
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

THE MODEL THEORETIC NOTION OF

TYPE IN RELATIONAL DATABASES

A thesis presented in partial fulfillment of the
requirements for the degree of

Master

of

Information Sciences

at Massey University,
Wellington,

New Zealand.

Alejandra Lorena Paoletti

2005

Dr. Jose Marfa Turull-Torres
Thesis' Supervisor

Abstract. It is well known that finite model theory and database theory
are two disciplines intimately connected. A topic which has been deeply
studied in the context of finite model theory as well as in classic model
theory, but which has not received the same attention in the context of
databases, is the concept of type of a tuple. We believe that it is very im­
portant to have a clear understanding of the implications of the concept
of type in the field of databases. Therefore, we study here the notion of
type in FO (first-order logic) and in FOk (the restriction of FO to for­
mulas with up to k variables), as well as in their corresponding infinitary
extensions Lcow and L~w' respectively. The FOk types (L~w types) are
quite relevant in database theory since they characterize the discerning
power of the class of reflective relational machines of S. Abiteboul, C.
Papadimitriou and V. Vianu with variable complexity k. We examine the
three main characterizations of FO equivalence. These characterizations
are based in Ehrenfeucht-Frai"sse games, back and forth systems of par­
tial isomorphisms and isolating formulas for types. We study in detail all
of them because they give a clear idea of the relevance of the notion of
type in the context of databases, and make the fact that the types of the
tuples in a database reflect all the information contained in it very clear.
We found that the concept of type turned out to be useful to examine
from a new perspective a well known problem of the field of databases,
consisting on the redundant storage of information. Specifically, we ini­
tiate a study towards a method of normalization of relational databases
based on the detection of redundant relations, i.e., relations which can
be eliminated from the database without loosing information, by using
isolating formulas for the types of the tuples in the database.

3

5

Acknowledgements

This project would have been impossible to finish without the knowledge
and encouragement of many people

First, I would like to express a special acknowledgement to my su­
pervisor, Associate Professor, Dr. Jose Maria Thrull-Torres (Massey
University) for sharing his expertise and knowledge and for his
valuable guidance.

I would like to thank Massey University, College of Business, for
offering me a Graduate Assistant position. Particularly, I would
like to thank the Head of Department of Information Systems,
Associate Professor, Chris Freyberg, for his support.

I also wish to thank to the reviewers of this thesis, Dr. Alejandro
Petrovich (University of Buenos Aires) and Professor, Dr. Klaus­
Dieter Schewe (Massey University).

From the beginning of this project I have been in the most en­
couraged working environment provided by my partner, Flavia, to
whom I am deeply grateful for his constant support.

Finally, I would like to thank my family, specially to my parents,
Lilia and Lucio, and my sisters, Andrea and Vanesa, for their sup­
port from the other side of the world.

Table of Contents

1 Introduction. 9
2 Preliminaries . 12

2.1 Finite Model Theory and Databases . 12
2.2 Computable Queries . 17

3 Type of a Tuple . 19
3.1 The Notion of FO Type in Databases 21

4 Partial Isomorphisms . 23
5 Ehrenfeucht-Fra"isse Games . 25

5.1 Inductive construction of the m-isomorphic type 27
6 Pebble Games . 34

6.1 Inductive construction of the k-m-isomorphic type. 37
6.2 Isolating Formula . 39

7 Databases with Redundant Relations . 42
7.1 Redundant Relations in Databases . 43
7.2 Redundant Relations in Classes of Databases 51

8 Conclusion and Future Work . 58

9

1 Introduction

Finite model theory and database theory are two disciplines intimately
connected. While finite model theory provides a solid theoretical founda­
tion to databases, databases provides one of the main concrete scenarios
for finite model theory within computer science. Most of the overlaps
between finite model theory and database theory occur in the theory of
query languages. In consequence, this has been the area which has re­
ceived more attention. Here, we concentrate in a topic which has been
deeply studied in the context of finite model theory [8, 18] as well as in
classic model theory [6], but which has not received the same attention in
the context of databases, namely the concept of type of a tuple. Roughly,
if .C is a logic, the .C type of a tuple of length k in a given database (rela­
tional structure) is the set of .C formulas with up to k free variables which
are satisfied by that tuple in the database.

From a conceptual point of view it is desirable for a model of computa­
tion of queries to be representation independent [24]. This means, roughly,
that queries to databases which represent the "same" reality should eval­
uate to the "same" result. In mathematical terms, Chandra and Barel [5]
captured the previous concept by asking queries to isomorphic databases
to evaluate to the same result. The principle of preservation of isomor­
phisms has an important consequence if we consider a single database,
namely the preservation of automorphisms. That is, considering a fixed
database, two elements with the same "structural" properties should be
considered as indistinguishable. By structural properties we roughly mean
the way in which the two elements are related to all other elements in
the database, by means of the different relations according to the schema
(signature). The same is also true for tuples of elements, i.e., two tuples
with the same "structural" properties should be considered as indistin­
guishable. As databases are finite structures, it follows that two arbitrary
tuples have the same first-order type if and only if they are commutable
by some automorphism. So, two arbitrary tuples have the same "struc­
tural" properties and should be considered indistinguishable, if and only
if, they have the same first-order type.

Designing a relational database schema is usually a complex task
which has important practical consequences. A "bad" design could lead to
unwanted results as redundant storage of information within the database.
This anomaly is usually known as the redundancy problem and has been
studied extensively in the field of databases, indeed almost all database
textbooks include this topic, see for instance [1, 20]. Redundant storage of .

10

information can lead to a variety of practical problems on the updating,
insertion and deletion of data. For instance, if a copy of some redundant
information stored in a database is updated while other copy is not, we
would end up with an inconsistency; or it may not be possible to store
certain information unless some other, unrelated, information is stored as
well; or it may not be possible to delete certain information without los­
ing other. Traditionally, the redundancy problem is studied by considering
a particular class of properties, called functional dependencies, that are
supposed to be satisfied by all instances of a given database. Afterwards,
the database is usually decomposed (i.e., some relations are replaced by
two or more relations of smaller arities) in order to satisfy some desired
normal forms, which are defined by using functional dependencies (see [1,
20]).

By taking a quite different approach, the redundancy problem will
provide within this work a concrete scenario to apply the concept of type.
Specifically, we initiate in this work the study of a sort of redundancy
problem revealed by what we call redundant relations. Roughly, we define
a redundant relation as a relation R such that there is a first-order query
which evaluated in the reduced database (i.e., the database without the
redundant relation R), gives us R. So in practical terms, we do not lose
information if we eliminate such redundant relation from a database.

Given that the first-order types of all k-tuples in a given database A
describe all the FO properties which are satisfied by the tuples of arity
up to k in A, we can eliminate a relation RA (i.e., the interpretation in
A of the relation symbol R) from A as long as the first-order types of all
k-tuples in A are not altered, because we can always write an FO query
which evaluated on the new reduced database will give us the relation
RA. So, by using this fact we will study redundant relations in databases
as well as in classes of databases in connection with the concept of type.
Up to our knowledge, this subject has not been previously investigated
in the field of databases.

Two databases are called FO equivalent if they satisfy the same FO
sentences. Moreover, if two databases are FO equivalent, then they are
isomorphic, i.e., indistinguishable. Here we consider the three main char­
acterizations of FO equivalence, and in all of them the concept of type
plays a central role. These characterizations are based in Ehrenfeucht­
Frai'sse games, back and forth systems of partial isomorphisms and iso­
lating formulas for types. We examine in detail all of them because they
give a clear idea of the relevance of the notion of type in the context of

11

databases, and make the fact that the types of the tuples in a database
reflect all the information contained in it very clear.

We organize this work as follows. In Section 2 we give a brief back­
ground of the main technical concepts regarding finite model theory and
its relation to database theory, and computable queries as well as the no­
tation we will use throughout this work. The concepts of type of a tuple
introduced in Section 3 and of partial isomorphism introduced in Section
4, are central theoretical concepts used in the present work. The concept
of partial isomorphism is later used to provide an algebraic character­
ization of the winning strategies in the Ehrenfeucht-Fra"isse games and
in the pebble games, which are introduced in Sections 5 and 6, respec­
tively. These games are useful for determining what can be expressed in
various logics. In particular, we will see a Ehrenfeucht-Fra"isse game for
first-order logic and infinitary logic, and a pebble game for their respective
fragments with bounded number of variables. The concept of FO types
of tuples in databases and their isolating formulas are extensively used in
Section 7 where we initiate a study towards a method of normalization
of relational databases with redundant relations. We start with the study
of redundant relations over single databases in Subsection 7.1, then we
extend this concept to classes of databases in Subsection 7.2. A relation
symbol is redundant in a class if its interpretation in all databases in
the class is a redundant relation. It turns out that in a fixed database
of some relational schema, the problem of deciding whether a given rela­
tion in the database is redundant is decidable, as well as the problem of
deciding whether there is any relation symbol in the schema which is a
redundant relation in the given database. Nevertheless, regarding classes
of databases, those problems are clearly not decidable in the general case.

12

2 Preliminaries

2.1 Finite Model Theory and Databases

A (finite) relational vocabulary is a finite set of relation symbols Rr, R2, ...
Usually function symbols and constant symbols are included in a vocab­
ulary but we do not allow them here. Every relation symbol is equipped
with its arity, a natural number 2:: 1. We denote a vocabulary by T, cr, ...
For instance: cr = (R1, ... , Rs) is a relational vocabulary with s relation
symbols and their corresponding arities rr, ... , r 8 respectively, for some
s 2:: 1.

A structure A of a relational vocabulary cr (concisely a cr -structure)
consists of a non-empty set dom(A) called the domain of A, and a relation
R.A over dom(A) for every relation symbol R in cr of the corresponding
arity. A relation R.A of arity n is a subset of (dom(A))n (the set of n­

tuples of elements of dom(A)). A structure A is finite if its domain is a
finite set. The structures considered here will be always finite structures of
relational vocabularies. We denote by Ba the class of all finite structures
of vocabulary cr.

Most of the examples of relational structures we use in this work are
graphs, since they are the simplest relational structures and it is not diffi­
cult to visualize structural properties on them. For a better understanding
in Graph Theory we refer the reader to [4] nevertheless, chapters 8 and
9 in [21] are sufficient to cover the graph concepts used in this work. A
graph or undirected graph is a finite structure g of vocabulary cr = (E),
where E is of arity 2 and satisfies the following conditions:

1. for all a E dom(Q) : not EQ (a, a)
2. for all a,b E dom(Q): if E9(a,b) then EQ(b,a).

if only the first condition is required, then the graph is a directed graph.
The elements of dom(Q) are usually named as nodes or vertices and the
elements of EQ are called edges. Let n be a non-negative integer and Q
an undirected graph, then

E(ao, a1), E(a1, a2), ... , E(an-1, an)

is a path of length n from a0 to an in g. A graph is called regular if every
vertex of this graph has the same degree. A regular graph is called n­

regular if every vertex in this graph has degree n. An undirected graph is
a tree if and only if there is a unique simple path between any two of its
vertices. A rooted tree is a tree in which one vertex has been designated
as the root. A binary tree is a rooted tree where every internal ver~ex

13

has no more than two children. A binary tree is called a complete binary
tree if every internal vertex has exactly two children and all the leaves in
the tree have the same depth. A colored graph is a structure formed by a
graph together with unary relations, i.e., Q = (E, Cr, ... , Cr) which may
be thought of as representing colors on the vertices. Relations C1, ... , Cr
encode a range of 2r possible colors on the vertices. We always assume
that each vertex satisfies exactly one color relation, that is, there are r
colors instead of 2r.

A k-tuple over a cr-structure A with k 2:: 1, is a tuple of length k
formed with elements from dom(A), that is (a1, ... , ak) E (dom(A)l.
We will denote a k-tuple of A as ak> and also as a.

Two cr-structures A and B are isomorphic if there exists a bijection
from dom(A) to dom(B) that preserves all the relations in cr. An auto­
morphism over a structure A is a bijection from dom(A) to dom(A) that
preserves all the relations in cr.

As our theoretical framework will be Finite Model Theory we will re­
gard a logic as a language, that is, as a set of formulas. We refer the reader
to [16], [10] and, [17] for an in-depth study of Finite Model Theory. We
will use the notion of a logic in a general sense, without a formal defini­
tion and we will apply this notion to a few concrete logics like First Order
Logic (from now on denoted by FO), second order logic and infinitary
logic.

As to the semantics of the logics, we use the classical Tarski semantics,
except that since our theoretical framework is Finite Model Theory, only
finite structures, or interpretations are considered. So that our structures
will always be finite relational structures, that is, finite structures of a
relational vocabulary.

If£ is a logic, the notion of satisfaction of formulas, denoted as f=.c,
and equivalence between structures, denoted as =.c, will be related only
to finite structures. We will use Lu to denote the class of formulas from
a logic £ with vocabulary cr.

Definition 1. Let£ be a logic, cr a vocabulary and A a cr-structure. The
£ theory of A, denoted Th.c(A), is the set of sentences from £u which
are TRUE when interpreted by A. In symbols

Th.c(A) = {cp E £uiA f=.c cp}.

Embedding Database Theory in Finite Model Theory turns out to
be quite natural. A database schema may be regarded as a relational
vocabulary, and a database instance or simply a database of some schema

14

a, as a finite relational structure of vocabulary a. Thus, logics turn out to
be languages which can be used as query languages, where the formulas
of this logics express queries.

Since the definition of the Relational Model for databases, by E. F.
Codd in 1970 [7], FO has been considered as one of the main models
for query languages. Codd actually used a slight variation of FO called
Relational Calculus where the domains of the databases are considered
infinite. A sub-class of FO is defined, the safe formulas, as those formulas
which express safe queries, that is, queries that always evaluate to finite
relations which do not depend on the underlying infinite domain. As we
consider databases as finite structures, we are not concerned about safety
of queries here.

We will see now the use of logics as query languages. In particular, the
formulas of first-order logic over a relational vocabulary a= (R1, ... , Rs)
are formulas constructed from atomic formulas Ri(XI, ... , xrJ and equal­
ity x = y, using a set of individual variables x1, x2, ... , standard connec­
tives V, 1\, •,-+ and, the quantifiers :3, V.

A free variable in a formula is a variable that is not in the scope of a
quantifier. Free variables of Vxcp or :Jxcp are the free variables of tp except
x. By cp(x1, ... , xk) we denote an FO formula whose free variables are
exactly {x1, ... , xk}· We denote by free(cp) the set of free variables of the
formula tp.

A sentence is an FO formula in which every variable is used in the
scope of an existential or universal quantifier, that is, a formula without
free variables.

If a is a vocabulary, A is a a-structure in Bcr, cp(x1, ... ,xk) is an FO
formula and a= (a1, ... , ak) is a k-tuple over dom(A), we denote by

A I= cp(x1, ... , xk)[ai, ... , ak]

or simply A f= cp[a1, ... , ak], the fact that tp is TRUE, when interpreted
by the structure A under a valuation v, where v(xi) = ai for 1 :::; i :::; k.
A valuation is a function which assigns to every variable in the logic an
element of the structure A. We will use the same notation even when the
formula is a sentence. Then, we can consider the set of all such valuations,
as follows:

That is, cpA is the relation defined by tp in the structure A and its
arity is given by the number of free variables in tp.

I
I

I
;I

15

Suppose having a database of a specific airline where we can find
information about flights between some cities of the world. We can think
this database as a structure A of a given vocabulary O" with only one
binary relation symbol E, i.e., O" = (E), such that given two cities, say
a and b, by E(a, b) we denote the existence of a flight from city a to b
without stopovers. Suppose someone wants to know whether this airline
brings a flight from a given city to another with at most one stopover.
Using first-order logic we can construct a formula that expresses it as
follows:

<p(x, y) := E(x, y) V 3z(E(x, z) !\ E(z, y))

where <p(x, y) is a formula in first-order logic with two free variables. Then
<p(x, y) is TRUE when it is interpreted in A, for every pair of cities a and
b where we can fly from a to b with at most one stopover. Then, <p(x, y)
is a formula in first-order logic that expresses a query over A.

The following is an important remark concerning the expressive power
of first-order logic in the finite.

Proposition 1. {[10}, Proposition 2.1.1) Every finite structure can be
characterized in first-order logic up to isomorphism, i.e., for every finite
structure A of a given signature O" there is a sentence 'PA of first-order
logic such that for all structures B in Ba we have

iff A~B.

Proof. Suppose dom(A) = {a1, ... ,an} and let a (a1, ... ,an)· We
define l[r as the set of atomic formulas 'lj; with free variables among
(x1, ... , Xn) as follows:

and

Wn = { 'lj.;i'lj.; has the form R(xip ... , Xik) where 1 :::; i1, ... , ik :::; n,

andRE O" with arity k 2: 1}

'PA = ::lx1 ... 3xn (1\ { 'lj.;i'lj.; E Wn, A f= 'lj.;[a]}/\

1\ { •'lj.;l'lj.; E Wn, A f= •'lj.;[a]}/\

\ixn+l (Xn+l = Xl V · · · V Xn+l = Xn)).
D

Using first-order logic we can express an important class of database
queries, however there are simple queries that cannot be expressed in FO .

16

(like transitive closure, parity, etc.). The Infinitary Logic Loow is more
expressive than FO. Formulas in this logic are defined as in FO with the
exception that disjunctions and conjunctions can be taken over arbitrary
sets of formulas. If tJi is a set of formulas of arbitrary cardinality in Loow
the infinitary conjunction (disjunction) over all formulas in lfi, 1\ tJi (V tJi
respectively) is also a formula in Loow· Connectivity in graphs is one of the
queries that cannot be expressed in FO, however it is easily expressable
using the following Loow formula:

VxVy(•x = y---+ V{'Pn(x,y)Jn 2: 1})

where 'Pn is an FO formula saying that there is a path from x to y of
length n

'Pn(x, y) = 3zo ... 3zn(zo = x 1\ Zn = y 1\ E(zo, ZI) 1\ · · · 1\ E(zn-I, zn)).

By Proposition 1, every finite structure I can be characterized up to
isomorphism by an FO sentence 'PI which, in general, needs Jdom(J)J + 1
variables. Hence, an arbitrary class K of finite structures closed under
isomorphisms can be axiomatized in Loow by the sentence

which, in general, contains infinitely many variables. Since every class of
finite structures is axiomatizable in it, Loow is too powerful in the finite to
characterize classes of finite structures, since even non-recursive classes
of finite structures can be characterized in this logic.

We denote as FOk, for any k 2: 1, the fragment of FO of the formulas
whose free and bound variables are among {XI, ... , Xk}. Clearly FOk is
less expressive than FO. Note that FO is the union of all FOk logics, for
every k 2: 1.

The infinitary logic .C~w' for any k 2: 1 is the fragment of L 00w of the
formulas whose free and bound variables are among {XI, ... , Xk}· The
infinitary logic .C~w is the union of all .C~w· That is, formulas in .C~w
have only finitely many different variables.

Note that, Loow strictly includes .C~w' that is, L 00w ;2 .C~w· Let R be
the class of all regular graphs of vocabulary 0' = (E), and let tJ! be the
Loow sentence V { 'Pn Jn 2: 1} where, 'Pn is an FO sentence expressing that
a given graph is an n-regular graph as follows

'Pn = Vx1::lx2 ... Xn+I (E(xi, x2) 1\ ···I\ E(x1, Xn+I)I\

Vxn+2(E(xi, Xn+2)---+

I
J

17

(xn+2 = X2 V · · · V Xn+2 = Xn+l)))

Then, the models of iJ5 are the regular graphs. Note that the sentence iJ5
belongs to Coow but not to c~W) and it is well known that the class of
regular graphs is not expressible in c~w·

The quantifier rank qr(cp) of a formula cp in a given logic is the max­
imum number of nested quantifiers occurring in it, according to the fol­
lowing rules:

qr(cp) := 0, if cp is atomic;
qr(3xcp) := qr(cp) + 1;
qr(cp 1\ 'lj;) := max{qr(cp), qr('lj;)};
qr(cp-+ 'lj;) := max{qr(cp), qr('lj;)};

qr(•cp) := qr(cp);
qr(Vxcp) := qr(cp) + 1;
qr(cp V 'lj;) := max{qr(cp), qr('lj;)};

Given two structures A and B and m E N we write A =m B and say
that A and B are m-equivalent if A and B satisfy the same FO sentences
of quantifier rank :::;: m.

Similarly, we say that A and B are k-m-equivalent if A satisfies the
same FOk sentences of quantifier rank:::;: mas B, denoted A=~ B.

We use A =:Loow B to say that A and Bare Coow equivalent i.e., they
satisfy the same Coow sentences. Similarly, by A =L~w B we denote that
A and B are C~w equivalent i.e., they satisfy the same C~w sentences.

2.2 Computable Queries

Following [5] we define the formal notion of computable query.

Definition 2. For a given vocabulary a and an integer r > 0 we define
a computable query of arity r and vocabulary a, as a partial function
q : Bcr -+ B(R) where R is a relation symbol of arity r, and q has the
following properties:

i For every database A of vocabulary a where q is defined, dom(q(A)) s;;;
dom(A).

ii q is a partial recursive function in some linear encoding of the a­
structures.

iii q preserves isomorphisms, i.e., for every pair of databases of vocabu­
lary a, A and B, and for every isomorphism h: dom(A) -+ dom(B),
either q(B) = h(q(A)), or q is undefined on both A and B.

18

Definition 3. For a given vocabulary CJ we define a computable Boolean
query of vocabulary CJ, as a partial function q : Bu ---+ {0, 1}, with the
following properties:

q is a partial recursive function in some linear encoding of the CJ­

structures.

ii q preserves isomorphisms, i.e., for every pair of databases of vocab­
ulary CJ, A and B which are isomorphic, either q(B) = q(A), or q is
undefined on both A and B.

Boolean queries may also be regarded as 0-ary queries. We denote the
class of computable queries of vocabulary CJ as C Qcr and, C Q denotes the
whole class of computable queries of all vocabularies.

There are many formalisms used to compute or express computable
queries, like formal programming languages, abstract machines and, log­
ics. Here, we will regard a language as a logic because we will use logics
rather than other formalisms. We say that a language is complete if it
expresses the whole class C Q of computable queries.

19

3 Type of a Tuple

Given a O"-structure A and a k-tuple a = (a1, ... , ak) over (dom(A))k,
we would like to consider now all properties of the tuple, regarding the
relations in A. One of those properties would be, for instance, whether
a belongs to a k-ary relation R in A. But, we are interested also in the
properties of the sub-tuples of a. For instance, we want to know whether
a sub-tuple (of length l < k) belongs to a tuple in a relation R in A
of arity l. Even, we are interested in the properties of each component
of a, for instance, given two components of a, a1 and a2, we would like
to consider whether a1 and a2 have some common properties because of
their position in different tuples of a relation R in A.

There are many properties we can express regarding the components
of a, its sub-tuples, a itself, and the relations in A. We will use a given logic
£to express them and analyze what sort of properties will be expressible
using that particular logic.

There is a formal concept in Model Theory that is used for the pur­
pose of studying those properties, the concept of type. In [8] and [18] the
concept of type is studied in depth.

Definition 4. {[8}, Definition 2.17) Given a logic £, a structure A of
vocabulary O", a k-tuple a= (a1 , ... , ak) over (dom(A))k for some k > 0,
we define the £ type of a in A as follows:

That is, the set of formulas in La- with free variables among { x1, ... , Xk}
such that, every formula in the set is TRUE when interpreted by A for
every valuation which assigns the i-th element of a to the variable Xi for
every 1 ::::; i ::::; k.

Let's consider an example.

Example 1. In chemistry, graphs are used to represent molecules, where
atoms are represented by vertices and bonds between them by edges.
For instance, the graph in Figure 1(a) represents the molecule of ethane.
Clearly, we can see this graph as a structure of vocabulary O" = (E, H, C)
where E is a binary relation symbol which may be interpreted as bonds
between atoms, and H and C are unary relations symbols which may
be thought of as representing atoms of hydrogen and carbon respec­
tively. Let g be a O"-structure where dom(Q) = {1, 2, 3, 4, 5, 6, 7, 8}, Hg =
{3, 4, 5, 6, 7, 8}, Cg = {1, 2} and Egis as shown in Figure 1(b).

20

H

I
H--C--H

I
H--C--H

I
H

(a) Molecule of Ethane

Figure 1

4

I
3--]--5

I
8--2--6

I
7

(b) Graph G representing

the molecule of ethane

Now, let's focus on the FO properties of the atoms of g, i.e., tuples
where k = 1. It is straightforward to note that all hydrogen atoms have
the same FO type, as each of them is connected to exactly one carbon
atom. Let p be a function from dom(Q) to dom(Q) where,

p(1) = 2
p(5) = 8

p(2) = 1
p(6) = 3

p(3) = 6
p(7) = 4

p(4) = 7
p(8) = 5

then, pis an automorphism of gas it preserves all relations in g, i.e., for
every x, y E dom(Q),

- E(x, y)
- C(x)

H(x)

iff E(p(x),p(y)),
iff C(p(x)), and

iff H(p(x)).

In fact, each pair of hydrogen atoms can be exchanged by some automor­
phism of g. Moreover, carbon atoms have the same FO type.
Note that, if we consider the types of pairs of elements on g, it might
be the case that they have a different FO type even though their corre­
sponding elements have the same FO type. Let's for instance choose two
pairs of atoms where the first element of both pairs is the same carbon
atom, say 1, the second element of the first pair is an hydrogen atom
which is adjacent to the first element of its pair, say 3, and, the second
element of the second pair is an hydrogen atom which is not adjacent to
the first element of its pair, say 8. These tuples in g are (1, 3) and (1, 8),
and clearly, these tuples do not have the same FO type, therefore they
cannot be exchanged by any automorphism of g.

Note that, the type of a k-tuple is an infinite set of formulas. This
set is maximally consistent since there is a structure and a valuation that

I

I
'I

21

make all the formulas in this set TRUE. We can then think of the type of
a tuple without having a structure in mind, by just adding formulas with
the appropriate free variables to a set as long as it remains consistent.
That is, we may define the type of a given vocabulary and for a given
length of tuple, and then ask ourselves whether in a given database there
is a tuple of that length that has that type.

Definition 5. Let C be a logic, let O" be a relational vocabulary and k 2:: 0,
we denote by

Tpc(O", k) = {tp5t(u): A E Ba 1\ u E (dom(A))k}

the class of all C types for k-tuples over structures of vocabulary O".
Let a be the C type of some k-tuple over some structure in Ba, i.e.,
a E TpL(O", k). If A is a structure in Ba, we say that A realizes the
type a if there is a k-tuple u over (dom(A))k whose C type is a, that is,

tp5t (u) = a.

Definition 6. Let C be a logic, let O" be a relational vocabulary, let A be
a structure in Ba, let u be a k-tuple in (dom(A))k and k 2:: 0, we denote
by

Tpc(A, k) = {tp5t(u) : uk E (dom(A))k}

the class of all C types fork-tuples which are realized in A.

3.1 The Notion of FO Type in Databases

In the perspective of databases, the FO type of a k-tuple u in A is the
set of all queries of arity ::::; k which are expressible in FO and such that
the corresponding sub-tuple of u is in the answer of the respective query
when evaluated on the database A.

Example 2. Consider the complete binary tree A as shown in Figure 2 of
vocabulary O" = (E) where E is the edge relation symbol.

Let's consider the following FO formulas:

'Pl = 3z,x(...,::Jy(E(y,z)) 1\ E(z,x))

tp2(x) = 3z(-,::Jy(E(y, z)) 1\ E(z, x))

'P3(x,y) = 3z(-,::Jw(E(w,z)) 1\E(z,x) 1\E(z,y))

those are some of the formulas that are TRUE when evaluated on A on
the pair (b, c), and hence belong to the FO type of the tuple (b, c) in A,

i.e.,

22

a

A

b c

Figure 2

Thus, the FO type of every tuple in a given database includes not only
the properties of all its sub-tuples, but also the properties of the database
itself, in the sense that it includes the FO theory of the database (see
Definition 1).

Regarding tuples, by Proposition 1 first-order logic is sufficiently ex­
pressive as to include all the properties which might make a k-tuple u
distinguishable from other k-tuples in a given database A of schema
a, and even in the whole class Ba of all databases of schema a. That
is, for all k ;::::: 0, structures A, B in Ba, and k-tuples u E (dom(A))k,
v E (dom(B))k tp~0 (u) = tp~0 (v) if and only if there is an isomorphism
f: dom(A) -t dom(B) such that for 1 ~ i ~kit is Vi= f(ui)·

We will see the relationship between queries and the FO type of tu­
ples in databases with more detail in Subsections 7.1 and 7.2 where we
relate queries with the Isolating Formulas of the FO types of k-tuples, in
databases and in classes of databases, respectively.

23

4 Partial Isomorphisms

In this section we explain in detail the technical concept of partial iso­
morphism which plays an important role in this work.

Definition 7. Let A and B be two structures of a relational vocabulary(}
and let p be a function with do(p) s;;; dom(A) and rg(p) s;;; dom(B), where
do(p) and rg(p) denote the domain and range of p, respectively. Then, p
is a partial isomorphism from A to B if

- p is injective, and
- for each n-ary relation symbol R E ()", with n 2: 1 and for all n-tuples

(al,··· ,an) E (do(p))n,

RA(al, ... , an) iff R 8 (p(a1), ... ,p(an))

We will identify a mapping p by its graph, i.e., p = {(a,p(a))ia E

do(p)}. Given two partial isomorphisms p and q, if p s;;; q, we say that q
is an extension of p. Note that the empty map (p = 0) is also a partial
isomorphism.

Lemma 1. ([10}, Remark 2.2.2 (c)) Let(} be a relational vocabulary, let
A and B be two structures in B(J", let a beak-tuple in (dom(A))k, let b
be a k-tuple in (dom(B))k, then the following conditions are equivalent:

- p(ai) = bi, for all 1 :::; i :::; k, defines a mapping, which is a partial
isomorphism from A to B,

- for all quantifier free formula cp(x1, ... , xk) : A f= cp[a] iff B f= cp[b]
and,

- for all atomic formula cp(x1, ... , xk) :A f= cp[a] iff B f= cp[b].

Note that a partial isomorphism does not preserve the validity of
formulas with quantifiers. Let's see an example. Suppose we have two
structures A = ({0, 1, 2}, <) and B = ({0, 1, 2, 3}, <) of vocabulary (} =
(<),where< denotes the natural ordering. Then, Po= {(0,0), (2, 1)} is
a partial isomorphism from A to B such that:

but,

however, the validity of

24

for any partial isomorphism p from A to B with do(p) = {0, 2}, can be
determined by the existence or not of some partial isomorphism q such
that p s;;; q and 1 E do(q). Take for instance the partial isomorphism po, it
is clear that such partial isomorphism q which extends Po and has 1 in its
domain does not exist. On the other hand, consider the partial isomor­
phism r = { (0, 0), (2, 3) }. In this case, we do have a partial isomorphism q
such that r s;;; q and 1 E do(q), take for instance q = {(0, 0), (2, 3), (1, 1)}
and then,

B f= ::lx3(x1 < X3 !\ X3 < x2)[r(O), r(2)].

this suggests that the truth of formulas with quantifiers could be preserved
by partial isomorphisms if they admit certain extensions.

We will see now that the m-equivalence of structures is related with
this, in the sense that a partial isomorphism can be extended m times and
structures A and B still satisfy the same formulas of quantifier rank :::; m.
Later we will define back and forth systems as sequences of sets of partial
isomorphisms Im, ... , Io from a given structure A to B where each Ij, for
some 0 :::; j < m, is a non-empty set. Roughly, a partial isomorphism pin
Ij+l is extended with an element a E dom(A) (b E dom(B) respectively)
if there is a partial isomorphism q in Ij such that p s;;; q and a E do(q)
(bE rg(q) respectively).

25

5 Ehrenfeucht-Frai'sse Games

The concept of Ehrenfeucht-Frai"sse games is an interesting way to study
the characterization of equivalence between structures. The Ehrenfeucht­
Frai"sse method can be considered from three different perspectives, ga­
metheoretic [12], algebraic [13] and logical. The method is used to prove
that certain properties on finite structures cannot be expressed in some
logics. So, the Ehrenfeucht-Frai"sse games constitute an important, and
quite interesting method used to show the expressibility of different log­
ics related to their capability of distinguishing finite structures (recall
that in this work we don't consider infinite structures). We shall see that
the notion of type plays a relevant role in these characterizations.

The Ehrenfeucht-Frai"sse games, are played by two players called the
spoiler and the duplicator. They play over two structures A and B of the
same vocabulary O", a k-tuple over each structure, say u E (dom(A))k and
v E (dom(B))k, and a given mEN. Each player has to make m moves
during the game. They take turns. The spoiler will try to find a difference
between A and B, and the duplicator will make moves trying to hide any
possible difference between the two structures.

The spoiler starts the game. In a given i-th move, for any 1 ::=:; i ::=:; m,
the spoiler selects a structure, either A or B, and an i-th element in it.
Then the duplicator makes his i-th move where, if the spoiler had chosen
the structure A and element ai, the duplicator has to choose the structure
Band some element bi in dom(B). If the spoiler had chosen the structure
B and an element in it in his i-th move, the duplicator has to choose the
structure A and an element in dom(A). Given the elements chosen during
the game in both structures, the pairs {(u1,v1), ... , (uk,vk), (a1,b1), ... ,
(am, bm)} determine the result of the Ehrenfeucht-Frai"sse game denoted
Gm(A, u, B, v) form moves on k-tuples u and v over structures A and B
respectively. Note that, elements of the k-tuples u and v are elements of
the domain of structures A and B respectively and can then be chosen
by the players during the game. Moreover, the same given element of a
structure may be chosen in more than one move.

Informally, to understand whether the spoiler or the duplicator wins
the game we will use the concept of partial isomorphism. If after m moves
the spoiler never could find a difference between structures A and B and in
every i-th move the duplicator could find an element (on A orB according
to the move) in order to show that both structures remain "similar", i.e.
partially isomorphic, we say that the duplicator wins the game. That is,
the duplicator wins the game Gm(A, u, B, v) if after m moves there exists ,

26

a partial isomorphism p from A to B such that p = { (u1, v1), ... , (uk, Vk),

(a1, b1), ... , (am, bm)}. Otherwise, the spoiler wins the game.
We say that a player (the duplicator or the spoiler) has a winning

strategy in Gm(A, u, B, v) if it is possible for him to win each play of the
game whatever choice is made by the opponent.

Given two structures A and B we say that the tuples u and v are not
distinguishable by any FO formula of quantifier rank :S: m if for every
formula <p(x1, ... , xk) inFO of quantifier rank :S: m A f= <p[u] if and only
if B f= <p[v]. If A and B satisfy the same FO sentences of quantifier rank
:S: m we say that A and B are m-equivalent denoted A =m B.

Example 3. Take for instance the following two O"-structures (undirected
and colored graphs) A and B, where O" = (E, R, B) with a binary relation
symbol E and two unary relation symbols R and B that denote two
different colors of the nodes of the graphs.

(S, I) (0,2) (0, I)

~ ~ ~
r b r r b r

A ITJ "o_ (S, 2)
b b b r b

I t I I
(S, 4) (S, 3) (0, 4) (0,3)

Figure 3

The spoiler starts the game Gm (A, B) choosing a red node of A (de­
noted by (S, 1) in Figure 3). The duplicator responds choosing a red node
in B (denoted by (D, 1)). In the second move the spoiler chooses an adj a­
cent blue node to the previous red one in B, and the duplicator responds
in A. In the third move, the spoiler chooses a red node adjacent to the
previous blue node in A, and the duplicator responds in B. In next move,
the spoiler chooses a blue node adjacent to the previous node chosen in
A and the duplicator answers with a blue node adjacent to the previous
red node chosen in B.

We see that the spoiler has a winning strategy for the game G4(A, B)
choosing four adjacent nodes which form a square in the A. The dupli­
cator has no option because there is not a square in B and therefore the

27

spoiler wins. Note that the winning strategy for the spoiler is trying to
satisfy the following sentence:

that expresses that there exists a square, i.e., a cycle of length 4.

Note that in the preceding example the tuples u and v were empty. We
use Gm(A, B) to denote that the k-tuples u in A and v in B are empty
in the Ehrenfeucht-Frai"sse game, i.e., k = 0. It means that the game
is played on the structures A and B without considering any particular
tuple together with them. We will see later that if the duplicator wins
the game Gm(A, B), the structures A and Bare m-equivalent, that is, A
and B satisfy the same FO sentences of quantifier rank :::; m. That is,
every sentence <p of quantifier rank :::; m is satisfied by A if and only if it
is satisfied by B, i.e., A f= <p iff B f= <p. If k > 0, the game is denoted by
Gm(A, u, B, v). It is played on the structures A and B with two k-tuples
u and v respectively. If the duplicator wins this game we say that the
tuple u satisfies in A the same formulas of quantifier rank :::; m with free
variables among (x1, ... , xk) as the tuple v in B. Those statements will
be shown later in the points (i) and (iv) of the Corollary 1 and Theorem
1 respectively.

From the standpoint of databases and queries, Corollary 1 can be
expressed as follows. Every boolean query q expressible in FO restricted
to formulas of quantifier rank :::; m has the same answer (0 or 1) when it
is evaluated on A and B. Considering Theorem 1 we say that for every
query q of arity k expressible in FO restricted to formulas of quantifier
rank :::; m the tuple u will be in the answer of q when it is evaluated on
A if and only if the tuple v is in the answer of the same query q when it
is evaluated on B.

5.1 Inductive construction of the m-isomorphic type

Let A be a a-structure and u = (u1, ... , uk) E (dom(A))k for some k > 0,
and let m ~ 0. Following [10] we introduce the formula zpH,'(x1, ... , xk)
that in a way describes the Ehrenfeucht-Frai"sse game Gm(A, u, B, v) for
an arbitrary a-structure B and a k-tuple v in (dom(B))k. If the structure
A is not clear from the context we use the notation 'PA,u for <pH,' and when
k = 0 we write <p] for the sentence <fA,@. We define <pH,' in such a way that

for any structure Band v = (v1, ... ,vk) E (dom(B))k the duplicator has ,

28

a winning strategy for the game Gm(A, fi, B, v) in m moves if and only if
B F= cp~(x1, ... , xk)[v].

Let x = (x1, ... , xk)

cpg(x) := /\{cp(xl, ... , xk)lcp atomic or negated atomic, A f= cp[fi]}

form> 0

cp~(x) = 1\ 3xk+lcp~a- 1 (x,xk+l) 1\ Vxk+ 1 V cp~- 1 (x,xk+l)·
aEdom(A) aEdom(A)

Where cpg describes the isomorphism type of the substructure induced
by fiE (dom(A))k in A, and also by v E (dom(B))k in B for any structure
B such that B f= cpg [v], if and only if there is a partial isomorphism
{(u1,v1), ... , (uk,vk)} from A to B. That is, if and only if (B,v) satisfies
the conjunction of all atomic and negated atomic formulas in cpg with free
variables among (x1, ... , xk), where obviously A f= cpg[u].

For m > 0 the formula describes to which isomorphism type the tuple
fi (and therefore v) will be extended in m moves adding at most one
element in each move.

We will use the concept of type of a tuple to describe the formula cp~.
Each new element a E dom(A) extends the tuple fi of length k to a tuple
of length k + 1 denoted fia, i.e. fia = (u1, ... , uk, a).

We give now an explanation of the intuition behind cp~.
Given a structure B and a k-tuple v in B, what does it mean that

B f= cp~[v]? Let's consider the first part of cp~, the big conjunction. For
each element a E dom(A) there is an element b E dom(B) such that the
tuple vb in the structure B satisfies the same FO formulas of quantifier
rank::::; m- 1 than the tuple fia in structure A, i.e. B f= cp~- 1 [vb]. That
is, the FO type of quantifier rank m - 1 of the tuple fia of length k + 1
in A is the same as the FO type of quantifier rank ::::; m - 1 of the tuple
vb of length k + 1 in B.

The second part of the formula, the universal quantifier followed by
the big disjunction, describes that, for every b E dom(B) there is an
a E dam(A) such that the FO type of quantifier rank m- 1 of fia in A is
the same as the FO type of quantifier rank m - 1 of vb in B. Then, fia in
A and vb in B satisfy the same FO formulas of quantifier rank ::::; m - 1
(clearly qr(cp'fr) = m).

This formula can be described in terms of types of tuples in FO logic
but also in terms of Ehrenfeucht-Fra"isse Games. The duplicator wins the
game Go (A, fi, B, v) if there is a partial isomorphism { (u1, vl), ... , (uk, vk)}

29

from A to B, that is, if for all atomic formulas cp(x), A I= cp[u] if and only
if B I= cp[v]. For m > 0, the duplicator wins the game Gm(A, u, B, v) if
for all a E dom(A) that the spoiler might choose there is a b E dom(B)
such that the duplicator wins the game Gm-I(A,ua,B,vb). Also, for all
b E dom(B) that the spoiler might choose, there is an a E dom(A) such
that the duplicator wins the game Gm-I(A,ua,B,vb). This means that
there is a sequence of sets of partial isomorphisms Im, ... , Io such that in
each move of the game, say j where 1 ::; j < m, every partial isomorphism
p in the set Ij+l can be extended to a partial isomorphism q in the set
Ij, that is, p ~ q, with every element a E dom(A) and bE dom(B) and in
each direction, that is, for every element a in dom(A) there is an element
b in dom(B) and for every element b in dom(B) there is an element a in
dom(A) such that a E do(q) and b E rg(q). This is the concept of back
and forth properties, introduced in the following definition.

Definition 8. ([10}, Definition 2.3.1) Let m 2: 0. Two structures A and
B are m-isomorphic, denoted A ~m B if there is a non-empty sequence
of sets of partial isomorphisms from A to B denoted (Ij ks.m with forth
and back properties as follows:

* Forth property: For every 0 ::; j < m, p E Ij+l and a E dom(A) there
is a q E Ij such that q ;2 p and a E do(q),

* Back property: For every 0 ::; j < m, p E Ij+l and b E dom(B) there
is a q E Ij such that q ;2 p and bE rg(q).

the fact that A andB arem-isomorphic via (Ij)j.::;_m, is denoted as (Ij)j5om:
A~mB.

Theorem 1. {[10}) Given two structures A and B of the same vocabu­
lary, two k-tuples u E (dom(A))k and v E (dom(B))k and m 2: 0, the
following are equivalent:

(i) the duplicator wins Gm(A, u, B, v).
(ii) B 1= cp~[v].

(iii) there is a sequence of sets of partial isomorphisms (Ij)j5om from A to
B, with u 1--+ v E Im such that (Ij)j5om: A ~m B.

(iv) u in A and v in B satisfy the same FO formulas of quantifier rank
::; m, that is, if cp(x1, ... , Xk) is of quantifier rank::; m, then

A 1= cp[u] iff B 1= cp[v].

Proof.
For (iii):::::} (i). Suppose that A and Bare m-isomorphic via (Jj)j5om, the

30

set of sets of partial isomorphisms from A to B, i.e., (Ij)js_m : A ~m B,
and every Ij is non-empty and U~---* v E Im. The winning strategy in the
game Gm(A, u, B, v) for the duplicator is as follows: In his i-th move he
should choose the element ai E dom(A) (bi E dom(B)) such that for the
partial isomorphism pi= {(ul,vl), ... ,(uk,vk),(al,bl), ... ,(ai,bi)} it is
true that Pi ~ q for some q E Im-i, this is always possible because of the
forth and back properties of (Ij)jS.m· Then, when i = m, the duplicator
wins the game Gm(A, u, B, v).

(iv) implies (ii) since u and v satisfy the same formulas of quantifier rank
:S m, and qr(cp~) = m, and A I= cp~[u] then B I= <p~[v].
(i) {:} (ii). This proof is by induction on m.
For m = 0, the duplicator wins the game Go(A, u, B, v) iff there is a
partial isomorphism u ~----' v from A to B iff A and B satisfy the same
atomic and negated atomic formulas in cpg where B I= cpg[v] and obvi­
ously A I= cpg[u].
Form> 0 the duplicator wins the game Gm(A, u, B, v) iff
for all a E dom(A) there is b E dom(B) such that the duplicator wins
Gm-l(A, ua, B, vb), and for all bE dom(B) there is a E dom(A) such that
the duplicator wins Gm-l(A,ua,B,vb) iff
for all a E dom(A) there is bE dom(B) with B I= <p~a- 1 [vb], and for all
bE dom(B) there is a E dom(A) with B I= <p~a- 1 [vb] (ind. hyp.) iff

B I= 1\aEdom(A) 3xk+l'P8.-
1
(Xl, · · · 'Xk+l)!\\fxk+l VaEdom(A) 'P8.-1

(Xl, · · ·'

xk+I) [v] iff B 1= cp~[v].

(i) =?- (iv). If m = 0 the proof is handled as above.
If m > 0. Suppose that the duplicator wins the game Gm(A, u, B, v). The
set of formulas cp(x1 , ... , xk) of quantifier rank :S m such that A I= cp[u]
iff B I= cp[v] contains the atomic and negated atomic formulas and this
set is closed under -, and V. Suppose cp(x) = 3y7j; is in that set and
qr(cp) :S m. Since y ¢:. free(cp) we can assume that y is different from
the variables in x, hence cp(x) = 3y7j;(x, y). Assume that A I= cp[u], then
there is a E dom(A) such that A I= 7f;[ua]. Since by (i), the duplicator
wins the game Gm(A, u, B, v) then there is b E dam(B) such that the
duplicator wins Gm_1(A,ua,B,vb). As the qr(?jJ) :S m- 1 by the ind.
hyp. B 1= 7f;[vb], hence B 1= cp[v].

(i) :::} (iii).
If the duplicator wins the game G0 (A, u, B, v) there is a partial isomor­
phism il ~----' v from A to B iff A and B satisfy the same atomic and negated
atomic formulas in cpg on u, v, respectively. This gives us a non-empty

'

31

set Io with the partial isomorphism u .-r v from A to B.
When m > 0, if the duplicator wins the game Gm(A, u, B, v) then in ev­
ery move j ::; m, for every a E dom(A) (orb E dom(B)) that the spoiler
chooses, the duplicator can chose a correspondent element b E dom(B)
(a E dom(A)) and a partial isomorphism is defined by the sequence of
pairs of elements chosen up to that move by the two players, which ex­
tends the partial isomorphism u .-r v. This, together with the induction
hypothesis gives us the back and forth properties for (Ij)j<m·

0

Note that, we can consider another item in the previous Theorem as
follows:

(v) The FO type of quantifier rank m of u in A (which may be denoted
as tp~0m(u)) is the same as the FO type of quantifier rank m of v in
B, i.e. tp~0=(u) = tp~0=(v).

Proof. (sketch)
If the duplicator wins the game Gm(A, u, B, v) then tp~0=(u) = tp~0m(v).
For m = 0 the proof is handled as above.
For m > 0, for all a E dom(A) there is b E dom(B) (and, for all b E

dom(B) there is a E dom(A) respectively) such that B f= <p~-l [vb] that is,
the tp~0=- 1 (ua) of quantifier rank m-1 is the same as the tp~0=- 1 (vb)
of quantifier rank m- 1 and, the duplicator wins Gm-l(A,ua,B,vb).
Finally, B f= <p~[v] where the duplicator wins Gm(A, u, B, v) and also,
tp~0=(u) of quantifier rank m is the same as the tp~0=(v) of quantifier
rank m.

0

If we consider k = 0 we have the following corollary.

Corollary 1. ([10}) Given two structures A and B of the same vocabu­
lary and form :2: 0, the following are equivalent:

(i) the duplicator wins Gm(A, B).
(ii) B F <t?A·

(iii) A ~m B.
(iv) A =m B.

The equivalence between A =m B and A ~m B is known as the
Frai'see theorem. The proof of the preceding theorem and specially the
equivalence of (i) and (iii) and the Frai'see theorem show that these are
different formulations of the same fact regarding the close relationship ,

32

between sequences of partial isomorphisms (Ij)j5,m and winning strategies
for the duplicator over the game Gm(A, u, B, v).

We can define Ehrenfeucht-Fra1sse games for the logic .Coow as well.
For two structures A and B and two tuples u E (dom(A))k and v E

(dom(B))k the game G00 (A, u, B, v) is played as Gm(A, u, B, v) with the
only difference that now, each player can make infinitely many moves.
That is, at the end of the game Goo(A, u, B, v) we will have a map, say
p = {(u1, vl), ... , (uk, vk), (a1, b1), ... } for the arbitrary elements chosen
by the players during the game, where for all i ~ 0, every ai, bi chosen
by the players are not necessarily elements of the tuples u or ii. The
duplicator wins the game, if for every move i the map {(u1,v1), ... ,
(uk,vk), (a1,b1), ... , (ai,bi)} is a partial isomorphism, in other case the
spoiler wins the game. Next, we give the definition of the back and forth
properties for the characterization of equivalence of formulas in .Coow·

Definition 9. {[1 OJ, Definition 3.2. 6) Two structures A and B of the
same vocabulary are said to be partially isomorphic, denoted A ~part B if
there is a nonempty set I of partial isomorphisms from A to B with the
back and forth properties as follows:

* Forth property: For every p E I and a E dom(A) there is a q E I such
that q 2 p and a E do(q),

* Back property: For every p E I and bE dom(B) there is a q E I such
that q 2 p and bE rg(q).

then, we write I : A ~part B.

We obtain in .Coow similar results to those in FO.

Theorem 2. {[1 OJ) Given two structures A and B of the same vocabulary
and two k-tuples, for some k > 0, u E (dom(A))k and v E (dom(B))k the
following are equivalent:

(i) the duplicator wins G00 (A, u, B, v).
(ii) There is a set I of partial isomorphisms from A to B with u 1--7 v E I

such that I : A ~part B.
(iii) u and v satisfy the same .Coow formulas in A and B, respectively. That

is, if <p(x1, ... , xk) is a formula of L 00w, then

A F= <p[u] iff B F= <p[v].

When k = 0, we get the following results:

33

Corollary 2. ({10}) Given two structures A and B of the same vocabu­
lary, the following are equivalent:

(i) the duplicator wins G00 (A,B).
(ii) A S:!.part B.

(iii) A =L=w B.

Note that, if A and Bare finite, they satisfy the same FO formulas if
and only if they satisfy the same L 00w formulas [10]. That is,

A = FO B if and only if A =Loow B

We know by Proposition 1 that every finite structure A can be char­
acterized in first-order logic up to isomorphism by a given formula 'PA

such that A =Fo B <=? A 3:!. B. The logic L00w can express any class of
finite structures C by the sentence V { r.p AlA E C}. Clearly, if A 3:!. B it is
also the case that A =Loow B.

34

6 Pebble Games

In this section we present the pebble games where the spoiler and the
duplicator have a fixed set of pairs of pebbles and each move consists of
placing a pebble which is off the board on an element of a structure or
removing a pebble from an element and placing it on another element (or
even on the same element).

Consider the following example,

Example 4. Let cr = (<) be a vocabulary where < denotes natural or­
dering, two cr-structures A = ({0, 1, 2}, <) and B = ({3, 4}, <) and the
following sentence

<p = 3x3y(x < y 1\ 3x(y < x))

Clearly A f= <p but, B ~ <p and the spoiler has a winning strategy in
G3(A, B). The moves made during the game are sketched out in the fol­
lowing table

A B
first move 0 3

second move 1 4
third move 2 ?

The elements in column A are the elements selected by the spoiler
and the duplicator has no other element in B in his third move in order
to win the game. But, how could be possible that <p has two variables and
even with just two variables the spoiler could win the game? For the first
two existential quantifiers (:Jx:Jy), the spoiler chooses elements 0 and 1
on A in his first an second move respectively. The duplicator plays those
moves choosing elements 3 and 4 on B. Finally, for the third existential
quantifier (:Jx), the spoiler chooses in his third move the element 2 in A
such that

A f= <p where 0 < 1 < 2

the previous value for variable x (0) makes no longer sense, it has been
replaced by element 2. After that, the duplicator has no other choice in
B and finally the spoiler wins.

This version of the games is also played in m moves but this time
we use k pair of pebbles. The spoiler and the duplicator will place the
pebbles on elements of the structures A or B along the game. In a given
pebble game G~(A, u, B, v) where u E (dom(A))1 and v E (dom(B))1, for

35

some 1 :::; l :::; k we have k pairs of pebbles denoted cq, ... , ak for A
and j31 , ... , f3k for B. In a given move j of the game, where 1 :::; j :::; m
the pebble ai is placed on an element ai E dom(A) and the pebble f3i is
placed on some element bi E dom(B) with 1 :::; i :::; k. Initially, the pebbles
a1, ... , az (!31, ... , f3z) are placed on the elements u1, ... , uz (v1, ... , vz
respectively) and the pebbles az+l, ... , ak (f3z+I, ... , f3k) are off the board.

In each move, say for instance j, for 1 :::; j :::; m, the spoiler selects a
structure (A or B) and a pebble of this structure (ai or f3i respectively)
being it off the board or already placed on an element. If the spoiler selects
the structure A he will put the pebble ai on an element ai E dom(A).
After that, the duplicator selects the structure B and pebble f3i and places
it on some element bi E dom(B). But, if the spoiler selects the structure B
and /3i, he places it on an element bi of dom(B), then the duplicator selects
the structure A and ai and places it on some element ai in dom(A). Note
that there could be several pebbles on the same element at a given stage
in the game. The elements of the k-tuples u and ii are elements of the
domain of structures A and B respectively and can then be chosen by the
players during the game.

Let's denote by us;. the substitution of the Ui component in u by the
element a E dom(A): that is, u1, ... , ui-1, a, ui+l, ... , uz. If u ~---+ ii is a
partial isomorphism as in Definition 7, in this context we will also call it
a k-partial isomorphism.

Let's see again Example 4. Before the first move all the pebbles (say
a1, a2, and /31, /32) were off the board. In the first move, the spoiler chose
structure A, pebble a1 and placed it over element 0 in dom(A) and, a2
was still off the board. The duplicator chose structure B, pebble /31 and
placed it on element 3 in dom(B), meanwhile /32 was off the board. In
second move, the spoiler chose again the structure A, but this time, the
pebble a2 and placed it on 1 in dom(A), then the duplicator chose the
structure B and /32 and placed it on 4 in dom(B). In the third move, the
spoiler chose again structure A and a1 and placed it, this time, on 2 in
dom(A). In this move there was no a choice for the duplicator in B, then
the spoiler won the game.

The duplicator wins the game if after the move m he could find a
k-partial isomorphism which maps u to ii and the set of elements on A,
marked by a1, ... , ak, to the set of elements on B, marked by /31, ... , f3k·
Otherwise, the spoiler wins the game. We say that the duplicator has a
winning strategy in a game c;;.(A, u, B, v) if he wins the game indepen­
dently of the choice of the spoiler at each move.

If we make a slight modification of the Example 4 as follows

36

Example 5. Let a-= (<)be a vocabulary, two a--structures A= ({0, 1, 2}, <
) and B = ({3, 4, 5}, <) and the following sentence <p = ~x~y(x <
y!dxy < x). The duplicator has a winning strategy for the game G~(A, B)
where A f= <p and B f= <p because there is a k-partial isomorphism from
A to B.

We define the corresponding back and forth properties for Pebble
games.

Definition 10. ([10}, Definition 3.3.8) Structures A and B are k-ID­
isomorphic denoted by A 3:!~ B if there is a sequence (Ij ks.m of nonempty
sets of k-partial isomorphisms with the following properties:

* k-forth property:
(i) for j < m, u 1--7 v E Ij+l with length of u = k, 1 :::; i :::; k and,

a E dom(A) there is bE dom(B) such that u~ 1--7 V£ E Ij.

(ii) for j < m, u 1--7 v E Ij+l with length of u <' k, a~d a E dom(A)
there is b E dom(B) such that ua 1--7 vb E Ij.

* k-back property:
(i) for j < m, u 1--7 v E Ij+l with length of u = k, 1 :::; i :::; k and,

bE dom(B) there is a E dom(A) such that u~ 1--7 V£ E Ij.

(ii) for j < m, u 1--7 v E Ij+l with length of u .d k, a~d b E dom(B)
there is a E dom(A) such that ua 1--7 vb E Ij.

Then we write (Ij)j~m: A 3:!~ B.

The pebble game G~(A, u, B, v) is defined as G~(A, u, B, v) with the
difference that G~(A, u, B, v) allows infinitely many moves.

Theorem 3. ([10}, Theorem 3.3.5) Given two a--structures A and B, two
l-tuples u E dom(A) 1 and v E dom(B) 1, with 1 :::; l :::; k

- u satisfies in A the same FOk formulas of quantifier rank :::; m as v
in B iff the duplicator wins the game G~ (A, u, B, v).

- u satisfies in A the same £~w formulas as v in B iff the duplicator
wins the game G~ (A, u, B, v).

similarly

A=~ B iff the duplicator wins G~(A, B).
- A =.c~w B iff the duplicator wins G~(A, B).

The k-partially isomorphic structures denoted A S=!~art B and the set
I : A S=!~art B of k-partial isomorphism for £~w are similarly defined.

37

Definition 11. Two structures A and B are k-partial isomorphic de­
noted A ~;art B if there is a nonempty set I of partial isomorphisms
from A to B with the k-back and k-forth properties as follows:

* k-forth property:
(i) u ~---+ v E I with length of u = k, 1 :::; i:::; k and, a E dom(A) there

is bE dom(B) such that u~ ~---+ vp_ E I.
' i

(ii) u ~---+ v E I with length of u < k, and a E dom(A) there is b E

dom(B) such that ua ~---+ vb E I.
* k-back property:

(i) u ~---+ v E I with length of u = k, 1 :::; i:::; k and, bE dom(B) there
is a E dom(A) such that u~ ~---+ vp_ E I.

(ii) u ~---+ v E I with length o/u < k, and b E dom(B) there is a E

dom(A) such that ua ~---+ vb E I.

6.1 Inductive construction of the k-m-isomorphic type

Given a vocabulary a, a structure A of vocabulary a, an integer k > 0
and an l-tuple u = (u1, . .. , uz) over (dom(A))1 with 1 :::; l :::; k, and fol­
lowing [10], we define the k-m-isomorphic type of A by an FOk formula
'1/Jf: by induction on m.

'l/J&(x1, ... ,xz) = (\{'lj;(x1, ... ,xz)l'l/J atomic or negated atomic formulas
such that A f= 'lj;[u1, ... , uz]}

if the length of u < k then

'lj;~+1(x1, ... , xz) = '1/Jf:(xi, ... , xz) 1\ (1\ ::lxz+I'l/J~(xb ... , Xt+I))I\
aEdom(A)

if the length of u = k then

'v'x1+1 V '1/J~(xb ... , Xz+I)
aEdom(A)

'l/Jf:+1(xb···,xk)='l/Jg(xb···,xk)l\ 1\ (1\ 3xi'l/J~T(xb···,xk)l\
l:::;i:::;k aEA

'v'xi V '1/J~T(xi,···,xk)).
aEA

The first part of the formula, '1/J& (XI, ... , xz), is the conjunction of all
atomic and negated atomic formulas with free variables among { x1, ... , xz}
such that A f= '1/J&[u]. It describes the isomorphic type of the substructure ,

38

generated by u E (dom(A)) 1 in A and also by v E (dom(13))1 in 13, for
any structure 13 such that 13 I= 'fR[v] if and only if there is a k-partial
isomorphism u r-t v from A to 13. That is, 13 satisfies the conjunction of
all atomic and negated atomic formulas in 'fR with free variables among
{x1, ... , xl}, where obviously A I= 'fR[u].

When m > 0, the formula describes to which isomorphic type the
tuple u (and v) will be extended in m moves, adding (or replacing) at
most one element in each move. We will explain intuitively the meaning
of 13 I= 'f~+l[v]. Each new element a E dom(A) (b E dom(13)) extends
the tuple u (v) of length l, where l < k, to a tuple ua (vb) of length l + 1
denoted ua = (u1, ... , ul, a) (vb = (v1, ... , vl, b) respectively).

If the length of u is < k, the formula guarantees that the tuple u in
A satisfies the same FOk formulas of quantifier rank :::; m than the tuple
v in 13. That is, up to quantifier rank :::; m, the FOk type of tuple v in 13
is the same as the FOk type of tuple u in A.
In the big conjunction followed by the existential quantifier, for each
element a E dom(A) there is an element bE dom(13) such that the tuple
vb in structure 13 satisfies the same FOk formulas of quantifier rank :::; m,
with free variables (x1o ... , Xl+l), than the tuple ua in structure A, i.e.
13 I= 'fifa[vb]. That is, the FOk type of quantifier rank :::; m of the tuple
ua of length l + 1 in A is the same as the FOk type of quantifier rank
:::; m of the tuple vb of length l + 1 in 13.
The following part of the formula, the universal quantifier followed by the
big disjunction describes that, for every element b E dom(13) there is an
element a E dom(A) such that the tuple ua in A satisfies the same FOk
formulas of quantifier rank:::; m with free variables (x1, ... ,xl+l) than
the tuple vb in structure 13. Then, the FOk type of quantifier rank :::; m
of tuple vb in 13 is the same as the FOk type of quantifier rank :::; m of
tuple ua in structure A.

Games G~(A, u, 13, v) and G~(A, u, 13, v) are played with k pairs of
pebbles. That is, the formulas satisfied by the tuples u in A and v in 13
are formulas over the logics FOk and .C~w· For that reason, the length
of the tuples used in the formula 'ljl~+l(x1, ... , xl) has to be considered.
When the length of u is = k, a sequence of k pair of elements from A
and 13 have been chosen. We consider the substitution u;, (v£) of the Ui

' i

component of u (vi component of v), for any 1 :::; i :::; k, by the element
a E dom(A) (b E dom(13)) in order to guarantee the following move of
the game G~(A, u, 13, v) or G~(A, u, 13, v).

In terms of the pebble games, we say that the duplicator wins the game
G~(A, u, 13, v) as follows. When m = 0 , if there is a partial isomorphism

39

u ~--+ v from A to B such that A and B satisfy the same FOk atomic
formulas. When the length of u (v) is < k, the duplicator has a winning
strategy for all the previous m moves. For every pebble that the spoiler
places on an element in structure A, the duplicator will place his pebble
in an element of B such that the duplicator wins the game G~(A, u, B, v).
For every pebble that the spoiler places on an element of B the duplicator
will place his corresponding pebble on an element of A such that the
duplicator wins the game G~(A, u, B, v).
If the length of u is equal to k, it means that the k pairs of pebbles
have been chosen and placed on k pairs of elements of A and B. For the
next move, a pair of pebbles ai, f3i is removed and placed on elements
a E dom(A) and bE dom(B) replacing, respectively, the component ui in
u by a and Vi in v by b.

The formula '1/J~+l characterizes in A the l-tuples u up to equivalence
on FO formulas with k variables and quantifier rank m + 1.

Theorem 4. {(10}) Let A and B be two structures of the same relational
vocabulary and let u E (dom(A)) 1 and v E (dom(B)) 1 for some 0 < l ~ k
and m 2: 0. The following are equivalent:

(i) the duplicator wins G~(A, u, B, v).
(ii) There is a sequence of partial isomorphisms from A to B (Ij)j~m with

u 1--+ v E Im such that (Ij)j~m: A~~ B.
(iii) B f= '1/!~[v].
(iv) u satisfies in A the same FOk formulas of quantifier rank ~ m as v

in B.
(v) up to quantifier rank m, the FOk type of u in A is the same than the

FOk type of v in B.

Theorem 5. {[10}) Let A and B be two structures of the same relational
vocabulary and let u E (dom(A)) 1 and v E (dom(B)) 1 for some 0 < l ~ k.
The following are equivalent:

(i) the duplicator wins G~ (A, u, B, v).
(ii) There is set I of partial isomorphism from A to B with u ~--+ v E I

such that I : A ~;art B.
(iii) u satisfies in A the same formulas of C~w as v in B.

6.2 Isolating Formula

Let's introduce a fragment of FOk logic, denoted FOk,m for some inte­
gers k and m that contains the FOk formulas of quantifier rank up to

40

m. pQk,m is itself a logic but clearly, less expressive than FOk. Given a
O"-structure A, k ~ l > 0 and, two l-tuples u and u' E (dom(A))1 tuples u
and u' may have the same FOk,m type but different FOk type because of
the difference as to expressibility of the two logics. That is, some proper­
ties of these tuples which are expressible in FOk might not be expressible
in FOk,m. Note that, considering that A is a finite structure, we could
choose a sufficient large m such that those tuples can be distinguishable
via FOk,m in A. That is the idea of the following definition.

Definition 12. {[8}, Definition 2.19) Let O" be a vocabulary, let A be a: O"­

structure, let u be a tuple of length l in (dom(A))1, for a given 1 ::; l ::; k.
The Scott rank of the tuple u in A with respect to k, denoted sr~(u) is
the least m such that for every l-tuple u' over A, whenever

(A, u) =~ (A, u') then (A, u) =k (A, u')

The Scott rank of a structure A with respect to k denoted srk(A), is equal
to sup({sr~(u))u E (dom(A))k}).

sr~ (u) provides a value for m sufficiently big such that, tuples u and
u' can be distinguished using FOk,m if they can be distinguished in FOk
over A.

Let's define the k-Scott formula of tuple u in A

vEdom(A)k

"1,srk(A)+l
'1-'v (x1, ... ,xk)).

This is an FOk-formula of quantifier rank srk(A) + 1 + k that charac­
terizes the structure A up to equivalence of FOk formulas. In particular

k) the Scott sentence O" A captures the whole £oow theory of A, that is

Theorem 6. ([8}, Theorem 2,12) For every finite structure A and any
k, there is a sentence O" A E FOk such that for any finite structure B,
B I= O"A if and only if A =k B.

Intuitively, the formula O" A,u expresses that, for each tuple u = (u
1

,

... , u1) of elements of dom(A), with 1 :S l :S k and for each tuple
v = (v1, ... , v1) of elements of dom(B) for some structure B, if the FOk,m
type of tuple v in B is the same as the FOk,m type of u in A then, the

41

formula guarantees that the FOk,m+l type of v in B is the same as the
FOk,m+l type of tuple u in A for a given m which denotes the Scott rank
of A. Note that, if B I= O"A,-u[v] then the srk(A) 2: srk(B). That is, srk(A)
is an m sufficiently big such that it permits us to express the FOk types
of alll-tuples in B. For every l-tuple v in B the FOk type of vis the same
as the FOk,m type of v in B.

For the given sequence of elements v1, ... , vz of B, and therefore for
u1, ... , uz in A, m is big enough such that we can express enough prop­
erties of those tuples in their corresponding structures in order to distin­
guish them from tuples in the same structure with different FOk types.
For two finite structures A and B, m is considered to be:::; (IAI+ l)k ·(IBI+
l)k since there are less than (IAI + l)k · (IBI + l)k k-partial isomorphisms
from A to B.

Corollary 3. ([8)) For every structure A, l:::; k and, sequence u1, ... , uz

of elements in (dom(A))k, there is a formula ¢ E tp~0k such that for any
structure Band elements v1, ... ,vz E (dom(B))k,

B I= ¢[v1, ... ,vz] iff tp~0k(u1, ... ,uz) = tp~0k(v1, ... ,vz).

If ¢ satisfies the conditions of the corollary we say that ¢ isolates
tp~0k(u1 , ... ,uz). We also say that¢ is an isolating formula for the FOk

type of u in A, denoted tp~0k (u 1, ... , uz). In this sense the k-Scott formula
is an isolating formula for the FOk type of the tuple u over the structure
A. It is a single (finite) formula expressible in FOk with quantifier rank
srk(A) + 1 + k.

42

7 Databases with Redundant Relations

It is well known that, depending on the design, a database may contain
redundant information, i.e., it may contain the same information stored
in more than one place within the database. Redundant storage of infor­
mation can lead to a variety of problems on the updating, insertion and
deletion of data. This is a very important problem and has been studied
extensively in the field of databases, indeed almost all database textbooks
include this topic, see for instance [1, 20], among other sources. Tradition­
ally, the redundancy of information is studied by incorporating a particu­
lar class of integrity constraints to databases (that is, properties that are
supposed to be satisfied by all instances of a given database) known as
functional dependencies, and the well known Normalization techniques.
We will take here a different approach based on the notion of FO types
of tuples and their isolating formulas.

Consider a nonempty schema O" = (R1, ... , R8). We will say that given
a database A. of schema O", a relation Rf does not contribute with any
additional information to A. than the information already contributed by
the other relations in A. if the relation Rf can be obtained (i.e., defined)
by an FO formula over the reduced database of schema O"- Ri. We will
call this kind of relations, redundant relations. Let's consider an example.

Example 6. Let O" = (Clients,Investments, M atinv), with respective
arities 4, 6 and 3, be the schema of a Bank's database B where NI at! nv8

contains the following information for the investments that are close to
the maturity date.

I ClientiD IInvestmentiD I Maturity Date I

1012 01- 4503 14/01/2001
1012 03-2941 23/01/2001
2315 01- 1541 15/01/2001

Moreover, the relation Clients8 records the following details of the clients:
ClientiD, FirstName, LastName, and Address; and the relation Investment8

records the following details of all investments: InvestmentiD, ClientiD,
InterestRate, Term, StartDate, MaturityDate.

Clearly, every tuple in NI at! nv8 is a sub-tuple of some tuple in I nvestment8

and Mat! nv8 can be obtained by evaluating an FO formula over the re­
duced database B' of vocabulary T = (Clients, Investments).

As the FO types of all k-tuples in a database A. of some schema O"

describe all FO properties which are satisfied by the tuples of arity up

43

to k in A, every PO query of arity up to k will be equivalent in A to the
disjunction of some of the PO isolating formulas in the PO types for k­
tuples in A. A consequence of this is that, we can eliminate a relation RA
of arity k from A as long as the PO types for k-tuples realized in A are
not altered, because we can always recover the eliminated relation RA,
i.e., we can always write an FO formula which evaluated on A will return
the relation RA. For instance, if we eliminate the relation Mat! nv8 in
the previous example the PO types for 3-tuples realized in B will not be
altered, that is, the PO types of all 3-tuples a E (dom(B)) 3 will be the
same with or without the relation Mat! nv8 in the database and hence
this relation can be eliminated without any loss of information. Redun­
dant relations are relations that do not provide any further information
in the sense that two arbitrary tuples of a given database A will be dis­
tinguishable or not, up to isomorphisms, independently of the presence of
the redundant relations in the database. Next, we will analyze redundant
relations in databases as well as in classes of databases.

7.1 Redundant Relations in Databases

We start this section with two definitions which formalize some of the
notions discussed above.

Definition 13. Let 0' be a schema, let A be a database of schema 0', and
let R be a given relation symbol in 0'. We denote as

- 0' - R the schema obtained by eliminating from 0' the relation symbol
R, i.e., ifO'= (R,RlJ ... ,Rs), thenO'-R= (R1, ... ,Rs),

- FOa- and poo--R the set of formulas of PO over the schemas 0' and
0' - R respectively and,
Ala--R the reduced database of schema 0'- R obtained by eliminating
the relation RA from A.

Definition 14. Given a schema 0' = (R, R1, ... , Rs) with s > 0 where R
is of arity k, and a database A in Ba-, R is a redundant relation in the
database A if for all k-tuples ii and v in (dom(A))k,

the equivalence classes induced by the FOa- types of the k-tuples in (dom(A))k
coincide with the equivalence classes induced by the poo--R types of k­
tuples in (dom(A))k.

Consider the following example.

44

Example 1. Let BT be the class of complete binary trees of schema r =
(E, C) where E is the edge relation symbol and C is a unary relation
symbol. In Figure 7 we show two binary trees, ~h and ~h which belong
to BT. In them, the unary relation symbol C is interpreted as the set of
painted nodes.

G_l
G_2

Figure 7

Note that, if we consider the FO types for tuples of arity 1 in a
complete binary tree of depth n then we have n+ 1 different types, because
all nodes of the same depth have the same FO type. That is, a node
in a complete binary tree cannot be distinguished by any FO formula
from another node at the same depth in the tree, therefore, nodes of
the same depth can be exchanged by an automorphism of the tree. It is
straightforward to note that the relation Cg1 is a redundant relation in
~h, i.e., for every elements u, v E dom(c;h),

tp~lor (u) = tp~lO'" (v) iff tp~lor-C (u) = tp~lor-c (v).

But this is certainly not the case for the tree 92 as the relation crh allows
us to distinguish, for levels two and three, some nodes from the others
in the same level. So it is not longer the case that all nodes in the same
level have the same FO type. Take for instance the nodes b and c in 92·
Clearly, tp~2°'" (b) -=/: tp~2°'" (c) while tp~2or-c (b)= tp~2or-c (c).

We will see now how to build, for any redundant relation RA in a
database A of schema CJ, an FO formula i.fJR such that cp~lcr-R = RA.
Informally, cp R is an FO query which evaluated in the reduced database
Ala-R gives the relation R.

The proof of the next Theorem readily follows from the definition of
isolating formulas for the FO types of k-tuples, and of redundant rela­
tions. Note that, isolating formulas for the FO types of k-tuples can be

45

built in a similar way to that used to build the isolating formulas for FOk
types for l-tuples in Subsection 6.2. Considering the formulas cp~(x), de­
fined in Subsection 5.1 and Theorem 2.2.8 in [10], as we are dealing with
finite structures there will always be an m big enough such that for all
O"-structures Band k-tuples v over (dom(B))k we have that

B 1= 'PA,u[v] iff tp~0 (u) = tpf;o(v)

and that is the isolating formula for the FO type of u in A. It is well
known (see [10]) that nk is a value of m big enough to build the isolating
formula for an arbitrary k-tuple in a given database of size n.

Theorem 7. Let A be a database of schema O" = (R, R1, ... , Rs) with
s > 0, let RA = {ak, ... , ak} be a redundant relation of arity k and
cardinality n in A, and let 'PR(XlJ ... , xk) be the FO formula

where, for 1 :S i :S n, 1/Ji is the isolating formula for the pou-R type of the

k-tuple at. It follows that cp~la-R = RA. And, obviously also cp~ = RA.

Note that, every redundant relation R of arity k can be obtained by
an FO query on the corresponding reduced database as described in the
previous theorem because a relation is redundant if and only if it has
complete FO types for the k-tuples. That is, a relation R of arity k is
redundant if and only if for every FO type for the k-tuples a realized by
the database, either all k-tuples whose type is a belong to R or none of
them does.

Observe that in Example 7, the relation Cg1 is a redundant relation
in gl as it has complete FO types for the 1-tuples for nodes in the second
level on the tree, while the relation Cg2 is not a redundant relation in Q2

as it does not have complete FO types for the 1-tuples neither for nodes
in the second nor in the third level of 92.

So far, we have been considering databases with only one redundant
relation however databases can have several redundant relations. Let's see
the following example.

Example 8. Consider the complete binary tree A as in Figure 8 of schema
O" = (E, R, B) where E is the edge relation symbol and, R and B are
unary relation symbols that may be thought as colorings of the nodes of
A. Where RA = {b} and BA = {c} (i.e., node a is not colored).

46

a

A

b c

Figure 8

Let's focus in the depth one of the tree. Node b can be distinguished (rom
node c even being both in the same depth of the tree. That is, there are
two FO formulas, '1/Jb(x) and '1/Jc(x), that when evaluated on A result in
nodes b and c respectively, as follows:

'1/Jb(x) = R(x) and '1/Jc(x) = B(x)

We note that RA as well as BA are redundant relations in A. If we
eliminate the relation symbol R from O", node b can still be distinguished
from node c in Ala-R by the FO formulas:

'1/Jc(x) = B(x) and, 'Pb(x) = ~y(E(y, x) 1\ Vz(•E(z, y))) 1\ ·B(x)

Note also that, if we eliminate the relation symbol B from O", node b
can still be distinguished from node c in Ala-E by the FO formulas:

'Pc(x) = ~y(E(y,x) 1\ Vz(•E(z,y))) 1\ •R(x) and, '1/Jb(x) = R(x)

Nevertheless, this is not the case if we eliminate both relations (R
and B) simultaneously from O". In that case, b would not be distinguished
from node c in Aa-{R,B}.

None of the first two reductions alter the FO types of the 1-tuples
in A. That is, the equivalence classes induced by the FOa types of the
1-tuples in (dom(A)) 1 coincide with the equivalence classes induced by
the Foa-R types of the 1-tuples in (dom(A)) 1 and also coincide with
the equivalence classes induced by the Foa-B types of the 1-tuples in
(dom(A)) 1 .

The following theorem follows from Definition 14 and the constructibil­
ity of the formulas 'PIT' of Subsection 5.1 considering the remark before
Theorem 7.

47

Theorem 8. The following problems are decidable:

(i) Given a schema CJ, a relation symbol R E CJ and a database A of
schema CJ, to decide whether R is a redundant relation in A.

(ii) Given a schema CJ and a database A of schema CJ, to decide whether
there is any relation R in CJ which is redundant in A.

7.1.1 Evaluating FO Formulas in Reduced Databases

if

Note that given an FO formula <pq which expresses an arbitrary query
q over a database A of schema CJ, it can be translated in a straightforward
way to a formula <p~ of schema CJ - R which expresses the same query q

over the reduced database Ala-R·
By Theorem 7, the k-tuples in a redundant relation RA of arity kin A

can be expressed by an FO formula <pR(xl, ... , xk) in Ala-R· Therefore,
every arbitrary query q which is expressed by an FO formula <pq in which
the relation symbol R occurs, could be expressed in the reduced database
Ala-R using the formula 'PR(XI, ... , xk)· That is, every atomic formula
formed with the relation symbol R in <pq can be replaced in <p~ by the
formula 'PR(XIJ ... , xk) in the database Ala-R· We only need to take
care of the appropriate re-naming of variables in 'PR· Let's see this in an
example.

Example 9. Recall the tree Q1 of Figure 7 as in Example 7 where C91 is a
redundant relation in gl, and let's consider the reduced database ~h lT-C
where we can define the relation C91 by the following FO formula:

<pc(x) = 3y(E(y,x) 1\ Vz(•E(z,y)))

Consider also the following query q over gl:

"Which are the children of the colored nodes in gl ?" .

the query q can be expressed by the following FO formula in ~h:

'P(q,Q1)(x) = 3z(C(z) 1\ E(z, x))

finally, replacing the atomic formula C(z) in 'P(q,Q
1
)(x) by the formula

<pc(x) we obtain in 9IIT-C the following formula (note that we have
replaced variable x by z and variable z by w in <pc (x)):

48

Note that, in general, we can say that given a logic £ and a formula
'f!q in that logic that expresses an arbitrary query q over a database A. of
schema CJ, it can be translated to a formula rp~ in the same logic of schema
CJ- R which expresses the same query q over the reduced database Ala-R
provided that the formula rp R can be expressed in the logic £.

7.1.2 Redundant Relations in Databases with Basic Schemas

We will introduce the concept of basic schemas with the purpose of
approximating the notion of databases with redundant relations to the
real-life databases. But our main goal is to show that we can include the
basic schemas in the relational databases and still our notion of redundant
relations do not change.

We will use basic schemas to include on our formal setting the well
known notion of relation schema in Database Theory. Roughly, in rela­
tional databases we assume the existence of four infinite and disjoint sets
of symbols: the set of attributes, the set of variables, the domain of the
database and the set of relation names. A relation schema is a relation
name R with an associated finite tuple of attributes and a database schema
CJ or simply a database, is a finite set of relation schemas. We include here
the concept of basic schemas to denote the attributes of every relation
schema in a database schema. Recall for instance, Example 6 where CJ is a
database schema with three relation schemas, Clients, Investments and
Mat! nv. Particularly, Jvf at! nv has three attributes associated, ClientiD,
InvestmentiD and MaturityDate that can be seen precisely as the basic
schemas of the relation schema Jvf at! nv in the database schema CJ.

We will use basic schemas of relations in databases as defined in [23]
where they were named basic types. Basically, the basic schemas consist
of unary relations that partition the domain of the databases. Then, each
attribute of every relation in the databases is associated to exactly one
of those unary relations. Let's see the definition:

Definition 15. {[23}, Definition 1.3, (1)) Let CJ = (81, ... , St, R1, ... , Rs)
be a relational vocabulary, or schema of a database, such that, for 1 :::;
i :::; t the arity of Si is 1 and, for 1 :::; i :::; s the arity of Ri is ri ;::: 1. We
call the unary relations si basic schemas.
Let A = {A1, ... , As} be the set of sentences in FO that represent the
relation schemas for all the relation symbols Ri E CJ. For 1 :::; i :::; s, we
call schema of Ri to the sentence Ai of the form:

Ai = \fx1 ... Vxri(Ri(xl, ... , XrJ --+ (Sj1 (xi) 1\ · · · 1\ Sjri (xrJ))

49

Where for 1 :S h :S ri is 1 :S jh :S t and sub-indexes Jh can be repeated.
That is, for every relation Ri different than a basic schema, Ai expresses
the basic schema of each one of the ri components in all tuples of the re­
lation which interprets Ri in any given database and different components
could have the same basic schema.

Note that, not all databases of schema a with basic schemas satisfy
A. So, in this subsection, for a given schema a with basic schemas, we
will only consider the databases of schema a which satisfy A. Let's see
an example of the use of basic schemas.

Example 10. Recall Example 6 where a= (Clients, Investments, M atinv).
For simplicity we rename here the relation symbols in a as C, I and M
respectively. Including the basic schemas in a, the schema changes as fol­
lows:

a = (Client! D, Fir stN a me, LastN a me, Address, I nvestmenti D,
I nterestRate, Term, StartDate, Jvf aturityDate, C, I, M)

The first nine relation symbols are the basic schemas. We rename them
by CID, FN, LN, A, IID, IR, T, SD, MD respectively. The set of
schemas of the relation symbols, different than the basic schemas, is:

where:

>-c = \ix1 ... X4 (C(x1, ... , x4) ---+ (CI D(x1) 1\F N(x2) 1\ LN(x3) I\A(x4)))
is the schema of Clients,

AJ = \ix1, ... ,x5(I(x1, ... ,x6)---+ (IID(x1)1\CID(x2)1\IR(x3)1\T(x4)1\
SD(xs) 1\ MD(x6)))

is the schema of Investments and,

AM= \ix1 ... x3(Jvi(x1, ... , x3)---+ (CID(x1) 1\ IID(x2) 1\ MD(x3)))
is the schema of M ati n v.

When we consider a given schema a with basic schemas, there is an
FO sentence Ai for each relation symbol Ri in a, for 1 :S i :::; s, different
than the basic schemas. And this is the case even for the relation symbols
which correspond to redundant relations Rf, with 1 :S j :::; s, in some

given database A of schema a. Then, each redundant relation Rf in
A satisfies its corresponding Aj. Moreover, the database instance A of
schema a satisfies A, i.e., A f= A.

On the other hand, by definition of types, the basic schemas in a do
alter the FO types of the tuples in the databases of schema a, in the sense

50

that basic schemas will be included in the formulas which form the FO
type of tuples in databases of schema O". Observe that the basic schemas
are relation symbols in O".

The notion of redundant relations is based on the notion of the FO
types of the tuples in databases. If Rf of arity k in a database A of
some schema O" is a redundant relation then the consideration of basic
schemas do not necessarily modify our notion of redundant relations.
The basic schemas of the relation Rf appear also as basic schemas for
the remaining relations Ri in AIO"-Rj" Observe for instance the schema of
the relation Mat! nv in Example 6, where every basic schema in Mat! nv
is in Investments as well. Then, by Theorem 7, there will be an FO
formula <pRj (x1, ... , xk), which is the disjunction of the isolating formulas

for the FO types of the k-tuples in Rf, such that <p~!O"-Rj = Rf. This
formula will be formed by atomic formulas where the remaining relation
symbols in AIO"-Rj appear, as well as the corresponding basic schemas of
these relations. Note that, when we eliminate a redundant relation Rf of
arity k from a database A of schema O" with basic schemas, we should also
eliminate the corresponding schema Aj for the relation symbol Rj from
A.

Definition 16. Let O" = (S1, ... , St, R1, ... , Rs) be a schema with basic
schemas, let A be the set of FO sentences that represent the relations
schemas for all the relation symbols Ri E O", for 1 :::; i :::; s and let Rf be
a redundant relation in a given database A of schema O". We denote by
AIO"-Rj the set of FO sentences that represent the relation schemas for
all the relation symbols Ri E O"- Rj by eliminating the sentence Aj of the
corresponding relation symbol Rj E O".

Then, the reduced database AIO"-Rj of schema O"- Rj clearly satisfies
AIO"-Rj, i.e., AIO"-Rj f= AIO"-Rj.

Let's consider arbitrary queries over databases with redundant rela­
tions of some schema O" with basic schemas. Every formula <pq of some
logic which is an extension of FO, that expresses a given query q over a
database A of schema O" will be formed by atomic formulas formed with
relation symbols Ri, for some 1 :::; i :::; s, in O" and atomic formulas of the
basic schemas in Ri. Note that, if we consider all databases of schema O",

i.e., even those which do not satisfy A, the formula <pq could include the
schema Ai of the corresponding relations Ri. As long as we can build the

Fo 1 AIO"-R· RA d f formu a <pRj J = j for every re undant relation Rj o some arity
kin A, there is a straightforward way to transform every arbitrary query

51

q from A to Ala-Ri following the procedure described in Subsection 7.1.1,
provided that the logic in which <pq is expressed, can express <p Ri too.

7.2 Redundant Relations in Classes of Databases

In this section we will continue studying the notion of redundant relations
but now over classes of databases. That is, we will now consider relations
which are redundant in all databases in a given class.

Definition 17. Given a schema CJ = (R, R1, ... , R 8) with s > 0, a re­
lation symbol R of arity k, and a class C of databases in Ba, R is a
redundant relation symbol in CJ for the class C if for every Ai in C and
for all k-tuples il and v over (dom(Ai))k,

tp~7" (u) = tp~7" (v) iff tp~7"-R(u) = tp~7"-R(v).

i.e., the equivalence classes induced by the poa types of the k-tuples in
(dom(Ai))k coincide with the equivalence classes induced by the poa-R
types of the k-tuples in (dom(Ai))k.

Note that the relation symbol Jvf at! nv in Example 6 is a redundant
relation symbol in CJ for the whole class of databases of schema CJ, Ba.

Let C be a class of databases of schema CJ = (R, R1, ... , R 8), with
s > 0 and let R be a relation symbol of arity k which is a redundant
relation symbol in CJ for the class C. By Theorem 7, for each Ai E C there
is a formula 'PA,R which interpreted on Aila-R defines the relation RA,
in symbols

A;[cr-R _ RA
'PA,R -

Next, we will examine the relationship between every database Ai in the
class C and its corresponding redundant relation RA;.

Definition 18. Let C be a class of databases of schema CJ = (R, R1, ... , R 8),

with s > 0, and R a relation symbol of arity k which is a redundant re­
lation symbol in CJ for the class C. We define the partial function f R :
Ba --+ B(R) from the set of databases of schema CJ to the set of databases
of schema (R), as follows:

Now, given that fR clearly preserves isomorphisms and that dom(JR(Ai)) ~
dom(Ai), for every i 2': 1 then, the function fR is a query. But note that, ,

52

fR is not necessarily a computable query, i.e., fR might be a non-recursive
function. Informally, it depends on whether the construction of the for­
mulas 'PA,R for each Ai in the class C as described in Theorem 7 is an
"arbitrary" construction or not.

If fR is a recursive function then, there is a Turing Machine (see [9] for
a study of recursive functions and computability) that for every database
Ai in Ba- builds the relation RA in its output tape. Then, that Turing
Machine can be modified to build the isolating formulas for the FO types
for the k-tuples in RA, by building the formulas rpjf, as explained in
Subsection 5.1, for each tuple il in RA;, with m = idom(Ai)lk (see [10]).

Regarding Example 6 (see above) the function fMatlnv is clearly re­
cursive, furthermore it is expressible in FO.

If fR is a non-recursive function, the disjunction of isolating formula
for the FO types of k-tuples in Ai is "arbitrary" for different databases
Ai in C.

In any case, note that the following formula in Loow expresses f R

where L1A; is the formula defined in Proposition 1 that characterizes
the database Ai up to isomorphism.

The formula <Pc,R expresses that, for every database Ai the formula
rp A;,R must be evaluated on that database, to define the relation RA;.
Recall that Loow can express non-recursive queries.

Remark 1. Note that the function f R can be seen as a view in the class
C. Views are virtual relations in a class of databases whose tuples are
defined by a query (typically expressed in S Q L). This query can relate
tuples from many other relations in the database. Once we delete RA
from every database Ai in C, if fR is recursive then it becomes a view.
A view has the appearance of a relation with a set of tuples, however, a
view does not exist physically as a stored set of tuples, and any change
of the tuples in the relations are clearly automatically reflected in the
views derived from them. Regarding the tuples in a view, if we eliminate
a given view W from a class C we get the same situation as in redundant
relations in the sense that, for each Ai E C there is an FO formula 'PA,W
as described in Theorem 7, that when evaluated over the database Ai
provides all the tuples of the view W evaluated in Ai·

7.2.1 Evaluating Queries in Classes of Reduced Databases

53

We will see now some initial ideas towards the translation of a formula
<pq in a given logic that expresses an arbitrary query q over a class of
databases of schema cr, to a formula <p~ in the same logic that expresses
the query q over the class (of schema cr - R) of the reduced databases.

The mechanism is the same as the one used in Subsection 7.1 but now
we will apply it to a class of databases rather than to a single database.
We consider the function fR as described in Definition 18 for this purpose
and we will consider f R as a recursive function.

Let k, l be natural numbers. Given a class C of databases of schema
cr and R a redundant relation symbol in cr for C, let's denote by <pc,R(xk)
the formula, in some logic, that expresses fR and by <pc,q(xz), the formula
that expresses an arbitrary l-ary query q over the class C. We will next
consider a few cases as to illustrate the general strategy.

1. If 'PC,R(xk) E FO and <pc,q(xz) E FO.
It is handled as in Subsection 7.2. The difference is that, now every
time that an atomic formula with the relation symbol R appears in
the formula <pc,q(xz) we will replace it by the formula <pc,R(xk) with
the appropriate renaming of variables.

2. If <pc,R(xk) E FO and <pc,q(xz) E SO.
Basically, second order logic (shortly, SO) is an extension of first­
order logic which allows us in addition to FO, to quantify variables
over relations instead of ranging over elements of the domain of the
database. For more details on SO see [10, 16].
This case is handled in a similar manner as in the previous one. In
some places in the formula <pc,q(xz) there will be SO atoms of the form
R(t1, ... , tk) and then we can replace them by the formula <pc,R(xk)
with the appropriate renaming of variables. This is possible because
SO includes FO.

Let's consider the following example:

Example 11. Let T = (E, R, B, Y) be the vocabulary of graphs in a
class C E 8 7 whose nodes can be colored in three different colors R,
B, and Y. Let g be a tree in the class C as in Figure 11 where the
colored nodes are marked by the letters r, b andy respectively.

Clearly, the relation B is a redundant relation in g but this is not the
case for relations Y and R.
Let's consider the following query over the class C:

"The number of nodes whose parent has color B is the same as the
number of nodes whose parent has color Y."

54

G

Figure 11

This is a computable query that cannot be expressed in first-order
logic. It is well known that it is not possible to count beyond a con­
stant in first-order logic. Instead, it can be expressed in SO by the
following formula:

3XY(Vx(X(x) f----7 3y(E(y, x) 1\ B(y)))l\

Vx(Y(x) f----7 3y(E(y,x) 1\ Y(y)))l\

3F("F is a bijection from X toY"))

where "F is a bijection from X to Y" is expressed by,

Vx, y, z((F(x, y) --t X(x) 1\ Y(y)) "F ~X x Y"
1\

(F(x, y) 1\ F(x, z) --t y = z) "F is a function"
1\

(X(x) --t 3y(F(x, y))) "F is total"
1\

(F(x, z) 1\ F(y, z) --t x = y) "F is injective"
1\

(Y(y) --t 3x(F(x,y)))) "R is surjective"

Note that F : X --t Y is a bijection iff X and Y contain the same
number of elements.
Clearly, the sub-formula B(y) in the previous SO formula can be
replaced in g by the FO formula:

<pg,s(Y) = 3x(E(x,y) 1\ Vz(•E(z,x)))

Now, suppose that all the trees in the class C are colored in such a
way that the nodes with color B are exactly the children of the root
node. Then B becomes a redundant relation symbol in T for C, and

l

55

furthermore it is cpc,B = 'P9,B·

3. If cpc,R(xk) E FO and cpc,q(xz) E HOi where i > 2.
The translation is also possible in this case, since higher order logic
of order i includes FO.

The question that now follows is: What happens if cpc,R(xk) is not in
FO? As long as the logic in which 'PC,q is written extends the logic in
which 'PC,R is written the translation should be possible too, but it is out
of the objective of this work.

Depending on the complexity of the query q (see [16, 3, 19] for details
in Complexity), that is, the amount of computational resources such as
time and space, that the query needs to be computed, will be the logic
in which q needs to be expressed. Moreover, we have been working with
fR as a computable query that can be expressed by an FO formula. But,
it is well known that first-order logic is not complete, that is, it does not
express the whole class of computable queries. Instead in the general case,
fR could be expressed in a complete logic such as VO or £*.

The variable order logic (VO) introduced in [15], is a very powerful
logic, indeed it is complete, that is, it can express all computable queries.
VO is a two sorted Higher Order Logic in which relation variables are
untyped, i.e., variables have no associated order. Instead, an order is
assigned to a given variable when the variable is quantified in a formula,
and this is done by means of a set of variables of a second sort, namely
order variables. The domain of the second sort is the subset of the natural
numbers greater than 1.

The infinitary logic £* is a fragment of the well known logic Cwlw· It
was demonstrated in [22] that £* captures exactly the whole class CQ.

We conclude that in general, if we know the formula cpc,R(xk) (i.e., if
we have a finite representation of it in a language of decidable syntax),
we can construct an algorithm that translates the formula cpc,q(xz) which
expresses an arbitrary query q in a given logic in a class C of schema a

to a formula that expresses the same query q in the class of the reduced
databases of schema a - R. This can be done provided that the logic
in which fR is expressed is at most as expressive as the logic in which
cpc,q(xz) is expressed.

We have been working with graph structures in order to explain the
redundant relations and the translation of arbitrary queries in databases
given that it is easier to visualize structural properties on them. Never­
theless those concepts can be easily extended to every finite database of
a relational schema.

56

7.2.2 Classes of Databases with Basic Schemas

We will extend the notion of basic schemas described in Subsection
7.1.2 to a class of databases of some schema O" with basic schemas. We
will see that it is not necessary to modify the function fR as described in
Definition 18 which represents the relationship between every database
Ai in a given class C of some schema O" and its corresponding redundant
relation RAi.

Recall Definition 15 of basic schemas. Considering a class C s:;:; Ba of
databases of schema O" with basic schemas, and every database Ai E C,
we can find two different situations:

(i) Ai E Ba, or

(ii) Ai E Ba and Ai I= A.

That is, in (i), every database Ai in the class Cis a database of schema
O" or, in (ii), in addition to this condition, every database Ai also satisfies
the set of sentences in A that specify the basic schemas of every relation
symbol Rj, for 1 :::; j :::; s, in O".

Take for instance, the schema O" in Example 10 and consider a class C
of databases of schema O". If we consider (ii), every database Ai E C will be
obviously in Ba and also Ai I= A. That is, for every tuple in the relation
MatinvAi in each database Ai in the class C, the first component will
be ClientiD, the second component will be InvestmentiD and the third
component will be MaturityDate.

If we consider (i), every database Ai E C will be obviously in Ba
and for every relation symbol Rj, for some 1 :::; j :::; s, in O" there will
be a relation in the database Ai that interprets Rj. But Ai does not
necessarily satisfy the set of sentences in A that specify the basic schemas
of every relation symbol in O", and hence the first component in a tuple
in M ati nvA might be an arbitrary element in dom(Ai), like a StartDate
or a Term, instead of a ClientiD.

Regarding redundant relation symbols for a class C of databases of
some schema O" with basic schemas we will consider the situation (ii)
where every database in the class satisfies A. Then, Definition 17 does
not change, we just add the basic schemas and we have the following:

Definition 19. Given a schema O" = (S1, ... , St, R, R1, ... , Rs) with ba­
sic schemas S1 , ... , St where s, t > 0, a relation symbol R of arity k, and
a class C of databases in Ba, R is a redundant relation symbol in O" for

57

the class C if for every Ai in C, Ai I= A and for all k-tuples u and ii over
(dom(Ai))k,

tp~7" (u) = tp~7" (v) iff tp~7"-R(u) = tp~7"-R(v).

i.e., the equivalence classes induced by the FOu types of the k-tuples in
(dom(Ai))k coincide with the equivalence classes induced by the pou-R
types of the k-tuples in (dom(Ai))k.

Moreover, the relationship between every database Ai in the class C
and its corresponding redundant relation RA; is a query, but, as we saw
in Subsection 7.2, it is not necessarily a computable query. That is, the
construction of the formulas 'PA;,R for each reduced database Ailu-R of
Ai in the class C as described in Theorem 7 might be an arbitrary con­
struction. Furthermore, in this case, 'PA;,R includes the atomic formulas
of the basic schemas as well.

Finally, if we consider f R as a recursive function considering schemas
with basic schemas, it is clearly possible to translate any formula <pq that
expresses an arbitrary query q over a class C of databases of schema O" with
basic schemas to a formula rp~ in the same logic that expresses the query
q over the class (of schema O" - R with basic schemas) of the reduced
databases, such that every Ailu-R I= Alu-R· This is possible following
the mechanism used in Subsection 7.2 and under the same conditions
explained there.

Even if we want to consider the whole class Bu (i.e., not only those
databases which satisfy Alu-R), such translation can be done, provided
that the logic in which <pq is written is at least as expressible as first-order
logic, since the formula <pq includes the basic schemas as well, and these
are expressed in first-order logic.

58

8 Conclusion and Future Work

By Theorem 8, the problem of deciding whether a given relation RA of
arity k is a redundant relation in a fixed database A of some schema o-,
is decidable. Unfortunately, it is very unlikely that there is a polynomial
time algorithm for this problem since it is equivalent to deciding iso­
morphism. Possible alternatives to overcome in part this problem could
consist on restricting,

a. the class of queries to a sub-class of C Q in such a way that determining
whether a relation is redundant regarding only such sub-class of queries
is in PTIME.

b. the class of databases to classes where deciding whether a relation is
redundant in a database which belongs to the class is in PTIME.

Note that we study here the notion of type in FO and in FOk, as
well as in their corresponding infinitary extensions Loow and £~w' re­
spectively. The FOk types (£~w types) are quite relevant in database
theory since they characterize the discerning power of the class of reflec­
tive relational machines of [2] with variable complexity k. Among other
possible continuations of this work, we think in defining the notion of
redundant relation with respect to a given language £. That is, a relation
R in a database A of schema a- would be £-redundant if for every query

q expressable in £ it is q(A) = q((AI<T-R, <p~lo--R)), for some formula 'PR·

In particular, if we take £ = RRMk (the reflective relational machines
of variable complexity k [2]) such a notion is defined by considering FOk
types instead of FO types in Definition 14. It is interesting to note that
by a result of Grohe [14], equivalence in FOk is complete for polynomial
time. Then we can check in PT I ME, FOk equivalence between every
two extensions of a database with any given pair of tuples.

Independently of the complexity of deciding whether a given relation is
redundant in a given database, the complexity of building the formula 'PR

defined in Theorem 7 for a given relation RA, is in general exponential
in time. Nevertheless, if we know that a relation RA is redundant in
a given database A, then each of the corresponding isolating formulas
'1/Ji(xl, ... , xk) for the types of the tuples in RA, can be built in polynomial
time, since RA has complete FO types for k-tuples. This can be done
by using a construction similar to the construction of the diagram of a
database. As this construction takes polynomial time, the construction of
<p R will also take polynomial time.

59

Regarding classes of databases, the problem of deciding whether a
given relation R is a redundant relation in a given class of databases of
some relational schema is clearly not decidable in the general case.

In this direction we think as a possible future work the development
of a method of normalization for databases with redundant relations,
in the spirit of the well known normal forms in databases (see [1, 20]).
In this sense, we aim to develop an algorithm, based in the concept of
isolating formulas for the FO type of tuples in databases, that allows
us to determine all possible redundant relations in a given database. For
classes of databases, we will study sub-classes of databases of a given
schema where given a relation symbol in the schema we can determine
whether this relation symbol is a redundant relation symbol for the whole
given sub-class of databases.

60

References

1. Abiteboul, S., Hull, R. and Vianu, V.: Foundations of Databases. Addison-Wesley,
1994.

2. Abiteboul, S., Papadimitriou, C. and Vianu, V.: Reflective Relational Machines.
Information and Computation 143, pp.ll0-136, 1998.

3. Balcazar, J. L., Diaz, J., Gabarro, J.: Structural Complexity I. Springer, 1995.
4. Berge, C: Graphs. Elsevier North-Holland, 1985.
5. Chandra, A. K., Hare!, D.: Computable Queries for Relational Data Bases. Journal

of Computer and System Sciences 21(2), pp.156-178, 1980.
6. Chang, C, Kreisler, H.: Model Theory. Elsevier North-Holland, 3rd. ed., 1992.
7. Codd, E.: A Relational Model Of Data for Large Shared Data Banks. Communica­

tions of ACM 13, 6, 1970.
8. Dawar, A.: Feasible Computation Through Model Theory. Ph.D. thesis, University

of Pennsylvania, Philadelphia, 1993.
9. Davis, M. D., Sigal, R., Weyuker, E. J.: Computability, Complexity, and Languages.

Academic Press, 1994.
10. Ebbinghaus, H. D., Flum, J.: Finite Model Theory. Springer-Verlag Berlin Heidel­

berg, New York, 2nd. ed., 1999.
11. Ebbinghaus, H. D., Flum, J., Thomas, W.: Mathematical Logic. Springer, 1984.
12. Ehnrenfeucht, A.: An Application of games to the Completeness Problem for For­

malized Theories. Fund. Math. 49 (1961), 129-141.
13. Fralsse, R.: Surles Classifications des Systems de Relations. Pub!. Sci. Univ. Alger

I (1954).
14. Grohe, M.: Equivalence in Finite Variable Logics is Complete for Polynomial Time.

Proceedings of 37th IEEE Symposium on Foundations of Computer Science, pp.
264-273, 1996.

15. Rella, L., Turull-Torres, J .M.: Expressibility of Higher Order Logics. Electronic
Notes in Theoretical Computer Science, Vol. 84, 2003.

16. Immerman, N.: Descriptive Complexity. Springer, 1999.
17. Libkin, L.: Elements of Finite Model Theory. Springer, 2004.
18. Otto, M.: Bounded Variable Logics and Counting. Springer (1997).
19. Papadimitriou, C. H.: Computational Complexity Addison-Wesley, 1994.
20. Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill, 3rd.

ed., 2003.
21. Rosen, K. H.: Discrete Mathematics and its Applications. McGraw-Hill, 5th. ed.,

2003.
22. Turull-Torres, J.M.: On the Expressibility and the Computability of Untyped

Queries. Annals of Pure and Applied Logic 108, pp. 345-371, 2001.
23. Turull Torres J.M.: L-rigid Databases and the Expressibility of Incomplete Rela­

tional Languages. Doctoral Thesis, Universidad Nacional de San Luis, 1996.
24. Ullman, J.D.: Principles of Database and Knowledge Base Systems. Volume I and

II. Computer Science Press, 1988.

