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ABSTRACT 

The main objective of this thesis was to analyse the inclusion of genomic information 

of production traits into a multitrait sheep breeding programme evaluated for 20 years 

using deterministic and stochastic simulation models. The breeding objective was to 

reduce faecal egg score (FES), decrease yearling weight (YW) and increase 160 days 

lamb carcass weight (CW). The selection criteria included 160 days live weight 

(instead of CW) plus YW and FES. The first study developed a stochastic model 

selecting animals based on their individual breeding values estimated using best linear 

unbiased predictor (BLUP) procedure with a multitrait animal model. The model was 

validated using a deterministic multitrait selection index; obtaining similar prediction 

responses for breeding objective and selection criteria traits. The second study 

deterministically evaluated the inclusion of genomic information explaining different 

proportions of CW and YW genetic variances into a selection index. Under the same 

selection scheme a selection index having only genomic information obtained lower 

accuracies and genetic gains compared to a selection index considering phenotypic 

information. If shorter generation intervals are implemented, a selection index 

including phenotypic and genomic information explaining low proportions of the trait's 

genetic variance could achieve higher genetic and economic gains. The third study 

evaluated genetic responses of a stochastically modelled breeding flock selecting ewes 

based on BLUP estimated breeding values and selecting rams based on genomic 

breeding values (GBV) for CW. The fourth study evaluated accuracy of prediction of 

CW GBV using the same simulated model. Carcass weight GBVs were calculated in a 

validation population using single nucleotide polymorphism (SNP) effects from a 

training population. The further apart the genetic relationship between these two 

populations, lower the GBV accuracy. Resultant accuracies depended on the 

proportion of total genetic variance explained by genomic information and also the 

variance accounted by each SNP, therefore an appropriate GBV estimating method has 

to be chosen to achieve accuracies as high as possible. Stochastic models proved to be 

more versatile for managing data, also showing variation of the genetic responses. In 

contrast, deterministic models were faster regarding computer processing times. The 

study proved that a breeding programme combining GBV and BLUP estimated 

breeding values can increase genetic responses by selecting animals at early stages of 

life. 
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