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Abstract 

 

Image coding plays a key role in multimedia signal processing and communications. 

JPEG2000 is the latest image coding standard, it uses the EBCOT (Embedded Block 

Coding with Optimal Truncation) algorithm. The EBCOT exhibits excellent 

compression performance, but with high complexity.  The need to reduce this 

complexity but maintain similar performance to EBCOT has inspired a significant 

amount of research activity in the image coding community.  

Within the development of image compression techniques based on wavelet transforms, 

the EZW (Embedded Zerotree Wavelet) and the SPIHT (Set Partitioning in Hierarchical 

Trees) have played an important role. The EZW algorithm was the first breakthrough in 

wavelet based image coding.  The SPIHT algorithm achieves similar performance to 

EBCOT, but with fewer features. The other very important algorithm is SBHP (Sub-

band Block Hierarchical Partitioning), which attracted significant investigation during 

the JPEG2000 development process. 

In this thesis, the history of the development of wavelet transform is reviewed, and a 

discussion is presented on the implementation issues for wavelet transforms.  The above 

mentioned four main coding methods for image compression using wavelet transforms 

are studied in detail.  More importantly the factors that affect coding efficiency are 

identified. 

The main contribution of this research is the introduction of a new low-complexity 

coding algorithm for image compression based on wavelet transforms. The algorithm is 

based on block dividing coding (BDC) with an optimised packet assembly.  Our 

extensive simulation results show that the proposed algorithm outperforms JPEG2000 

in lossless coding, even though it still leaves a narrow gap in lossy coding situations 
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1 Introduction 

1.1 Overview 

Multimedia processing and communication have become more and more pervasive in 

our daily life. Image coding techniques play a key role in efficient image representation, 

storage and delivery of images over a telecommunication network. 

Currently, two kinds of transforms, DCT (Discrete Cosine Transform), and wavelet 

transform are widely employed for image compression. The DCT has been adopted in 

the JPEG standard, while wavelet transforms have been incorporated into the JPEG2000 

standard [1]. The DCT based transform techniques are well established and easily 

implemented. However, the block artefacts inherent with a DCT transform become 

unacceptable at very low bit rates. Rather than incrementally improving on DCT based 

techniques, image coding techniques based on wavelet transforms are an entirely new 

way of performing compression. Although it is more complicated to implement, wavelet 

based image coding has two advantages over DCT. Firstly, it can overcome the 

presence of block artefacts in very low bit-rate image coding, and secondly it can be 

used for both lossy to lossless compression. 

In image coding based on wavelet transforms, the discrete wavelet transform is first 

applied to the source image data. The transform coefficients are then quantized and 

entropy coded before forming the final output bit stream. One of the beneficial 

properties of a wavelet transform, relative to data compression, is that it tends to 

compact the energy of the input into a relatively small number of wavelet coefficients. 

To represent these coefficients efficiently utilizing the multi-resolution characteristic of 

the wavelet transform, many algorithms have been developed. The most important three 

among these algorithms are EZW (Embedded Zero-tree Wavelet) [2], SPIHT (Set 

Partitioning In Hierarchical Trees) [3] and EBCOT (Embedded Block Coding with 

Optimized Truncation) [4]. EBCOT has become the basis of the JPEG2000 

international standard. The other very important algorithm is SBHP (Sub-band Block 

Hierarchical Partitioning) [5], which attracted significant levels of attention during the 

JPEG2000 development process. 

This thesis studies coding methods based on wavelets. The wavelet transform has 

proven to be very useful for image compression as previously mentioned. This thesis 
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draws on ideas from the above coding methods. The coding algorithm that we propose 

is motivated by the above mentioned methods and experimental observations. 

The contribution of this thesis is twofold:  

1. It identifies the factors that affect the performance of image coding;  

2. It devises a low-complexity coding method. The output of the designed 

algorithm is an embedded bit-stream with desirable features.  

The performance of the new algorithm has been confirmed by our simulation results, 

which show that it outperforms JPEC 2000 in lossless coding. This makes it a good 

candidate to be incorporated into a standard for future development. 

1.2 Outline 

This thesis is organized into eight chapters and one appendix. Chapters 2 and 3 provide 

background information about wavelets and previous coding methods. The remaining 

five chapters present our research results. The appendix provides some source code for 

our coding method.  

More specifically, chapter 2 firstly explores the developing history of wavelet 

transforms, discusses the implementation issues for wavelet transforms with some 

examples, and explains why wavelet transformation is very suitable for image 

compression. Chapter 3 investigates the four main kinds of coding method in detail. 

Chapter 4 analyses what factors affect the final compressed bit-stream emanating from 

the coding processes, and sets up a model to represent the affected processes. Some 

suggestions are also given. Chapter 5 describes the principles of the block dividing 

coding algorithm and shows how BDC can efficiently encode a significance bit-plane of 

wavelet coefficients using a simple example. Chapter 6 describes the optimized 

assembling coding algorithm. Chapter 7 reports the experimental results for both lossy 

and lossless image compression and discusses the results in various ways. Some 

reconstructed images are also displayed and some comparison of this work to previous 

work is given. The conclusions are presented in Chapter 8. 

The algorithms resulting from this research project have been implemented using 

MATLAB (version 7.0) and some of the source code written for this project can be 

found in the appendix. 
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1.3 Notation 

Some useful and traditional notation used in this thesis is summarized below: 

 

1D One dimensional 

2D Two dimensional 

DCT Discrete cosine transform 

EZW Embedded zerotree wavelet 

SPIHT Set partition in hierarchical trees 

EBCOT Embedded Block Coding with Optimized Truncation of the Embedded 

Bit-stream 

SBHP Sub-band hierarchical partitioning 

JPEG Joint Photographic Experts Group 

bpp Bits per pixel 

MSE Mean square error 

bs Block size. 

PSNR Peak-Signal-to-Noise Ratio 

BDC Block dividing coding 

LIS List of insignificant sets 

LIP List of insignificant pixels 

LSP List of significant pixels 

ROI Region of interest 
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2 Wavelet Transforms 

This chapter briefly explores the development history of wavelet and sub-band 

transforms, discusses the implement issues of discrete wavelet transforms (DWT) on 

images and associated operations including the convolution method, lifting scheme, 

extension policies, scalar quantization, and the features of DWT, and explains why 

DWT is suitable for image compression. 

 

2.1 History of Wavelet Transforms and Applications  

2.1.1 Wavelet Transform and Sub-band Transforms 

Before the birth of the wavelet transform, there was a famous transformation, that was 

known as the Fourier transform, was invented by Fourier in 1807. The Fourier 

transform is very useful in many applications as it breaks down a signal into continuous 

sinusoids of different frequencies. For many signals, a Fourier transform is particularly 

suitable because the signal's frequency content is of great importance. So why do we 

need a wavelet transform? A Fourier transform has a serious drawback, in transforming 

to the frequency domain, time information is lost. When looking at a Fourier transform 

of a signal, it is impossible to tell when an event took place. If the signal properties do 

not change much over time -- that is, if it is what is called a stationary signal -- this 

drawback is not very important. However, most attractive signals contain numerous 

nonstationary or transient characteristics: drift, trends, abrupt changes, beginnings and 

ends of events. These characteristics are often the most important part of the signal, and 

a Fourier transform is not suitable to detect them. 

After almost one hundred years, a different solution was proposed by Haar in 1909.  He 

replaced the sine and cosine functions of the Fourier transform by using another 

orthonormal basis, now commonly called the Haar basis. The Haar basis is the simplest 

example to date of a wavelet basis.  

The wavelet transform analyses a signal with a windowing technique with variable-

sized regions, a long time region is used when we want more precise low-frequency 

information, and a shorter region is used when we want high-frequency information. A 

Fourier transform breaks up a signal into sine waves of various frequencies. Similarly, a 

  



Chapter 2 Wavelet Transforms                                                 5 

wavelet transform involves the breaking up of a signal into shifted and scaled versions 

of the mother wavelet.  

From that time until now, a lot of work has been given to the study of the wavelet basis 

(mother wavelet). Interested readers can find out more details in reference [6]. 

Although the research about the wavelet basis was undertaken many years ago, the term 

‘wavelet’ did not come into use until the 1980s. Before that time, wavelet theory was 

really a disjoint set of ideas from many areas. In the mid-to-late 1980s, a revolution in 

wavelet theory occurred because of several important discoveries. This revolution 

served to draw together concepts from many different areas of mathematics and 

engineering resulting in a unified theory for the study of wavelet systems. In 1984, the 

term “wavelet” was introduced by Grossman and Morlet [7]. A “wavelet” literally 

means a small wave. 

At the same time, another area of research called filter analysis (or sub-band 

transformation) was developed in the 1970s.  The first developments in this area were 

made by Crochiere, Webber, and Flanagan [8] in 1976 for the digital processing of 

speech and audio signal with polyphase filters. 

Many signals are made up of a large range of frequencies. The low-frequency content is 

the most important part. It is what gives the signal its characteristics. The high-

frequency content, on the other hand, imparts flavour or tone. Consider the human 

voice, if you remove the high-frequency components, the voice sounds different, but 

you can still tell what is being said. However, if you eliminate enough of the low-

frequency components, you hear gibberish. 

When using wavelet transform to image processing, the effect is different from the DCT 

(Discrete Cosine Transform) transform. The wavelet transform is applied to the whole 

image unlike DCT applies only to small block (generally 8x8). After the DCT 

transform, we cannot see any meaning from the coefficients, because the time 

information has been lost. After the wavelet transform, we can see what the wavelet 

transform has done. Figure 1 shows the effect of this transformation. 
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Original image Wavelet coefficients after transformation 

Figure 1 A wavelet example 

 

From the picture on the right, we can see that the most energy was compacted in the 

lowest sub-band (top-left sub-band). The small picture in every sub-band represents the 

information of that sub-band. We can see that the information represents what happened 

and where it happened. 

Although the research on sub-band transformation began considerably later than that of 

the wavelet transform, the development of the sub-band transform and its applications 

in different areas was very rapid. The QMF filter (Quadrature Mirror Filter) was 

introduced by Esteban and Galand [9], and the Perfect Reconstruction (PR) filter was 

first introduced by Smith, Barnwell [10].  In 1986, Wood & O’Neil [11] first used a 

sub-band transform to image coding.  Some of them can be used to reconstruct the 

signal perfectly. The number of articles relating to this filter is very numerous. If the 

reader is interested, the book [6] is a very useful reference. 

In JPEG2000, there are many filters that can be chosen, the default filter with real-

valued coefficients is the Daubechies (9,7) filter for lossy compression, while the 

default filter for a lossless compression is the Legall (5,3) filter.  
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2.1.2 Connection between Wavelet Transform and Sub-band 
Transform 

The wavelet transform and sub-band transform had been evolving independently for 

many years until 1988, when a tremendous breakthrough in wavelet analysis was made 

by Daubechies [12] and Mallat [13]. In 1989, Mallat presented the theory of multi-

resolution analysis, and it later became known as the Mallat algorithm. This work 

provided a unifying framework for the study of wavelet systems together with many 

previously disjoint ideas. In 1990, Daubechies pointed out the connection between the 

wavelet and sub-band transform. Actually a sub-band transform is nothing but a kind of 

wavelet transform. At this stage, there was an explosion of interest in wavelet 

transformation because of the connection between pure mathematics and applications in 

the digital signal processing area. This area was also extended by pure mathematicians 

working with approximation theory, quantum physicists, numerical analysts, computer 

graphics developers, statisticians, image and video coding researchers, and workers in 

many other fields.  

2.1.3 Applications of Wavelet Transform 

All of the possible applications of wavelet transforms and sub-band transforms are too 

extensive to be covered here. One might compare possible applications of wavelet 

transforms with that of Fourier transforms. The Fourier transform has applications in 

nearly every field of science and engineering. Similarly, wavelet transforms already 

have found applications in nearly all branches of science and engineering, including 

mathematics, physics, electrical engineering, geophysics, bioengineering, and computer 

vision. My major application field is that of the image coding. 

2.2 The Implement Issues of Wavelet Transform 

The forward discrete wavelet transform (FDWT) is a main function in the encoder side, 

it gradually compacts the most energy to the lowest sub-band. The transformed signal 

can be perfectly or almost perfectly reconstructed by using an inverse discrete wavelet 

transforms (IDWT). This section discusses the implementation issues for wavelet 

transforms. 
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2.2.1 One-dimension Wavelet Transform 

To apply a wavelet transform to a signal it is necessary to simply pass the signal 

through a set of digital filters, in which the coefficients of the wavelet transform are 

simply the output of the convolution between the input signal and the filters. The set of 

filters usually consists of two parts: a high-pass filter and a low-pass filter, once a signal 

goes through one filter, for example, the high-pass filter, the output only includes the 

high-frequency information of that signal. Similarly, the output from the low-pass filter 

only contains low-frequency information. The fitering operations are followed by a 

down-sampling using a factor of two. We call those outputs ‘wavelet coefficients’. 

Figure 2 shows this processing of 1-D (one dimension) with 2-band sub-band 

transformation.  

 

 
Analysis filter Synthesis filter 

Figure 2  Convolution implementation of the one-dimensional sub-band transform 

 

After the 1-D 2-band decomposition of the signal, the output of the low-pass filter can 

be subjected to a further stage of two-band decomposition in order to achieve additional 

decorrelation. In comparison, there is little to be gained by further decomposition with 

the high-pass output. In most DWT decompositions of an image, only the output of the 

low-pass filter is further decomposed to produce dyadic or octave decomposition.  

2.2.2 Two-dimension Wavelet Transform 

Figure 3 shows how to use a wavelet transform to decompose an image. After applying 

the wavelet transform to every column of the image, we get two outputs including the 

L-sub-band and H-sub-band.  Then we apply the wavelet transform to every row of 

these two outputs separately. The result contains four parts; they are referred to as LL, 

HL, LH and HH sub-bands.  Such a process is called the one-level two dimensional 

wavelet transform. If we repeatedly do such transforms to the LL sub-band, then we can 
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get a multi-level wavelet transform. The left-bottom diagram in Figure 3 shows the final 

result of a 2-level wavelet transform. 

 

 

Apply DWT to 

every column
L-Sub-band 

1LL 

Sub-

1HL 

Sub-

1LH 

Sub-

1HH 

Sub-

 

Original image 

Apply DWT 

to every row 

Apply DWT to 

LL Sub-band 

H-Sub-band 

Figure 3  Two-level wavelet transforms 

 

The DWT has several characteristics that make it suitable for image coding. Firstly, 

after the wavelet transform, most coefficients are small or zero. This characteristic 

provides the opportunity for image compression. The second feature is that DWT 

naturally has multi-resolution scalability. Thirdly, no block artefacts occur on the 

reconstructed image at low bit-rates, because the DWT is applied to the whole image 

rather than a small block. Finally, DWT can be used for both lossless and lossy 

compression. 

2.2.3 Filter Examples 

There are many filters that can be used for the wavelet transform. The reader can find 

those filters in [14]. Part 1 of the JPEG2000 standard, recommends the Daubechies (9, 7) 

filter for lossy compression, and Legall I(5,3) filter for lossless compression. The 

coefficients are listed in Table 1 and Table 2 respectively. 

 

Perfect reconstruction is possible when the 5-3 reversible wavelet transform is used. On 

the other hand, nearly perfect reconstruction can be gained when the 9-7 irreversible 

wavelet transform is used to encode the image. Although the reversible wavelet 

transform seems to be advantageous, the irreversible wavelet transform produces 
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significantly better results in lossy compression. The reversible wavelet transform can 

theoretically be used for lossy compression as well. However, its performance is not up 

to the irreversible filter when used in lossy coding. 

 

i ho h1 

0 0.6029490182363579 1.115087052456994 

1 0.2668641184428723 -0.5912717631142470 

2 -0.07822326652898785 -0.05754352622849957 

3 -0.01686411844287495 0.09127176311424948 

4 0.02674875741080976  

Table 1  Coefficients of the Daubechies (9, 7) Filter 

 

i ho h1 

0 6/8 1 

1 2/8 -1/2 

2 -1/8  

Table 2 Coefficients of the Legall (5, 3) Filter 

 

The wavelet filtering operation can be implemented either with convolution or the 

lifting scheme described in the following sections.  

2.2.4 Convolution Method 

Let x[n] denote the one-dimensional sequence of input samples and let y[n] denote the 

one-dimensional sequence of interleaved sub-band outputs, where 0≤n<N and the low-

pass sub-band is identified with the even outputs, y[2n], while the high-pass sub-band is 

identified with the odd outputs, y[2n+1], the boundary extension is symmetric (see the 

next section). The relevant analysis operation is expressed as: 

Y[2n]=           and       Y[2n+1]=  ∑
−=

+
h

h

p

Nk

knxkh ]2[].[0 ∑
−=

++
gp

Ngk

knxkh ]12[].[1

Where h0[k] and h1[k] denote the low- and high-pass analysis filters respectively, and 

Nh, Ph, Ng, and Pg are corresponding negative and positive extents of the finite support 

kernels. 
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The synthesis operation is expressed as: 

X[n]=  ∑ +−++−
k

kngkykngky )]12([].12[]2[].2[ 10

where g0[k] and g1[k] denote the low- and high-pass synthesis filters. 

The following example illustrates the calculation procedures in 1D DWT and inverse 

DWT by the convolution method. The filter is the Daubechies (9, 7). In Figure 4, line 4 

contains the input samples (1, 2, 3, 4, 5, and 6); and all other extension data on both 

sides corresponding to samples obtained by symmetric extension at the signal’s border. 

When an analysis operation is performed, the transformed output in line 5 is from the 

low-pass filter, while the high-pass coefficients are on line 6. Those outputs should be 

down by 2, the results are at line 7 and 8. Before doing the inverse sub-band transform, 

the coefficients obtained by symmetric extension are in lines 12 and 13. When the 

synthesis operation is performed, the inverse-transformed outputs are in lines 14 (low-

pass synthesis) and 15 (high-pass synthesis), which are summed in line 16, the 

reconstructed results are the same as the original data. 

 
 Forward sub-band transform 

n -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 

 extension Original samples extension 

X(n) 5 4 3 2 1 2 3 4 5 6 5 4 3 2 

Low  

coefficients 
    1.3336 1.9366 3.0198 3.9802 5.0634 5.6664     

High coefficients     -0.865 0.250 0.183 -0.183 -0.25 0.865     

Down low 

coefficients 
    1.3336  3.0198  5.0634      

Down high 

coefficients 
     0.250  -0.183  0.865     

 Inverse sub-band transform 

n -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 

 extension wavelet coefficients extension 

Up low 

coefficients 
5.063 0 3.020 0 1.334 0 3.020 0 5.063 0 5.063 0 3.020 0 

Up high 

coefficients 
0 -0.183 0 0.250 0 0.250 0 -0.183 0 0.885 0 -0.183 0 0.250 

Y1(n)     1.140 1.836 2.999 4.195 5.181 5.436     

Y2(n)     -0.140 0.164 0.001 -0.195 -0.181 0.584     

Recovered data     1 2 3 4 5 6     

Figure 4  An example of wavelet transformation using a Daubechies (9, 7) filter 
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2.2.5 Symmetric Boundary Extension 

When implementing any wavelet transform using convolution, the image boundaries 

need to be extended to avoid the data expansion inherent with linear convolution.  After 

extension, circular convolution can be deployed.  Generally, two methods can be used 

for boundary extension: symmetric and periodic. In the case of linear transforms, 

symmetric extension can yield better compression results than periodic extension due to 

two principal advantages: 

1. It does not cause discontinuities in the extended boundary; it will not introduce 

disturbing artefacts at the edges of the reconstructed image; 

2. It allows for non-expansive transformation of arbitrary length signals, does not 

significantly degrade compression performance. 

2.2.6 Lifting Scheme 

A simple implementation of the 2_D DWT decomposition using convolution is quite 

demanding of computer memory, because it requires a large amount of memory to store 

the entire set of image data. In practice, an alternative implementation, the lifting 

scheme, is used; which significantly reduces the requirements for memory and 

computation. For lossless compression, only reversible integer transforms are 

implemented using lifting. Lifting is based on three stages: split, prediction, and update: 

1. Splitting the input signal x(n) into even and odd indexed sub-sequences 

s0[n]=x[2n], d0[n]=x[2n+1]; 

2. Predicting each odd sample as a linear combination of the even samples and 

subtracting it from the odd sample to form the prediction error di
1; 

3. Updating the even samples by adding to them a linear combination of the 

already modified odd samples to form the updated sequence si
1. 

The following formulae are for the (5, 3) filter: 

di
1 = di

0 – 1/2 (si
0 + si+1

0 ) 

si
1 = si

0 + 1/4 (di-1
0 + di

0) 

These mathematical operations are illustrated in the Figure 5. The first column data 

represents the original signal. The first step computes the sequence di
1 that represents 
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the high-pass sub-band coefficients (second row data) and the second step provides the 

sequence si
1 which are the low-pass coefficients (third row data). 

 

Figure 5  Lifting steps for the (5, 3) filter 

 

 
α -1.586134342 

β -0.05298011854 

γ 0.8829110762 

γ 0.4435068522 

K0 0.8128931 

K1 1.230174105 

Figure 6 Lifting step for the (9, 7) filter 

 

Figure 6 shows the lifting step of the (9, 7) filter, it is worth noting that the output from 

lifting should be normalized by K1 and K0 before doing the next step of the transform 

2.2.7 Scalar Quantization with Filter Normalization 

After wavelet filtering, the results can be directly used for coding purposes. This is 

usually the case for integer (5, 3) lifting.  If the (9, 7) filter is used in conjunction with a 

full band coding method such as ZEW or SPIHT, the coefficients need to be scaled, 

otherwise, the importance of coefficients cannot be distinguished, because coefficients 

with the same magnitude in different sub-bands have a different contribution to the 
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image quality before scaling. In JPEG2000, the process of scaling the coefficients is 

combined with quantization, and it is called scalar quantization. 

Normalization of the DWT filter is often expressed according to the DC gain of the low-

pass analysis filter h0; and the Nyquist gain of the high-pass analysis filter h1. The DC 

gain and the Nyquist gain of a filter h(n), which is expressed by G  and GDC Nyquist 

respectively, are defined as 

GDC = │∑
n

nh )( │ 

GNyquist = │∑ −
n

n nh )()1( │ 

The (9, 7) filter and the (5, 3) filter have been normalized so that the low-pass filter has 

a DC gain of 1 and the high-pass filter has a Nyquist gain of 2. This is referred to as (1, 

2) normalization and has been adopted in Part 1 of the JPEG2000 standard.  

 

Table 3 shows the normalization of every sub-band after a 5-level decomposition with 

the (9, 7) filter.  

 

sub-band normalization
5LL 33.924847

5HL or 5LH 17.166698
5HH 8.686717

4HL or 4LH 8.534109
4HH 4.3004827

3HL or 3LH 4.1833673
3HH 2.0792568

2HL or 2LH 1.996813
2HH 0.9672163

1HL or 1LH 1.0112865
1HH 0.52021784

Table 3  Normalization of 5-level wavelet transformation 

 

2.3 The Features of DWT 

The discrete wavelet transform provides good energy compaction. Most coefficients are 

small or zero, that is why the wavelet coefficients can be compressed. Furthermore, the 

DWT inherently is a multi-resolution image representation. It is very useful to some 

applications. Integer DWT decomposition can be used for lossless and lossy 

compression. The scaled coefficients are very suitable for embedded coding. The 
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embedded bit-stream that results from the bit-plane coding in each sub-band (or small 

blocks) provides many scalabilities and, many other features, such as SNR, resolution, 

random access, etc.  So DWT is very suitable for image compression, this is why the 

JPEG2000 standard strongly adopted DWT as the main transform instead of attempting 

further improvement on the Discrete Cosine Transform. 
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3 Embedded Image Coding  

This chapter investigates the most influential coding methods for determination of 

wavelet transform coefficients and introduces some important facets of the field 

relevant to this thesis. For a more detailed understanding of the field, it is suggested that 

the reader refers to the references provided.  

 

3.1 Introduction 

Since Wood & O’Neil [11] first used the sub-band transformation to encode images in 

1986, many kinds of coding method [2, 3, 4, 5, 15, 16, 17, 18, 19, 20, 21, and 22] have 

emerged. However, the four coding methods that now dominate the area of image 

compression using wavelet are EZW, SPIHT, EBCOT and SBHP. These methods will 

be investigated in detail in the next several sections. 

A coder is embedded if the generated bit-stream is arranged in order of importance.  The 

first famous embedded coding method is EZW (Embedded Zerotree Wavelet) [2], 

designed by Shapiro in 1993. Since then, the interest in researching embedded image 

compression has increased and wavelet transformation began to enter many different 

applications. After 3 years, Said and Pearlman [3] devised a new method called SPIHT 

(Set Partitioning In Hierarchical Trees) upon generalizing the EZW with the 

performance improved by 1db on PSNR (Power Signal-to-Noise Ratio). However, these 

two methods can only be used for full-band and scaled wavelet coefficients. In 1998; 

Taubman [4] invented another method called EBCOT (Embedded Block Coding with 

Optimized Truncation of the embedded bit-streams) with a different idea from the EZW 

and SPIHT methods that was later adopted in the JPEG-2000 [1] international image 

coding standard. In EBCOT, context-modeling plus arithmetic coding was used, and the 

performance improved considerably. More importantly, EBCOT can provide many 

features in the resulting bit stream. The other method is SBHP [5] based on the quad-

tree structure, which was a strong competitor to EBCOT during the standard 

development process, because of its very low-complexity features.  In recent years, 

many variants of SBHP have been proposed in the literature [18], [19], [20], [21] and 

[22], ZEBC among them (Embedded ZeroBlocks of Sub-band Coding) [21] has 

attracted great attention with its improved performance. 
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3.2 EZW (Embedded Zerotree Wavelet) 

Embedded zerotree coding of wavelet coefficients was invented by Shapiro [2]. The bit-

stream produced by EZW is embedded, which means more bits are added to a bit-

stream, the decoded image will contain more detailed information. Shapiro used a 

progressive encoding process to achieve this. 

This technique is based on two key concepts: 1) compression of significance maps using 

zerotree coding of wavelet coefficients. The zerotree is based on the hypothesis that, if a 

wavelet coefficient at the lowest sub-band is insignificant with respect to a given 

threshold T, then all wavelet coefficients of the same orientation in the same spatial 

location at higher sub-bands are likely to be insignificant with respect to T. 2) 

Successive approximation quantization, which first sends the most-significant bits and 

then gradually refines the coefficients of the magnitude. 

 

 

 
The tree structure 

 
LL3 

HL3 

LH3 HH3 

HL2 

LH2 
HH2 

HL1 

LH1 

HH1 

Scan order 

Figure 7  The tree structure and scan order 

 

The tree structure and coefficient raster scan order in the EZW algorithm are shown in 

Figure 7. The key point to note is that when one coefficient in the lowest sub-band is the 

root of the zero-tree, all zero coefficients in the higher sub-bands do not need to be 

encoded. Every bit-plane is encoded in two passes except the top bit-plane; the first pass 
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encodes all refinement bits, while the second pass encodes the significant bits and sign 

bits. In the EZW, the refinement pass was called a “Subordinate Pass” while the 

significant pass was called a “Dominant Pass”. 

The algorithm is described as the following: 

1. Initialisation  
Place all wavelet coefficients on the dominant list. Set the initial threshold 

to  

2 ^ floor (log2 Xmax) 

2. Dominant Pass(raster scan across bands) 
i. Assign the following symbols to each coefficient and the 

resulting symbol sequence is entropy coded. 

POS – Positive significance 

NEG – Negative significance 

IZ – Isolated zero 

ZTR – Zero-tree root 

– Move significant coefficients to subordinate list, and put zero in dominant 

list. 

3. Subordinate Pass 
Output one bit (1 or 0) for subordinate list according to whether the 

coefficients are in upper/lower part of the quantization interval. 

4. Loop 
Set Ti= Ti/2. Repeat step 2 to 4 until target bit rate. 

Four symbols, POS, NEG, IZ, and ZTR, are produced by the dominant pass, where POS 

stands for positive significant coefficient, NEG for negative coefficient, IZ for isolated 

zero, and ZTR for zerotree. If a coefficient itself, and all the coefficients below it (its 

descendants), in the same wavelet tree are insignificant, this coefficient node is called a 

zerotree root and is given the symbol ZTR. If a coefficient itself is insignificant but at 

least one of its descendants is significant, this coefficient will be assigned the symbol 

IZ, it is called an isolated zero. Only two binary symbols are required by the subordinate 

pass, i.e., 1 and 0. All symbols are entropy coded by arithmetic coding using an 

adaptive model. Figure 8 and Figure 9 provide examples to explain the coding process. 
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63 -34 49 10 7 13 -12 7 

-31 23 14 -13 3 4 6 -1 

15 14 3 -12 5 -7 3 9 

-9 -7 -14 8 4 -2 3 2 

-5 9 -1 47 4 6 -2 2 

3 0 -3 2 3 -2 0 4 

2 -3 6 -4 3 6 3 6 

5 11 5 6 0 3 -4 4 

wavelet coefficients 

 
LL3 HL3 

LH3 HH3 
HL2 

LH2 HH2 

HL1 

LH1 HH1 

the corresponding sub-band 
Figure 8  Three levels Shapiro coefficients 

 
 

sub-

band 

coefficients symbol Reconstructed 

value 

LL3 63 POS 48
HL3 -34 NEG -48
LH3 -31 IZ 0
HH3 23 ZTR 0
HL2 49 POS 48
HL2 10 ZTR 0
HL2 14 ZTR 0
HL2 -13 ZTR 0
LH2 15 ZTR 0
LH2 14 IZ 0
LH2 -9 ZTR 0
LH2 -7 ZTR 0
HL1 7 Z 0
HL1 13 Z 0
HL1 3 Z 0
HL1 4 Z 0
LH1 -1 Z 0
LH1 47 POS 48
LH1 -3 Z 0
LH1 -2 Z 0

Dominant pass 

 
 
 
 

Coefficient 
Magnitude 

Symbol Reconstructed
Magnitude 

63 1 56
34 0 40
49 1 56
47 0 40

 
Subordinate pass 

Figure 9  The coding process of EZW 

 

In addition to its high compression performance, which consistently outperforms DCT-

based coding algorithms, the EZW has the following features as an embedded coder. 
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1. SNR(Signal-to-Noise Ratio) scalability achieved by successive approximation 

is ideal for transmitting a bit-stream over channels of various capacities; 

2. Data prioritization, whereby large and small coefficients are naturally coded in 

order of significance; 

3. More efficient entropy coding by arithmetic coding，  which automatically 

adapts to multilevel strings of symbols generated from the coding process and 

requires no training or pre-stored tables; 

4. The precise rate control that allows the coding process to stop anywhere when 

the desired bit rate budget has been achieved. 

The EZW was therefore considered a state of the art image coding algorithm in that 

time. 

3.3 SPIHT (Set partitioning in hierarchical trees) 

In 1996, Said and Pearlman [3] devised a method called SPIHT (Set Partitioning In 

Hierarchical Trees) which was motivated by, and has several features in common with, 

the EZW, but the performance was improved by up to 1.3dB PSNR (Power Signal-to-

Noise Ratio) and there are a number of significant differences between the two coding 

methods. Firstly, the order of the significance and refinement passes is reversed. 

Secondly, the parent-child relationship in the lowest sub-band is different. Finally, the 

output bits are binary rather than symbols as in the EZW, and its output has two 

versions:  one is the binary-uncoded without entropy coding while the other is entropy 

coded using an arithmetic code. 

 

  
EZW tree SPIHT tree 

Figure 10  Parent–descendent relationships in the tree structure 
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In the EZW tree, the pixel in the lowest sub-band has three children. Other pixels, 

except for those in the highest bands, have four children. In the SPIHT tree, one fourth 

of the pixels in the lowest bands (noted with a “*”) do not have a child. Other pixels, 

except for those in the highest bands, have four children. Figure 10 shows the difference 

between the two tree structures. 

SPIHT defines two types of zero-tree, the first type consists of a single root coefficient 

having all descendants within a given bit-plane, and this differs from the EZW zero-

tree, in that the root itself need not to be zero. The second type of zero-tree is similar but 

also excludes the four children of the root. 

For detailed information about SPIHT, the reader should refer to reference [3]. The 

main idea is partial ordering by magnitude with a set partitioning sorting algorithm, 

where three control lists are used to transmit the ordering information. The algorithm an 

be described as follows.  

SPIHT Algorithm: 

1. Initialization:  

N: the maximum number of bit-planes, 

LSP: [ ], 

LIP: all coordinates (i, j) in the H, 

LIS: all coordinates (i, j)  which have descendants in the H, 

2. Sorting Pass 

2.1) for each entry (i, j) in the LIP do: 

   2.1.1) output bit value Sn(i, j), 

   2.1.2) if Sn(i, j)=1, move (I, j) from LIP to the LSP and code the sign bit; 

  2.2) for each entry (i, j) in the LIS do: 

   2.2.1) if the entry (i, j) is of type A then 

• output bit value Sn(D(i, j)); 

• if  Sn(D(i, j))=1 then 

* for each(k,l) in the O(i, j) do: 

  output Sn(k, l); 

  if Sn(k, l)=1, add (k,l) to the LSP and code the sign bit, 

     otherwise, add (k,l) to the LIP; 

 *if L(i, j)≠0 then move (i, j) to the LIS, and goto step 2.2.2; 

      otherwise, remove (i, j) from the LIS; 
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   2.2.2) if the entry is of type B then 

• output Sn(L(i, j)); 

• if  Sn(L(i, j))=1 then 

* add each (k, l) in the O(i, j) to the end of the LIS as an 

         entry of type A; 

      * remove (I, j) from the LIS; 

3. Refinement Pass:  for each (i, j) in the LSP, except those included in the last sorting 

pass, record the bit value; 

4. Quantization-step update: decrease n by 1 and go to step 2. 

Some symbols used in the above algorithm are: 

• O(i, j): set of coordinates for all off-springs of node (i, j); 

• D(i, j): set of coordinate for all descendants of node (i, j); 

• H: set of coordinates of all spatial orientation tree roots(nodes in the lowest sub-

band); 

• L(i, j)=D(i, j)-O(i, j). 

 

SPIHT is a wavelet-based image compression coder that offers a variety of good 

characteristics. These characteristics include: 

1. Good image quality with a high PSNR; 

2. Fast encoding and decoding speed; 

3. A fully progressive bit-stream; 

4. Can be used for lossless compression; 

5. Ability to stop at any target bit rate or PSNR. 

 

The SPIHT algorithm has become a standard benchmark for image compression, 

because of the above advantages. 

3.4 EBCOT (Embedded block coding with optimized truncation) 

In 1998, Taubman [4] devised a new image coding method called EBCOT. EBCOT is 

significantly different from the EZW and SPIHT methods. It uses techniques based on 

context modelling of sub-band coefficients. This method has been adopted in the 

JPEG2000 standard. In EBCOT, there are two coding stages, the first is the block bit-

plane coding; where the wavelet coefficients associated with each sub-band are 
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partitioned into fixed-size small blocks (typically 64x64). Figure 11 shows how to 

partition the wavelet coefficients, then, a set of embedded bit streams for all small 

blocks is generated using bit-plane coding. The second stage is responsible for 

efficiently identifying the contribution of each small block to each bit-stream layer. This 

stage also can be thought of as reassembling the bit-stream from every small block to 

the final bit-stream. 

 

 

 
Figure 11  Block partition and compressed data from every small block 

 

The first coding stage is one of bit-plane coding. After all of the sub-bands have been 

partitioned into small blocks, each of the small blocks is independently encoded using a 

bit-plane coder. In this stage, there are three scan passes; the pass for significant bits is 

divided into two passes: a significance pass and a cleanup pass, which are summarised 

below: 

1. Significance propagation pass 

This pass is used to encode those significant bits and their sign information if 

and only if prior to this pass, at least one of the eight immediate neighbours has 

significant states. Taubman believed those significant bits were propagated by 

the neighbour bits. The algorithm is described by the following: 

 

Significance propagation pass algorithm. 

1: for each sample in code block do 

2:  if sample previously insignificant and predicted to become significant during 

current bit plane then 

3:      code significance of sample /* 1 binary symbol */ 
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4:      if sample significant then 

5:       code sign of sample /* 1 binary symbol */ 

6:     end 

7:  end 

8: end 

 

2. Refinement pass 

The second coding pass for each bit-plane is the refinement pass. If the 

coefficients were found to be significant in the previous bit plane, the current bit 

value is represented by using a single binary bit. The algorithm is described by 

the following: 

Refinement pass algorithm. 

1: for each sample in code block do 

2:   if sample found significant in previous bit plane then 

3:     code next magnitude bit in sample /* 1 binary symbol */ 

4:   end 

5: end 

 

3. Cleanup pass 

The cleanup pass simply codes the remaining significant bits. The algorithm is 

described by the following: 

Cleanup pass algorithm. 

1: for each vertical scan in code block do 

2:   if four samples in vertical scan and all previously insignificant and unvisited 

and none have significant 8-connected neighbour then 

3:     code number of leading insignificant samples via aggregation  

4:     skip over any samples indicated as insignificant by aggregation 

5:   end 

6:   while more samples to process in vertical scan do 

7:     if sample previously insignificant and unvisited then 

8:       code significance of sample if not already implied by run /* 1 binary 

symbol */ 

9:       if sample significant then 

10:        code sign of sample /* 1 binary symbol */ 
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11:      end 

12:    end 

13:  end 

14: end 

After every small block receives three coding passes in every bit-plane, the bit-stream 

will be generated. These bit-streams need to be reassembled to form the final bit-stream. 

The second coding stage is for packaging the bit-streams from the first coding stage into 

data units called packets. The resulting packets are then assembled into the final bit-

stream. Figure 12 shows the coding structure. Each packet consists of two parts: a head 

and a body. In this coding stage, many special features are assembled into the final bit-

stream including the quality layer, resolution scalability, rate scalability, random access, 

and region of interest coding. 

 

 

Figure 12  Two stages coding structure of EBCOT 

 

For an appreciation of the performance of EBCOT, some results are extracted from [4]. 

Table 4 shows the comparison of PSNR between SPIHT and EBCOT. The PSNR 

results in the third column are from the SPIHT algorithm, and the second column is 

obtained using the EBCOT algorithm. 

More detailed information on EBCOT and JPEG2000 can be found in references [23, 

24, 25, 26, 27, and 28]. Software that implements JPEG2000 can be downloaded freely 

from the following addresses: 
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1. JJ2000: Java for JPEG2000, http://jj2000.epfl.ch/jj_download/index.html 

2. Jasper: C for JPEG2000, http://www.ece.uvic.ca/~mdadams/jasper/ 

3. Kakadu: C++ for JPEG2000, http://www.ee.unsw.edu.au/~taubman/  

 

Lena (512x512) 

Bit Rate EBCOT 

( 1 layer)

SPIHT

0.0625 28.30 28.38 

0.125 31.22 31.10 

0.25 34.28 34.11 

0.5 37.43 37.21 

1.0 40.61 40.41 

Barbar (512x512) 

Bit Rate EBCOT 

( 1 layer)

SPIHT

0.0625 23.45 23.35 

0.125 25.55 24.86 

0.25 28.55 27.58 

0.5 32.48 31.39 

1.0 37.37 36.41 

Table 4 Comparison of the results from SPIHT and EBCOT 

 

3.5 SBHP 

Another important wavelet coding method is SBHP, which is based on an embedded 

extension of the quad-tree coding technique. Compared to above three methods, its 

main advantage is its very low complexity. The encoding speed is about 4 times faster 

than EBCOT, and the decoder is about 6 to 8 times faster. 

The quad-tree provides a simple coding structure for coding the significant information 

in each bit-plane; Figure 13 shows how to use this simple structure to generate the bit-

stream. It recursively divides the non-zero block into four sub blocks until it attains a 
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2x2 block. It is easy to find that one 4x4 zero block on the top-left and many 2x2 zero 

blocks are encoded as “0”.  

Structure of quad-tree 

1 

 

Code stream 

1 

 

0 1 

1 1 
 

 

0  1  1  1 

 

 

 

1 0
0 

0 1

0 1 1 0

0 0 1 0
 

 

 

 

 

1001   0100  1010 

 

 

0 0 0 0 1 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 1 1 

0 0 0 0 0 0 1 0 

0 0 0 1 1 1 0 0 

0 0 0 0 1 1 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 
 

 

 

 

1001 1110     0100     1111 0100 

The final bit-stream: 1 0 1(1(1001)001(1110)) 1(01(0100)00) 1(1(1111)01(0100)0) 

Figure 13  Example of quad-tree coding structure 

In order to improve embedded performance, SBHP uses three control lists to minimize 

the number of tests for a given bit-plane: 

1. LIS (list of insignificant sets): it includes those blocks in which all the bits are 

zero in previous passes; 
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2. LIP (list of insignificant pixels):  it includes the pixels that are insignificant in 

previous passes; 

3. LSP (list of significant pixels): all pixels found to be significant in previous 

passes; it is used in the refinement pass. 

For each new bit-plane, those lists are updated in the order: LIP, LIS, and LSP.  The 

quad-tree coding structure and three control lists can solve two problems in the 

embedded coding of bit-plane: 

1. It compresses the large zero area in an efficient and fast manner; 

2. Visiting of the pixels in an optimized order can generate the embedded bit-

stream. 

Besides SBHP providing faster coding with an optimized bit-stream, it is able to totally 

satisfy the requirements of JPEG2000. 

Due to its simplicity, SBHP has aroused many researchers’ interests. Several variants of 

the quad-tree coding scheme have been reported in the literature. Amplitude and Group 

Partitioning (AGP) [19], SWEET [18], Set Partitioning Embedded block (SPECK) [20, 

22] and Embedded ZeroBlocks of Sub-band Coding (EZBC) [21] are representative 

examples. Among these coding schemes, EZBC has the best results compared with the 

other methods. It employs a quad-tree structure to partition the blocks and adaptive 

arithmetic coding of the context model as adopted in EBCOT. EZBC beats JPEG2000 

by 0.25dB on average. 

3.6 Comparison of Methods 
We compare the described methods under four criteria: 

1. Coding strategy 

EZW and SPIHT belong to the zerotree coding model. EBCOT uses the block-based 

adaptive context-modelling bit-plane coding, while SBHP is based on the quad-tree 

structure in sub-bands.  

2. PSNR performance 

The gap between EZW and SPIHT is 1 dB averagely, SPIHT is better than EZW, 

but SPIHT is beaten by EBCOT by 0.1dB and EZBC beats EBCOT by 0.25dB, 

EBCOT is superior to SBHP by 0.5 to 1.0dB. In particular, the performance gap 

between SBHP and EBCOT is much larger for artificial images than for natural 
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images. Table 5 was extracted from [22] and it shows the PSNR performance for 

each of them. 

 

PSNR(dB) Coding 

method 0.0625 0.125 0.25 0.5 1.0 2 

Lossless Rate

(bpp) 

Bike(2048x2560) 

JP2k 23.74 26.31 29.56 33.43 37.99 43.95 4.520 

SBHP 23.02 25.36 28.53 32.39 37.07 43.04 4.724 

EZBC 23.75 26.11 29.58 33.53 38.25 44.33 4.359 

SPIHT 23.44 25.89 29.12 33.01 37.70 43.80 4.480 

SPECK 23.31 25.59 28.84 32.69 37.33 43.1 4.492 

Cafe(2048x2560) 

JP2k 19.03 20.77 23.10 26.76 31.96 39.01 5.384 

SBHP 18.76 20.49 22.64 26.01 31.08 38.26 5.466 

EZBC 19.11 20.87 23.32 27.00 32.43 39.62 5.125 

SPIHT 18.95 20.67 23.03 26.49 31.74 38.91 5.277 

SPECK 18.93 20.61 22.87 26.31 31.47 38.7 5.286 

Woman(2048x2560) 

JP2k 25.59 27.33 29.95 33.57 38.28 43.97 4.541 

SBHP 25.26 27.09 29.59 33.11 37.98 43.69 4.636 

EZBC 25.71 27.54 30.31 34.00 38.82 44.48 4.291 

SPIHT 25.43 27.33 29.95 33.59 38.28 43.99 4.419 

SPECK 25.50 27.34 29.88 33.46 38.07 43.73 4.396 

Aerial2(2048x2048) 

JP2k 24.60 26.47 28.54 30.60 33.23 38.05 5.471 

SBHP 24.42 26.34 28.15 30.40 33.03 37.70 5.502 

EZBC 24.76 26.65 28.70 30.79 33.49 38.51 5.203 

SPIHT 24.63 26.52 28.49 30.60 33.32 38.22 5.331 

SPECK 24.60 26.49 28.45 30.59 33.25 38.26 5.259 

Table 5 Comparison of lossy coding performance for common test images 
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3. The generated bit-stream 

EZW and SPIHT produce a single embedded bit-stream; this kind of bit-stream has 

one advantage and three disadvantages: 

The advantage: 

1. The encoding and decoding process can be stopped at the desired bit-rate or 

PSNR.  

The three disadvantages: 

1. This method can only be applied to full-band scaled coefficients;  

2. The final generated bit-stream cannot satisfy the requirements of some 

applications (for example, medical applications, only want one part of the 

information), because it has no resolution scalability and random access ability. 

3. The error resistance is poor, because one single error bit in the bit stream will 

make the bit stream undecodable.  

EBCOT and SBHP generate a packet-stream; this kind of packet-stream provides 

many advantages as well as some disadvantages:  

The advantages: 

1. Resolution scalability; 

2. SNR scalability; 

3. Random access; 

4. Region of interest coding; 

5. Good error resistance. 

The disadvantages: 

1. The maximum block size of 64x64 restricts the exploitation of the redundancy 

existing in the every sub-band and the whole coefficients matrix; 

2. The encoding and decoding process cannot be stopped at the desired bit-rate or 

PSNR;  

3. Large overhead for packet head and tail; 

4. The quality layer may cause part of the image to be degraded, and it loses the 

original meaning of the embedded bit-stream in the extreme of one layer, 

because the embedded bit-stream should be ordered according to the importance 

of the coefficients. 

4. The complexities and speed 

SBHP is the simplest, while the EBCOT is the most complex with EZW, SPIHT 

sitting in the middle.  The order of speed is SBHP, EBCOT, SPIHT, and EZW. 
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3.7 Summary 

This has been a review of coding methods for image compression using the wavelet 

transform. The aim was to find the main ideas in those methods and where and how we 

can improve upon them. EZW and SPIHT discover a hidden secret in wavelet 

coefficients matrix: Zerotree. Block-based coding with the context modelling in 

EBCOT can provide many features and excellent error resistance, while SBHP provides 

a simple coding structure and faster encoding/decoding speed. However, they all have 

some unpleasant disadvantages. EZW and SPIHT generate a single embedded bit-

stream; this kind of bit-stream cannot satisfy the requirements of some applications, it 

has only SNR scalability. The error resistance is also poor and SPIHT does not use 

entropy coding to the refinement bits. EBCOT is too complex; the coding efficiency 

does not pay off the increased complexity in some applications. The encoding and 

decoding process cannot be stopped at the desired bit-rate; and large overheads for the 

packet head and tail decrease the coding efficiency, because the maximum block size is 

restricted to 64x64. SBHP has poor performance, although it has very low complexity. 

Obviously, finding a new coding method to overcome these advantages is still desirable. 
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4 Factors affecting the size of the final bit-stream 

This chapter identifies the factors, which influence the coding performances, based on 

the generic codec structure.  After analysis of these factors, a new codec structure is 

proposed. 

 

4.1 General Codec Structure 

Figure 14 shows a general codec structure. The encoder consists of six parts: pre-

processing, discrete wavelet transforms (DWT), quantization, bit-plane coding, bit-

stream assembling, and rate-control. The decoder has four parts; bit-stream decoder, 

dequantization, inverse discrete wavelet transforms and post-processing.  

 

 

Figure 14  Codec structure 

 

In chapter 2, we described how to implement DWT and the quantization process in 

some detail. Here we introduce the functions of the other processes and point out how 

these processes affect the overall coding results.  

4.1.1 Pre-processing/post-processing 

Pre-processing generally performs three tasks:  

1. The first is to partition the large image into rectangular and non-overlapping 

tiles of equal size, if the image size is too large;  
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2. The second is for colour transform, there are two kinds of colour transform: ICT 

(the irreversible colour transform) and RCT (the reversible colour transform);  

3. The final task is that the unsigned pixel values are level shifted by subtracting a 

fixed value of 2b-1 from each of the pixel values to make its value symmetric 

around zero, Figure 15 shows this operation. Signed pixel values are not 

required for level-shifting. Level-shifting has no effect on the coding efficiency. 

The post-processing in the decoder side simply undoes the effects of pre-

processing in the encoder side.  

 

Figure 15 DC-level shifting 

In this thesis, we restrict our attention to greyscale images. Therefore, in our 

implementation, only one task, level shifting, is needed. The first task is also not 

required in our implementation due to the normal image sizes that we have chosen.  

Post-processing simply undoes the effects of pre-processing in the encoder. 

4.1.2 Discrete wavelet transform  

It has already been explained in Chapter 2, that the outputs of the wavelet transform are 

called wavelet coefficients, those coefficients can be directly passed to bit-plane coding 

in the reversible model. The scaling of the coefficients has some effects on the coding 

results. We shall explain it again in more detail in the following sections. 

4.1.3 Quantization/dequantization  

Quantization allows great compression. Quantization of the transform coefficients is 

one of the two primary sources of information loss in the coding processes. Transform 

coefficients are quantized using scalar quantization with a deadzone. Scalar quantization 

means that the scalar factor should be considered together with the quantize step size. 

Different quantizers are employed for the coefficients in different sub-bands. This is 
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different from the traditional quantization. The formulation is presented here:  

V(x,y)=sign(U(x,y)⎢⎣U(x,y)⎥/D⎦ 

Where U is a wavelet coefficient, D is a quantizer step size, and V(x,y) denotes the 

output for the sub-band.  

In the integer model, the quantizer step sizes are always fixed at one; it is equivalent to 

bypassing a quantization and forcing the quantizer indices and transform coefficients to 

be the same. In this model, although the scalar factor was not considered, lossy coding 

is still possible.  

In the decoder, the dequantization process tries to undo the effects of quantization. The 

reconstructed floating point wavelet coefficients U(x,y) are obtained from the quantizer 

indices V(x,y) for a quantizer step-size of Δb. The formulation is: 

 (V(x,y)+r) Δb If V(x,y)>0 

U(x,y) = (V(x,y)-r) Δb If V(x,y)<0 

 0 If V(x,y)=0 

The value r is in the range 0≤r<1 and may be chosen to produce the best visual or 

objective quality for reconstruction (a typical value is r=1/2). 

It is worth pointing out that the scalar quantization process is very important in the 

general codec structure, before the bit-plane coding, the wavelet coefficients should be 

scaled by using the L2 norms of each sub-band in order to align the bit-planes of the 

quantizer indices according to their true contribution to the MSE. Thus, the same 

magnitude coefficients in each sub-band have the same contribution to MSE. In the 

EZW, SPIHT and JPEG2000, the ordering of coefficients only applies to the same bit-

plane; the scalar quantization can make the optimization easily processed.  

Therefore, scalar quantization has two advantages: 

1. The sum of the squares of the image samples is approximately equal to the sum of 

the squares of the transform coefficients, making it easy to calculate the rate 

distortion; 

2. It facilitates the selection of the most important wavelet coefficients in the encoding 

process. 
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However, this kind of quantization causes one problem: 

1. In the lossless mode, the quantizer step-size is fixed at one, the scalar factor is not 

taken into consideration in the image coding processes in the existing algorithms, 

especially for the full-band image coder such as SPIHT, SPECK and EZBC, and 

this will add difficulty to the design of the coding algorithm. 

4.1.4 Bit-plane coding 

Bit-plane coding can be applied to wavelet coefficients of full-band, or sub-band and the 

blocks within a sub-band. EZW and SPIHT are applied to the full-band; EBCOT and 

SBHP are applied to the small blocks within a sub-band. Bit-plane coding is a key 

process; it sets out to represent the coefficients in the most efficient way. Generally, this 

process has two or three passes for different parts of the coefficients, for example, one 

pass or two passes are for the significant bits, one pass is for refinement bits. 

The purpose of bit-plane coding is to generate an embedded bit-stream. After a sub-

band or a block is sliced into bit-planes, each bit-plane is encoded independently. The 

coding order is from the most significant bit-plane to the least significant bit-plane, 

producing an embedded bit-stream.  

As noted above, there are two or three coding passes per bit-plane. In the EZW and 

SPIHT, the coding passes consist of a significance and a refinement pass while EBCOT 

and SBHP employ three passes: significance, refinement, and cleanup. Generally, the 

bit-plane coding pass does not directly generate the binary bit-stream, but rather, a 

sequence of symbols. Some or all of these symbols need to be entropy coded. In EZW 

and SPIHT, the context dependent arithmetic coding is used to losslessly compress the 

sequence of symbols resulting from the coding procedures. EBCOT employs a context-

based adaptive binary arithmetic coder, more specifically, the MQ coder from the 

JBIG2 standard. SBHP does not use any arithmetic coding; it employs two fixed 15-

symbol Huffman coders. 

The results from bit-plane coding can be directly transmitted to the decoder side in the 

EZW and SPIHT, because those bit-plane coders are applied to the whole wavelet 

coefficients matrix. However, the results from EBCOT or SBHP need an extra stage to 

assemble the bit-stream resulted from the previous stage.  
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The bit-plane coding process significantly affects the overall coding efficiency. The 

significant pass of the two coding passes is the main factor. EZW and SPIHT use the 

zerotree to achieve their best results while EBCOT uses adaptive context modelling. 

4.1.5 Bit-stream assembling 

Bit-stream assembling generates the final embedded bit-stream. The input to the bit-

stream assembler is the set of bit-stream packets generated during the bit-plane coding. 

The principle is to choose one bit-stream packet with the best contribution to image 

quality. The process of bit-stream assembling can be performed as follows: 

1. Initialization: for all bit-stream packets, set up all contributions ci =0 

(i=1,2,3,…n);  

2. Calculate the contribution for each bit-stream packet: 

ci =(MSE-MSEi)/ Li  

where MSE (mean squared error) represents the distortion between the original 

image and the reconstructed image using the available bit stream. MSEi is the 

distortion after the i-th bit-stream pack is added to the fianl bit stream, MSE-

MSEi is the distortion decrease, Li is the length of the i-th bit-stream packet. 

Thus we can find out which packet leads to the maximum distortion decrease 

and this is the packet that we need to send to the final bit stream at this point.   

3. Repeat Step 2 until the desired bit rate is reached. 

In JPEG2000, the process of bit-stream assembly is much more complex. The interested 

reader can refer to the relevant material for the standard. 

The packet assembly process can increase the overhead to the final bit-stream, but it is 

necessary. 

4.1.6 Rate control 

Rate control refers to the process of generating an optimal image for a target bit-rate. In 

the encoder, rate control can be achieved through two distinct approaches: 1) the choice 

of quantizer step sizes, and 2) the selection of truncation points in the bit-stream. The 

first approach may not be suitable in practice. Every time the quantizer step size is 

changed, the encoding process must be performed again. When the second approach is 

used, the encoder can find the termination point in the bit-stream, because the encoder 

can either calculate the distortion reduction of the received bit-stream or count the bit 
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budget. This approach is very flexible in that different distortion calculation methods 

can be easily accommodated, for example, MSE, or visually weighted MSE. 

4.1.7 Bit-stream decoder 

The bit-stream decoder simply undoes the encoded bit-stream. Generally, the decoder 

speed is faster than the encoder speed, because not so many comparison operations for 

testing the significant or insignificant pixel or blocks are needed.  

4.2 Four Affecting Factors  

From the above analysis for every coding process we studied, four factors are found 

affecting the amount of the compressed bit-stream:  

1. The number and magnitude of wavelet coefficients generated from DWT; 

2. The efficiency of significant encoding pass in the bit-plane coding; 

3. The efficiency of refinement encoding pass in the bit-plane coding; 

4. The efficiency of the entropy coding method for exploiting the dependence among 

the symbols generated from the significant and refinement pass.  Figure 16 shows 

the relationship among these factors. 

 

 

DWT Significant 

coding pass 

Refinement 

coding pass 

Entropy 

coding pass 

Final bit-stream 

Figure 16  The main factors affecting the amount of final bit-stream 
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4.2.1 Filters 

The first factor is the filters used in the wavelet transformation. Different filters result in 

different wavelet coefficients, it is not difficult to conclude that the more and bigger the 

coefficients, the longer the bit-stream. However, wavelet filter design is a branch of 

mathematics, and is not the focus of this research.  

4.2.2 Significant encoding method 

The second factor is the method for encoding significant bits and sign bits. The 

significant bits appear randomly in every bit-plane; how to represent the location of 

every significant coefficient is a challenging task. The primary purpose of this step is to 

represent the location of every significant bit in a most efficient way. EZW and SPIHT 

use the zero-tree to encode the significant bits, while EBCOT uses the context-modeling 

to encoder those significant bits. SBHP encodes the significant bits by first grouping 

into small blocks, then using Huffman coding to represent the context of these blocks. 

This factor is the most important factor.  

4.2.3 Refinement encoding method 

The third factor is the method for representing the refinement bits.  Up till now, most 

algorithms for encoding the refinement bits simply record the magnitude of the bit 

value. EBCOT uses context-modeling to encode those refinement bits, but the 

performance still leaves room to improve. SPIHT and SBHP directly put the refinement 

bits into the final bit-stream. How to efficiently code those bits is worth further study, in 

depth, because those bits constitute almost a half of the bit stream in the lossless coding 

situation.  

4.2.4 Entropy coding 

The last factor is the method for entropy coding for exploiting the dependence among 

the symbols generated from significant encoding or refinement encoding pass. 

Currently, arithmetic coding is used for this task in most of the algorithms. But how to 

efficiently use the arithmetic coding deserves further consideration, simply using 

adaptive arithmetic coding is not very effective. In the SPIHT algorithm, the arithmetic 

coding was used to exploit the dependence between adjacent pixels, while EBCOT uses 

it for exploiting the dependence among the context modeling in a bit-plane.  
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Based on the above analysis, we focus our research on finding good strategies to 

overcome the negative effects of these factors, taking into account the performance, 

complexity and coding speed. 

4.3 New Codec Structure 

4.3.1 Strategies to overcome the affecting factors 

Generally, after the wavelet transformation, the coefficients in the lowest sub-band are 

bigger than that in the higher sub-bands, where the wavelet coefficients are mostly small 

or zero, which is why the wavelet transform is suitable for image compression. Wavelet 

coefficients are represented by binary data, some take more bits, and some take less. In 

addition, every non-zero coefficient has its sign code: positive or negative. The bits used 

for coefficients (including magnitude bit and sign bit) must be transmitted to the 

decoder. We also need some bits for the representation of location, here; we call those 

bits for location as overheads or support bits. 

Table 6 is an example, where the largest coefficient is 255, the smallest coefficient is 1. 

The overall number of coefficients is 64, and only 12 coefficients are non-zero.  

 

0 255 0 0 0 0 0 0 

156 0 101 0 0 0 0 0 

0 0 -42 0 0 0 0 0 

0 36 122 0 0 0 0 0 

30 0 0 0 63 0 0 0 

12 0 0 0 0 0 0 0 

0 0 0 0 0 1 - 0 

0 0 0 0 23 0 0 0 

Table 6  Coefficients in the wavelet array 
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coefficients 255 156 122 101 63 -42 36 30 23 12 -12 1

Sign bit 0 0 0 0 0 1 0 0 0 0 1 0

MSB        8 1 1           

7 1 0 1 1         

6 1 0 1 1 1 1 1      

5 1 1 1 0 1 0 0 1 1    

4 1 1 1 0 1 1 0 1 0 1 1  

3 1 1 0 0 1 0 1 1 1 1 1  

2 1 0 1 1 1 1 0 1 1 0 0  

LSB         1 1 0 0 1 1 0 0 0 1 0 0 1

Figure 17  The binary representation of coefficients 

 

In the Figure 17, every row represents a bit-plane, the first “1” in each column is called 

the significant bit, and the bits below the significant bit are called the refinement bits. 

The top bit is called the sign bit. Generally, the sign bit is encoded with the significant 

bit at the same time. 

Now we calculate how many bits exist in the coefficient matrix. After wavelet 

transform, the coefficients are represented as decimal data; normally; however, we only 

code the integer part. The bits of the integer part for every coefficient can be calculated 

by the following formula: 

BOC=ceil(log(x(i,j)+1)/log(2))+1       (x(i,j)≠0) 

BOC is the bits of a coefficient, x(i,j) represents the coefficients data, the last 1 

represents the sign bit. Generally, the coding process has two passes, one is for the 

significance, the other is for refinement, and every coefficient should take two bits for 

significant coding (1 bit for significant bit, 1 bit for sign bit). Table 7 shows some 

results generated from well-known Lena image: 
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The amount of bits  The amount of bits Image name: Lena 

(512x512) 9/7 filter(1,2), level=5 5/3 filter(1,2), level=5 

Number of non-zero 

coefficients 

138808 228475 

overall bit amount 412415 767379 

Number of significant 

bits (including sign bit) 

277616 456950 

Number of refinement 

bits 

134799 310429 

Table 7  The bit amount distribution of Lena image (512x512) 

 

From Table 7, we can see two points: 1) the different filters generate a different number 

of coefficients; 2) the significant bits take more bits than the refinement bits. These 

points have already been covered in depth in the literature [29].  Here the bits devoted to 

the locations of the coefficients are the main reason that the significant bits take a 

greater proportion of the final bit stream than the refinement bits.

So, the objectives of the coding method really are:  

1. Using as few bits for location as possible; 

2. The dependence among the generated symbols or binary bits should be exploited 

effectively. 

4.3.2 New codec scheme 

Figure 18 is a diagram of a new codec scheme. In this scheme, there are three different 

processes compared with the traditional codec structure: the block dividing coding 

process, the optimized assembling coding process, and the layer (or pass) decoding 

process.  

 

  



Chapter 4 Factors affecting the amount of final bit-stream         42 

 

Figure 18  New Codec structure 

 

In the new codec structure, the block dividing coding process is applied to every bit-

plane for generating the bit-stream packets. Every bit-plane - except the significant bit-

plane - is encoded by two coding passes: a significant pass and a refinement pass. The 

optimized assembly is responsible for generating the fully embedded bit-stream. The 

layer decoder is to undo the bit-stream packets for recovering the coefficients in the 

corresponding sub-bands or blocks. More details about the proposed algorithm are 

described in the following chapters. 
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5 Block dividing Coding Algorithm 

This chapter describes the block dividing coding method in detail. We provide a simple 

example to illustrate the spirit of our method. The objective of the coding method is to 

use less overhead for location of every significant coefficient to achieve the maximum 

compression of the bit-stream. 

 

5.1 Introduction 

With low-complexity and desirable features such as resolution scalability, SNR 

scalability, and exact rate control, embedded image coding methods using wavelet 

transforms have been the main trend in the image coding community in recent years. 

Due to the high energy compaction nature of the wavelet transform, the bigger 

coefficients are mainly compacted in the lower sub-band while a large region of 

coefficients in the higher sub-band are relatively small. Coding those regions with small 

coefficients in blocks based on a bit-plane is much more efficient than coding the 

coefficients one-by-one. The order of visiting the coefficients should be optimized for 

improving embedded performance. The proposed BDC is a good candidate for meeting 

these requirements. Three block dividing methods can adapt to all kinds of wavelet 

coefficient blocks, while progressive coding with three control lists can generate the 

fully embedded bit-stream.  

5.2 A New Strategy to Code the Coefficients 

5.2.1 Coding the coefficients 

In the proposed BDC algorithm, each sub-band of coefficients is encoded independently 

using bit-plane coding starting from the most significant bit-plane to the least significant 

bit-plane. Every bit-plane except the most significant bit-plane is encoded by two passes: 

significant pass and refinement pass. After encoding all sub-bands, the bit stream is 

reassembled in an optimized way, in which the contributions of the bit-stream packets 

from each sub-band to the mean square error (MSE) of the image are compared and the 

bit-stream packet of the sub-band with the biggest contribution to MSE is chosen to be 

sent out.  
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Figure 19 shows a 3-level, 2-D dyadic decomposition. From this diagram, we can see 

the most energy is compacted into the lowest sub-band, and most coefficients in the 

highest sub-band are small or zero. 

 

  
Original image Wavelet coefficients after transformation 

Figure 19 An example of the distribution of coefficients 

 

Figure 20 shows the sub-bands of the wavelet coefficients which have been numbered 

for the future use.  

 

  

Figure 20 The coding block in the 3-level wavelet decomposition 
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Figure 21 shows the concept and structure of the bit-plane. 

 

0 5 3 0 -1 -6 -8 -2

0 6 37 12 13 6 -16 7 

4 -3 65 34 23 28 -23 5 

2 0 45 48 64 7 12 1 

0 0 14 22 34 -4 11 0 

0 0 -23 12 7 0 -5 0 

24 33 -6 -9 7 0 12 0 

0 0 0 0 0 0 0 16
 

 

Figure 21  An example of a multi bit-plane 

 

The objective of BDC is to encode large areas of the coefficients in an efficient and fast 

manner, taking advantage of the fact that those areas have the high probability having 

zero bits in a particular bit plane.  For example, if the size of a zero block is 16x16, one 

zero output can represent the 256 (16x16) zero bits. Our method is motivated by the 

previous coding methods: SPIHT, SBHP and EBCOT, but it is different from those 

algorithms in various respects. We adopt several dividing methods to deal with the 

small non-zero blocks according to the number and distribution of the significant bits. It 

features low complexity and high compression performance, and provides many 

opportunities to rearrange the bit stream efficiently duo to the fact that every sub-band is 

encoded independently. The principal of the BDC algorithm is summarised as below:  

1. Choose one of three dividing methods to divide one block into sub-blocks with 

the same size, according to the number and distribution of the significant bits in 

the block; 

2. Code every sub-block: every zero sub-block is encoded as 0, every non-zero 

sub-block is encoded as 1; 

3. Recursively apply above block dividing methods to every non-zero block until a  

2x2 size block is reached, then use one of 16 symbols to represent the context of 

the 2x2 block. 

 

During this coding process, we use three lists to track the block dividing information.  
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5.2.2 Three block dividing methods 

In this section, we explain the idea of the three block dividing methods and three control 

lists. Consider an image X that has been transformed by several level decompositions. 

The number of bit-planes for every sub-band is determined by the maximum 

coefficients c(i, j) of that sub-band. We say that this coefficient is significant with 

respect to n if  

2n ≤ | c(i, j) | < 2n+1

Otherwise, we say the coefficient is insignificant in bit plane n. 

Figure 22 is an example of one bit-plane. In this example, there are only three 

significant bits. Other bits are all zero. 

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1+ 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1- 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1+ 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Figure 22  An example of a bit-plane 

 

We use the following step to determine how to divide this bit-plane into sub-blocks. 

Obviously, it is inefficient to divide this bit-plane into irregular blocks because the 

overhead for describing the irregular blocks is expensive. The goal of block dividing is 

to separate the significant bits from insignificant bits efficiently, while maintaining zero 

blocks as large as possible.  

1. If there is only one significant bit in this block, use coordinate representation to 

code this significant bit, and use quad-tree splitting method to divide this block. 

Using 10 represents this dividing method; 
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2. Divide the non-zero block into four sub-blocks if at least one of sub-blocks is 

zero, using 0 to represent it;  

3. Divide the non-zero block into 16 sub-blocks if none of the sub-block is zero, 

using 11 to represent it. 

The statistics of the blocks confirms that the three dividing method are reasonable. 

During our experiments, we find that 25% of the blocks can be divided using the first 

method and about half of the blocks can be divided using the second dividing method, 

while the other 25% of the blocks is divided using the third dividing method. 

We now explain the block dividing method in detail with examples and compare the 

results with SBHP. Figure 23 shows an example of the first dividing method and coding 

process, where there is only one significant bit in the block in the bit plane. The block 

can be divided using quad-tree shown in the diagram by the red-bold line. However, the 

coding process with BDC is different from the quad-tree method. We use the coordinate 

representation to encode this significant bit. This block is an 8x8 block; the numbers of 

bits used for representing the x, y coordinate position are three bits. In this example, 

they are (1, 2), they are encoded as (001,010), and then we add one bit for the sign bit. 

The total bits consist of: 

1 (it means this block is one significant block), 10 (it represents this kind of 

dividing method), 001010 (it represent the x, y coordinate position of the 

significant bit), 1(it represent the sign bit, we use 0, 1 to represent the positive or 

negative sign, here we assume its sign is 1). It equal to: 1100010101, the number 

of bits is 10. But if we use quad-tree method, the result is 

1,1000,0100,0010,1(sign bit), the total number of bits is 14. It can save 4 bits. If 

the block size is more than 8, the more bits are saved. The reader can easily 

confirm this for themselves.  

 

This dividing method improves the coding efficiency significantly to the several upper 

bit-planes as the coding result of from the quad-tree method is replaced by the 

coordinate representation. 
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Bits from our method 1100010101
Bits from quad-tree 11000010000101 

Figure 23  An example of first kind of dividing method 

 

The second dividing method is same as the quad-tree. The non-zero block is simply 

divided into four sub-blocks.  

The third kind of dividing method is more efficient than the quad-tree splitting method. 

The non-zero block is directly divided into 16 sub-blocks. This kind of dividing method 

can save two bits when compared with the quad-tree splitting method. Figure 24 shows 

this kind of dividing process. 

 

 

Figure 24  An example of third kind of dividing method 

 

Similar to SPIHT and other hierarchical bit-plane coding methods, three lists are used 

for tracking the dividing process.  

• LIS– list of insignificant sets (or blocks), which includes all tested insignificant 

blocks; 

• LIP– list of insignificant pixels, which includes all tested insignificant 

coefficients; here pixel and coefficient have used without distinction;  
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• LSP– list of significant pixels, it is used for the refinement pass, and includes all 

tested significant pixels. 

After the coding process of the one bit-plane, LIS contains insignificant blocks with 

different sizes. These blocks are reordered by size from the smallest to the largest. This 

reordering operation can improve the embedded performance, since the smaller blocks 

are adjacent to the significant pixels or significant blocks during the block dividing 

process. 

As the coding process progresses, the lists are updated for every bit-plane. 

5.3 Block dividing Coding Algorithm 

The BDC encoder first visits all pixels to gather information about bits in a bit-plane, 

then recursively chooses one of three block dividing methods to partition the non-zero 

blocks until 2x2 blocks are reached. The zero blocks with size equal to or greater than 4 

is encoded as one bit: “0”, while the non-zero blocks is indicated by bit “1”. Each set of 

context information on the 2x2 blocks is encoded together as one symbol, the number of 

contexts for 2x2 blocks is 16. Then the generated symbols are entropy coded.  

We firstly give the definition of the symbols used in the algorithm: 

1. cn(i, j) denotes the quantized sub-band coefficient with respect to the n-th 

bit-plane and its position is at (i,j); 

2. (i, j, bs) denotes the insignificant block and its left upper corner position is at 

(i, j) and the block size is bs; 

3. (i, j) denotes the position of the tested significant and insignificant bit; 

4. Node, position, point, pixel and coefficient are used inter-changeably 

without distinction. 

 

The complete algorithm for block dividing coding algorithm is presented as follows: 

1. initialization 

Set the initial block in the LIS to the block of a sub-band, 

LIS=[ (0,0,bs)]; 

LIP=[]; 

LSP=[]; 

2. code LIP 
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if the number of nodes ≤ T1 

for each (i, j) in LIP, 

record the value of cn(i, j); 

if cn(i, j) is significant,  

code the sign bit and move (i, j) from LIP to LSP; 

else 

for each (i, j) in LIP,  

if cn(i, j) is positive significant bit,  

output symbol P and move (i, j) from LIP to LSP; 

if cn(i, j) is negative significant bit,  

output symbol N and move (i, j) from LIP to LSP; 

else 

output symbol Z and the node (i, j) remain in LIP; 

the generated symbols are entropy coded. 

 

3. code LIS 

for each block (i, j, bs) in LIS, 

do process_LIS;. 

 

4. code LSP (refinement pass) 

for each (i, j) in LSP except those positions added in this bit-plane, 

record the value of cn(i, j); 

5. decrement n and go to step 2. 

 

In the algorithm, T1 is a threshold, which determine if or not the arithmetic coding is 

applied to the symbol stream resulted from coding coefficients in LIP.   If the number of 

coefficients in LIP is too small, applying arithmetic coding does not produce any gain 

due to the overhead resulting from applying arithmetic coding. In this case, outputting 

the values of the coefficients directly to the output bit stream is more efficient.  

 

Process_LIS: 

for every block (i, j, bs) 

if bs=2, 

output the symbol corresponding the context of 2x2 block (16 contexts), 
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if this block have significant bits, output the sign bits; 

If bs=4, 

If this block is zero block,  

output “0”; 

else 

coding every 2x2 block as a symbol, 

if this block have significant bits, output the sign bits; 

If bs>4 

If this block is zero block, 

output “0”; 

else 

 output “1”; 

test which kind of block dividing method is suitable this block, 

case  there is only one significant bit, 

encode this block using coordinate representation method 

and using quad-tree method to divide this block. The 

insignificant blocks are put into LIS, insignificant pixels 

are put into LIP, and significant pixels are put into LSP; 

case   there is one ¼ zero block, 

divide this block into four sub blocks, and do 

Code_sub-block process; 

case  there is no ¼ zero block, 

divide this block into 16 sub blocks, and do 

Code_sub-block process; 

Beside the sign bits, the generated symbols and the dividing route information 

are entropy coded. 

 

Where the Code_sub-block process is almost same as Process_LIS, only two places are 

not the same. Firstly, the coding objects are not the same, Code_sub-block codes the 

sub-blocks. Secondly, no bit is used for last non-zero block if all other blocks are zero 

blocks. The Code_sub-block process may be recursively applied to sub sub_blocks 

many times until all points in the LIS are partitioned into suitable lists (LIS, LIP, or 

LSP). The Code _sub-block process is as follows. 
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Code_sub-block: 

for every sub block (i, j, bs) 

if bs=2, 

output the symbol corresponding the context of 2x2 block (16 contexts), 

if this block have significant bits, output the sign bits; 

If bs=4, 

If this block is zero block,  

output “0”; 

else 

coding every 2x2 block as a symbol, 

if this block have significant bits, output the sign bits; 

If bs>4 

If this block is zero block, 

output “0”; 

else 

 if  this block is the last block and all other blocks are zero block, 

  nothing; 

 else 

output “1”; 

   end 

test which kind of block dividing method is suitable this block, 

case  there is only one significant bit, 

encode this block using coordinate representation method 

and using quad-tree method to divide this block. The 

insignificant blocks are put into LIS, insignificant pixels 

are put into LIP, and significant pixels are put into LSP; 

case   there is one ¼ zero block, 

divide this block into four sub blocks, and do 

Code_sub-block process; 

case  there is no ¼ zero block, 

divide this block into 16 sub blocks, and do 

Code_sub-block process; 

beside the sign bits, the generated symbols and the dividing route information 

are entropy coded. 
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When we apply the algorithm to the most significant bit-plane coding, the lists of LIP 

and LSP are empty. After the coding process is finished, three lists all have some 

content. When coding the next bit-plane, the coding order is from LIP, LIS to LSP as 

illustrated in the algorithm.  

5.4 A Simple Example 
In this section, a simple example is used to demonstrate the block dividing coding 

algorithm described in previous section. Table 8 shows the array of coefficients. The 

numbers in the top line and left column are used for representation of the coordinate 

position.  

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
0 0 0 0 0 6 18 -5 4 1 0 0 2 0 0 0 0
1 0 0 0 0 0 12 -5 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 -2 0 0 4 0 0 -1 0 0 0
3 0 0 5 0 0 0 0 0 24 0 0 0 0 2 3 1
4 0 2 23 16 0 0 0 0 0 12 -5 0 0 0 -1 0
5 0 0 11 0 0 0 0 23 0 -2 23 -6 0 0 0 0
6 0 0 0 0 0 6 18 0 0 0 -36 22 -8 0 0 0
7 0 0 0 0 23 12 5 0 0 -12 -31 1 8 3 0 0
8 0 0 -6 -12 -56 32 3 0 0 -6 0 4 4 -20 5 0
9 0 0 1 0 -23 33 -6 0 12 48 3 16 63 -36 12 0

10 0 0 0 0 0 20 -4 0 6 50 12 0 14 22 8 0
11 0 1 -1 0 0 6 -16 0 0 21 13 53 37 11 3 0
12 0 0 0 -3 -13 -48 -42 12 0 8 0 12 0 4 0 1
13 0 3 0 0 0 -10 34 8 13 45 51 22 0 12 -11 0
14 0 0 5 0 3 0 7 1 0 12 23 0 -3 -38 -46 6
15 0 -2 0 0 0 0 0 0 0 0 0 0 0 0 8 0

Table 8  Array of coefficients  

 

The maximum absolute value is 63; it means this block has six bit-planes. Every bit-

plane except the most significant bit-plane is encoded by two passes: the significant 

pass and the refinement pass. The significant pass is very important; it provides the 

location information of the significant coefficients. The refinement pass is very simple, 

it records the magnitude bit of all coefficients that were encoded in the previous pass. 

The coding order is from the most significant bit-plane to the least significant bit-plane. 

Figure 25 shows the distribution of significant bits in the most significant bit-plane. It is 

extracted from Table 8. The following steps refer to the coding process, the coding 

outputs and the contents of the three lists are demonstrated: 
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 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 1- 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 1- 1+ 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 1+ 0 0 0 1+ 0 0 1+ 1- 0 0 

10 0 0 0 0 0 0 0 0 0 1+ 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 1+ 1- 0 0 0 

12 0 0 0 0 0 1- 1- 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 1+ 0 0 1+ 1+ 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 1- 1- 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Figure 25   The number and distribution of significant bits on the bit-plane 

 

1. First test whether there is one ¼ zero sub-block. In this example, we do have 

such a sub-block, we divide this block into four sub-blocks (8x8) and we use 

yellow colour to highlight that sub-block. We output a 0 to represent this kind of 

dividing method. The first sub-block is encoded as 0, and this sub-block is put 

into LIS. One bit can represent 64 zero bits. We use the (x, y, sb) format to 

represent the tested insignificant block, x and y denote the upper left coordinate 

position and sb is the block size. We use the (x, y) to represent the tested pixels, 

where x, y are the coordinate position of the pixels. The positive sign is 

represented as + while the negative sign is represented as -.  The first sub-block 

coding process results in the following output and the contents of the 3 lists are 

summarised below:.  

 

Output: [0 0]; 

LIS: [(0, 0, 8)]; 

LIP: [ ]; 

LSP: [ ]; 
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2. The second sub-block is a non-zero block; it is highlighted by the yellow colour 

as shown in Figure 26. Firstly, it is encoded as 1. It only has one significant bit. 

We recursively use the quad-tree splitting method to divide non-zero blocks into 

four sub blocks until the 2x2 block, output “10” is used to represent this dividing 

method. The position of the significant pixel in the sub-block is (6, 2), and is 

encoded with sign symbol as 110 010 -. All zero blocks are put into the LIS, 

because they are insignificant blocks. The positions of insignificant pixels are 

put into the LIP, while the position of significant pixel is put into the LSP. The 

output and three lists are as shown below. 

 

Output: [0 0, 1 1 0 1 1 0 0 1 0 -]; 

LIS: [(0,0,8),(0,8,4),(0,12,4),(4,8,2),(4,10,2),(6,8,2),(4,12,4)]; 

LIP: [(6,11),(7,10),(7,11)]; 

LSP :[( 6,10)]; 

 

 

Figure 26  Second sub block 

 

3. The third block is also a non-zero block. Firstly, it is encoded as 1. This block 

has two zero sub-blocks. We divide this block into four 4x4 sub-blocks, and we 

output 0 to represent this kind of dividing method. The first sub-block is 
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encoded as 0 and is put into the LIS. The second sub-block is a non-zero block 

and it is firstly encoded as 1. It has four 2x2 sub blocks. Figure 27 shows the 

dividing process. Every 2x2 sub block is encoded as one symbol. We use 16 

symbols to represent the possible contexts of the 2x2 blocks. The first 2x2 sub-

block in the second 4x4 block is encoded as 13, followed by the sign bits:-++. 

The three remaining 2x2 blocks are encoded as symbols: 0 0 0. The third 4x4 

sub-block is encoded as 0. The fourth 4x4 block is encoded as 4 - 10 - + 0 0. All 

zero sub-blocks are put into the LIS; all tested insignificant pixels are put into 

the LIP while all tested significant pixels are put into the LSP. 

 

Output: [0 0, 1 1 0 1 1 0 0 1 0 -, 1 0 13 - + + 0 0 0 0 4 - 10 - + 0 0]; 

LIS: [(0,0,8),(0,8,4),(0,12,4),(4,8,2),(4,10,2),(6,8,2),(4,12,4),(8,0,4),(8,6,2), 

(10,4,2),(10,6,2),(12,0,4),(14,4,2),(14,6,2)]; 

LIP: [(6,11),(7,10),(7,11),(9,4),(12,4),(13,4),(13,5),(12,7),(13,7)]; 

LSP: [(6,10),(8,4),(8,5),(9,5),(12,5),(12,6),(13,6)]; 

 

 

Figure 27  Third block 

4. The fourth block is also a non-zero block and is firstly encoded as 1. It has no 

zero sub-block, we divide this block into 16 2x2 blocks, and we use 11 to 

represent this dividing method. Every 2x2 block is encoded as one symbol plus 
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the corresponding sign bits (zero blocks have no sign bits). Every zero 2x2 block 

is put into the LIS. Other corresponding pixels are put into the corresponding 

list: LIP and LSP. Figure 28 shows the dividing process. The output and 

corresponding lists are as follows: 

Output: [0 0, 1 1 0 1 1 0 0 1 0 -, 1 0 13 - + + 0 0 0 0 4 - 10 - + 0 0, 1 1 1 1 + 0 3 

+ - 0 4 + 1 + 2 - 0 1 + 2 + 0 0 0 0 4 - 8 -]; 

LIS: [(0,0,8),(0,8,4),(0,12,4),(4,8,2),(4,10,2),(6,8,2),(4,12,4),(8,0,4),(8,6,2), 

(10,4,2),(10,6,2),(12,0,4),(14,4,2),(14,6,2),(8,10,2),(8,14,2),(10,14,2),(12,1

2,2), (12,14,2),(14,8,2),(14,10,2)]; 

LIP: [(6,11),(7,10),(7,11),(9,4),(12,4),(13,4),(13,5),(12,7),(13,7),(8,8),(8,9), 

(9,8),(8,12),(8,13),(10,8),(11,8),(11,9),(10,10),(10,11),(11,10),(10,12), 

(10,13),(11,13),(12,8),(12,9),(13,8),(12,10),(12,11),(13,11),(14,12),(15,12), 

(15,13),(14,15),(15,14),(15,15)]; 

LSP :[6,10),(8,4),(8,5),(9,5),(12,5),(12,6),(13,6),(9,9),(9,12),(9,13),(10,9), 

(11,11),(11,12),(13,9),(13,10),(14,13),(14,14)]; 

 

 

Figure 28   Fourth block 

So far, the most significant bit-plane has been encoded completely. Before coding the 

next bit-plane, the blocks in the LIS list should be reordered, from the smallest block 
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size to the biggest block size. This reorder operation will improve embedded 

performance. 

  

Then, we encode the next bit-plane. Coding the next bit-plane is a little bit different 

from encoding the most significant bit-plane. It has two coding passes: the significant 

pass and the refinement pass. Now we have three lists: LIS, LIP, and LSP. LIS and LIP 

are for significant pass, while the LSP is for refinement pass. The coding order is: 

1. Firstly, we test every pixel in the LIP, using three symbols [Z(ero), P(ositive), 

N(egative)] to code it, if the pixel is a significant bit, remove this pixel from 

LIP, and put  it into LSP; 

2. Then, we test and code every block in the LIS generating new sub-blocks;  

3. Lastly, we do a refinement pass, the bit value of every pixel in the LSP except 

those pixels added in this bit-plane is recorded as the coding result; 

 

Step 1 and step 2 together are called the significant pass. Step 3 is for the refinement 

pass. The three lists will be updated during the process of coding.  The remaining bit-

planes are encoded as described above. Firstly, we do the significant coding pass, and 

then we do the refinement coding pass.  

 

Up until now, the coding results include a mixture of symbols. Before we put them into 

the next coding stage: optimized rearrangement coding, it should be further coded by 

entropy coding.  The decoder uses the same rules to reconstruct the wavelet coefficients 

and create the same lists.  

5.5 Entropy Coding 

Arithmetic coding plays a key role in image compression using wavelet transforms. It is 

a well-known method for lossless compression. It can give compression efficiency at or 

very near entropy. The number of binary bits for a symbol is given by the following 

formula: 

- Log2 p (s) i

where pi(s) is the probability of i-th symbol in the message sequence. There are two 

kinds of model for calculating the probability: a fixed model and an adaptive model. 

The fixed model is the simplest model in which the symbol’s probabilities are fixed. 

This kind of model is suited for static compression. Adaptive model represents the 
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changing probabilities seen so far in the sequence of symbols. Specifically, the 

probabilities are updated as each symbol is seen. Although arithmetic coding can 

provide the compression performance at entropy level, in principle, the practical 

efficiencies are always less than the ideal results. There are three factors affecting the 

efficiency: terminating message, finite precision arithmetic and scaling of the counts.  

The decoder can losslessly recover the original sequence of symbols, if the decoding 

terminating point is properly signalled at the decoder. There are two ways of 

terminating the decoding: 1) provide the number of symbols in the beginning of the 

compressed bit-stream; 2) use a unique terminating symbol at the end of sequence of 

symbols to inform the decoder that it should stop. We use the first method in out 

implementation. Regardless of which method is used, some overheads in the 

compressed bit-stream cannot be avoided. 

 

Arithmetic coding is used to further compress the symbols and the binary bits generated 

from the coding procedures discussed in the above sections. The arithmetic coding we 

used is based on [30]. In a practical implementation, counters are used to collect the 

statistics of the symbols and the length of the counter for each symbol in the arithmetic 

coding is 8 bits; this means that the maximum count value is 255. All counters are 

initialized to 1, when the sum of all counters reaches the maximum count value, and 

each counter is incremented by 1 and divided by 2, keeping the relative frequency of 

each symbols unchanged. In BDC algorithm, the following symbols need to be 

arithmetic coded.  

1. The binary bits from the LSP.  

2. The symbols from the LIP; 

3. The symbols for the 2x2 blocks from LIS; 

4. The binary bits about the three dividing methods, the significance test results 

and the coding results about the blocks with only one significant bit, those 

binary bits are all from the LIS. 

5.5.1 Entropy coding of the binary bits from the LSP 

The binary bits from the LSP are the refinement information. Compression of those 

binary bits is more difficult. In SPIHT, SPECK and SBHP, the refinement information 

was simply put into the final bit-stream. It is very difficult to compress this information 

because the probabilities of 0 and 1 bits in the bit stream are almost the same. For 
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example, one bit-stream has 1010100110110010, and has the same number of zeros and 

ones, according to arithmetic coding theory, the probability for zero and one is the 

same, and therefore, no compression is achievable. We use one combining approach to 

overcome this difficulty and to achieve a higher compression ratio. For example, we 

combine two continuous binary bits as one symbol (00—A, 01—B, 10—C, and 11—

D), the original bit-stream is now represented by a symbol sequence as CCCBCDAC, 

which provides each symbol with a different probability facilitating further compression 

with arithmetic coding.  

 

In our implementation, four different combining lengths are tested.   When the length is 

one, it is equal to binary arithmetic coding.  For the example given in the last section, 

two bits are combined. After compression with arithmetic coding for each combining 

length, four different bit-streams with different lengths are obtained, and we choose the 

shortest compressed bit-stream to send out. If the number of bits in the bit stream to be 

compressed is not enough to be divided by the combined length, zero or zeros are added 

at the end of the bit stream. For example, when the binary bits are 1010100110110010 

and the combined length is 3, the combined symbols become 101,010,011,011,001,000.  

The final two (bold) 0 bits are the added bits. Although we added two bits to the bit-

stream, in the decoder side, we can still correctly recover the original bits, because the 

decoder knows how many refinement bits there are from the LSP list.  

 

The experimental results show that we can get 3~8% compression. For example, the 

number of refinement bits of Lena image using the (9, 7) filter is 134799, after 

compression, the number decreases to 124971; the compression ratio is 7%. 

Considering the fact that arithmetic coding itself has some overheads in the compressed 

bit-stream (e.g. the bits for the length of compressed bit-stream and the combined 

length), arithmetic coding may not result in any gain, if the original bit-stream is not 

long enough. In our implementation, for the refinement pass, we set up the shortest 

length of the original refinement bit-stream to 260, to which arithmetic coding will be 

applied. If the length of the original bit stream is less than 260, we simply put the bit-

stream onto the final bit-stream.  
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5.5.2 Entropy coding of the symbols from the LIP 

The symbols from LIP are: Z, P and N, they correspond to the insignificant bit, positive 

significant bit and negative significant bit. The contents of the LIP list are the 

coordinates of the tested insignificant bits in previous passes. In the BDC algorithm we 

use the arithmetic coding method to those symbols only when the number of symbols is 

greater than the threshold T1 (in our experiments the T1 value is set to 600), otherwise, 

we use the direct scanning to generate the binary bits as the algorithm described, that is, 

the binary bit 0 is for the insignificant bits, the bits 10 are for the positive significant 

bits, and the bits 11 are for the negative significant bits. 

5.5.3 Entropy coding of the symbols of the 2x2 blocks from LIS  

Recalling the example in section 5.6, the coding results from the LIS are a mixture of 

symbols and binary bits, some of them are the binary bits, the others are for 2x2 blocks. 

In the practical implementation, the mixed symbols are separated into three buffers: the 

buffer one is for the symbols from 2x2 blocks, the buffer two is for sign bits of the 

significant bits, the buffer three is for the remain bits, which include the binary bits 

about the three dividing methods, the significance test results of the blocks and the 

coding results about the blocks with only one significant bit. The symbols of the buffer 

one are coded with the adaptive context model and the number of contexts is 16, the 

sign bits of the buffer two does not need to be entropy coding, since there is no coding 

gain.  How to code the contents of the buffer three is described in the following section. 

We use 16 symbols instead of 15 symbols that are adopted in other quad-tree methods 

like SPECK. Our experimental tests confirm that using 16 context symbols is more 

effective than 15 symbols.   

5.5.4 Entropy coding of the binary bits in the buffer three from the LIS 

Buffer three includes the binary bits about the three dividing methods, the significance 

test results of the blocks and the coding results about the blocks with only one 

significant bit. The entropy coding method for these binary bits is the same as the 

method described in section 5.6.1. We use the combined bits as inputs to the adaptive 

arithmetic coding. After four times of compression, we choose the shortest compressed 

bit-stream as the results.  
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Up until now, we get three parts for the binary bit-stream, one is from the entropy 

coding results of buffer one, buffer two is the sign bits, and the last is the entropy 

coding results of buffer three. We need to combine these three components together to 

form one binary bit-stream. The algorithm is described below.  We use bufb1, bufb3 to 

represent the entropy coding results from the buffer one and buffer three, bufb2 has the 

sign bits, out3p gives the combined results.  It is worth pointing out that bufb3 may be 

empty if there is no blocks with size greater than 4 in LIS. 

The assembling algorithm: 

Initiate out3p as empty; 

If  bufb3 is empty 

 Store the length of bufb1 and bufb2 in out3p;  

 Extract 10 bits from bufb1 and 3 bits from bufb2 and  

add them to out3p until finished;  

Else 

 Store the length of bufb1, bufb2 and bufb3 in the out3p;  

 Extract 10 bits from bufb1, 3 bits from bufb2 and 2 bits from bufb3 and 

            add them to out3p until finished;  

End 

On the decoder side, using the same rules to extract the three parts of the binary bits and 

applying arithmetic decoding to the first and third parts to recover the original symbols 

or binary bits, with the second part as the sign bits, it does not need  arithmetic 

decoding. 

To this point, all coding results are binary bit-stream packed. The results for every 

significant pass are called the significant packet, while the results from the refinement 

pass are called the refinement packet. Figure 29 shows the coding results from every 

sub-band. 

Next, we use optimized rearrangement coding to generate the final full bit-stream. 
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Figure 29  The coding results in every bit-plane 
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6 Optimized assembling coding 
This chapter describes how to assemble the bit-stream packets to form the final fully 

embedded bit-stream. After the first stage of the block dividing coding, we get the 

collection of bit-stream packets. The final bit stream needs to be formed by reordering 

the packets, such that the reconstructed image always has the best possible quality at 

any decoding termination point. 

 

6.1 Introduction 

In the BDC algorithm, every sub-band is encoded independently from the most 

significant bit-plane to the least significant bit-plane. The bit-stream results from every 

sub-band itself are embedded. The bit stream obtained from coding each bit-plane of a 

sub-band is called a bit-stream packet. It is an intermediate packet and needs to be 

reorganized to form the final bit-stream.  

 

Generally, two assembly methods can be used for generating the final bit-stream:  

1. Natural assembling; 

2. Optimized assembling.  

Natural assembling is the simplest assembling method, which assembles the bit-stream 

packets from the lowest sub-band to the highest sub-band within the same level bit-

plane and starting from the most significant bit-plane to the least significant bit-plane. 

Different from Natural assembling, optimized assembling is a method that always 

chooses the bit-stream packet from among the available packets with the best 

contribution to image quality. 

 

If the wavelet coefficients have been scaled very close to a unitary transform, the 

natural assembling is very efficient. However, in general the final bit-stream generated 

from this method is not optimized for the best R-D (rate vs. distortion) performance, 

due to the following points.  

1. Firstly, the coefficients on different bit-planes of different sub-band have 

different contributions to compression and reconstructed image quality;  
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2. Secondly, the scaled wavelet coefficients can only be close to the unitary 

transform, and cannot be really a unitary transform. This is especially the case 

for the integer wavelet transform. 

 

Obviously, the optimized assembling method is not affected by these two factors, where 

the contributions of the bit-stream packets from each sub-band to the mean square error 

(MSE) of the image are compared and the packet of the sub-band with the biggest 

contribution to MSE is chosen to be sent out. 

EZW, SPIHT, and SPECK combine two coding stages as one stage; they adopt the first 

method to generate the final bit-stream. The coding is ordered from the lowest sub-band 

to the highest sub-band starting from the most significant bit-plane to the least 

significant bit-plane, and the loss of the performance is not a big issue, because the 

wavelet coefficients are scaled. However, those methods cannot be directly used for the 

integer wavelet transform from the (5, 3) filters. EZBC also uses the first method to 

rearrange the bit-stream. EBCOT and SBHP use the second method to generate the final 

optimal bit-stream.  

6.2 Optimized Assembling Coding Algorithm 

With BDC algorithm the optimised packet assembly algorithm is similar to the one used 

by EBCOT, but with some differences. We only compare the contribution of the bit-

stream packet from each sub-band to the image quality, and then choose the one with 

the best contribution to image quality to send to the final bit-stream. More specifically, 

before one bit-stream packet from a sub-band is added to the final bit-stream, we do the 

inverse wavelet transform to get the reconstructed image, and then we calculate the 

actual mean-squared error (MSE) between the reconstructed image and the original 

image, that is: 

MSE=∑ −
i

RiXiWi )( 2

where, X , Ri i are the sample of ith sub-band on the original image and the reconstructed 

image respectively, Wi is the weighting factor, it is considered as the visual frequency 

weighting. Part 1 of JPEG2000 lists the recommended frequency weighting factors for 

three different viewing conditions. In our implementation, W  is set to one.  i
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We use an example to describe the optimized assembling algorithm. It is assumed that 

an image has been decomposed using a 3-level, 2-D dyadic wavelet transform, and we 

get 10 sub-bands as shown in Figure 30.  With the optimized assembling algorithm in 

BDC, the most significant packet from the B1 sub-band is sent first, the next one may 

be from B2 or other sub-band rather than the B1 sub-band. The details of the optimized 

assembling algorithm are shown below. 

 

The optimized assembling algorithm: 

1. First send out the bit-stream packet on the most significant bit-plane of B1 sub-band 

(the lowest sub-band);  

2. Calculate the first mse using the first packet and we have mse0; 

3. Fetch one bit-stream packet from each sub-band (B1, B2, B3 …and B10) and 

calculate the mse for each packet, we can get ten new mses: mse(1), mse(2), mse(3), 

… and mse(10).  We use L(i) to denote the length of each packet;  

4. Calculate (mse0 – mse(i))/L(i),  the result is called the average mse per bit, which 

represents the contribution each bit makes to the decrease of mse.. Now we have 

a_mse(1), a_mse(2), a_mse(3), … and a_mse(10);  

5. Find out the maximum a_mse(i), and send out packet associated with a_mse(i); 

6. Update the mse0 with the new mse; 

7. Continue steps 3-6 until the target bit-rate is reached. 
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File head Packet head      bit-stream Packet head      bit-stream … 
 

Figure 30  The process of the optimized assembling coding 

 

The algorithm, in principle, is similar to EBCOT. The difference is that EBCOT divides 

the wavelet coefficients matrix into many small square blocks; this will lead to more 

accurate block selection. 

6.3 Packet Formation 
The data structure of the bit-stream packet for every bit-plane of a sub-band (including 

significant pass and refinement pass) is shown in Table 9 

 
sub-band 

number 

Bit-

plane 

number 

Whole 

Significant 

bits  

Length of 

bit-stream 

for 

significant 

pass 

Bit-stream 

for 

significant 

pass 

Length of bit-

stream for 

refinement 

pass(from 

second bit-plane)  

bit-stream for 

refinement 

pass(from 

second bit-

plane) 

8bits 4 bit 16 bits 32 bits Depend on 

the length 

32 bits Depend on the 

length 

Table 9 Data structure of bit-stream packet 
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The optimised assembling coding machine reads the bit stream packet to form the final 

bit-stream. After the optimised assembling coding, the data structure of the final bit-

stream is showed in Table 10. It comprises of two parts: file head and bit-plane packet. 

Every bit-plane packet has two parts: packet head and body.  

The final bit stream now includes all the necessary information for the decoder to be 

able to decode the bit stream. The information includes image size, the number of 

wavelet transform levels, sub-band number, bit-plane number, the mark for significant 

pass and refinement pass, bit-stream packets and so on in the bit stream packet. 

 

Bit-plane packet File head 

Packet head Body 

Lossy/ 
Lossless 
mark  

wavelet 
level 

Image 
Size 

sub-
band 
Number 

Bit-plane 
Number 

Significant/ 
Refinement 
Mark 

Length of 
bit-stream 

bit-

stream 

1 bit 5 bits 12 bits 5 bits 4 bit 1 bit Depend on 

the size of 

the sub-

band 

 

Table 10 Data structure of final bit-stream 

 

Until now, we have described the all-coding processes of BDC. It consists of two 

stages. The first stage is the coding of every sub-band from the most significant bit-

plane to the least significant bit-plane, while the second stage is the optimized assembly 

coding; which is responsible for generating the final fully embedded bit-stream. 

6.4 Key Features of BDC 

6.4.1 Precise rate control 

The encoding process can be stopped at any target bit-rate.  

6.4.2 Resolution scalable 

Block dividing coding is based on the sub-band. The final bit-stream consists of 

packets; every packet has a head descriptor, which includes the sub-band number, bit-
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plane number, significant/refinement mark bit. It is easy to decode the bit stream at the 

desired image resolution. 

6.4.3 SNR scalable 

The compressed final bit-stream is the embedded bit-stream and can be stopped at any 

target PSNR or bit rate. 

6.4.4 High compression performance 

The experimental results are reported in Chapter 7. In a lossless model, our simple 

method outperforms the complicated JPEG2000.  

6.4.5 Error resilience 

It is not difficult to see that the block dividing coding provides some abilities to 

withstand errors; the bit-stream from every pass is only associated with the specific sub-

band and bit-plane, and does not affect other parts.  

6.4.6 Parallelism 

Since every sub-band is encoded independently, this kind of coding method provides 

the opportunity that all sub-bands can be coded in parallel. 
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7 Numerical Results 

This chapter presents the performances test results of the proposed BDC algorithm with 

comparisons to other coding methods. Some reconstructed images are also displayed.        

Some analysis and discussions on the results are given.  

 

7.1 Introduction  

In lossy compression, the quality of the reconstructed image is always measured by the 

PSNR (peak signal-to-reconstructed image measure). For an 8-bit image, the PSNR is 

defined as: 

PSNR=10log10(2552/MSE) 

where MSE refers to the mean squared error between the original image and the 

reconstructed image. The bit rate of the image is always expressed in bpp (bits per 

pixel). Generally, smaller MSE or larger PSNR values mean lower level distortion. To 

conduct the tests, images are compressed with bit rates of 0.125, 0.25, 0.5, 1.0, and 2.0 

bits/pixel, the resulting bit streams are then used to reconstruct the images using BDC 

and other different decoding algorithms, the PSNRs are then calculated and compared. 

In lossless compression, we use the final bpp (bits per pixel) to measure the 

compression performance, the bpp of the original grayscale images is 8, and a smaller 

bpp means the high compression ratio.  

7.2 Test Conditions 

All the tests with BDC and other algorithms are conducted under the following 

conditions.  

1. The original images are dyadicly transformed using wavelet transform with 

decomposition levels up to five;  

2. The Daubechies (9, 7) filter is used in lossy coding, while a (5, 3) filter is 

used in both lossy and lossless coding; 

3. The three popular test images “Lena”, “Barbara” and “Goldhill” were used 

in our test. They all are grayscale images and have a bit-depth of 8 bits/pixel. 

The image sizes all are 512x512. Figure 31 shows those original images. 
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The Lena image contains many small details like hair and a hat with large smooth areas. 

The Barbara image contains many objects with sharp edges like a table and books. It 

also has a lot of fine textures such as the scarf, trousers and a wicker armchair. It 

contains more information than Lena image. The Goldhill image contains many 

different textures: for example walls, windows and tiles on a house roof. The main 

scene contains a couple of houses on a steep hill. The background is distant trees and 

landscape scenery. It is the most complex image of the three images. Thus it requires 

more bits to represent it in the coding process. 

 

Lena Barbara Goldhill 

Figure 31 The three popular test images 

 

7.3 Test Results 

7.3.1 Lossless compression performance 

The three test images are compressed in a lossless manner using the (5,3) filter. Lossless 

compression means no distortion is introduced in the encoding and decoding process 

between the reconstructed and the original image. Table 11 shows the compression 

performance. The results show that the performance of our BDC algorithm outperforms 

JPEG2000, while the complexity of BDC is significantly lower than JPEG2000.  
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 Lena Barbara Goldhill

Total bit amount 1137248 1230408 1276576JPEG2000 

Bits per pixel 4.3382 4.6936 4.8697

Total bit amount 1108822 1216725 1248642BDC 

Bits per pixel 4.2298 4.6414 4.7632

Table 11  Comparison of lossless compression performance 

 

7.3.2 Lossy compression performance using the (9, 7) filter 

In lossy coding, the floating-point wavelet coefficients are scaled to be unitary or nearly 

unitary so that the distortion in the transform domain can be directly related to the 

distortion in the pixel domain.  Table 12, Table 13 and 14 show the compression 

performance in the lossy situation. From the results, we can see that the performance of 

the BDC algorithm is close to other coding methods with only JPEG2000 showing 

consistent advantage over other algorithm at low bit rate, where the bit rate is smaller 

than 1.  The performance results about SBHP are from [28, p395]. Figure 32, Figure 33 

and Figure 34 show the reconstructed images from our method at the 0.0625, 0.125, 

0.25, 0.5 and 1.0 bit-rates. 

 

 

 

bpp 0.0625 0.125 0.25 0.5 1.0 2.0 

EZW 23.10 24.03 26.77 30.53 35.14 - 

SPIHT 23.35 24.86 27.58 31.40 36.41 42.65 

SBHP - 24.32 27.50 31.56 36.64 42.81 

JPEG2000 23.38 25.28 28.55 32.48 37.37 43.43 

BDC 23.60 25.13 27.55 31.86 37.09 43.57 

Table 12  The PSNR performance of Barbara using the (9, 7) filter 
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bpp 0.0625 0.125 0.25 0.5 1.0 2.0 

EZW 27.54 30.23 33.17 36.28 39.55 - 

SPIHT 28.38 31.10 34.11 37.21 40.41 45.07 

SBHP - 30.26 33.06 36.51 39.68 44.10 

JPEG2000 27.99 31.22 34.28 37.43 40.61 44.72 

BDC 27.85 30.60 33.60 36.77 40.05 44.76 

Table 13  The PSNR performance of Lena using the (9, 7) filter 

 

 

 

 

bpp 0.0625 0.125 0.25 0.5 1.0 2.0 

EZW - - 30.31 32.87 36.20 - 

SPIHT 26.73 28.48 30.56 33.13 36.55 42.02 

JPEG2000 26.59 28.52 30.71 33.35 36.72 42.23 

BDC 26.49 28.15 30.31 32.80 36.19 41.62 

Table 14  The PSNR performance of Goldhill using the (9, 7) filter 
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Original Rate=0.0625, PSNR=23.60 

Rate=0.125, PSNR=25.13 Rate=0.25, PSNR=27.55 

Rate=0.5, PSNR=31.86 Rate=1.0, PSNR=37.09 

Figure 32  The reconstructed images of Barbara 
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Original Rate=0.0625, PSNR=27.85 

  
Rate=0.125, PSNR=30.60 Rate=0.25, PSNR=33.60 

  
Rate=0.5, PSNR=36.77 Rate=1.0, PSNR=40.05 

Figure 33  The reconstructed images of Lena 
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Original Rate=0.0625, PSNR=26.49 

Rate=0.125, PSNR=28.15 Rate=0.25, PSNR=30.31 

Rate=0.5, PSNR=32.80 Rate=1.0, PSNR=36.19 
Figure 34  The reconstructed images of Goldhill 
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7.3.3 Lossy compression performance using the (5, 3) filter 

One important characteristic of a coder using wavelet transform is that it can be used for 

progressive lossy-to-lossless compression in a single framework. The reversible wavelet 

transformation can support such functions and is adopted in the JPEG-2000. We use the 

(5, 3) filter to test the lossy compression performance of the BDC algorithm.  

When the non-reversible transform is used, the wavelet transform coefficients are easily 

scaled close to unity so that the coefficients in different sub-bands have the same energy 

weight. However, when the reversible transform is employed, the coefficients all are 

integer data; it is not easy to scale those coefficients to unity, and the scaling factor may 

cause bit growth or data expansion, and it is not efficient for lossless data compression. 

The existing full-band coding algorithms are efficient when applied to the scaled 

coefficients and inefficient to the unscaled coeffcients since they cannot distinguish the 

importance of the coefficients. The BDC algorithm solves this problem by using the 

optimized assembling algorithm without scaling process. Table 15 and 16 show the 

compression results for the BDC algorithm using both natural assembly and optimized 

assembly comparing with the performance of JPEG2000. It can be seen that the PSNRs 

obtained using optimized assembly are much better than PSNRs obtained using natural. 

From those results, we can see that the optimized assembling coding method can make 

the lossy-to-lossless compression in a single coding framework and do not need to 

consider the scalar factor on designing the integer transform filters. Because the 

optimised assembling coding can choose the best bit-stream packet from sub-bands to 

form the final bit-stream, the compression performances of the BDC algorithm 

outperforms JPEG2000 in lossless coding while close to the JPEG2000 in lossy coding. 

 

bpp 0.0625 0.125 0.25 0.5 1.0 2.0 

JPEG2000 22.80 24.61 27.26 30.78 35.71 41.30 

BDC (Natural) 17.91 21.98 22.75 27.51 32.14 37.40 

BDC (optimized) 23.47 24.96 27.04 29.52 35.83 41.72 

Table 15  Loss performance of Barbara using the (5, 3) filter (in dB) 
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bpp 0.0625 0.125 0.25 0.5 1.0 2.0 

JPEG2000 27.43 30.11 33.17 36.24 39.23 43.30 

BDC (natural) 23.32 27.41 28.37 32.33 36.63 40.75 

BDC (optimized) 27.44 30.10 32.99 36.17 39.27 43.34 

Table 16  Loss performance of Lena using the (5, 3) filter (in dB) 

7.4 Analysis of Experimental Results 

Having briefly presented the various experimental results, we now analyze those results 

in more detail. Recall chapter 4, we pointed out that four factors can affect the final 

compressed bit-stream, factor 2-4 have been considered in the BDC algorithm. Here we 

only discuss the influences of the first factor: filters and we examine the performance 

behavior at low and high bit rates.  

7.4.1 Filters 

The influence of filters to image compression is significant. Choosing the right filters 

for an image is very important. Beside the filters itself, the number of wavelet transform 

levels and the policy for the extension of the boundary of the image to be compressed 

also have some effects on the final compression result. Table 17 shows the performance 

difference between different filters. This tells us that the classical floating-point (9,7) 

filter outperforms the reversible (5, 3) filter for coding the test image at all bit-rates. 

However, the differences are not significant at relatively low bit rates. 

 

bpp 0.0625 0.125 0.25 0.5 1.0 2.0 

 (9,7) filter 23.60 25.13 27.55 31.86 37.09 43.57 

(5, 3) filter 23.47 24.96 27.04 29.52 35.83 41.72 

Difference  -0.13 -0.17 -0.51 -2.34 -1.26 -1.85 

Table 17  Loss performance of Barbara using the (5, 3) filter and the (9, 7) filter (in dB) 

7.4.2 Bit rate 

In lossy coding, the BDC algorithm is comparable with JPEG2000 at low bit rates. 

However, at extremely low bit rates and high bit rates, the BDC algorithm outperforms 

JPEG2000. Table 18 shows the performance difference between the BDC and 

JPEG2000 obtained with the Barbara image. Even though we cannot claim that the 
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BDC algorithm outperform the JPEG2000 at all low bit-rates, its simplicity still makes 

it a good candidate to be applied in reality. 

 

bpp 0.0625 0.125 0.25 0.5 1.0 2.0 

JPEG2000 23.38 25.28 28.55 32.48 37.37 43.43 

BDC 23.60 25.13 27.55 31.86 37.09 43.57 

Difference  +0.22 -0.15 -1.0 -0.62 -0.28 +0.14 

Table 18  The difference of the PSNR performance of Barbara using the (9, 7) filter 

7.5 Discussion 

Even though the BDC algorithm is motivated and developed based on some features 

from EZW, SPIHT, SBHP and JPEG2000 algorithms, it is different from these coding 

algorithms in various aspects. 

EZW and SPIHT is a spatial-orientation-tree-based fully embedded coder, which 

employs progressive transmission by coding bit planes in decreasing order. It is well 

known that the coefficients of the wavelet transform exhibits similarities across its sub-

bands at the same spatial orientation. This property makes it possible to group the 

transform coefficients in the form of spatial orientation trees, which can be exploited in 

efficient coefficient representation to achieve compression. However, there is an 

increasing demand for some desirable properties for image coders, such as random 

access, resolution scalability and ROI (region of interesting). Unfortunately, the 

orientation tree structure makes these two coding algorithms difficult to possess these 

features.  

SBHP is a block-based embedded coder, which employs quad-tree partitioning or 

grouping technique for exploiting the fact that the blocks of coefficients with high 

probability of being zero cluster together in a particular bit plane. Coding these 

coefficients in blocks is much more efficient than coding them one-by-one. But the 

single partitioning technique does not provide the best performance and adapts to a wide 

range of images. 

EBCOT also is a block-based embedded coder which employs the fractional bit-plane 

coding idea and adaptive context-modeling technique for achieving the high 

compression performance and the desirable properties such as SNR, resolution 
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scalabilities, random access and ROI function. But the method itself is too complicated 

to be understood and implemented. 

The BDC coding algorithm is a fully embedded block-based coder which employs 

progressive transmission by coding bit planes in decreasing order. Instead of the single 

grouping technique used in SBHP, It employs three dividing methods to group the 

coefficients into blocks with variable size. And it uses the adaptive arithmetic coding to 

achieve further efficiency using an efficient context-modeling technique. The optimized 

assembly of packets makes the progressive lossy-to-lossless compression possible in a 

single framework and generate the final fully embedded bit-stream with the desirable 

properties such SNR, resolution scalabilities and random access. All those 

functionalities are achieved at low-complexity, which makes the BDC a very efficient 

block-based embedded image coder. 

We now do a complexity analysis. Recalling the BDC algorithm; where we use three 

lists to indicate the coding order. For the LIP and the LSP, we only visit every pixel 

once. For the LIS, when the size of a block is less than or equal to 4, the visiting number 

to the pixel is also one. When the size of a block is greater than 4, the BDC first visits 

all pixels to determine which kind of block dividing methods to use, then every zero 

block is encoded as one zero bit, and this block is only visited once. Other non-zero 

blocks need to be recursively divided into 2x2 blocks, the visiting number is unknown, 

but can be computed by the entropy of the block. In the EBCOT, every pixel needs to be 

scanned three times, and for determining the context of a pixel, every pixel plus the 

surrounding pixels needs to be looked up in a large of table. This process is more 

complex. 

The optimized assembling coding also is low complexity. It only chooses the packet 

with the best contribution to the image quality for the final bit-stream, there is no 

complexity calculation about the R-D curve in the EBCOT. 
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8 Conclusions and Future Research 
In this thesis, we proposed a new low-complexity image coding method – BDC. The 

proposed method utilizes the block dividing coding method plus optimized packet 

assembly to achieve high compression performance. The high performance can be 

attributed to the use of the following techniques: 

1. Discrete wavelet transform; 

2. Block dividing coding method; 

3. Optimized assembling coding; 

4. Adaptive arithmetic coding. 

The final output is a fully embedded bit-stream. The block dividing coding method 

features a low complexity with high compression performance. The experimental results 

show that the performance in the lossless coding outperforms JPEG2000, though the 

performance in the lossy coding close to the performance of JPEG2000 at low bit rates. 

8.1 Discrete Wavelet Transform 

The wavelet transform provides a compact multi-resolution representation of the image 

in transform domain. Most of the transform coefficients are small or zero, that is why 

the wavelet coefficients can be compressed. The integer DWT decomposition can be 

used for lossless and lossy compression. The embedded bit-stream that results from the 

bit-plane coding in every sub-band (or small blocks) provides scalabilities that include 

SNR, resolution, random access, and many other features.  

8.2 Block dividing Coding Method 

The block dividing coding method is a very effective aprroach with low-complexity. 

Three block dividing methods quickly group large zero areas into blocks with variable 

sizes while maintaining the high energy area in small blocks, and it is effective for a 

wide range of images. Three lists indicate the coding order, and they ensure the 

generated bit-stream is embedded. 

8.3 Optimized Packet Assembling  
The optimized packet assembling is a key factor in the BDC algorithm. It always sends 

the bit-stream packet from sub-bands to the final bit stream, which has the best 

contribution to the image quality. The final bit-stream is a fully embedded bit-stream. 
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This proposed assembling method also provides a new opportunity for designing the 

integer wavelet filters without considering the scalar factor. Different filters provide 

different results of coefficient compaction, which provide further potential to achieve 

further improved compression performance.  

8.4 Adaptive arithmetic coding 

We use the adaptive arithmetic coding to improve the performance. When coding the 

binary bit-stream (e.g. bit-stream from refinement pass), consecutive bits with different 

bit lengths are combined to create new symbols that have different statistical 

characteristics providing further opportunities to improve the coding efficiency. When 

coding the 2x2 blocks, we use 16 symbols rather than 15 symbols that were adopted by 

other quad-tree methods.  

8.5 Future Research 
Future work can be focused in the following directions.  

1. ROI (Region of Interest) feature. Region of interest (ROI) coding is important in 

applications where certain parts of an image are of a higher importance than the 

rest of the image. In these cases the ROI is decoded with higher quality and/or 

spatial resolution than the background (BG).  In the BDC algorithm the ROI has 

not been considered.  The ROI feature needs to be added to the BDC algorithm 

in the future. 

2. The block partition and grouping in the BDC algorithm are mainly based on a 

quad-tree structure resulting in rectangular blocks. In future, irregular blocks can 

be considered. The main concern with using irregular blocks is that the overhead 

with chain coding on the irregular block boundary will be too expensive.  

However, if we can define an effective coding algorithm to compress the chain 

code, the irregular block could be a good candidate for application in image 

coding.  
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Appendix 
The block dividing coding (BDC) software consists of many functions. Here we only 

extract four main control functions: BDC_encoder, BDC_sub-band_assemble, 

BDC_decoder, and BDC_pass_decoding.  

A.1 BDC_encoder 
The BDC_encoder program is the main control program for generating the fully 

embedded bit-stream. From this program, we can see six processes: pre-processing, 

DWT, scalar quantization, rate-control, bit-plane encoder and assembling.  

 

function BDC_encoder 
% Matlab implementation of BDC 
% 
% main program 
% 
% description: variable X is for selection of different source image;  
%         variable rate is for rate-control; 
%         variable lossy is for selection lossy/lossless compression 
%         varibale level is the number of wavelet transform level 
%         variable assembling is for selection of the ordering/optimized assembling model 
%  the compressed bit-stream: img_s2 
% 
% Jihai Zhu 
% Contact email : jihaizhu1@hotmail.com 
% 2006 
 
clear all; close all; 
 
%--------------- reading image -------------------------------------------- 
X1 = func_ReadRaw('lena512.raw', 512*512, 512, 512);  
X2 = func_ReadRaw('barbara_t.raw', 512*512, 512, 512); 
X3 = func_ReadRaw('goldhill_t.raw', 512*512, 512, 512); 
X4 = func_ReadRaw('baboon_t.raw', 512*512, 512, 512); 
X5 = func_ReadRaw('peppers_t.raw', 512*512, 512, 512); 
X8=imread('lena128.pgm'); %128X128 
 
%figure,imshow(uint8(X1)); 
 
%------------ choose the different data source ---------------------------- 
X=X8; 
% setup the number of wavelet transform 
level=3; 
 
%------selection of lossy and lossless compression------------------------- 
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% setup the swithch mark lossy/lossless 
lossy=1; % 1 is for lossy, 0 is for lossless 
 
%------selection of assembling model -------------------------------------- 
assembling=0; % o means the ordering assembling model, 1 means optimized  
 
%-------- pre-processing -------------------------------------------------- 
% change to signed number according to J2000 
X=double(X); 
 
% DC-level shifting 
if lossy==1 
    X=X-128; 
else 
    %X=X-128; 
    X=128-X; % same as JJ2000 
end 
 
%---------------- the filter parameters ----------------------------------- 
 
%9/7 filter from JPEG2000 verification model 7.0[WG1N1684(p81)] 
Lo_D=[0.026748757411,-0.016864118443,-
0.078223266529,0.266864118443,0.602949018236,0.266864118443,-
0.078223266529,-0.016864118443,0.026748757411]; 
Hi_D=[0.09127176311424948,-0.05754352622849957,-
0.5912717631142470,1.115087052456994,-0.5912717631142470,-
0.05754352622849957,0.09127176311424948]; 
 
% calculate synthesis filter from analyse filter 
%g0=h1(-Z); 
%g1=-h0(-z); 
lf0=length(Lo_D); 
lf1=length(Hi_D); 
for i=1:lf1 
    Lo_R(i)=Hi_D(i)*(-1)^((lf1+1)/2-i); 
end 
for i=1:lf0 
    Hi_R(i)=Lo_D(i)*(-1)^((lf0+1)/2-i); 
end 
 
%------------------ rate control ------------------------------------------ 
rate=0; % 0 means the coding all bits, the unit is bpp(bits per pixel) 
[r,c] = size(X); 
max_bits = floor(rate * r*c); 
S=gens(X,level); % S represents the every sub-band size 
 
%-------------- multi_level DWT for lossy---------------------------------- 
if lossy==1 
    %--------------lossy transform using 9/7 filter ----------------------- 
    [I_W, S] = func_DWT_J2(X, level, Lo_D, Hi_D); 
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    %I_W1=I_W; % I_W1 record the results from dwt 
else 
    %-------lossless transform using 5/3 filter by lifting----------------- 
    I_W=dwt53(X,level);     
end 
% display the picture in wavelet domain 
%nbcol = size(X,1); 
%cp1_n = uint8(wcodemat(I_W,nbcol)); 
%figure; imshow(cp1_n); 
%title('the wavelet image'); 
 
%-------------scalar quantization ----------------------------------------- 
if lossy==1 
    I_W=scalarq(I_W,level,S); % only effective for level:3 or 5     
else 
    % nothing to do for lossless 
    dd=0; 
end 
     
% calculate the bit amount of new significant and refinement points 
%cx=fix(I_W); 
%[nx,ny]=find(abs(cx)>0);% non-zero points 
%[y,z]=cal_bits(cx); 
%I_W=fix(I_W); 
%[r,c]=size(I_W); 
 
%--------- bit-plane encoding and optimized rearrangement coding----------- 
%img_s2=N46_ECPL_Enc2s(X,I_W,S,level,max_bits,r*c); 
img_s2=BDC_sub-band_assemble(X,I_W,S,level,max_bits,r*c,lossy,assembling); 
% place the lossy mark in the first place 
if lossy==1 
    img_s2=[1,img_s2]; 
else 
    img_s2=[0,img_s2]; 
end 
% transform to single character 
csy=transbc(img_s2); 
% store the bit-stream in the file 
fd2=fopen('bit-stream.txt','w'); 
for ii=1:length(csy) 
    fprintf(fd2,'%c',csy(ii));    
end 
%fwrite(fd2,csy,'double'); 
fclose(fd2); 
 
% calculate the compression ratio for lossless 
if lossy==0 
    [r,c]=size(X); 
    cr=length(img_s2)/(r*c); %compression ratio 
end 
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ed=0; % stop here 
% end of file! 
 

A.2 BDC_sub-band_assemble 
This program is a controlling program, it includes two parts. In the first part there is a 

controlling program for the bit-plane encoding of sub-bands, the details for the bit-plane 

encoding were introduced in chapter 5. The second part is for generating the final bit-

stream, there are two assembling styles: natural ordering assembling and the optimized 

assembling. 

 

function out=BDC_sub-

band_assemble(Y,X,S,level,bitnumber,blocksize,lossy,assembling); 

% name:      encoder: fistly coding every sub-band, then assembling 

%            into the final bit-stream  

% Y:         original image 

% X:         the coefficients of matrix; 

% S:         the size of every band 

% level:     the number of level of wavelet transform; 

% bitnumber: the length of coded bit stream; when bitnumber 

%            equal zero, coder all coefficients 

% out:       the bit stream for transmitting to decoder; 

 

global cobs cop cop12 cop14 cbm14 cbm57; 

cobs=0; % whole blocks which greater or equal 4x4 

cop=0;  % position number 

cop12=0; % 1/2 dividing number 

cop14=0; % 1/4 dividing number 

cbm14=0; % number of combined bit(1-4) 

cbm57=0; % number of combined bit(5-7) 

 

% 1 is for lossy coding, using optimized rearrangement coding, 

% 0 is for lossless coding, assembling bit-stream in order 

%assembling_mark=1; % 0 means the assembling in order, 1 means the optimized  
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%lossy=0; % 1 means lossy compression, 0 means lossless compression 

 

%----------------coding every sub-band ----------------------------------- 

% extract every layer's coefficients 

[r,c]=size(X); 

% first ectract LL band size 

LL=X(1:S(1,1),1:S(1,2)); 

pl=ceil(log(r*c*8)/log(2)); % pl bits are used for layer length 

bandnumber=1; 

out_LL=N928_ECPL_EncLL_ac(LL,bandnumber);  % partition with tracking list 

osb(1)={out_LL}; 

dout=[]; 

dout=[... 

    dout,length(out_LL),out_LL,... 

    ]; 

 

% coding other three band from top level to lowest level  

for sb=1:level 

    % extract other three sub-bands and do coding  

 HL=X(1:S(sb+1,1),(1+S(sb+1,1)):S(sb+2,1)); 

 LH=X((1+S(sb+1,1)):S(sb+2,1),1:S(sb+1,1)); 

 HH=X((1+S(sb+1,1)):S(sb+2,1),(1+S(sb+1,1)):S(sb+2,1)); 

 bandnumber=bandnumber+1;  

 out_HL=N928_ECPL_EncLL_ac(HL,bandnumber);  

 bandnumber=bandnumber+1; 

 out_LH=N928_ECPL_EncLL_ac(LH,bandnumber);  

 bandnumber=bandnumber+1; 

 out_HH=N928_ECPL_EncLL_ac(HH,bandnumber); 

 osb((sb-1)*3+2)={out_LH}; 

 osb((sb-1)*3+3)={out_HL}; 

 osb((sb-1)*3+4)={out_HH}; 

 dout=[... 

     dout,length(out_HL),out_HL,... 

     ]; 
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 dout=[... 

     dout,length(out_LH),out_LH,... 

     ]; 

 dout=[... 

     dout,length(out_HH),out_HH,... 

     ]; 

end 

% save to disk file 

fd2=fopen('intermedia.txt','w'); 

fwrite(fd2,dout,'double'); 

fclose(fd2); 

 

%----------- begin to assembling ---------------------------------- 

fd2=fopen('intermedia.txt','r'); 

%fd2=fopen('lena97m.txt','r'); 

%fd2=fopen('barbara53m.txt','r'); 

%fd2=fopen('goldhill53m.txt','r'); 

dout=fread(fd2,inf,'double'); 

fclose(fd2); 

dout=dout'; 

 

if assembling==0 

    % assembling bit-stream packs in order 

    % assign the bit-stream to every band 

    cl=1; 

    for sb=1:level*3+1 

        len=dout(cl); 

        cl=cl+1; 

        buf1=dout(cl:cl+len-1); % read bit-stream 

        cl=cl+len; 

        %buf1=buf1'; 

        osb(sb)={buf1}; 

    end 
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    % ----------- rearrange the bit stream -------------------------- 

    overall_band=level*3+1; 

    ob=tranb(overall_band,5); % overall_band number 

    lb=tranb(level,5); %level number 

    rb=tranb(r,12); % size of image 

    out=[lb,rb]; %initiate the out: overall band number, row size of image 

    if bitnumber~=0 

        remainbit=bitnumber-17; % 16 bits are used up 

    end 

     

    % set up the index point to the begin of every band 

    c_osb(1:overall_band)=2;  

    % initiate every state 

    for i=1:overall_band 

        rs(i)=osb{i}(c_osb(i)); % get the row size 

        c_osb(i)=c_osb(i)+1; 

        % maximum length of one layer using binary represent 

        pl2(i)=ceil(log(rs(i)*rs(i)*2)/log(2))+1; 

        r_l2(i)=ceil(log(rs(i))/log(2)); %r_l is the binary length of row number 

        pn2=osb{i}(c_osb(i):c_osb(i)+3); % get the maximum layer number of every band 

        p_n2=transB(pn2); 

        c_layer(i)=p_n2; 

        add_l(i)=0; % add_l  means adding which pass, 1: refine, 0:new significant  

        topsent(i)=0; 

    end 

     

    % top layer 

    top_layer=c_layer; 

     

    % maximum layer number 

    pn1=max(c_layer); 

     

    % output every pass from top to bottom 

    for pass=(pn1*2-1):-1:1 
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        % calculate the corresponding layer 

        layer=floor((pass+1)/2); 

        for band=1:overall_band  

            % check which pass should be sent out  

            if add_l(band)==0 % new significant pass 

                if length(out)==434992 

                    dd=0; 

                end 

                % try to get the layer number 

                if top_layer(band)~=layer 

                    lb=osb{band}(c_osb(band):c_osb(band)+3);  

                    c_layer(band)=transB(lb);  

                end 

                if c_layer(band)<layer 

                    continue; 

                end 

                if c_layer(band)==top_layer(band) & topsent(band)==1 

                    continue; 

                end  

                c_osb(band)=c_osb(band)+4; 

                % get the whole significant points 

                nop{band}(c_layer(band))=osb{band}(c_osb(band)); 

                c_osb(band)=c_osb(band)+1; 

                % adjust the length for store of bit-stream for significant pass 

                if c_layer(band)==top_layer(band) 

                    pl3(band)=pl2(band); 

                else 

                    if (rs(band)*rs(band)-nop{band}(c_layer(band)+1))==0 

                        pl3(band)=5; % at least, there are 5 bits 

                    else 

                        pl3(band)=ceil(log((rs(band)*rs(band)-

nop{band}(c_layer(band)+1))*2)/log(2))+1; 

                    end 

                end  
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                % get the length of the bit-stream 

                length6=osb{band}(c_osb(band):c_osb(band)+pl3(band)-1); 

                c_osb(band)=c_osb(band)+pl3(band); 

                leng7(band)=transB(length6); 

                if leng7(band)==0 % means no new significant 

                    % change the pointer  

                    add_l(band)=1; 

                    c_layer(band)=c_layer(band)-1; 

                    continue; 

                end 

                 

                % get the bit-stream of the layer 

                buf=osb{band}(c_osb(band):c_osb(band)+leng7(band)-1); 

                c_osb(band)=c_osb(band)+leng7(band); 

                bn=tranb(band,5); % band number needs 5 bits 

                p_n2=tranb(layer,4); % layer number 

                out=[... 

                    out,bn,p_n2,0,length6,buf,... % band number, layer number, 

significant/refine mark,  

                    % length of bit-stream, bit-stream  

                    ]; 

                % adjust the pass mark 

                if c_layer(band)==top_layer(band) 

                    add_l(band)=0; % remain the previous state 

                    topsent(band)=1; 

                else 

                    add_l(band)=1; 

                end 

            else 

                % send the refinement bit-stream  

                % adjust the length for store of bit-stream for refinement pass 

                pl31(band)=ceil(log(nop{band}(c_layer(band)+1)+3)/log(2)); 

                % get the length of the significant pass 
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                length6=osb{band}(c_osb(band):c_osb(band)+pl31(band)-1); 

                leng6=transB(length6); 

                c_osb(band)=c_osb(band)+pl31(band); 

                 

                % get the bit-stream of the layer 

                buf=osb{band}(c_osb(band):c_osb(band)+leng6-1); 

                c_osb(band)=c_osb(band)+leng6; 

                bn=tranb(band,5); % band number needs 5 bits 

                p_n2=tranb(layer,4); % layer number 

                out=[... 

                    out,bn,p_n2,1,length6,buf,... % band number, layer number, 

significant/refine mark,  

                    % length of bit-stream, bit-stream  

                    ]; 

                % adjust the pass mark 

                add_l(band)=0; 

            end 

            % check the overall length of bit-stream 

            if bitnumber~=0 

                remainbit=remainbit-length(out); 

            end 

        end 

        dd=0; 

    end 

    dd=0; 

else 

    % assembling process using optimized rearrangement coding 

    cl=1; 

    for sb=1:level*3+1 

        len=dout(cl); 

        cl=cl+1; 

        buf1=dout(cl:cl+len-1); % read bit-stream 

        cl=cl+len; 

        %buf1=buf1'; 

  



Appendix          Image compression software                        96 

        osb(sb)={buf1}; 

    end 

    % ----------- rearrange the bit stream --------------------------     

    overall_band=level*3+1; 

    ob=tranb(overall_band,5); % overall_band number 

    lb=tranb(level,5); %level number 

    rb=tranb(r,12); % size of image 

    out=[lb,rb]; %initiate the out: overall band number, row size of image 

    if bitnumber~=0 

        remainbit=bitnumber-17; % 16 bits are used up 

    end 

     

    % set up the index point to the begin of every band 

    c_osb(1:overall_band)=2;  

    % initiate every state 

    for i=1:overall_band 

        rs(i)=osb{i}(c_osb(i)); % get the row size 

        c_osb(i)=c_osb(i)+1; 

        % maximum length of one layer using binary represent 

        pl2(i)=ceil(log(rs(i)*rs(i)*2)/log(2))+1; 

        r_l2(i)=ceil(log(rs(i))/log(2)); %r_l is the binary length of row number 

        pn2=osb{i}(c_osb(i):c_osb(i)+3); % get the maximum layer number of every band 

        p_n2=transB(pn2); 

        c_layer(i)=p_n2; 

        add_l(i)=0; % add_l  means adding which pass, 1: refine, 0:new significant  

        topsent(i)=0; 

    end 

     

    % top layer 

    top_layer=c_layer; 

     

    % maximum layer number 

    pn1=max(c_layer);     
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    % first output the top layer of LL band 

    c_osb(1)=1; % set up the index point to the begin of every band 

    ln=osb{1}(c_osb(1)); % get the index point of first band number 

    c_osb(1)=c_osb(1)+1; 

    lr=osb{1}(c_osb(1)); % get the row size 

    c_osb(1)=c_osb(1)+1; 

    pl2=ceil(log(lr*lr*2)/log(2))+1; % maximum length of one layer using binary 

represent 

    r_l2=ceil(log(lr)/log(2)); %r_l is the binary length of row number 

    %p_nm=osb{1}(c_osb(1):c_osb(1)+3); % get the maximum layer number 

     

    for i=1:1 % output the first top layers 

        p_n2=osb{1}(c_osb(1):c_osb(1)+3); % get the layer number 

        p_n1=transB(p_n2); 

        c_osb(1)=c_osb(1)+4;  

        nop{1}(p_n1)=osb{1}(c_osb(1));% get the whole significant point 

        c_osb(1)=c_osb(1)+1; 

        length6=osb{1}(c_osb(1):c_osb(1)+pl2-1); % get the length of the layer 

        leng6=transB(length6); 

        c_osb(1)=c_osb(1)+pl2; 

        buf=osb{1}(c_osb(1):c_osb(1)+leng6-1); % get the bit-stream of the layer 

        c_osb(1)=c_osb(1)+leng6; 

        bn=tranb(1,5); % sub-band number needs 5 bits 

        out=[... 

            out,bn,p_n2,0,length6,buf,... % band number, layer number, significant/refine 

mark,  

            % length of bit-stream, bit-stream 

            %out,p_n2,length6,buf,... 

            ]; 

        if bitnumber~=0 

            remainbit=remainbit-length(out); 

        end 

    end 

    % calculate the mse of top layers 
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    LLD(1:r,1:c)=0; 

    A=set_a(pn1); 

     

    % extract the top layer of LL band  

    for rowb=1:r 

        for colb=1:c 

            if rowb<=S(1,1) & colb <=S(1,1) 

                if X(rowb,colb)>=0 

                    LLD(rowb,colb)=bitand(X(rowb,colb),A(p_n1)); 

                    if LLD(rowb,colb)>0 

                        LLD(rowb,colb)=LLD(rowb,colb)+2^(p_n1-2); 

                    end 

                else 

                    LLD(rowb,colb)=bitand(abs(X(rowb,colb)),A(p_n1)); 

                    if LLD(rowb,colb)>0 

                        LLD(rowb,colb)=LLD(rowb,colb)+2^(p_n1-2); 

                        LLD(rowb,colb)=-LLD(rowb,colb); 

                    end 

                end  

            end 

        end 

    end 

    LLB={LLD}; % store the coefficients in the LLB 

    LLD1=LLD; 

    add_l(1)=0; % add_l  means adding which layer, 1: refine, 0:new significant 

     

    if lossy==1 

    % irreverse wavelet transform 

    %9/7 filter from JPEG2000 verification model 7.0[WG1N1684(p81)] 

    Lo_D=[0.026748757411,-0.016864118443,-

0.078223266529,0.266864118443,0.602949018236,0.266864118443,-

0.078223266529,-0.016864118443,0.026748757411]; 
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    Hi_D=[0.09127176311424948,-0.05754352622849957,-

0.5912717631142470,1.115087052456994,-0.5912717631142470,-

0.05754352622849957,0.09127176311424948]; 

    % calculate synthesis filter from analyse filter 

    [Lo_R,Hi_R]=gfromh(Lo_D,Hi_D); 

     

    % dequantization 

    %Nor97=[8.41675 4.18337 2.07926 1.99681 0.96722 1.01129 0.52022]; 

    Nor97=[33.924847 17.166698 8.686716 8.534109 4.3004827 4.18337 2.07926 

1.99681 0.96722 1.01129 0.52022]; 

    Nor97=Nor97/2; 

    LLD(1:S(1,1),1:S(1,2))=LLD(1:S(1,1),1:S(1,2))*(1/Nor97(1)); 

    for sb=1:level 

        % extract other three sub-bands and do coding 

        

LLD((1+S(sb+1,1)):S(sb+2,1),1:S(sb+1,1))=LLD((1+S(sb+1,1)):S(sb+2,1),1:S(sb+1,1))

*(1/Nor97(sb*2)); % LH band 

        

LLD(1:S(sb+1,1),(1+S(sb+1,1)):S(sb+2,1))=LLD(1:S(sb+1,1),(1+S(sb+1,1)):S(sb+2,1))

*(1/Nor97(sb*2)); % HL band 

        

LLD((1+S(sb+1,1)):S(sb+2,1),(1+S(sb+1,1)):S(sb+2,1))=LLD((1+S(sb+1,1)):S(sb+2,1)

,(1+S(sb+1,1)):S(sb+2,1))*(1/Nor97(sb*2+1)); % HH band 

    end 

    %LL4 = func_InvDWT_J2T(LLD1, S, Lo_R, Hi_R, level); 

    LL4 = func_InvDWT_J2(LLD, S, Lo_R, Hi_R, level); 

    %figure,imshow(uint8(LL4)); 

    else 

        LL4=idwt53(LLD,level,S); 

    end 

    % calculate the mse 

    mse4=calcumse(Y,LL4); 

     

    % set up the size of every band 
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    S1=S; 

    S1(1,1)=0; 

    S1(1,2)=0; 

     

    % set up the pointer, get the top layer number 

    c_layer(1)=p_n1-1; % the counter for significant layer number of LL band 

     

    % refine layer 

    cr_layer=top_layer-1; 

     

    if bitnumber==0 

        remainbit=2; 

    end 

    % output the bitstream untill reach to rate bit 

    while (remainbit>0) 

        % compare the mse per bit of one band 

        for band=1:overall_band 

            if c_layer(band)==0 & cr_layer(band)==0 % means this band all layer is out 

                mse_a(band)=0; 

                continue; 

            end 

             

            % calculate the mse of current top layer of every sub-band 

            % initiate the wavelet matrix as zero 

            LLC(1:r,1:c)=0; 

            %wl=0; % which layer is the current layer belong? 

             

            % transfer the band to resolution and LH, HL and HH area 

            reso=floor((band+4)/3); 

            area=mod(band-1,3); 

            if reso==1 

                pox0=1; 

                poy0=1; 

                pox1=S(2,1); 
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                poy1=S(2,2); 

            else 

                if area==1 %HL area 

                    pox0=1; 

                    poy0=S(2,1)*2^(reso-2)+1; 

                    pox1=S(2,1)*2^(reso-2); 

                    poy1=S(2,1)*2^(reso-1);                     

                else 

                    if area==2 %LH 

                       pox0=S(2,1)*2^(reso-2)+1; 

                       poy0=1; 

                       pox1=S(2,1)*2^(reso-1); 

                       poy1=S(2,1)*2^(reso-2);                        

                    else % HH 

                       pox0=S(2,1)*2^(reso-2)+1; 

                       poy0=S(2,1)*2^(reso-2)+1; 

                       pox1=S(2,1)*2^(reso-1); 

                       poy1=S(2,1)*2^(reso-1); 

                    end 

                end 

            end 

                       

            % check whether there are some new significant 

            if add_l(band)==0  

                p_n2=osb{band}(c_osb(band):c_osb(band)+3); % get the layer number 

                p_n3(band)=transB(p_n2); 

                c_osb(band)=c_osb(band)+4;  

                % get the whole significant points 

                nop{band}(p_n3(band))=osb{band}(c_osb(band)); % get the whole 

significant point 

                % adjust the length for store of bit-stream for significant 

                % pass 

                if c_layer(band)==top_layer(band) 
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                    pl3(band)=ceil(log((S1(reso+1,1)-S1(reso,1))*(S1(reso+1,1)-

S1(reso,1))*2)/log(2))+1; % maximum length of one layer using binary represent 

                else 

                    %if (rs(band)*rs(band)-nop{band}(c_layer(band)+1))==0 

                    if ((S1(reso+1,1)-S1(reso,1))*(S1(reso+1,1)-S1(reso,1))-

nop{band}(p_n3(band)+1))==0 

                        pl3(band)=5; 

                    else 

                        %pl3(band)=ceil(log((rs(band)*rs(band)-

nop{band}(c_layer(band)+1))*2)/log(2))+1; 

                        pl3(band)=ceil(log(((S1(reso+1,1)-S1(reso,1))*(S1(reso+1,1)-

S1(reso,1))-nop{band}(p_n3(band)+1))*2)/log(2))+1; 

                    end 

                end 

                c_osb(band)=c_osb(band)+1; 

                length6=osb{band}(c_osb(band):c_osb(band)+pl3(band)-1); % get the length 

of the layer 

                leng7(band)=transB(length6);  

                if leng7(band)==0 % means no new significant 

                    % change the pointer 

                    c_osb(band)=c_osb(band)+pl3(band); 

                    add_l(band)=1; 

                    c_layer(band)=p_n3(band)-1; 

                else 

                    c_osb(band)=c_osb(band)-5; % recovery the point 

                end 

            end 

             

            if add_l(band)==0 % try send new significant 

                 

                % send new significant layer 

                for rowb=1:r 

                    for colb=1:c 

                        if pox0<=rowb & rowb<=pox1 & poy0<=colb & colb<=poy1 
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                            if c_layer(band)==top_layer(band) 

                                if X(rowb,colb)>=0 

                                    LLC(rowb,colb)=bitand(X(rowb,colb),A(c_layer(band))); 

                                    if LLC(rowb,colb)>0 

                                        LLC(rowb,colb)=LLC(rowb,colb)+2^(c_layer(band)-2); 

                                    end 

                                else 

                                    LLC(rowb,colb)=bitand(abs(X(rowb,colb)),A(c_layer(band))); 

                                    if LLC(rowb,colb)>0 

                                        LLC(rowb,colb)=LLC(rowb,colb)+2^(c_layer(band)-2); 

                                        LLC(rowb,colb)=-LLC(rowb,colb); 

                                    end 

                                end 

                            else 

                                if LLB{1}(rowb,colb)==0 % means this bit may be new significant, 

LLB includes the coefficients which have been sent out 

                                    if X(rowb,colb)>=0 

                                        LLC(rowb,colb)=bitand(X(rowb,colb),A(c_layer(band))); 

                                        if LLC(rowb,colb)>0 

                                            LLC(rowb,colb)=LLC(rowb,colb)+2^(c_layer(band)-2); 

                                        end 

                                    else 

                                        LLC(rowb,colb)=bitand(abs(X(rowb,colb)),A(c_layer(band))); 

                                        if LLC(rowb,colb)>0 

                                            LLC(rowb,colb)=LLC(rowb,colb)+2^(c_layer(band)-2); 

                                            LLC(rowb,colb)=-LLC(rowb,colb); 

                                        end 

                                    end 

                                else 

                                    LLC(rowb,colb)=LLB{1}(rowb,colb); 

                                end 

                            end 

                        else 

                            LLC(rowb,colb)=LLB{1}(rowb,colb); 
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                        end 

                    end 

                end 

            else 

                % adjust the length for store of bit-stream for refinement pass 

                pl31(band)=ceil(log(nop{band}(p_n3(band)+1)+3)/log(2)); 

                %pl31(band)=ceil(log(nop{band}(c_layer(band)+1)+3)/log(2)); 

                for rowb=1:r % try send refinement bit 

                    for colb=1:c 

                        if pox0<=rowb & rowb<=pox1 & poy0<=colb & colb<=poy1 

                            rfl=cr_layer(band)+1; 

                            ud=bitand(abs(X(rowb,colb)),A(rfl)); 

                            if abs(ud)>0 % means this bit is refinement bit 

                                if X(rowb,colb)>=0 

                                    LLC(rowb,colb)=bitand(X(rowb,colb),A(cr_layer(band))); 

                                    if LLC(rowb,colb)>0 

                                        LLC(rowb,colb)=LLC(rowb,colb)+2^(cr_layer(band)-2); 

                                    end 

                                else 

                                    LLC(rowb,colb)=bitand(abs(X(rowb,colb)),A(cr_layer(band))); 

                                    if LLC(rowb,colb)>0 

                                        LLC(rowb,colb)=LLC(rowb,colb)+2^(cr_layer(band)-2); 

                                        LLC(rowb,colb)=-LLC(rowb,colb); 

                                    end 

                                end  

                            else 

                                LLC(rowb,colb)=LLB{1}(rowb,colb); 

                            end 

                        else 

                            LLC(rowb,colb)=LLB{1}(rowb,colb); 

                        end 

                    end 

                end 

            end 
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            LLO(band)={LLC}; % store the every kinds of coefficients matrix to the buffer 

area 

            %LLC1=LLC; 

             

            if lossy==1 

            % denormalization 

            LLC(1:S(1,1),1:S(1,2))=LLC(1:S(1,1),1:S(1,2))*(1/Nor97(1)); 

            for sb=1:level 

                % extract other three sub-bands and do coding 

                

LLC((1+S(sb+1,1)):S(sb+2,1),1:S(sb+1,1))=LLC((1+S(sb+1,1)):S(sb+2,1),1:S(sb+1,1))

*(1/Nor97(sb*2)); % LH band 

                

LLC(1:S(sb+1,1),(1+S(sb+1,1)):S(sb+2,1))=LLC(1:S(sb+1,1),(1+S(sb+1,1)):S(sb+2,1))

*(1/Nor97(sb*2)); % HL band 

                

LLC((1+S(sb+1,1)):S(sb+2,1),(1+S(sb+1,1)):S(sb+2,1))=LLC((1+S(sb+1,1)):S(sb+2,1),

(1+S(sb+1,1)):S(sb+2,1))*(1/Nor97(sb*2+1)); % HH band 

            end 

             

             

                LL4 = func_InvDWT_J2(LLC, S, Lo_R, Hi_R, level); 

            %LL4 = func_InvDWT_J2T(LS, Lo_R, Hi_R, level); 

            %figure,imshow(uint8(LL4)); 

            else 

                LL4=idwt53(fix(LLC),level,S); 

            end 

             

            % calculate the mse 

            mse(band)=calcumse(Y,LL4); 

             

            if add_l(band)==0 % send new significant 

                p_n2=osb{band}(c_osb(band):c_osb(band)+3); % get the layer number 

                p_n3(band)=transB(p_n2); 
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                c_osb(band)=c_osb(band)+5; % pass the layer number 

            end 

            if add_l(band)==0 

                length6=osb{band}(c_osb(band):c_osb(band)+pl3(band)-1); % get the length 

of the signifcant layer 

            else 

                length6=osb{band}(c_osb(band):c_osb(band)+pl31(band)-1); % get the 

length of the refinement layer 

            end 

            leng7(band)=transB(length6); 

            mse_a(band)=(mse4-mse(band))/leng7(band); % averge mse per bit 

            if add_l(band)==0 

                c_osb(band)=c_osb(band)-5; % recovery the point 

            end 

        end   %( for band=1:overall_band)       

         

        mse_a=abs(mse_a); % if there is nagetive mse 

         

        % find out the band which has the best a_mse as the candidate of output 

        msea=mse_a(1); 

        bd=1; 

        for band=2:overall_band 

            if msea<mse_a(band) 

                bd=band; 

                msea=mse_a(band); 

            end 

        end 

         

        % send the bit-stream of that band to output 

        if c_layer(bd)==top_layer(bd) 

            nr=add_l(bd); 

            add_l(bd)=0; 

            c_osb(bd)=c_osb(bd)+5+pl3(bd); 

            c_layer(bd)=p_n3(bd)-1; 
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        else 

            if add_l(bd)==0  % send new significant bit 

                c_osb(bd)=c_osb(bd)+5+pl3(bd); 

                nr=add_l(bd); 

                add_l(bd)=1; 

                c_layer(bd)=p_n3(bd)-1; 

            else 

                c_osb(bd)=c_osb(bd)+pl31(bd); %send the refinement bit 

                nr=add_l(bd); 

                add_l(bd)=0; 

                cr_layer(bd)=cr_layer(bd)-1; 

            end 

        end 

        if bd==1 & cr_layer(bd)==1 

            %  pause; 

            dd=0; 

        end 

        if (length(osb{bd})-c_osb(bd)+1)>=buf 

            buf=osb{bd}(c_osb(bd):c_osb(bd)+leng7(bd)-1); % get the bit-stream of the 

layer 

        else 

            dd=0; 

        end 

        bn=tranb(bd,5); % band number needs 5 bits 

        ln=tranb(p_n3(bd),4); % layer number 

        if nr==0 

            length7=tranb(leng7(bd),pl3(bd)); % length of significant bit-stream 

        else 

            length7=tranb(leng7(bd),pl31(bd)); % length of refinement bit-stream 

        end 

        % band number, layer number, significant/refine mark, length of 

        % bit-stream, bit-stream 

        out=[... 

            out,bn,ln,nr,length7,buf,... 
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            ]; 

        % change the pointer 

        c_osb(bd)=c_osb(bd)+leng7(bd); 

         

        % chang the LLB matrix 

        LLB=LLO(bd); 

        mse4=mse(bd); 

         

        % if the total bit is enough, break 

        if bitnumber~=0 

            if bitnumber<=length(out) 

                out=out(1:bitnumber); 

                break; 

            else 

                remainbit=bitnumber-length(out); 

            end 

        end 

        % if all band are out, break 

        cout=find(c_layer>0); 

        crout=find(cr_layer>0); 

        if length(cout)==0 & length(crout)==0 

            break; 

        end        

end % {while} 

dd=0; 

end 

 

A.3 BDC_decoder 
BDC_decoder is a main controlling program for generating the reconstructed image at 

any target bit-rate, and calculates the PSNR value. It has four processes: bit-plane 

decoding, dequantization, IDWT and post-processing. 
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function BDC_decoder 
% Matlab implementation of BDC 
% 
% decoder program 
% 
% description: variable X is for selection of different source image;  
%              variable rate is for rate-control 
% the reconstructed image: img_r22 
% author name: Jihai Zhu 
% Contact email: jihaizhu1@hotmail.com 
% 2006 
 
clear all; close all; 
 
%---------------- the filter parameters ----------------------------------- 
 
%9/7 filter from JPEG2000 verification model 7.0[WG1N1684(p81)] 
Lo_D=[0.026748757411,-0.016864118443,-
0.078223266529,0.266864118443,0.602949018236,0.266864118443,-
0.078223266529,-0.016864118443,0.026748757411]; 
Hi_D=[0.09127176311424948,-0.05754352622849957,-
0.5912717631142470,1.115087052456994,-0.5912717631142470,-
0.05754352622849957,0.09127176311424948]; 
 
% calculate synthesis filter from analyse filter 
%g0=h1(-Z); 
%g1=-h0(-z); 
lf0=length(Lo_D); 
lf1=length(Hi_D); 
for i=1:lf1 
    Lo_R(i)=Hi_D(i)*(-1)^((lf1+1)/2-i); 
end 
for i=1:lf0 
    Hi_R(i)=Lo_D(i)*(-1)^((lf0+1)/2-i); 
end 
 
%-------------read the bit-stream file------------------------------------- 
fd2=fopen('bit-stream.txt','r'); 
%fd2=fopen('barbara53opt.txt','r'); 
%fd2=fopen('barbara53inorder.txt','r'); 
%fd2=fopen('lena53inorder.txt','r'); 
%fd2=fopen('goldhill53inorder.txt','r'); 
%fd2=fopen('barbara97inorder.txt','r'); 
%fd2=fopen('lena97inorder.txt','r'); 
%fd2=fopen('goldhill97inorder.txt','r'); 
ch=fread(fd2,inf,'char'); 
fclose(fd2); 
ch=ch'; 
% transform character to bit 
img_s2=transcb(ch); 
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% read the lossy mark 
lossy=img_s2(1); 
img_s2=img_s2(2:length(img_s2)); 
 
% get the size of the image 
br=img_s2(6:17);  
r=transB(br); 
 
%------------------ rate control ------------------------------------------ 
rate=0; % 0 means the coding all bits, the unit is bpp(bits per pixel) 
%[r,c] = size(X); 
max_bits = floor(rate * r*r); 
if max_bits~=0 
   img_s2=img_s2(1:max_bits); 
end 
 
% ------bit-plane decoding--------------------------------------------- 
[img_w2,level]=N46_ECPL_Declis(img_s2);  
img_w21=img_w2;  
S=gens(img_w2,level); % S represents the every sub-band size 
 
%--------------- dequantization --------------------------------------- 
if lossy==1 
    img_w2=dequantization(img_w2,level,S);     
end 
     
%-------------- IDWT ------------------------------------------ 
if lossy==1 
    img_r2 = func_InvDWT_J2(img_w2, S, Lo_R, Hi_R, level); 
else 
    img_w2=fix(img_w2); 
    img_r2=idwt53(img_w2,level,S); 
end 
 
%------------post-processing ---------------------------------------------- 
if lossy==1 
    img_r1=128+img_r2; 
else 
    img_r1=128-img_r2; 
end 
img_r22=round(img_r1); 
figure, imshow(uint8(img_r22)); 
title('the reconstructed image with BDC'); 
 
%--choose the original picture for comparison with the reconstructed image- 
 
X1 = func_ReadRaw('lena512.raw', 512*512, 512, 512);  
X2 = func_ReadRaw('barbara_t.raw', 512*512, 512, 512); 
X3 = func_ReadRaw('goldhill_t.raw', 512*512, 512, 512); 
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X4 = func_ReadRaw('baboon_t.raw', 512*512, 512, 512); 
X5 = func_ReadRaw('peppers_t.raw', 512*512, 512, 512); 
X8=imread('lena128.pgm'); %128X128 
 
%figure,imshow(uint8(X1)); 
X=X8; 
X=double(X); 
 
%--------------- calculate PSNR  ------------------------------------------ 
PSNR=cal_psnr(X,img_r22); 
disp(sprintf('PSNR for BDC = +%5.4f dB',PSNR));  % display PSNR in dB unit 
ed=0; % stop here 
% end of file! 
 

A.4 BDC_Pass_decoding 

 
BDC_pass_decoding is for undoing the received bit-stream; it explains the head 
information for every packet, and then calls the bit-plane decoding to reconstruct the 
wavelet coefficients. 
 
 
function [out,level]=BDC_pass_decoding(in); 
% This method is for decoding the bit-stream from every pass. 
%  
% in: the received bit stream; 
% out: coefficients metrix in wavelet domain; 
% level: wavelet transform level 
 
 
%-----------   Initialization  -------------------------------------------- 
% undo the main parameter 
li=length(in); % get the length of in 
index=1; 
band=in(index:index+4); % get the level number 
level=transB(band); 
band=level*3+1; %overall sub-band number 
index=index+5; 
r=in(index:index+11); % get the size of matrix 
r=transB(r); 
index=index+12; 
out(1:r,1:r)=0; % initiate as zero firstly 
s(1:r,1:r)=2;% initiate sign metrix as 2 
Rs=s; 
 
% calculate the size of matrix 
band1=(band-1)/3+1; 
if band1>2 
    d=2; 
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    for i=3:band1 
        d=d+2^(i-2); 
    end 
else 
    d=2; 
end 
sr=r/d; % the smallest size 
 
lnt(1:band)=0; % represent the top layer of the block 
ln(1:band)=0; % represent the layer of significant point 
lnr(1:band)=0;% represent the layer of refinement point 
sbs(1:band)=0; % represent the small block size for coding 
bss(1:band)=0; % bs' state, after first reading the sbs, it change from 0 to 1 
%for ib=1:band 
LIS_m{band,1}=[]; % buffer for list of insignificant set 
LIS2_m{band,1}=[]; % buffer for list of 2x2 block insignificant set 
LIP_m{band,1}=[]; % buffer for insignificant pixel 
LSP_m{band,1}=[]; % buffer for significant pixel 
%end 
%switch_nr(1:band)=1; % the received bit-stream should be new 
% significant and refinement regulaly 
eb=0; % represent the length of bit-stream is right 
 
% 
 
% process every layer from every band 
while (index<li) 
    if index+9>li 
        break; 
    end 
    if index==204117 %test point 
        dd=0; 
    end 
    bdn=in(index:index+4); % get the  band number of this layer 
    bandn=transB(bdn); 
    index=index+5;     
    lynumber=in(index:index+3); % get the layer number 
    layernumber=transB(lynumber); 
    index=index+4; 
     
    %bandn=in(index); % band number 
    %index=index+1; 
    %layernumber=in(index); % layer number 
    %index=index+1; 
    %ln(bandn)=layernumber; 
     
    %process the bss 
    if bandn>16 %test point 
        dd=0; 
    end 
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    if bss(bandn)==0 
        bss(bandn)=1; 
    end 
    if index>li 
        break; 
    end 
    n_r=in(index); % n_r=0, new significant, 1: refine 
    index=index+1; 
    if n_r==0 
        if ln(bandn)==0 % means this is the first time             
            ln(bandn)=layernumber; 
            lnt(bandn)=layernumber; 
        else 
            ln(bandn)=layernumber; 
        end 
    else 
        lnr(bandn)=layernumber; 
    end 
     
    % Process the length of layer 
    if bandn==1 
        srb=sr; 
        % maximum length of one layer using binary represent 
        if n_r==0 
            if ln(bandn)==lnt(bandn) % lnt: top layer number 
                pl2=ceil(log(srb*srb*2)/log(2))+1; 
            else 
                %pl2=ceil(log((srb*srb-nop{bandn}(ln(bandn)+1))*2)/log(2))+1; 
                if (srb*srb-nop{bandn}(ln(bandn)+1))==0 
                    pl2=5; % at least, there are 5 bits 
                    nop{bandn}(ln(bandn))=srb*srb; 
                else 
                    pl2=ceil(log((srb*srb-nop{bandn}(ln(bandn)+1))*2)/log(2))+1; 
                end 
            end 
        else 
            if nop{bandn}(lnr(bandn)+1)==srb*srb;             
               nop{bandn}(lnr(bandn))=srb*srb; 
            end 
            pl2=ceil(log(nop{bandn}(lnr(bandn)+1)+3)/log(2));             
        end 
    else 
        reso=floor((bandn+4)/3); 
        srb=sr*2^(reso-2); 
        if n_r==0 
            if ln(bandn)==lnt(bandn) 
                pl2=ceil(log(srb*srb*2)/log(2))+1; 
            else 
                %pl2=ceil(log((srb*srb-nop{bandn}(ln(bandn)+1))*2)/log(2))+1; 
                if (srb*srb-nop{bandn}(ln(bandn)+1))==0 
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                    pl2=5; % at least, there are 5 bits 
                    nop{bandn}(ln(bandn))=srb*srb;                     
                else 
                    pl2=ceil(log((srb*srb-nop{bandn}(ln(bandn)+1))*2)/log(2))+1; 
                end 
            end 
        else 
            if nop{bandn}(lnr(bandn)+1)==srb*srb;             
               nop{bandn}(lnr(bandn))=srb*srb; 
            end 
            pl2=ceil(log(nop{bandn}(lnr(bandn)+1)+3)/log(2)); 
        end 
    end 
    if bandn==6 & ln(6)==1 
        dd=0; 
    end 
     
    % get the the length of this layer 
    if index+pl2>li 
        break; 
    end 
    layer_len1=in(index:index+pl2-1);  
    layer_len=transB(layer_len1); 
    index=index+pl2; 
    %layer_len=in(index); % length of bit-stream 
    %index=index+1; 
     
    % get the bit-stream 
    if length(in)-index+1<layer_len 
        bs=in(index:li); % get the not enough bit-stream 
        eb=1; 
        index=li+1; 
    else 
        bs=in(index:index+layer_len-1); % get the full bit-stream 
        index=index+layer_len; 
    end 
     
   bs=double(bs);  
   % choose the different process for bit-stream 
   if bandn==1 
       % extract every layer or pager of coefficients 
       % ectract LL band bit-stream 
       sbs1=sbs(bandn); 
       bss1=bss(bandn); 
       LIS=LIS_m{bandn,1}; 
       LIS2=LIS2_m{bandn,1}; 
       LIP=LIP_m{bandn,1}; 
       LSP=LSP_m{bandn,1};        
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[out,s,Rs,sbs1,bss1,nopa,cp,LIS,LIS2,LIP,LSP]=N928_ECPL_DecLL_ac(out,s,layernu
mber,sr,bs,eb,n_r,Rs,bandn,sbs1,bss1,pl2,LIS,LIS2,LIP,LSP,layer_len,pl2); 
       LIS_m{bandn,1}=LIS; 
       LIS2_m{bandn,1}=LIS2; 
       LIP_m{bandn,1}=LIP; 
       LSP_m{bandn,1}=LSP; 
       sbs(bandn)=sbs1; 
       bss(bandn)=bss1; 
       nop{bandn}(ln(bandn))=nopa; 
   else 
       % coding other three bands from top level to lowest level 
       srh=sr; %sr*2^(bandn-2); 
       sbs1=sbs(bandn); 
       bss1=bss(bandn); 
       LIS=LIS_m{bandn,1}; 
       LIS2=LIS2_m{bandn,1}; 
       LIP=LIP_m{bandn,1}; 
       LSP=LSP_m{bandn,1}; 
       if bandn==14 & length(bs)==11539 %  
           dd=0; 
       end        
       
[out,s,Rs,sbs1,bss1,nopa,cp,LIS,LIS2,LIP,LSP]=N928_ECPL_DecLL_ac(out,s,layernu
mber,sr,bs,eb,n_r,Rs,bandn,sbs1,bss1,pl2,LIS,LIS2,LIP,LSP,layer_len,pl2); 
       LIS_m{bandn,1}=LIS; 
       LIS2_m{bandn,1}=LIS2; 
       LIP_m{bandn,1}=LIP; 
       LSP_m{bandn,1}=LSP; 
       sbs(bandn)=sbs1; 
       bss(bandn)=bss1; 
       nop{bandn}(ln(bandn))=nopa; 
   end 
end 
 
%out=out-0.5; 
% doing sign transform 
[r,c]=size(out); 
for i=1:r 
    for j=1:c 
        if s(i,j)==1 
            out(i,j)=-out(i,j); 
        end 
    end 
end 
dd=0; 
% end of the program 
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