Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. The unusual structure of the mercury chalcogenides: relativistic effects in the solid state

A thesis presented in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

at

Massey University, Albany

New Zealand

Susan Biering

September 10, 2010

"While I'm still confused and uncertain, it's on a much higher plane, d'you see, and at least I know I'm bewildered about the really fundamental and important facts of the universe."

Terry Pratchett, Equal Rites

Abstract

Mercury oxide in its solid state crystallizes in a rather unusual structure and at ambient pressure two equally intriguing yet different polymorphs are distinguished. Both the low-temperature so-called montroydite form and the hightemperature cinnabar modification consist of planar O-Hg-O zigzag or spiral chains. These sophisticated structures significantly differ from those found for the lighter group 12 chalcogenides zinc oxide and cadmium oxide, which under ambient conditions are known to crystallize in rather simple hexagonal wurtzite and cubic rocksalt or zinc blende structures. Descending the chalcogenide group in the periodic table, the cinnabar structure disappears as an equilibrium modification for mercury selenide and telluride but is still present as a high-pressure modification. However, the deviations in the crystal arrangement between the mercury chalcogenides as opposed to the corresponding zinc and cadmium congeners are still obvious in terms of a different coordination.

Considering this curious behaviour of the mercury chalcogenides the question arises: What causes the occurrence of the unusual structures in the mercury chalcogenides? To this end relativistic as well as nonrelativistic density functional calculations have been carried out to investigate this question with respect to the influence of relativistic effects. Even though relativistic effects in atoms and molecules are well-known and understood, little attention has been given to their influence on the electronic structure and properties of the solid state yet.

The study at hand for the first time demonstrates that the structural differences between the mercury chalcogenides and their lighter zinc and cadmium congeners are a result of relativistic effects. The montroydite and cinnabar modifications of HgO and HgS disappear if relativity is neglected due to a substantial decrease of the cohesive energies by up to 2.2 eV. This deviation becomes smaller for HgSe and HgTe, yet a slight change in the coordination can be attributed to the influence of relativity. Furthermore, the electronic structure and density of states of the mercury chalcogenides are discussed with respect to relativistic effects including the consideration of spin-orbit effects. It was found that relativistic effects have a major impact on the electronic structure. In mercury selenide and telluride the neglect of relativity goes as far as changing the experimentally observed semimetallic behaviour to the restoration of semiconducting properties.

Abstract

ii

Acknowledgements

I owe my deepest gratitude to Prof. Peter Schwerdtfeger, who has been a wonderful supervisor to me in sharing his knowledge and experience as well as showing plenty of patience over the last five years. His guidance, generous support, unique sense of humour and encouragement throughout good times and bad has made my Ph.D. study an invaluable and pleasent experience. The financial support of Massey University, the Marsden Fund and the New Zealand Study Abroad Award is greatly acknowledged.

I would like to thank my colleagues and co-workers, Vesna, Behnam, Matthias. Brian, Robert, Tilo, Elke, Joachim, Patrick, Detlev, Ralf, Beata, Renyuan, David, Julie, Andrew, Jake, Kyle. Anastasia and Michael, for always making their advice and assistance available, for the pleasent atmosphere and the coffeeholics anonymous meetings throughout all stages of my journey. Many of you became wonderful friends. Special thanks go to Andreas Hermann and Christian Thierfelder for their support in many ways, the countless helpful discussions as well as for the good old times aside from university.

I am grateful to New Zealand and its people for the hospitality and for giving me a new home, where I could truly find myself. Most importantly, I wish to thank Prof. Gero Schmidt for luring me here in the first place.

I am indebted to my family. Most importantly to my parents, Heide-Marie and Roland Biering, for their love, trust and for their bravery to let me go. Thank you for your unconditional support in all my choices throughout my whole life. And to my grandmother for the spirit! To her I dedicate this thesis.

My deepest gratitude goes to Thomas, for his infinite love, the wholehearted support, his endless believe in me and his ability to put a smile on my face when least expected - and for always having tissues :)

It is a pleasure to thank all of my wonderful friends who made this thesis possible in being there for me in countless ways, even though it is not possible to name everybody here. You all rock!

A cknowledgements

iv

Table of Contents

1	Intr	roduction 1		
	1.1	Motiva	ation	1
	1.2	Outlin	e	6
2	The	oretica	al background	7
	2.1	The m	any-electron problem	7
		2.1.1	The Hamiltonian for the n -electron system $\ldots \ldots \ldots$	8
		2.1.2	The Born-Oppenheimer approximation	9
	2.2	The el	ectronic Problem	11
		2.2.1	The Hartree-Fock approximation	12
		2.2.2	Electron correlation	13
		2.2.3	Density functional theory	15
		2.2.4	Relativistic effects in quantum chemistry	21
	2.3	Period	ic systems	25
		2.3.1	Crystal symmetries and Bravais lattices	25
	2.4	Numer	rical implementation	29
		2.4.1	Plane-wave basis and Bloch's Theorem	30
		2.4.2	The frozen-core approximation and pseudopotentials	32
	2.5	Optim	ization and solid-state properties	34
		2.5.1	Optimization	35
		2.5.2	Equilibrium properties of crystals	36
		2.5.3	Determination of the crystal structure and phase transitions	39
3	Stru	ıctural	and computational details	41
	3.1	Struct	ures	41
		3.1.1	Cubic lattices	42
		3.1.2	Hexagonal structures	46

TABLE OF CONTENTS

		3.1.3	Trigonal structures	8
		3.1.4	Orthorhombic structures	9
		3.1.5	Tetragonal structures	2
	3.2	Comp	utational details	2
		3.2.1	Cutoff energy and k -point mesh $\ldots \ldots \ldots \ldots \ldots \ldots 5$	3
		3.2.2	Ground-state properties and transition pressures 5	4
		3.2.3	Determination of the electronic structure	5
4	The	group	o 12 oxides 5	9
	4.1	Occur	ring crystal structures	9
		4.1.1	Zinc oxide	9
		4.1.2	Cadmium oxide	0
		4.1.3	Mercury oxide	0
	4.2	Equili	brium structures	1
		4.2.1	Zinc oxide	1
		4.2.2	Cadmium oxide	4
		4.2.3	Mercury oxide	5
	4.3	High-I	pressure phases	8
		4.3.1	Zinc oxide	8
		4.3.2	Cadmium oxide	9
		4.3.3	Mercury oxide	0
	4.4	Electro	onic structure	1
		4.4.1	Zinc oxide	1
		4.4.2	Cadmium oxide	3
		4.4.3	Mercury oxide	3
	4.5	Relati	vistic influences	7
		4.5.1	Equilibrium structure	7
		4.5.2	High-pressure structure	1
		4.5.3	Electronic structure	2
	4.6	Summ	ary	3
5	The	group	o 12 sulfides 8	5
	5.1	Occur	ring crystal structures	5
		5.1.1	Zinc sulfide	5
		5.1.2	Cadmium sulfide	6

		5.1.3	Mercury sulfide
	5.2	Equili	brium structures
		5.2.1	Zinc sulfide
		5.2.2	Cadmium sulfide
		5.2.3	Mercury sulfide
	5.3	High-I	pressure phases
		5.3.1	Zinc sulfide
		5.3.2	Cadmium sulfide
		5.3.3	Mercury sulfide
	5.4	Electr	onic structure
		5.4.1	Zinc sulfide
		5.4.2	Cadmium sulfide
		5.4.3	Mercury sulfide
	5.5	Relati	vistic influences
		5.5.1	Equilibrium structure
		5.5.2	High-pressure structure
		5.5.3	Electronic structure
	5.6	Summ	nary
6	The	grout	o 12 selenides 125
U	6.1		ring crystal structures
	0.1	6.1.1	Zinc selenide
		6.1.2	Cadmium selenide
		6.1.3	Mercury selenide
	6.2		brium structures
	0.2	6.2.1	Zinc selenide 128
		6.2.2	Cadmium selenide
		6.2.3	Mercury selenide
	6.3		pressure phases
	0.0	6.3.1	Zinc selenide
		6.3.2	Cadmium selenide
		6.3.3	Mercury selenide 140
	6.4	6.3.3 Electr	Mercury selenide
	6.4		Mercury selenide 140 onic structure 144 Zinc selenide 144

TABLE OF CONTENTS

		6.4.2	Cadmium selenide	146
		6.4.3	Mercury selenide	150
	6.5	Relativ	vistic influences	151
		6.5.1	Equilibrium structure	151
		6.5.2	High-pressure structure	153
		6.5.3	Electronic properties	157
	6.6	Summa	ary	157
7	The	group	12 tellurides	159
	7.1	Occuri	ing crystal structures	159
		7.1.1	Zinc tellurides	159
		7.1.2	Cadmium tellurides	160
		7.1.3	Mercury tellurides	162
	7.2	Equilit	prium structures	163
		7.2.1	Zinc telluride	163
		7.2.2	Cadmium telluride	165
		7.2.3	Mercury telluride	167
	7.3	High-p	ressure phases	168
		7.3.1	Zinc telluride	168
		7.3.2	Cadmium telluride	172
		7.3.3	Mercury telluride	175
	7.4	Electro	onic structure	179
		7.4.1	Zinc telluride	179
		7.4.2	Cadmium telluride	179
		7.4.3	Mercury telluride	181
	7.5	Relativ	vistic influences	184
		7.5.1	Equilibrium structure	184
		7.5.2	High-pressure structure	186
		7.5.3	Electronic properties	187
	7.6	Summa	ary	188
8	Con	clusior	and outlook	191
Bi	bliog	raphy		195

List of Figures

1.1	Crystals of mercury oxide	2
1.2	Two views of the montroydite structure	2
1.3	Two views of the cinnabar structure	3
2.1	Sketch of the pair distribution function for the homogeneous elec-	
	tron gas	14
2.2	Ratio of relativistic and non-relativistic Bohr radius	23
2.3	Primitive vectors of a unit cell	26
2.4	Comparison of the all-electron and the pseudopotential wavefunction	33
3.1	Unit vectors and angles of a unit cell	42
3.2	Unit cells of the cesium chloride and the rocksalt structure	44
3.3	The units cells of the zinc blende and the wurtzite structure \ldots	45
3.4	The unit cell of the cinnabar structure	49
3.5	Structural change from the cinnabar to the rocksalt structure	50
3.6	The unit cell of the montroydite structure	51
3.7	Brillouin zone of the fcc lattice	55
3.8	Brillouin zone of the hexagonal primitive lattice	56
3.9	Brillouin zone of the orthorhombic side-face centred lattice	56
4.1	Lattice energies for the ZnO and CdO crystal structures \ldots .	63
4.2	Relativistic and nonrelativistic lattice energies for the HgO crystal structures	66

4.3	Band structures and DOS for the ZnO and CdO equilibrium poly-morphs72
4.4	Band structures and DOS for the HgO polymorph montroydite 74
4.5	Site-projected DOS for the HgO polymorph montroydite 75
4.6	Band structures and DOS for the HgO polymorph cinnabar 78
4.7	Site-projected DOS for the HgO polymorph cinnabar
4.8	Band structures and DOS for the nonrelativistic equilibrium HgOpolymorph82
4.9	Site-projected DOS for the nonrelativistic equilibrium HgO poly- morph
5.1	Lattice energies for the ZnS and CdS crystal structures 88
5.2	Lattice parameter of Pmmn-CdS
5.3	Lattice parameter of Pmmn-HgS
5.4	Band structures and DOS for the ZnS polymorphs wurtzite and zinc blende
5.5	Band structures and DOS for the CdS polymorphs wurtzite and zinc blende
5.6	Band structures and DOS for the HgS polymorph cinnabar 110
5.7	Site-projected DOS for the HgS polymorph cinnabar 111
5.8	Band structures and DOS for the HgS polymorph zinc blende $~$ 113
5.9	Site-projected DOS for the HgS polymorph zinc blende 114
5.10	Relativistic and nonrelativistic lattice energies for the HgS crystal structures
5.11	Lattice parameters of nonrelativistic Pmmn-HgS
5.12	Band structures and DOS for the nonrelativistic equilibrium HgS polymorphs
5.13	Site-projected DOS for the nonrelativistic equilibrium HgS poly- morphs
6.1	Lattice energies for the ZnSe and CdSe crystal structures 129

6.2	Band structures and DOS for the ZnSe polymorphs zinc blendeand wurtzite145
6.3	Band structures and DOS for the CdSe polymorphs zinc blende and wurtzite
6.4	Band structures and DOS for the HgSe polymorph zinc blende 148 $$
6.5	Site-projected DOS for the HgSe polymorph zinc blende 149
6.6	Relativistic and nonrelativistic lattice energies for the HgSe crystal structures
6.7	Band structures and DOS for the nonrelativistic equilibrium HgSepolymorphs155
6.8	Site-projected DOS for the nonrelativistic equilibrium HgSe poly- morphs
7.1	Lattice energies for the ZnTe and CdTe crystal structures 164
7.2	Band structures and DOS for the ZnTe and CdTe equilibrium polymorph zinc blende
7.3	Band structures and DOS for the HgTe polymorph zinc blende 182
7.4	Site-projected DOS for the HgTe polymorph zinc blende 183
7.5	Relativistic and nonrelativistic lattice energies for the HgTe crystal structures
7.6	Band structures and DOS for the nonrelativistic equilibrium HgTe polymorph
7.7	Site-projected DOS for the nonrelativistic equilibrium HgTe poly- morph

LIST OF FIGURES

List of Tables

1.1	Structures of the HgO equilibrium phases	3
2.1	Bravais lattices of a three-dimensional crystal	28
3.1	Adopted and investigated structures of the group 12 chalcogenides	43
3.2	Atomic total energies	54
4.1	Ground-state properties of the ZnO equilibrium phases	62
4.2	Ground-state properties of the CdO equilibrium phases \ldots .	64
4.3	Ground-state properties of the HgO equilibrium phases \ldots .	67
4.4	Ground-state properties of the ZnO high-pressure phases $\ . \ . \ .$	68
4.5	Ground-state properties of the CdO high-pressure phases	69
4.6	Ground-state properties of the HgO high-pressure phases \ldots .	70
4.7	Bond distances of the equilibrium group 12 oxides	80
4.8	Ground-state properties of the nonrelativistic HgO equilibrium and high-pressure phases	81
		01
5.1	Ground-state properties of the ZnS equilibrium phases	89
5.2	Ground-state properties of the CdS equilibrium phases \ldots .	91
5.3	Ground-state properties of the HgS equilibrium phases $\ . \ . \ .$.	92
5.4	Ground-state properties of the ZnS high-pressure phases I $\ .$	95
5.5	Ground-state properties of the ZnS high-pressure phases II $\ . \ . \ .$	96
5.6	Ground-state properties of the CdS high-pressure phases I $\ .$	99
5.7	Ground-state properties of the CdS high-pressure phases II \ldots	100

5.8	Ground-state properties of the HgS high-pressure phases \ldots . . 103
5.9	Ground-state properties of the nonrelativistic HgS equilibrium and
	high-pressure phases
5.10	Bond distances of the equilibrium group 12 sulfides
6.1	Ground-state properties of the ZnSe equilibrium phases 130 $$
6.2	Ground-state properties of the CdSe equilibrium phases 131
6.3	Ground-state properties of the HgSe equilibrium phases 133
6.4	Ground-state properties of the ZnSe high-pressure phases I $\ . \ . \ . \ 134$
6.5	Ground-state properties of the ZnSe high-pressure phases II $~$ 135 $~$
6.6	Ground-state properties of the CdSe high-pressure phases I 138 $$
6.7	Ground-state properties of the CdSe high-pressure phases II $~$ 139 $~$
6.8	Ground-state properties of the HgSe high-pressure phases I \ldots . 141
6.9	Ground-state properties of the HgSe high-pressure phases II $~\ldots~142$
6.10	Ground-state properties of the nonrelativistic HgSe equilibrium
	and high-pressure phases
6.11	Bond distances of the equilibrium group 12 selenides 153
7.1	Ground-state properties of the ZnTe equilibrium phases 165
7.2	Ground-state properties of the CdTe equilibrium phases 166
7.3	Ground-state properties of the HgTe equilibrium phases 167
7.4	Ground-state properties of the ZnTe high-pressure phases I \ldots . 169
7.5	Ground-state properties of the ZnTe high-pressure phases II $~$ 170 $$
7.6	Ground-state properties of the CdTe high-pressure phases I 173 $$
7.7	Ground-state properties of the CdTe high-pressure phases II $\ . \ . \ . \ 174$
7.8	Ground-state properties of the HgTe high-pressure phases I 176 $$
7.9	Ground-state properties of the HgTe high-pressure phases II $~.~.~177$
7 10	
1.10	Ground-state properties of the nonrelativistic HgTe equilibrium
1.10	Ground-state properties of the nonrelativistic HgTe equilibrium and high-pressure phases

Nomenclature

ADA	Averaged Density Approximation
ADX	Angle Dispersive Xray
AIMD	Ab-Initio Molecular Dynamics
APW+lo	Augmented Plane-Wave method plus Local Orbitals
СВМ	Conduction-Band Minimum
CC	Coupled Cluster
CI	Configuration Interaction
DFT	Density Functional Theory
DOS	Density Of States
EDX	Energy Dispersive Xray
EOS	Equation Of State
EXAFS	Extended X-ray Absorption Fine Structure
FFT	Fast-Fourier Transform
FP	Full Potential
GDSP	Gaussian Dual Space Pseudopotentials
GGA	Generalized Gradient Approximation
GTO	Gaussian Type Orbital
HF	Hartree-Fock
IBZ	Irreducible Brillouin Zone

LAPW	Linearised Augmented-Plane Wave
LCAO	Linear Combination of Atomic Orbitals
LDA	Local Density Approximation
LMTO	Linear Muffin-Tin Orbital
LSDA	Local Spin-Density Approximation
MBPT	Many-Body Perturbation Theory
MD	Molecular Dynamics
MP2	2nd order Møller-Plesset pertubation theory
MR	Multi Reference
NAO+GC	Natural Atomic Orbital plus Gradient Corrections
PBE	Perdew-Burke-Ernzerhof functional
PP	PseudoPotential
PW	Plane Wave
PW91	PerdewWang 1991 functional
SCF	Self-Consistent Field
SCR	Self-Consistent Relativistic
ТВ	Tight Binding
US	UltraSoft pseudopotential
VASP	Vienna Ab-initio Simulation Package
VBM	Valence-Band Maximum

xvi