
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Continuations and Martin-Lof's Type

Theory

A thesis presented in partial fulfilment of the requirements of the degree of

Doctor of Philosophy

in

Computer Science

at Massey University, Albany, New Zealand.

Neil Leslie

February 29,2000

Abstract

We explain how to program with continuations in Martin-Lof's theory of
types (M-LTT).

M-LTT is a theory designed to formalize constructive mathematics. By

appealing to the Curry-Howard 'propositions as types' analogy, and to

the Brouwer-Heyting-Kolmogorov interpretation of intuitionistic logic we

can treat M-LTT as a framework for the specification and derivation of

correct functional programs. H owever, programming in M-LTT has two

weaknesses:

• we are limited in the functions that we can naturally express;

• the functions that we do write naturally are often inefficient.

Programming with continuations allows us partially to address these

problems. The continuation-passing programming style is known to of

fer a number of advantages to the functional programmer. We can also

observe a relationship between continuation passing and type lifting in
c ategorial grammar.

We present computation rules which allow us to use continuations with

inductively-defined types, and with types not presented inductively. We

justify the new elimination rules using the usual proof-theoretic semantics.

We show that the new rules preserve the consistency of the theory.

We show how to use well-orderings to encode continuation-passing oper
ators for inductively defined types.

Acknowledgements

An earlier version of some of the material in Chapter 6 appeared as [70].

I would like to thank:

• Peter Kay of Massey University's Albany campus, and Steve Reeves

of Waikato University, for providing invaluable support and guid-

ance;

• Ross Renner, and the School of Mathematical and Computing Sci

ences at Victoria University of Wellington, for indulging me with
time and money to visit Waikato University to talk with Steve;

• Mhairi for caring (again) that I should finish a thesis;

• Keir and Ailidh for not caring about theses at all.

I would also like to acknowledge the debt which I owe to Aaron T. Beck.

Contents

Introduction . 1

Part I Martin-Lof's Type Theory

1. Syntax, judgement and inference

1.1 Rules of syntax: aritied expressions.

1.2 Forms of judgement.

1.2.1 Judgement of being a type .

1.2.2 Judgement of being an object of a type .

1.2.3 Judgement of two types being equal .

1.2.4 Judgement of two objects being equal

1.2.5 Hypothetical judgements

1.2.6 Other interpretations of the judgement forms .

1.3 Syntax of proof rules . .

1.4 Justification of the rules

1.4.1 Using 'meaning is use' .

1.4.2 Adopting a molecular approach

1.4.3 The challenge of tonk

4

5

7

13

13

14

14

14

15

16

17

18

19

23

23

Contents

1 . 4 . 4 Clarifying our notion of rules . .

1 . 4 .5 Self-justifying introduction rules

1 . 4 .6 Computation rules

1 . 4 .7 Elimination rule . .

1 . 4 .8 Summary of the relationship between the rules .

1 .5 Chapter Summary .

2. Some usefu l types, and applications

2 . 1

2 . 2

2 .3

2 . 4

'L
.

l' ogIca types

2 . 1 .1 Disjoint union of two types: +

2 . 1 . 2 Disjoint union of a family of types: L types

2 . 1 .3 Non-dependent L

2 . 1 . 4 Cartesian product of a family of types: n types .

2 . 1 .5 Non-dependent n . .

2 . 1 .6 The two abstractions

Finite sets, or enumerated types .

2 . 2 . 1 Booleans

2 . 2 . 2 The empty type

Applications

2 .3.1

2 .3 . 2

2 .3.3

2 .3. 4

Defining + df •

Representing the logical constants

Dealing with donkey sentences .

Program development

Inductively defined types . .

v

2 5

2 6

2 7

2 8

30

31

3 2

33

33

36

38

38

4 0

40

4 1

4 2

4 3

4 6

4 6

4 8

5 2

5 4

5 7

------- --

Con�n� �

2.4.1 Natural numbers 58

2.4.2 Polymorphic lists 60

2.4.3 Binary Trees 6 3

2.5 Well-orderings . . . 6 4

2.5.1 Using well-orderings to represent binary trees 6 6

2.6 Equality 68

2.6.1 Intensional equality: ID 68

2.6.2 Extensional equality: EO .

2.7 Universes

2.7.1 Tarskian Universes

2.7.2 Hierarchies of Universes.

2.7.3 Russellian Universes . . .

2.8 Using Martin-Lof's Type Theory in practice

2.9 Chapter Summary

Part" Continuations

3. Tail-recursion, and continuations

3.1 Introducing tail-recursion and continuations

3.2 Some simple functions

3.2.1 A CPS version of Fibonacci's function

3.3 Uses of continuations

3.3.1 Continuations and I/O.

3.4 Chapter Summary.

70

7 1

72

7 5

7 6

7 7

7 7

80

81

81

84

85

88

9 1

92

Contents

4. Type-lifting in categorial grammar

4.1 A simple categorial grammar

4.1.1 Section summary . . .

4.2 Examples of simple derivations

4.2.1 Section summary

4.3 Type-raising as continuation-passing .

vii

93

94

98

98

101

101

4.4 Chapter Summary. 104

Part III Adding continuations to Martin-Lof's Type Theory 109

5. CPS non-canonical constants for non-inductive types . . 110

5.1 Alternative extensions " . . . 111

5.2 CPS non-canonical constant for the disjoint union of two types 113

5.2.1 Presenting whentail as a primitive 113

5.2.2 Presenting whentaildf as a defined constant 116

5.2.3 Section summary 119

5.3 CPS non-canonical constant for the disjoint union of a fam-

ily of types 119

5.3.1 Presenting splittail as a primitive 120

5.3.2 Presenting splittaildf as a defined constant 120

5.3.3 Section summary 122

5.4 Cartesian product of a family of types: n 122

5.5 Other non-inductive types ... 122

5.6 An observation about equality 123

5.7 Chapter Summary. 123

Contents

6. CPS non-canonical constants for inductive types

6.1 Natural numbers

6 .1 .1 Computation rules

6.1 .2 Elimination rule .

6.1 .3 Equality rules

6.2 Polymorphic lists . .

6.2.1 Computation rules

6.2.2 Elimination rule .

6.2.3 Equality rules

6.3 Binary trees

6.3.1 Computation rules

6.3.2 Elimination rule .

6.3.3 Equality rules . .

6. 4 Comparison with the standard rules

6. 4 .1 Relating natrec and nattail . .

6. 4 .2 Comparison with Thompson's tprim

6. 4 .3 Relating listrec and listtail

6. 4 . 4 Relating treerec and treetail .

6.5 Chapter Summary

7. Implementing CPS using wel l-order types

7.1 Computation rule

7.2 Elimination rule .

7.3 Chapter Summary .

viii

. 128

129

129

130

131

131

131

132

132

132

132

133

133

13 4

13 4

138

1 4 1

1 4 4

1 4 7

. . . 16 4

164

165

166

Contents

8. Examples.

8 . 1 Program structure .

8. 2 Proof structure . . .

8.3 Example of program derivation .

8.3.1 A CPS sorting algorithm .

8.3. 2 Finding a minimum

8. 4 Chapter Summary

Part IV Conclusions

9. Conclusions and future work .

9.1 Topics for further investigation

9. 2 Summary . .

9.3 Conclusions

ix

. 168

168

170

171

17 2

17 4

17 4

177

. 178

178

179

180

List of Rules

1 .1 An inference rule schema

1.2 Tertium Non Datur

1 .3 An NK proof of Peirce's Law

1 .4 Peirce's Law as an inference rule

1.5 A proof of P v...,p

1 .6 tonk introduction on the left .

1.7 tonk introduction on the right .

1 .8 tonk elimination on the left

1 .9 tonk elimination on the right

1 .10 A proof of B from A

1.11 Normalising Rule 1 .10

1 .12 A De Morgan law as an inference rule

1 .13 Symmetry of &

1 .14 Modus Tollendo Tollens .

1.15 The form of a computation rule

1 .16 A computation rule

1 .17 An example of an introduction rule .

1 .18 A proof rule

17

2 1

2 1

2 2

2 2

2 3

2 3

2 4

2 4

2 4

2 4

2 5

2 6

2 6

2 8

2 9

2 9

30

LIST OF RULES xi

2.1 + formation 33

2.2 + introduction on the left 33

2.3 + introduction on the right 33

2.4 when computation 1 . 34

2.5 when computation 2 . 34

2.6 + elimina tion. 34

2.7 Equality of expressions involving when 1 . 35

2.8 Equality of expressions involving when 2 . 36

2.9 L formation .. 36

2.10 L introduction . 36

2.11 split computation 37

2.12 L elimination 37

2.13 n formation 38

2.14 n introduction . 38

2.15 funsplit computation. 38

2.16 n elimination 39

2.17 Evaluating apply(j, a) 39

2.18 apply computation .. 39

2.19 Alternative n elimination 40

2.2 0)..(succ) is a function 41

2.2 1 Enumerated type formation 41

2.2 2 Enumerated type introduction 41

2.2 3 Introduction of equal enumerated types 41

2.2 4 case{Xl, ... ,Xn} computation 42

LIST OF RULES xii

2 .2 5 Enumerated type elimination 42

2 .2 6 Equality of expressions involving case{Xl, . . . ,Xn} 42

2 .2 7 A putative empty type introduction rule . 43

2 .2 8 {} formation 43

2.2 9 caseO computation 45

2.30 {} elimina tion . . . 45

2 .31 Equality of expressions involving caseO 45

2 .32 Derivation of +dj formation 46

2 .33 +dj formation . . 47

2.34 +dj introduction . 47

2 .35 V introduction on the left . 48

2 .36 V introduction on the right . 48

2.37 V elimination 49

2 .38 & elimina tion . 50

2 .39 Natural number formation . 58

2 .40 Natural number introduction 1 58

2 .41 Natural number introduction 2 59

2 .42 natrec computation 1 59

2.43 natrec computation 2 59

2.44 Natural number elimination . 60

2 .45 Equality of expressions involving natrec 1 60

2 .46 Equality of expressions involving natrec 2 60

2 .47 List formation . . . 60

2.48 List introduction 1 . 61

LIST OF RULES xiii

2.49 List introduction 2 . . 61

2.50 listrec computation 1 61

2.51 listrec computation 2 61

2.52 List elimination . . . 62

2.53 Equality of expressions involving listrec 1 62

2.54 Equality of expressions involving listrec 2 62

2.55 Binary tree formation . . . 63

2.56 Binary tree introduction 1 63

2.57 Binary tree introduction 2 63

2.58 treerec computation 1 63

2.59 treerec computation 2 64

2.60 Binary tree elimination 64

2.61 VV formation . . 65

2.62 ltV introduction 65

2.63 wrec computation 65

2.64 Welimination .. 66

2.65 Tree' introduction 1 67

2.66 Tree' introduction 2 67

2.67 ID formation .. 68

2.68 ID introduction 69

2.69 Alternative ID introduction 69

2.70 idpeel computation 69

2.71 ID elimination 69

2.72 EO formation 70

LIST OF RULES

2.73 EQ introduction . .

2.74 eqpeel computation

2.75 EQ elimination 1 .

2 .76 EQ elimination 2 .

2 .77 TYPE as a type . .

2.78 Tarskian Uo formation

2.79 Tarskian Uo introduction 1

2 .80 Tarskian Uo introduction 2

2.81 v formation . . .

2 .82 Unquoting Nat"

2 .83 Unquoting List"

2 .84 urec computation 1

2.85 urec computation 2

2.86 Tarskian Uo elimination .

2.87 Derivation of +dj formation using universes .

2.88 Russellian Uo introduction 1

2 .89 Russellian Uo introduction 2

2 .90 Inhabitants of the Russellian Uo are types

2 .91 Tree' elimination .

3.1 A tail call

4.1 The ==> \ sequent rule

4.2 The ==> / sequent rule

4.3 The \ ==> sequent rule

xiv

70

70

71

71

71

72

72

73

73

73

73

74

74

75

75

76

76

76

79

82

94

95

95

LIST OF RULES

4.4 The / ==> sequent rule

4.5 The cut rule

4.6 \ Introduction

4.7 / introduction

4.8 \ elimination .

4.9 / elimination .

4.10 Lexicon lookup

4.11 Showing 'John loves Mary'

4.12 Type raising sequent rule 1 .

4.13 Type raising sequent rule 2 .

4.14 Type raising natural deduction rule 1 .

4.15 Type raising natural deduction rule 2 .

4.16 Showing 'He loves Mary'

4.17 Lifting 'John'

xv

95

95

96

97

97

97

99

100

102

102

102

102

104

104

4.18 One reading of 'Murray believes Souness resigned foolishly' 106

4.19 The other reading of 'Murray believes Souness resigned

foolishly' 107

4.2 0 'He or John loves Mary' 108

5.1 whentail computation 1 113

5.2 whentail computation 2 113

5.3 Derivation of the computation rules for whentaildf 117

5.4 Derivation of a computation rule for whentaildf 1

5.6 whentaildf computation 1

5.5 Derivation of a computation rule for whentaildf 2

117

117

118

LIST OF RULES

5.7 whentaildf computation 2

5.8 splittail computation . . .

5.9 Derivation of splittaildf computation

5.10 splittaildf computation

5.11 + elimination using whentail

5.12 Typing whentaildf

5.13 L elimination using splittail

5.14 Derivation of L elimination with splittaildf

6.1 nattail computation 1

6.2 nattail computation 2

6.3 Equality of expressions involving nattail 1

6.4 listtail computation 1

6.5 listtail computation 2

6.6 Equality of expressions involving listtail1

6.7 treetail computation 1

6.8 treetail equality

6.9 Evaluating nattail(d, e, zero,)...(J))

6.10 Evaluating apply()...(J), natrec(d, e, zero)) .

6.11 Induction step

6.12 Evaluating nattail(d, e, succ(m),)...(J))

6.13 Evaluating apply()...(J), natrec(d, e, succ(m)))

xvi

118

12 0

12 1

12 1

12 4

12 5

12 6

12 7

12 9

12 9

131

131

132

132

133

133

135

135

136

136

136

6.14 A proof that nattail(d, e, n, g) is equal to apply(g, natrec(d, e, n)) 137

6.15 A corollary of Rule 6.37 . 138

6.16 tprim computation 1 . . . 139

LIST OF RULES

6.17 tprim computation 2 .

6.18 tprim computation 3 .

6.19 Evaluating listtail(d, e, nil,)..(J))

6.2 0 Evaluating apply()..(J), listrec(d, e, nil)) .

6.2 1 Induction step

6.2 2 Evaluating listtail(d, e, cons(a, as),),(J))

6.2 3 Evaluating apply()..(J), listrec(d, e, cons(a, as)))

6.2 4 A corollary of Rule 6.43

6.2 5 Evaluating treetail(d, e, leaf,)..(J))

6.2 6 Evaluating apply(),(J), treerec(d, e, leaf))

6.2 7 Induction step

6.2 8 Evaluating treetail(d, e, node(v, l, r) ,)..(J)) ..

6.2 9 Evaluating apply(),(J), treerec(d, e, node(v, l, r))) .

6.30 Natural number elimination with tail recursion .

6.31 Equality of expressions involving nattail 2

6.32 List elimination with tail recursion

6.33 Equality of expressions involving listtail 2

6.34 treetail computation 2

6.35 Binary tree elimination with tail recursion .

6.36 treetail equality 2

6.37 When nattail and natrec are the same

6.38 Sub-proof 7r1

6.39 Sub-proof 7r2

6.40 Sub-proof 7r2.1 •

xvii

139

139

· 141

141

142

142

142

143

144

144

145

145

146

· 148

149

150

· 151

· 152

· 153

154

155

· 156

· 157

· 158

LIST OF RULES

6.41 Sub-proof 7f2.2 •

6.42 Sub-proof 7f2.2.1

6.43 When listtail and listrec are the same

6.44 When treetail and treerec are the same

6.45 A corollary of Rule 6.44 .

7.1 wtail computation

7.2 W elimination using wtail

8.1 Typing length(l) . . .

8.2 Typing lengthtail(l, k)

8.3 Typing Is(l, m)

8.4 Sorting a list .

8.5 Typing Istail(l, m, k)

xviii

159

160

161

162

163

165

167

169

170

171

173

176

List of Prog rams

3.1 The length of a list 1 82

3.2 The length of a list 2 83

3.3 The length of a list 3 83

3.4 The factorial function . 84

3.5 A CPS factorial 84

3.6 Fibonacci's function in Haskell 85

3.7 A structurally recursive version of Fibonacci's function 86

3.8 A neater version of Fibonacci's function 86

3.9 A CPS version of Fibonacci's function 86

3.10 Looping 87

3.11 Computing Fibonacci's function in C . 88

List of Figures

3.1 Evaluating cpsfac 3 k . 8 5

3.2 Evaluating cpsfibs 3 k 8 7

3.3 Plotkin's CPS-conversion . 8 9

3.4 CPS-translation some particular terms 8 9

4.1 Proof normalisation in categorial grammar 1 9 8

4.2 Proof normalisation in categorial grammar 2 9 8

4.3 A lexicon 9 9

4.4 Extending our lexicon 10 0

4.5 Further extending our lexicon 10 3

6 .1 Informal evaluation of tprim(n, c, J, p, v) 140

6.2 Informal evaluation of nattail(d, e, q, k) . 140

Introduction

This thesis shows how we can extend Martin-Lot's Type Theory to enable

ourselves to program with continuations in a natural way.

In Part I we give an an introduction to M-LTT, and explain its utility. Chap

ter 1 presents the framework of M-LTT, paying particular attention to the

principles by which we explain and justify the rules. In Chapter 2 we
build up a basic framework of useful types. M-LTT is a theory designed to

formalize constructive mathematics. By appealing to the Curry-Howard

'propositions as types' analogy, and to the Brouwer-Heyting-Kolmogorov

interpretation of intuitionistic logic we can treat M-LTT as a framework for
the specification and derivation of correct functional programs. However,

programming in M-LTT has two weaknesses:

• we are limited in the functions that we can naturally express;

• the functions that we do write naturally are often inefficient.

In Part Il we introduce continuations and discuss their uses. We see that

programming with continuations allows us partially to address the issues

of expressiveness and efficiency of functional programming. Chapter 4

points to an analogy between type-lifting in categorial grammar and con

tinuation passing.

In Part III we explain how to add rules for computing with continuations

in M-LTT. We do this by presenting a new form of elimination rule. We

are careful to justify these rules in the same way that the usual elimination
rules are justified. We give examples for some types, and we compare

Introduction 2

the new rules with the usual ones. Chapter 5 deals with types which

are not inductively defined; Chapter 6 deals with inductively defined

types which are common in programming. In Chapter 7 we show how

we can use a non-canonical constant for the well-orderings to implement

the continuation-passing, non-canonical constants for the inductively de

fined types in the same way we can implement the structurally recursive
non-canonical constants for inductively defined types using the usual non
canonical constant for the well-orderings.

In Chapter 8 we present some small examples.

Finally, in Part IV we draw some conclusions and make suggestions for

further work.

Typesetting

The thesis was typeset in �TEX2e using Wenzel Matiaske's thesis docu

ment class.

Fonts were set using Waiter Schmidt's mathppl and Sebastian Rahtz' helvet
packages.

Proof figures were produced using Paul Taylor 's prooftree macros.

Some of the floating objects were produced using Anselm Lingau's float
package.

Some of the figures were rotated using Sebastian Rahtz and Leonor Bar

roca's rotating package.

Frank Mittelbach's varioref package was used for some of the references.

The bibliography style was generated using Patrick W. Daly's makebst
program.

The I1TEX Companion1 proved invaluable, and provided the odd moment of

1 Goosens, M., F. Mittelbach, and A. Samarin. The NEX Companion. Addison-Wesley,

Reading, Massachusetts, USA, 1994.

Introduction 3

humour.2

Typesetting large rules

A number of rather large inference rules are used in this thesis. Typeset

ting these presents some difficulties. There are a number of ways in which

one may present inference rules. My own preference is to present rules

after the fashion of [77] and [110] (and, indeed, [42] and [95]), with the

premisses arranged side-by-side. I find this presentation to be the most

readable. Readability comes at the expense of size, and rules presented

in this way can become too wide to fit onto a page. Such over-wide rules

have been rotated and placed at the end of the chapter in which they ap

pear. This, unfortunately, reduces readability. An alternative is to follow

the practice of [88], where the premisses are arranged vertically. This is
more compact, and avoids the problem of over-wide rules. However, I be

lieve that, in general, rules presented in this way are less readable. A third

alternative is to follow the presentation of [4], which, again, uses vertically
stacked premisses, and which I find less readable still.

2 For example, on page v 'INEX is not difficult to learn:

Part I

Marti n-Lof's Type Theory

1. Syntax, judg ement and i nference

In this chapter and in Chapter 2 we introduce and describe M-LTT. The

rules of M-LTT are presented as a system of natural deduction inference

rules which relate judgements of various forms. Before we explain the

judgement forms and the inference rules we must discuss the syntax of

expressions, so we begin in § 1 .1 by explaining the theory of aritied expres

sions. Then we explain the judgement forms in §1 .2. In § 1 .3 we explain

the syntax of the proof rules. We then proceed in §1 .4 to explain how we

give a proof-theoretic justification of the inference rules, after the fashion
of Dummett. This approach to the justification of the rules is greatly dif

ferent in spirit for that of, for example [101] . We do not explain our rules

indirectly with reference to some external 'formal semantics', but directly
and informally. It is important that we understand how the rules of M

LTT are justified because M-LTT is an extensible theory. We are allowed to

add new types, and new ways to form types. The new material that we

add to the theory is just as 'primitive' or basic as material that anyone else

has added. This is to be contrasted with other systems, for example vari

ous higher-order logics [1 1] or Girard's System F [43, 45, 48], where we are

given a fixed collection of 'primitive' types and we proceed to define other

types in terms of these ones. We postpone the presentation of particular
types until Chapter 2.

In Part III we introduce elimination rules of an unusual form, and we wish

to emphasise that these can be justified, directly, in exactly the same way as

the usual elimination rules are. Our motivation for this is that we make use

of computation rules of an unusual form as we wish to provide ourselves

with a natural way to write more efficient programs.

1. Syntax, judgement and i nference

Martin-Lof states in [79] that M-LTT was originally

'intended to be a full scale system for formalizing intuitionistic

mathematics as developed, for example, in the book by Bishop

1967'.1

6

For computer scientists the crucial aspect of the theory is that it is con

structive:2 that is, the theory has an algorithmic content. Once we have

recognised this algorithmic content we can use the theory for program

ming and program development. It should be stressed that a belief in the

utility of M-LIT in computer science does not depend on our believing that

classical mathematics is flawed, nor on our holding a revisionist approach

to mathematics in general, merely on a recognition that constructive math

ematics is the appropriate mathematics for computing. Io quote Michael

Dummett:

'the important question for us is whether constructive mathe

matics is adequate for applications.'

Having said this, however, we view M-LTT as an intuitionistic theory in a

stronger sense than merely being a theory to do constructive mathematics

in. Much of the work that we do in this thesis relies on an understanding

of how the laws of M-LTT can be justified. Because we view M-LTT as a

foundational theory, and because we are intuitionists and do not believe in

an infinite regress of formal explanations, we expect the explanation of the

theory to be informal. We follow Brouwer here and admit the unformaliz

ability of 'basic' notions [14] . While the explanation that we use to justify

the rules of M-LTT must, at the end of the day, be informal, it must also

be very careful. It is our intention to achieve Kreisel's 'informal rigour '

[66] in our explanations. Taking care to justify the theory in a construc

tive fashion is worthwhile because, again quoting Michael Dummett, we

believe tha t:
1 Bishop 1967 is [12] .
2 We will generally treat 'constructive' and 'intuitionistic' as synony ms: the distinc-

tions made in, for example, [13] are not of immediate relevance to us.

1. Syntax, judgement and inference

'the resulting versions of the theories indeed prove more apt

for their applications.'

1 .1 Rules of syntax: aritied expressions

7

Before we start to deal with the semantic aspects of the theory we need to

build up an unambiguous theory of syntax. We do this using the theory of

aritied expressions, originally suggested by [38). We identify:

• abstraction;

• application;

• combination; and

• selection;

as the ways in which we form mathematical expressions. These concepts

are all at the level of syntax. In particular we must be careful not to con

fuse the purely syntactic abstraction and application with 'x-abstraction

and function application (see § 2 .1 .6 on page 40).

We are motivated to do all this because we wish to rule out 'expressions'

like si n (si n) and 3(+,4) as being utterly nonsensical, and because we need

to have a decidable equality on expressions.

Arities themselves are as follows:

• 0 is an arity;

• if 0' and !3 are arities then 0' 8-+ !3 is an arity?

• if 0'1 , . . . ,O'n are arities then 0'1 @ . . . 0 O'n is an arity.

3 The symbol EH has been chosen avoid confusion with the half-a-dozen other arrows

we use and to provide visual analogy with 0.

1. Syntax, judgement and i nference 8

The intended interpretation is:

• 0 is the arity of simple, saturated expressions;

• a e--+ f3 is the arity of an abstraction;

• al 0 ... 0 an is the arity of a combination.

The arities give us a very simple set of rules for how bits of syntax may

be plugged together. In this respect they have a similarity to a simple

type system. The syntax that we use for arities themselves reflects this

similarity.4

Arities are associated with expressions as follows:

• variables and constants are given to us with an arity;

• if a is the arity of the variable x and f3 the arity of the expression b
then a e--+ f3 is the arity of the abstraction (:r) b;

• if a is the arity of the expression a and a &-+ f3 is the arity of the

expression f then f3 is the arity of the application f(a);

• if al, ... ,an are the arities of the expressions a 1, .. . ,an respectively

then al 0 ... ® an is the arity of the combination (at, ... , an).

• if al 0 ... ® an is the arity of the expression a then ai, where i is

between 1 and n, is the arity of the selection a.i, the ith component

of a.

4 An alternative syntax for arities is:

• () is the arity of simple, saturated expressions;

• if 0' and {3 are arities then 0'{3 is an arity, the arity of an abstraction;

• if 0'1, ... , an are arities then (0'1,"" an) is an arity, the arity of a combination.

This syntax, although less readable in some ways, has the advantage that it gives

a visual representation of the 'shape' of the 'holes' to be filled to form a saturated

expression.

1. Syntax, judgement and inference 9

The rules dealing with arities restrict the expressions that we can form:

since s in has arity ° E--+ 0, si n (si n) is ruled out; however arities do not

prevent us from forming meaningless expressions. For example, natrec (see

§ 2.4.1 on page 58) has arity ° (8) (0 0 ° 8-+ 0) 0 ° 8-+ 0, and n i l (see § 2.4.2

on page 60) has arity 0. Hence, if x and y both have arity 0, then:

natrec(n i l , (x, y) n i l , n i l)

is an expression of arity 0. This expression is, however, devoid of meaning.

It is only when we have built the theory of types that we can discuss the

meanings of expressions.

Definitions

We can make abbreviatory definitions of the form:

defi n ie ndum =def defi n iens

The definiendum is a new constant. The definiens is an expression which

must not contain free variables, and in which the definiendum must not
occur.

The definiendum has the same arity as the definiens.

Such definitions are merely abbreviatory and do not allow us to write

functions.

SyntactiC equality between expressions

We have a notion of equality between syntactic expressions, which we de

note by =. For two expressions to be syntactically equal they must be of

the same ari ty.

Syntactic equality is reflexive, symmetric and transitive. Formally:

• if a is an expression then a == a

1. Syntax, judgement and inference 10

• i f a == b then b == a

• if a == b and b == c then a == c

A definiendum and its definiens are syntactically equal. Formally:

• if a =def b then a == b.

We distinguish between =def and ==, whereas, for example, [75, 88] do not.
There is an asymmetry between the definiendum and the definiens, and
the action of defining is different from the observation of equality. Thus
the concepts denoted by =def and == are different.

Combinations made from syntactically equal parts are themselves syntac
tically equal. Formally:

• if al = b1 : al, · · ·, an
al 0 . . . <:9 an

Taking a combination apart and putting it back together again in the same
way does not change it. Formally:

• if a : al 0 ... 0 an then (a.I, ... , a.n) = a : al 0 ... 0 an

The same selections from syntactically equal combinations are themselves
syntactically equal. Formally:

• if a == b : al 0 ... 0 an then a.i = b.i : ai

Combining an expression with others and then selecting it does not change
the expression. Formally:

• if a : a then (b1 , . . . , bl, a, bm, . . . , bn) . (l + 1) == a : a

The application of syntactically equal expressions to syntactically equal
expressions are syntactically equal. Formally:

1. Syntax, judgement and inference 11

• if f = 9 : 0'8--+ (3 and a = b : a then f(a) = g(b) : (3

For applications and abstractions we have rules corresponding to Q

congruence, (3- and Tl-reduction and the � rule of the A-calculus [6]. If a and
b are expressions and x a variable then b[x := a] is the expression formed
by replacing occurrences of x in b with a, taking care not to capture free
variables occurring in a.

The names of bound variables are not important. Formally:

(a) if x : a and y : a are variables, and b : (3 then (x)b = (y)(b[x := yJ) :

0'8--+(3

Abstractions over syntactically equal terms are syntactically equal. For
mally:

(0 if x : a and a = b: (3 then (x)a = (x)b : 0'8--+ (3

Abstraction of an application to the same variable is syntactically equal to
the applied expression. Formally:

(Tl) if x : a and f : a 8--t (3 then (x)(J(x)) = f : 0'8--+ (3, x not free in f

Application of an abstraction is substitution. Formally:

((3) if x : a, a : a and b: (3 then ((x)b)(a) = b[x := a] : (3

The relation = is decidable. This is a crucial property: if we were not
able to decide syntactic equality between expressions we should not, for
example, even be able to decide whether an inference rule can be applied
to a given expression.

1. Syntax, judgement and inference 12

Practical syntax

Having developed the theory of aritied expressions with great care we
now proceed to use a slightly more relaxed concrete syntax to enhance
readability.

We will often write definitions as:

rather than:

We will often use the 17-rule to write:

rather than:

In particular, the non-canonical constant associated with a type T (see
§ 1 .4.4 on page 25) will typically take an argument of type T as its final
argument. The non-canonical constant associated with the type of natural
number is natrec (see § 2.4.1 on page 58) so we may write:

natrec(d, e)

rather than:
(n) natrec(d, e, n)

Sometimes, of course, it it clearer to write an unsaturated expression out
explicitly as an abstraction, so sometimes we will do this.

We will also freely write:

rather than:

1. Syntax, judgement and inference 13

We will adopt the 'usual' rules for precedence and associativity of opera
tors to omit brackets, a convention we have already adopted in this sec
tion.

1 .2 Forms of judg ement

The inference rules of M-LTT relate judgements. This is also the case with
the inference rules of logic, although in logic we are used to using only one
judgement form. In classical logic we use the judgement that a proposition
P is true. In constructive logic, because the notion of proof is prior to that
of truth, we use the judgement that a proposition P has a proof. Usually
when we present logical rules we leave the judgement involved implicit
(see § 2.3.2 on page 48).

In M-LTT we deal very carefully with the notion of judgement and con
sider four judgement forms:

• being a type;

• being an object of a type;

• being equal types;

• being equal objects of a type.

We explain these in turn.

1.2.1 Judgement of bei ng a type

The first judgement form that we consider is the judgement of being a
type, which we write:

A type

We justify the judgement A type by explaining what the canonical objects of
the type are, and when two canonical objects are equal. A canonical object

1. Syntax, judgement and i nference 14

is also called a value. Informally a canonical object is one which we can see
directly to be an object of the type. We will return to this in §1 .4.4.

1 .2.2 Judgement of bei ng an object of a type

The second judgement form that we consider is the judgement of being an
object of a type, which we write:

a: A

We justify the judgement a : A by showing that a can be computed to a
value of type A.

1.2.3 Judgement of two types bei ng eq ual

The third judgement form that we consider is the judgement of two types
being equal types, which we write:

We justify the judgement A = B by showing that values of type A are
values of type B, and equal values of type A are equal values of type B,
and vice versa.

1 .2.4 Judgement of two objects bei ng eq ual

The fourth judgement form that we consider is the judgement of two ob
jects being equal objects of a type, which we write:

a = b: A

We justify the judgement a = b : A by showing that a and b can be com
puted to the same value of type A.

1. Syntax, judgement and inference 15

1.2.5 Hypothetical judgements

So far we have described only categorical judgements. We can intro
duce hypothetical judgements, that is judgements which are dependent
on other judgements. Suppose J1 is a judgement. Then:

[Jd

is a hypothetical judgement, which tells us that we can make the judge
ment J2 on condition that we can make the judgement J1. A typical hypo
thetical judgement is that one type is a family over another type:

[x : A]

C(x) type

This is the judgement that C(x) is a type, on condition that x is an object of
type A. A hypothetical judgement allows us to introduce a variable, and
defines its scope. We can form hypothetical judgements with more than
one hypothesis, and with 'hypothetical hypotheses'. One of the premisses
to the L elimination rule (Rule 2.12 on page 37) is:

[x · A 1
y(w) : B(w) [w : A]

d(x, y) : C (pa i r (x , y))

This is the judgement that d(x , y) is an object of type C(pa i r (x, y)) , given:

• x is an object of type A, and

• y(w) is an object of type B(w), given

- w is an object of type A.

1. Syntax, judgement and inference

1.2.6 Other i nterpretations of the judgement forms

16

We have given the typicals interpretation of the judgement forms. Using
the Brouwer-Heyting-Kolmogorov (BHK) interpretation of intuitionistic
logic [64] and the Curry-Howard propositions-as-types analogy [51] we
can also give two other important interpretations:

• a logical interpretation;

• a computational interpretation.

In the logical interpretation we read:

• A type as ' A is a proposition';

• a: A as 'a is a proof witness of the proposition A';

• A = B as 'A and B are equal propositions';

• a = b : A as 'a and b are equal proof witnesses of the proposition A' .

In the computational interpretation we read:

• A type as 'A is a specification';

• a : A as 'a is a program which meets the specification A';

• A = B as 'A and B are equal specifications';

• a = b : A as I a and b are equal programs which meet the specification
A'.

In §2.3.2 we explain how we can represent the connectives of intuitionistic
logic directly in M-LTT.

Given these three readings of the judgements we see that in M-LTT, in one

system, we have:

5 In the sense 'pertaining or relating to a type or types', rather than 'distinctive, char

acteris tic'.

1. Syntax, judgement and inference 17

• a logic;

• a specification language;

• a programming language.

This is the key to why M-LTT is of especial interest to computer scientists,
a theme we return to in §2.3.4.

1 .3 Syntax of proof ru les

Our inference rules relate judgements. We will present rules as informal
rule schemas like: [H(1'l)[H(1'l'�): : '" H(1'l,m)]]

H(1,p)[H(1,p,l), H(1,p,qJj

[H(n,l)[H(n'l'� � '
.

"" H(n'l'S)]]
H(n,r) [H(n,r,l), ... , H(n,r,t)]

A Pn
----------------- Rule name

c

Rule 1 . 1 : An inference rule schema

The judgements above the inference line are the premisses. The rule al
lows us to discharge the hypotheses inside square brackets. When the rule
schema is instantiated in a particular proof the conclusion C will remain
dependent on any undischarged hypotheses. The scope of names within
the schema generally goes from top to bottom, and left to right, except
that in hypothetical hypotheses it works right to left. Thankfully only a
few rules, such as Rule 2.64 on page 66 and Rule 2.86 on page 75, require
this complexity. The name of the rule may be omitted, as this can often
reduce clutter in proofs.

It is also common practice to reduce clutter in rules by omitting judge
ments of the form A type in rules, especially when the conclusion of the

1. Syntax, judgement and inference 18

rule is one of the 'higher ' judgements, and the omitted judgement can be
inferred easily. This practice can be criticised for being sloppy, and can be
defended because it allows us to make the important content of the rule
clearer.

1 .4 Justification of the ru les

In this section we shall explain how the rules of M-LTT are themselves
justified. The justification that we use is a proof-theoretic one, and was
originally applied to the rules of logic. So we approach the task of justify
ing the rules of M-LTT via the task of justifying the rules of logic. Because
we use fewer judgement forms in logic the explanation of the justification
of the logical rules is also Simpler.

The rules of M-LTT are generally presented in these classes:

• formation rules;

• introduction rules;

• rules for the introduction of equal objects;

• computation rules;

• elimination rules;

• rules for the equality of expressions formed using non-canonical con
stants.

In contrast, when we present natural deduction rules for logic we only
present:

• introduction rules;

• elimination rules.

1 . Syntax, judgement and inference 19

With the exception of the computation rules, the extra rules in M-LTT re
flect the extra judgement forms that we make use of in M-LTT. The com
putation rules are the key to the justification of the elimination rules. To
understand why we present the rules in these forms, and how they are
justified we must look at the proof theoretic justification of the rules of
deduction, especially following the work of Dummett [26, 27, 28, 32, 33],

particularly [30]; and Prawitz [96]. Dummett's work is motivated by the
desire to understand what a theory of meaning is, and hence to use this
understanding to justify the rules of deduction. Dummett's work is not
primarily aimed at constructive type theory, but it provides the appro
priate basis for us to justify the rules of type theory. Dummett's ideas
are implicit in the usual justifications given in the literature (for example,
[77, 78, 88, 110]) . We shall make the connection much more explicit as, in

Chapters 5, 6 and 7, we wish to introduce unconventional computation
and elimination rules. We will treat these rules as having the same status
as the conventional rules. Thus we need to be very clear about how the
conventional rules were justified.

1 .4.1 Usi ng ' mea n i n g is use'

We focus on the introduction, computation and elimination rules, because
the formation rules are not a source of confusion, and the rules for the
introduction of equal objects and for the equality of expressions formed
using non-canonical constants are analogous to the introduction and elim
ination rules, respectively. We start from Wittgenstein's dictum: 'meaning
is use' [119] .6 Dummett writes [28] :

'The meaning of a mathematical statement determines and is
exhaustively determined by its use. The meaning of such a
statement cannot be, or contain as an ingredient, anything
which is not manifest in the use made of it, lying solely in the

6 Actually: ' the meaning of a word is its use in the language: §43 of Part I of [119].

1 . Syntax, judgement and inference

mind of the individual who apprehends that meaning: if two
individuals agree completely about the use to be made of the
statement, then they agree about its meaning. The reason is
that the meaning of a statement consists solely in its role as an
instrument of communication between individuals, just as the
powers of a chess-piece consist solely in its role in the game
according to the rules.'?

20

Dummett continues to point out that knowledge of meaning cannot, if it
is to be well-founded, ultimately consist of the ability to state or verbalise
meaning, and that:

'a grasp of the meaning of a mathematical statement must, in
general, consist of a capacity to use that statement in a certain
way, or to respond in a certain way to its use by others.'

One consequence of adopting the slogan 'meaning is use', might seem to
be that use is unchallengeable, that is, however we choose to use a mathe
matical statement is, and must be, acceptable. Dummett argues that such
an attitude can only be supported if we assume a holistic8 approach. Un
der such a holistic view it is not legitimate to ask for the meaning of an
individual statement on its own: meaning of individual statements is only
understandable in terms of meaning of the language as a whole.

The two main arguments for rejecting holism rely on the need for lan
guage to be a vehicle of communication, and on the need for a language to
be learnable. If the meaning of an utterance depended not only on the ut
terance itself and its parts but on the whole language then it would never
be possible to be sure that communication of the utterance had been effec
tive, unless it could be shown that the whole language had been communi
cated (and understood) . If individual statements were not understandable
in themselves it would not be possible to learn a language incrementally:

7 Emphasis in the original.
8 Dummett's notion of holism is discussed in rather more detail in [104] .

1 . Syntax, judgement and inference 21

there would always be the possibility that, as more of the language was
learned, the meanings of previously learned parts would have to be al
tered.

Holism and classical logic

Adopting the slogan 'meaning is use', and rejecting holism leads us swiftly
away from classical logic. As an example of holism in classical logic con
sider a proof of Peirce's Law in Gentzen's system NK [42] . Peirce's Law
is:

Peirce's Law involves only implications. Gentzen's NK is his NJ aug
mented with a rule for double negation or excluded middle. Suppose we
choose the latter extension.

The rule of excluded middle is:

--- ExMid
P V ...,p

Rule 1.2: Tertium Non Datur

We can derive Peirce's Law in NK:

[...,p] 2 [p]3
----- ..., E

1..
- .1 E
Q

--- ExMid
P V ...,p

::> 13

[(P ::> Q) ::> pp P ::> Q
----------- ::> E

[p] 2 P
--
-------------- V E2

P
--_____ ::> 11
((P ::> Q) ::> P) ::> P

Rule 1 .3: An NK proof of Peirce's Law

1. Syntax , judgement and inference 22

Since NK is NJ plus the excluded middle rule, and there is no NJ proof
of Peirce's Law, any NK proof of Peirce's Law must use excluded middle.
Thus it appears that an understanding of the rules involving implication
is not sufficient to understand the classical concept of implication: we also
have to understand rules involving negation and disjunction. Perhaps this
is only because we made a foolish choice in expressing NK as we did.
Perhaps we should extend NJ with a rule corresponding to Peirce's Law:

[P => Q]

P
- PL
P

Rule 1 .4 : Peirce's Law as an inference rule

Now we find that we can prove P V -,P, by making use of Peirce's Law:

[p] 2
--- v I I
P v -,p [P V -,p => 1..] 1
----------- => E

1.. - -, J2
-,p

--- v I r
P v -,p

--- PU
P v -,p

Rule 1 .5: A proof of P v -,p

Thus, taking NK to be NJ plus Rule 1 .4, rather than NJ plus Rule 1 .5 has
merely moved the problem about. Now we cannot understand disjunction
without understanding implication also. This example gives us some evi
dence that a degree of holism is required to give a 'meaning is use' expla
nation of the connectives of classical logic. As we have seen the meanings
of the connectives appear to depend on rules in which they themselves do
not figure, and this would not appear to simply be an artefact of one par
ticular presentation of the rules of classical logic. Consequently, believing

1. Syntax, judgement and inference 23

that 'meaning is use', and rejecting holism leads us away from classical
logic.

1.4.2 Adopting a molecular approach

Having rejected holism we seek instead a molecular theory where the
meaning of a connective is explained using part of the use of the connective
and focus on Gentzen's assertion (in §5.13 of [42]) that:

'The introductions represent, as it were, the ' definitions' of the
symbols concerned, and the eliminations are no more, in the
final analysis, than the consequences of these definitions.'

1 .4.3 The chal lenge of ton k

It is well known that we must be careful about 'the final analysis'. We
must avoid the absurdities of Prior 's ton k [97] . The introduction rules for
ton k are:

A
--- ton k Intro. L
A ton k B

Rule 1 .6: ton k introduction on the left

and:

B
--- ton k Intro. R
A ton k B

Rule 1.7: ton k introduction on the right

These rules are, in themselves, unobjectionable as they are just the same as
the usual rules for V introduction. The elimination rules for ton k are:

1. Syntax, judgement and inference

and:

A ton k B

A
ton k Elim. L

Rule 1 .8: ton k elimination on the left

A ton k B
--- ton k Elim. R

B

Rule 1 .9: ton k elimination on the right

24

These are also, in themselves, quite unobjectionable. They are just the
same as the usual rules we find in elementary logic texts for & elimination.
The problem comes when we combine ton k introduction and elimination.
We get this figure:

A
--- Tonk Intro
A ton k B
--- Tonk Elim

B

Rule 1 .10: A proof of B from A

This is clearly unacceptable. The clue to how we can prevent ourselves
from writing such absurdities comes from the observation that this proof
is not a normal proof as it involves the introduction of a connective im
mediately followed by its elimination. Normalising Rule 1 .10 would give
us:

A

B

Rule 1 .11 : Normalising Rule 1 .10

1. Syntax, judgement and inference 25

Clearly, the connective ton k clearly fails to enjoy 'harmony' between the

introduction and elimination rules. We know that proof normalisation cor

responds to program evaluation, that is to computation (see, for example,

[48]) . So it is reasonable to expect that the computation rules are the key

to harmony. The next sections of this chapter seek to clarify this.

1.4.4 Clarifying our notion of ru les

In order to proceed we need to clarify some of our notions about what

the forms of the rules are. In particular we need to clarify what we mean

when we describe a rule as an introduction rule or as an elimination rule.

Once again, for simplicity we will illustrate this section with rules of logic

(although we keep the typical interpretation in mind too) .

First we suppose that we have:

• a supply of propositional (or type) variables, e.g. P, Q, R, S . . .

• a supply of constants, e.g . ..L , -', v , & , ::) , List, n , L . . .

Propositional (or type) formulas are either variables or expressions whose

principal connective is one of the constants. Variables are prime formulas;

other formulas are non-prime.

Our first definition of an introduction rule is that it is a rule whose conclu

sion is the judgement that we have a proof of a non-prime formula.

Our first definition of an elimination rule is that it is a rule which has as a
premiss the judgement that we have a proof of a non-prime formula.

Under these definitions one rule may be both an introduction rule and an

elimination rule:

.4. & B
---- DM
-, (-, .4. V -, B)

Rule 1 .12: A De Morgan law a s an inference rule

1 . Syntax, judgement and inference 26

Furthermore a rule may be both an introduction rule and an elimination

rule for the same connective:

and:

A & B

B & A

Rule 1 .13: Symmetry of &

-, B A :J B

Rule 1 .14: Modus Tollendo Tollens

Rules 1 .12, 1 .13 and 1 . 14, while introduction rules by our definition above,

are not candidates for self-justification. We need to have a more restrictive

notion of what sorts of introduction rule we can use to define the meanings

of the connectives.

1 .4.5 Self-justifying introd uction ru les

To impose these restrictions we follow the line of reasoning given by Dum

mett in Chapter 11 of [30], which asserts:

'The minimal demand we should make on an introduction rule

intended to be self-justifying is that its form be such as to guar

antee that, in any application of it, the conclusion will be of

higher logical complexity than any of the premisses and than

any discharged hypothesis. We may call this the "complexity

condition". '

Dummett describes a rule as 'single-ended' for a given connective if it is

an introduction rule, but not an elimination rule, or if it is an elimination
rule, but not an introduction rule.

1. Syntax, judgement and i nference 27

We can further demand that an introduction rule intended to be self

justifying be single-ended, as any rule which is not single-ended can be

decomposed into rules which are single-ended.

So, by this point, we have explained that we can take single-ended intro

duction rules which meet the complexity condition to be self-justifying.

We will follow common practice and describe introduction rules of this
special form as introduction rules simpliciter. In the typical interpretation

the introduction rules introduce values or canonical objects of a type; in the

logical interpretation the introduction rules introduce immediate or canoni

cal proof witnesses. We have not yet overcome the challenge of ton k , as we

must still explain how we produce elimination rules. Our strong hint has
been that the computation rules are involved, and this is what we explain

next.

1 .4.6 Computation ru les

In M-LTT the computation rules tell us how we may simplify expressions

formed using non-canonical constants. The form of the computation rules

for a particular non-canonical constant relies on our grasp of what form of
computation is appropriate:

• for the enumerated types (see §2.2) the appropriate form of compu

tation is case-analysis;

• for the inductively defined types (see § 2.4 on page 57) the appropri

ate form of computation is usually taken to be structural recursion;

• for the well-orderings the appropriate form of computation is usu

ally taken to be well-founded recursion.

The form of the computation rules is:

1. Syntax, judgement and inference

a l --t b1 aq (• • •) --+ bq
----------- f Comp.

f(a l , " " an) --+ bq

Rule 1 .15 : The form of a computation rule

28

This rule tells us that the expression f(a i , . . . , an) can be computed to bq,
if a l can be computed to b1, and so on. The expressions to be computed

may depend on the results of previous computations. Suppose some type

T has n introduction rules i.e. there are n different forms that the canonical

objects of type T can take. The non-canonical constant associated with the

type T will take n + 1 arguments. Typically, there will be n computation

rules, each one corresponding to one of the introduction rules. For exam
ple, the + types (§ 2.1 . 1 on page 33) have two introduction rules, and there

are two computation rules for the non-canonical constant. The empty type

(§ 2.2.2 on page 43) is one exception to this rule.

The computation rules describe lazy evaluation (call-by-need) [92] . We are

not compelled to use lazy evaluation. However, if we used eager evalu
ation then we would produce elimination rules with premisses stronger

than are really needed.

1.4.7 E l iminati o n ru le

Now we can view the elimination rule for a type T as a rule which takes

one premiss of the form t : T and has as a conclusion a judgement about

the type of an expression formed using the non-canonical constant asso

ciated with T. The other premisses of the elimination rule simply tell us

what judgements we need to be able to make in order to justify the conclu
sion. Typically, some of them are judgements about the well-formedness

of some type which appears in the rule, most often about the type of the

conclusion. Other premisses give judgements which allow us to utilise the

computation rules for the non-canonical constant.

Suppose we have a computation rule like:

1. Syntax, judgement and inference

where:

a ---+ constr(c) b(c) ---+ b'
----------- nccA Comp.

ncc.4 (b, . . . , a) ---+ b'

Rule 1 .16: A computation rule

• constr is one of the constructors for the type A;

• ncc.4 is the non-canonical constant associated with the type A.

Further, suppose that one of the introduction rules for A is

c : C
----- A Intro.
const r (c) : A

Rule 1 .17: An example of an introduction rule

29

One of the premisses of the elimination rule is the judgement a : A. This

means that a evaluates to a canonical object of type A. Each introduction

rules tells us what one of the canonical forms is. One of the canonical

forms for type A is constr (c) where c is of type C. The computation rule

tells us how we can use one of the auxiliary arguments to ncc.4 to compute

with c. The judgement:
[y : Cl

b(y) : B (const r(y))

is then enough to ensure that ncc.4 (b, . . . , constr(c)) : B(constr(c)) .

We perform the same analysis for each of the introduction and computa

tion rules to justify an elimination rule like:9

9 As suggested in § 1 .3 we would typically suppress the judgement A type.

1 . Syntax, judgement and inference

A type a : A

[x : Al

B(;r) type

nccA (a , . . . , b) : B(a)

[y : Cl

b(y) : B (constr(y))

Rule 1 .18: A proof rule

30

In this way we can see the elimination rule as a consequence of the in

troduction rule and the computation rules. Further illustrations will be

provided in the next chapter where we present some useful types.

If we consider alternative computation rules then we will derive different

elimination rules. This is what we will, in fact, do in Part Ill.

Now, at last, we have a principled reason for rejecting ton k without throw

ing our logical baby away with the bath water: the ton k elimination rules

are clearly not elimination rules which we can derive from the two ton k

introduction rules given, and from our understanding of how to make use

of a canonical proof witness of A ton k B.

1 .4.8 Sum mary of the relationsh i p between the ru les

The relationship between the introduction, computation and elimination
rules can be summarised:

• Introduction rules of a special form are taken to be self-justifying.

They introduce canonical objects of the type involved.

• Computation rules tell us how to compute with the non-canonical

constant associated with a type. We formulate these by consider

ing the introduction rules in conjunction with our intuitive grasp of

computation.

• The elimination rule will have as a premiss a judgement that we have
some object of the type in question. The elimination rule is essen

tially a consequence of the introduction and computation rules. The

1 . Syntax, judgement and inference 31

elimination rule can also be thought of as a typing rule for expres

sions formed with a non-canonical constant.

1 .5 Chapter Summary

In this chapter we have introduced a number of key notions:

• the theory of aritied expressions;

• the judgement forms used in M-LTT;

• the logical and computational readings of the judgement forms;

• the syntax of the proof rules, and of the computation rules;

• the proof-theoretic justification of the rules.

2. Some useful types, and app l i cations

I n Chapter 1 w e introduced the framework of M-LTT. In this chapter we

will present some types. The types can be organised into a number of

groups:

• the types which have a logical interpretation:

- disjoint union of two types: +,
- diSjoint union of a family of types: L,

- Cartesian product of a family of types: n,

- the empty type,

• the enumerated types;

• some inductively defined types common in programming:

- the natural numbers,

- polymorphic lists,

- binary trees,

• well-order types: �V;

• equality types: EQ, I D .

This organisation is not completely consistent. For example, the empty

type is an enumerated type and has a logical interpretation, and the n

types have a significant functional interpretation in addition to their logi

cal interpretation.

In this chapter we will also illustrate some uses for these types.

2. Some useful types, and appl ications 33

2.1 ' Logical ' types

In this section we will present the rules for dealing with the +, L, n , and
empty types. These types, via the Curry-Howard propositions as types

analogy [51] and the Brouwer-Heyting-Kolmogorov (BHK) [64] interpre

tation of intuitionistic logic, allow us to represent constructive logic directly

in type theory. We outline this representation in §2.3.2.

2.1 .1 Disjoint u n ion of two types : +

If A and B are types we can form their disjoint union. So, the formation

rule for the + types is:

A type B type
------ + Form

A + B type

Rule 2.1 : + formation

The introduction rules are:

a : A
----- + Intro L
i n l (a) : A + B

Rule 2.2: + introduction on the left

b : B
----- + Intro R
i n r (b) : A + B

Rule 2.3: + introduction on the right

It is implicit in both these rules that A + B is well-formed, that is that

A and B are both types. For clarity the well-formedness judgements are

often omitted.

2. Some useful types, and appl ications 34

Rules 2.2 and 2.3 are single-ended introduction rules which meet the com

plexity condition, and thus we can take them to be self justifying. Next

we construct computation rules for a non-canonical constant, and then we

construct an elimination rule.

The non-canonical constant associated with the + types is called when, and

the rules for its evaluation are as follows:

and:

f -+ i n l (l) d(l) -+ d'
--------- when Comp

when (d, e, f) -+ d'

Rule 2.4: when computation 1

f -+ i n r (r) e (r) -+ e
'

---------- when Comp
when (d, e , f) -+ e'

Rule 2.5: when computation 2

The computation rules formalise our understanding of how we can com

pute with an expression which can itself be reduced to one of the forms

i n r (a) or i n l (b) . As we stated in § 1 .4.6 the computation rules describe lazy

computation. In when computation one of the auxiliary arguments will not

be evaluated. Notice also that the computation rules tell us nothing about
how to compute when (d, e, f) if f evaluates to anything other than i n r (a) or

i n l (b) .

The elimination rule for + is:

[z : A + B] [x : A] [y : B]

f : A + B C(z) type d(x) : C (i n l (x)) e (y) : C(i n r (y)) ------------------------- + E
when (d, e, f) : C(f)

Rule 2.6: + elimination

2. Some useful types, and applications 35

The conclusion of this rule is a judgement about the type of when (d, e, I) .

The first premiss:

f : A + B

tells us that f evaluates to a canonical object of type A + B: either the left

injection of an object of type A, or the right injection of an object of type B.

The third and fourth premisses:

[x : A]

d(:r) : C (i n l (x))

and:

[y : B]

e (y) : C (i n r (y))

ensure that d(x) and e (y) evaluate to values in a suitable type. A suitable

type, in this instance, is a type which is a family over A + B. This ex

plains the second premiss, and thus gives us the type of the expression

when (d, e , I) .

There are two rules for the equality of expressions formed with when :

[z : A + B] [x : A]

a : A C (z) type d (x) : C (i n l (x))

when (d, e , i n l (a)) = d(a) : C (i n l (a))

Rule 2.7: Equality of expressions involving when 1

and:

2. Some useful types, and applications 36

[.: : A + B] [y : B]

b : B C(z) type e (y) : C (i n r(y))

when (cl, e , i n r(b)) = e (b) : C (i n r (b))

Rule 2.8: Equality of expressions involving when 2

These rules are justified by considering the computation rules for when .

Because evaluation is lazy we do not need to have a premiss involving e
in Rule 2.7, nor one involving cl in Rule 2.8.

We will not give such a detailed justification of the subsequent rules,

nor present the rules for the equality of expressions formed using non

canonical constants, as these all, generally, fall into the same pattern.

2.1 .2 Disjoint u n ion of a fami ly of types: L types

If B is a family of types over A we can form L { A, B) :

[x : A]

A type B(x) type
------- [Form

L (A , B) type

Rule 2.9: [formation

The values in [(A , B) are pairs:

a : A b(a) : B(a)
------- L I
pai r (a , b) : [(A, B)

Rule 2.10: [introduction

The non-canonical constant associated with the [types is called spl it and

its computation rule is:

2. Some useful types, and applications

c ---+ pa i r (a , b) cl(a , b) ---+ cl' . ----------- spl it Comp
sp l i t (cl, c) ---+ d'

Rule 2.11 : spl it computation

The elimination rule is:

[z : I(A , B)]

[x . A 1
y(w) : B(w) [w : A]

c : I (A. , B) C(z) type cl(x , y) : C(pa i r(:r , y)) . -------------------- I Ehm
sp l it (cl, c) : C(c)

Rule 2.12: I elimination

37

We justify this rule with the following argument. The premiss c : I(A , B)

tells us that c evaluates to the form pai r (a , b) . The second premiss tells us
that C is a family of types over L (A , B) . The third premiss:

[x : A 1
y(w) : B (w) [w : A]

d(x , y) : C(pa i r (x , y))

is a judgement which allows us to make use of the computation rule to

make a judgement about the type of spl it(c, d) . There is only one introduc
tion rule for L, so we only require one such premiss.

We can use spl it to define fst:

fst(p) =def spl it((x , y)x , p)

and snd:

snd (p) =def spl it ((x , y)y , p)

2. Some useful types, and applications 38

2.1 .3 Non-dependent L

If B is not a family of types over A, i .e. we can make the judgement B type

then we make the definition:

A x B =def [(A, (x)B)

2.1 .4 Cartesian product of a fami ly of types: n types

If B is a family of types over A we can form n (A , B) :

[x : A]

A type B (x) type
------- n Form.

n (A, B) type

Rule 2.13: n formation

[x : A]

b (x) : B (x)
----- n Intro.
>' (b) : n (A , B)

Rule 2.14: n introduction

Again we have left implicit the judgements that A is a type and B a family
of types over A. We follow the same pattern that we have used before to

produce the associated computation rule and elimination rule.

f --+ >.(b) d(b) --+ d' .
--------- fu nspht Comp.

fu nspl it (d, f) --+ d'

Rule 2.15: fu nspl it computation

2. Some useful types, and applications

[z : n (A, B)] [y (x) : B (x) [x : A J J

f : n (A. B) C(z) type a (y) : C(>. (y))
------------------ n Elim.

fu nspl it (a , 1) : C(j)

Rule 2.16: n elimination

39

We may choose to use apply rather than the fu nsp l it as the non-canonical

constant, as this is more familiar to computer scientists.

We can make to following definition:

apply (j, x) =def fu nsp l it ((y) (y (x)) , 1)

We evaluate apply (j, a) as:

b(a) � c
----- =. . {3

f � >. (b) (y) (y (a))b � c
.

. ----------- fu nspht Comp.
fu nspl it ((y) (y (a)) , 1) � c
--------- =def

apply (j, a) � c

Rule 2.17: Evaluating apply (j, a)

The use of syntactic equality is not, strictly, a step of computation. We

have written it as if it were for clarity. We will also do this when we use

syntactic equality in inference rules.

We can write this rule as apply computation:

f � >.(b) b(a) � c
--------- apply Comp.

apply (f, a) � c

Rule 2.18: apply computation

From this we obtain an alternative n elimination rule:

2. Some useful types, and applications 40

f : n (A , B) a : A
------- n Elim.

apply (j, a) : B(a)

Rule 2.19: Alternative n elimination

2.1 .5 Non-dependent n

If B is not a family of types over A, i.e. we can make the judgement B type
then we make the definition:

A -+ B =def n (A, (x) B)

2.1 .6 The two abstractions

We have now seen two sorts of abstraction:

• the syntactic abstraction introduced in § 1 .1 ;

•). abstraction.

To grasp the difference between them consider the three expressions

• succ

• (x) (succ(x))

•). (succ)

where succ is a constructor of the type Nat as described in §2.4.1 below.

(x) (succ(x)) and succ are syntactically equal. As succ is an unsaturated ex

pression of arity 0 8--+ 0 it does not make sense to ask what value succ has.

On the other hand,). (succ) is not the same as succ. Syntactically, it is the

application of). : (0 8-+ 0) 8-t 0, to succ : 0 8-t o. So). (succ) is a saturated

expression. We can show).(succ) : Nat -+ Nat:

2. Some useful types, and applications

[x : Nat]
----- Nat I
s u cc (x) : Nat ------- � I

A(SUCC) : N at � Nat

Rule 2.20: A(SUCC) is a function

41

Thus in M-LTT we make a distinction between s u cc the constructor and

A (SUCC) the function.

2.2 Fin ite sets, or enu merated types

We can form enumerated types. The formation rule for an enumerated

type with n objects is:

Rule 2.21 : Enumerated type formation

For each enumerated type there are n introduction rules, where i runs be
tween 1 and n :

Rule 2.22: Enumerated type introduction

We will have n rules for the introduction of equal elements of this form,
where i runs between 1 and n :

Rule 2.23: Introduction of equal enumerated types

2 . Some useful types, and applications 42

The general form of the non-canonical constant for the enumeration types

. is a case expression. In general case{X l , . . . ,Xn } will take n + 1 arguments and

will have n computation rules like this, again where i runs between 1 and

n :

a ---+ X i di --+ d'
, case{X l , . . . ,Xn } comp case{xl • . . . ,xn } (d1 , . . . , dn , a) --+ d

Rule 2.24: case{X l • . . . • Xn } computation

So, each enumeration type will have an elimination rule of this form, with

n premisses of the form di : C(xd, where i runs between 1 and n :

C(z) type

Rule 2.25: Enumerated type elimination

And there will be n rules for the equality of expressions formed with the

non-canonical constant:

a : {X l , " " Xn } C(z) type di : C(Xi) .
------------------ Eq Enum ehm

case{xl , . . . ,xn } (d1 , . • . , dn , a) = di : C(a)

Rule 2.26: Equality of expressions involving case{Xl , . . . ,Xn }

2.2.1 Booleans

The type of Booleans, Bool, can be defined:

Bool = def {true, fa lse}

2 . Some useful types, and appl ications

if b then d else e =def casesool (d, e, b)

2.2.2 The empty type

43

The empty type is a special case of an enumeration type. The literature is

curiously confused at this point. It is very tempting simply to generalise

Rules 2.21. . . 2.26 with the case when n is O. This is what Martin-Lof (page

65 of [77]) and Nordstrom et al (page 47 of [88]) do, and what Thompson

invites us to do for ourselves (Exercise 4.20 on page 100 of [110]) . Unfortu

nately this leads us to write a rule down like:

Rule 2.27: A putative empty type introduction rule

where i is in the range 1 . . . o. It is certainly not at all clear what this means.
Here we might make an analogy with the following explanation of expo

nentiation: we evaluate 2n by writing down n twos and multiplying them

all together. This explanation is inadequate because it fails to tell us how

to evaluate 2° : writing down no twos and multiplying them all together

seems a difficult task, and certainly does not explain why 2° is 1 . It is

possible to argue that the sequence 1 . . . 0 is the empty sequence, but this

merely begs the question. Why should we need to refer to the empty se

quence to explain the empty type? We shall therefore deal with the empty
type directly.

The formation rule is simple:

-- Empty form
{ } type

Rule 2.28: {} formation

2. Some useful types, and applications 44

The empty type obviously has no introduction rules: it is empty. There

can be no canonical object of the empty type.

We now have the task of explaining the form of the computation rules for

caseO and justifying the elimination rule for n .

The elimination rule will have at least:

a : n

and:
[z : nJ

C (z)type

as premisses, and

caseo (a) : C (a)

as a conclusion.

We expect that there will be no other premisses, as there are no introduc
tion rules. Recall that the meaning of a typing judgement a : A is that

evaluating a will give us a canonical element of A. So if we are to justify a

rule with the judgement case{} (a) : C (a) as a conclusion we are forced to

explain how to evaluate case{ } (a) , that is we must give a computation rule

for caseO . This is another point at which the literature is confused.

On page 19 of [4] Backhouse et aL state:

'Since there are no introduction rules there are no computation
rules. Any attempt to evaluate 0 - el i m (r) may thus be consid

ered as a divergent computation.'

Where 0 - e l im is caseO . Backhouse et aL use the expression 'computation

rule' to refer to the (type) rules for the equality of expressions involving

non-canonical constants (for example Rules 2.45 and 2.46).

On page 66 of [77] Martin-Lof states:

2. Some useful types, and applications

' . . . the set of instructions for executing a program of the form

Ro (c) is vacuous. It is similar to the programming statement

abort introduced by Dijkstra1 . '

45

Ro(c) is caseO (c) . It is implicit in Martin-Lof's presentation that there is a

rule for the equality of expressions involving caseO '

Following exactly the same pattern as we have followed for all the other

types we produce a computation rule for caseO as:

d --+ d'
------ case{} comp
case{ } (a) --+ d'

Rule 2.29: case{} computation

So we get this elimination rule:

[z : { }J

a : { } C (z) type .
------ { } ehm

caseO (a) : C (a)

Rule 2.30: { } elimination

Informally: if we have an object of the empty type then we can construct

an object in any type.

We can also justify this rule for the equality of expressions involving case{} :

[x : { }J [z : { } J

a : { } C (x) type y(z) : C(z) .
------------ { } ehm eq

caseO (a) = y (a) : C(a)

Rule 2.31 : Equality o f expressions involving caseO

1 In [21) . (Martin-Lof's footnote.)

2. Some useful types, and applications 46

Informally: if we have a object of the empty type then we can construct an
object equal to any object in any type. This rule is the one which Backhouse

et al reject.

We have spent a fair amount of time discussing the empty type and its

rules. The empty type would seem to be a simple type, and explaining its

rules should be easy. The confusion in the literature seems to belie this.

We might find this worrying as we have asserted that the explanation of

rules, and the development of the theory is simple and straightforward:

perhaps our semantics are not as simple as we would like to make out.

2.3 Applications

We have introduced a fair amount of material so far. It is worthwhile to

pause here and sketch out some applications of what we have built up .

2.3.1 Defi ning +dj

We can use the L: and enumerated types to define the disjoint union of two
types:

A +dj B =def L:({a , I } , case{o, l } (A, B))

We can show:

[x : {O , l }] A type B type
---- Enum Form ----------- {O , l } Elim.'"
{a , I } type case{o, l } (A, B, x) type
-------------------- L: Form

L:({a, I } , case{o. l } (A , B)) type

A +dj B type

Rule 2.32: Derivation of +dj formation

2. Some useful types, and applications 47

We have used some sleight of hand here. The inference labelled I {a , I }

Elim.*' is not an instance of the {a , I } elimination rule as the conclusion

is a judgement of the form T type, rather than of the form t : T. We will

justify this sleight of hand when we discuss universes in §2.7.

We can present Rule 2.32 as the following derived rule:

A type B type
------ +dj Form

A +dj B type

Rule 2.33: +dj formation

which is exactly Rule 2.l .

We can show, again with a little sleight of hand:

a : A
--- {O , l } I
0 : {O , l } a : case{o. l } (A, B, O)

L I
pai r (O , (x) a) : L ({O , l } , case{o. l } (A, B))

pai r (O , (x) a) : A +dj B

Rule 2.34: +dj introduction

We can construct a similar proof for pa i r (l , (x)b), and hence can define i n l
and i n r as:

i n l (a) =def pa i r (O , (x) a)

i n r (b) =def pa i r (l , (x)b)

Finally, we can define when as:

when (d, e) =def spl it ((p, q)case{o. l) (d(q (p)) , e (q(p)) , p))

and we can then derive the elimination rule for +dj '

The fact that we can define +dj in terms of L and {a, I } raises the issue of

whether we should. We return to this theme at the start of Chapter 5.

2. Some useful types, and applications

2.3.2 Representi ng the logi cal constants

48

In this section we outline how we can use the L, n ,+, and empty types, via

the Curry-Howard propositions as types analogy [51] and the Brouwer

Heyting-Kolmogorov (BHK) [64] interpretation of intuitionistic logic, to

represent constructive logic directly in type theory.

Disjunction

Recall that in the BHK-interpretation of intuitionistic logic a (direct) proof
of A V B consists of either a proof of A, or a proof of B, along with an

indication of which it is. A (canonical) object of type A + B is either an

object of type A, or an object of type B, together with a tag which tells us

which it is. Hence we see that we can make the following definition:

A v B = def A + B

We now define two judgements: A prop is a synonym for A type, and A true
is an abbreviation for a : A. Now we can re-write Rules 2.2 and 2.3 as:

and:

A true
---- V Intro L
A V B true

Rule 2.35: V introduction on the left

B true
---- V Intro R
A V B true

Rule 2.36: V introduction on the right

If we suppose that the well-formedness of C does not depend on a proof

of A V B, then Rule 2.6 becomes:

2. Some useful types, and applications

[A true] [B true]

A V B true C prop C true C true
---------------- V Elim

C true

Rule 2.37: V elimination

49

If we were further to suppose that all the propositions mentioned in our

rules were well-formed then we could leave implicit the judgement true,
and recover exactly the usual rules for disjunction.

If we were to use the definition of +dj given in §2.3 .1 we would recover

exactly the explanation of disjunction given in [10] .

Universal quantification

Recall that in the BHK-interpretation of intuitionistic logic a (direct) proof

of (Vx : A)B(x) consists of a method to construct a proof of B(x) for an

arbitrary object of type A. A (canonical) object of type n (A, B) is a function

which, given a arbitrary x of type A constructs an object of type B(x) .
Hence w e see that we can make the following definition:

(Vx : A) B (x) =def n (A, B)

We can recover the usual logical rules for universal quantification by per
forming the same steps we did for disjunction mutatis mutandis.

Existential quantification

Recall that in the BHK-interpretation of intuitionistic logic a (direct) proof

of (3x : .4) B (x) consists of an object a of type A, and a proof of B(a) . A
(canonical) object of type L: (A, B) is an object of type A, paired with an

object of B(a) . Hence we see that we can make the following definition:

(3x : A)B (x) =def L: (A, B)

2. Some useful types, and appl ications 50

We can recover the usual logical rules for existential quantification by per

forming the same steps we did for disjunction mutatis mutandis.

Conjunction

Recall that in the BHK-interpretation of intuitionistic logic a (direct) proof

of A & B consists of a proof of .4., and a proof of B .

A (canonical) object of A x B is an object of type A, paired with an object

of type B. Hence we see that, in this case, we can make the definition:

A & B =def A x B

When we try to recover the usual logical rules we get this rule as an elim

ination rule:

[A, E]

A & B c
----- & Elim

C

Rule 2.38: & elimination

Choosing one of the conjuncts for C allows us to derive the pair of rules

familiar from elementary logic textbooks.

Impl ication

Recall that in the BHK-interpretation of intuitionistic logic a (direct) proof

of A :::> B consists of a method to construct a proof of E, given an arbitrary

proof of A .

A (canonical) object of A --+ B is a function which, given a arbitrary x of

type A constructs an object of type B. Hence we see that in this case we

can make the following definition:

2. Some useful types, and applications 51

A ::::> B =def A -+ B

We can recover the usual logical rules for implication by performing the

same steps we did for disjunction mutatis mutandis. The rule Modus Ponens

is obtained from Rule 2.19.

Falsum

Recall that in the BHK-interpretation of intuitionistic logic the is no (direct)

proof of ..1 .

There is no (canonical) object of the empty type, so we see than we can

make the following defini tion:

We can recover the usual logical rules for absurdity by performing the
same steps we did for disjunction mutatis mutandis. Rule 2.30 becomes Ex

Falsum Quodlibet.

Negation

We follow the usual practice and define:

Hence:

-,A = A -+ { }

Bi-impl ication

We also define:

A H B =def (A ::::> B) & (B ::::> A)

- - - -- -------------

2. Some useful types, and applications 52

Summary of the logical types

In this section we have shown that we can formally define the logical con

stants directly in M-LTT. This simplicity of these definitions should not

come as a surprise as we have always been working with an informal cor

respondence. A proposition is something of which we would recognise

a (direct) proof, and a type is something of which we would recognise a

(canonical) object.

2.3.3 Deal ing with don key sentences

Now we look at a very different use of M-LTT.

Formalising sentences in natural language is the bane of the lives of both
beginning logic students and researchers in computational linguistics.

Geach's 'donkey sentences' help us to understand why there are problems

for both the naIve and the sophisticated. Consider the following sentence
(Example 22 from [41]) :

' I f Smith owns a donkey then he beats it.'2

The 'If . . . then . . . ' form indicates to us to formalise this sentence with an

implication. We expect that the implicans will be an existentially quanti

fied statement like:

(:3d) (don key (d) & owns(Sm it h , d))

The implicate will them tell us that Smith beats the donkey. So we expect
to see something like:

beats (Sm it h , X)

2 In the later literature we find out that Smith's first name is Pedro.

2. Some useful types, and applications 53

where X is the donkey. We come up against a problem here: if we are

working in a classical logic we have lost the donkey underneath the exis

tential quantifier. Essentially, the donkey is no longer in scope. We might

propose to get the donkey back into scope with a formalisation like:

(:3d) ((don key(d) & owns(Sm it h , d)) => beats(Sm i th , d))

Unfortunately this looks more like a formalisation of:

'There is a donkey, which if Smith owned, he would beat.'

This is an example of a group of problems related to anaphora resolu

tion. A number of solutions have been proposed to overcoming problems

like this, essentially based on model-theoretic semantics with some inten

sional flavour in the tradition of Montague [23, 80] . The best known are

Kamp's Discourse Representation Theory (DRT) [59, 60], and Barwise and

Perry's Situation Semantics [8, 9] . There are also approaches using dy

namic logic [53], such as [34] .3 DRT, for example, solves the problem above

by introducing discourse referents and discourse representation structures

(DRS's), with their rather complicated scoping rules. Most of the rules re

lating to DRS's are justified by reference to their utility in handling some

phenomenon of (some particular) natural language. On one hand this

means that there is empirical evidence to support them; on the other they

often appear ad hoc.

Instead of adding in tensions as an afterthought we follow the analysis of

donkey sentences given by [106] and [98] and treat the existential quanti

fier as a L: type. The implicans is then:

L:(don key, (d)owns(S m ith , d))

3 There is surely some irony here, in that many computer scientists advocate the use of

declarative programming languages on precisely the grounds that state-based lan

guages are too hard to reason about.

2. Some useful types, and appl ications S4

Notice that if a is an inhabitant of this type then fst(a) is precisely

the donkey which we had previously lost. The implicate can then be

beats(Sm it h , fst(a)) , and so the whole sentence is represented by:

n ([(donkey , (cl)owns (Sm it h , cl)) , (a) (beats(Sm i th , fst(a))))

This analysis was particularly smooth and simple. There was nothing ad

hoc or especially designed to handle anaphora resolution in M-LTT to be

gin with. We have not had to add any extra notions to the ones that we

have already to model the phenomenon we are interested in. If nothing

else Ockham's razor is on our side. Our ability to handle donkey sen

tences is a testament to the value of the simple and careful way in which

M-LTT has been built. Of course, as anyone with any experience of com

putational linguistics might point out, one example, no matter how ele

gant does not prove very much at all. Ranta's monograph [98], however,

provides many more examples and shows that constructive type theory
can have useful applications in computational linguistics and natural lan
guage understanding.

2.3.4 Program development

We are now also at the stage where we can start to explain how M-LTT

can be used for program development. We suppose that we work in a

goal-directed fashion, and start from a specification. A specification for a

program describes the relationship between the input of the program and

the output. For example, we might have the following informal specifica

tions:

1 . take two numbers number, say x and n, and return a number y, such

that yn = x;

2. take a sequence of numbers and return a sequence consisting of the

same numbers arranged in ascending order;

--------------------------------------- ---

2. Some useful types, and applications 55

3. take a string and a description of a grammar and state whether or

not the string is generated by the grammar;

4. take a program and input for it and state whether computation of the

program will terminate on the input.

The first two specifications have an obvious formalisation like:

n (l n , (i)I: (Out , (o) P (i , 0)))

where I n and Out are the types of the input and output, respectively, and

P(i , 0) expresses the desired relationship.

A proof of such a proposition can then be identified with a program which

meets the specification. We have extended the 'propositions-as-types'

analogy with 'propositions-as-specifications' and 'proofs-as-programs'.

We therefore have in M-LTT a single framework in which we can:

• express specifications;

• express programs;

• show that programs meet their specifications.

The second pair of specifications have a slightly different form from the

first pair. The obvious formalisation of 3 is:

n (Str i ng & G ram mar , (i) (G (i) + -.G(i)))

If we were to treat this as a proposition of classical logic then the proof

is trivial, but lacks any computational content. It is clear that this makes

classical logic less well-suited to reasoning about programs, at least if we

wish to retain the simple 'proofs-as-programs' interpretation. The brevity

of the classical proof remains attractive, and there is a body of work on the

relationship between classical and intuitionistic logic and how to extract

constructive content from classical proofs (see, for example, § 3 of Chapter

2. Some useful types, and applications 56

2 of [114], and [39, 85, 86]) . Continuation-passing-style transformations, of

the form described in Chapter 3 for much of the basis for this work.

M-LTT gives us a balanced, elegant and integrated framework for pro

gram development. In other frameworks we typically expect to use three

different languages: a specification language, a programming language

and a logical language: each more-or-Iess-well suited to its individual task

and each typically ill-suited to co-exist with the others. As with our ability

to handle donkey sentences we see great advantages arise from clarity and

simplicity.

In M-LTT it is clear that specifications are not programs, and ought not

to be thought of as such.4 The informal specifications that we presented

above were chosen partly to illustrate that, informally, this is the case, too.
It is clear that there is no algorithmic content to specification 1 : what part

of this tells us how to compute an nth root? And we would have to stretch

the notion of 'program' beyond breaking point to accept specification 4 as

a program.

Our 'proofs-as-programs' interpretation has one important corollary: ill

M-LTT typability implies termination. Since the judgement:

p : S

tells us that p has a value of type S it tells us that computation of p termi

nates. This is a very desirable property, but the price to be paid for it is to

limit the class of programs that we can write. The work in Chapter 6 is an

attempt to address part of this problem.

There are elements of the 'proofs-as-programs' paradigm which one might

consider undesirable. In particular, an object of a L type is a pair consisting

of (under this interpretation) a program and the evidence that it is correct.

While we are looking for the correctness proof it is of great interest, but, as

soon as we have it we are only really interested in the program.

4 [55] comes to the same conclusion, although via a different route.

2. Some useful types, and applications 57

We have not yet introduced enough types to do much in the way of pro
gramming. In the following section we shall introduce inductively defined

types which the computer scientist will recognize as typical of the induc

tive data types found in modern (functional) programming languages.

2.4 Ind uctively defi ned types

We look at three inductively defined types:

• the natural numbers;

• polymorphic lists;

• binary trees.

For each of these types the non-canonical constant that we present in this

section embodies structural recursion. Structural recursion on the natural

numbers is called primitive recursion, after [63]. The use of these differ
ent names by mathematicians and computer scientists may, perhaps, be

explained by observing that mathematicians often only work directly with
one inductively defined data type: the natural numbers; whereas com

puter scientists typically expect to work directly with many different in

ductively defined data types: the natural numbers, lists, trees, syntactic

terms and so on.

Structural recursion is a weak form of recursion. It is well-known that

there are functions which are not definable using structural recursion: an

Ackermann functions being the usual example given. As we shall see,

defining programs using structural recursion has one crucial advantage:
termination essentially comes for free.

From one point of view we have a very pleasant situation: we are satisfied

with the rules that we have, and that we can extend the theory securely.

5 Ackennann introduced this function in [I], and a number of variants of it have ap

peared since. See remark 1 .2 .8 of [47].

2. Some useful types, and applications 58

We also have the property that if a program is well-typed then its eval

uation terminates with a value of the type. From another point of view

the situation is not so good: the functions which we construct using struc

tural recursion are often not very efficient, and we know that there are

techniques from functional programming which allow us to write more

efficient programs. For example, q u icksort is not expressed using struc

tural recursion over lists. As computer scientists, we should be concerned

with efficiency and expressiveness.

There are two obvious ways to address this problem: indirect and direct

approaches. In the indirect approach we represent the type we are inter

ested in in another, where recursion over the new type corresponds to a

different recursion over the type we are interested in. Examples, of well

founded recursion, can be found in [69, 87, 89] . The indirect approach

can be rather hard work. The other approach is to use directly a different

form of computation. There is no good reason why structural recursion

has to be the only recursion that we use. If we do choose a different form

of recursion then we have the burden of producing and justifying a new
elimination rule.

2.4.1 Natural numbers

The formation rule for the natural numbers is:

--- NatFormation
Nat type

Rule 2.39: Natural number formation

The introduction rules for the natural numbers are:

---- Nat Introduction 1
zero : Nat

Rule 2.40: Natural number introduction 1

2. Some useful types, and appl ications

n : Nat
----- Nat Introduction 2
succ(n) : Nat

Rule 2.41 : Natural number introduction 2

59

These rules tell us that zero is a canonical object (a value) of type Nat, and

that if n is an object of type Nat (not necessarily a canonical object), then

succ(n) is a canonical object of type Nat.

The structural recursion operator for the natural numbers is usually called

nat rec, and the rules for its behaviour are:

n --+ zero d --+ d'
-------- natrec Comp. 1
natrec(d, e , n) --+ d'

Rule 2.42: natrec computation 1

n --+ succ(m) e (m , natrec(d, e , m ») --+ e'
----------------- natrec Camp. 2

natrec(d, e, n) --+ e'

Rule 2.43: natrec computation 2

Evaluation is about finding a value: in both rules above n is reduced to a

canonical object of the type we have in mind. These rules tell us nothing

about what to do in case n cannot be so evaluated. Evaluation means re

ducing to canonical form. It is from this reduction that we can infer the

types required in the elimination rules.

The elimination rule tells us in what circumstances we can make a judge
ment about a computation involving a natural number. The elimination

rule, which is justified by a consideration of the introduction and the com

putation rules, is:

2. Some useful types, and appl ications

[x : Nat]

[p : Nat 1
q : C(p)

n : Nat C (x) type d : C (zero) e(p, q) : C(succ(p))
--------------------- Nat Elim.

nat rec(d, e, n) : C (n)

Rule 2.44: Natural number elimination

And we also have rules like:

C(zero) type d : C(zero)
------------------- Narrec =
natrec(d, e , zero) = d : C(zero)

Rule 2.45: Equality of expressions involving natrec 1

[x : Nat]

[p : Nat 1
q : C(p)

n : Nat C (x) type d : C (zero) e(p, q) : C(succ(p)) --------------------- Narrec =
natrec(d, e, succ(n)) = e (n , natrec(d, e, n)) : C(succ(n))

Rule 2.46: Equality of expressions involving natrec 2

60

In Rule 2.45 we need only know that C(zero) is a type, whereas in Rule

2.46 we need to know that C is a family of types over Nat .

2.4.2 Polymorp h i c l i sts

The list formation rule is:

A type
------ List Form
List (.4) type

Rule 2.47: List formation

2. Some useful types, and appl ications

Lists are very like natural numbers:

A type
---- List Intro. 1
n i l : List(A)

Rule 2.48: List introduction 1

For clarity we retain the judgement A. type in this rule.

a : A as : List (A)
------- List Intro. 2
cons(a , as) : List (A)

Rule 2.49: List introduction 2

61

The judgement A type need not be explicitly stated in this rule as A must

be a type before the judgement a : A makes sense.

These rules tell us that n i l is a canonical object (a value) of type List(A) (so

long as A is a type), and that if a is an object of type A and as an object of
type List(A) (a and as need not be canonical objects), then cons(a, as) is a

canonical object of type List(A) .

The structural recursion operator for polymorphic lists is usually called

l istrec, and the rules for its behaviour are:

l ---+ n i l d ---+ d'
------- l istrec Comp.
l istrec(d, e , l) ---+ d'

Rule 2.50: l istrec computation 1

l ---+ cons(a , as) e (a , as , l ist rec(d, e , as)) ---+ e'
.

------------------ l lstrec Comp.
l ist rec(d, e, l) ---+ e'

Rule 2.51 : l ist rec computation 2

2. Some useful types, and applications 62

The elimination rule tells us in what circumstances we can make a judge

ment about a computation involving a list. The elimination rule, which is

justified by a consideration of the introduction and the computation rules,

IS:

[.r : List (A)]

[a : A 1
as : List (A)

q : C(as)

I : List (A) C(x) type d : C (n i l) e (a , as , q) : C(cons(a , as)) . .
----------------------- LIst Ehm

l istrec(d, e , l) : C (l)

Rule 2.52: List elimination

The rules for l ist rec equality are:

and:

C(n i l) type d : C (n i l)
--------- l istrec = 1
l istrec(d, e , n i l) = d : C(n i l)

Rule 2.53: Equality of expressions involving l istrec 1

[x : L ist (A)]

[a : A 1
as : L ist (A)

q : C (a s)

h : A t : L ist (A) C (x) type d : C (n i l) e (a , as , q) : C (cons(a , a .s))

l istrec(d, e cons(h , t)) = e (a , a s , l ist rec(d, e , t)) : C (cons(h , t))

Rule 2.54: Equality of expressions involving l ist rec 2

2. Some useful types, and applications

2.4.3 B i nary Trees

Binary trees follow exactly the same pattern as lists.

The formation rule for binary trees is:

A type
------ BinTree Form
B i n Tree(A) type

Rule 2.55: Binary tree formation

63

A tree is either a leaf or a node with a value and left and right sub trees, so

the introduction rules are:

and:

A type
------ BinTree Intro
leaf : B i nTree(A)

Rule 2.56: Binary tree introduction 1

a : A left : B i nTree(A) right : B i nTree (A)
----------------- BinTree Intro

node(a , left, r ight) : B i nTree(A)

Rule 2.57: Binary tree introduction 2

The computation rules for t reerec are:

t ---+ leaf d ---+ d'
-------- t reerec Comp
treerec(d, e, t) ---+ d'

Rule 2.58: treerec computation 1

2. Some usefu l types, and applications 64

t --+ node(u, I, r) e(vJ T, treerec(cl, e , l) ' t reerec(cl, e, r)) --+ e'
------------------------ t reerec Comp

treerec(cl, e , t) --+ e'

Rule 2.59: t reerec computation 2

The usual elimination rule for binary trees is:

[u: : B inTree(; l)]

y : rl

I : BinTree(A)

T : BinTree(A)

u : C(l I)
v : C(rr)

t : B in Tree(A) C(w) type cl : C(leaf) c (y , I. r, u, v) : C(node(y . I , r))

t reerec(d, c , t) : C(t)

Rule 2.60: Binary tree elimination

Since the rules for t reerec equality follow exactly the same pattern as those

for l ist rec equality we do not present them.

2.5 Well-orderi ngs

If we think of well-orderings as well-founded trees we see that we must

explain how trees may be formed, and for each way of forming a tree what

the parts of the tree are. Thus we need to supply a constructor set A and a

selector family B, where B is a family of types over A. Hence, the formation

rule for the well-order types is:

2. Some useful types, and applications

[x : A]

A type B(.r) type
------- Hi form

vV(A, B) type

Rule 2.61 : VV formation

65

If we think of values in vV(A, B) as well-founded trees, then we see that
such a tree is described by giving an object a of type .4 and a function from

B(a) to vV(A, B) .

So, the introduction rule for the well-order types is:

[x : B (a)]

a : A b(x) : vV (.4, B) .
--------- vv Intro

s up (a , b) : H'(A , B)

Rule 2.62: VV introduction

The recursion operator for well-orderings is usually called wrec, and the

rules for its behaviour are:

a --t sup (d, e) b (d, e , (x)wrec(e (x) , b)) --t b'
----------------- wrec Comp

wrec(a , b) --t b'

Rule 2.63: wrec computation

The elimination rule for well-orderings is:

2. Some useful types, and applications

[v : vV(A, B)]

[y : A 1 z (.r) : vV(A , B) [x : B (y)]

ll (w) : C (z (w)) [w : B(y)]

a : W(A , B) C (u) type b(y , z , u) : C(sup(y , z)) . --------------------- ItV Ehm
wrec(a , b) : C (a)

Rule 2.64: W elimination

66

Crudely, in intuitionistic mathematics a spread is a tree in which each node

has at least one immediate sub-node. Consequently, in a spread every

path is infinite. A fan is a tree where each node has only finitely many

immediate sub-nodes. Again crudely, a fan is barred if every path in the

tree is finite. The vV elimination rule is equivalent to bar induction. For

a less crude discussion of the mathematics of spreads see Chapter 3 of

[25], §4.8 of [114], and [14] . The relationship between bar induction and W
elimination is discussed in more detail in§7.6 of Chapter 11 of [115] .

2.5.1 Usi n g wel l-orderi ngs to represent b i nary trees

We can use ItV types to represent the inductively defined types we pre

sented in §2.4. We use binary trees (§2.4.3) as an example. In order to

represent such trees as well-orders we must give the constructor set A and
a selector family B. We use the same sleight-of-hand here that we used in

§2.3.1, and which we explain in §2.7

For trees of values of type D we begin by making this definition:

We proceed by defining:

A =def (D) ({ leaf} + D)

B(i n l (leaf)) =def { }

B (i n r(d)) =def { left , right}

2. Some useful types, and applications 67

In other words:
B =def when ((y) { } , (y) { left, r ight})

We can then define:

Tree'(D) =def {;V(A (D) , B)

I f we make the appropriate substitutions in the Hl Introduction rule (Rule

2.62), and do a little work, we get the following rules:

and:

D type
---------- Tree' Intro
sup(i n l (leaf) , (i) i) : Tree'(D)

Rule 2.65: Tree' introduction 1

d : D II : Tree'(D) TT : Tree'(D)
-------------- Tree' Intro
sup(i n r (d) , CaSe{ left,right} (l l , TT)) : Tree'(D)

Rule 2.66: Tree' introduction 2

And hence we make the definitions:

and:

leaf' =def sup (i n l (leaf) , (i) i)

node' (cl, l l , TT) =def SU p(i n r(d) , CaSe{left,right} (l l , TT))

We can now see that we have recovered the rules for binary tree intro

duction by comparing Rule 2.56 with Rule 2.65, and Rule 2.57 with Rule
2.66.

We can now plug the definitions that we have made into the {IV elimination

rule (Rule 2.64) . After some work we obtain Rule 2.91 on page 79.

2. Some useful types, and applications

Finally we can define t reerec'(d. E , t) as:

wrec(t ,

(.r , y , z)when((q)d,

(q) e (q, y(left) , y (right) , z (left) , z (right)) ,
x))

68

Thus we have shown how we can use a vV type to represent binary trees.

2.6 Equal ity

We have seen four different notions of equality in M-LTT:

• =def definitional equality, in § 1 . 1 ;

• == syntactic equality, in § 1 .1 ;

• the judgement of two types being equal types, in § 1 .2.3;

• the judgement of two objects being equal objects of a type, in § 1 .2.4.

We now add two further notions of equality, both at the level of types.
These two notions are an intensional and a extensional equality.

2.6.1 I ntensional equal ity: I D

The in tensional equality is the judgement of two objects being equal objects

of a type I dropped' to the level of types.

The I D formation rule is:

A type a : A b : A

I D (a , b, A) type

Rule 2.67: I D formation

2. Some useful types, and applications

The I D introduction rule is:

a : A
------ I D intro
id (a) : I D (a , a , A)

Rule 2.68: I D introduction

69

Rather more useful than this rule, which merely tells us that a is equal to

itself, is the following rule:

a = b : A
------ I D intro'
i d (a) : I D (a , b, A)

Rule 2.69: Alternative I D introduction

The non-canonical constant for I D is called idpeel, and has the following

computation rule:

a --+ i d (c) b (c) --+ b' .
--------- Idpeel Comp

idpeel (a , b) --+ b'

Rule 2.70: idpeel computation

And the elimination rule is:

l : : � 1 z : I D (x , y, A) [w : A]

a : A b : A c : I D (a , b, A) C (x , y, z) type d(w) : C (w, w, id (w))

idpeel (c, d) : C (a , b, c)

Rule 2.71 : ID elimination

2. Some useful types, and applications 70

2.6.2 Extensional eq ual ity: EQ

The ex tensional equality is also the judgement of two objects being equal
objects of a type 'dropped' to the level of types. The formation rule for the

extensional equality is the same as that for the in tensional equality:

A type a : A b : A

EQ (a , b, A) type

Rule 2.72: EQ formation

The introduction rule is different, as there is at most one value in an EQ
type:

a = b : A
------ EQ intro
eq : EQ(a , b, A)

Rule 2.73: E Q introduction

We have lost some information here compared to Rule 2.69.

Working by analogy with Rule 2.70, we call the non-canonical constant to

be eqpeel, and we construct a computation rule for eqpeel :

a --+ eq b --+ b'
------- eqpeel Comp
eqpeel (a , b) --+ b'

Rule 2.74: eqpeel computation

Thus eqpeel (eq, 1) has the same value as f. If we use this observation when

constructing the elimination rule for EQ we get:

2. Some useful types, and applications 71

[: : � 1 :; : EQ(x , y, A) [w : A]

a : A b : A c : EQ(a , b, A) C (x , y , z) type d(w) : C(w, w, eq)

d(a) : C (a , b, c)

Rule 2.75: EQ elimination 1

We also have an elimination rule for EQ which lets us move up to the

judgement of equality:

2.7 U n iverses

eq : EQ(a , b, A)
----- EQ elim

a = b : A

Rule 2.76: EQ elimination 2

Suppose we wish to discuss all types. Is there a way in which we can do

this? One obvious approach is to have a type of types, that is a judgement

of the form:

TYP E : TYPE

Rule 2.77: TYP E a s a type

This was the approach proposed in the first version of Martin-Lof's theory

in 1971 [74] . Alas, adding this judgement renders the theory absurd, as

shown by Girard's paradox [44], itself a variant of the paradox of Burali

Forti. The key failure is treating 'the type of all types' as simply a type, and

the solution is to use a ramified theory, with a hierarchy of 'universes' .

2. Some useful types, and appl ications 72

Informally the values in the universe correspond to types themselves. [77]

presents two different approaches to formally defining universes:

• Tarskian (due to the resemblance with Tarski's notion of truth [108]);

• Russellian (after [100]) .

In the Tarskian approach the values in Uo are the names of the types which

can be formed without involving quantification over types themselves. In

the Russellian approach the values in the first universe Uo are the types

which can be formed without involving quantification over types them

selves.

2.7.1 Tarskian U n iverses

For each of the type forming operations we have a corresponding name,

e.g. List", Nat" , n", L", +" . Thus we have a way to encode the types. We

also have a way to decode, or unquote, the type names. v is a family of

types over the names associated with the type forming operations.6

The rule for the formation of the first universe is:

Uo type

Rule 2.78: Tarskian Uo formation

We have introduction rules for Uo like:

Nat" : Uo

Rule 2.79: Tarskian [fo introduction 1

and:

6 [88] uses � and Set for " and v , respectively. [77] uses T for " , and v is done implicitly.

2. Some useful types, and applications 73

A : Uo

L ist" (A) : Uo

Rule 2.80: Tarskian Uo introduction 2

which reflect the formation rules of the types themselves. Compare Rule

2.79 with Rule 2.39, and Rule 2.80 with Rule 2.47.

The formation rule for v is:

A : Uo

AV type

Rule 2.81 : v formation

We have rules which reflect the need for the unquote of a name to be the

type we named, such as:

Nat"V = Nat

Rule 2.82: Unquoting Nat"

and:

A : Uo

(L ist" (A) t = List (AV)

Rule 2.83: Unquoting L ist"

Universe elimination

Given a fixed collection of type forming operations we can define an op

erator u rec and an elimination rule for Uo. We have stressed earlier that

M-LTT is extensible, in the sense that we are free to add new type forming

2. Some useful types, and appl ications 74

operations. Since we cannot lay down what all the possible type forming

operations are we cannot provide an 'absolute' universe elimination rule,

only one which deals with the universe which we may have constructed

so far. This process may be further complicated by the way we have de
scribed our type forming operations. For example, we have described how

to form enumerated types (in §2.2) by presenting type forming operations

which are informally indexed (Rule 2.22). In order to define a universe

elimination rule we must formalise the indexing operation, as is done in

[88] or [76] .

In order to illustrate the universe elimination rule we will suppose that we

have a universe where we have only defined Nat and n .

The computation rules for u rec are:

and

t --+ Nat/\ Cl --+ a'

u rec(a , b, t) --+ a'

Rule 2.84: u rec computation 1

t --+ n /\ (A, B) b(A , B , u rec(a , b, A) , (x) (u rec(a , b, B { x)))) --+ b'

u rec(a , b, t) --+ b'

Rule 2.85: u rec computation 2

Rule 2.86 on the next page is the Uo elimination rule.

Writing out the u rec computation and Uo elimination rules for universes

where more types have been defined is merely a case of extending these

rules mutatis mutandis.

The types in Uo are called small types.

We can now discuss the sleight of hand that we used when defining +dj

using {a , I } and L in §2.3 .1 . Recall that we used the {a , I } elimination

2. Some useful types, and applications 7S

[z : [oJ

c : Uo

l' : Uo

y (w) : Uo [w : xVJ

u : C (x)
v (t) : C (y (t)) [t : xVJ

C (z) type a : C(Nat") b (x , y , u , v) : C(n" (x , y))
------------------------ [0 Elim

u rec(a , b, c) : C (c)

Rule 2.86: Tarskian Uo elimination

rule with a judgement of the form T type. Now that we have introduced

universes we can justify this judgement:

[x : {a , I } J A" : Uo B" : Uo
---------- {a . I } Elim

case{o, l } (A" , B" , x) : Uo
---- {a , I } Form --------- v Form
{a , I } type case{o, l } (A" , B" , x r type
--------------------- L Form

L:({ a , I } , (x)case{o, l } (A" , B" , x)V) type

Rule 2.87: Derivation of +dj formation using universes

So, if A and B are small types then we can form A +dj B. We can perform

a similar analysis on the +dj introduction rule that we derived (Rule 2.34),

and the rules that we gave for the definitions of binary trees using VV types

in §2.5.1 also require us to use universes.

2.7.2 H ierarch ies of U n iverses

We can extend the process of universe construction to construct higher

universes for ourselves: U1 , U2 . • • Membership of universes is not transi

tive. For example, just as it does not make sense to go from zero : N at and
Nat" : Uo to zero : [/0, so it does not make sense to write Nat : U1 • As

a more concrete example consider the administrative structure of world

2. Some useful types, and applications 76

soccer: Lorenzo Amoruso is a member of Rangers Football Club, Rangers

Football Club is one of the member clubs of the Scottish Football Associ

ation (SFA), and the SFA is a member of the International Federation of

Football Associations (FIFA). Lorenzo Amoruso, is not however, a mem

ber of the SFA, nor is Rangers is a member of FIFA. This analogy can also

help clarify the notion of different universes at the same level which we

had when dealing with universe elimination. The SFA is a member of the

European Union of Football Associations (UEFA). Thus FIFA and UEFA

appear as different universes at the same level.

2.7.3 R ussel l ian U n iverses

Defining Russellian universes is syntactically simpler than defining Tar
skian universes. We dispense with the naming operation and treat the

types themselves as members of the universe. The [0 formation rule (Rule

2.78) remains the same, but the Uo introduction rules now look like:

Nat : Uo

Rule 2.88: Russellian Uo introduction 1

and:

A : Uo

List (A) : Uo

Rule 2.89: Russellian Uo introduction 2

Rule 2.81 now takes the form:

A : Uo
A type

Rule 2.90: Inhabitants of the Russellian Uo are types

2. Some useful types, and applications 77

The Russellian style may be criticised as rather cavalier, and the we should

not confuse things with their names. However, it is more convenient to

work with.

2.8 Usi ng Marti n-Lof's Type Theory in practice

As we have stated before M-LTT provides us with an integrated frame

work in which we can specify and derive programs. Because of the extra

information about program correctness it is reasonable to expect that writ

ing programs in M-LTT is harder than writing unspecified programs in

some other language. However because of the integrated nature of M-LTT

writing proven correct programs in M-LTT is (in our opinion) easier than

in many other theories. Programming in M-LTT can involve a lot of rela

tively low-level activity, for example, we are often asked to show that some

type is well-formed. We also often need to keep track of assumptions, and

perform substitutions into rule schemas. These tasks can divert our focus

from the real task in hand: finding an algorithm. One obvious solution
to this is to provide some automated support. There are computer-based

proof-assistants, such as [17, 52, 58, 72, 91] to help us to use M-LTT (or

closely related theories) for programming.

We have already pointed out another problem with the use of M-LTT for
programming: the programs that we derive, although correct, are often

very inefficient.

There are also programs which M-LTT is not well suited to expressing,

interactive systems, for example.

In the next chapter we introduce continuations, a programming technique

which will allow us to address these last two issues.

2.9 Chapter S u m mary

In this chapter we have:

2. Some useful types, and applications 78

• defined and described a collection of useful types, including those

types which allow us to express logic, and those types which we can

use to represent data types common in programming;

• given examples of how we can define within M-LTT some of the

types which we typically take as primitive;

• discussed equality and universes;

• explained some of the application areas of M-LIT.

d : D

ll : Tree'{ D)

IT : Tree'(D)

11 : C{l l)

[1 1 : Tree'{ D)] l : C(1'r)

a : Tree'(D) C (v) type J(leaf, (i) i , u) : C(leaf') g(d, case{ left ,right) (Il , 1'7') , case(left,right) (1 1 , i)) : C(node'(d, Il , 1'1'))
wrec{ a , when(f , g)) : C{a)

(J)
o

3
co

c:
C/l
co
......
c:

Part 1 1

Conti n u ations

3. Tai l-recursion, and conti nuations

In this chapter we will introduce tail recursion and discuss continuations.

Continuations have been put to a number of uses. For example:

• continuations have applications in compiling;

• continuations can be used to extract constructive content from clas

sical proofs;

• continuations can be used to express control in functional program

ming, and to deal with other 'stateful' computations;

• continuations can allow us to discuss computations which we expect

to continue more-or-less indefinitely, a facility we require of an oper

ating system;

• continuations have applications in denotational semantics.

In Chapter 4 we point to an analogy between continuation passing and

type lifting in categorial grammars.

We give a very gentle introduce tail-recursion and continuations in §3.1,

and §3.2 we present continuation-passing variants of some familiar func

tions, in order to get a feel for programming with continuations. In §3.3
we outline some of the uses of continuations.

3.1 I ntrod ucing tai l-recu rsion and conti nuations

A computation rule involves a tail call if it is of the form:

3. Tail-recursion, and continuations 82

Xl -+ :r� 4' (x� , . . .) -+ a

4>(x [" ") -+ a

Rule 3.1 : A tail call

This can be read roughly as: 'To evaluate the function <p, we must evaluate

the function 4' .' Alas the crudity of this reading leads to two different

definitions of tail recursion:

• the first is that a function is tail-recursive if recursive calls are tail calls

(for example, § 10.2 of [71]);

• the second is that a function is tail-recursive if all calls are tail calls

(for example, §6.8 of [110]) .

As a simple example we look at 3 versions of a function to compute the

length of a list. Our examples are expressed in the programming language
Haskell [19, 93, 111] .

We will call a function which i s not tail-recursive a direct function. The

function l en in Program 3.1 is a direct function to compute the length of a
list.

l en [a] -) Int

l en [] = 0

l en h : t = 1 + len t

Program 3.1 : The length of a list 1

The function lenl in Program 3.2 is tail-recursive by the first definition,

but not the second. A call to l e n l 1 0 will compute the length of the list

1 .

3. Tail-recursion, and continuations 83

len 1 : : [a] -) Int -) Int

l en 1 [] n = n

len1 (h : t) n = len1 t (n + 1)

Program 3.2: The length of a list 2

The function l en2 in Program 3 .3 is a variant of this function which is tail

recursive by the second definition too . A call to len2 1 f will compute

the value of the function f applied to the length of the list 1 .

len2 : : [a] -) (Int -) b) -) b

l en2 [] k = k 0

len2 (h : t) k = len2 t (\ n -) k en + 1 »

Program 3.3: The length of a list 3

The auxiliary argument k to l en2 in program 3.3 is called a tail junction or

continuation. A function like l en2 is said to written in continuation-passing

style. It is our intention to exploit continuations in the framework of M

LTT. Before we can do this we must illustrate some of the uses of continu

ations.

Informally, a continuation is a function which tell us 'what to do next' [3] .
We can think of the continuation as embodying the 'future' of the com

putation. It is natural to think of state in dynamic terms, so this intuition

helps us to see how continuations give us one way to handle stateful com

putation in a functional setting.

First, however, we build up some familiarity with the use of continuations.

3. Tail-recursion, and continuations 84

3.2 Some simple fu nctions

In this section we shall look at some more simple Haskell functions and

present tail-recursive, continuation-passing versions of them.

We begin by looking at a very simple example, the factorial function:

f ac : : I nt -) Int

f ac 0 = 1
f ac n = n * f ac (n- 1)

Program 3.4: The factorial function

A CPS version of factorial will take a tail function as an auxiliary argu

ment. The tail function expresses how to continue, so the type of our new

function will be Int -) (Int -) a) -) a. We shall call our new function

cpsfac:

cpsfac Int -) (Int -) a) -) a

cpsfac 0 k = k 1

cpsfac n k = cpsfac (n - 1) (\ x -) k en * x»

Program 3.5 : A CPS factorial

A call to cpsfac n f will compute the value of the function f applied to

the value of n ! . Notice that in fac in Program 3.4 the multiplication is

outside the recursion, whereas in cpsfac in Program 3.5 the multiplication

is inside the recursion. This is the typical pattern that we see when we
write a CPS function.

Suppose we call cpsfac 3 k for some arbitrary k. Evaluation will be as

follows (we name some of the expressions involved to aid readability) :

3. Tail-recursion, and continuations

cpsfac 3 k

= > cpsfac 2 (\x - > k (3 * x »

= > cpsfac 1 (\y - > k) (2 * y »

85

-- where k) l S \x -> k (3 * x)

=> cpsfac 0 (\z ->

= > k))) 1

k)) (1 * z » - - where k))

- - where k)))

i s

i s

\y - > k) (2 * y)

\z -> k)) (1 * z)

= > k)) 1

= > k) 2

k 6

Figure 3.1 : Evaluating cpsfac 3 k

3.2. 1 A CPS version of Fibonacci's fu nction

As a second example we look at Fibonacci's function for modelling the

growth of rabbit populations.1 The direct version of Fibonacci's function

that we first write in Haskell looks like:

f i b : : I nt -> Int

f i b 0 = 1

f i b 1 = 1

f ib n = f ib (n - 1) + f ib (n - 2)

Program 3.6: Fibonacci's function in Haskell

Notice that this function is not written in primitive recursive form. Since

we are aware that we shall be interested in functions written in primitive

recursive form in M-LTT we look at a primitive recursive version of Fi
bonacci's function. We define an auxiliary function:

1 The oldest known description is in [68]. [116] gives many interesting properties of

this function.

3. Tail-recursion, and continuations

f ibs : : I nt -) (Int , Int)

f ibs 0 = (1 , 1)

f ibs n = (snd (fibs (n - 1 » ,

snd (fibs (n - 1 » + fst (f ibs (n - 1 »)

Program 3.7: A structurally recursive version of Fibonacci's function

A call to f s t (f ibs n) will compute f i b n.

A neater definition uses a l et :

f i b s : : Int -) (Int , I nt)

f ibs 0 = (1 , 1)

f ibs n = let (1 0 , h i) = f ibs (n- 1)

i n (hi , h i + 1 0)

Program 3.8: A neater version of Fibonacci's function

86

These two functions are essentially the same: the l et just aids readability?
CPS-converting these functions is straightforward: again we supply an

auxiliary argument and again the order of the operations on the right gets
inverted:

cpsfibs Int -) ((Int , I nt) -) a) -) a

cpsf ibs 0 k = k (1 , 1)

cpsfibs n k = cpsfibs (n - 1) (\ (1 0 , h i) -) k (h i , h i + 1 0 »

Program 3.9: A CPS version of Fibonacci's function

Evaluation of cpsf ibs 3 k for some arbitrary k will be as follows (allow
ing for the simplification of arithmetic expressions) :

2 It also allows the compiler to make a major optimisation!

3. Tail-recursion , and continuations

cpsf ibs 3 k

=) cpsf ibs 2 (\ (a , b) -) k (b , b + a))

=) cpsf ibs 1 (\ (p , q) -) k ' (q , q + p))

where k ' i s \ (a , b) -) k (b , b + a)

=) cpsfibs 0 (\ (x , y) -) k " (y , y + x))

=) k ' ' ' (1 , 1)

=) k " (1 , 2)

=) k ' (2 , 3)

k (3 , 5)

where k " i s \ (p , q) -) k ' (q , q + p)

where k ' " i s \ (x , y) -) k ' ' (y , y + x)

Figure 3.2: Evaluating cpsf ibs 3 k

87

We are now at a point where we can make some observations about the
CP5 versions of the functions we have produced. The first observation is

that the time complexity of cpsf ibs is much better than that of f ib. The

second observation is that there is a possibility to optimise the evaluation
of cpsfib . Whatever structure we build to represent the call to cpsf ibs 3

k can simply be replaced by the structure that we build to represent the

call to cpsf ibs 2 (\ (a , b) -) k (b , b + a)) . In fact the algorithm that

we have written is very similar to the C [62] function in Program 3.11 .

The function repeat in Program 3.10 implements a looping construct in

Haskell.

repeat Int -) (a -) b) -) a -) b

repeat 0 f a = f a

repeat n f a = repeat (n- 1) (\x -) f x) a

Program 3.10: Looping

So we see that the use of tail-recursive functions allows us to write algo

rithms which behave like imperative loops, and which a compiler can treat

3. Tail-recursion, and continuations

int fib (int n) {

}

int 10 , h i ;

int i ;

10 = 0 ;

hi = 1 ;

for e i = 0 ; i <= n i++) {

hi = h i + 10 ;
10 = hi - 10 ;
}
return 10 ;

Program 3.11 : Computing Fibonacci's function in C

88

in the same way as it treats an imperative loop. This is a crucial point: us

ing continuations lets us write imperative algorithms in a functional lan
guage. Thus we see that we can use continuations to allow us to handle
computations which involve state. The use of continuations which we dis

cuss later in this chapter are essentially the application of this observation

to various specific problems.

3.3 Uses of cont inuations

In the previous section we presented some very simple functions and CPS
versions of them. In this section we will describe some of the ways in

which continuations can be exploited. Some of the uses of continuations,

particularly in compiling require us to be able to convert any function into

CPS. CPS conversion was first discussed in [35], and a number of vari

ants have since appeared in the literature. We only discuss here the con

version presented in [94], as we only intend to give a flavour of what is
involved. Fuller discussion and comparison of different CPS conversions

3. Tai l-recursion, and continuations 89

for ..\-calculi can be found in, for example, [54, 109] .

In [94] Plotkin is interested in the relationship between call-by-value and

call-by-name. He defines the following CPS-conversion to allow us to map

terms from a language with call-by-value to one with call-by-name:

X -f ..\k.kx

..\:r . M -f "\k .k(..\x. 1YI)

M 'V -f ..\k./vI(Am .N(An .mnk))

Figure 3.3: Plotkin's CPS-conversion

Where k, m and n are chosen to avoid variable capture in the usual way.

Plotkin proves some theorems relating to the values of AI and Tl when

call-by-name and call-by-value evaluation strategies are used.

The effect of Plotkin's CPS conversion on some terms is shown in Figure
3.4. We have named the newly introduced bound variables kn •

X -f ..\k1 ·k1 x

..\k .kx -f ..\k1 .k1 (Ak . (..\k2 . ("\k3 .k3k) (..\k4 · ("\k5 .k5X) ("\k6 .k4k6k2))))

..\x .x -f ..\k1 ·k1 (..\X . ("\k2 .k2x))

xy -f "\kl . ("\k2 .k2X) (..\k3 · (..\k4 . k4y) ("\k5 .k3k5kl))

Figure 3.4: CPS-translation some particular terms

We can make a number of observations:

• the conversion is not idempotent;

• new redexes may be introduced by the conversion;

3. Tail-recursion, and continuations 90

• the behaviour of the interpreter is reflected in the structure the term

produced.

Making the structure of the term reflect its evaluation gives us an insight

into why CPS-conversions are of interest in compiling. This helps us to

formalise the informal observations that we were able to make in the pre

vious section about the small functions we looked at. As far as compilation

is concerned we see:

• CPS-conversion can produce terms which tell us useful things about

how they will be evaluated;

• such terms likely to tell us a lot of things which are not really very

useful, so they need to be optimised.

There is a large literature on the use of CPS in compilation: [3, 36] provide

a good start.

Another direction that we can follow from the use of CPS-conversions

leads us to the extraction of constructive content from classical proofs.
Notoriously, classical proofs need not contain any constructive content.

However, we know that we can use the double-negation transformation

to produce a intuitionistic theorem from a classical one. In [39] Friedman
introduced a related technique, called A-translation, which allowed him to

show that Peano arithmetic is a conservative extension of Heyting arith

metic, for n� sentences. The constructive content of Friedman's proof is

that we can convert a classical proof of a n� sentence into a constructive

one. The constructed proof can be interpreted as the application of a non

local control operator applied to a CPS-conversion of the classical proof.

The control operator allows us to replace the current evaluation context

with a different one, just as got o allows us to make non-local jumps in

imperative programs. There is an extensive literature on control opera

tors: [18, 103] are a beginning. [50, 85] provide much more detail on the

extraction of constructive content from classical proofs, and the relation
with control operators.

3. Tail-recursion , and continuations 91

Just as in imperative programming we can make jumps available to the

programmer by providing got o we can make the control operator avail

able to the programmer. The is done in Scheme [61] and Standard ML
of New Jersey [3] using a callcc (call-with-current-continuation) prim

itive. [105] describes the representation of jumps with continuations in

more detail. Just as goto allows the programmer to invent control struc

tures, so does call cc, with all that this entails. Continuations allow us to

implement threads, as discussed in, for example, [3] and [24] .

Again, connected with their role of representing control in a functional

setting continuations have applications in denotational semantics as dis

cussed in, for example, [102].

3.3.1 Conti nuations and 1/0

In [7] Barendregt points out that many functional programming languages

can be considered 'autistic' in that they lack any ability to communicate

with the outside world3 . This is, as he points out, partly because our think

ing is in terms of the evaluation of functions, an activity which naturally
concerns itself with termination, whereas for communication we need a

notion of process, and the evolution of processes is a continuing activity.

Continuations help us formalise this intuition, as, in a simple model of

I/O, we can do three things:

e we can stop;

• we can read a value, and continue by performing some computation

with it;

• we can write a value, and continue performing computations.

3 As Estragon puts it, in Beckett's Waitingfor Godot: 'Nothing happens, nobody comes,

nobody goes, it's awful! '

3. Tail-recursion, and continuations 92

At this level the world is almost as simple: it is just a pair of lists of natural

numbers. We see that CPS functions let us thread a state or world value

through our programs.

3.4 Chapter Summary

In this chapter we gave a very gentle introduction to programming in a

continuation-passing style, presented a CPS-transformation for 'x-terms

and mentioned some of the uses to which continuations have been put.

One common theme to these uses is the representation of control.

4. Type-l ift ing i n categorial grammar

In Chapter 3 we mentioned several well-known applications of continua

tions. In this chapter we will show a novel application, by showing that

we can interpret type-lifting in categorial grammar as CP5-conversion.

Categorial grammars are a family of grammar formalisms which are used

in computational linguistics and are of interest to philosophers of lan

guage. They have their roots in the work of Adjukiewicz [2], Bar-Hillel

[5], and Lambek [67], and ultimately in Frege's context principle ('never

to ask for the meaning of a word in isolation, but only in the context of

a proposition'. The principle is enunciated in [37], and is discussed in

some depth in Chapter 19 of [29] .) . Formally, categorial grammars can be

seen as sub-structural logics [99] which bear a close relation to linear logic

[46, 113] . [IS, 84] make many of the details of this relationship more ex

plicit. The slogan that is associated with the view of categorial grammar

as a logic is 'parsing as deduction' [65] .

The essential idea behind categorial grammar is that linguistic expressions

come in a variety of syntactic categories, and that the syntactic categories

have some close relationship with the semantics of the expressions. The

meaning of a complex expression is formed from the meanings of the sub
expressions. It is therefore natural to represent the meanings of expres

sions using ,X-terms. So, once again we see the Curry-Howard analogy,
albeit in a slightly different setting.

This chapter proceeds as follows:

• we present a simple categorial grammar;

• we present some simple derivations to illustrate the use of categorial

4. Type-lift ing in categorial grammar 94

grammar;

• we explain type raising, and point out an analogy between type
raising and continuation-passing.

4. 1 A si mple categorial gra m mar

We will present a simple categorial grammar. We will first present a se
quent formulation.1 Sequent systems have one obvious advantage when
discussing sub-structural logics as the structural rules are easy to deal
with, either by using sequences (lists) of formulas in sequents and stat
ing structural rules explicitly or by dealing with sequences, multi-sets or
sets of formulas in sequents, as appropriate for the logic in question. In
categorial grammar we deal with sequences of formulas on the left of the
sequent arrow (===» and a single formula on the right. We do not have the
structural rules of thinning, weakening or exchange. The grammar that
we will consider has two directed implications, written X\ Y and Y/ X,
where X is the implicans and Y the implicate.2 Categorial grammar can
be presented with more connectives, (see, for example [84]), but the frag
ment with only \ and / is sufficient for our purposes. The \ and / right
rules, annotated with meaning-terms, are:

x : X, r ===> y : Y
------===> \
r ===> AX .y : X \ Y

Rule 4.1 : The ===> \ sequent rule
1 Natural deduction systems follow the pattern of Gentzen's N systems, sequent cal

culi Gentzen's L systems, from [42). [107) also carefully explains the distinction.
2 The use of slashes is a very unfortunate choice of notation. We use the convention

of [15] . Unfortunately some authors (for example, [22]) use different conventions.

Arrows are an improvement, but we will use arrows for types.

4. Type-lifting in categorial grammar 95

r , :/: : x ===} y : y

r ===} AJ': .y : Y/X
===} /

Rule 4.2: The ===} / sequent rule

In these rules r is a non-emptY sequence of formulas, X and Y are formu
las and x is chosen in the usual way to avoid variable capture problems.

The \ and / left rules, annotated with meaning-terms, are:

6 ===} x : X r , j(x) : Y, 8 ===} z : Z
------------- \ ===}

r , 6, j : X\Y, 8 ===} z : Z

Rule 4.3: The \ ===} sequent rule

� ===} x : X r , j (x) : Y, 8 ===} z : Z

r , j : Y/X, 6 , 8 ===} z : Z
/ ===}

Rule 4.4: The / ===} sequent rule

In these rules r, 6 and 8 are (possibly empty) sequences of formulas and
X, Y and Z are formulas.

There are two structural rules: a sequent of the form x : X ===} x : X is
trivial, and there is an (admissible) cut rule:

6 ===} X : X r , x : X, 8 ===} z : Z
---------------------------- Cut

r, .6, 8 ===} z : Z

Rule 4.5: The cut rule

In this rule r, 6 and 8 are (possibly empty) sequences of formulas and X

and Z are formulas.
3 The motivation for this restriction is linguistic rather than logical. One may observe

that there are no valid categorical judgements in categorial grammar.

4. Type-lift ing in categorial grammar 96

The A-terms which we use to represent meaning are terms of the simple
typed A-calculus. It is useful to remember that the types and categories of
the terms are distinct notions. For example if the term Ap.q has type pt -+

Qt - then it will have categories PC\ QC and QC/pc, where the superscript t

indicates type and C category. The types involved in categorial grammars
may be called semantic types, because they are the types of the meaning
terms.

We can give a natural deduction presentation of the rules of categorial
grammar. As one might expect we must be careful with the structure of
proof trees: the order in which the premisses to rules occur of premisses to
rules is important as is the number of occurrences of a formula discharged.
Although the natural deduction rules are harder to present it is typically
easier to read completed natural deduction derivations. The \ introduc
tion rule is:

[x : Xl

y : Y
---- \ Introduction
Ax .y : X\Y

Rule 4.6: \ Introduction

The extra side-conditions on this rule are:

• exactly one occurrence of X is discharged;

• it must be the leftrnost assumption on which the proof of Y relies;

• it must not be the only assumption on which the proof of Y relies.

The / introduction rule is:

4. Type-lifting in categorial grammar

[x : Xl

y : Y
---.- / Introduction
)..x .y : 'r /X

Rule 4.7: / introduction

The extra side-conditions on this rule are:

• exactly one occurrence of X is discharged;

97

• it must be the rightrnost assumption on which the proof of Y relies;

• it must not be the only assumption on which the proof of Y relies.

The \ and / elimination rules are presented after the pattern of Modus Po

nens (see § 2.3.2 on page 50) . The rules are:

and:

x : X f : X\Y
-----�. \ Elimination

f (x) : Y

Rule 4.8: \ elimination

f : Y/X x : X
------ / Elimination

f(x) : Y

Rule 4.9: / elimination

The order of the premisses is important in Rules 4.8 and 4.9. This is one
reason why we choose to formulate these rules after the pattern of Modus

Ponens.

Proofs which have maximal formulas (i.e. formulas which are the conclu
sion of an introduction rule and the major premiss of an elimination rule)

4. Type-l ifting in categorial grammar 98

in them can be reduced in the expected way, as shown in Figures 4.1 and
4.2.

x

[Xl

y

Y

X\Y

x . . .

Y

Figure 4.1 : Proof normalisation in categorial grammar 1

[Xl
. . . x

Y

r-;X
Y

x Y

Figure 4.2: Proof normalisation in categorial grammar 2

4.1 .1 Section sum mary

We have presented a simple categorial grammar in both sequent and nat
ural deduction format. We presented both formats because the sequent
calculus rules make the structural conditions easier to express, but the nat
ural deduction proof trees are easier to read.

4.2 Examples of s imple derivations

What we have presented so far is, essentially, a logic, which we intend to
treat as a grammar. We must provide a lexicon. The lexicon consists of:

4. Type-lifting in categorial grammar 99

• words;

• their semantics;

• their categories; and

• their types.

For example:

vVord Semant ics Category Type

eats >.(x)eats' (x) N P\S e -+ t
John joh n ' N P e
loves >. (x, y) loves' (y , x) (N P \S) / N P e -+ e -+ t
Mary mary' N P e

Figure 4.3: A lexicon

The meanings of the proper nouns John and Man) are represented by indi
viduals chosen from some suitable type e, the type of 'entities', following
Montague [81] . The meaning of the verb loves is represented by a function
of type e -+ e -+ t, where t is, again following Montague, the type of truth
values. We parse the sentence 'John loves Mary' by looking in the lexicon
for the entries 'John', 'loves' and 'Mary'. Although looking in the lexicon
is not, strictly, an inference rule we indicate lexicon lookup in our proofs
like this:

Word
-------- Lexicon
Semantics' : Category

Rule 4.10: Lexicon lookup

We can now perform this simple proof.

4. Type-lift ing in categorial grammar

John

loves Mary
----------- Lex. ---- Lex.
A (.t , y) loves' (y , x) : (N P\S) /N P mary' : N P

--- Lex. ----------------- / E.
joh n' : N P A (y) loves' (y , mary') : N P\S
------------------------------- \ E.

loves' (joh n' , mary') : 5

Rule 4.11 : Showing 'John loves Mary'

100

The phrase parsed can be read from the leaves of the tree, and its meaning
and category can be read from the root of the tree.

As a second example, suppose we extend the lexicon as follows:

Word Semantics Category Type

bel ieves A (u , v) bel' (v , u) (N P\S)/S t -+ (e -+ t)
foolish ly A (y , x)fool' (y (x)) (N P\S)\ (N P\S) (e -+ t) -+ (e -+ t)

Murray m u r' N P e

res igned A (x) res' (x) N P\S e -+ t

Souness sou' N P e

Figure 4.4: Extending our lexicon

There are two readings of the sentence:

'Murray believes Souness resigned foolishly',

depending on whether it is the belief or the resignation which is foolish.
These readings correspond to two different derivations given in Rule 4.18

on page 106 and Rule 4.19 on page 107. The two proofs differ in their
structure, and the corresponding A-terms reflect this difference.

4. Type-lifting in categorial grammar 101

4.2. 1 Section sum mary

In this section we have presented a small lexicon and given some simple
proofs. Using the 'parsing as deduction' analogy we can see:

• searching for a proof is the same as attempting to parse;

• whereas in theorem proving we are often only concerned with find
ing one proof, in categorial grammar we are concerned with finding
all the distinct proofs;

• the structure of the A-term that we construct reflects the meaning of
the phrase we have parsed.

Clearly we have not introduced nearly enough material to handle any
thing other than the simplest of sentences. [15, 83] develop the theory
further.

In English word order is significant, and all the sentences we have looked
at have had a very simple word order. Constructing the meaning of a
phrase has only required us to compose the meanings of immediately ad
jacent components. There are phenomena, even in fixed word-order lan
guages like English, for which this is not the case. On occasion we need to
have the ability to manipulate the proof tree, to pass values around, in a
way reminiscent of continuation passing.

4.3 Type-raising as continuation-passing

Our current interest is in the use of ' type lifting' or 'type raising'. Type
raising was discussed in [67] (although not named) . [22] defines type rais
ing as:

' the process of re-analyzing an argument category as a new
functor which takes as its argument the functor that would
have applied to it before type raising.'

4. Type-l ifting in categorial grammar 102

We were careful before to keep the notions of type and category distinct.
An expression of type a will be raised to type (a -+ (3) -+ (3. A category
X will be raised to Yj(X\Y) or to (YjX)\Y . The possibilities Y\Y\X

and Xj Yj Y are ruled out by the need to preserve word-order when type
raising is performed. Syntactically, the effect of type-raising is to CPS
convert the term involved.

Type-raising can be expressed with the following sequent rules:

r ==> x : x
r ==> >" (f) (f(x)) : Yj (X \ Y) t

Rule 4.12: Type raising sequent rule 1

and:

r ==> x : x
r ==> >.. (f) (f(x)) : (YjX)\Y t

Rule 4.13: Type raising sequent rule 2

and the following natural deduction rules:

x : X

and:

>.. (1) (f(x)) : Yj (X \ Y) t

Rule 4.14: Type raising natural deduction rule 1

x : X

>.. (1) (1(:1:)) : (Yj X) \ Y t

Rule 4.15: Type raising natural deduction rule 2

The examples given in [22] of the uses of type-raising include:

4. Type-l ifting in categorial grammar 103

• obtaining the correct interpretations sentences involving both exten
sional (e.g. 'John bought and read a book.') and intensional verbs
(e.g. 'John wants and needs a haircut.');

• obtaining the correct interpretations of conjunctions of common
nouns: the phrase 'fresh and salt water ' should be read as 'fresh wa
ter and salt water ' not 'water which is both fresh and salt';

• obtaining the correct reading of sentences involving disjunctions
with a wide scope (e.g. 'John would like a coffee or a tea.') .

We illustrate type-raising using an example from [82]: correctly parsing
'He or John loves Mary.'

We extend our lexicon as follows:

vVord Semantics Category Type

he >..J (f(he')) S/(N P\S) (e -+ t) -+ t

((S/ (N P\S)) ((e -+ t) -+ t) -+

or >" (f, g, h) (g (h) or' J(h)) \ (S/ (N P\S))) ((e -+ t) -+ t) -+

/ (S/ (N P\S)) (e -+ t) -+ t

Figure 4.5: Further extending our lexicon

Notice that 'he' has already been lifted: we need to prohibit the sentence
'Mary loves he' and permit 'He loves Mary.'

With a wide-scope disjunction'He or John loves Mary' means 'He loves
Mary, or John loves Mary' so the >..-term constructed when parsing 'He
or John loves Mary' should be the disjunction of those constructed when
parsing 'He loves Mary' and 'John loves Mary'. We have already seen a
derivation of 'John loves Mary' in Rule 4.11 . Now we derive 'He loves
Mary' :

4. Type-l ifting in categorial grammar 104

loves Mary

He A (:r , y) loves' (y , x) : (N P\S) / N P mary' : N P

A (f) (f(he')) : S/ (N P\S) A (y) loves' (y , mary') : N P\S
/ E

------------------------------------- / E
loves' (he', mary') : 5

Rule 4.16: Showing 'He loves Mary'

Without using type-raising any attempt to parse 'He or John loves Mary'
will fail: we can only progress by parsing the phrase 'John loves Mary' of
category S. At this point we find we are blocked because we carmot apply
'or ' to 'John loves Mary' or 'He' to 'or ' . The insight is to raise the type of
'John':

John

joh n ' : N P

A(q) (q(joh n ') : S/ (N P\S) t

Rule 4 . 17: Lifting 'John'

The complete derivation is shown in Rule 4.20 on page 108.4

The effect of type raising in this proof is to allow us to pass the semantic
term associated with 'loves Mary' around. This has a strong resemblance
to the way in which continuation-passing allows us to pass expressions
around in the programming setting. We claim that other applications of
type-lifting can be viewed analogously.

4.4 Chapter Summary

In this chapter we have introduced categorial grammar, and presented
some simple derivations. Our intention in doing this was to allow us to

4 In this proof the category of 'or' has been suppressed, for clarity.

4. Type-lifting in categorial grammar 105

draw an analogy between type-lifting and continuation-passing, thereby
presenting a novel application of continuation-passing.

4. Type-lifting in categorial grammar 106

V>

Cl..
Z ---
V> ---
Cl..

>. Z
:n

0 �

...2 ,-;
�

'0 V> ..£ ---
� Cl.. H Z
;::-., ----.-<:: -----

'�
V> 0 --- <I)
Cl..

'<I) z (1)
'" ...
:l)

.�
----- H � V>

:n '<I) � i: � ..D
----- �

,-; 0 0 V> ---- <I) ..£ .-<::
<I) .�
(1) � � ... V> ----

:n Cl.. --- .-<:: , :n Z Cl.. � :!.> 0 Z <I) :::: '<I) 0 :::I
C/) 0 ----- (1) <I) ----- ... ,

� , 0 ...
V> <I) :::I
'" ---- E '<I)
V> (1)
--- ... (1) Cl.. ;::-., ..D
Z

:n � '0
:l) ..D ..£ > ---- ----
:l) H �
:l) ;::-., .-<::

�
� ..D
�
;::-.,
�

.-<::

>. Cl..
� Z

;:: ...
� �

E

Rule 4.18: One reading of 'Murray believes Souness resigned foolishly'

4. Type-l ifting in categorial grammar 107

I.J") ---Q.. Z

I.J") ---Q..

>. Z
:Jl I.J") ---
0 - Q..

..3 � z
;::,-,

--0 H
..£ -VI ----- Q) H ...
;::,-, -0 I.J") --< �

I.J") � --- --< 0 Q.. VI Z � -VI
� Q) ,-.. ...
Sil �
:Jl -0 I.J")
� -VI ..£ ---� Q..

� Z
--<

:Jl Q.. �
:Jl Z 0 :l) VI
::l - -VI
0 � Q) I.J")

en 0 ... VI -0
I.J") ..£ -� --- 0 � VI I.J") --- v -VI Q.. Q) Z .J:I ... -----

:Jl H
:l) 0
> ,-.. --< ..£ :l) H -l) ... ;::,-, � ...=l E v .J:I V ,-..

;::,-, .J:I
�

--<

>. Q..
:Il Z ;....
::l ...

:E �
E

Rule 4.19: The other reading of 'Murray believes Souness resigned fool
ishly'

- - - - - - - -------

4. Type-l ifting in categorial grammar 108

UJ

a..
>, Z
�
'" -

>.
...-: :0

E V')
--
a..

a.. z
z
::::: ->. V')
-- :0 a..
z E

..3
!: -VI

" Q)
� >

.3 �
-VI ",
Q) :::< > �
",

-<:
V')
-

UJ �
+- --- to

E
V') --- c: a.. UJ ..t:
Z -- ? :::::: ::::: a.. V') VI

Z V') Q)
. . -- >

a.. ..Q
...::;

-
c: - Z -

0 ..t: c:

. Q, ..t: ---0 � -� � ..s --
to

::- V') E
:::< -- -Q) a.. ..t: z

--- VI Q) V') >

::::: V')
..Q

..::- -
" --

..t: a.. :: � z
----=: V')

� 0
....., � -

c: -
- 0 ..: ..t:

� � -=: -=:
;;: .3 0
-=: -<:

'"
-Q)
..t:

� � -<:
� -<:

V')
--
a..
z
---V')

-

-Q) ..t:

-<:

Rule 4.20: 'He or John loves Mary'

Part I I I

Addi n g conti nuations to Mart i n-Lof's

Type Theory

5. CPS non-canon ical constants for

non-i n d u ctive types

In this chapter and in Chapters 6 and 7 we will show how we can program
with continuations in M-LTT. Our focus in these chapters is on the left of
the : . The novelty is not in the types, but in the ways that we can construct
objects.

In this chapter we deal with some types which are not defined inductively,
and whose non-canonical constants are not, therefore, recursive. In Chap
ter 6 we will look at inductively defined types, and in Chapter 7 we will
look at well-orders. Starting with types which are not defined inductively
allows us to introduce the CPS non-canonical constants in a relatively sim
ple setting.

We follow the presentation from the first part of Chapter 2 and look at:

• disjOint union of two types: +,

• disjoint union of a family of types: [,

• Cartesian product of a family of types: n .

The general pattern for these types is that we define a new non-canonical
constant which takes an extra auxiliary argument, the continuation. Be
cause all the new non-canonical constant now involve a tail call we name
them by suffixing ta i l to the name of the non-CPS non-canonical constant.
We also adopt the convention that the continuation is the final argument.

5. CPS non-canonical constants for non-inductive types 111

The informal interpretation of the new CPS non-canonical constants that
we will define is that the continuation expresses 'what to do next.'
The computation rules for the new non-canonical constants will appear
slightly more complicated than those for the non-CPS non-canonical con
stants, and the elimination rule, which we justify in the same way as the
conventional elimination rules are justified, will contain extra premisses to
deal with the typing of the extra argument. Because there is no recursion
involved the notion of 'what to do next' is particularly simple, and, as a
check that we have grasped correctly what we are doing we also present
a defined version of the CPS non-canonical constant, and show that we ob
tain the same rules when we use this.

5.1 Alternative extensions

When we are adding new material to M-LTT we often have a choice be
tween giving a direct presentation and making a definition, for example:

• in §2. 1 .3 we defined x using L:;

• in §2.1 .5 we defined -t using n;

• in §2.2.1 we defined Bool using enumerated types;

• in §2.3.1 we showed that we could define +dj using L: and {a, 1 };

• in §2.5.1 we showed how to represent binary trees using l;V types;

• in [69] mutually recursive types were presented directly and via an
encoding using W types.

There is no hard and fast rule which determines in every case whether we
should give a direct presentation or make a syntactic definition: it would
appear in practice that x , -t, Bool are better treated as defined constants;
and +, lists and trees are more conveniently treated directly. It is clear that:

5. CPS non-canonical constants for non-inductive types 112

• extensions must not render our theory absurd;

• it must be clear when we make an extension that we have correctly
formalised the notion we have in mind.

One argument that can be mustered in favour of using syntactic definitions
is that this is more secure: since we are not introducing any really new
material into the theory we are not introducing a new way to make absur
dities. There is much merit to this argument, but it does depend on the se
curity of our mechanism for making definitions. This is not a trivial point.
For instance it is notorious that if we define substitution incorrectly we
can capture free variables. This mistake was made by Hilbert when writ
ing with Ackermann and when writing with Bernays [56, 57, 16], and lies
behind Jensen's device [90], and the problems associated with dynamic
scoping in LISP [73], and the caution which is often required when using
macro expansion languages. 1 It is also often the case that it is hard to be
sure that a definition has correctly captured the notion we are seeking to
formalise. The case of defining binary trees in terms of well-orders (§2.5 . 1)

illustrates this. I t is hard to conceive that we are more likely to make a
mistake describing the type of binary trees directly than we are describing
the type of well-orders and then using these to express trees.

For the types discussed in this chapter the defined versions of the CPS non
canonical constants are probably the most convenient. This is because the
definitions are very straightforward. For the inductively-defined types
and well-orders the situation is rather different. We do not get such a
simple definition of the CPS non-canonical constants, and, as we saw in
§3.2 using tail-recursion can allow us to express naturally more efficient
algorithms.

1 Curiously, Jensen's device is described as 'ingenious' in [20), and appears as an ad

vanced technique in [49) . Computer scientists and logicians would appear to regard

constructions of the absurd differently.

5. CPS non-canonical constants for non-inductive types 113

5.2 CPS non-canonical constant for the disjoi nt u n ion

of two types

The conventional non-canonical constant for the + types is when . Rules
2.4 and 2.5 explain how to evaluate expressions formed with when . Sup
plying when with a continuation means providing an auxiliary function to
be applied to the result of evaluating the expression formed by when . In
§5.2.1 we treat whenta i l as a primitive. The elimination rule which we ob
tain looks unusual, so, in §5.2.2, we treat the CPS non-canonical constant
as a defined constant, and derive rules using the defined form.

5.2.1 Presenti ng whenta i l as a pri m itive

First we give the computation rules, then we give the elimination rule.

Computation rules

The computation rules for whenta i l (d, e , j, k) are as follows:

j -+ i n l (l) d(l) -+ d' k -+ -X (b) b(d') -+ b'
-------------------- whentai l Comp

whenta i l (d, e, j, k) -+ b'

Rule 5.1 : whenta i l computation 1

and:

j -+ i n r (r) e (r) -+ e' k -+ -X (b) b(e') -+ b'
-------------------- whentai l Comp

whenta i l (d, e, j, k) -+ b'

Rule 5.2: whenta i l computation 2

These rules tell us what we need to show in order to show that the eval
uation of whenta i l (d, e, j, k) will terminate. There is one subtlety here: we

5. CPS non-canonical constants for non-inductive types 114

need to know that k ----+ >.(b) , that is we need to know that k is a func
tion. We might have tried to have a premiss to these rules like: k ----+ (.:)y .
However (z)y is not a value, and we require k to have a value so that we
can infer a type for the conclusion of the elimination rule that we present.

Thus it is clear that we need to have a grasp of the n types before we can
program with continuations.

Elimination rule

Now we have the task of constructing a rule which will allow us to make a
judgement about the type of an expression formed with whenta i l . This rule
will be a + elimination rule. It will also be a n elimination rule.

We are trying to type:
whenta i l (d, e , J, k)

We explain the premisses in turn.

First we need to be able to judge:

J : A + B

The first computation rule tells us that we need to be able to make a judge
ment about the type of d(x) , given some x of type A. The second compu
tation rule tells us that we need to be able to make a judgement about the
type of e (y) , given some y of type B. We can apply b to either d(x) or to
e (y) , so they must have types formed in a uniform fashion. If C is a family
of type over A + B, then d(x) : C (i n l (x)) and e (y) : C (i n r (y)) are suitable.
So we need the following premisses:

[z : A + B] [x : A] [y : B]

C (z) type d(x) : C (i n l (x)) e (y) : C (i n r (y))

Now we consider the type of k . Since we apply b to an object with type
C(f), where J is of type A + B, k must be of a n type from C(f) . The n
introduction rule (Rule 2.14 on page 38) is then:

5. CPS non-canonical constants for non-inductive types 115

[v : C(f)]

C (f) type D(v) type

n (c(f) , D) type

Since we already have j : A + B and that C is a family of types over A + B
the premiss C(f) type adds nothing. So we are left with the judgement that
D is a family of types over C(f) as a premiss to the rule.

Thus we also have this premiss:

k : n (C(f) , D)

Now we must consider typing b'. We need now to look at the rules for
equality of expression formed with when (Rules 2.7 and 2.7 on page 35) .

Considering these two cases shows us that b' has type D(when (d, e , j)) ,

which is consequently the type of whenta i l (d, e, f, k) . That the type of
whenta i l (d, e , j, k) may, in general, depend on when (d, e , j) seems surpris
ing at first, but in §5.2.2 we will derive this rule by using a defined form of
whenta i l .

Rule 5.11 on page 124 is the new rule which we have constructed.

The main differences between Rule 5.11 and the usual + elimination rule
(Rule 2.6) are:

• there is a premiss which relates to the type of the continuation;

• the conclusion is a judgement about the type of an expression formed
by whentai l , rather than when;

• the type of the conclusion may, in general, depend on the value of an
expression formed with when .

These differences are typical of the CPS elimination rules that we will see
later on.

5. CPS non-canonical constants for non-inductive types

5.2.2 Presenti ng whenta i ldf as a defi ned constant

116

Since the computation rules (Rules 5.1 and 5.2), and the elimination rule
(Rule 5.11) look rather odd we might seek to define a CPS version of when

in terms of apply and when, like this:

whentai ldf (d, e, j, k) =def apply (k, when (d, e, 1))

=def fu nspl it ((y) (y (when (d, e , 1))) , k)

I t should be clear that this definition captures our informal notion that
the continuation function is a function to apply after we have evaluated
when (d, e, 1) . We use this definition to re-derive the rules we derived pre
viously.

Computation rules

The computation rules for whentai ldf can be obtained by considering:

• the definition of whentai ldf (d, e, j, k);

• the definition of apply;

• the fu nspl it computation rule (Rule 2.15);

• the two when computation rules (Rules 2.4 and 2.5).

What we are doing is very similar to our derivation of Rule 2.18, the apply
computation rule.

Initially we obtain:

5. CPS non-canonical constants for non-inductive types

b(when (d, e, f)) -+ b'
---------- =, t3

k -+)'(b) (.r) (x(when(d, e , 1)))b -+ b'
,

. --------------- fu nspht Comp.
fu nspl it ((x) (x(when (d, e, 1))) , k)

apply (k, when (d, e , 1)) -+ b'
=def

whentai ldf (d, e, j, k) -+ b'
=def

Rule 5.3: Derivation of the computation rules for whentai ldf

117

We continue by observing that evaluation of b(when(d. e , f)) will terminate
with b' if evaluation of when (d, e, 1) terminates with le', and if evaluation of
b('!.V') terminates with b'. We can then use the two when computation rules
to obtain the two rules:

j -+ in l (l) d(l) -+ d'
--------- when Comp

when (d, e, 1) -+ d' b(d') -+ b'

b(when (d, e , f)) -+ b'
---------- =, �

k -+), (b) (x) (x (w hen (d, e, 1))) b -+ b' . -------------------- fu nsp l l t Comp.
fu nspl it ((x) (x (when (d, e, 1))) , k)

apply (k , when (d, e , 1)) -+ b'
=def

=def
whentai ldf (d, e , j, k) -+ b'

Rule 5.4: Derivation of a computation rule for whentai ldf 1

and Rule 5.5 on the next page.

Rules 5.4 and 5.5 can be re-written as:

j -+ in l (l) d(l) -+ d' k -+)'(b) b (d') -+ b'
------------------- whentai ldf Comp

whentai ldf (d, e , j, k) -+ b'

Rule 5.6: whenta i ldf computation 1

and:

5. CPS non-canonical constants for non-inductive types

j ---+ i n r (r) e (r) ---+ e'
---------- when Comp

when (d, e , f) ---+ e' b(e') ---+ b'

b(when (d, e , f)) ---+ b'
---------- = , f3

118

k ---+ >.(b) (x) (x (when(d, e , f)))b ---+ b' . --------------------- fu nspl rt Comp.
fu nspl it ((x) (x (when (d, e , 1))) , k)

apply (k, when (d, e , 1)) ---+ b'
=def

whentai ldf (d, e , j, k) ---+ b'
=def

Rule 5.5: Derivation of a computation rule for whenta i ldf 2

j ---+ i n r (r) e(r) ---+ e' k ---+ >.(b) b(e') ---+ b' -------------------- whenta i ldf Comp
whentai ldf (d, e , j, k) ---+ b'

Rule 5.7: whenta i ldf computation 2

Rules 5.6 and 5.7 are precisely the same as rules Rules 5.1 and 5.2, respec
tively.

El imination rule

Just as we derived a computation rule for whentai ldf by expanding its def
inition we can derive an elimination rule: that is we derive a rule which
has as a conclusion a judgement about the type of whentai ldf (d, e , j, k) . We
expand the definition of whenta i ldf and then use the for n and + elimina
tion (Rules 2.19 and 2.6) to obtain Rule 5.12 on page 125. This rule does
not share exactly the same premisses same as Rule 5.11 on page 124. The
offending premiss is a well-formedness judgement which has been left im
plicit in the n elimination rule, so in fact the rules are the same.

Since we have shown that:

whentai l (d, e, j, >.((x)x))

5. CPS non-canonical constants for non-inductive types 119

and:
when (d, e, f)

have the same value, we can replace:

D(when (d, e, f))

in Rule 5.11 with:
D(whenta i l (d, e, j,),((x)x)))

5.2.3 Section s u m mary

In this section we have given two versions of a CPS non-canonical con
stant for the disjoint union of two types. One was presented by writing
down what we considered the appropriate computation rules, and then
generating an elimination rule in the usual way. The other was presented
by giving a syntactic definition in terms of known constants. We showed
that the computation and elimination rules for the defined version were
exactly the same as those for the directly presented version.

5.3 CPS non-canon ical constant for the disjoi nt u nion

of a fami ly of types

In this section we will treat the task of presenting a CPS non-canonical
constant for the disjoint union of a family of types just as we treated the
task of presenting a CPS non-canonical constant for the disjoint union of
two types.

The conventional non-canonical constant for the L types is spl it and Rule
2.11 explains how to evaluate expressions formed with spl it . Supplying
spl it with a continuation means providing an auxiliary function to be ap
plied to the result of evaluating the expression formed by spl it .

5. CPS non-canonical constants for non-inductive types

5.3.1 Presenti ng sp l itta i l as a pri m itive

First we give the computation rule, and then the elimination rule.

Computation rule

spl ittai l has the following computation rule:

120

e � pai r (a , b) k �).(c) d(a , b) � d' c(d') � c'
---------------------- spl ittai l Comp

spl itta i l (d, e , k) � c'

Rule 5.8: spl ittai l computation

Elimination rule

Rule 5.13 on page 126 is the new elimination rule we construct to allow us
to compute with spl itta i l .

This elimination rule i s justified using exactly the same reasoning that we
used to justify the new elimination rule presented in the previous section.
The rule is also a n elimination rule, and we find that we have a conclu
sion whose type may, in general, depend on the value of an expression
formed using spl it . As before we give a syntactic definition of the CPS
non-canonical constant and re-derive the rules.

5.3.2 Presenti n g sp l itta i ld/ as a defined constant

Just as we did previously we can define spl itta i l dJ :

spl itta i ldJ (d, e , k) =def apply (k , spl it (d, e))
=def fu nspl it ((y) (y (spl it(d, e))) , k)

5. CPS non-canonical constants for non-inductive types 121

As we have done previously we present the computation rule and then
the elimination rule.

Computation rule

The computation rule for spl ittai ldf can be derived just as we derived the
computation rule for whentai ldf :

e --t pa i r (a , b) d(a , b) --t d'
------------ split Comp.

spl it (d, e) --t d' c(d') --t c'

k --t A(c) c(spl it (d , e)) ---7 c'
--------------------- apply Comp.

apply(k, spl it (d, e)) --t c'

spl itta i l df (d, e , k) ---7 c'
=def

Rule 5.9: Derivation of spl itta i l df computation

This rule can be re-written as:

k ---7 A (C) e ---7 pai r (a , b) d(a , b) ---7 d' c(d') ---7 c'

spl itta i l df (d, e, k) --t c'

Rule 5.10: spl itta i l df computation

As we expected, Rule 5.10 is just Rule 5.B.

El imination rule

We can use the L and n elimination rules, along with the definition of
spl ittai ldf to produce an elimination rule, given in Rule 5.14 on page 127.

This rule is, with the exception of the premiss relating to the well
formedness of the family of types D suppressed in the n elimination rule,
just Rule 5.13.

5. CPS non-canon ical constants for non-inductive types

Since we have shown that:

spl itta i l (cl, e, A ((X)X))

and:
spl i t (cl, e)

have the same value, we can replace:

D(spl it (d, e)))

in Rule 5.13 with:
D(splitta i l (d, e, A ((X)X)))

5.3.3 Section summary

122

Again we have given two versions of a CPS non-canonical constant, and
again we have shown that both versions lead us to produce the same rules.

5.4 Cartesian product of a fami ly of types : n

Following our understanding of a continuation as a function to apply after
computing a value we might decide to define immediately a CPS version
of apply as:

applyta i l (j, a, k) =def apply (k, apply (j, a))

Thus supplying a function with another function to call after itself does
not provide much extra technical interest.

5.5 Other non-ind uctive types

Defining CPS non-canonical constants for the other non-inductively de
fined types that we have presented follows the same pattern as the one we
have presented already.

5. C PS non-canonical constants for non-inductive types

5.6 An observation about equality

Since we have made definitions like:

whenta i l (d, e, j, k) =def apply (k, when (d, e , J))

123

we can, if the expression is well typed, make equality judgements about
whenta i l (d, e , j, k) and apply (k , when (d, e, f)) . In the next chapter we will see
that we cannot make such syntactic definitions for the CPS non-canonical
constants associated with the inductively defined types, but we can make
a related judgement of equality.

5.7 Chapter S u mmary

In this chapter we have presented CPS non-canonical constants, and the
associated elimination rules, for some types which are not defined induc
tively. Since the elimination rules look unorthodox we also presented the
CPS non-canonical constants as defined constants, and derived the associ
ated elimination rules.

5. CPS non-canonical constants for non-inductive types

Cl:)
22

�
. .

...s

-....
'-'"

\..)
2-

Cl:)
+

;::-,
;...
.:::

' 00
'-'"

\..)
.--..
;::-,

'-"
IU

.--..
�

-..

.:::
'-'" . \..) .--.. . . .--.. .--..

�,
'-'" IU � �

c: .--.. v
Cl -r:: � .--.. '-'"

......., Cl
'-'"

\..) .--..
c -<

�
.......,

-< IU
�
'-'"

v
Cl.. ro
>. c:

. ...-.. v
;:, -r::

Cl �

Rule 5.11 : + elimination using whentai l

124

�
>-' (l)
Ul
�
N

�
'1::J
S'

OQ
:E ;:r
�
:J III

�

[w : A + B] [x : A]

J : A + B C(w) type d(:r) : C(inl (x))

k : n (C(J) , D) when (d, e , f) : C(J) ,
------------------- n Ehm

apply (k, when (d , e , f)) : D(when (d, e , f))
whentai ldf (d, e , J, k) : D(when (d, e, .f))

=def

[y : E]

e (y) : C (im' (y))

01

o
"U
(j)
:J
o
:J

I
o
III
:J
o
:J
0'
III

o
o
:J
CIl ...
III
:J ...
CIl

0' ...,
:J
o
:J

I

:J
a.
c

� <'
co

�
'0
co
CIl

...... N Ul

�
-ro
01
t->
VJ
M
ro

� �
::r.
o
::s
�
Cfl
S·

IJQ
Vl

"0
..... Cl)

[z : L(A , B)] [u : C(c)]

c : L (A , B) C(z) type D(c) type I.; : n (C(c) , D)
splitta i l (d, c, I.;) : D(spl it (d, c))

[y (w) • �;t:) [w . AJ 1

d(:r , y) : C (pa i r (x, V))

01

()
"U
(j)
:J
o
:J

I
o
III
:J
o
:J
o·
III

o
o
:J
(J)
�
:J (J)
0'
-.

:J
o
:J
..!.. .
:J
a.
c
o
<'
CD

-<
'"0
CD
(J)

..... IV 0'\

� ..-It)
(JJ
......
�

Cl It) "'1
�. �
::r.
o
='
o,.,
M
It) [
=' �
::r.
o
='
�
§::
VI "'0
;:;: rT
DJ

�

[
z : [(A , B)] [y (w) • �;'�

[
W . AI]

e : [(A , B) C (z) type d(�: , y) : C(pa i r (x , y)) .
--
---------------- [Ehm

k : n (C(e) , D) spl i t (d, e) : C(e) .
----------------- n Ehm

apply (k , spl it(cl, e)) : D(spl i t (d, e))
splitta i l dJ (cl, e , k) : D(spl it (d, e)) =def

c..n

()
-0
CJ)
::::J
o
::::J

I
o
I»
::::J
o
::::J
o·
I»

o
o
::::J
en
S'
::::J
en

0'
"'"

::::J
o
::::J
.!..
::::J
0.
C
n.
<'
Cl>
......

'<
-0
Cl>
en

...... N '-l

6. CPS non-canon ical constants for

inductive types

In this chapter we present computation rules, and the associated elimi
nation rules, for CPS non-canonical constants for the inductive types we
discussed in Chapter 2:

• natural numbers;

• polymorphic lists;

• binary trees.

We compare these rules to the rules which use structurally recursive non
canonical constants, and in the case of the natural numbers compare our
CPS non-canonical constant to a tail-recursive operator defined in [110] .

In Chapter 2 we saw that, in M-LTT, computations using values of induc
tively defined types, like the natural numbers and polymorphic lists, typ
ically use structural recursion. Generally, a function over these types is
defined in terms of a non-canonical constant which is the structural recur
sion operator for the type. In Chapter 3 we saw a number of advantages
of tail-recursive functions. In this chapter we provide a natural way to
express and exploit tail-recursive functions in M-LTT.

The relationship between the elimination rules which we present in this
chapter and the standard elimination rules for the inductively defined
types is similar to the relationship between the elimination rules for the
+ and L types which we presented in Chapter 5 and the usual elimination

6. CPS non-canonical constants for inductive types 129

rules for the + and L types. We cannot, however, give such a simple def
inition of the CPS non-canonical constants as we were able to in Chapter
5. We can show an equality between the CPS non-canonical constant and
the structurally recursive ones.

6.1 Natural numbers

As always we present the computation rules, and then construct an elirni
na tion rule.

Rules 2.40 and 2.41 are the natural number introduction rules.

6.1 .1 Computation ru les

Rules 6.1 and 6.2 are the rules for using tail recursion with the natural
numbers.

n --+ zero k --+ A (b) b(d) --+ b'
-------------- natta i l Comp.

natta i l (d, e , n , k) --+ b'

Rule 6.1 : n atta i l computation 1

n --+ succ(m) k --+ A (b) n atta i l (d, e , m , A((x)b(e(m , x)))) --+ e'

n atta i l (d, e , n , k) --+ e'

Rule 6.2: n attai l computation 2

As before we supply a tail-function as an auxiliary argument to the non
canonical constant.

6. CPS non-canonical constants for inductive types 130

6.1.2 El imi nation ru le

We construct the elimination rule using exactly the same reasoning that
we have used previously. We are trying to infer a type for:

natta i l (d, e, n , k)

The premises to the rule are justified as follows.

First we must be able to judge:

n : Nat

Just as in the usual Nat elimination rule we need to have premisses:

[x : Nat]

C (x) type

and:

d : C(zero)

and:

[p : Nat 1
q : C(p)

e(p, q) : C(succ(p))

We also need a premiss relating to the type of k . We follow the same rea
soning that we used to explain the premiss relating to the types of the
continuations we used in the previous chapter. We need to know that D is
a family of types over C(n) . Thus we require these premisses:

[w : C(n)]

D (w) type

6. C PS non-canonical constants for inductive types 131

and:

k : n (C(n) , D)

The type of natta i l (cl , e , n , k) is then D(natrec(cl, e , n)) .

Rule 6.30 on page 148 is the elimination rule which we have constructed.

6.1 .3 Equal ity ru les

Rule 6.3 and Rule 6.31 on page 149 are the rules for equality of expressions
involving natta i l .

[x : C (zero)] [y : C (zero)]

C (zero) type D (x) type f(y) : D (y) cl : C (zero)
--------------------- Nat Elim. =

natta i l (cl, e , zero, ,x (f)) = f(cl) : D (d)

Rule 6.3: Equality of expressions involving natta i l 1

6.2 Polymorphic l ists

We can provide a similar treatment for polymorphic lists.

Rules 2.48 and 2.49 are the list introduction rules.

6.2. 1 Computation ru les

The rules for tail recursion are:

n -+ n i l k -+ 'x (b) b(d) -+ b' . .
------------- l Istta l l Comp.

l istta i l (cl, e , I , k) -+ b'

Rule 6.4: l istta i l computation 1

6. CPS non-canonical constants for inductive types 132

l --t cons(a , a s) k --t ;\(b) l istta i l (d. E , as , ;\ ((x)b(e (a , as , x)))) --t e'

l istta i l (d, e , l , k) --t e'

Rule 6.5: l isttai l computation 2

6.2.2 E l i m i nation ru le

Rule 6.32 on page 150 is the elimination rule which we obtain from con
sidering these computation rules. This rule is justified in exactly the same
way as the rule for natural number elimination was.

6.2.3 Equal ity rules

Rule 6.6 and Rule 6.33 on page 151 are the rules for equality of expressions
involving l istta i l .

[y : C (n i l)] [z : C (n i l)]

C(n i l) type D (y) type d : C (n i l) b(z) : D (z)

l istta i l (d, e , n i l , ;\ (J)) = f(d) : D(d)

Rule 6.6: Equality of expressions involving l istta i l l

6.3 Binary trees

We can give binary trees the same treatment.

Rules 2.56 and 2.57 are the binary tree introduction rules.

6.3.1 Computation ru les

Rule 6.7 and Rule 6.34 on page 152 are the computation rules for t reeta i l .

6. CPS non-canonical constants for inductive types

t -+ leaf k � >. (1) f(d) � l' .
-------------- treetad Comp

t reeta i l (d, e , t , k) -+ l'

Rule 6.7: t reetai l computation 1

133

The second rule introduces one minor novelty. Whereas in the computa
tion rule for treerec for the case of a node (Rule 2.59 on page 64) we had
this expression to evaluate:

e(v, l , r, t reerec(d, e , l) , t reerec(d, e , r))

in Rule 6.34 we have to evaluate:

t reeta i l (d, e, I, >. ((x)t reetai l (d, e, r, >.((y) f(v , I, r, x , y)))))

Clearly we could have chosen to evaluate:

t reeta i l (d, e, r, >. ((x)t reeta i l (d, e, l , >. ((y)f(v , l , r, y, :r)))))

6.3.2 E l imination rule

Rule 6.35 on page 153 is the elimination rule which we obtain from con
sidering these computation rules.

6.3.3 Equal ity ru les

Rule 6.8 and Rule 6.36 on page 154 are the t reetai l equality rules.

C(leaf) type k : n (C (t) , D) d : C(leaf)

t reeta i l (d, e , leaf , >. (1)) = f(d) : D(d)

Rule 6.8: treetai l equality

6. CPS non-canonical constants for inductive types

6.4 Comparison with the standard rules

134

What we have done so far is to take a different notion of computation
(tail recursion, rather than structural recursion) and produced elimina
tion rules which allow us to make judgements about computations of tail
recursive functions. These rules are slightly different from the usual rules,
but justified them in the same way that the usual rules are justified. Al
though we have produced new rules we have not introduced a new form

of rule, nor have we introduced a new judgement into the theory, nor have
we changed the interpretation of any of the judgements of the theory. We
have given ourselves direct access to a different way of writing functions.
It remains useful to show that we have not introduced any new absur
dity to the theory. We do this by establishing the relationship between the
CPS non-canonical constants and the structurally recursive ones. Infor
mally, we can expect a relatively simple relationship, as the CPS- and the
structurally-recursive non-canonical constants have the same proof theo
retic power, unlike wrec which makes appeal to a more powerful induction
principle. Although the relationship here is different we are mirroring the
work we did in Chapter 5. For the case of the natural numbers we also
show the relationship between natrec and tprim, a tail-recursive operator
for the natural numbers described in [110] .

6.4. 1 Relating natrec and natta i l

I n this section will justify Rule 6.37 on page 155. The conclusion of this
rule is the judgement:

natta i l (d, e , n , A (J)) = apply (A (J) , n atrec(d, e , n)) : D(natrec(d, e , n))

To justify this judgement we must show that, given the premisses of Rule
6.37:

nattai l (d, e, n,). (J))

6. CPS non-canonical constants for inductive types

and
appIY (A (f) , natrec(d, e, n))

evaluate to equal values of type:

D (natrec(d, e , n))

The proof proceeds by induction on n .

For the case n --t zero we must show:

135

natta i l (d, e , zero, A (f)) = apply (AU) , natrec(d, e , zero)) : D(natrec(d, e , zero))

On the left-hand side, considering the first computation rule for nattai l

(Rule 6.1) , we have (ignoring evaluation of canonical forms) :

d --t d' f(d') --t l'
natta i l (d, e , zero, A (J)) -t l'

Rule 6.9: Evaluating natta i l (d, e , zero, A (f))

The premisses to Rule 6.37 on page 155 relating to the types of d and f
allow us to conclude that f' : D(natrec(d, e , zero)) .

On the right-hand side, considering the apply computation rule (Rule 2.18

on page 39) and the first computation rule for natrec (Rule 2.42 on page 59),
we have:

d -t d'
-------- natrec Camp
natrec(d, e , zero) -t d' f(d') -t l'

apply (A (f) , n atrec(d, e , zero)) --t l'

Rule 6.10: Evaluating app ly (A (f) , natrec(cl, e, zero))

Hence both left- and right-hand sides evaluate to the same value of
D(natrec(cl, e , zero)) . Thus the base case is established.

6. CPS non-canonical constants for inductive types 136

For the case n --+ succ(m) we must show:

natta i l (d, e , succ(m) ,).. (f)) = app ly ().. (f) , (natrec(d, e , succ(m))))

as a value of

D (natrec(d, e, succ(m)))

When evaluating natta i l (d, e , succ(m) ,).. (f)) , the induction step justifies this

rule :

apply (A (g) , n atrec(d, e , m)) --+ v

natta i l (d, e , m ,).. (g)) --+ v

Rule 6.11 : Induction step

On the left-hand side, we make use of the second nattai l computation rule
(Rule 6.1 on page 129), the rule we have just given, and the apply compu

tation rule to obtain:

e (m , natrec(d, e , m))) ---+ e' f(e ') --+ J'
f(e (m, natrec(d, e , m))) --+ J'
---------------- apply Camp
apply ().. ((z)f (e (m , z))) , n at rec(d, e , m)) --+ l' .
---------------- Induction step

natta i l (d, e , m ,).. ((z)f (e (m , z)))) --+ J' . ------------- nattad Comp
nattai l (d, e , s ucc(m) ,).. (f)) --+ l'

Rule 6.12: Evaluating natta i l (d, e , succ(m) ,).. (f))

On the right-hand side we have, making use of apply computation and the

second natrec computation rule (Rule 2.43 on page 59) :

e (m , natrec(d, e , m)) --+ e'
--------- natrec Comp
natrec(d, e , succ(m)) --+ e' f(e') --+ J'

f(natrec(d, e , succ(m))) --+ l'
------------- apply Comp
apply ().. (f) , natrec(d, e , succ(m))) --+ l'

Rule 6.13: Evaluating app ly ().. (f) , natrec(d, e, succ(m)))

6. CPS non-canonical constants for inductive types 137

The typing judgements which are premisses to Rule 6.37 allow us to con

clude that:

natta i l (d, e, succ(m) , >. (J))

and

apply (>. (f) , natrec(d, e, succ(m)))

evaluate to the same value of type D(natrec(d, e , succ(m))) . So the induc

tive case has been dealt with.

So both cases have been handled, justifying Rule 6.37.

Internalising the relationship between natta i l and natrec

The argument given in the preceding section is an argument outside M
LTT. Rule 6.14, and the series of sub-proofs from Rule 6.38 on page 156

to 6.42 on page 160 internalise this argument. For brevity in these proofs

we write D'(p) for D (g(natrec(d, e , p))) . We also suppress type judgements.

nat rec(eq, (x , y, z)eq, n) : EQ(natta i l (d, e, n , g) , apply(g, n atrec(d, e, n)) , D'(n))
natta i l (d, e , n , g) = apply (g, n atrec(d, e, n)) : D'(n))

Rule 6.14: A proof that natta i l (d, e , n , g) is equal to apply(g, natrec(d, e , n))

Section summary

In this section we have shown that any value we can compute using nattai l
we can also compute using natrec. One corollary of this is that if we can

construct a value in the empty type using natta i l then we could have con

structed the value using natrec. So we have a relative 'simple-minded con

sistency', to borrow a phrase from Martin-Lof [77] .

A second corollary is that, if the continuation is the identity function:

6. C PS non-canonical constants for inductive types

n : N at

[x : N at]

C (x) type d : C (zero)

[p : Nat 1
q : C(p)

e (p, q) : C(succ(p))

natta i l (d, e , n , 'x ((x)x)) = natrec(d, e , n) : C (n)

Rule 6.15: A corollary of Rule 6.37

138

So we can replace any structurally recursive function on the natural num

bers with a tail-recursive one. This function need not be the only suitable

tail-recursive function, of course.

A corollary of Rule 6.15 is that we can replace:

D(natrec(d, e, n))

with:

D(natta i l (d, e, n, 'x ((x)x)))

in Rule 6.30.

6.4.2 Comparison with Thompson 's tpri m

Thompson (in §6.8 of [110]) discusses the use of M-LTT for imperative pro

gramming, and asserts that this can be (partially) done:

'via an identification of a particular class of functional pro

grams, the tail-recursive functions, with imperative programs.'l

His approach is rather different from ours:

• he supposes that we already have a structurally recursive function

and wish to perform some (presumably optimising) transformations

on it;

1 Emphasis in the original.

6. CPS non-canonical constants for inductive types 139

• he does not discuss continuations;

• he only considers the type Nat.

Thompson's operator for tail recursion is tpr im and has the following be

haviour (after uncurrying tpr im and a little abuse of notation) :

p --+ succ(m)

p --+ zero v ----+ v'
--------- tpr im Comp.
tpr im (n , c, I, p, v) ----+ v'

Rule 6.16: tpr im computation 1

m < n tprim (n , c, I, m , I(n - m - 1 , v)) --+ t'

tprim (n, c, I, p, v) --+ t'

Rule 6.17: tprim computation 2

p --+ succ(m) m 1. n v --+ v'
-------------- tprim Comp.

tpr im (n , c, I, p, v) --+ v'

Rule 6.18: tpr im computation 3

The second argument to tpr im is merely copied about and plays no active
role. The last rule is slightly odd: the intention surely is that the operator

will only be used when m < n .

Thompson states:

'For all n, c and I, tpr im n c f n c = pr im n c l'

prim is a curried variant of natrec: pr im n c I =def natrec(c, I, n) .

Consider an informal evaluation of tpri m (n , c, I, p, v ?:

2 We ignore the case of Rule 6.18

6. CPS non-canonical constants for inductive types

tprim (n , c, f, p, v)

-+ tprim (n , c, j, p - 1 , f(n - p, v))

-+ tpri m (n , c, j, p - 2 , f(n - p + 1 , j(n - p, v)))

-+ tprim (n , c, f, p - :3 , f(n - p + 2, f (n - p + 1 , f(n - p, v))))

-+

-+ tprim (n , c, j, p - p, f(n - p + (p - 1) , . . . f (n - p + 1 , f(n - p, v))))

-+ f (n - 1 , . . . , j(n - p + 1 , f (n - p, v))))

Figure 6.1 : Informal evaluation of tprim (n , c, f, p, v)

If we compare this to a similar informal evaluation of natta i l (d, e, q, k) :

n atta i l (d, e, q, k)

-+ natta i l (d, e , q - 1 , "\ ((x) (k (e (q - 1 , x)))))

-+ natta i l (d, e, q - 2 , "\ ((y) ((A ((x) (k (e (q - 1 , x))))) (e (q - 2, y)))))

-+ natta i l (d, e, q - q, "\ ((z) ((. . .) (e (q - q, z)))))

-+ "\((z) ((. . .) (e (O , z))))d
-+ k (e(q - 1 , e(q - 2, . . . e (O , d))))

Figure 6.2: Informal evaluation of natta i l (d, e, q, k)

We see that we can now assert:

tprim (n , c, f, p, v) = natta i l (v , (a , b)f(a + n - p, b) , p, ,,\((x) x))

Section summary

140

In this section we have shown that we can represent a tail-recursive, not

CPS, operator presented in [110] using nattai l . We gave a direct characteri

sation of tpr im, although we could have used Rule 6.37, and the character

isation of tpr im in terms of natrec given in [110] .

6. CPS non-canonical constants for inductive types

6.4.3 Relati ng l i strec and l istta i l

141

In this section we relate l ist rec and l istta i l . We justify Rule 6.43 on page 161 .

The justification is similar to that given in §6 .4.1 for Rule 6.37, and proceeds

by list induction.

First we consider the case I --t n i l . We are seeking to justify:

l istta i l (d, e, n i l ,).. (1)) = apply ().. (1) , l istrec (d, e, n i l)) : D(l ist rec(d, e, n i l))

On the left-hand side we use the first l istta i l computation rule (Rule 6.4) to

obtain:

d --t d' f(d') --t l'

l istta i l (d, e, n i l ,).. (1)) --t l'

Rule 6.19: Evaluating l istta i l (d, e, n i l ,).. (1))

On the right-hand side we use the first l ist rec computation rule (Rule 2.50
on page 61), and the apply computation rule to obtain:

d --t d'
------- l istrec Comp
l istrec(d, e, n i l) --t d' f(d') ---+ l'

app ly().. (1) , l istrec(d, e, n i l)) ---+ l'

Rule 6.20: Evaluating apply ().. (1) , l istrec(d, e, n i l))

The premisses of Rule 6.43 establish that l' D(natrec(d, e , n i l))) . So the

base case has been established.

The second case is where l --t cons(a , as) . We are trying to establish that:

l istta i l (d, e, cons(a , a s) ,).. (1)) = apply ().. (j) , l istrec(d, e, cons(a , as)))

6. CPS non-canonical constants for inductive types 142

as a value of

D(l istrec(d, e, cons(a , a s)))

When evaluating l istta i l (d, e , cons(a , as) , 'x (k)) the induction step justifies

this rule:

apply (A (g) , l ist rec(d, e, as)) -+ v

l istta i l (d, e , as , ,X (g)) -+ v

Rule 6.21 : Induction step

On the left-hand side, using the second natta i l computation rule (Rule 6.2

on page 129), the rule we have just presented, and apply computation, we

have:

e (a , as , l ist rec(d, e , as)) -+ e' f(e') -+ !'
f(e (a , as , l istrec(d, e , as))) -+ !'
------------------ apply Comp
apply (A ((x) (f (e (a , as , x)))) , l ist rec(d, e , as)) -+ J'

.

------------------ Induction step
l istta i l (d, e , as , 'x ((x) (f (e (a , as , x))))) -+ J' . .
--------------- I Istta l l Comp

l isttai l (d, e , cons(a , a s) , ,X (f)) -+ J'

Rule 6.22: Evaluating l istta i l (d, e , cons (a , a s) , 'x (f))

On the right-hand side, using apply computation and the second natrec

computation rule (Rule 2.43 on page 59), we have:

e (a , as , l ist rec(d, e, as)) -+ e' .
---------- l Ist rec Comp
l ist rec(d, e , cons(a , as)) -+ e' f(e') -+ J'

f(l ist rec(d, e , cons (a , as))) -+ !'
--------------- apply Comp
apply (A (f) , l istrec(d, e , cons (a , as))) -+ !'

Rule 6.23: Evaluating apply (,X (f) , l istrec(d, e , cons(a , as)))

6. CPS non-canonical constants for inductive types 143

The premisses of Rule 6.43 allow us to infer that left- and right-hand sides
evaluate to the same value of type D(l istrec(d, e, cons(a , as))) .

Hence the inductive case has been dealt with.

Hence we have justified Rule 6.43.

Internal ising the relationship between l istta i l and l istrec

Just as we could internalise the relationship between nattai l and natrec, so

we can internalise the relationship between l istta i l and l istrec. The proof fol

lows the same pattern as 6.14 on page 137, and, in the interests of brevity,

we omit it.

Section summary

In this section we have shown that any value we can compute using l istta i l
we can also compute using l istrec. So, as with the natural numbers, we
retain 'Simple-minded' consistency.

Just as with the natural numbers, if the continuation is the identity func

tion, we have:

[x : L ist (A)]

[a : A 1
as : L ist (A)

q : C(as)

I : List (A) C (x) type d : C(n i l) e (a , as , q) : C (cons(a , as))

l istta i l (d, e , l , ..\ ((x) x)) = l ist rec(d, e , l) : C (l)

Rule 6.24: A corollary of Rule 6.43

A corollary of Rule 6.24 is that we can replace:

D(l istrec(d, e , l))

6. CPS non-canonical constants for inductive types

with:

D(l istta i l (cl, e, I, A ((.1;)X)))

in Rule 6.32.

6.4.4 Relati ng treerec and treeta i l

144

For completeness we justify Rule 6.44 on page 162. The justification fol

lows the same pattern as before, this time using structural induction on

binary trees.

For the case t ----+ leaf, we have to show that:

t reeta i l (cl, e, leaf, A (f)) = appIY (A (f) , treerec(cl, e, leaf))

as a value of type D(t reerec(cl, e , leaf)) .

On the left-hand side we use the first t reeta i l computation rule (Rule 6.7 on

page 133) to obtain:

d ----+ d' f (d') ----+ f'

t reeta i l (d, e , zero, A (f)) ----+ f'

Rule 6.25: Evaluating treeta i l (cl, e, leaf, A (f))

On the right-hand side we the use first t reerec computation rule (Rule 2.58
on page 63) and the apply computation rule to obtain:

d ----+ d'
-------- t reerec Camp
t reerec(cl, e , leaf) ----+ cl' f (cl') ----+ f'

f(t reerec(cl, e , leaf)) ----+ f'
------------ apply Camp
apply (A (f) , t reerec(cl, e, leaf)) ----+ f'

Rule 6.26: Evaluating apply(A (f) , t reerec(cl, e , leaf))

6. CPS non-canonical constants for inductive types 145

The premisses of Rule 6.44 allow us to infer that both left- and right-hand
sides are values of D(t reerec(d, e, leaf)) .

So the base case has been established.

In the case t --+ node(v , l , r) we are trying to establish:

t reeta i l (d, e, node (v , l , r) ,).. (J)) = apply ().. (J) , t reerec(d, e, node (v , l , r)))

as a value of type:

D(t reerec(d, e, node(v , l , r)))

The induction step licences the use of following rule when evaluating

treeta i l (d, e, node(v , l , r) ,).. (J)) , where s is either l or r :

apply ().. (g) , t reerec(d, e, s)) --+ v

t reeta i l (d, e , s ,).. (g)) --+ v

Rule 6.27: Induction step

On the left-hand side, we use the apply computation rule, the second t reeta i l
computation rule (Rule 6.34 on page 152) and the induction step we have

just presented to obtain:

e (v , l , r, treerec(d, e , l) , t reerec(d, e , r)) --+ e' f(e') --+ l'
f(e (v , l , r, treerec(d, e , l) , t reerec(d, e , r))) --+ l' .
---------------------- apply
app ly ().. ((y)f(e(v, l , r, t reerec(d, e , l) , y))) , t reerec(d, e , r)) --+ l'
---------------------- Ind.

t reeta i l (d, e, r,).. ((y)f (e (v , l, r, t reerec(d, e, l) , y)))) --+ l'

apply ().. ((x) t reeta i l (d, e , r,).. ((y)f(e (v , l , r, x , y))))) , treerec(d, e , l)) --+ l'
-------------------------- Ind.

t reeta i l (d, e , l ,).. ((x)t reeta i l (d, e , r,).. ((y) f(e (v , l , r, x , y)))))) --+ l' .

--
--------------------- treeta l l

treeta i l (d, e , node (v , l , r) ,).. (J)) --+ l'

Rule 6.28: Evaluating t reeta i l (d, e , node (v , l , r) ,).. (J))

6. CPS non-canonical constants for inductive types 146

On the right-hand side we use the app ly computation rule and the second

t reerec computation rule (Rule 2.59 on page 64) to obtain:

e (v , l , r, t reerec(d, e, l) , t reerec(d, e , r)) ---+ et
----------------- t reerec Comp

t reerec(d, e, node (v , l, r)) ---+ et f(et) ---+ l'

f(treerec(d, e , node (v , l , r))) ---+ l'
--------------- apply Comp
apply (A (J) , t reerec(d, e , node (v , l , r))) ---+ l'

Rule 6.29: Evaluating app ly (A (J) , t reerec(d, e, node(v, l, r)))

The premisses of Rule 6.44 allow us to infer that both left- and right-hand

sides are values of D(treerec(d, e, node(v , I , r)) .

So the inductive case has been established.

So both cases have been established and we have justified Rule 6.44.

Internal ising the relationship between t reeta i l and treerec

Just as we could internalise the relationship between natta i l and natrec, so

we can internalise the relationship between t reeta i l and t reerec. The proof

follows the same pattern as 6.14 on page 137, and, in the interests of brevity

we omit it.

Section summary

In this section we have shown that any value we can compute using t reeta i l

we can also compute using t reerec. So, as with the natural numbers and

polymorphic lists, we retain 'simple-minded' consistency.

Just as with the natural numbers, if the continuation is the identity func

tion, we can construct a tail-recursive function from a structurally recur
sive one, as shown in Rule 6.45 on page 163.

6. CPS non-canonical constants for inductive types 147

Also as before, we can replace:

D(treerec(cl, e, t))

with:
D (treetai l (d, e, t, A ((X)X)))

in Rule 6.35.

6.5 Chapter Summary

In this chapter we have:

• presented CPS non-canonical constants for common inductively de

fined types;

• presented elimination rules which use these non-canonical con

stants;

• shown the relationship between the CPS non-canonical constants
and the structurally recursive non-canonical constants, and conse

quently that:

- the new rules preserve ' simple-minded consistency';

- there is a simple way to construct a tail-recursive function,

given a structurally recursive one;

- although our initial justification of the new elimination rules

made use of the structurally-recursive non-canonical constant,

this can be removed.

• shown the relationship between our nattai l and tprim, another tail

recursive operator for the natural numbers.

� ('!)
Q'\ 0J o

z �
2" ., �
::s c
g. ('!) .,
('!) [
::s �
::t.
o
::s
�
§::
@" -., ('!) n C .,
IJl
o·
::s

[;1; : N at] [y : C (n)] [v : N at]

[p : N at 1
z : C (p)

n : Nat C(x) type D(y) type k : n (C(v) , D) cl : C(zero) e (7J, z) : C(succ(p)) . ------------------------------ Nat Ehm.
n atta i l (cl, e, 1/., k) : D(natrec (d, e, n))

(J)
o -u (J)
::J
o
::J

I
()
�
::J
o
::J (5' �
()
o
::J
CJ) -Ql ::J -
CJ)

0' ...,
5'
a.
c
()
<'
CD

-<
-0
CD
CJ)

...... "'" 00

�
........ rtl
0\ W
�

tT1 ...0 C III
........

�.
o,
rtl
><

�
@
(J'l (J'l
.... .
o
:::s (J'l

s·
<
o
<'
S·

OQ
::s III III

N

11. : N at

[x : Nat] [w : C(n)] [y : C(n)]

[p : Nat 1
:; : C (p)

C (x) type D (w) type J(y) : D(y) d : C(zero) e (p, z) : C(succ(p)) .
----------------------------- Nat Ehm. =

natta i l (d, e , succ(n) ' A (J)) = natta i l (d, e , n , A((u)J (e (n , u)))) : D (natrec(d, e , succ(n)))

en

()
'1J
C/)
:::J
o
:::J

I
o
III
:::J
o
:::J
e

r

III

o
o
:::J
C/l
....
III
:::J
....
C/l

0'
...,

:::J
a.
c
o
.....

<'
CD

-<
"0
CD
C/l

.-.
""" \0

6. CPS non-canonical constants for inductive types

------... "--"
Cl
�

c:: '--'
\.)
'1;j

...---.-
Q -...---.--... "--"
\.)
c
. .

�

v
0-
>-.....---.-
;:::, "--"

Q

'--'
..... (/)

--l

Il.l
� --..; u v
. !!!
"--"
Cl
�
-...
Il.l

�
. -ro (/)

Rule 6.32: List elimination with tail recursion

150

� c -(t)
Q'\ 1.N UJ
t'r:1 ...0 C III -..... .

�
0 --
(t) ><

"'Cl
'"1 (t) {Jl {Jl a : A 0
::l
(Jl

S·
<:
0 -
<:
S·

OQ
Vi '
DJ

N

[x : Li.'> l (A)]

[
1) : A 1 q : List (A)

r : C((I) [y : C (cons(a , a.'»)] [z : C(cons(a , a .'»)]

a s : List(A) C(x) type D(y) type b(z) : 1)(::) d : C(n i l) e(p, If, r) : C(cons(71, I/))

l isttai l (d, t:, cons(a , aoS) ,).. (J)) = l isttai l(d, (-' , a 8 ,).. ((:r) (J(t· (a , a oS , :r))))) : D(l istrec(d, e , cons(a , (8)))

(J)
()
"'U
CIJ
:l
o
:l

I
(')
III
:l
o
:l o· �
(')
o
:l
(J)
III
:l (J)
0' ...,
:l
a.
c
(')
<' (1)
�
"0 (1) (J)

....... Ul

6. C PS non-canonical constants for inductive types 152

0..
E 0 u

. -
ro Q) Q)

�
T

�
� ------------
�
'"'
�

--
'"' '---'

'--.
�
�

'---'
...-<:
;..
�

---'--'
ro '--. Q) Q)

T ----
'"' ----'--' ...:.: '--'

...-<: -..
-- �
� -::::

-:::: '--"
'--' re

re Q) � Q) Q)

'--. '--'
...-<:

T
...:.:

----;...
--
;::. '--' Q)

\:l
0
c:

T

Rule 6.34: t reetai l computation 2

§: (l)
0\
i.;J Ul
OJ
s·
IlJ
>-t

'-<:
q (l) (l)
(l) [
::l IlJ
::r.
o
::l
� -
::r
6i -. -
>-t (l) ()
s:: >-t Ul
o·
::l

[x : B i n Tree(A)]

t : BinTree(A) C(x) type

z : A

l : B i nTree(A)

r : B inTree(A)

1 £ : C(l)

[y : C(t)] l' : C(r)

D(y) type k : n (C(t) , D) cl : C(leaf) e (z , l , r, ll , v) : C(node(z , l , 1·))

treeta i l (d, e , t , I.:) : D(treerec(d, e, t))

0>

()
-U
CJ)
:::J
o
:::J

I
()
IlJ
:::J
o
:::J
o·
IlJ

()
o
:::J
en -
IlJ
:::J -
en

0' ..,
:::J
0.
c
() -
<.
CD

-<
"0
CD
en

......
Ul U-J

� ..-(t)
0\
W
0\
rt � (b (b rt III
(t)
.g $ll ..-
�
N

[.r : BinTree(A)] [y : C(node(lI. l. I·) l I [z : C(node(lJ . l , l'))]

w : A
II : Bin Tree(A)
IT : BinTree(:I)

u : C(I)
1.' : (' (1')

11 : ..1 I : BinTree(A) I' : BinTree(A) C(.r) type I ! (y) type f(=) : J) (z) d : C(leaf) f (w. II, IT, Il , II) : C(node(w, Ll, n·))

treetai l (d, e , node(lJ , l, r) , >.(f)) = treetail(ri, f . I , A ((.r) t reetail(d , f , r , A ((y)f (11, 1', y))))) : J)(t reerec(ri, f , I))

CJ)
()
'"U
CJ)
::J
o
::J

I
(")
$ll
::J
o
::J
o·
III

(")
o
::J
C/) ...
III
::J ...
C/)

0' .,
::J
0..
C
(") ...
<' en
-<
"0
en
C/)

I-' CJ1 �

:;:d s:: rt>
Q"\
W
� � rt>
::s
::J IU IU

p.J
::s

n : Nat 0..
::J IU, (b ('\
p.J 1-1 rt>
s:-rt>
Cfl p.J
3 rt>

[x : NatJ [y : C(n) J [y : C(n) J

[]J : Nat 1
z : C(]J)

C(x) type D(y) type J(y) : D(y) d : C (zero) e (p, z) : C (succ(p))

n atta i l (d, e , n , >.. (J)) = apply (>.. (J) , n atrec(d, e , n)) : D(natrec(d, e, n))

Q)

()
-u
(j)
:::J
o
:::J

•
(')
DJ
:::J
o
:::J
0"
DJ

(')
o
:::J
C/l
5i
:::J
C/l

0' -.
S"
a.
c
(')
<" Cl)
-<
"0
Cl)
C/l

..... U1 U1

� -(1)
(j\
w r:x;
Cfl
s-I

""Cl
"'1
o
o
'"l

rl : (, (zero) v : n (C, D)

nattail(d, lC , zero, v) = V(d) : D'(zero)

rl : (, (zero)

v : n (C, D) natrec(d, lC, zero) = rl : (, (zero)

tl : (, (zero)

v : n ((', D) natrec(d, t", zero) : (' (zero)

V(d) = v (natrec(rl, t<, zero)) : D'(zero) v(natrec(d, lC , zero)) = apply (v, natrec(d, t: , zero)) : n'(zero)

V(d) = apply (v , natrec(d, t< , zero)) : D'(zero)

nattail (rl, t<, zero, v) = apply(v, natrec(tl, t:, zero)) : D'(zero)

eq : EQ(nattail (rl, e , zero , v } , apply(y, natrec(d, t: , zero)) , D'(zero))

(J)

()
-U
CJ)
::::J
o
::::J

I
o
0>
::::J
o
:::J
o·
0>

o
o
:::J
Ul -
0>
::::J -
Ul

0' �
::::J
a.
c
o -
<.
CD

-<
"0
CD
Ul

.... U1 Q\

� c (t)
0'W \0
(f)
g. I

'"0
"1
o
o
"" IV

[I' : Nat]
IJ : (.'(1')

["' : NatJ d : C(zero) dll, IJ) : {; (SUCC(II)) !} : n I t ', IJ)

nattail(d, f, - succ(m) , !}) = nattail (d, f. , IIL , A ((.r. } (!}(f. (JII. , .I:))))) : IJ'(succ(I/L))

1T�U 7r'J.'l

nattail (rI, f. , lit, A((.I') (!}(f. ("" .I;))))) = apply(!}, nat rec(d, f. , SUCC(IIL))) : f)'(SUCC(/It))
nattail (d, f! , sucC(IIL) , !}) = apply(!} , natrec(d, t: , sucC(IIL))) : IJI(succ(m))

eq : EO(nattail(d , f. , succI I lL) , !}) , apply(!!, natrec(ri, f , SUCC(I lL))) , IJI(succI "')))

O'l

()
-U
(J)
:J
o
:J ,
o
Q)
:J
o
:J
O·
Q)

o
o
:J
CJl ...
Q)
:J ...
CJl
-
o ...,
:J
0.
c
o ...
<' CO

-< "0 CO CJl

...... Ul '-l

�
>-' (t)
0\
;p.. o
Cf}
s::
0"' I

'"0
"1
o
o,
"l IV

[]I : Nat 1
'I : C(]I)

g : n (C, f)) [m : Nat] ((1), '1) : C (succ(p))
[q : n (n(C, f)) , (f)EQ (nattai l (ri, e , m , !) , apply(f, natrec(ri, e , 111.)) , f)'(succ(111.))))] A « (.1:)g(c (111. , .r))) : n(C , f))
apply (q , A ((.1:)g(r (m , .1:)))) : I�Q(nattai l(ri, e , 111, A((.1:)g(e (m , .1:)))) , apply(A ((:r)g(e (m , ./:))) , natrec(ri, e , 111.)) , I)' (succ(111.))))

nattai l (d, c , 1n , A « .l:)g(c (m, .1:)))) = apply(>.« .1:)g(r (m , .1:))) ' natrec(d, c , m)) : I)' (succ(m))

0>

() '1J (J)
:::J o :::J . (") Ql :::J
o :::J
0' Ql
(") o :::J (JJ Ql :::J
(JJ
0' -,
S'
a.
c
(")
<' (1)
-< '0 (1) (JJ

.....
01 00

� I'D
(J'\
�
f-l

(f)
s-I

""d
"'1
o
o
::j '"

'"

[p : Nat 1
q : C(p)

[m : Nat] g : n (C, D) e (p, q) : C(succ(p)) cl : C(zero)

apply (�((x)g (e(m , ;1:))) , natrec(d, e , m)) = g(e (m, natrec(d, e , m))) : D' (succ(m)) 71"2.2. 1

apply (A ((x)g(e (rH , x))) , natrec(d, e , m)) = apply(g, nat rec(d, e , succ(m))) : D'(succ(m))

0>

o
"'U
(J)
:::::J
o :::::J

I
()
III :::::J
o :::::J
o· III
() o :::::J (J)
.-+
III :::::J
.-+ (J)
o ...,
s·
0.
c
()
.-+

<' CD
-< "'0 CD (J)

.....
lJl \0

[1' : Nat]
'I : C(T))

[I) : Nat]
" : (: (1')

[m : N at] �(I', ,,) : C(SUCC(I))) d : C(zero) [1fI : Nat] d : C(zero) � (I), ,,) : C (succ(I'))

t' ()II, natrec(d, ", Ill)) = natrec(d, � , succ(1TL)) : (.' (succ(m)) y : n(C, f)) natreC(I/, t: , SUCC(III)) : C(SUCC(f/I)) y : n (C, 1»
y(t. (III , natrec(d, �, m))) = y(natrec(rI, � , SUCC(III))) : /J'(SUCC(III)) y(natrec(rI, � , SUCC(TII))) = apply(y, natrec(I/, t. , succ(m))) : f)'(SUCC(III))

y(�(III, natrec(ri, t. , lit))) = apply(y, natrec(ri, t. , succ(m))) : /J' (SUCC(1/1))

o
-U
C/)
:::l
o
:::l

I
o
III
:::l
o
:::l

O·
III

o
o
:::l
en
....
III
:::l
....
en

0'
...,

6. CPS non-canonical constants for inductive types 161

c-
� '-" VI

� c:
0 � '-" c- u � '---'

. !!l \.) \.) � �
h ,...-... c- h

c- ..--.. ,.:-..... '-""' 'l.l 'l.l
"'1::l
� u Q)

�
c: VI

'---' '---' \.) Q
"'1::l ..--. ,...-... -...

,.)
..--. � ..--. �
� u -... Q Q) '---'

\.) �
. VI ..--.

� � ..--. '-""'
'--. '--.

..-<:: '-" >.
c. Q) c. ..--. c. ro -- >. 1 1 \.)--.

� ..--. ..--.
� '---' '--. Q -----

..-<::
-...
,.)

,...-... Q) �
� '-" c. '---' >. ro VI . ..--.
� � . !!l ----.;
� \.)

� '-" VI
�

Rule 6.43: When l istta i l and l ist rec are the same

§: (t)
(]\
it �
�
,... ..,
(l)
(l) ,... III
tu
::1
0-
,... ..,
(l)
(l) ..,
(l)
(")
tu '"1 (t)
s:-(t)
C/l tu
3 (t)

I : B inTree(A)

[x : B inTree(A)J [y : C (t)] [z : C(node{v , I, 7')) J

C(x) type V{y) type J(z) : V{ z)

z : A

I : B inTree{ A)

7' : Bin Tree(A)
It : C(I)
1 1 : C(r)

d : C{ leaf) e.(z , I , 7', Il , v) : C(node(z , l , r))

t reeta i l ((/, e., l ,)..(J)) = apply().. (J) , treerec(d, e , I)) : V(treerec(d, e. , I))

0)

()
"1J
CJ)
:J
o
:J

I
o
tu
:J
o
:J
0'
tu

o
o
:J
(J)
tu
:J (J)
-
o ...,
:J
a.
c
o <t
<D
-<
" <D (J)

...... 0\ N

� (1)
0\
� <.J1

>-
I"l
o
(3 III "1

'--<:
o
:::0
E-(1)
0\
t

i : B i nTree(A)

[:r : B i nTree(A)]

Ce l') type

y : A

i : B i nTree (A)
l' : B i nTree (A)

H : C (L L)
v : C(rr)

cl : C (leaf) e (y , i , 1', U , V) : C (node(y , i , r))

treeta i l (d, e , i , 'x ((:r) x)) = t reerec(d, e , t) : C (l)

0>

o
"U
CJ)
::J
o
::J ,
(')
Ol
::J
o
::J
0'
Ol

(')
o
::J
Ul
.-+
Ol
::J
.-+
Ul

0'
::J
a.
c
(')
.-+

<' CD
-<
'0
(1)
Ul

......
�

7. Im plementi ng C PS usi n g wel l-order

types

We introduced the vV'" types in Chapter 2. The vV types provide us with

a way to encode all the inductively defined types, and we showed how

we could use them to represent binary trees. The non-canonical constant

associated with the Hl types, wrec allows us to encode structural induction

for the inductively defined types. In this chapter we will provide a non

canonical constant, wta i l , which allows us to encode tail-recursion for the

inductively defined types.

Rule 2.62 is the W introduction rule.

7.1 Computation ru le

The computation rule for wta i l looks rather different from the computation

rules for the CPS non-canonical constants associated with the inductively

defined types. This is reasonable because the vV'" elimination rule corre
sponds to bar induction, whereas the elimination rules for the inductively

defined types correspond to structural induction. As we can use wrec to

implement any of the structurally recursive non-canonical constants, so

wta i l will allow us to implement any of the tail-recursive non-canonical

constants. As we expect wta i l takes an extra argument, the continuation

function.

7. Implementing CPS using well-order types

a ---t sup (d, e) k ---t)., (1) b(d, e , (x . g) (wta i l (e (x) , b, g)) , j) ---t b'

wta i l (a , b. k) ---t b'

Rule 7.1 : wtai l computation

165

Using the definition of binary trees given in §2.5.1 we can use wta i l to de

fine t reeta i l (d, e, t ,)., (1)) as:

wta i l (t ,
(x , y , z , f)when ((q)f(d) ,

)., (1))

(q) z (left,

)., ((u) (z (right ,

)., ((v) (f (e (q, y (I eft) , y (r ig h t) , v , u)))))))) ,

x) ,

This mirrors the definition of t reerec using wrec that we gave in §2.5 .1 .

7.2 E l i m i nation rule

When we presented the CPS non-canonical constants for the inductively

defined types discussed in Chapter 6 we found that the elimination rule

that we constructed had as a conclusion:

natta i l (d, e, n , k) : D(natrec(d, e, n))

and that we could justify a rule like Rule 6.37 which has as a conclusion:

n atta i l (d, e, n ,)., (1)) = apply ()., (1) , natrec(d, e, n)) : D (natrec(d, e, n))

We might hope to do the same for the vV types. Unfortunately the arities

of the arguments to wtai l and wrec are different. The second argument to
wtai l has arity:

0 0 (0 8---+ 0) 0 (0 0 0 8-7 0) 0 (0 8---+ 0) 8---+ 0

7. I mplementing CPS using wel l-order types 166

and the second argument to wrec has arity:

0 0 (0 8-+ 0) 0 (0 8-+ 0) 8-+ 0

However, if the second argument to wta i l is called b then we can define b',

of the correct arity, as:

b'(x , y , z) =def b(x , y, (u , v)z (tt) , (i) i)

We can think of b' as an un-CPS version of b. apply (k , wrec(a , b')) is then
equal to wta i l (a , b, k) and Rule 7.2 on the following page is an appropriate

elimination rule. The justification for this rule follows the same pattern as

the justifications that we presented for the rules in Chapter 6.

7.3 Chapter Summary

In this chapter we have provided a computation rule for wta i l , a non
canonical constant for the W types which will allow us to implement CPS

non-canonical constants for the inductively defined types, in the same way
as wrec allows us to construct structurally recursive non-canonical con

stants. We have given a definition of treeta i l using wta i l , and the encoding

of trees that we used in §2.5 .1 . Finally, we have presented an elimination
rule which uses wtai l .

7. Implementing CPS using well-order types 167

� ..--... ..--...
;:::, ;::::, ..--...

� ---- M � � �
'--'

:::;, c..
2.. ...:::... :::l

Vl � � ..--... "----'
:::;, . u '"'

;::::, � '--'
I'.! '--' "----' ..--...

� u �
M

..--... ..--...
;::::, :::;, <-: '"'

'--' '--' :0 N �

..--...

Q
,....-...

� ,....-...
..--... "----' :0 U

c (;:j
'--'

u
Q)

...:.:
... �

'--'

Q
� Q)

c.. ,....-... (;:j >. ...!C '--' � U . ,....-... -0
;::::, \:; "----' .i::. Q

ro � �
..--...

CQ Q)
c..

� >. �
"----'--...
'- ;:>
::: "----'

u
2.

Rule 7.2: ItV elimination using wta i l

8. Examples

We can now proceed to exploit tail recursion and program with contin

uations in a natural way within M-LTT. In this chapter we present some
very simple functions to illustrate both the structure of the functions that

we construct in continuation-passing style, and the structure of the proofs

that we construct to use them. We focus on such simple functions because

we are interested in the gross structure of the proofs, not in the details of

any particular proof. We also outline a derivation of two simple programs.

8.1 Program structu re

In §6.4 we saw that we could take a structurally-recursive function and

produce an equivalent tail-recursive one. We look at some simple exam
ples of this.

In M-LTT we can define addition and subtraction as:

p l u s (n , rn) =def natrec(rn , (x , y)succ(y) , n)

t imes(n , rn) =def natrec(zero, (x , y) pl us (rn, y) , n)

From these examples we can read off CPS versions:

plusta i l (n , rn , k) = def n atta i l (rn , (x , y) succ(y) , n , k)

t imesta i l (n , rn , k) =def natta i l (zero, (x , y)plus (m, y) , n , k)

We could, of, course use p lusta i l in the definition of timesta i l :

t imesta i l (n , rn , k) =def natta i l (zero, (x , y)p l ustai l (m , y, (>. (x)x)) , n , k)

8. Examples

We can define the function to compute the length of a list as:

lengt h (l) =def l istrec(zero, (x , y, z) succ(z) , I)

169

Recall that, when we use M-LTT for program derivation we are typically

trying to construct a program p, such that we can make a judgement of the

form:

p : Specification

Clearly in any real derivation Specification will be a rather complicated ex

pression. Even in the very simple case of sorting a list (as discussed in § 8.3

on page 171) the type of the specification must state that the output list is

an ordered permutation of the input list. Thus it must also tell us what

a permutation is, and explain what it means for a list to be ordered. As

we are only attempting to highlight some general properties of using CPS

we will be in danger of not seeing the wood for the trees, so we focus on

a very simple judgement, the judgement that lengt h (l) : Nat if I : L ist (A) .
The proof is:

[n : Nat]
--- Nat F ---- Nat I ----- Nat I

I : List (A) N a t type zero : Nat succ(n) : N at
--
---------------------- List E

l istrec(zero, (x , y , z) s ucc(z) , l) : Nat
------------- =def

lengt h (l) : N at

Rule 8.1 : Typing lengt h (l)

Now we define a CPS function lengt hta i l (d , e , I , k) :

lengthta i l (l , k) =def l istta i l (zero, (x, y, z)succ(z) , I , /.:)

The equivalent of Rule 8.1 is:

8. Examples 170

[n : N atJ

I : L ist (A) N at type k : fI (N at, D) zero : Nat succ(n) : Nat

l istta i l (zero, (x , y , Z)succ(z) , I , k) : D(l istta i l (zero, (x, y , Z)succ(Z) , I , -X ((w) w)))

lengthta i l (l , k) : D(length ta i l (l , -X ((w)w)))

Rule 8.2: Typing lengthta i l (l , k)

The two judgements involved in these proofs are slightly different, of

course. Notice that in Rule 8.2 we have judgement about the type of the
continuation left to establish. In this way we have moved the termination

proof of lengthta i l (l , k) onto whatever comes next. This is a clue to how

CPS functions let us use M-LTT conveniently to discuss functions whose

termination we are not really concerned about. For example, when were

are performing I/O we usually want to show that the current I/O oper

ation will pass control on to the next operation, and we are not usually

concerned with whether the total sequence of I/O operations will termi

nate. Operating systems are similar. Although, in general, we want to be
able to shut an operating system down gracefully, and therefore we must

be able to discuss its termination properties, we normally think of an oper

ating system as an on-going process. We usually want to discuss the local

behaviour of a part of the operating system, and to show that, within the

context of the operating system, the part behaves as we wish. M-LTT is

not, with its strong emphasis on termination, the most natural setting in

which to discuss on-going computations, but we have shown that we can

use CPS functions to enable us to do this.

8.2 Proof structu re

This phenomenon of passing the termination proof on to the next function

also affects the structure of proofs that we construct. Again we stick with

a very simple problem. We can define a function to add the lengths of two

8. Examples

lists as:

I s (l , m) =def p lus (lengt h (l) , length (m))

=def natrec(length (l) , (x , y)succ(y) , length (m))

Showing that I s (l , m) has type Nat if l, m are lists starts off as:

[y : N at]

171

lengt h (m) : N at N at type lengt h (m) : N at (x, y)succ(y) : Nat

natrec(lengt h (l) , (x , y)succ(y) , length (m)) : N at

p l us (lengt h (l) , length (m)) : Nat

Is (l , m) : Nat

Rule 8.3: Typing Is (l , m)

To use the CPS non-canonical constants to add the lengths of two lists we

define:

Ista i l (l , m , k) =def length ta i l (m , A ((x) (lengthta i l (l , A ((y) (p l usta i l (m , l, k)))))))

Rule 8.5 on page 176 is the beginning of the equivalent derivation to Rule

8.3. These two proofs have rather different structures, reflecting the dif

ference in the computation rules. Although we can think of the order im

posed by Rule 8.5 as a restriction, we can also think of this as a way to

assist in the structuring of proofs.

8.3 Example of program derivation

In this section we outline the derivation of two CPS programs:

• an algorithm to sort a list of Nat;

• an algorithm to find the least item in a list of Nat .

8. Examples

8.3.1 A CPS sort ing algorithm

172

First, we will explain what a non-CP5 sorting algorithm will look like, and

then we will explain what the CP5 version is.

Types for a non-CPS sort ing a lgorithm

A non-CP5 sorting algorithm will take a list of Nat and will return an or

dered permutation of this list (along with a proof that this is an ordered

permutation of the input list) .

One list of natural numbers is a permutation of another if all the numbers

which occur in one occur the same number of times in the other. So we

can define:

Perm(l, m) =def n (N at , (x) (EQ(occu rrences(x , l) , occu rrences(x , m) , Nat)))

A list is ordered if the i th member is less than or equal to the jth when i is
less than or equal to j . So we can define:

Ordered(l) =def n (Nat , (x) (n (N at , (y) (i ndex(x , l) ::; i ndex (y , l) ::> x ::; y))))

One natural number is less than or equal to another if there is some natural

number which can be added to the first to give the second. So we can

define:

x ::; y =def L:(Nat , (z) (EQ(pl us (x , z) , y, Nat)))

As is usual, from a programming point of view, we are not interested in

the formal proof that we have actually constructed a sorted permutation.

For expository purposes we will suppress these details. We also suppress

the definitions of occu rrences and i ndex.

We can define:

Sorted (l) =def L: (List (N at) , (m) (Perm(l , m) & Ordered (m)))

8. Examples 173

So, a suitable type will be:

n (List(N at) , Sorted)

If we were to construct a non-CPS program p to sort a list we would con

struct some p with this type.

Using CPS

We are aiming to produce a CPS program, so we are actually thinking
about producing a program which satisfies this specification:

n (List (Nat) , (l) n (n (Sorted (l) , D) , D))

This specification may strike us as rather odd: in particular Sorted seems

to be in the wrong place. We expect it to be the implicate rather than the

implicans. In § 8.3.2 on the next page we will resolve this.

The search for an object with this type proceeds by using n introduction
twice, and our new list elimination rule to get (as usual suppressing the

well-formedness judgements) : [p : Nat 1
q : List (N at)

r : Sorted(q)

[l : L ist (N at)] [k : n (Sorted (l) , D)] d : Sorted (n i l) e(p. q, r) : Sorted(cons(p, q »

-X ((l) -X ((k) l istta i l (d, e , I , k ») : n (List (Nat) , n (n (Sorted, D) , D »

Rule 8.4: Sorting a list

The details of the rest of the proof proceeds just as in the non-CPS case.

8 . Examples 174

8.3.2 Finding a minimum

A function to find the minimum in a list of Nat will take a list of Nat and

will return either an indication that the list is empty, or will return the least

item in the list (along with a proof that this is the least item in the list).

We can define:

Empty(l) =def -'L (Nat , (m) (member(m , l)))

and:

Least (l , m) =def member(m , l) & n (Nat , (n) (member(n , l) :) m :s; n))))

We can define:

M i n (l) =def Empty (l) + L (Nat , Least (l))

Now we are trying to find an object with type:

n (List (Nat) , M i n)

In §8.3.1 we have outlined the construction of a function which takes a con
tinuation which makes use of a sorted list. One of the properties which we

can prove of sorted lists of natural numbers is that they are either empty,

or that their head is their least item. A formal proof object can therefore

be supplied as a continuation to our sorting algorithm to yield an algo

rithm to find a minimum. This also resolves our puzzle about the location

of Sorted: when we supply a continuation the implicans will depend on a

value of the type Sorted (l) . In the trivial case the continuation will be the

identity function of type Sorted(l) --+ Sorted(l), and in the case of an algo

rithm to find a minimum the continuation will be of type n (Sorted(l) , M i n) .

8.4 Chapter Summary

In this chapter we have given a simple examples which show how the

use of the CPS non-canonical constants affects both the functions that we

8. Examples 175

write in M-LTT, and the proofs that we construct. We have also shown
how the use of continuations allows us to structure proofs, so that we can
discuss local properties of sub-parts of larger programs, particularly pro
grams whose global properties are not of interest when considering local
fragments.

§l ...-ro
(X)
� [1/ : N at] � 'In : List (A) Nat type >. ((x) (lengt htai l (l , >. ((y) (plustai l (.T , y , k)))))) : I I (Nat , IJ) zero : N at S U C C(1I) : N at

S' l isttai l (ze ro, (x, y , z)succ(z) , m, >. ((:r;) (lengthtai l (l , >. ((y) (pl ustai l (x , y, 1.:))))))) : ll (lsta i l (l , m , >. ((w) w))) (]Q
� lengt h t a i l (m , >. ((x) (lengthtai l (l , >. ((y) (p l ustai l (x , y , k))))))) : IJ (lsta i l (l , m , >. ((w) w)))
III

-::::: Ista i l (l , 'In , k) : IJ (lstai l (l , m" >' ((11') 11')))
;j
?>-

(Xl

m x
tu 3

-0 CD
Ul

.....
d!

Part IV

Concl usions

9. Concl usions and fut u re work

In this chapter we outline some areas for possible future development, and

draw some conclusions.

9.1 Topics for fu rther i nvestigation

The work presented in Chapter 4 on using continuations in categorial

grammar is worth further development. The interpretation of type-lifting

as continuation-passing is, to our knowledge, quite novel. Further inves

tigations in this area should prove fruitful.

Only small examples were presented: developing larger programming ex

amples would prove a useful exercise.

Continuations provide us with a way to discuss continuing computations.

One of the great strengths of M-LTT is that typing implies termination,

so even allowing for lazy evaluation, continuing computations are not re

ally one of the strengths of M-LTT. We saw in Chapter 8 that we can use

continuations to reason about continuing computations. Here we make

a subtle distinction between constructive and intuitionistic mathematics.

In constructive mathematics everything is lawlike: intuitionistic mathe

matics also allows lawless objects [112] . When we briefly discussed I/O

in §3.3 .1 we suggested a model where the world was just two lists. If we

think instead of the input as being generated by a process, as it might be

in a concurrent system, where the 'world' is the other processes, then we

could think of the input as being generated, not by a lawlike sequence, but

by, for example, a toss of a coin or the roll of a die. Thus a model of I/O

9. Conclusions and future work 179

can be the basis for a model of choice sequences. It would be interesting

to see if this observation can be extended.

Despite earlier predictions state has not 'withered away' in functional pro

gramming. Haskell, however, uses monads to handle many state-based
computations (see, for example [117]) . Investigating the addition of mon

ads to M-LTT might also be an interesting challenge.

Programming in M-LTT 'by hand' can be tedious. Adding CPS non

canonical constants to a proof-assistant would help to alleviate this prob

lem.

9.2 Summary

We presented M-LTT, paying particular attention to the proof-theoretic ar

guments presented by Michael Dummett on how inference rules are (or

should be) justified. We did this because we intended to present an exten

sion to M-LTT which would allow us to program with continuations, and

which would require us to construct elimination rules of an unusual form.

We gave an description of the continuation-passing style of functional pro
gramming and highlighted some desirable properties of CPS functions.

We illustrated an interpretation of type-lifting in categorial grammar as

continuation passing.

We showed that we can extend M-LTT to allow us to program with con

tinuations. We presented CPS non-canonical constants for types which

are commonly used in programming, and presented and justified rules for
using these CPS non-canonical constants. We showed how the new con

stants related to the usual non-canonical constants for the types involved,

and consequently showed that we had not introduced any new absurdities

into the theory. We also presented a CPS non-canonical constant for the vV'
types, and showed that this allows us to express the CPS non-canonical
constant for binary trees.

Finally we presented some very simple examples.

9. Conclusions and future work 180

9.3 Concl usions

Our first conclusion is that it is possible to extend M-LTT to allow our

selves to program with continuations in a natural way. We can present

CPS non-canonical constants which follow a uniform pattern for the in

ductively defined types.

We also conclude that the informal semantics of M-LTT can be a double

edged sword. By following the informal semantics carefully we can extend

the theory in various ways, however the informality of the semantics can

act against us believing that our extension is really justifiable.

As a programming environment M-LTT suffers from the relative poverty

of the programs we can write. Effort spent on the left of the : is as valuable

as that spent to the right.

B i bl iography

[1] Ackermann, W. Zum Hilbertschen Aufbau der reellen Zahlen. Math

ematische Annalen, 99:118-133, 1928. In German.

[2] Ajdukiewicz, K. Syntactic Connexion. In S. McCall, editor, Polish

Logic 1920-1939, pages 207-231 . Clarendon Press, Oxford, England,

1967. First appeared as Die syntaktische Konnexitat, Studia Philo

sophica, vol. 1, 1-27, 1935. Original in German.

[3] Appel, A. Compiling with Continuations. Cambridge University

Press, Cambridge, England, 1992.

[4] Backhouse, R., P. Chisholm, G. Malcolm, and E. Saaman. Do-it
yourself Type Theory. Computing Science Notes CS 8811, Wiskunde

en Informatica, Rijksuniversiteit Groningen, 19 September 1988.

[5] Bar-Hillel, Y. On Categorial and Phrase Structure Grammars. In

Language and Information Selected Essays on their Theory and Applica

tion, pages 99-115. 1964. First appeared in The Bulletin of the Research

Council of Israel, vol. 9F, 1-16, 1960.

[6] Barendregt, H. The Lambda Calculus Its Syntax and Semantics, volume

103 of Studies in Logic and the Foundations of Mathematics. North

Holland, Amsterdam, The Netherlands, revised edition, 1984.

[7] - . The Impact of the Lambda Calculus in Logic and Computer Sci

ence. Bulletin of Symbolic Logic, 3(2) :181-215, 1997.

Bibliography 182

[8] Barwise, J. The Situation in Logic, volume 17 of CSLI Lecture Notes.

Center for the Study of Language and Information, Stanford, Cali

fornia, USA, 1989.

[9] Barwise, J. and J. Perry. Situations and Attitudes. MlT Press, Cam

bridge, Massachusetts, USA, 1983.

[10] Beeson, M. J. Foundations of Constructive Mathematics. Springer,

Berlin, Germany, 1985.

[11] van Benthem, J. and K. Does. Higher-order Logic. In Gabbay and

Guenthner [40], pages 275-329.

[12] Bishop, E. Foundations of Constructive Analysis. McGraw-Hill, New

York, New York, USA, 1967.

[13] Bridges, D. and F. Richman. Varieties of Constructive Mathematics, vol

ume 97 of London Mathematical Society Lecture Note Series. Cambridge

University Press, Cambridge, England, 1987.

[14] Brouwer, L. E. J. Brouwer's Cambridge Lectures on Intuitionism. Cam
bridge University Press, Cambridge, England, 1981 . Edited by Dirk

van Dalen.

[15] Carpenter, B. Type-Logical Semantics. The MlT Press, Cambridge,

Massachusetts, USA, 1997.

[16] Church, A. Introduction to Mathematical Logic, volume 1. Prince ton

University Press, Prince ton, New Jersey, USA, second, enlarged edi

tion, 1956.

[17] Coquand, T., B. Nordstrom, J. M. Smith, and B. von Sydow. Type

Theory and Programming. fATCS Bulletin, 52, 1994.

[18] Danvy, O. and A. Filinski. Representing Control A Study of CPS

Transformation. Mathematical Structures in Computer Science, 1992.

Also Tech Report CI5-91-2, Kansas State UniverSity.

Bibliography 183

[19] Davie, A. J. T. An Introduction to Functional Programming Systems

Using Haskell, volume 27 of Cambridge Computer Science Texts. Cam

bridge University Press, Cambridge, England, 1992.

[20] Dijkstra, E. W. A Primer of ALGOL 60 Programming. APIC Studies in

Data Processing. Academic Press, London, England, 1962.

[21] -. A Discipline of Programming. Prentice-Hall, Inc., Englewood

Cliffs, New Jersey, USA, 1976.

[22] Dowty, D. R Type Raising, Functional Composition, and Non
Constituent Conjunction. In R T. Oehrle, E. Bach, and D. Wheeler,

editors, Categorial Grammars and Natural Language Structures, Studies

in Linguistics and Philosophy, pages 153-198. D. Reidel, Dordrecht,

The Netherlands, 1988.

[23] Dowty, D. R, R E. Wall, and S. Peters. Introduction to Montague Se

mantics. Studies in Linguistics and Philosophy. D. Reidel, Dordrecht,

The Netherlands, 1981.

[24] Draves, R P., B. N. Bershad, R. F. Rashid, and R. W. Dean. Using
Continuations to Implement Thread Management and Communica

tion in Operating Systems. In 1 3th ACM Symposium on Operating

Systems Principles, pages 122-136. ACM Press, 1991.

[25] Dummett, M. Elements of Intuitionism. Oxford Logic Guides. Claren

don Press, Oxford, England, 1977. A second edition was published

in 2000.

[26] -. The Justification of Deduction. In Truth and Other Enigmas [28],

pages 290-318. First published in 1973.

[27] -. The Philosophical Basis of Intuitionistic LogiC. In Truth and Other

Enigmas [28], pages 215-247. First published in H. E. Rose and J. C.

Shepherds on, editors, Logic Colloquium '73, North-Holland, Amster

dam, The Netherlands,1975.

Bibliography 184

[28] -. Truth and Other Enigmas. Duckworth, London, England, 1978.

[29] -. The Interpretation ofFrege's Philosophy. Duckworth, London, Eng

land, 1981 .

[30] -. The Logical Basis of Metaphysics. Duckworth, London, England,

1991 .

[31] -. The Seas of Language. Oxford University Press, Oxford, England,

1993.

[32] -. What is a theory of meaning? (I). In The Seas of Language [31] ,

pages 1-33. First published in S. Guttenplan, editor, Mind and Lan

guage, Oxford University Press, Oxford, England, 1975.

[33] -. What is a theory of meaning? (II). In The Seas of Language [31],

pages 34-105. First published in G. Evans and J. McDowell, editors,

Truth and Meaning, Oxford University Press, Oxford, England, 1976.

[34] van Eijck, J. and F.-J . de Vries. Reasoning About Update Logic. Jour

nal of Philosophical Logic, 24(1) :19-47, 1995.

[35] Fischer, M. J. Lambda Calculus Schemata. Sigplan Notices, 7:104-109,

1972.

[36] Flanagan, c., A. Sabry, B. F. Duba, and M. Felleisen. The Essence of

Compiling with Continuations. In Conference on Programming Lan

guage Design and Implementation. 1993.

[37] Frege, G. The Foundations of Arithmetic. Basil Blackwell, Oxford,
England, 1950. Originally published in German as Die Grundlagen

der Arithmetik, 1884.

[38] -. Function and Concept. In P. Geach and M. Black, editors,

Translations from the Philosophical Writings of Gottlob Frege, pages

42-55. Barnes and Noble, Totawa, New Jersey, USA, 3rd edition,
1952. Translation of an address given to the Jenaische Gessellschaft

fur Medicin und Naturwissenschaft, 1891 .

Bibliography 185

[39] Friedman, H. Classically and Intuitionistically Provably Recursive

Functions. In G. Muller and D. S. Scott, editors, Higher Set Theonj,

pages 21-27. Springer, 1977.

[40] Gabbay, D. and F. Guenthner, editors. Handbook of Philosophical Logic.

Volume 1. Elements of Classical Logic, volume 164 of Synthese LibranJ.

D. Reidel, Dordrecht, The Netherlands, 1983.

[41] Geach, P. T. Reference and Generality An Examination of Some Medieval

and Modern Theories. Cornell University Press, Ithaca, New York,

USA, 3rd edition, 1980. First edition published in 1962.

[42] Gentzen, G. Investigations Into Logical Deduction. In M. E. Szabo,

editor, The Collected Papers of Gerhard Gentzen, pages 68-131 . North

Holland, Amsterdam, The Netherlands, 1969.

[43] Girard, J.-Y Une extension de l'interpretation de Godel a l'analyse,

et son application a l'elirnination des copures dans l'analyse et la

theorie des types. In J. E. Fenstad, editor, Scandinavian Logic Sym

posium, pages 63-69. North-Holland, Amsterdam, The Netherlands,
1971 . In French.

[44] -. Interpretation fonctionelle et elimination des coupllres de ['arithmetic

d' ordre superieur. These de doctorat d' etat, Universite Paris VII, 1972.
In French.

[45] -. The system F of variable types, fifteen years later. Theoretical

Computer Science, 45:159-192, 1986.

[46] -. Linear Logic. Theoretical Computer Science, 50:1-102, 1987.

[47] -. Proof Theory and Logical Complexity, volume 1 of Studies in Proof

Theory Monographs. Bibliopolis, Napoli, Italy, 1987.

[48] Girard, J.-Y, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of

Cambridge Tracts in Theoretical Computer Science. Cambridge Univer

sity Press, Cambridge, England, 1989.

Bibliography 186

[49] Green, J. S. ALGOL Programming for KDF9. An English Electric Leo

mini-manual. English Electric-Leo Computers Ltd, Stoke-on-Trent,

England, 1963.

[50] Griffin, T. G. A Formulae-as-Types Notion of Control. In Sev

enteenth Annual ACM Symposium on Principles of Programming Lan

guages (POPL 1 7), pages 47-58. ACM Press, 1990.

[51] de Groote, P. The Curry-Howard Isomorphism, volume 8 of Cahiers du

Centre de Logique. Academia, Louvain-Ia-Neuve, Belgium, 1995.

[52] Hamilton, A. G. The Pict System. Department of Computer Science

Technical Report 57, Stirling University, 1990.

[53] Harel, D. Dynamic Logic. In D. Gabbay and F. Guenthner, edi

tors, Handbook of Philosophical Logic II Extension of Classical Logic, vol

ume 164 of Synthese Libranj, pages 497-604. D. Reidel, Dordrecht,

The Netherlands, 1984.

[54] Hatc1iff, J . and o. Danvy. A Generic Account of Continuation
Passing Styles. In Popl 94 : ACM Symposium on Principles of Program

ming Languages, pages 458-471 . Association for Computing Machin

ery, 1994.

[55] Hayes, 1. J. and C. B. Jones. Specifications are not (necessarily) exe

cutable. Software Engineering Journal, 4(6):330-338, 1989. Also avail

able as Technical Report 148, Key Centre for Software Technology,

Department of Computer Science, University of Queensland.

[56] Hilbert, D. and W. Ackermann. Principles of Mathematical Logic.

Chelsea Publishing Company, New York, USA, 1950. A translation,

with corrections, of the second German edition of Grtmdziige der The

oretishcen logik of 1938.

[57] Hilbert, D. and P. Bernays. Grundlagen der Mathematik, volume 1 .

Springer, Berlin, Germany, 1934. In German.

Bibliography 187

[58] Horn, C. The NuPRL Proof Development System. Department of

Artificial Intelligence Working Paper 214, University of Edinburgh,

1988. The Edinburgh version of NuPRL has been renamed Oyster.

[59] Kamp, H. and U. Reyle. From Discourse to Logic Introduction to Mod

eltheoretic Semantics of Natural Language, Formal Logic and Discourse

Representation Theory, volume 42 of Studies in Logic and Philosophy.

Kluwer, Dordrecht, The Netherlands, 1993.

[60] -. A Calculus for First Order Discourse Representation Structures.

Journal of Logic, Language, and Information, 5(3-4) :297-348, 1996.

[61] Kelsey, R., W. Clinger, and J. Rees. Revised5 Report on the Algorith

mic Language Scheme. Journal of Higher Order and Symbolic Compu

tation, 11 (1) :7 -l OS, 1998. Also appears in ACM SIGPLAN Notices

33(9), September 1998.

[62] Kernighan, B. W. and D. M. Ritchie. The C Programming Language.

Prentice Hall Software Series. Prentice Hall, Englewood Cliffs, New
Jersey, USA, 2nd edition, 1988.

[63] Kleene, S. C. General Recursive Functions of Natural Numbers.

In M. Davis, editor, The Undecidable, pages 237-253. Raven Press,

Hewlett, New York, USA, 1965. Originally published in Mathematis

che Annalen 112(5) :727-742, 1936.

[64] Kolmogorov, A. On the Interpretation of Intuitionistic Logic. In

P. Mancosu, editor, From Brouwer to Hilbert The Debate on the Founda

tions of Mathematics in the 1 920s, pages 324-334. Oxford University

Press, Oxford, England, 1998. Originally published in German as

Zur Deutung der intuitionistichen Logik, Mathematische Zeitschrift

35:58-65, 1932.

[65] Konig, E. Parsing as natural deduction. In Proceedings of the Annual

Meeting of the Association for Computational Linguistics, pages 272-279.

ACL Publications, Morristown, New Jersey, 1989.

Bibliography 188

[66] Kreisel, G. Informal rigour and completeness proofs. In I. Lakatos,

editor, Problems in the philosophy of mathematics. Proceedings of the In

ternational Colloquium in the Philosophy of Science, Volume 1 , pages

138-186. North-Holland, Amsterdam, The Netherlands, 1965.

[67] Lambek, J. The Mathematics of Sentence Structure. The Ameri

can Mathematical Monthly, 65:154-170, 1958. Also published in W.

Buszkowski, W. Marciszewski, and J. van Benthem, editors, Catego

rial Grammar, John Benjarnin, Amsterdam, The Netherlands, 1988.

[68] Leonardo of Pisa (Fibonacci) . Liber Abacci. 2nd edition, 1228. In

Latin.

[69] Leslie, N. Specification And Implementation Of A Unification Algorithm

In Martin-Laf's Type Theory. MSc, St Andrews, 1993.

[70] -. Tail-recursive Non-canonical Constants and Continuations in

Martin-Lof's Type Theory. In J. Grundy, M. Schwenke, and T. Vick

ers, editors, International Refinement Workshop & Formal Methods Pa

cific '98, pages 213-229. Springer Singapore, 1998.

[71] Louden, K. C. Programming Languages Principles and Practice. PWS

KENT Series in Computer Science. PWS Publishing Company, Bos

ton, Massachusetts, USA, 1993.

[72] Luo, Z. and R. Pollack. The LEGO Proof Development System: A

User 's Manual. Technical Report ECS-LFCS-92-211, Edinburgh Uni

versity, 1992.

[73] McCarthy, J. History of LISP. In Wexelblat [118], pages 173-197.

[74] Martin-Lof, P. A theory of types. Technical report 71-3, Mathematics

Department, University of Stockholm, 1971 .

[75] -. About models for intuitionistic type theories and the notion of

definitional equality. In S. Kanger, editor, Proceedings of the Third

Scandinavian Logic Symposium, Studies in Logic and the Foundations

of Mathematics, pages 81-109. North-Holland, 1975.

Bibliography 189

[76] -. Constructive Mathematics and Computer Programming. In L. J.
Cohen, J. Los, H. Pfeiffer, and K.-P. Podewski, editors, Logic, method

ologtj, and philosophy of science VI : proceedings of the Sixth International

Congress of Logic, Methodologtj, and Philosophy of Science, Studies in

Logic and the Foundations of Mathematics, pages 153-175. North

Holland, Amsterdam, The Netherlands, 1982.

[77] -. Intuitionistic Type Theory, volume 1 of Studies in Proof Theory Lec

ture Notes. Bibliopolis, Napoli, Italy, 1984. Notes taken by Giovanni

Sambin from a series of lectures given in Padua, June 1980.

[78] -. On the meanings of the logical constants and the justifications

of the logical laws. Nordic Journal of Philosophical Logic, 1 (1) : 11-60,

1996. Originally presented at the meeting Teoria della Dimostrazione e

Filosofia della Logica, Siena 6-9 April, 1983.

[79] - . An intuitionistic theory of types. In G. Sambin and J . Smith, ed

itors, Twenty Five Years of Constructive Type Theory, volume 36 of Ox

ford Logic Guides, pages 127-172. Clarendon Press, Oxford, England,
1998. Originally circulated as a University of Stockholm Mathemat

ics Department pre-print, 1972.

[80] Montague, R. Formal Philosophy Selected Papers of Richard Montague.

Yale University Press, New Haven, Connecticut, USA, 1974. Edited

and with an introduction by Richmond H. Tomason.

[81] -. The Proper Treatment of Quantification in Ordinary English. In

Formal Philosophy Selected Papers of Richard Montague [80], pages 247-
270. Originally published in J. Hintikka, J. Moravcsik and P. Suppes

(eds.) Approaches to Natural Language: Proceedings of the 1970 Stanford

Workshop on Grammar and Semantics. D. Reidel Publishing Company.

Dordrecht, The Netherlands. 1970.

[82] Moortgat, M. Categorial 1nvestigations Logical and Linguistic Aspects

of the Lambek Calculus, volume 9 of Groningen-Amsterdam Studies in

Semantics. Foris Publications, Dordrecht, The Netherlands, 1988.

Bibliography 190

[83] Morrill, G. V. Type Logical Grammar. Kluwer Academic Publishers,

Dordrecht, The Netherlands, 1994.

[84] -. Grammar and logic. Theoria, LXII:260-293, 1996. An earlier ver

sion appeared as Grammar and Logical Types in Guy Barry and Glyn V

Morrill, editors, Studies in Categorial Grammar, pages 127-148, Edin

burgh Working Papers in Cognitive Science Volume 5, Centre for

Cognitive Science, University of Edinburgh, 1990; and in Martin

Stokhof and Leen Torenvliet, editors, Proceedings of the Seventh Ams

terdam Colloquium, pages 429-450, Institute for Language, Logic and

Information, Universiteit van Amsterdam.

[85] Murthy, C. R. Extracting Constructive Content From Classical Proofs.

PhD, Cornell University, 1990. Also available as TR 89-1151 from

Dept. of Computer Science, Cornell University.

[86] -. Classical Proofs as Programs. How, What, When and Why. Ex

tended abstract, Department of Computer Science, Cornell Univer

sity, Feb 18 1991 .

[87] Nordstrom, B. Terminating General Recursion. BIT, 28:605-619,
1988.

[88] Nordstrom, B., K. Petersson, and J. M. Smith. Programming in

Martin-Lol's Type Theory An Introduction . Clarendon Press, Oxford,

England, 1990.

[89] Paulson, L . C. Constructing Recursion Operators in Intuitionistic

Type Theory. Journal of Symbolic Computation, 2, 1986. Also appeared
as Technical Report 57, University of Cambridge Computer Labora

tory, 1984.

[90] Perlis, A. J. The American Side of the Development of ALGOL. In

Wexelblat [118], pages 75-91 .

E '

Bibl iography 191

[91] Petersson, K. A Programming System for Type Theory. Program

ming Methodology Group Report 9, Chalmers University of Tech

nology, 1982.

[92] Peyton Jones, S. 1. The Implementation of Functional Programming

Languages. Prentice-Hall International Series on Computer Science.

Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA, 1987.

[93] Peyton Jones, S. 1., J . Hughes, 1. Augustsson, D. Barton, B. Boutel,

W. Burton, J. Fasel, K. Hammond, R. Hinze, P. Hudak, T. Johnsson,

M. Jones, J. Launchbury, E. Meijer, J. Peterson, A. Reid, C. Runci
man, and P. Wadler. The Haskell 98 Report, 1999. Available from
http : //www . haskel l . org/on l inereport / .

[94] Plotkin, G. D . Call-by-name, call-by-value and the A-calculus. Theo

retical Computer Science, 1 :125-159, 1975.

[95] Prawitz, D. Natural Deduction A Proof-Theoretical Study, volume 3
of Stockholm Studies in Philosophy. Almquist and Wiksells, Uppsala,

Sweden, 1965.

[96] -. Meaning and proofs: on the conflict between classical and intu

itionistic logic. Theoria, 77(1) :1-40, 1977.

[97] Prior, A. N. The runabout inference-ticket. Analysis, 21 :38-39, 1960.

[98] Ranta, A. Type-Theoretical Grammar, volume 1 of Indices. Clarendon

Press, Oxford, England, 1994.

[99] Restall, G. An Introduction to Substructural Logics. Routledge, Lon

don, England, 2000.

[100] Russell, B. The Principles of Mathematics. Cambridge University

Press., Cambridge, England, 1903. A re-issued edition was pub

lished in 1996 by WW Norton and Co.

Bibliography 192

[10 1] Rybakov, V. V. Admissibility of Logical Inference Rules, volume 136 of

Studies in Logic and the Foundations of Mathematics. Elsevier, Amster

dam, The Netherlands, 19 9 7.

[10 2] Schrnidt, D. A. Denotational Seman tics A Methodology for Language

Developmen t. Wm. C. Brown, Dubuque, Iowa, USA, 19 8 6.

[10 3] Schwichtenberg, H. Proofs, Lambda Terms and Control Operators.

In H. Schwichtenberg, editor, Logic of Computation, pages 30 9- 348.

Springer, Heidelberg, Germany, 19 9 7. Proceedings of the NATO Ad

vanced Study Institute on Logic of Computation, held at Marktober

dorf, Germany, July 2 5 - August 6, 19 9 5.

[10 4] Shieh, S. Some Senses of Holism: An Anti-Realist's Guide to Quine.

In R G. Heck, Jnr, editor, Language Though t and Logic Essays in Hon

our of Michael Dummett, pages 7 1- 10 3. Oxford University Press, Ox

ford, England, 19 9 7.

[10 5] Strachey, C. and C. P. Wadsworth. Continuations A Mathematical

Semantics for Handling Full Jumps. Technical Monograph PRG-ll,

Oxford University Computing Laboratory Programming Research

Group, 19 7 4.

[10 6] Sundholm, G. Proof Theory and Meaning. In D. Gabbay and

F. Guenthner, editors, Handbook of Philosophical Logic. Volume Ill. Al

ternatives to Classical Logic, volume 16 6 of Syn these LibranJ, pages

47 1- 5 0 6. D. Reidel, Dordrecht, The Netherlands, 19 8 6.

[10 7] -. Systems of Deduction. In Gabbay and Guenthner [40], pages

133- 18 8.

[10 8] Tarski, A. The Semantic Conception of Truth and the Foundation of

Semantics. Philosophy and Phenomenological Research, 4, 19 44. This pa

per has appeared in a number of other places (sometimes under the

truncated title The Seman tic Conception of Tru th), including Volume

II of Collected papers of Alfred Tarski S.R Givant and RN. McKenzie

(eds), Birkhauser, Basel, Switzerland, 19 8 6.

Bibliography 193

[109] Thielecke, H. Categorical Structure of Continuation Passing Style. PhD,

University of Edinburgh, 1997. Also available as technical report

ECS-LFC5-97-376.

[110] Thompson, S. Type Theory and Functional Programming. International

Computer Science Series. Addison-Wesley, Wokingham, England,

1991 .

[1 11] -. Haskell The Craft of Functional Programming. International Com

puter Science Series. Addison-Wesley, Wokingham, England, 2nd

edition, 1999.

[112] Troelstra, A. S. Choice Sequences A Chapter of Intuitionistic Mathemat

ics. Oxford Logic Guides. Oxford University Press, Oxford, England,
1977.

[113] -. Lectures on Linear Logic, volume 29 of CSLI Lecture Notes. Cen
ter for the Study of Language and Information, Stanford, California,

USA, 1992.

[114] Troelstra, A. S. and D. van Dalen. Constructivism in Mathematics An

Introduction Volume I, volume 121 of Studies in Logic and the Founda

tions of Mathematics. North-Holland, Amsterdam, The Netherlands,

revised edition, 1988.

[115] - . Constructivism in Mathematics An Introduction Volume 2, volume

123 of Studies in Logic and the Foundations of Mathematics. North

Holland, Amsterdam, The Netherlands, 1988.

[116] Vorobev, N. N. The Fibonacci Numbers. Heath, Boston, Mas

sachusetts, USA, 1963. Translation of Chisla Fibonachchi, published

in Russian, 1951 .

[117] Wadler, P. Monads for functional programming. In M. Broy, ed
itor, Marktoberdorf Summer School on Program Design Calculi, vol

ume 118 of NATO ASI Series F: Computer and systems sciences.

Bibliography 194

Springer, Berlin, Germany, 19 9 2 . This paper is available from

http : //www . cs . bell- labs . com/who/wadler/topics/monads . html.

[118] Wexelblat, R. L ., editor. Histonj of Programming Languages. ACM

Monograph. Academic Press, New York, New York, USA, 19 8 1.

[119] Wittgenstein, L. Philosophical Investigations. Basil Blackwell, Oxford,

England, 2 nd edition, 19 5 8. Translated by G. E. M. Anscombe.

	20001.pdf
	20002.pdf
	20003.pdf
	20004.pdf
	20005.pdf
	20006.pdf
	20007.pdf
	20008.pdf
	20009.pdf
	20010.pdf
	20011.pdf
	20012.pdf
	20013.pdf
	20014.pdf
	20015.pdf
	20016.pdf
	20017.pdf
	20018.pdf
	20019.pdf
	20020.pdf
	20021.pdf
	20022.pdf
	20023.pdf
	20024.pdf
	20025.pdf
	20026.pdf
	20027.pdf
	20028.pdf
	20029.pdf
	20030.pdf
	20031.pdf
	20032.pdf
	20033.pdf
	20034.pdf
	20035.pdf
	20036.pdf
	20037.pdf
	20038.pdf
	20039.pdf
	20040.pdf
	20041.pdf
	20042.pdf
	20043.pdf
	20044.pdf
	20045.pdf
	20046.pdf
	20047.pdf
	20048.pdf
	20049.pdf
	20050.pdf
	20051.pdf
	20052.pdf
	20053.pdf
	20054.pdf
	20055.pdf
	20056.pdf
	20057.pdf
	20058.pdf
	20059.pdf
	20060.pdf
	20061.pdf
	20062.pdf
	20063.pdf
	20064.pdf
	20065.pdf
	20066.pdf
	20067.pdf
	20068.pdf
	20069.pdf
	20070.pdf
	20071.pdf
	20072.pdf
	20073.pdf
	20074.pdf
	20075.pdf
	20076.pdf
	20077.pdf
	20078.pdf
	20079.pdf
	20080.pdf
	20081.pdf
	20082.pdf
	20083.pdf
	20084.pdf
	20085.pdf
	20086.pdf
	20087.pdf
	20088.pdf
	20089.pdf
	20090.pdf
	20091.pdf
	20092.pdf
	20093.pdf
	20094.pdf
	20095.pdf
	20096.pdf
	20097.pdf
	20098.pdf
	20099.pdf
	20100.pdf
	20101.pdf
	20102.pdf
	20103.pdf
	20104.pdf
	20105.pdf
	20106.pdf
	20107.pdf
	20108.pdf
	20109.pdf
	20110.pdf
	20111.pdf
	20112.pdf
	20113.pdf
	20114.pdf
	20115.pdf
	20116.pdf
	20117.pdf
	20118.pdf
	20119.pdf
	20120.pdf
	20121.pdf
	20122.pdf
	20123.pdf
	20124.pdf
	20125.pdf
	20126.pdf
	20127.pdf
	20128.pdf
	20129.pdf
	20130.pdf
	20131.pdf
	20132.pdf
	20133.pdf
	20134.pdf
	20135.pdf
	20136.pdf
	20137.pdf
	20138.pdf
	20139.pdf
	20140.pdf
	20141.pdf
	20142.pdf
	20143.pdf
	20144.pdf
	20145.pdf
	20146.pdf
	20147.pdf
	20148.pdf
	20149.pdf
	20150.pdf
	20151.pdf
	20152.pdf
	20153.pdf
	20154.pdf
	20155.pdf
	20156.pdf
	20157.pdf
	20158.pdf
	20159.pdf
	20160.pdf
	20161.pdf
	20162.pdf
	20163.pdf
	20164.pdf
	20165.pdf
	20166.pdf
	20167.pdf
	20168.pdf
	20169.pdf
	20170.pdf
	20171.pdf
	20172.pdf
	20173.pdf
	20174.pdf
	20175.pdf
	20176.pdf
	20177.pdf
	20178.pdf
	20179.pdf
	20180.pdf
	20181.pdf
	20182.pdf
	20183.pdf
	20184.pdf
	20185.pdf
	20186.pdf
	20187.pdf
	20188.pdf
	20189.pdf
	20190.pdf
	20191.pdf
	20192.pdf
	20193.pdf
	20194.pdf
	20195.pdf
	20196.pdf
	20197.pdf
	20198.pdf
	20199.pdf
	20200.pdf
	20201.pdf
	20202.pdf
	20203.pdf
	20204.pdf
	20205.pdf
	20206.pdf
	20207.pdf
	20208.pdf
	20209.pdf
	20210.pdf
	20211.pdf
	20212.pdf
	20213.pdf
	20214.pdf

