p2)m52

S3(1 − p3)αm13 . . . S3(1 − p3)αm53 S3(1 − p3)m13 . . . S3(1 − p3)m53

S4(1 − p4)αm14 . . . S4(1 − p4)αm54 S4(1 − p4)m14 . . . S4(1 − p4)m54

S5(1 − p5)αm15 . . . S5(1 − p5)αm55 S5(1 − p5)m15 . . . S5(1 − p5)m55











































(7.16)

By multiplying the two matrices M2 and V , we gain the next generation matrix, as this

gives us the average number of new infections an individual from each compartment in

every age group will make. The basic reproduction ratio is the largest eigenvalue of

K = M2V . We can calculate numerically that the eigenvalues of the Jacobian are all

negative when R0 < 1 and cross through zero when R0 = 1 at the disease free steady

state, as shown in Figure 7.4.
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Figure 7.4: The top five eigenvalues of the Jacobian matrix plotted against the basic reproduction

ratio at the disease free steady state for the five age class re-infection model.
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Solving Equations (7.10)–(7.11) numerically and calculating the yearly incidence of

infection (using the same method as in section 6.4), we gain the results shown in Figure 7.5.

This simulation was seeded with one carrier in age class 4 in 1940 with a basic reproduction

ratio of 1.1. Even with the probability of becoming acutely infected depending on age,

and having non-homogeneous mixing between the age classes, this model still does not

yield a good fit to the known data - our model approaches an endemic steady state rather

than a peaked epidemic. As this model has not shown any relation to the data, we will

not expand it to any more age classes. One reason for this type of model not being a good

fit for meningococcal disease is that there is no time in which an individual in immune

to infection, so our next step is to re-introduce a removed class to allow people to have

immunity.
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Figure 7.5: The number of people infected each year for the SCI reinfection model with the

population split into age class. The epidemic was seeded with one carrier in age class

4 in 1940, and has R0 = 1.1. Parameters used: α = 0.8, p1 = 0.96, p2 = 0.9945,

p3 = 0.997, p4 = 0.999, p5 = 0.9995, σ1 = 10−5, σ2 = σ1/100, γ3 = 2, γ4 = 10;

mixing parameters a1 = 0.8, a2 = 3, a3 = 3.8, a4 = 2, a5 = 1 and ǫ = 0.4.



Model with reinfection and immunity for acutely infected individuals. 135

7.3 Model with reinfection and immunity for acutely

infected individuals.

We now consider a model where people can move back and forth between the carrier and

susceptible compartments, but from the acutely infected compartment they can become

immune to re-infection, as shown in Figure 7.6. From our previous model, we have let

σ2 = γ4 = 0 to stop people who have been acutely infected begin infected again. We

have done this as we have not found any documented cases of multiple infection with

meningococcal B virus in New Zealand.

Figure 7.6: A model that allows individuals to be carriers multiple times, and allows there to be

immunity to infection after being acutely infected.

Our system of equations is then:

dS

dt
= B − (λ + µ)S + γ3C

dC

dt
= pλS − (γ3 + σ1 + µ)C

dI

dt
= (1 − p)λS + σ1C − (γ2 + µ)I

dR

dt
= γ2I − µR (7.17)

where

λ =
β

N
(I + αC) (7.18)

The next generation matrix is relatively straightforward to calculate for this model:

Carriers remain infectious for an average 1
γ3+σ1+µ

years, and infect others at rate αβ.

A proportion of carriers, σ1

γ3+σ1+µ
, go on to become acutely infected, and infect others at

rate β. A proportion p of those infected go on to be carriers, and a proportion (1 − p) go

on to be acutely infected. Acutely infected people remain infectious for an average 1
γ2+µ
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years and infect others at rate β. So our next generation matrix is:

K =





βp
µ+σ1+γ3

(

α + σ1

γ2+µ

)

βp
γ2+µ

σ1

σ1+γ3+µ

(

1 + β(1−p)
γ2+µ

)

+ αβ(1−p)
γ2+µ

β(1−p)
γ2+µ





The Jacobian matrix is:

J =







−(λ + µ) −αβS
N

−βS
N

pλ pαβS
N

− (γ3 + σ1 + µ) pβS
N

(1 − p)λ αβ(1−p)S
N

+ σ1
(1−p)βS

N
− (γ2 + µ)







We have shown numerically that when the basic reproduction ratio is less than one,

the trivial steady is stable (as the Jacobian matrix has only negative eigenvalues). When

R0 > 1, the trivial steady state becomes unstable, as there exists a positive eigenvalue of

the Jacobian matrix.

Solving this numerically, the results can be seen in Figure 7.7. The parameters used

were: σ = 10−5 per year, γ2 = 20 per year, γ3 = 1.3 per year, α = 0.8, p = 0.995 and

β = 1.9. The birth rate was kept fixed at 64,460 births per year. Again, this model does

not yield a good fit to the data, as from introducing only one carrier in our population,

the number of infections increases and plateaus to a high endemic level.
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Figure 7.7: The yearly incidence of infection for the one age class model with reinfection possible

into the carrier class, and immunity after being acutely infected. One carrier was

introduced into the population in 1940, and the basic reproduction ratio was only

1.15.
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As the past two models have not given us a good fit to the data, we discard the

possibility of being able to be reinfected directly from the carrier class, and assume that

there must be some time of immunity after being a carrier.

7.4 Temporary Immunity Model

We now return to an SCIR model, but with immunity only being temporary - from the

removed compartment you may go back to the susceptible compartment. We consider the

population as a whole, and then split this down into eight age classes.

Looking at the population as a whole, the equations for this model are:

dS

dt
= B − (λ + µ)S + γ3R

dC

dt
= pλS − (σ1 + γ1 + µ)C

dI

dt
= (1 − p)λS + σ1C − (γ2 + µ)I

dR

dt
= γ1C + γ2I − (µ + γ3)R (7.19)

where

λ =
β

N
(I + αC) (7.20)

With the next generation matrix:

K =





βp
σ1+γ1+µ

(

α + σ1

γ2+µ

)

βp
γ2+µ

1
σ1+γ1+µ

(

σ1 + αβ(1 − p) + σ1β(1−p)
γ2+µ

)

β(1−p)
γ2+µ



 (7.21)

The Jacobian matrix is:

J =







−(λ + µ) −αβS
N

−βS
N

pλ pαβS
N

− (σ1 + γ1 + µ) pβS
N

(1 − p)λ (1−p)αβS
N

+ σ1
(1−p)βS

N
− (γ2 + µ)







We have shown numerically that the eigenvalues of the Jacobian matrix are negative

at the trivial steady state when R0 < 1, and then become positive as R0 increases above

one. Thus the trivial steady state is stable when R0 < 1 and becomes unstable when

R0 > 1.

Solving our equations numerically, and calculating the yearly incidence of infection,

the results show a good fit to the known data, as shown in Figure 7.8. The parameters

used for this solution are: R0 = 1.4, B = 64460, µ = 1/70, σ1 = 10−5, γ1 = 1.3, γ2 = 10,

γ3 = 0.09, α = 0.8 and p = 0.999

The vaccination campaign was initiated in 2004, so we are concerned with matching

the data for the years leading up to this. The yearly incidence of infection calculated from

the results of our model should be lower than the total number of meningococcal disease
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notification prior to 2001 as the recorded data was for all strains of meningococcal, not

just strain B (shown as stars on the figure). Ideally our model should follow the number

of strain B notifications (shown with a circle in Figure 7.8), or be a little above these to

take into account the cases that were of the epidemic strain but could not be identified.
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Figure 7.8: Numerical solution to the temporary immunity model for meningococcal disease,

showing the yearly incidence of infection in the population. To start the epidemic

pattern, one carrier was introduced into the population in 1975, with R0 = 1.4.

The stars are the recorded number of meningococcal infections in each year, and the

circles are the recorded number of meningococcal serogroup B infections.

This model has produced a reasonable fit to the data, especially the strain B specific

data between 2001–2004. Our model shows that the number of cases of infection were

already decreasing before the vaccination campaign was launched, but would not have

gone on to fall as low as the recorded number of infections with the effect of vaccination.
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7.4.1 Temporary Immunity Model with population demographics

As the model for the population as a whole produced good results, we extend this to split

our population into eight age classes to allow for different probabilities of developing the

acute infection and of carriage (we have chosen eight age classes this time so that the

results are easy to compare with known data, and the vaccination programme is easier to

implement in the model). Our system of equations is now:

group 1 (0–1 year old)























dS1

dt
= B(t) − (λ1 + µ1)S1 + γ3R1

dC1

dt
= p1λ1S1 − (σ1 + γ1 + µ1)C1

dI1
dt

= (1 − p1)λ1S1 + σ1C1 − (γ2 + µ1)I1

dR1

dt
= γ1C1 + γ2I1 − (γ3 + µ1)R1

(7.22)

group 2 (1–5 years old)























dS2

dt
= µ1S1 + −(λ2 + µ2)S2 + γ6R2

dC2

dt
= µ1C1 + p2λ2S2 − (σ2 + γ4 + µ2)C2

dI2
dt

= µ1I1 + (1 − p2)λ2S2 + σ2C2 − (γ5 + µ2)I2

dR2

dt
= µ1R1 + γ4C2 + γ5I2 − (γ6 + µ2)R2

(7.23)

group 3 (5–9 years old)























dS3

dt
= µ2S2 − (λ3 + µ3)S3 + γ9R3

dC3

dt
= µ2C2 + p3λ3S3 − (σ3 + γ7 + µ3)C3

dI3
dt

= µ2I2 + (1 − p3)λ3S3 + σ3C3 − (γ8 + µ3)I3

dR3

dt
= µ2R2 + γ7C3 + γ8I3 − (γ9 + µ3)R3

(7.24)

group 4 (9–12 years old)























dS4

dt
= µ3S3 − (λ4 + µ4)S4 + γ12R4

dC4

dt
= µ3C3 + p4λ4S4 − (σ4 + γ10 + µ4)C4

dI4
dt

= µ3I3 + (1 − p1)λ4S4 + σ4C4 − (γ11 + µ4)I4

dR4

dt
= µ3R3 + γ10C4 + γ11I4 − (γ12 + µ4)R4

(7.25)

group 5 (12–19 years old)























dS5

dt
= µ4S4 − (λ5 + µ5)S5 + γ15R5

dC5

dt
= µ4C4 + p5λ5S5 − (σ5 + γ13 + µ5)C5

dI5
dt

= µ4I4 + (1 − p5)λ5S5 + σ5C5 − (γ14 + µ5)I5

dR5

dt
= µ4R4 + γ13C5 + γ14I5 − (γ15 + µ5)R5

(7.26)

group 6 (19–25 years old)























dS6

dt
= µ5S5 − (λ6 + µ6)S6 + γ18R6

dC6

dt
= µ5C5 + p6λ6S6 − (σ6 + γ16 + µ6)C6

dI6
dt

= µ5I5 + (1 − p6)λ6S6 + σ6C6 − (γ17 + µ6)I6

dR6

dt
= µ5R5 + γ16C6 + γ17I1 − (γ18 + µ6)R6

(7.27)
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group 7 (25–39 years old)























dS7

dt
= µ6S6 − (λ7 + µ7)S7 + γ21R7

dC7

dt
= µ6C6 + p7λ7S7 − (σ7 + γ19 + µ7)C7

dI7
dt

= µ6I6 + (1 − p7)λ7S7 + σ7C7 − (γ20 + µ7)I7

dR7

dt
= µ6R6 + γ19C7 + γ20I7 − (γ21 + µ7)R7

(7.28)

group 8 (39–70 years old)























dS8

dt
= µ7S7 − (λ8 + µ8)S8 + γ24R8

dC8

dt
= µ7C7 + p8λ8S8 − (σ8 + γ22 + µ8)C8

dI8
dt

= µ7I7 + (1 − p8)λ8S8 + σ8C8 − (γ23 + µ8)I8

dR8

dt
= µ7R7 + γ22C8 + γ23I8 − (γ24 + µ8)R8

(7.29)

where

λi =
β

N

8
∑

k=1

mjk(Ik + αCk) (7.30)

We have used banded mixing rates and different weighting for inter-age class contacts

for adults and children. The highest activity levels are for age classes 2–6 (one to nineteen

years old), as they are most likely to take part in activities that would lead to the spread

of the infection, i.e. children putting objects in their mouths at pre-school or teenagers

sharing drink bottles. The mixing/contact matrix is:

M =

































a1 ǫ
√

a1a2 ǫ
√

a1a3 ǫ1
√

a1a4

ǫ1
√

a2a1 a2 ǫ1
√

a2a3 ǫ1
√

a2a4

ǫ1
√

a1a3 ǫ1
√

a2a3 a3 ǫ1
√

a3a4

ǫ1
√

a1a4 ǫ1
√

a4a2 ǫ1
√

a4a3 a4

ǫ1
√

a1a5 ǫ1
√

a2a5 ǫ1
√

a3a5 ǫ1
√

a4a5

ǫ1
√

a6a1 ǫ1
√

a6a2 ǫ1
√

a6a3 ǫ1
√

a6a4√
ǫ1ǫ2

√
a7a1

√
ǫ1ǫ2

√
a7a2

√
ǫ1ǫ2

√
a7a3

√
ǫ1ǫ2

√
a7a4√

ǫ1ǫ2
√

a8a1
√

ǫ1ǫ2
√

a8a2
√

ǫ1ǫ2
√

a8a3
√

ǫ1ǫ2
√

a8a4

ǫ1
√

a1a5 ǫ1
√

a1a6
√

ǫ1ǫ2
√

a1a7
√

ǫ1ǫ2
√

a1a8

ǫ1
√

a2a5
√

ǫ1ǫ2
√

a2a6
√

ǫ1ǫ2
√

a2a7
√

ǫ1ǫ2
√

a2a8

ǫ1
√

a3a5
√

ǫ1ǫ2
√

a3a6
√

ǫ1ǫ2
√

a3a7
√

ǫ1ǫ2
√

a3a8

ǫ1
√

a4a5
√

ǫ1ǫ2
√

a4a6
√

ǫ1ǫ2
√

a4a7
√

ǫ1ǫ2
√

a4a8

a5
√

ǫ1ǫ2
√

a5a6
√

ǫ1ǫ2
√

a5a7
√

ǫ1ǫ2
√

a5a8

ǫ1
√

a6a5 a6
√

ǫ1ǫ2
√

a6a7
√

ǫ1ǫ2
√

a6a8√
ǫ1ǫ2

√
a7a5 ǫ2

√
a7a6 a7 ǫ2

√
a7a8√

ǫ1ǫ2
√

a8a5 ǫ2
√

a8a6 ǫ2
√

a8a7 a8

































(7.31)

The mixing parameters used are: a1 = 1, a2 = 5, a3 = 6, a4 = 6, a5 = 5, a6 = 4,

a7 = 2, a8 = 1, ǫ1 = 0.7 and ǫ2 = 0.5.

To generate the next generation matrix, and hence the basic reproduction ratio, we use

the matrix method for solving the set of differential equations for the acutely infectious

and carrier compartments (as shown previously in section 7.3). The average times spent in
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each of the carrier and acutely infected compartments are given by the following equations:

dC̄1

dt
= −(γ1 + σ1 + µ1)C̄1

dC̄5

dt
= µ4C̄4 − (γ13 + σ5 + µ5)C̄5

dC̄2

dt
= µ1C̄1 − (γ4 + σ2 + µ2)C̄2

dC̄6

dt
= µ5C̄5 − (γ16 + σ6 + µ6)C̄6

dC̄3

dt
= µ2C̄2 − (γ7 + σ3 + µ3)C̄3

dC̄7

dt
= µ6C̄6 − (γ19 + σ7 + µ7)C̄7

dC̄4

dt
= µ3C̄3 − (γ10 + σ4 + µ4)C̄4

dC̄8

dt
= µ7C̄7 − (γ22 + σ8 + µ8)C̄8

dĪ1
dt

= σ1C̄1 − (γ2 + µ1)Ī1
dĪ5
dt

= µ4Ī4 + σ5C̄5 − (γ14 + µ5)Ī5

dĪ2
dt

= µ1Ī1 + σ2C2 − (γ5 + µ2)Ī2
dĪ6
dt

= µ5Ī5 + σ6C̄6 − (γ17 + µ6)Ī6

dĪ3
dt

= µ2Ī2 + σ3C3 − (γ8 + µ3)Ī3
dĪ7
dt

= µ6Ī6 + σ7C̄7 − (γ20 + µ7)Ī7

dĪ4
dt

= µ3Ī3 + σ4C4 − (γ11 + µ4)Ī4
dĪ8
dt

= µ7Ī7 + σ8C̄8 − (γ23 + µ8)Ī8

We can re-write this as a linear system in Ci and Ii such that: dx
dt

= Ax with x(0) =

x0, where x is a vector representing each of the infectious classes. We can show that

the matrix A is asymptotically stable, so we can integrate the solution to the matrix

differential equation to give −A−1x0. In the same way as in section (7.2) we generate

the mixing/infectiousness matrix (M2) (but using the mixing rates given above), and the

matrix V containing the number of sojourns one person from each of the carrier/acutely

infected compartments spends in all the other infectious compartments (the columns are

generated from −A−1ei), giving us our next generation matrix K = M2V . We have

verified numerically that the eigenvalues of the Jacobian matrix are all negative when the

largest eigenvalue of the next generation matrix (R0) is less than one, and the Jacobian

matrix eigenvalues only become positive when R0 passes unity.

We solve Equations (7.22)– (7.29) numerically in Matlab, using the parameters shown

in Tables 7.1– 7.2. The birth rate was taken from recorded data (Statistics New Zealand,

2004), but letting B(t) remain at 2007 numbers (64044) for subsequent years. From these

numerical solutions, we calculate the incidence of infection in each age group to gain the

results shown in Figures 7.9, 7.10 and 7.11. The values we use for each of the pi parameters

are all close to one, but the solution is very sensitive to changes in these parameters and

it is the ones shown in Table 7.2 that gave us the best fit to the data. The parameters σi

are close to zero, if we set these all to zero (hence stopping carriers from becoming acutely

infected) the numerical results are not very different, but we have included it for a sense

of completeness.

Our model slightly overestimates the yearly incidence of infection prior to 2000 (shown

in Figure 7.10), but shows a good fit for the pre-vaccination data there after (2000–2004).

The available data for the epidemic strain of meningococcal does not extend to the age

class level (only total population), so when looking at our age class results (Figures 7.9)

we can only compare our model to the reported number of all strains of meningococcal

prior to 2001 and then the epidemic strain from 2001 until vaccination started (in 2004).

Our aim is to have our model produce incidence numbers lower than the pre-2001 data,

but as close as possible to the post 2001 data.
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The parameters that we have used in our model give an average time of approximately

5.4 months spent in the carrier compartment (5.52 months for age classes 1–3, 5.4 months

for age classes 4–6 and 5.28 months for age classes 7 and 8). Other estimates used have

been as high as 13.3 months (Coen et al., 2000). The expected number of days in the

acutely infected compartment ranged from 2.59–3.61 (3.61 for age class 1, 3.65 for age

class 2, 2.73 for age classes 3–6 and 2.59 for age classes 7 and 8).

We have a basic reproduction ratio of 1.27 for our model, we can also calculate the

reproduction ratio at time t as the epidemic progresses, Rt. As the birth rate is changing

over time, and the infection is never completely eliminated from the population, Rt will

never rise to the initial value, R0. Over time, the peaks in incidence rate and Rt decrease,

and a steady state is reached where the disease is present and Rt is just above unity.

Figure 7.12 shows the change in Rt as the epidemic progresses.

Death due to infection has not be included in this model, as there is a very low (3%)

probability of death from the infection. We have performed the numerical solutions to the

equations with this death rate included, and have not seen a noticible difference in the

results, and so have not been included in this text.

From this model we can see that without vaccination the model predicts another

epidemic with a peak of 219 cases of infection in 2034. However, the introduction of

vaccination has already shown a decrease in the recorded incidence of infection with which

our model does not coincide, so our next step is to include the affects of the vaccination

campaign.



Temporary Immunity Model 143

Parameter Description Value

µ1 rate at which age class 1 people move to age class 2 1 per year

µ2 rate at which age class 2 people move to age class 3 1/4 per year

µ3 rate at which age class 3 people move to age class 4 1/4 per year

µ4 rate at which age class 4 people move to age class 5 1/3 per year

µ5 rate at which age class 5 people move to age class 6 1/7 per year

µ6 rate at which age class 6 people move to age class 7 1/6 per year

µ7 rate at which age class 7 people move to age class 8 1/14 per year

µ8 rate that age class 8 are removed from our system 1/31 per year

σ1 rate that carriers age class 1 become acutely infected 1 × 10−6 per year

σ2 rate that carriers age class 2 become acutely infected 2 × 10−6 per year

σ3 rate that carriers age class 3 become acutely infected 2 × 10−6 per year

σ4 rate that carriers age class 4 become acutely infected 2 × 10−7 per year

σ5 rate that carriers age class 5 become acutely infected 2 × 10−7 per year

σ6 rate that carriers age class 6 become acutely infected 2 × 10−8 per year

σ7 rate that carriers age class 7 become acutely infected 2 × 10−9 per year

σ8 rate that carriers age class 8 become acutely infected 2 × 10−9 per year

p1 proportion of infected age class 1 who go onto be carriers 0.955

p2 proportion of infected age class 2 who go onto be carriers 0.99

p3 proportion of infected age class 3 who go onto be carriers 0.996

p4 proportion of infected age class 4 who go onto be carriers 0.995

p5 proportion of infected age class 5 who go onto be carriers 0.997

p6 proportion of infected age class 6 who go onto be carriers 0.997

p7 proportion of infected age class 7 who go onto be carriers 0.9992

p8 proportion of infected age class 8 who go onto be carriers 0.9992

Table 7.1: Description of parameters used in the eight age class model for the death rate,

proportion of those infected that become carriers, and the rate for carriers becoming

invasively infected for all the age classes.
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Figure 7.9: Numerical solution of the eight age class model with each age class shown individually.

One carrier was introduced in age class five in 1974 to start the epidemic. Parameter

values used are shown in Tables 7.1–7.2 and R0 = 1.27.
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Figure 7.10: Numerical solution of the eight age class model for the years 1980–2120, with the

total number of infections shown each year. One carrier introduced in age class five

in 1974 to start the epidemic. Parameter values used are shown in Tables 7.1–7.2

and R0 = 1.27.
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Figure 7.11: Numerical solution of the eight age class model for the years 1980–2020, with the

total number of infections shown each year. One carrier introduced in age class five

in 1974 to start the epidemic. Parameter values used are shown in Tables 7.1–7.2

and R0 = 1.27.
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Figure 7.12: The effective reproduction ratio during the course of the epidemic for the eight age

class model with no vaccination.
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Parameter Description Value

γ1 rate at which carriers become removed 1.1739 per year

γ2 rate at which acutely infected become removed 100 per year

γ3 rate at which removed become susceptible 0.05 per year

γ4 rate at which carriers become removed 1.9239 per year

γ5 rate at which acutely infected become removed 100 per year

γ6 rate at which removed become susceptible 0.00425 per year

γ7 rate at which carriers become removed 1.9239 per year

γ8 rate at which acutely infected become removed 133.33 per year

γ9 rate at which removed become susceptible 0.00283 per year

γ10 rate at which carriers become removed 1.8889 per year

γ11 rate at which acutely infected become removed 133.33 per year

γ12 rate at which removed become susceptible 0.00283 per year

γ13 rate at which carriers become removed 2.0796 per year

γ14 rate at which acutely infected become removed 133.33 per year

γ15 rate at which removed become susceptible 0.005 per year

γ16 rate at which carriers become removed 2.0556 per year

γ17 rate at which acutely infected become removed 133.33 per year

γ18 rate at which removed become susceptible 0.005 per year

γ19 rate at which carriers become removed 2.2013 per year

γ20 rate at which acutely infected become removed 140 per year

γ21 rate at which removed become susceptible 0.005 per year

γ22 rate at which carriers become removed 2.2405 per year

γ23 rate at which acutely infected become removed 140 per year

γ24 rate at which removed become susceptible 0.00825 per year

Table 7.2: Description of parameters used in the eight age class model for the rates at which

carriers and acutely infected individuals become removed, and removed individuals

become susceptible again, for all age classes.
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7.4.2 Temporary immunity model with demographics and vaccination.

We now add vaccination to our previous model by letting a proportion of each susceptible

age class that is eligible for vaccination (under 20 year olds) move to the removed class. As

the protection from vaccination is known to wane over time (Lennon, 2008), we incorporate

this into our model with the movement of individuals from the removed class back to the

susceptible class. We also include seasonal forcing, as disease incidence is notably higher

in the winter/spring months (Martin et al., 2007). Our system of equations is now:

group 1 (0–1 year old)























dS1

dt
= (1 − P0(t))B(t) − (λ1 + µ1)S1 + γ3R1

dC1

dt
= p1λ1S1 − (σ1 + γ1 + µ1)C1

dI1
dt

= (1 − p1)λ1S1 + σ1C1 − (γ2 + µ1)I1

dR1

dt
= BP0(t)γ1C1 + γ2I1 − (γ3 + µ1)R1

(7.32)

group 2 (1–5 years old)























dS2

dt
= µ1S1(1 − P1(t)) + −(λ2 + µ2)S2 + γ6R2

dC2

dt
= µ1C1 + p2λ2S2 − (σ2 + γ4 + µ2)C2

dI2
dt

= µ1I1 + (1 − p2)λ2S2 + σ2C2 − (γ5 + µ2)I2

dR2

dt
= µ1(R1 + S1P1(t)) + γ4C2 + γ5I2 − (γ6 + µ2)R2

(7.33)

group 3 (5–9 years old)























dS3

dt
= µ2S2(1 − P2(t)) − (λ3 + µ3)S3 + γ9R3

dC3

dt
= µ2C2 + p3λ3S3 − (σ3 + γ7 + µ3)C3

dI3
dt

= µ2I2 + (1 − p3)λ3S3 + σ3C3 − (γ8 + µ3)I3

dR3

dt
= µ2(R2 + S2P2(t)) + γ7C3 + γ8I3 − (γ9 + µ3)R3

(7.34)

group 4 (9–12 years old)























dS4

dt
= µ3S3(1 − P3(t)) − (λ4 + µ4)S4 + γ12R4

dC4

dt
= µ3C3 + p4λ4S4 − (σ4 + γ10 + µ4)C4

dI4
dt

= µ3I3 + (1 − p1)λ4S4 + σ4C4 − (γ11 + µ4)I4

dR4

dt
= µ3(R3 + S3P3(t)) + γ10C4 + γ11I4 − (γ12 + µ4)R4

(7.35)

group 5 (12–19 years old)























dS5

dt
= µ4S4(1 − P4(t)) − (λ5 + µ5)S5 + γ15R5

dC5

dt
= µ4C4 + p5λ5S5 − (σ5 + γ13 + µ5)C5

dI5
dt

= µ4I4 + (1 − p5)λ5S5 + σ5C5 − (γ14 + µ5)I5

dR5

dt
= µ4(R4 + S4P4(t)) + γ13C5 + γ14I5 − (γ15 + µ5)R5

(7.36)
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group 6 (19–25 years old)























dS6

dt
= µ5S5(1 − P5(t)) − (λ6 + µ6)S6 + γ18R6

dC6

dt
= µ5C5 + p6λ6S6 − (σ6 + γ16 + µ6)C6

dI6
dt

= µ5I5 + (1 − p6)λ6S6 + σ6C6 − (γ17 + µ6)I6

dR6

dt
= µ5(R5 + S5P5(t)) + γ16C6 + γ17I1 − (γ18 + µ6)R6

(7.37)

group 7 (25–39 years old)























dS7

dt
= µ6S6 − (λ7 + µ7)S7 + γ21R7

dC7

dt
= µ6C6 + p7λ7S7 − (σ7 + γ19 + µ7)C7

dI7
dt

= µ6I6 + (1 − p7)λ7S7 + σ7C7 − (γ20 + µ7)I7

dR7

dt
= µ6R6 + γ19C7 + γ20I7 − (γ21 + µ7)R7

(7.38)

group 8 (39–70 years old)























dS8

dt
= µ7S7 − (λ8 + µ8)S8 + γ24R8

dC8

dt
= µ7C7 + p8λ8S8 − (σ8 + γ22 + µ8)C8

dI8
dt

= µ7I7 + (1 − p8)λ8S8 + σ8C8 − (γ23 + µ8)I8

dR8

dt
= µ7R7 + γ22C8 + γ23I8 − (γ24 + µ8)R8

(7.39)

where

λi = ω(t)
β

N

8
∑

k=1

mjk(Ik + αCk) (7.40)

ω(t) =

{

(1 + δ)/(2δ(τ2 − τ1) + 1 − δ), if τ1 < τ < τ2

(1 − δ)/(2δ(τ2 − τ1) + 1 − δ), otherwise
(7.41)

where τ is the decimal part of t, and τ1 is set to be the 1st July (0.5) and τ2 is the first

of September (0.67). So there is a lower transmission in the summer months than in the

winter months. The mean value of ω is one, and for our numerical solutions we have used

δ = 0.4. This is the same seasonal forcing as used for modelling measles in New Zealand

by Roberts & Tobias (2000).

The vaccination coverage rates are know from the National Immunisation Register,

and we have used the coverage levels given in immunisation evaluation for the Ministry

of Health (CBG Health Research Ltd, 2006). The effectiveness of vaccination was then

varied to give our model the best fit to the known data. Vaccination was started in July

2004, and ended in June 2006, and we have assumed that all three doses are needed to

give immunity.

P0 =

{

0.836 × 0.73, if 2004.4137 ≤ t < 2005.4137

0.47 × 0.73, if 2005.4137 ≤ t < 2006.4137

P1 =

{

0.836 × 0.73, if 2004.4137 ≤ t < 2005.4137

0.82 × 0.73, if 2005.4137 ≤ t < 2006.4137
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P2 =

{

0.834 × 0.73, if 2004.4137 ≤ t < 2005.4137

0.86 × 0.73, if 2005.4137 ≤ t < 2006.4137

P3 =

{

0.834 × 0.73, if 2004.4137 ≤ t < 2005.4137

0.86 × 0.73, if 2005.4137 ≤ t < 2006.4137

P4 =

{

0.834 × 0.73, if 2004.4137 ≤ t < 2005.4137

0.86 × 0.73, if 2005.4137 ≤ t < 2006.4137

P5 =

{

0.337 × 0.73, if 2004.4137 ≤ t < 2005.4137

0.54 × 0.73, if 2005.4137 ≤ t < 2006.4137
(7.42)

The decimal parts of the time span numbers represents the 1st June each year. The 0.73

is the assumed efficacy of the vaccine, which is slightly lower than the estimated 80%

efficacy given in Sexton et al. (2004). The coverage levels were taken from (CBG Health

Research Ltd, 2006).

Solving the system of equations numerically and calculating the incidence of infection

we can then compare our model to the recorded incidence of infection and the results

from our previous model without vaccination, as shown in Figure 7.13–7.15. We can see

that the model with vaccination shows a much better fit than our previous model to the

data after vaccination was introduced, with our model passing through all the data points

from 2001 when we look at the total incidence of infection. Figure 7.15 shows more of

the long term trends of this epidemic - with the introduction of vaccination for two years

the immediate incidence of infection was decreased well below what would have happened

without vaccination. However, the model now predicts another epidemic, peaking with

324 cases in 2043, rather than a smaller peak (219 cases in 2034) if there had been no

vaccination. The long term trend is for the incidence rate to settle to approximately 115

cases per year.

We can also look at some monthly data, as shown in Figure 7.16, where the solid

line represents the monthly incidence in all age groups given from our model, and the

dashed line with the stars is the monthly incidence of all strains of meningococcal disease

(from literature). The seasonality in incidence of infection is not echoed in the number of

carriers present in the population. As the data is for all strains of meningococcal disease,

we want our model results to lie below these levels – they fail on this account in only three

months over the six year period that the data are available. The fluctuations in incidence

do not show on the graphs for yearly incidence, but it is interesting to see that there is a

seasonality in the data.

We can also calculate the effect that vaccination has had on the effective reproduction

ratio at time t, which we shall call Rtv, shown in Figure 7.17. Under vaccination, Rtv

drops much lower than the reproduction ratio without vaccination, Rt, as expected. Yet,
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in 2026 when Rt has reached its maximum, we see that Rtv is still increasing and reaches

its peak in 2035. We see that for both cases (with and without the two year vaccination

campaign), neither of the ratios go back to their initial level as the birth rate is changing

over time, and the population is never fully susceptible to the infection again. As a result

there is always some infection present.

Looking at how both Rt and Rtv change in relation to the incidence of infection, shown

in Figure 7.18, we see that both ratios begin to decrease just prior to the epidemic peaks.
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Figure 7.13: Numerical solution of the eight age class model with each age class with the current

vaccination scheme shown individually. One carrier was introduced in age class

five in 1974 to start the epidemic, and R0 = 1.27. The dashed lines show the

epidemic progress without vaccination, and the solid lines show the incidence when

vaccination is included from 2004–2006.
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Figure 7.14: Numerical solution of the eight age class model from 1980–2020, with the total

number of infections shown each year when vaccination is included (solid line). The

dashed line is the incidence with no vaccination. One carrier introduced in age class

five in 1974 to start the epidemic, and R0 = 1.27.
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Figure 7.15: Numerical solution of the eight age class model from 1980–2120, with the total

number of infections shown each year when vaccination is included (solid line). The

dashed line is the incidence with no vaccination. One carrier introduced in age class

five in 1974 to start the epidemic, and R0 = 1.27.
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Figure 7.16: The monthly incidence of infection for the total population. The solid line is the

model results, where the dashed line with the star represents the number of reported

meningococcal disease cases (all strains).
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Figure 7.17: The dashed line is the effective reproduction ratio, Rt, and the solid line is the

effective reproduction ratio under vaccination, Rtv. Initially, these are both equal

to the basic reproduction ratio, R0 = 1.27.
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Figure 7.18: In both figures the solid line represents the incidence of infection and relates to

the left hand scale, and the dashed line represents the effective reproduction ratio

which relates to the right scale. Figure 7.18(a) shows the epidemic progress in the

absence of vaccination, and Figure 7.18(b) shows the epidemic progress with the

two years of vaccination included.
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The effect of vaccination on the number of carriers.

From the solutions to Equations (7.32)–(7.39) we can calculate the yearly incidence of

carriage in each class in a similar manner to calculating the yearly incidence of infection.

The results of this are shown in Figures 7.19 and 7.20. Figure 7.19 shows the total incidence

of carriage in the population. This is very similar in shape to the incidence of infection

curve. As we saw for each of the age groups, the introduction of vaccination decreases the

incidence of carriage initially, but it will then rise to a higher peak than would have been

seen without vaccination. From Figure 7.20, we note that age class eight (39–70 years

old) has the highest incidence, but as this is our largest age group that is not surprising.

It can also be seen that the introduction of vaccination has decreased the incidence of

carriage below what would have happened with no intervention, with the effect being seen

immediately.

Figure 7.21 shows the total number of carriers in our population at any given time. The

number of carriers is affected by the seasonality of infection, whereas the yearly incidence

is not. From both of these figures (the yearly incidence and number of carriers), the long

term trends for the vaccination and non-vaccination model have a similar result of the

incidence/number settling to a steady state.
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Figure 7.19: Numerical solution for the total incidence of carriage in the eight age class model

with (solid line) and without (dashed line) the current vaccination scheme. One

carrier was introduced in age class five in 1974 to start the epidemic, and R0 = 1.27.
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Figure 7.20: Numerical solution for the incidence of carriage in the eight age class model with

each age class with the current vaccination scheme shown individually. One carrier

was introduced in age class five in 1974 to start the epidemic, and R0 = 1.27. The

dashed lines show the epidemic progress without vaccination, and the solid lines

show the incidence when vaccination is included from 2004–2006.
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Figure 7.21: Numerical solution for the total number of carriers in the population for the

eight age class model, with (dark line) and without (lighter grey line) the current

vaccination scheme. Both lines zigzag within the year due to the seasonality of

infection. One carrier was introduced in age class five in 1974 to start the epidemic,

and R0 = 1.27.
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7.4.3 Exploring different vaccination schemes

Using our model from the previous section, we can now explore the effects that other

possible vaccination schemes would have had on the epidemic. We shall consider thirteen

different schemes, all implemented over the same two year period using the coverage rates

and effectiveness for the vaccination programme that was implemented. These schemes

are summarised in Table 7.3.

Scheme Symbol Conditions

NV No vaccination

CV The current vaccination scheme of all under 20 year olds

V0 Only vaccinating at birth (six weeks old)

V1 Only vaccinating at one year old

V5 Only vaccinating at five years old

V9 Only vaccinating at nine years old

V12 Only vaccinating at 12 years old

V0,1 Vaccinating at birth and at one year old

V1,5 Vaccinating at one year old and five years old

V5,9 Vaccinating at five and nine years old

V9,12 Vaccinating at nine and twelve years old

V0,1,5 Vaccinating at birth, one year and five years old

V0,1,5,9 Vaccinating at birth, one year, five years and nine years old

V1,5,9 Vaccinating at one year, five years and nine years old

V0,1,5,9,12 Vaccinating at birth, one year, five years, nine years, and twelve years old.

Table 7.3: The vaccination schemes that we used to explore the effect of vaccination on the

incidence of infection and time until the next epidemic.

To compare the different schemes, we look at the lowest incidence of infection after

the vaccination campaign (after 2006), and then at the highest incidence of infection for

the next peak in the epidemic and when both of these occur. We calculated these values

by altering our Pi values in Equations (7.32)–(7.39). The results are shown in Table 7.4.

The vaccination schemes where only one age group is vaccinated (V0, V1, V5, V9 and V12)

do not have as great an effect as the ones where multiple age groups are vaccinated, yet

they still bring the incidence of infection between epidemics significantly lower than with

no vaccination. Vaccinating the first three ages groups – that is vaccinating at 6 weeks,

1 year and 5 years old – has the largest effect on the incidence of infection, as shown

by vaccination schemes V0,1,5, V0,1,5,9, V1,5,9 and V0,5,9. Our last vaccination scheme

(vaccinating everyone but the nineteen year olds) produced similar results to the campaign

that was implemented, with the lowest number of cases after vaccination reaching 2.6

(compared to 2.3 with the current scheme), and the next epidemic peak occurring in 2043

with 355.2 cases (compared to a peak in the same year of 360.3 cases). The vaccination
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scheme with only vaccinating those under twelve years old (V0,1,5,9) also produced fairly

low numbers, with the incidence dropping to 3.8 cases in 2018 then peaking again in 2042

with 345.6 cases. The vaccination schemes that only cover two age classes (V0,1, V1,5, V5,9

and V9,12) do not have as great an impact on the incidence as the schemes which cover

more than two groups, however, with the two age group schemes the most improvement

is seen from vaccination at one year and five years old.

Scheme Symbol Lowest annual incidence after Next peak incidence

2006 vaccination and year and year

NV 43, 2015 219, 2034

CV 3, 2018 361, 2043

V0 23, 2016 287, 2036

V1 20, 2017 269, 2037

V5 23, 2015 260, 2035

V9 28, 2016 247, 2035

V12 31, 2016 241, 2035

V0,1 13, 2017 293, 2038

V1,5 11, 2017 301, 2039

V5,9 15, 2016 286, 2037

V9,12 21, 2016 266, 2036

V0,1,5 7, 2018 326, 2040

V0,1,5,9 4, 2018 346, 2042

V1,5,9 7, 2018 326, 2040

V0,1,5,9,12 3, 2018 356, 2043

Table 7.4: The results from the vaccination schemes specified in Table 7.3 – implemented using

the same two year period for vaccination and vaccine effectiveness as in our previous

model.

None of the vaccination schemes prevented a future epidemic, but they all altered the

severity and timing of it. With the current vaccination scheme, our model predicts a

future epidemic peaking in 2043 with 361 cases (compared to a peak in 2034 with 220

cases with no vaccination). The peak number of cases for a future epidemic increases

as the number of cases after vaccination decreases. So the more effective a vaccination

campaign is, the larger and sooner the future epidemic will be. The vaccination scheme

V0,1,5,9,12 that vaccinated at birth, one year, 5 years, 9 years and 12 years old gave us a

low of 3 cases in 2018 and a peak of 356 cases in 2043 – which is comparable to the current

scheme. This scheme would probably have been recommended, as it does not require the

vaccination of teenagers who may have already left school and are therefore a significant

coverage is harder to achieve.

As future epidemics are not eliminated by a two year vaccination campaign, vaccination

is most likely going to have to be repeated. As launching a nation-wide vaccination



Discussion 161

campaign is expensive and difficult, it would only be done when deemed necessary. The

current vaccine had to be designed specifically for the New Zealand epidemic strain, which

is what caused the delay in implementing the vaccination campaign, but it is now ready

for future epidemics. Martin et al. (2007) deems an epidemic of meningococcal disease

to be more than 50 cases of infection per year. If we wait for there to be 50 cases of

infection (year 2035) before implementing a similar vaccination scheme (using the coverage

levels and effectiveness from the previous section), we obtain the results shown in Figure

7.22. With a two year vaccination campaign, the immediate epidemic is avoided, but the

incidence rate drops below fifty per year until 2051, when the same vaccination scheme

could be implement to avoid the epidemic. As this is a new disease to New Zealand, the

steady state has not yet been reached, so there will be fluctuating epidemics – yet these

can be combated by vaccination.

1960 1980 2000 2020 2040 2060 2080 2100 2120 2140
0

50

100

150

200

250

300

350

400

450

Year

In
ci

de
nc

e

Figure 7.22: The solid line shows the model results for the eight age class meningococcal model

with the vaccination included from 2004–2006 and then again in 2035–2037 at the

same coverage rates and effectiveness. The dashed line shows the incidence of

infection if there were no vaccination.

7.5 Discussion

We have presented various models for the incidence of infection of meningococcal disease

in New Zealand, with the closest results to known data given by an SCIR model with

feedback from the removed class to the susceptible class. Due to the nature of the disease,

the models had to incorporate some form of demographics, with the younger age classes

having a higher probability of being acutely infected. The alternative models presented in

this chapter were included and motivated by the lack of fit to the know incidence numbers

from our simple SCIR model in the previous chapter. As there are some unknown aspects

to the spread of meningococcal disease (such as the infectiousness of carriers compared to
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acutely infected individuals, and if a person is immune to reinfection for a limited amount

of time), the alternative models presented in this chapter allowed us to explore different

possibilities for the framework of the infection structure.

The reinfection models with no removed class, with and without population

demographics, produced results where the incidence of infection increased steadily until

an endemic steady state was reached. We think the main cause of this was the constant

source of infection in the population, as there was no chance for immunity to be achieved

thus allowing everyone to be infected multiple times. With the lack of immunity, there

will always be infection in the population and we can not expect an epidemic to decline.

Our third model allowed there to be immunity for only those who had suffered from

the acute form of infection. As the model showed a poor fit to the known data, we only

looked at this model for the non-structured population. The fit to the data was poor,

as again we had a large part of the population who were able to continuously spread the

infection – as those who carried the infection could be re-infected multiple times, with

little or no time in-between infections.

With the first four models results in mind, and the structured SCIR model presented

in the previous chapter, a temporary immunity model was then considered. The ability to

have immunity from infection after being a carrier or acutely infected allows the epidemic

to peak and decline, as the epidemic in New Zealand has also shown. By including

population demographics, and the affects of the vaccination campaign, we gained our best

fitting model.

All our models are sensitive to the parameter values and the birth rates in terms of

the incidence of infection and carriage. However, the general behaviour of each of seem

robust to changes in the parameters, it is only the peak numbers of infections/carriers and

the time-scale on which this happens that changes.

We have shown that the epidemic of meningococcal disease was already on the decline

when the nation-wide vaccination campaign was launched. However, the introduction of

the vaccine reduced the incidence of infection to a predicted low of three cases per year,

compared to 43 per year with no vaccination. With such low numbers of infection, it

would be possible for there to be stochastic fade out of the infection, meaning that small

epidemics could occur as the infection gradually phases out of the population. The model

also predicts future epidemics, yet these can be brought under control by another two year

vaccination campaign similar to the one that has already been implemented.

Our final model required a relatively short duration of carriage compared to the

estimated 9 to 10 months duration for American and European populations, and the

lower 4.1 months for Nigeria (Cartwright, 1995). Our average duration of carriage is

just over five months, which is slightly longer than the average three months carriage

found by Trotter et al. (2005) when modelling the impact of the serogroup C vaccination

in England and Wales. We assumed that vaccination gives complete protection against

infection and carriage, whereas Trotter et al. (2005) let there be a small chance that there
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could be carriage or infection after vaccination. Both our model and Trotter et al. (2005)

assumed that the vaccination gave waning protection, in our model this was for the time

that would be spent in the removed class (between 1 and 24 years depending on age) and

in Trotter et al. (2005) protection lasted for an average of 15 months. The similarities

in parameter estimates and results in our model and Trotter et al. (2005) are surprising,

as they are two very differently structured models in terms of compartmentalising the

state of a individual in relation to the disease. The United Kingdom routinely vaccinates

infants against meningococcal C, and launched a nation-wide vaccination campaign in

1999 to vaccinate those under 25 who had not been vaccinated in the hope of ending

their epidemic. Both our model and Trotter et al. (2005) predict that there will be future

epidemics of meningoccoal disease if another vaccination campaign is not initiated.

The estimated basic reproduction ratio of 1.26 is low when compared to other diseases

that New Zealand has experienced epidemics of (for measles it was estimated to be 12.8

(Roberts & Tobias, 2000), and 15.8 for pertussis (Roberts, 2000b)). As it is so low, we

would expect that a vaccination campaign would be an ideal way to combat an epidemic.

Even with the effective reproduction ratio being decreased below one through the effects of

vaccination, it is not enough to eliminate the disease from the population, which results in

future epidemics. As we have seen with the nation-wide vaccination campaign that ended

in 2006, the incidence of infection decreased and this campaign could be implemented in

the future to avoid another epidemic.
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Chapter 8

Conclusions and Future Work

This thesis has explored a variety of mathematical models for vaccine preventable

infections. The use of mathematical models to predict the number of people who could

be infected (or prevented from being infected) under different vaccination campaigns is

potentially a cost and life saving tool. Developing models that can be implemented and

understood easily makes the use and results of these models accessible to a wide range of

people.

The second chapter served as a general introduction to epidemic modelling, looking

at the optimal vaccination schedule, rather than a particular infection. After introducing

a vaccine into a population to combat a current or potential epidemic, a debate arises

about whether to enforce vaccination or leave the decision to individuals. The choice

of vaccination policy can cause two different outcomes for the community as whole; the

best strategy for enforced vaccination may require a different proportion of the population

vaccinated than if left to individuals to decide. Using game theory analysis we examined

the proportion of the population that needs to be vaccinated in order to minimise

the expected costs to the individuals and the community. Two different scenarios are

considered, where vaccination lasts only one epidemic cycle and where vaccination is

effective over an entire lifetime. An integral equation method was implemented to explore

the proportion of the population that needs to be vaccinated in order to eliminate an

annual epidemic disease, such as influenza, where the (non-vaccinated) population are

susceptible each year and there was no lasting immunity from year to year. A differential

equation model was implemented to explore the proportion needed to be vaccinated in

order to eliminate an infection that is endemic in the population, such as tuberculosis,

where one vaccination may last for life. For both cases we showed that if the expected

cost of vaccination is less than the expected costs of being infected, the “break even”

point for the two individual strategies (vaccinate or remain susceptible) occurs before the

minimum cost to the community is reached – in terms of the proportion of the population

vaccinated.

We then continued with our use of an integral equation model to look at the repeated
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epidemics of measles in New Zealand. The population was split into four age classes, and

the two time scales of the epidemic and demographics were split. The final size equation

was solved if an epidemic occurred and then demographic changes were included to give

us a year to year model. The final size equation was difficult to solve numerically, and we

were forced to solve for the population as a whole then distribute the number of people

infected according to the age class size. Ma & Earn (2006) showed that a solution exists

to the final size equation in multiple dimensions, and Andreasen (2003) implemented an

integral equation model with the two time scales to model influenza with cross-immunity.

Andreasen & Frommelt (2005) used the integral equation method to investigate childhood

epidemics, such as measles, but found that it gave different results to the SIR type model.

More work can be included in this model in the future, to explore different methods for

solving the final size equation in multiple dimensions, where it could be possible that an

epidemic does not occur in all of the age groups. A multidimensional Newtons method

could be implemented instead of the asymptotic expansion that we used.

It was our intention to continue using the integral equation method to model diseases

with the carriage state, but as the use of this method for modelling measles was

unsuccessful due to numerical limitations, we decided to use a differential equation

approach for the rest of our modelling.

In the final chapters we used differential equation models to look at infections with a

carrier stage – where people are infectious but show no outward signs of infection. The

fourth chapter gave a literature review of models of the Hepatitis B virus, with a critical

review of Medley et al. (2001). Our critique of Medley et al. (2001) found the conditions

that are needed for the function that is used to calculate the proportion of the population

who become carriers after being infected in order for a backwards bifurcation to occur. We

then demonstrated that this model does not fit known data if we discretise the population

into age groups. Including non-homogeneous mixing in the population allowed us to gain

a better fit to the known data, as shown in our fourth chapter. However, the known

data are a mixture of both acute infections and chronic carriers before the vaccination

campaign was initiated, making it difficult to fit our model to. The models we presented,

although not an exceptional fit to the know data, demonstrate some of the important

aspects of Hepatitis B virus, and can be further extended to include other aspects such as

high endemic areas compare to low endemic areas. Due to the nature of Hepatitis B virus

transmission, structuring the population into age classes may not be the most effective

modelling approach. Dividing the population into groups in terms of their risk of infection

or transmission could yield results that more readily fit the known data, and would be

more beneficial in terms of assessing the effects of a targeted vaccination campaign.

The last two chapters concentrated on modelling the epidemiology of meningococcal

disease in New Zealand, and showing the effectiveness of the recent vaccination campaign.

A number of compartmental models were presented, with the five age class SICR model

with non-homogeneous model showing a good fit, but the inclusion of only temporary
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immunity led us to our final model. Our model gave a basic reproduction ratio of

only 1.2, suggesting that a vaccination campaign is a viable solution to eliminate any

further epidemics from the population. As meningococcal B is a relatively new infection

to the New Zealand population, the epidemic pattern is still in an oscillating phase

before the infection becomes endemic. Our model showed that the two year vaccination

campaign successfully reduced the number of people who would have been infected, but

does not prevent another epidemic occurring in the future. However, we showed that by

implementing a similar vaccination campaign to that that has already been carried out,

as soon as the number of infections of meningococcal B begin to rise, the epidemic can

be halted quickly. One of the major benefits of our model is that we are able to calculate

the number of people who are carriers of the infection, who are the “silent” spreaders

of the infection. Alterations to the model that could be included are a separate class

for vaccinated individuals where they can still be carriers of the infection, and to allow

different immune times for those who have been acutely infected, carriers or vaccinated.

A spatially structured model may also be of benefit, as New Zealand has experienced

areas of high meningococcal B prevalence and low prevalence. Again, this would allow us

to see the effect of a more targeted vaccination campaign, as opposed to a nation-wide

campaign.

Through both integral and differential equation models, we have investigated the

epidemiology of different vaccine preventable diseases, concentrating on known situations

in New Zealand. We have looked at what proportion of the population needs to be

vaccinated in order to minimise the cost to individuals and to the community as a whole,

through to the effect of the recent vaccination campaign on meningococcal B disease. Our

hepatitis B and meningococcal B infection models could be expanded to capture some of

the finer details of the infections we have studied, but they both gave a reasonable fit,

as they are, to the known data. The integral equation method for a repeated epidemic

infection could be expanded, and a different method used to solve the final size equation

in multiple dimensions, but this is left for future work.

The main emphasis of this thesis was to explore the mathematical modelling of the

effect of vaccination both on the course of an epidemic and on the proportion of the

population that needs to be vaccinated to stop an epidemic. By using mathematical models

to model the epidemiology of diseases, we can gain further insight to some aspects of the

infection process that could otherwise be immeasurable - such as the number/incidence of

carriers in the population and the effect that the carriers have on the epidemic. The results

from this thesis could be used to predict the future of Hepatitis B and meningococcal

B epidemics within New Zealand, and the methods outlined could be applied to other

infections in any country.





Appendix: Elaborations to the

community versus individual cost

chapter

A.1 Derivation of the Final Size Equation from an SIR

model

For the yearly vaccination scenario, we chose to use an integral equation model to gain

the final size equation for the epidemic. However, we could have used a simple SIR model

to gain the same equation. The derivation of this is shown below.

Let s be the proportion of people who are susceptible to infection, i be the proportion

who are infected and r be the proportion who are removed. As we are dealing with an

epidemic that is over within a year, we do not need to include any birth or death rates.

So our system of equations is:

ds

dt
= −βis

di

dt
= βis − γi

dr

dt
= γi (A.1)

We have one redundant equation in the above system as there is no change in the

population size. We want to find the proportion of people who are infected during the

course of an epidemic. So we look at the change of infectious people with respect to

susceptibles:

di

ds
= −1 +

γ

βs
(A.2)

Integrating this we gain:

i(t) − i(0) = −s(t) + s(0) +
γ

β
log

s(t)

s(0)
(A.3)

We let t → ∞. We know that at the beginning of an epidemic i(0) is approximately zero,
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and then at the end of the epidemic there will be no more infected people left, so i(∞) = 0.

0 = −s(∞) + s(0) +
γ

β
log

s(∞)

s(0)
(A.4)

The basic reproduction ratio for this system is given by R0 = β
γ

(as infective people infect

others at rate β and remain infective for an average time of 1
γ
).

R0 (s(∞) − s(0)) = log
s(∞)

s(0)

s(0)R0

(

s(∞)

s(0)
− 1

)

= log
s(∞)

s(0)
(A.5)

At the start of the epidemic, the proportion of susceptible people is simply the proportion

who have not been vaccinated, 1 − v, and we define Rv = (1 − v)R0 as before (Equation

(2.9)). Substituting these into the above equation gives us the final size equation:

log

(

s(∞)

1 − v

)

=

(

s(∞)

1 − v
− 1

)

Rv (A.6)

A.2 Yearly Epidemics, when CV Greater than or Equal to

CI

For the yearly vaccinations, to find the proportion of people that need to be vaccinated

to minimise the cost to the whole community, we need to minimise the cost function

(Equation (2.17)), so we consider the derivative:

dC(v)

dv
=







CV −
(

1 +
s(∞)(R0(1 − v) − 1)

(1 − v)(1 − R0s(∞))

)

CI if 0 ≤ v < 1 − 1
R0

CV if 1 − 1
R0

< v ≤ 1
(A.7)

If the cost associated with being vaccinated is non-zero (CV > 0), there will not be a

critical point in the range v ∈
(

1 − 1
R0

, 1
)

, as can be seen from Equation (A.7).

In the range v ∈
[

0, 1 − 1
R0

)

, a critical point occurs when:

CV

CI
− 1 =

s(∞)(R0(1 − v) − 1)

(1 − v)(1 − R0s(∞))

v =
CV (1 − R0s(∞)) − CI(1 − s(∞))

CV (1 − R0s(∞)) − CI
(A.8)

For Equation A.8 to hold, we need CV

CI
> 1, as the right hand side is always positive in the

region when v ∈
[

0, 1 − 1
R0

)

. To classify this critical point, we shall analyse the second

derivative of Equation (2.17):

d2C

dv2
=

R0s(∞)(1 − v − s(∞))(2 − R0(1 − v + s(∞)))

(1 − R0s(∞))3(1 − v)2
CI (A.9)
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At the critical point, the second derivative is given by (substituting Equation (A.8)

into Equation A.9):

d2C

dv2

∣

∣

∣

∣

v∗
=

R0CV (CV R0s(∞) − 2(CV − CI))

CI(1 − R0s(∞))
(A.10)

The denominator of Equation (A.10) is positive, as s(∞) < 1
R0

and CI > 0, so we need

to determine the sign of the numerator. Consider the case where it is positive:

R0CV (CV R0s(∞) − 2(CV − CI)) > 0

⇒ CV R0s(∞) − 2(CV − CI) > 0

R0s(∞) >
2(CV − CI)

CV

R0s(∞) > 2 − 2CI

CV
(A.11)

As we are considering the case where CV > CI , we known CI

CV
< 0. Thus:

−2CI

CV
> 0

2 − 2CI

CV
> 2

⇒ R0s(∞) > 2 (A.12)

This is a contradiction, as R0s(∞) < 1, so the numerator of Equation (A.10) must be

negative, making the second derivative at the critical point negative, and giving us a local

maximum when CV > CI and v ∈
[

0, 1 − 1
R0

)

. We have shown that the community cost

will reach a maximum for some v < 1 − 1
R0

if CV > CI , as illustrated in Figure A.1.

When the cost associated with being vaccinated is equal to the cost associated with

being infected, the two individual strategies will intersect when s(∞) = 0, from Equation

(2.18). The two strategies will tend towards each other as s(∞) → 0, which requires

R0 → ∞. The minimum expected cost to the community would still occur when v = 1− 1
R0

as can be seen from Equation (A.7).

A.3 Life-Long Vaccination, with CV Greater than or Equal

to CI.

For life-long vaccination, we have the following expected costs:

EL
V = CV

EL
S =

(

1 − 1

R0(1 − v)

)

CI

CL =

{

vCV −
(

1 − 1
R0

− v
)

CI if 0 ≤ v < 1 − 1
R0

vCV if 1 − 1
R0

< v ≤ 1
(A.13)
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Figure A.1: Yearly Vaccination: If the cost of being vaccinated is greater than or equal to the cost

of remaining susceptible, the individuals best strategy is always to remain susceptible

- no matter what proportion of the population is vaccinated. The best strategy for

the community is to vaccinate a proportion of the population equal to 1 − 1

R0

if

CV = CI , and not to vaccinate anyone if CV > CI . The legend is the same for both

graphs.

If CV > CI , there will never be a “break even” point for the two individual strategies

as the two strategies never intercept (illustrated in Figure A.2). The best strategy for the

individual is to always remain susceptible, as this gives the minimum cost for all values

of v.

For the community, the critical point will occur when the derivative of the cost function

is zero. That is:

dC(v)

dv
=

{

CV − CI if 0 < v < 1 − 1
R0

CV if 1 − 1
R0

< v < 1
(A.14)

If CV 6= 0, then the only time the derivative will be zero is when CV = CI , in which case

the best strategy for the community is to vaccinate any proportion of the population in

the range
[

0, 1 − 1
R0

)

. If CV 6= CI , and CV > CI , the best strategy for the community is

to vaccinate no one.
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Figure A.2: Life-Long Vaccination: R0 = 5, so there is only an epidemic if v < 1− 1

R0

. For both

of the situations, CV = CI and CV > CI , the best strategy for the community is

not to vaccinate anyone.
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