Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Studies on the Control of Exocrine Pancreatic Secretion in the Dog

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Massey University

Maureen Elizabeth Gaul Wichtel

2002

ABSTRACT

Conventional wisdom has held that, despite the close apposition of the proximal duodenum with the pancreas, the gut communicates with the pancreas only via "long" pathways involving the systemic arterial circulation, the central nervous system or a combination of both. This thesis examines the possibility of *local* avenues of communication, venous or neural, which take advantage of the developmental proximity of the pancreas to the gut and the veins of the hepatic portal system.

After carefully studying the anatomy, a venous latex casting technique was employed to more closely examine the venous drainage patterns of the canine pancreas in its area of close apposition with the duodenum. No clear evidence was found for a local vascular pathway of communication between the two organs, however tributaries of duodenal origin were sometimes observed to coalesce first with veins draining the pancreas prior to entering the cranial pancreaticoduodenal vein. An interesting observation concerned the presence of valves throughout the hepatic portal system, generally identified adjacent to primary, secondary and tertiary branch points relative to the main portal trunk. In all cases, the valve imprints directed blood towards the portal vein.

The results obtained from *histological* examination of the duodeno-pancreatic area were consistent with the results obtained from the latex casting study. Veins leaving the duodenum coursed between rather than through pancreatic lobules, and converged with progressively larger rather than smaller tributaries within interlobular septa. An unexpected observation was the presence of distinct inward-projecting folds in the walls of the veins of the portal vasculature that in some cases bore histological resemblance to sensory organelles. While these structures did not exhibit immunoreactivity to sensory neuropeptides, positive immunoreactivity was identified at the level of the endothelium in some of these veins. It was hypothesized that sensory structures in the portal vasculature might be involved in reflex regulation of the pancreas.

In order to test the hypothesis that components of a sensory mechanism exist within the hepatic portal system of the dog, and that such a sensory mechanism plays a role in the

control of exocrine pancreatic function, the latency of the pancreatic fluid secretory response to a bolus of secretin injected into the aorta was compared to that of secretin injected into selected veins of the portal system and systemic circulations in anaesthetized dogs. Overall, the results of two experiments suggested that the differences in latency between sites generally reflected expected differences due to circulation time. Additionally, the portal vein threshold dose was determined. The threshold dose was the smallest dose of secretin which elicited a detectable pancreatic response following injection into the portal vein site. When administered at each of the remaining non-portal vein sites, the threshold dose elicited a response in 7 of 16 cases. Collectively, the results of these studies provided no clear support for a sensory role for the portal vein or liver in the pancreatic response to secretin. The possibility that other local forms of communication exist that exert control over the exocrine pancreas await further investigation.

Dedicated to my grandmother, Ida Mills, who died of pancreatic carcinoma at Orillia Hospital in Ontario, Canada, August 17, 1977

ACKNOWLEDGEMENTS

I would like to gratefully acknowledge my primary supervisor, Professor David Mellor, for the guidance and assistance provided me over the course of this PhD. In addition to his role as a graduate research mentor, he maintained not only a constant high level of enthusiasm for my research, but also a great deal of confidence in my abilities. Through our many discussions, both scientific and philosophical, I learned to ask questions, to design and execute hypothesis-based research activities, and to then critically evaluate the results. Most of all, I learned to pay careful attention to detail. Professor Mellor was also supportive of my decision to complete the writing of my thesis overseas, and, without his patience, understanding and respect for the responsibilities and commitments I had toward my family, this thesis would have never been completed. Finally, thanks to Professor Mellor, I am now not only a better scientist, but also a better veterinarian.

I would also like to extend my thanks and appreciation to Dr Gordon Reynolds. Dr Reynolds played an integral role in the experimental phases of my PhD. His experience and expertise in gastrointestinal physiology allowed me to acquire the necessary surgical skills, and assisted me not only with the design and set-up of the experiments, but also with interpretation of the results. I am also very much appreciative of the critical evaluations provided by Dr Reynolds during the final stages of the writing of this thesis.

Sincere appreciation is also extended to Mr Mervyn Birtles for his generous provision of laboratory facilities, supplies and technical support, and for his guidance with histology, immunocytochemistry and photomicroscopy. I will be forever indebted to him for his patience, the many long hours he so graciously donated to my project, his generous commitment of funding, and importantly, for allowing me the opportunity to work in the friendly environment of his laboratory. Mr Birtles continued to assist me during the writing stages of the PhD by helping me with the descriptive and interpretive aspects of the histology and immunocytochemistry, and by assisting me in deciding which photomicrographs should be included in the thesis.

I would like to thank Dr Grant Guilford for contributing a veterinary perspective to my research.

I am also extremely grateful to Mr Allan Nutman, a brilliant anatomy technician, whose skills in animal specimen preparation, particularly latex casting, are superseded by few. His precision and attention to detail facilitated a more thorough understanding of the descriptive anatomy of the hepatic portal system of animals. Mr Nutman also graciously donated his time and expertise to the preparation of seven vascular casts of the hepatic portal system of the dog. For this, and the many hours he spent teaching me the procedures, I cannot possibly show my full appreciation. As a veterinarian, I am also extremely appreciative of the renewed awareness I have as a result of witnessing the respect that Mr Nutman shows for the animals who so innocently give their lives for teaching. I also thank Mr Nutman for the many hours he spent critically evaluating and commenting on the details and accuracy of Chapters 2 and 3, for his wisdom, and, importantly, for his friendship. Mr Nutman is nothing short of a perfectionist, and I am very fortunate and grateful to have had the opportunity to work with and learn from such a talented man.

The physiological experiments performed during the course of this PhD could not have been accomplished without the assistance of a number of other people. Thank you to Jill Hogan, Mary-Jane Taylor, Pauline McGuigan and Megan Walker for the care they provided to my research dogs, and for their assistance with physical examinations, blood collections and induction of anaesthesia. Thank you also to Dr Roz Machon, a veterinary anaesthesiologist, and to Mr. Andrew Scuffham, the anaesthesia technician, for their assistance with anaesthesia and equipment. A very special thanks is extended to Mr Brett Guthrie, my research technician. In addition to ensuring that all equipment was available and in proper working order for each experiment, Mr Guthrie spent many long hours (frequently outside of normal working hours) assisting with anaesthesia, surgery and data collection. His efforts were greatly appreciated.

Acknowledgement of research funding goes to the Palmerston North Medical Research Foundation and to the Department of Physiology and Anatomy. Graduate stipend support was provided through a Massey University PhD scholarship.

I am also grateful to the following members of the academic staff at the Atlantic Veterinary College at the University of Prince Edward Island (Canada) for assisting me with: 1) interpretation of electromyographic recordings - Dr Tarek Saleh, Department of Anatomy and Physiology; 2) interpretation of dose-response curves - Dr Alastair Cribb, Department of Anatomy and Physiology; 3) interpretation of pH measurements - Dr Brian Wagner, Department of Chemistry, and; 4) descriptive anatomy - Dr Susan Dawson, Department of Anatomy and Physiology.

Finally, and most importantly, this dissertation could have *never* been completed without the love and support of my family, my Mom, and especially my Dad who passed away before its completion. To my dear husband, Jeff, whose technical and interpretive skills were invaluable, I thank him from the bottom of my heart for his undying patience, his optimism, his never-ending kindness and understanding. To Jocelyn and Nicola, my daughters, I thank them for loving me throughout.

And to the dogs I came to know.....

TABLE OF CONTENTS

Abstract
Acknowledgements v
Table of Contents viii
List of Figures xiv
List of Tables xix
List of Abbreviations xx
CHAPTER 1. CONTROL OF EXOCRINE PANCREATIC FUNCTION: AN
INTEGRATIVE APPROACH 1
Summary 1
Introduction
Interdigestive Pancreatic Secretion 2
The Migrating Motor Complex (MMC)
Control of the MMC and Interdigestive Pancreatic Secretion . 4
Postprandial Pancreatic Secretion
'The Cephalic Phase'
'The Gastric Phase' 11
'The Intestinal Phase' 14
Influence of Hormones and Peptides on Exocrine Pancreatic
Secretion14
Influence of Nerves on Exocrine Pancreatic Secretion 19
Feedback Control of Pancreatic Function
Post-duodenal Control of Exocrine Pancreatic Function (Distal
Intestinal Phase of Pancreatic Secretion)
'The Delayed Postprandial Phase'
New Perspectives
Functional Significance of the Location of the Pancreas
The Observations
The Hypothesis 32
Support for the Hypothesis
Evidence Against the Hypothesis

Potential Means by Which the Small Intestine and Hepatic Portal
System May Communicate with the Exocrine Pancreas 38
Difficulties Associated with Studying the Hypothesis 43
Outline of Thesis 44
CHAPTER 2. COMPARATIVE TOPOGRAPHICAL ANATOMY OF THE
PANCREAS
Summary
Introduction
Embryology of the Pancreas
Comparative Topographical Anatomy of the Adult Pancreas 50
Dog (Canis familiaris) 50
Relations and Blood Supply 50
Pancreatic Ducts
<i>Ox</i> (Bos taurus)
Relations and Blood Supply57
Pancreatic Ducts
<i>Pig</i> (Sus scrofa)
Relations and Blood Supply 59
Pancreatic Ducts
<i>Horse</i> (Equus caballus) 63
Relations and Blood Supply 63
Pancreatic Ducts
Chicken (Gallus gallus) 66
Relations and Blood Supply 66
Pancreatic Ducts
Man (Homo sapiens) 70
Relations and Blood Supply 70
Pancreatic Ducts
Summary of Species Differences 80
Discussion

CHAPTER 3. MACROSCOPIC INVESTIGATION OF THE HEPATIC PORTAL
SYSTEM OF THE DOG: A STUDY USING LATEX VASCULAR CASTS
Summary
Introduction
Materials And Methods
Anaesthesia and Specimen Preparation
Latex Preparation and Casting Technique
Maceration of Soft Tissues Using an Insect Colony
Methods of Study 90
Results
General Arrangement of the Hepatic Portal System
Venous Anatomy of the Descending Duodenum, and the Body and Righ
Lobe of the Pancreas
Anatomical Evidence for Valve-directed Blood Flow
Discussion
CHAPTER 4. MICROSCOPIC INVESTIGATION OF THE DUODENO
PANCREATIC AREA AND HEPATIC PORTAL SYSTEM OF THE DOC
Summary 12
Introduction
Materials and Methods 128
Animals and Tissues Collected 128
Animal Preparation, Sample Collection and Fixation 129
Processing and Embedding
Section Cutting
Staining
Routine Staining 13
Immunostaining 13
Micrography
Results
Histology

The Duodeno-pancreatic Area and Attachments	135
Blood Vessels and Nerves	139
Valves	139
Configuration of Veins	142
Immunocytochemistry	147
Discussion	153
CHAPTER 5. LATENCY OF PANCREATIC FLUID SECRETORY R	ESPONSE
TO SECRETIN INJECTED ARTERIALLY AND INTO SELECT	ED VEINS
OF THE HEPATIC PORTAL SYSTEM	159
Summary	159
Introduction	159
Materials and Methods	161
Animals and Animal Preparation	161
Anaesthesia and Pre-surgical Set-up	162
Surgical Procedures and Experimental Set-up	163
Experimental Design	167
Preparation of Secretin Solutions	167
Intravenous Infusion of Secretin	167
Bolus Administrations of Secretin	168
Validation of Procedures	169
Calculation of Latency	169
Calculation of Drop Size	169
Statistical Analysis	170
Results	171
Secretory Response	171
Latency of Response	173
Factors Potentially Affecting the Secretory Response	176
Antro-duodenal Electrical Activity	176
pH of Gastric Fluids	176
Physiological State Under Anaesthesia	176
Factors Potentially Affecting the Measurement of Latency.	178
Order of Injection	178

Drop Size	179
Accuracy of Cannula Placement	180
Discussion	182
Suitability of the Animal Model	182
Latency of Response and the Effect of Cannula Size	185
A Sensory Role for the Hepatic Portal System?	186
Superimposition of Neural and Humoral Reflexes .	187
CHAPTER 6: FURTHER INVESTIGATIONS INTO A POTENTIAL	ROLE FOR
THE PORTAL SYSTEM IN THE CONTROL OF	EXOCRINE
PANCREATIC FUNCTION	190
Summary	190
Introduction	190
Materials and Methods	192
Animals and Animal Preparation	192
Anaesthesia and Pre-surgical Set-up	193
Surgical Procedures and Experimental Set-up	194
Experimental Design	197
Preparation of Secretin Solutions	197
Intravenous Infusion of Secretin	198
Secretin Bolus Administration - Part 1 (Latency of F	Response)
	198
Secretin Bolus Administration - Part 2 (Threshold L)etermination
and Testing)	198
Calculation of Latency	200
Statistical Analysis	200
Results	201
Physiological State Under Anaesthesia	201
Part 1 - Latency of Response	204
Part 2 - Threshold Testing	206
Discussion	210
CHAPTER 7. GENERAL DISCUSSION	216
Introduction	216

Table of Contents xiii
Research Outcomes 219
Overview
The Role of Angesthetic Monitoring in Physiological Studies 225
Overall Research Conclusions
Future Directions
Concluding Remarks 229
APPENDICES
APPENDIX 1. Depiction of Anastomoses and Venous Drainage Patterns in
Individual Specimens Used in the Derivation of the Composite Diagram
(Chapter 3, Figure 4) 231
APPENDIX 2. Depiction of Locations of Valve Imprints in Individual Specimens
Used in the Derivation of the Composite Diagram (Chapter 3, Figure 5) 234
APPENDIX 3. Laboratory Methods – Chapter 4
Preparation of Bouin's Fluid Solution
Haematoxylin/eosin Staining Protocol
Phosphate Buffered Saline Solution
APPENDIX 4. Complete Anaesthetic Record: Dog #15 – Chapter 5 240
APPENDIX 5. Checklist and Protocol: Dog #15 – Chapter 5 244
APPENDIX 6. Physiological Data Output – Chapter 5 251
APPENDIX 7. Residual Analyses – Chapter 5
APPENDIX 8. Means for Latency of Response – Chapter 5
APPENDIX 9. Complete Anaesthetic Record: Dog #8 – Chapter 6 256
APPENDIX 10. Checklist and Protocol: Dog #8 – Chapter 6
APPENDIX 11. Example of Completed Secretin Threshold Testing Form: Dog #8 -
Chapter 6
APPENDIX 12. Method for Threshold Determination – Chapter 6 267
APPENDIX 13. Residual Analyses – Chapter 6 269
APPENDIX 14. Means for Latency of Response – Chapter 6 270
REFERENCES

LIST OF FIGURES

CHAPTER 1

Figure 1.	Neurohormonal factors involved in the control of the MMC and
	associated exocrine pancreatic secretion
Figure 2.	Effects of cephalic phase stimulation on the salivary glands, the
	stomach, liver and exocrine pancreas
Figure 3.	Effects of gastric phase stimulation on the stomach, liver and
	exocrine pancreas
Figure 4.	Major effects of intestinal phase stimulation of hormone release on
	the brain, the stomach, liver and exocrine pancreas
Figure 5.	Effects of intestinal phase stimulation of nerves on the exocrine
	pancreas: enteropancreatic reflexes
Figure 6.	Examples of neurohormonal interactions during intestinal phase
	stimulation of the exocrine pancreas
Figure 7.	Negative feedback regulation of the exocrine pancreatic secretion
	by pancreatic proteases in the dog 25
Figure 8.	Proposed mechanism by which the exocrine pancreatic response to
	food in the dog is in part determined by the output of bile by the
	liver
Figure 9.	The hypothesis
Figure 10.	Direct vascular communication between the duodenum and
	exocrine pancreas 41
Figure 11.	Local countercurrent exchange between the duodenum and
	exocrine pancreas
Figure 12.	Direct nervous communication between the duodenum and
	exocrine pancreas 42
Figure 13.	Communication between the duodenum and exocrine pancreas
	involving a neural relay of information from the portal vasculature.

CHAPTER 2

Figure 1.	Ventral views of the canine foregut illustrating the changes in
	location of the lobes of the pancreas and associated ducts 49
Plate 1.	Ventral aspect of the pancreas in relation to the gastrointestinal
	tract of an adult dog 52
Plate 2.	Ventral aspect of the stomach, duodenum and pancreas of a dog 53
Figure 2.	Ventral view of the branches of the coeliac and cranial mesenteric
	arteries of the dog 54
Figure 3.	Ventral view of the tributaries of the portal vein of the dog. \ldots 55
Plate 3.	Opened stomach and duodenum of a dog 56
Figure 4.	Visceral view of the pancreas and related structures of the ox 58
Figure 5.	Dorsal view of the porcine pancreas
Figure 6.	Dorsal view of the stomach, duodenum, pancreas and associated
	arteries of the pig
Figure 7.	Ventral view of the pancreas and related structures of the horse 65
Figure 8.	Sites of entry of the pancreatic ducts into the proximal duodenum
	of the horse
Figure 9.	Ventral view of the gastrointestinal tract of the chicken
Figure 10.	Ventral view of the portal veins and hepatic veins of the chicken
	showing major tributaries of both systems
Figure 11.	Parts of the human pancreas
Figure 12.	Anterior relations of the human pancreas
Figure 13.	Posterior aspect of the human pancreas and duodenum
Figure 14.	The major arteries and veins of the human pancreas and their
	relations to surrounding structures
Figure 15.	Layout of the human portal vein and its tributaries
Figure 16.	The chief arteries of the human pancreas and their anastomoses. \dots 78
Figure 17.	The arrangement of the pancreatic ducts in man
CHAPTER 3	
Figure 1.	Site for removal of part of left abdominal wall
Figure 2.	Arrangement of cannulae and ligatures applied to branches of the
	hepatic vein viewed in relation to the visceral surface of the liver 93

Figure 3.	Arrangement of cannulae inserted in jejunal veins and their
	connection to infusion apparatus
Plate 1.	Intact, fully preserved arterial and venous latex cast showing the
	gastrointestinal tract and hepatic portal system of the dog
Plate 2.	Ventral view of same specimen as depicted in Plate 1 showing the
	splenic vein and its branches 100
Plate 3.	Ventral view of same specimen as depicted in Plates 1 and 2
	showing the gastroduodenal and caudal pancreaticoduodenal veins.
Figure 4.	Schematic representation of the gastrointestinal tract and portal
	system of the dog showing typical anastomosing patterns of veins
	draining the pancreas 103
Plate 4.	Fully preserved arterial and venous latex cast showing the venous
	anatomy of the descending duodenum, body and right lobe of the
	pancreas
Plate 5.	Ventral view of same specimen as depicted in Plate 4 showing the
	gastroduodenal vein and its branches 106
Plate 6.	Ventral view of same specimen as depicted in Plates 4 and 5
	showing the location at which the cranial pancreaticoduodenal vein
	splits 107
Plate 7.	Incompletely macerated venous latex cast showing the deep venous
	anatomy in the area of close apposition between the duodenum and
	pancreas
Plate 8.	Ventral view of same specimen as depicted in Plate 7 showing
	capillary beds of the pancreas
Plate 9.	Dorsal view of same specimen as depicted in Plates 7 and 8
	showing anastomosing venule between capillary beds of the
	pancreas
Plate 10.	Ventral view of same specimen as depicted in Plates 7 to 9 showing
	common venous drainage patterns of the duodenum and pancreas.

xii

Plate 11.	Ventral view of same specimen as depicted in Plates 7 to 10
	showing one of two different sites along the duodenum in which a
	pancreatic capillary tuft was found adherent to vessels draining the
	duodenum
Plate 12.	Dorsal view of same specimen as depicted in Plates 7 to 11
	showing the organization of the capillary beds and receiving
	venules of the duodenum 113
Plate 13.	Incompletely macerated venous latex cast showing appearance of
	valve imprints
Plate 14.	Ventral view of same specimen as depicted in Plate 13 showing
	valve imprints along the splenic vein and a pancreatic tributary 116
Plate 15.	Dorsal view of same specimen as depicted in Plates 13 and 14
	showing valve imprints along duodenal tributaries 117
Plate 16.	Intact, fully preserved arterial and venous latex cast showing 'dead-
	end' valve imprints 118
Figure 5.	Schematic representation of the gastrointestinal tract and portal
	system of the dog showing common locations of valve imprints and
	direction of blood flow 119
CHAPTER 4	
Figure 1.	Locations from which haematoxylin and eosin-stained sections
	were obtained for purposes of producing photomicrographs 134
Plate 1.	Section of canine pancreas 136
Plate 2.	Dorsal aspect of section of the canine duodeno-pancreatic area just
	cranial to the area of closest apposition
Plate 3.	Area of closest apposition between duodenum and pancreas 138
Plate 4.	Arteriole entering dorsal aspect of duodenum
Plate 5.	Cross section of vein with valve
Plate 6.	Folds
Plate 7.	'Atypical' fold 144
Plate 8.	'Atypical' fold 145
Plate 9.	'Atypical' fold

xiii

Figure 2.	Locations from which immunocytochemistry sections were
	obtained for purposes of producing photomicrographs 148
Plate 10.	Typical location in which immunoreactivity was observed in the
	walls of arteries and veins 150
Plate 11.	Slightly higher magnification of immunoreactivity shown in Plate
	10
Plate 12.	NKA-LI - portal trunk 151
Plate 13.	CGRP-LI - cranial pancreaticoduodenal vein
Plate 14.	Sub P-LI - cranial pancreaticoduodenal vein 151
Plate 15.	Sub P-LI - cranial pancreaticoduodenal vein 151
Plate 16.	Negative control - Portal trunk
Plate 17.	Negative control - Splenic vein 152
CHAPTER 5	
Figure 1.	Final set-up of experiment 166
Figure 2.	Typical pancreatic secretory response curves following
	administration of secretin into selected vessels 172
Figure 3.	Main effects model for the effect of site of injection on the latency
	of response to secretin
Figure 4.	The effect of site of injection on latency of response to secretin,
	broken down by cannula size 175
Figure 5.	Duodenal electrical activity relative to blood pressure and
	pancreatic fluid output 177
CHAPTER 6	
Figure 1.	Final set-up of experiment 196
Figure 2.	The effect of site of injection on latency of response to secretin

xiv

LIST OF TABLES

CHAPTER 2

Table 1.	Differences between species in pancreatic duct retention
Table 2.	Summary of the relationships of the pancreas to the duodenum and
	the hepatic portal system of veins
CHAPTER 4	
Table 1.	Proportion of sections examined in which were observed one or
	more areas of positive immunoreactivity
CHAPTER 5	
Table 1.	The pancreatic secretory response following administration of
	secretin into selected vessels
Table 2.	ANOVA table from the analysis of latency of response 173
Table 3.	Summary statistics for mean arterial blood pressure, heart rate,
	respiratory rate and body temperature measured every 10 minutes
	after induction of anaesthesia in control dogs 178
Table 4.	Summary statistics for mean arterial blood pressure, heart rate,
	respiratory rate and body temperature measured before and after
	each bolus injection of secretin to test dogs 179
Table 5.	Summary of locations of tips of cannulae in test dogs 181
CHAPTER 6	
Table 1.	Part 1 summary statistics for mean arterial blood pressure, heart
	rate, respiratory rate and body temperature measured before and
	after each bolus injection of secretin 202
Table 2.	Part 2 summary statistics for mean arterial blood pressure, heart
	rate, respiratory rate and body temperature measured over the
	course of the secretin threshold testing procedures 203
Table 3.	ANOVA table from the analysis of latency of response
Table 4.	Portal vein threshold dose and results of threshold testing 207
Table 5.	Summary of locations of tips of cannulae in all dogs 209

LIST OF ABBREVIATIONS

A	aorta
AUC	area under the curve
BSA	bovine serum albumin
CaVC	caudal vena cava
CCK	cholecystokinin
CGRP	calcitonin gene-related peptide
CNS	central nervous system
CMV	cranial mesenteric vein
EMG	electromyography
HR	heart rate
ID	internal diameter
IU	international units
GLM	general linear model
GLP-1	glucagon-like peptide-l
GRP	gastrin-releasing peptide
HCl	hydrochloric acid
HCO ₃ ⁻	bicarbonate
MABP	mean arterial blood pressure
MMC	migrating motor complex
MV	mesenteric vein
NaCl	sodium chloride
NKA	neurokinin A
OD	outer diameter
pH	potency of hydration
PDV	cranial pancreaticoduodenal vein
PP	pancreatic polypeptide
PV	portal vein
PYY	peptide YY
RR	respiratory rate
SAS	Statistical Analysis System
SD	standard deviation
SDMV	superficial dorsal metatarsal vein
Sub P	substance P
Т	body temperature
TRH	thyrotropin-releasing hormone
VIP	vasoactive intestinal peptide