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Abstract—The cerebellar model articulation controller (CMAC)
neural network (NN) is a well-established computational model
of the human cerebellum. Nevertheless, there are two major
drawbacks associated with the uniform quantization scheme of
the CMAC network. They are the following: 1) a constant output
resolution associated with the entire input space and 2) the gen-
eralization-accuracy dilemma. Moreover, the size of the CMAC
network is an exponential function of the number of inputs.
Depending on the characteristics of the training data, only a small
percentage of the entire set of CMAC memory cells is utilized.
Therefore, the efficient utilization of the CMAC memory is a
crucial issue. One approach is to quantize the input space nonuni-
formly. For existing nonuniformly quantized CMAC systems,
there is a tradeoff between memory efficiency and computational
complexity. Inspired by the underlying organizational mechanism
of the human brain, this paper presents a novel CMAC architec-
ture named hierarchically clustered adaptive quantization CMAC
(HCAQ-CMAC). HCAQ-CMAC employs hierarchical clustering
for the nonuniform quantization of the input space to identify
significant input segments and subsequently allocating more
memory cells to these regions. The stability of the HCAQ-CMAC
network is theoretically guaranteed by the proof of its learning
convergence. The performance of the proposed network is subse-
quently benchmarked against the original CMAC network, as well
as two other existing CMAC variants on two real-life applications,
namely, automated control of car maneuver and modeling of the
human blood glucose dynamics. The experimental results have
demonstrated that the HCAQ-CMAC network offers an efficient
memory allocation scheme and improves the generalization and
accuracy of the network output to achieve better or comparable
performances with smaller memory usages.

Index Terms—Cerebellar model articulation controller
(CMAC), hierarchical clustering, hierarchically clustered adap-
tive quantization CMAC (HCAQ-CMAC), learning convergence,
nonuniform quantization.

I. INTRODUCTION

THE human cerebellum is a brain region in which the neu-
ronal connectivity is sufficiently regular to facilitate a sub-

stantially comprehensive understanding of its functional prop-
erties. It constitutes a part of the human brain that is important
for motor control and a number of cognitive functions [1], in-
cluding motor learning and memory. The human cerebellum is
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postulated to function as a movement calibrator [2], which is in-
volved in the detection of movement error and the subsequent
coordination of the appropriate skeletal responses to reduce the
error [3]. The human cerebellum functions by performing asso-
ciative mappings between the input sensory information and the
cerebellar output required for the production of temporal-depen-
dent precise behaviors [4]. The Marr–Albus–Ito model [3], [5]
describes how the climbing fibers of the cerebellum assist this
function by transmitting moment-to-moment changes in sen-
sory information for movement control. Therefore, as a locomo-
tive action progresses, the cerebellum is able to generate correc-
tive signals to gradually reduce the movement error.

The cerebellar model articulation controller (CMAC) [6] is a
neural network (NN) inspired by the neurophysiological proper-
ties of the human cerebellum and is recognized for its localized
generalization and rapid algorithmic computations. As a compu-
tational model of the human cerebellum, CMAC manifests as an
associative memory network [7], which employs error correc-
tion signals to drive the network learning and memory formation
processes. This allows for advantages such as simple computa-
tion, fast training, local generalization, and ease of hardware im-
plementation [2], and subsequently motivates the prevalent use
of CMAC-based systems for system control and optimizations
[8]–[12], modeling and control of robotic manipulators [13],
[14], as well as various signal processing and pattern-recogni-
tion tasks [15]–[18]. The learning convergence of the CMAC
network has also been established in [19]–[21].

As a functional model of the human cerebellum, CMAC op-
erates based on the principle that similar inputs should pro-
duce similar outputs, while inputs that are dissimilar should in-
voke nearly independent outputs. As an associative memory,
CMAC stores information locally and computes by employing
a table-lookup operation, in which the contents are indexed by
the inputs to the network. In the basic CMAC network, the net-
work computing (memory) cells are equally divided to cover the
whole input space. The CMAC inputs are then quantized to one
of the discrete network cells to compute the indexes to retrieve
the network output. We refer to this process as the uniform quan-
tization of the input space.

A problem with the uniform quantization scheme arises when
a higher output resolution is needed in certain segments of the
target function. In these cases, the uniform quantization process
will result in suboptimal memory space utilization and, in turn,
the learned data will not be precisely modeled. Furthermore,
due to the uniform quantization scheme, there is a tradeoff be-
tween the generalization capability and the modeling fidelity
of the CMAC network. A small-sized CMAC is able to better
generalize the characteristics of the training data but at a lower
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output resolution, while a large-sized CMAC produces more
accurate outputs at the expense of data generalization. These
problems are in addition to the exponentially increasing CMAC
memory size with the addition of each new input variable. It
is, therefore, judicious to devise an efficient memory allocation
scheme for the CMAC network to assign more memory cells
to the input regions that require higher output resolution to en-
hance the CMAC memory utilization and to provide more ac-
curate outputs with a reasonable degree of data generalization.
The memory allocation process in a CMAC-based system refers
to the construction of the CMAC computing structure (i.e., the
quantization functions) to define the output resolution with re-
spect to the different regions of the input space.

In the literature, there is currently a number of attempts to
address the problems of uniform quantization in a CMAC-based
system. Generally, these efforts can be classified into two main
approaches. The first approach involves the use of multilay-
ered CMACs of increasing resolutions [17], [22]–[25], while
the second approach employs a CMAC network with varying
quantization step-sizes [26]–[30]. These attempts are briefly
discussed in Section III-C. However, these CMAC variants
generally involve high computational complexity. They also
lack a strong theoretical proof of the system’s learning conver-
gence, which is a desirable attribute for control and function
approximation tasks.

In this paper, we propose the nonuniform quantization of
the CMAC network based on hierarchical clustering. The
resultant architecture is referred to as the hierarchically clustered
adaptive quantization CMAC (HCAQ-CMAC) network. The
objective of the HCAQ-CMAC network is to formulate a
memory allocation procedure to enhance the storage efficiency,
as well as to alleviate the generalization-accuracy dilemma
of the CMAC network. The proposed network is inspired by
the neurophysiology of the human brain, where the excess
neurons and connections of the infant brain are gradually
pruned and refined to form the precise wirings of the adult
brain [31]. In addition, the learning process of the proposed
HCAQ-CMAC network always converges when the learning
rate is within a theoretical range.

The rest of this paper is organized as follows. Section II de-
scribes the neurophysiological aspects of the human cerebellum
and the development process of the human brain which inspires
the HCAQ-CMAC network. Section III outlines the basic
principles of the CMAC NN, followed by a brief review of the
existing CMAC nonuniform quantization schemes proposed
in the literature. Section IV describes in details the proposed
HCAQ-CMAC architecture. The proof of learning convergence
of the HCAQ-CMAC network is established in Section V.
Section VI evaluates the performance of the HCAQ-CMAC
network against the basic CMAC and two other CMAC variants
in two real-life applications, namely, automatic control of car
maneuver and modeling the dynamics of the human glucose
metabolic process. Section VII concludes this paper.

II. HUMAN CEREBELLUM AND STAGES OF

BRAIN DEVELOPMENT

The human cerebellum, or little brain in Latin, is a brain con-
struct that is important for a number of motor and cognitive

functions, including learning and memory [32], [33]. The most
striking feature of the human cerebellum is the near-crystalline
structure of its anatomical layout. However, despite its remark-
ably uniform anatomical structure, the cerebellum is divided
into several distinct regions. Each of these regions receives sen-
sory information from different parts of the brain as well as the
spinal cord and projects to different motor systems. Such phys-
ical connectivity suggests that different regions of the human
cerebellum perform similar computational operations but on dif-
ferent sensory inputs [4].

The cerebellum is provided with an extensive repertoire of
information about the objectives (intentions), actions (motor
commands), and outcomes (feedback signals) associated with
a physical movement. There are two major sets of extra cere-
bellar afferents: the mossy fibers and the climbing fibers, both of
which carry sensory inputs from the periphery as well as sets of
motor commands-related information from the cerebral cortex
[34]. The mossy fibers carry information originating from
the spinal cord and the brainstem, while the climbing fibers
originate from the inferior olivary in the medulla oblongata.

These cerebellar afferent inputs flow into the granule cell
layer of the cerebellar cortex. The mossy fiber inputs, which
carry both sensory afferent and cerebral efferent signals, are re-
layed by a massive number of granule cells. These granule cells
work as expansion encoders by combining different mossy fiber
inputs. Subsequently, each of the granule cells extends an as-
cending axon that rises up to the molecular layer of the cere-
bellar cortex as parallel fiber. These parallel fibers in turn serve
as the inputs to the Purkinje cells at the cerebellar cortex. The
Purkinje cells are the main computational units of the cerebellar
cortex. The parallel fibers run perpendicularly to the flat fan-like
dendritic arborization of the Purkinje cells, enabling the greatest
possible number of parallel fibers and Purkinje cells contacts
per unit volume. The Purkinje cells perform combinations of
the synaptic inputs, and their axons carry the output of the cere-
bellar cortex downwards into the underlying white matter and
subsequently to the deep cerebellar nuclei. The outputs of the
deep cerebellar nuclei form the overall output of the cerebellum.

Memory formation in the cerebellum is facilitated by the in-
formation embedded in its synaptic connections. The cerebellum
corresponds to an associative memory system that performs a
nonlinear mapping from the mossy fiber inputs to the Purkinje
cells’ outputs. This mapping is functionally depicted as Fig. 1.
The granule cell layer acts as an association layer that generates
a sparse and extended representation of the mossy fiber inputs.
The synaptic connections between the parallel fibers and the den-
drites of the Purkinje cells forms an array of modifiable synaptic
weights of the cerebellar computing system. The Purkinje cell
array subsequently forms the knowledge base of the cerebellum
and generates the output of the cerebellar memory system by in-
tegrating the input synaptic connections.

Further, each of the diverse functions performed by the ma-
ture human nervous system, including the cerebellum, depends
on the precise interconnections of its neurons that are formed
through two stages of development, namely, the embryonic and
the postnatal development stage. The embryonic development
of the nervous system involves the generation of an overabun-
dance of neurons and synaptic connections, followed by the pro-
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Fig. 1. Schematic diagram of the cerebellum (adapted from [2]).

grammed death of superfluous cells [35]. The synaptic elimina-
tion process involves competition among the neuronal cells [36],
and as many as half of the initially generated neuronal connec-
tions are eliminated during the embryonic development stage.
At the same time, the surviving neurons grow to be more com-
plex and take over the functions of the eliminated ones.

This initial coarse pattern of neuronal connections is further
refined during the postnatal development stage. In this stage,
sensory information plays a critical role in strengthening and
eliminating synaptic connections through a competitive process.
Findings from neuroscience research [37], [38] have shown that
learning as well as exposures to various stimuli greatly affect
the patterns of the internal connections of the brain. This ob-
servation emphasizes the notion that the structural organiza-
tions and the neuronal mappings of the various brain regions are
subjected to constant modifications based on adaptations (e.g.,
learning) and experiences. Experiences, however, function more
than merely altering the synaptic connections. There are also ev-
idences of an ongoing synaptic reallocation process [39], where
neural cells are competitively shared by the brain’s diverse func-
tions.

With respect to the human cerebellum, there are evidences
supporting the role of experience-dependent plasticity in cere-
bellar learning and memory formation. Essentially, two types of
experience-dependent plasticity are observed in the cerebellum,
namely, synaptic plasticity and structural plasticity. Synaptic
plasticity refers to the modifiable synaptic strengths of the
cerebellar circuitry that are achieved through the long-term
depression (LTD) mechanism of the cerebellar learning process
[40]–[42]. LTD alone, however, is not adequate for forming
more permanent, long-term memories of procedural skills.
Structural plasticity, on the other hand, refers to the alteration
of the morphological structure of the neuronal interconnections
in the cerebellum. Cerebellar structural plasticity studies have
demonstrated that complex motor skill learning actually leads
to an increase in the number of synapses within the cerebellar
cortex [43]–[46]. It is primarily responsible for the formation
of persistent and long-lasting memory traces in the human cere-
bellum. Currently, findings from physiological and biological

brain studies have converged on the notion of experience being
the key driving factor responsible for the specialization of the
neuronal interconnectivity patterns in the human cerebellum.

III. CMAC AS A COMPUTATIONAL MODEL OF

THE HUMAN CEREBELLUM

The CMAC NN is a well-established computational model
of the human cerebellum [6], [7]. The model was constructed to
explain the information-processing characteristics of its biolog-
ical counterpart. This section presents the basic computational
principles of the CMAC NN and reviews some of the proposed
nonuniform quantization techniques in the literature.

A. Basics of CMAC NN

The CMAC network functions as a static associative memory
that models the nonlinear mapping between the mossy fiber
inputs and the Purkinje cell outputs of the human cerebellum.
The massive mesh of granule cell encoders in the cerebellum
corresponds to an association layer that generates a sparse and
extended representation of the mossy fiber inputs. The synaptic
connections between the parallel fibers and the dendrites of the
Purkinje cells form an array of modifiable synaptic weights
that motivates the grid-like CMAC computing structure. In
the human cerebellum, these modifiable synaptic weights are
linearly combined by the Purkinje cells to form the cerebellar
output. In CMAC, the network output is likewise computed by
aggregating the memory contents of the active computing cells.

Fig. 2 illustrates the computational mechanisms of the
CMAC NN [2]. The CMAC network is essentially imple-
mented as a multidimensional memory array, in which an input
vector acts as the address decoder to access the respective
memory cells containing the adjustable weight parameters to
compute the corresponding output. CMAC learns the correct
output response to each input vector by modifying the contents
of the selected memory locations. The learning mechanism
adopted in the CMAC network is based on error correction. For
each input vector, the difference (error) between the CMAC
output and the known desired response is computed and the
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Fig. 2. Schematic diagram of the CMAC NN (adapted from [2]).

weight values of the selected memory cells in the network are
adjusted accordingly.

B. Single-Layered Implementation of the CMAC Network

In the original implementation of the CMAC network [47],
the memory cells of the network are divided into layers. The
number of layers in a CMAC network is determined by the
number of quantization functions defined. That is, one quanti-
zation function corresponds to one layer. Fig. 3 depicts an ex-
ample of a two-input CMAC network with four quantization
functions in each of the input dimensions. The resultant 2-D grid
in Fig. 3 corresponds to the input space of the CMAC network
that is used to learn the associative mapping patterns for 256
input–output (I/O) vector combinations. The quantization func-
tions of the network are defined as follows.
Along dimension

(1)

Along dimension

(2)

where denotes the quantization function for the th layer
of the th dimension and denotes the set of quantization
levels. Each input vector selects one memory cell from a layer.
In the CMAC of Fig. 3, the input vector of (6,6) selects a
total of four memory cells (one from each layer). That is, the

, and cells that correspond to the quantization
points of , and , respectively. The output of

the CMAC network is subsequently computed by the linear
combination of the memory contents of the selected cells.

However, the multilayered structure of the CMAC network
often renders the network operations difficult to comprehend.
Moreover, in such an implementation, extensive layers of
overlapping computing cells are required to produce a smooth
output. The optimization of the memory allocation process
(nonuniform quantization) of a multilayered, multi-input
CMAC NN is not only tedious, but can also be computationally
expensive, especially for high-dimensional input problems
that require extensive layers of computing cells to achieve
the desired output resolution or accuracy. This is because it
is difficult to manipulate the distribution of the memory cells
in the individual layers as the computation of all the overlap-
ping layers are intertwined and tightly coupled to produce the
CMAC output. Therefore, this paper proposes a single-layered
CMAC implementation for the optimization of the memory
allocation procedure based on hierarchical clustering. In such
a computing structure, memory allocation or the distribution
of the memory cells becomes manageable as there is only one
layer of computing cells.

Fig. 4 illustrates such a single-layered perspective of a two-
input CMAC network consisting of 64 memory cells. The 2-D
computing grid corresponds to the memory space of the CMAC
network. In Fig. 4, each of the input dimensions is uniformly
quantized into eight discrete quantization steps (or levels) for di-
rect comparison with the multilayered CMAC of Fig. 3. Similar
to the multilayered CMAC, the input vector to this network is
quantized to the corresponding level for each input dimension to
obtain the index address of the winner memory cell. Smoothing
of the computed output is achieved by a neighborhood activa-
tion of the computing cells. The activated neighborhood for the
input vector (6,6) to the single-layered CMAC implementation
is depicted in Fig. 4. That is, to ensure the continuity in the
output surface, each input vector selects a cluster of memory
cells or neurons that is centered at the winner neuron (see shaded
square of Fig. 4).
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Fig. 3. An example of a 2D CMAC network (m refers to the set of quantization functions along the S dimension and m refers to the set of quantization
functions along the S dimension).

The conceptual similarities between the proposed single-lay-
ered model and the original multilayered implementation of
the CMAC network can be examined from their respective
modeling principles. The layered cell activations in the original
CMAC network contributed to the following two significant
computational objectives: 1) smoothing of the computed output
and 2) activating similar or highly correlated computing cells
in the I/O associative space. These two modeling principles
are similarly conserved in the single-layered model of the
CMAC network via the introduction of a neighborhood-based
computational process. The activation of the neighboring cells
in the input space of the single-layered CMAC corresponds to
the simultaneous activation of the highly correlated cells in its
multilayered counterpart. This contributes to the smoothing of
the computed output since the neighborhood-based activation
process results in continuity of the network output. This activa-
tion process will be further discussed in Section IV.

C. Nonuniform Quantization CMAC Variants

Several attempts to address the uniform quantization of
CMAC can be found in the literature. In general, they can be
classified into two main approaches based on the type of nonuni-
formity introduced. The first approach uses layers/hierarchy
of multiresolution CMAC networks to achieve nonlinearity

in memory storage allocation. Originally proposed by Moody
[25], a CMAC is trained using coarsely quantized (low-resolu-
tion) inputs. For regions where the error is large, the decision
to add another CMAC with higher resolution is made. The
expansion process continues until the error is reduced to an
acceptable level. Some variations and applications of this type
of nonuniform CMAC have also been proposed in [17] and
[22]–[24]. While these methods can effectively capture the gen-
eral trend as well as fine details in the overall target function to
be learned, the total number of memory cells needed to achieve
a particular performance is not known in advance, making any
hardware implementation awkward and difficult.

The second approach uses a layer of quantization decision
function as the address decoder/mapper between the input to
the network and the index to the CMAC. For example, [27]
employs competitive learning to find the topological structure
of the input samples in order to determine the quantization
decision function. In [26], the use of gray relational analysis
as the adaptive quantization technique for the input layer is
proposed. Another example is found in [28] which makes
use of the minimization output error criteria in adjusting the
quantization step size. While these methods aim to effectively
allocate a predefined amount of memory cells, the quantization
decision function of these methods are based on the derivative
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Fig. 4. Single-layer perspective of the 2-D CMAC network example shown in Fig. 3.

of the target function to be learned, which is often difficult
to obtain or not known in advance. Furthermore, for these
methods, the storage efficiency achieved is at the cost of
significantly higher computational complexity. On the other
hand, the adaptive quantization approaches proposed in [29]
and [30] do not require the target derivative information. In
[30], a data clustering algorithm is employed to find the centers
of the partitions in the CMAC layers. In [29], the Shannon’s
entropy measure is used to adaptively determine the information
distribution of the training data. However, since entropy is
measurable only for discrete/nominal inputs, this approach is
more suited for classification problems.

Other CMAC variants such as the kernel CMACs [48]–[50]
and the fuzzy CMACs [51], [52] do not employ quantization-
based addressing schemes. In kernel CMAC, kernel functions
such as B-spline kernels are used to derive the receptive fields of
the network. While this method is able to reduce the memory re-
quirement, the choice of kernel function is still an open problem.
Moreover, the complexity of the resultant CMAC depends on
the kernel function used. Fuzzy CMACs, on the other hand,
employ input fuzzification methods to remove the sharp quan-
tization boundary of the original CMAC network. The use of
fuzzy inference schemes such as in [52] also enables the ex-
traction of fuzzy rules from the trained network. While these
variants offered the computational interpretability missing in
the black-box CMAC model, there is a significant increase in
the computational complexity of the hybrid network without a
comparable performance gain.

IV. HCAQ-CMAC

The operational principle of the uniform quantization scheme
in the CMAC network results in a constant output resolution
throughout the entire input space. On the other hand, many
meaningful real-life applications are generally heteroskedastic
in nature, where there exists several distinct sets of trends that
are significant for the precise characterization of the given
problem. That is, due to the underlying characteristics and
dynamics of the training data, certain regions of the input space
tend to contain more information than the rest. Therefore,
drawing inspiration from the neurophysiological studies on
programmed cell death and competitive survival of neurons,
as well as from the experience-driven brain development and
plasticity, we propose a novel CMAC architecture named the
HCAQ-CMAC as an alternative to realize nonuniform quanti-
zation. Unlike the existing approaches outlined in Section III-C,
HCAQ-CMAC efficiently allocates the number of available
memory cells based on the characteristics/information con-
tents of the I/O mappings of the training data. The neuronal
competition for survival in the human brain is emulated
by the hierarchical clustering technique, where similar data
points are clustered together to eliminate redundancy in data
representation. This similarity is measured by the observed
degree of variations of the target output. In the HCAQ-CMAC
network, memory efficiency is achieved by allocating more
memory cells to the input regions where rapid fluctuations
of the output values are observed, and less memory cells to
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Fig. 5. Comparison of CMAC and HCAQ-CMAC memory structure for a particular target output surface. (a) I/O characteristic. (b) The 2-D CMAC memory
structure. (c) The 2-D HCAQ-CMAC memory structure.

regions with relatively unchanged output values. As a result,
a finer quantization level is obtained for the regions of the
input space which contain more information. This nonuniform
quantization process is illustrated in Fig. 5. Fig. 5(a) shows
an example of a target output surface of a two-input problem
to be modeled. Fig. 5(b) depicts the corresponding uniformly
quantized CMAC memory structure and Fig. 5(c) illustrates the
nonuniform HCAQ-CMAC for the same target output surface.

A. HCAQ-CMAC Network Architecture

Neurophysiological studies have established that the precise
wiring of the adult human brain is not fully developed at birth
[4]. Instead, there are two overlapping stages in the develop-
ment of the human central nervous system. The embryonic stage
of this process encompasses the formation of the basic archi-
tecture of the nervous system, in which coarse connection pat-
tern emerges as a result of the genesis and death of the brain
cells during prenatal development. Subsequently, in the post-
natal development stage, the initial architecture is refined and
extraneous synaptic connections are pruned throughout an indi-
vidual’s life-span by repeated exposures to various activity-de-
pendent experiences. These processes constitute a selective al-
location of neurons in the human brain and is incorporated to
the HCAQ-CMAC memory allocation procedure as a mecha-
nism for nonuniform quantization.

The HCAQ-CMAC memory allocation procedure is inspired
by the biological development of the human central nervous
system where neural cell death plays an integral part in the
refinement process of the brain’s neuronal organization. In
HCAQ-CMAC, the available memory cells are distributed
based on the observed characteristics of the training data,
which are defined by the data distribution in the input space
as well as the variation of the target output value. For this
reason, the HCAQ-CMAC architecture presented in this paper
is a multiple-input–single-output (MISO) CMAC variant. This
is because in a multiple-output domain, the variation of each
output variable may not be correlated to one another. Thus, it
is difficult to formulate a quantization function that is optimal
for all output dimensions. A multiple-input–multiple-output
(MIMO) problem can instead be modeled by a combination of
several MISO systems.

In HCAQ-CMAC, the nonuniform quantization process and
the subsequent memory allocation procedure are performed on
a per-dimension basis. There are the following two stages in the
operation of the HCAQ-CMAC network: 1) network initializa-
tion stage and 2) network learning stage. The purpose of the
network initialization stage is to define the quantization func-
tion at each of the input dimensions, while the network learning
stage is to learn the memory contents of the HCAQ-CMAC net-
work. The agglomerative hierarchical clustering technique [53]
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Fig. 6. Illustration of the HCAQ-CMAC nonuniform quantization process for an arbitrary input dimension j where M̂ = 6.

is employed at each dimension to identify the optimal quantiza-
tion decision function in each of the input dimensions. A quan-
tization cluster is defined as the span of a memory quantization
level in a particular input dimension. Starting with the initial
set of quantization clusters in a particular input dimension, two
clusters with the smallest merging cost are combined in each it-
eration of the hierarchical clustering process until the number
of quantization clusters is equal to the number of available (pre-
defined) memory space in the respective input dimension (see
Fig. 6).

Let denote the total number of input dimensions
for a given problem. Assume that a training data set of

is used to train the HCAQ-CMAC network, where
denotesthe thinputvectortothenet-

workand denotestheexpectedscalaroutputofHCAQ-CMAC.
Let denote the total number of available memory cells per
dimension and
denoteasetof quantizationclusters in the th inputdimension
at the th iteration of the hierarchical clustering process. The
HCAQ-CMAC memory allocation process is described as
follows:
Step 1) Perform data preparation. For each input dimen-

sion , the input training samples
’s are sorted in ascending order such that

, where
.

Step 2) Define the initial set of quantization clusters. Let
denote the th quantization cluster in the th

input dimension at the th iteration of the hierar-
chical clustering process, and as the number

of data points in . Then, the quantization cluster

is defined as the set of I/O data pairs such that

.Foreachinputdimension
, where , the initial set of quantization

clusters is derived from the input training data
points in the th input dimension.
Each distinct input value from the training set
constitutes one quantization cluster in the th dimen-
sion. Training data points with the same input value
are combined together as a cluster such that

(3)

where

. Each quantization cluster is defined by a

characteristic value and its centroid . The

characteristic value of a quantization cluster

at the th iteration of the hierarchical clustering
process is computed as the mean of the output values

of the input points and is described by

(4)

where is the total number of data points in the
quantizationcluster at the th iteration. , on
theotherhand,denotesthecentroidofthequantization
cluster and is described by

(5)
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With respect to the input dimension , the ini-
tial set of quantization clusters is defined as

where

and and

(since

).
Step 3) Merge similar quantization clusters iteratively. The

clusters in the initial set of quantization clusters
are iteratively merged until the number of quantiza-
tion clusters in the th dimension is equal to the
number of predefined available memory cells, i.e.,

.Onlythetwomostsimilaradjacentclusters
can be merged in each iteration. The cluster-merging
decision is based on a cost function. The merging cost
function isdefinedas theweightedcombinationof the
distances between the characteristic values and the
centroids of two adjacent clusters, and is described
mathematically in

(6)

(7)

where is themergingcostof the two

adjacent clusters and (i.e.,
and ) at the th iteration,

and and are user-defined parameters. The pa-
rameters and weight the respective importance
of the measured differences in the output (character-
isticvalues)andtheinput(quantizationpoints)dimen-
sions as the total cost of merging two adjacent clus-
ters.Theweightingparameter isconcernedwiththe
similarity of the outputs of the two clusters. , on the
otherhand,controlstheimportanceofthesimilarityof
the inputs in the two clusters. As such, the selection of

and parametersgenerallyvariesgreatlywithdif-
ferent applications and may be guided by the relevant
priorknowledgeabout theapplicationsor the training
data.Anapplicationwithslowchanging inputbut fast
changing output may require a bigger than and
vice-versa.
In each iteration, the two adjacent clusters with the
smallest merging cost are combined as in

iff

(8)

The characteristic value and the centroid

of the merged cluster are recom-
puted using (4) and (5). The cluster-merging process

continues until the number of clusters in the input di-
mension reachesthepredefinedmemorysize (see
Fig. 6). This is analogical to the activity-dependent
pruning of the extraneous synaptic connections in the
human brain. Weak (or nonactive) neurons are elimi-
nated and their functions annexed by the winning (or
more active) neurons. In the HCAQ-CMAC, similar
clusters are merged and represented by larger/ex-
panded clusters to reduce data redundancy. Specifi-
cally, HCAQ-CMAC allocates more memory cells to
the densely data-populated areas with higher degrees
of output variation.

Step 4) Construct the quantization decision function. A set of
quantizationclustersisobtainedattheendofthehi-

erarchicalclusteringprocessforeachinputdimension
. Let denote the last cluster-merging iteration for

input . Thus, the final set of quantization clusters for
input isdefinedas .
Subsequently, the quantization decision function in
the th input dimension is determined from

, as described by

(9)

where denotes the quantization mapping func-
tion in the th input dimension. is the centroid of
the th quantization cluster of the th input dimen-
sion after the cluster-merging process and is the
number of predefined memory cells in each dimen-
sion. The quantization decision points derived for
each input dimension subsequently form the memory
axes of the HCAQ-CMAC network and define its
overall computing structure.

B. HCAQ-CMAC Operating Principles

The HCAQ-CMAC network learns a correct response to
an input vector by modifying the contents of the selected
memory cells. Let be the maximum number of training iter-
ations. The Widrow–Hoff learning rule [54] is adopted and the
HCAQ-CMAC memory learning process for the th training
sample is described as follows.
Step 1) Determine the winner neuron for input at

the th iteration, where . For each
input , the index of the winner neuron
in HCAQ-CMAC is computed via the quanti-
zation mapping functions . That is, given

, the winner
neuron is as in

(10)

where denotes the quantized input and is
the number of input dimensions.

Step 2) Retrieve the network output. The output of the
HCAQ-CMAC network to the input at the th
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training iteration is the memory content at the loca-
tion . This is described by

(11)

where denotes the HCAQ-CMAC output for
the input during the th training iteration and
is the HCAQ-CMAC hypercube memory array.

Step 3) Compute the network output error. The learning
error corresponding to the input at the
th training iteration is defined as the difference

between the network output and the expected
output is given in

(12)

Step 4) Update the HCAQ-CMAC memory. The update
equation for the activated cell at index is given
by

(13)

(14)

where denotes the learning constant.
During the testing phase of the HCAQ-CMAC network, a

neighborhood-based activation of the network cells is employed
to smoothen the computed output. Given an input stimulus

to the HCAQ-CMAC
network, the network output during the testing phase is derived
as follows.
Step 1) Determine the region of activation. The computed

output of the HCAQ-CMAC network corresponding
to an input stimulus is defined as the mean of
the memory contents (values) of the activated cells
in the neighborhood vicinity of . The neighbor-
hood of is defined by a neighborhood constant

, which determines the relative size of the neigh-
borhood with respect to the input domain. For an
input stimulus , its activation neighborhood is de-
fined by

range (15)

range (16)

where denotes the th input di-
mension, is the neighborhood constant, range
is the input domain for the th dimension, is
the left boundary of the neighborhood in the th
dimension, and is the right boundary of the
neighborhood in the th dimension. Consequently,
the memory cells within the neighborhood consti-
tute the set of activated computing cells for the input
stimulus . The size of the neighborhood affects
the accuracy of the computed HCAQ-CMAC output.
The larger the neighborhood size, the more gener-
alized is the output of the HCAQ-CMAC network.
Conversely, a smaller neighborhood size results in
a more accurate output computation. Therefore, a

larger neighborhood size is suitable for a data set that
is sparse in the input space as this increases the gen-
eralization ability of the HCAQ-CMAC network. A
smaller neighborhood size, on the other hand, is suit-
able for a compact data set so as to produce more
accurate results.

Step 2) Compute the HCAQ-CMAC output. The output of
the HCAQ-CMAC network with respect to the input

is defined by

(17)

where denotes the set of indexes of the activated
neighborhood cells corresponding to the input ,

is the memory content of the activated cell with
index , is the cardinality of , and is the
output of HCAQ-CMAC with respect to the input
stimulus .

As a computational model of the human cerebellum, the pro-
posed HCAQ-CMAC network possesses characteristics analog-
ical to the neurobiological and neurophysiological aspects of its
biological counterpart. Appendix A lists the neural correlates
between the human cerebellum and the HCAQ-CMAC network.

V. HCAQ-CMAC LEARNING CONVERGENCE

This section presents the mathematical proof of the learning
convergence of the proposed HCAQ-CMAC network. Fig. 7
depicts an example of the memory surface of a two-input
HCAQ-CMAC network. With respect to Fig. 7, the quantization
points along the dimension are
and along the dimension are , re-
spectively. denotes the network cell with the address
index .

A. Mathematical Perspective of the HCAQ-CMAC Network

The HCAQ-CMAC network employs a winner-take-all
learning principle where each input training tuple accesses and
modifies the memory content of one winner neuron. Each input
vector to the network is quantized to the nearest quantization
level in each dimension to identify the index of the winner
neuron. The HCAQ-CMAC network output is derived from
the winner network cell. Consequently, the network learning
process is performed on this winner cell.

The conceptual memory surface of a multiple-input
HCAQ-CMAC network can be expressed as a 1-D weight
array . Fig. 8 illustrates the linearization of the concep-
tual memory surface to the physically implemented 1-D
weight array for a 2-D HCAQ-CMAC. With respect to the
HCAQ-CMAC network, the computed output for the th input
vector (stimulus) is defined in

(18)

where is the training iteration number, denotes the quan-
tization mapping function of the HCAQ-CMAC network, and

is the index to the winner neuron corresponding to the
input .

The HCAQ-CMAC network presented here is a MISO
system. Let the total number of memory cells in the
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Fig. 7. Example of the two-input HCAQ-CMAC memory content.

Fig. 8. The 2-D HCAQ-CMAC Z ! W mapping.

HCAQ-CMAC network be and the column vector
[see (19)] denote the activation mask of the HCAQ-CMAC
memory cells with respect to the th input training sample.
That is

array

(19)

if the th memory cell is activated
otherwise

(20)

Note that the winner-take-all learning algorithm of the HCAQ-
CMAC network implies that, for all , only one ele-
ment of is nonzero. The scalar output of the HCAQ-CMAC
network can thus be formulated as a vector product described
by

array

(21)

where is the memory content of the entire HCAQ-CMAC
network structure when the th input training sample is pre-
sented.

The memory update equation of the HCAQ-CMAC network
for the th input training sample is subsequently defined as

local error
learning error

local error

(22)

where

the memory content of the entire HCAQ-CMAC
network structure when the th training sample
is presented in the th training iteration;

the learning constant;

the activation mask of the HCAQ-CMAC memory
cells;

the desired (expected) HCAQ-CMAC output for the
th input training vector.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS

The difference of the HCAQ-CMAC memory contents be-
tween two successive iterations for the th input training sample
(denoted as ) is, therefore, defined as

(23)

Note that the activation mask is a constant for an arbitrary
input training sample across different training iterations. This
is because the HCAQ-CMAC network structure is static after
the structural learning phase.

Following (23), the delta memory contents for a sequence of
training data is described by

(24)

and

(25)

where denotes the total number of training samples.
The learning convergence of the HCAQ-CMAC network is

established via the convergence of the network memory contents
as training approaches infinity. In this case, the sufficient and
necessary condition for the HCAQ-CMAC learning process to
convergence can be expressed in

(26)

or

(27)

where is the null matrix.
Substituting (24) into (23)

(28)

The HCAQ-CMAC network is iteratively trained on a set of
training samples. When , from (28)

(29)

such that

(30)

and

[from (24)] (31)

Following the results of (28)–(31), [see (25)] can be re-
expressed as

(32)

Decomposing the terms on the right-hand side repeatedly
results in

(33)

Following (33):

(34)
Therefore, (33) can be reexpressed as

(35)

It can be observed that

(36)
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Consequently, it follows that

(37)

Further repeated decomposition of the terms on the right-
hand side results in the following:

(38)

With respect to (38), the memory difference matrix
must approach a null matrix as training tends to infinity (i.e.,

) in order to establish the learning convergence of the
proposed HCAQ-CMAC network. Hence, the HCAQ-CMAC
learning process converges if and only if (39) holds

(39)

By definition, the difference vector can be expressed as

(40)

Decomposing the terms on the right-hand side repeatedly
produces

(41)

From (22), the HCAQ-CMAC memory update due to the th
input training sample at the th iteration is computed
via

learning error

local error

(42)

where is a scalar value and it is the learning
(training) error of HCAQ-CMAC for the th input training
vector at the th iteration. If

(43)

then (42) can be reexpressed as

(44)

From (38), (41), and (44)

(45)

Therefore, if for all
in (45) evaluates as null.

From (38), the matrix as follows. Conse-
quently, the learning process of the proposed HCAQ-CMAC
network converges.

B. Learning Convergence of the HCAQ-CMAC Network

Theorem 1: The training process of the HCAQ-CMAC net-
work converges if and only if the learning constant is such
that .

Proof: It can be shown that for all , when
, (reefer to Appendix B for

a detailed proof). Therefore, the training process of the HCAQ-
CMAC network converges if and only if the learning constant
satisfies the condition .

VI. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents the experiments that have been
conducted to evaluate the performance of the proposed
HCAQ-CMAC network. The experiments are performed on
the following two real-life applications: 1) automatic control of
car maneuver and 2) modeling of the human glucose metabolic
process. The performances of the HCAQ-CMAC network
are benchmarked against 1) the basic CMAC network to
demonstrate the memory efficiency achievable by the proposed
HCAQ-CMAC network, 2) Moody’s multiresolution CMAC
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Fig. 9. Simulation environment. (a) Vehicle control sequence. (b) Car sensor placements.

network [25] to assess the generalization and learning ability of
the proposed network, and 3) Menozzi’s tree-based multires-
olution CMAC [24] to assess both the modeling performance
and memory efficiency achievable by HCAQ-CMAC.

A. Automatic Control of Car Maneuver

The intelligent vehicle project is part of an ongoing research
effort to develop an intelligent transportation system (ITS) at the
Centre for Computational Intelligence (C2i), Nanyang Techno-
logical University, Singapore[55]. The objective of the project is
to realize brain-inspired intelligent-based technologies required
for the automation of control, routing, and navigation of land ve-
hicles. In this paper, the proposed HCAQ-CMAC network is em-
ployed for the construction of an autopilot system for car ma-
neuver.Albeit its complexity,drivingavehicle is amotor task that
humans are able to perform relatively well. It has been well estab-
lished that the learning of motor skills is mediated by the human
procedural memory system [56], which consist of the cerebellum
and the striatum (part of basal ganglia formation). The human
procedural memory system is a facet of the brain’s information
processing capacity specifically for the acquisition of skilled be-
haviors and habits. Vehicle driving comprises of finely tuned sets
of sensory feedback to control action mappings that are accumu-
lated through experiences and repeated practices. Although hu-
mans are quite adept at mastering complex skills, it is difficult to
formalize these behaviors into mathematical algorithms. In such
cases, the construction of a computational model that is able to
emulate the functionalityof thehumanbrain is required [57].This
subsequently motivates the use of HCAQ-CMAC to model and
emulate the human driving expertise.

In this experiment, a driving simulator (as developed in [58]) is
employed to capture the behavioral response of the human driver.
The simulator consists of a 3-D virtual driving environment that
integrates a detailed model of the vehicle dynamics and engine
characteristics together with the environmental parameters such
as road profiles. The approach to the experiment is to capture and
record the driving data of a human driver, which consists of a set
of distance-sensor feedback information and the corresponding
steering control performed by the human driver as he maneu-
vers the simulated car around a specified track. The feedback sig-

nals provide information such as the distance of the vehicle from
the road boundaries. The simulator allows for vehicle control via
steering adjustment. An overview of the driving control sequence
is given in Fig. 9(a). These feedback-control records are then used
to train the HCAQ-CMAC-based autopilot system.

The objective of the autopilot system is to control the vehicle
to follow a particular lane in a multilane circuit track. The
simulated vehicle model is equipped with eight directional
sensors as shown in Fig. 9(b). The semantics of the sensor
readings are tabulated as Table I. For the autopilot system,
only the front four sensors are utilized [i.e., SFLSTB, FLSTB,
FRSTB, SFRSTB; Fig. 9(b)] as the inputs to the HCAQ-CMAC
network. As an output, the network responds with the appro-
priate steering angle. Two tracks are used in this experiment.
The HCAQ-CMAC autopilot system is first trained on track
1 [Fig. 10(a)], with the car traveling in both clockwise and
counterclockwise direction. Subsequently, track 2 [Fig. 10(b)]
is used for testing. The simulated track is 5 m wide.

The training data set (recorded from a human driver) contains
1018 samples. HCAQ-CMAC and the benchmarked systems
were trained within 500 training epochs with a network learning
constant of 0.1. Table II outlines the performances of the HCAQ-
CMAC autopilot system as compared to the following: 1) the
basic CMAC network, 2) Moody’s multiresolution CMAC net-
work, and 3) the tree-based multiresolution CMAC network.
Each simulation test result was collected over 100 s of driving-
time, with a maximum driving speed of 100 km/h. The driving
performances of the various networks were measured by the av-
erage deviation of the controlled car from the center of the lane
(ACD) and the average deviation of the car orientation from
the desired orientation (AOD). Both the ACD and AOD mea-
surements are subsequently normalized and reported as normal-
ized ACD (NACD) and normalized AOD (NAOD). NACD de-
notes the ACD with respect to the half track width, which is
the maximum leeway available before the car collides with the
road boundaries. The AOD values are normalized with respect
to radians. A performance index (PI ) is used to combine the
NACD and NACD measures as described in

PI NACD NAOD (46)

PI PI (47)
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Fig. 10. Driving tracks. (a) Training track (track 1). (b) Testing track (track 2).

TABLE I
SENSORS DEFINITION OF THE CAR SIMULATOR

where PI is the normalized PI . Thus, a higher PI value cor-
responds to a better network performance.

For the simulation, a learning constant of 0.1 and a neighbor-
hood constant of 0.2 were empirically determined for the eval-
uated networks. The network size is also varied to determine
the optimal performance for each of the networks. Based on
the PI values in Table II, the basic CMAC network achieved
an optimal performance with a memory size of ten memory
cells per dimension. For CMAC, a small network size results
in a coarse partitioning of the input space, and hence, the net-
work suffers from an averaging effect. A large CMAC network,
however, fails to generalize from the available training data and
thus performs poorly on the testing track. The multiresolution
CMAC architectures, on the other hand, employ layers of over-
lapping CMAC networks with different resolutions to address
the generalization-accuracy dilemma. Both Moody’s multires-
olution CMAC (MMR-CMAC) and the tree-based multireso-
lution CMAC (TMR-CMAC) architectures were benchmarked
using two- and three-layers implementations. These overlay im-
plementations improve the generalization ability of the finer res-
olution CMACs while simultaneously maintaining their output
accuracy, but at the expense of higher memory requirements.
Best PI values were observed for a two-layer MMR-CMAC
with memory size of five cells per dimension for the first layer
and ten cells per dimension for the secondary layer, and a two-
level TMR-CMAC employing a CMAC of size eight cells per

dimension at the first level and 26 CMACs of size two per di-
mension at the second level.

From the results presented in Table II, one can observe that
the proposed HCAQ-CMAC-based autopilot system consis-
tently outperformed the other three CMAC architectures. An
optimal HCAQ-CMAC network performance is obtained with a
memory size of only five cells per dimension with a PI value of
172. The hierarchical clustering technique of the HCAQ-CMAC
network effectively allocates the available memory cells to the
input regions with high utilization throughput. This ensures
that more cells are allocated to important input regions that
contain more information. Therefore, a small network size
does not affect the accuracy and fine-tuning capability of the
HCAQ-CMAC network. Moreover, with a smaller network
size, fewer cells in HCAQ-CMAC are allocated to areas with
little or no training data, thus improving the generalization
ability of the network. The efficient memory allocation scheme
of HCAQ-CMAC also reduces the required network training
time. The best-performing HCAQ-CMAC network trains in
the shortest time (i.e., 7562 ms) among all the benchmarked
networks. Subsequently, the effective cell utilization rates of
the various networks were computed and the results [denoted
as the cell occupancy rate (COR)] are tabulated in Table III.
The COR is defined as the proportion of the trained network
cells to the total network size. From Table III, one can observe
that the HCAQ-CMAC network achieves the highest COR
value in comparison with the other three CMAC architectures.
This clearly demonstrated the effectiveness of the proposed
HCAQ-CMAC memory allocation scheme.

B. Modeling the Dynamics of the Human Glucose Metabolic
Process

Diabetes is a chronic disease where the body is unable to
properly and efficiently regulate the use and storage of glucose
in the blood. This resulted in large perturbations of the plasma
glucose level, leading to hyperglycemia (elevated glucose
level) or hypoglycemia (depressed glucose level). Chronic
hyperglycemia causes severe damage to the eyes, kidneys,
nerves, heart, and blood vessels of the patients while severe
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TABLE II
COMPARISON OF RESULTS FOR THE VARIOUS CMAC NETWORKS USING THE AUTOPILOT SYSTEM

hypoglycemia can deprive the body of energy and causes the
patient to lose consciousness, which can eventually become
life threatening. Currently, the treatment of diabetes is based
on a two-pronged approach: strict dietary control and insulin
medication.

The key component to a successful management of diabetes
is essentially to develop the ability to maintain a long-term near-
normoglycaemia state of the patient. With respect to this objec-
tive, the therapeutic effect of discrete insulin injections is not
ideal as the regulation of insulin is an open-looped process. Con-
tinuous insulin infusion through an insulin pump, on the other
hand, is a more viable approach due to its controllable infusion
rate [59]. Such insulin pumps are algorithmic-driven, with an
avalanche of techniques proposed, investigated and reported in
the literature over the years [60], [61]. Generally, all such pro-
posed methods required some forms of accurate modeling of
the glucose metabolic process of the diabetic patient before a
suitable control regime can be devised.

In recent years, emerging evidences have suggested that
glucose metabolism throughout the body is coordinated by
the brain through the use of insulin [62]. This is reinforced
by the fact that glucokinase, the established glucose sensor
of the pancreatic -cells, is observed to be also present in the
central nervous system (CNS) [63]. Precise experimentations
have subsequently demonstrated that insulin, via acting on
the hypothalamus (a subcortical brain structure central to the
autonomic control of the human endocrine system), exerts a

high level of supervisory control on glucose production by
the liver [64]. This observation contemplates that insulin can
mediate the human glucose metabolic process through an un-
known signaling pathway via the CNS [65], [66]. This notion
subsequently motivates the use of the HCAQ-CMAC network,
which is a brain-inspired computational model of the human
cerebellum, for the dynamic modeling of the human blood
glucose cycle.

The first step into constructing a model of the human glucose
metabolic process is to determine the patient profile to be mod-
eled. Due to the lack of real-life patient data and the logistical
difficulties and ethical issues involving the collection of such
data, a well-known web-based simulator known as GlucoSim
[67] from the Illinois Institute of Technology (IIT, Chicago, IL),
is employed to simulate a person subject to generate the blood
glucose data that is needed for the construction of the glucose
metabolism model. A person profile for the simulated healthy
subject is created as shown in Table IV.

The simulated healthy person, code-named subject A, is a
typical middle-aged Asian male. His body mass index (BMI) is
23.0, which is within the recommended range for Asian. Based
on the person profile of subject A, his recommended daily al-
lowance (RDA) of carbohydrate intake from meals is obtained
from the website of the Health Promotion Board of Singapore
[68]. According to his sex, age, weight, and lifestyle, the rec-
ommended daily carbohydrate intake for subject A is approxi-
mately 346.9 g.
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TABLE III
COMPARISON OF CORS FOR THE VARIOUS CMAC NETWORKS

TABLE IV
PROFILE OF THE SIMULATED HEALTHY PERSON (SUBJECT A)

Fig. 11 illustrates a sample output from GlucoSim for subject
A. This output consists of six elements: blood glucose, blood in-
sulin, intestinal glucose absorption rate, stomach glucose, total
glucose uptake rate, and liver glucose production rate of subject
A, respectively, over a simulated time period of 24 h. The peaks
in the stomach glucose subplot of Fig. 11 coincide with the tim-
ings of the assumed four daily meals (i.e., breakfast, lunch, after-
noon snack, and dinner) while those peaks in the intestinal glu-
cose absorption rate subplot reflect a delay effect (response) of
food intake on the blood glucose level of subject A. The subplots
of blood glucose and blood insulin illustrate the insulin–glucose
regulatory mechanism in a healthy person such as subject A and
depict the dynamics of the metabolic process when subjected to
disturbances such as food intakes.

Since the human glucose metabolic process depends on its
own current (and internal) states as well as the exogenous food
intakes, it is hypothesized that the blood glucose level at any
given time is a nonlinear function of prior food intakes and the

historical traces of the insulin and blood glucose levels. To prop-
erly account for the effects of prior food ingestions to the fluc-
tuation of the blood glucose level, a historical window of 6 h is
adopted to trace the carbohydrate content of the meals taken. A
soft-windowing strategy is employed to temporally partition the
6-h historical window into three conceptual segments, namely,
recent (i.e., previous 1 h), intermediate past (i.e., previous 1–3
h), and long ago (i.e., previous 3–6 h). Based on these windows,
three normalized weighting functions are introduced to compute
the carbohydrate content of the meal(s) (with respect to current
time) taken recently, in the intermediate past or long ago. Thus,
inclusive of the measured blood glucose and insulin levels, there
is a total of five inputs to the modeling task. Fig. 12 depicts the
weighting function for each of the respective segmented win-
dows.

Based on the formulated hypothesis and the preprocessed glu-
cose data generated from GlucoSim, a total of 100 days of glu-
cose metabolic data for subject A was collected. The carbohy-
drate content and the timings of the daily meals were varied on
a daily basis during the data collection phase. This ensures that
HCAQ-CMAC and the benchmarked networks are not trained
on a cyclical data set, but are employed to model the inherent
relationships between food intakes and the glucose metabolic
process of a healthy person. The collected data set is partitioned
into two nonoverlapping groups: 20 days of data for training and
the remaining 80 days for testing and evaluation of the networks.

Simulations to model the dynamics of the blood glucose
level of subject A using the HCAQ-CMAC network were
performed and the results were benchmarked against those of
the basic CMAC network, the MMR-CMAC network as well
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Fig. 11. Sample glucose metabolism data output from the GlucoSim simulator.

as the TMR-CMAC network. For this application, a neighbor-
hood constant of 0.1 and a learning rate of 0.1 are
empirically determined. Table V details the recall (training) and
generalization (testing) performances of the various networks
with different network sizes. Two performance indicators are
employed to quantify the modeling quality of the networks: the
root-mean-squared error (RMSE) and the Pearson correlation
coefficient between the actual and the computed blood glucose
level. The RMSE and Pearson correlation measures were
subsequently employed to compute the PI described by

PI
Pearcorr

RMSE
(48)

Therefore, a higher PI value reflects a better network modeling
performance.

Due to the characteristics of the training data, the perfor-
mances of the networks vary with their respective network sizes.
From the PI values in Table V, one can observe that for the

basic CMAC network, an optimal performance (for generaliza-
tion) is achieved with a memory size of four cells per dimen-
sion. For the basic CMAC network, a memory size of three
cells per dimension is too small to extract the important de-
tails from the training data, while memory sizes with six to ten
cells per dimension have too high a resolution to effectively
capture the general trends. The optimal configuration for the
MMR-CMAC in this experiment was found to be three layers
of overlapping CMACs with network sizes of two, four, and
eight cells per dimension, respectively. The experimental results
in Table V indicated that the MMR-CMAC network required a
large number of overlapping CMACs with different resolutions
to obtain a good modeling performance. This can be observed
by comparing the PI value of the two-layered MMR-CMAC of
size two and eight cells per dimension to that of the three-lay-
ered MMR-CMAC of size two, four, and eight cells per dimen-
sion, respectively. Although these two MMR-CMAC networks
have the same base and top layer resolutions, a significant im-
provement in the PI value was achieved by the three-layered
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Fig. 12. Soft-windowing weighting functions to compute the carbohydrate content of meal(s) in the segmented windows of the 6-h food history. (In the figure,
the current time is 1840 h and there are three instances of food intakes in the previous 6 h; that is, lunch at 1245 h, afternoon snack at 1524 h, and dinner at 1833
h, respectively.)

TABLE V
COMPARISON OF RESULTS FOR THE VARIOUS CMAC NETWORKS ON THE MODELING OF GLUCOSE METABOLISM PROCESS

MMR-CMAC via the addition of the middle-layer CMAC. On
the other hand, even though the TMR-CMAC network also em-
ployed layers of CMAC networks of different resolutions, its
performances were found to be relatively poor in comparison
to the other benchmarked networks. This may be due to the
overlay mechanism of the TMR-CMAC, where finer resolution
CMACs are selectively allocated to the input subregions with
large output errors. The resolutions of these CMACs are in-
creased as required and only the finest resolution layers are kept.

On the other hand, an optimal PI value (generalization) was
achieved by the HCAQ-CMAC network with a memory size of
ten cells per dimension. This HCAQ-CMAC network managed
to produce a rather good fit to the actual blood glucose profile as
indicated by a high correlation value of 97.48% and a relatively
low RMSE of 10.4312 mg/mL of blood glucose concentration.
There are only slight improvements in the HCAQ-CMAC per-

formances as the network size is increased from six to ten cells
per dimension. However, Table V clearly shows that the gen-
eralization capability of the proposed HCAQ-CMAC network
surpasses that of the basic CMAC network for all evaluated
memory sizes. Therefore, depending on the memory consid-
eration and the desired modeling accuracy, an HCAQ-CMAC
network with memory size of six to ten cells per dimension
can be chosen for the modeling task. From Table V, one can
observe that the three-layered MMR-CMAC achieves compa-
rable performance to the HCAQ-CMAC network, while em-
ploying less memory cells. However, the overlay structure of the
MMR-CMAC requires each layer of the network to be trained
individually, thereby increasing the training time required. Fur-
thermore, this overlay structure also makes output interpretation
as well as hardware implementation awkward and more difficult
as compared to the single-layered HCAQ-CMAC structure. In
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Fig. 13. Modeling results of the CMAC and HCAQ-CMAC network for the glucose metabolic process of subject A. (a) Generalization performance of CMAC
network (size = ten cells per dimension). (b) Generalization performance of HCAQ-CMAC network (size = ten cells per dimension).

addition, the proposed HCAQ-CMAC network achieved com-
parable recall and generalization performances, which demon-
strates that the network is able to efficiently extract the inherent
relationships from the training data.

To further analyze the performance of the HCAQ-CMAC net-
work, a three-days modeling result of the CMAC and HCAQ-
CMAC networks (each of size ten cells per dimension) are de-
picted in Fig. 13. Fig. 13 clearly demonstrated the generalization
and modeling accuracy of the HCAQ-CMAC network. Due to
the nature of the training data, the static uniform quantization of
the basic CMAC network resulted in an abundance of untrained
network cells as evidenced in Fig. 13(a) (the effects of the un-
trained network cells are highlighted as , and , respec-
tively). The HCAQ-CMAC network, on the other hand, is able
to selectively allocate the available memory space according to
the information distribution of the training data, and thus, signif-
icantly reduces the number of untrained network cells to facili-
tate a consistent modeling performance as evident in Fig. 13(b).

VII. CONCLUSION

This paper presents a novel brain-inspired nonuniformly
quantized CMAC architecture named the HCAQ-CMAC net-
work. Inspired by the physiology of the human cerebellum,

as well as the neurobiological mechanisms of the neuronal
selection process underlying human brain development,
the HCAQ-CMAC network employs an information-driven
memory allocation scheme.

The proposed HCAQ-CMAC network extends from the basic
CMAC model by employing a hierarchical clustering technique
to selectively allocate more memory cells to the input regions
that contain more training information as reflected by the varia-
tions in the target output. This translates to a finer output resolu-
tion in the critical regions of the input space. The mathematical
description of the formation of the memory structure and the
subsequent learning process, together with the theoretical proof
of HCAQ-CMAC learning stability, are presented in this paper.

The performance of the HCAQ-CMAC network was subse-
quently evaluated in two real-life applications, namely, the auto-
matic control of car maneuver and the modeling of human blood
glucose dynamics. Simulation results have sufficiently demon-
strated the effectiveness of the proposed network architecture
in capturing the complex I/O relationships for both applica-
tions. In particular, significant improvements in the generaliza-
tion as well as the accuracy of the network output were achieved
by the HCAQ-CMAC network. Moreover, HCAQ-CMAC also
resulted in more efficient memory utilization than the bench-
marked systems of CMAC, MMR-CMAC, and TMR-CMAC
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TABLE VI
CORRESPONDENCE BETWEEN THE NEUROPHYSIOLOGICAL ASPECTS OF THE HUMAN CEREBELLUM AND THE FUNCTIONALITIES

OF THE PROPOSED HCAQ-CMAC NETWORK

as reflected by the considerably higher CORs observed in the
car-driving experiment.

However, even though HCAQ-CMAC reports relatively
higher CORs, memory efficiency remains at less than 12%.
This is mainly due to the fact that the quantization process
of the HCAQ-CMAC is separately performed in each input
dimension. This is to reduce the computational complexity
arising from the introduction of nonuniform quantization to
the CMAC network, and work reasonably well for low-di-
mensional problems but may cause large memory wastage for
higher dimensional problems. Research efforts are currently
directed at addressing this limitation. Currently, the memory
sizes employed in the applications have been empirically deter-
mined. This is because depending on the data characteristics,
different applications require different memory sizes to achieve
an optimal performance. The hierarchical clustering technique
employed in the HCAQ-CMAC network does not possess the
ability to automatically determine the optimal number of quan-
tization clusters. Instead, this paper concentrates on achieving
maximum performance with the available (predefined) number
of memory cells. A future enhancement to HCAQ-CMAC is to
extend the architecture to support online learning. Currently,
since the result of the hierarchical clustering technique is
static, HCAQ-CMAC is not suitable for online training. To
address this drawback, a change of clustering technique may
be necessary.

As future work, the HCAQ-CMAC-based human blood glu-
cose model would be used in the development of a blood glucose
prediction system for diabetes treatment. Future applications of

the HCAQ-CMAC network also includes various pattern recog-
nition tasks [69]–[71], financial engineering [72], and biomed-
ical domain [73]. Currently, these research endeavours are ac-
tively underway at the C2i [55]. The C2i lab undertakes intense
research in the study and development of advanced brain-in-
spired learning memory architectures [74]–[78] for the mod-
eling of complex, dynamic, and nonlinear systems. These tech-
niques have been successfully applied to numerous novel ap-
plications such as automated driving [58], signature forgery de-
tection [79], gear control for the continuous variable transmis-
sion (CVT) system in an automobile [80], fingerprint verifica-
tion [81], bank failure classification and early warning system
(EWS) [82], computational finance [83], [84], as well as in the
biomedical engineering domain [85], [86].

APPENDIX A
HCAQ-CMAC NEURAL CORRELATES

See Table VI.

APPENDIX B
PROOF OF LEARNING CONVERGENCE

This section provides the mathematical proof of the expres-
sion for all , given that the
learning constant satisfies the condition .

Lemma 1: Given the definition of the matrix as
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and the activation mask of the HCAQ-CMAC network for
the th input training vector as

array

if the th memory cell is activated
otherwise

the matrix has the following properties.
Property 1: is a symmetric matrix.

Proof:

Thus, is a symmetric matrix.
Property 2: Let matrix be denoted as . The

diagonal elements of matrix can be expressed as

if th element of is
if th element of is

and the nondiagonal elements of matrix are always zero, i.e.,

Proof: According to the definition of the activation mask
, as well as from the principle of the winner-take-all learning

algorithm of HCAQ-CMAC, there will only be one nonzero el-
ement in for the th input training vector. Consequently, as
the matrix is defined as

it follows that

if th element of is
if th element of is

and is 0 for all .
Lemma 2: Let the matrix be the multiplication result for

any arbitrary matrix and the matrix such that

where is a matrix. If the learning rate satisfies
the condition , then the -norm of any arbitrary
th row vector in will be bounded by the -norm of the

corresponding th row vector in . That is

row of row of if

Proof: Let the matrix be denoted as
and matrix be denoted as , respectively. The

-norm of the th row vector of is evaluated as

row of

On the other hand, the -norm of the th row vector of can
be derived as

row of row of

From Property 2, it is established that all of the nondiagonal
elements of the matrix evaluate as zero. Furthermore, of
all the diagonal elements of the matrix , exactly one element
is equal to . Let this element be at the th position in the

activation mask, i.e., . Substituting the value
of into the -norm of the th row vector of yields

row of

row of

row of

For row of row of , the term
has to be less than or equal to 0, i.e.,

always when

However, the condition signifies no learning and, there-
fore, does not apply. Hence, row of row of
when the learning constant is .
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Lemma 3: Following Lemma 2, if the learning constant
satisfies the conditions and , then the

-norm of any arbitrary th row vector in will always be
smaller than the -norm of the corresponding th row vector
in . That is

row of row of

if and

Furthermore, given that the learning constant satisfies the con-
dition , the -norm of any arbitrary th row vector
in will be equal to the -norm of the corresponding th row
vector in if and only if , where denotes the position
of the winner neuron in the activation mask , i.e.,

if row of row of

iff and

Proof: From Lemma 2, it has been established that if the
learning constant satisfies the condition , then

row of will not be greater than row of . It
follows that of Lemma 2 is always less than
zero if and , where denotes the position
of the winner neuron in the activation mask . Hence

row of row of

if and

Consequently, the condition of

row of row of

will hold if and only if for .
Lemma 4: If the learning constant satisfies the condition

, then the -norm of any arbitrary th row vector in
is bounded by the -norm of the corresponding th row

vector in . That is

row of row of

Furthermore, as the training iteration approaches infinity

row of

where denotes the entire set of the training data and is
the set of indexes of the trained cells in HCAQ-CMAC due to

.
Proof: From the definition of the matrix [see (34)]

terms

where is the total number of input training samples and
is a matrix. From Property 2 (Lemma 1), is a
diagonal matrix such that

if
if

where is the index of the activated cell in . Hence, is
also a diagonal matrix.

From Lemma 3,

row of

row of

row of

row of

row of

row of

Note that row of if is an
untrained cell. On the other hand, if , it follows from
Lemma 3 that row of row of as

and . Following from aforementioned, as
the training iteration tends to infinity

row of

Lemma 5: If the learning constant satisfies the condition
, then as the training iteration tends to infinity

and the term converges to a null matrix for all
. That is

if

Proof: From Lemma 4

row of

Hence, it follows that

if
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