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Abstract 

Mercury oxide in its solid state crystallizes in a rather unusual st ructure and 
at ambient pressure two equally intriguing yet different polymorphs are dist in
guished. Both t he low-temperature so-called montroydite form and the high
temperature cinnabar modificat ion consist of planar 0-Hg-0 zigzag or spiral 
chains. These sophist icated structures significantly differ from those found for 
the lighter group 12 chalcogenides zinc oxide and cadmium oxide, which under 
ambient condit ions are known to crystallize in rather simple hexagonal wurtzite 
and cubic rocksaJt or zinc blende structures . Descending the chalcogenide group 
in the periodic table, the cinnabar structure disappears as an equilibrium modi
fication for mercury selenide and telluride but is st ill present as a high-pressure 
modificat ion . However , the deviations in the crystal arrangement between the 
mercury chalcogenides as opposed to the corresponding zinc and cadmium con
geners are still obvious in terms of a different coordination. 
Considering this curious behaviour of the mercury chalcogenides the question 
arises: What causes the occurrence of the unusual structures in the mercury 
chalcogenides? To this end relativistic as well as nonrelativistic density func
t ional calculations have been carried out to investigate this quest ion with respect 
to the influence of relativistic effects. Even t hough relativistic effects in atoms 
and molecules are well-known and understood , little attention has been given to 
their influence on the electronic st ructure and propert ies of the solid state yet .  
The study a t  hand for the first time demonstrates that the structural differences 
between the mercury chalcogenides and their l ighter zinc and cadmi urn congeners 
are a result of relativistic effects. The montroydite and cinnabar modificat ions of 
HgO and HgS disappear if relativity is neglected due to a substantial decrease of 
the cohesive energies by up to 2 . 2  eV. This deviat ion becomes smaller for HgSe 
and HgTe, yet a slight change in the coordination can be att ributed to the in
fluence of relativity. Furthermore, the electronic structure and density of states 
of the mercury chalcogenides are discussed with respect to relativistic effects 
including the consideration of spin-orbit effects. It was found that relativistic 
effects have a major impact on the electronic structure. In mercury selenide 
and telluride the neglect of relativity goes as far as changing the experimentally 
observed semimetallic behaviour to the restoration of semiconducting properties. 
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